Science.gov

Sample records for weld pool size

  1. Determination of a temperature sensor location for monitoring weld pool size in GMAW

    SciTech Connect

    Boo, K.S.; Cho, H.S. . Dept. of Precision Engineering and Mechatronics)

    1994-11-01

    This paper describes a method of determining the optimal sensor location to measure weldment surface temperature, which has a close correlation with weld pool size in the gas metal arc (GMA) welding process. Due to the inherent complexity and nonlinearity in the GMA welding process, the relationship between the weldment surface temperature and the weld pool size varies with the point of measurement. This necessitates an optimal selection of the measurement point to minimize the process nonlinearity effect in estimating the weld pool size from the measured temperature. To determine the optimal sensor location on the top surface of the weldment, the correlation between the measured temperature and the weld pool size is analyzed. The analysis is done by calculating the correlation function, which is based upon an analytical temperature distribution model. To validate the optimal sensor location, a series of GMA bead-on-plate welds are performed on a medium-carbon steel under various welding conditions. A comparison study is given in detail based upon the simulation and experimental results.

  2. Effect of convection on weld pool development

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1991-01-01

    A computational study of the transient convective phenomena in the weld pool during gas tungsten arc (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach that directly utilizes the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model includes weld metal vaporization and temperature-dependent thermophysical properties. The results confirm that the development of the weld pool is very sensitive to the convective flow in the weld pool. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape were compared with corresponding experimental measurements with good agreement. 23 refs., 9 figs., 3 tabs.

  3. Weld pool oscillation during pulsed GTA welding

    SciTech Connect

    Aendenroomer, A.J.R.; Ouden, G. den

    1996-12-31

    This paper deals with weld pool oscillation during pulsed GTA welding and with the possibility to use this oscillation for in-process control of weld penetration. Welding experiments were carried out under different welding conditions. During welding the weld pool was triggered into oscillation by the normal welding pulses or by extra current pulses. The oscillation frequency was measured both during the pulse time and during the base time by analyzing the arc voltage variation using a Fast Fourier Transformation program. Optimal results are obtained when full penetration occurs during the pulse time and partial penetration during the base time. Under these conditions elliptical overlapping spot welds are formed. In the case of full penetration the weld pool oscillates in a low frequency mode (membrane oscillation), whereas in the case of partial penetration the weld pool oscillates in a high frequency mode (surface oscillation). Deviation from the optimal welding conditions occurs when high frequency oscillation is observed during both pulse time and base time (underpenetration) or when low frequency oscillation is observed during both pulse time and base time (overpenetration). In line with these results a penetration sensing system with feedback control was designed, based on the criterion that optimal weld penetration is achieved when two peaks are observed in the frequency distribution. The feasibility of this sensing system for orbital tube welding was confirmed by the results of experiments carried out under various welding conditions.

  4. Weld pool oscillation during gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Xiao, You Hong

    The oscillation behavior of Gas Tungsten Arc (GTA) weld pools in mild steels Fe 360 and in austenitic stainless steel AISI 304 is considered. Special attention is given to the possibility of using the weld pool oscillation behavior as a sensor of weld pool geometry during welding, which is one of the objectives in adaptive control of the welding process. The topics discussed include the theoretical background of the oscillation phenomenon, the direct observation of weld pool oscillation, the experimental determination of the relation between the weld pool geometry and the oscillation frequency both under stationary arc conditions and under traveling arc conditions and the possibility of sensing the weld pool geometry, especially the weld pool penetration, by monitoring the oscillation frequency.

  5. A unified model of coupled arc plasma and weld pool for double electrodes TIG welding

    NASA Astrophysics Data System (ADS)

    Wang, Xinxin; Fan, Ding; Huang, Jiankang; Huang, Yong

    2014-07-01

    A three-dimensional model containing tungsten electrodes, arc plasma and a weld pool is presented for double electrodes tungsten inert gas welding. The model is validated by available experimental data. The distributions of temperature, velocity and pressure of the coupled arc plasma are investigated. The current density, heat flux and shear stress over the weld pool are highlighted. The weld pool dynamic is described by taking into account buoyance, Lorentz force, surface tension and plasma drag force. The turbulent effect in the weld pool is also considered. It is found that the temperature and velocity distributions of the coupled arc are not rotationally symmetrical. A similar property is also shown by the arc pressure, current density and heat flux at the anode surface. The surface tension gradient is much larger than the plasma drag force and dominates the convective pattern in the weld pool, thus determining the weld penetration. The anodic heat flux and plasma drag force, as well as the surface tension gradient over the weld pool, determine the weld shape and size. In addition, provided the welding current through one electrode increases and that through the other decreases, keeping the total current unchanged, the coupled arc behaviour and weld pool dynamic change significantly, while the weld shape and size show little change. The results demonstrate the necessity of a unified model in the study of the arc plasma and weld pool.

  6. Vision-based weld pool width control

    SciTech Connect

    Pietrzak, K.A.; Packer, S.M. )

    1994-02-01

    Methods for controlling weld penetration for arc welding processes from top-side measurements have long been sought. One indirect variable that has been reported to correlate with penetration is weld pool geometry. A system which uses weld pool geometry sensing for controlling weld penetration is described in this paper. The system uses a miniature camera mounted in a modified coaxial viewing torch to view the weld pool. A robust machine vision algorithm has been developed for this system to measure weld pool width. The algorithm was designed to locate the edges of the weld pool despite the presence of other edges caused by the heat affected zone, scratches, marks, and weld pool impurities. The algorithm uses a matched edge filter and a majority voting scheme to measure the width of the pool. A control system was developed to regulate weld pool width in the presence of disturbances caused by such items as incorrect parameter settings, small variations in material composition, and material thickness changes. Experiments were conducted to test the control system by simulating some of these disturbances. The experiments demonstrated that for certain classes of materials, this technique works quite well. However, for other materials such as stainless steel 304, surface impurities in the weld pool visually obscure the weld pool and its edges to such a degree that the system fails to lock onto the edges of the pool.

  7. Role of welding parameters in determining the geometrical appearance of weld pool

    SciTech Connect

    Kovacevic, R.; Cao, Z.N.; Zhang, Y.M.

    1996-10-01

    A three-dimensional numerical model is developed to describe the fluid flow and heat transfer in weld pools. Both full penetration and free deformation of the top and bottom weld pool surfaces are considered. Temperature distribution and fluid flow field are obtained. In order to analyze the influence of welding parameters on the geometrical appearance of weld pools, a normalized model is developed to characterize the geometrical appearance of weld pools. It is found that welding current can significantly affect the geometrical shape. When welding current increases, the curvature of the pool boundary at the trailing end increases. The effect of the welding speed on the geometrical appearance is slight, although its influence on the pool size is great. In the interest range of arc length (from 1 mm to 4 mm), the arc length can affect both the size and the shape of the weld pool. However, compared with the welding current and speed, its influences are much weaker, GTA welding experiments are performed to verify the validity of the numerical models. The appearance of weld pools was obtained by using machine vision and a high-shutter speed camera. It is found that the calculated results have a good agreement with the experimental ones.

  8. The distinctive feature of weld joints structure by adding the nanomodifying to the weld pool

    NASA Astrophysics Data System (ADS)

    Shlyakhova, Galina; Danilov, Vladimir; Kuznetsov, Maxim; Zernin, Evgeny; Kartashov, Evgeny

    2015-10-01

    The experimental studies were carried on for the test samples of welds of the steel 12X18H10T; the results are presented. The effect produced by the nanostructured modifying powders added to the weld pool on the quality of weld joints was examined. The weld joints were obtained by arc welding in argon atmosphere using consumable electrode. Due to the weld pool modification, the dendrite size was found to decrease and a more equilibrium microstructure would form in the weld material.

  9. Weld pool oscillation during GTA welding of mild steel

    SciTech Connect

    Xiao, Y.H.; Ouden, G. den . Dept. of Materials Science and Engineering)

    1993-08-01

    In this paper the results are reported of a study dealing with the oscillation behavior of weld pools in the case of GTA bead-on-plate welding of mild steel, Fe 360. During welding, the weld pool was brought into oscillation by applying short current pulses, and the oscillation frequency and amplitude were measured by monitoring the arc voltage. It was found that the oscillation of the partially penetrated weld pool is dominated by one of two different oscillation modes (Mode 1 and Mode 2) depending on the welding conditions, whereas the oscillation of the fully penetrated weld pool is characterized by a third oscillation mode (Mode 3). It is possible to maintain partially penetrated weld pool oscillation in Mode 1 by choosing appropriate welding conditions. Under these conditions, an abrupt decrease in oscillation frequency occurs when the weld pool transfers from partial penetration to full penetration. Thus, weld penetration can be in-process controlled by monitoring the oscillation frequency during welding.

  10. Control of Gas Tungsten Arc welding pool shape by trace element addition to the weld pool

    DOEpatents

    Heiple, C.R.; Burgardt, P.

    1984-03-13

    An improved process for Gas Tungsten Arc welding maximizes the depth/width ratio of the weld pool by adding a sufficient amount of a surface active element to insure inward fluid flow, resulting in deep, narrow welds. The process is especially useful to eliminate variable weld penetration and shape in GTA welding of steels and stainless steels, particularly by using a sulfur-doped weld wire in a cold wire feed technique.

  11. Neural Network Modeling of Weld Pool Shape in Pulsed-Laser Aluminum Welds

    SciTech Connect

    Iskander, Y.S.; Oblow, E.M.; Vitek, J.M.

    1998-11-16

    A neural network model was developed to predict the weld pool shape for pulsed-laser aluminum welds. Several different network architectures were examined and the optimum architecture was identified. The neural network was then trained and, in spite of the small size of the training data set, the network accurately predicted the weld pool shape profiles. The neural network output was in the form of four weld pool shape parameters (depth, width, half-width, and area) and these were converted into predicted weld pool profiles with the use of the actual experimental poo1 profiles as templates. It was also shown that the neural network model could reliably predict the change from conduction-mode type shapes to keyhole-mode shapes.

  12. Modeling of inclusion growth and dissolution in the weld pool

    SciTech Connect

    Hong, T.; Debroy, T.; Babu, S.S.; David, S.A.

    2000-02-01

    The composition, size distribution, and number density of oxide inclusions in weld metal are critical factors in determining weldment properties. A computational model has been developed to understand these factors, considering fluid flow and the temperature field in the weld pool during submerged arc (SA) welding of low-alloy steels. The equations of conservation of mass, momentum, and energy are solved in three dimensions to calculate the velocity and temperature fields in the weld pool. The loci and corresponding thermal cycles of thousands of oxide inclusions are numerically calculated in the weld pool. The inclusions undergo considerable recirculatory motion and experience strong temperature gyrations. The temperature-time history and the computed time-temperature-transformation (TTT) behavior of inclusions were then used to understand the growth and dissolution of oxide inclusions in the weld pool. The statistically meaningful characteristics of inclusion behavior in the weld pool, such as the residence time, number of temperature peaks, etc., were calculated for several thousand inclusions. The calculated trends agree with experimental observations and indicate that the inclusion formation can be described by combining thermodynamics and kinetics with the fundamentals of transport phenomena.

  13. A keyhole volumetric model for weld pool analysis in Nd:YAG pulsed laser welding

    NASA Astrophysics Data System (ADS)

    Kuang, Jao-Hwa; Hung, Tsung-Pin; Chen, Chih-Kuan

    2012-07-01

    This study presents a new model for analyzing the temperature distribution and weld pool shape in Nd:YAG pulsed laser welding. In the proposed approach, a surface flux heat transfer model is applied in the low laser energy intensity region of the weld, while a keyhole heat transfer model based on a volumetric heat source is applied in the high laser energy intensity region of the weld. The correlation between the intensity of the laser input energy and the geometric parameters of the volumetric heat source is derived experimentally. A series of MARC finite element simulations based on the proposed single pulse model are performed to investigate the shape and size of the weld pool given different laser energy intensities. A good agreement is observed between the simulation results and the experimental results obtained under equivalent single pulse welding conditions. Thus, the basic validity of the proposed model is confirmed.

  14. Weld Pool Stability in the Flat Position

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Coan, B.

    1999-01-01

    The Soft Plasma Arc (SPA) process was devised to avoid interactions between backshield and full penetration mode plasma jet in welding 2195 aluminum-lithium alloy. Occasional sudden and mysterious losses in penetration were encountered in flat position SPA welding. To understand what was happening a model of the dynamics of the molten metal meniscus at the root of the weld was worked out. When the power input to the weld P(sub in) exceeds the power leakage P(sub out) the difference in power is absorbed by an increase in the molten weld pool volume V, Rho X L(SUB m) X (d(V)/dt)) = P(sub in) - P(sub out) where rho is the density and L(sub m) the specific heat of the weld metal.

  15. Numerical Study for Gta Weld Shape Variation by Coupling Welding Arc and Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    A numerical modeling of the welding arc and weld pool is studied for moving GTA welding to investigate the effect of the surface active element oxygen and the plasma drag force on the weld shape. Based on the 2D axisymmetric numerical modeling of the argon arc, the heat flux, current density and plasma drag force are obtained under different welding currents. Numerical calculations to the weld pool development are carried out for moving GTA welding on SUS304 stainless steel with different oxygen contents 30 ppm and 220 ppm, respectively. The results show that the plasma drag force is another dominating driving force affecting the liquid pool flow pattern, except for the Marangoni force. The different welding currents will change the temperature distribution and plasma drag force on the pool surface, and affect the strength of Marangoni convection and the weld shape. The weld D/W ratio initially increases, followed by a constant value around 0.5 with the increasing welding current under high oxygen content. The weld D/W ratio under the low oxygen content slightly decreases with the increasing welding current. The predicted weld shape by simulation agrees well with experimental results.

  16. Control of back weld pool shape in MIG welding by using switch back method

    SciTech Connect

    Jin, B.; Kaneko, Yasuyoshi; Soeda, Masahiro; Ohshima, Kenji

    1995-12-31

    This paper deals with the problem concerning the sensing and controlling of weld pool shape in MIG welding of plate. In the robotic one side MIG welding process without backing plate, for obtaining the good quality of the weld, it is important to control the weld pool shape so as to prevent the melting metal from burning through. The method of controlling the weld pool shape is discussed. The moving torch is repeat switch change, which is named switch back method. The primary welding experimental results have proved that the switch back method is effective and satisfactory for controlling the back weld pool shape in one side MIG welding process without backing plate.

  17. The possible role of turbulence in GTA weld pool behavior

    SciTech Connect

    Choo, R.T.C. . Dept. of Metallurgy and Materials Science); Szekely, J. . Dept. of Materials Science and Engineering)

    1994-02-01

    A critical comparison of experimental measurements and the theoretical prediction of weld pool shapes in gas tungsten arc welding operations suggests that the postulate of laminar flow behavior in the wet pool may not provide a realistic prediction of the weld pool shapes, especially for weld pools deeper than about 1 mm. Furthermore, there appears to be a considerable body of evidence that suggests that the flow in weld pools may be turbulent or at least transitional. In this paper, preliminary computed results are presented describing weld pool circulation using various turbulence models, and these results appear to provide a much better agreement with measurements. These findings suggest that previous modeling efforts postulating laminar flow behavior should be critically reexamined.

  18. 3D finite element simulation of TIG weld pool

    NASA Astrophysics Data System (ADS)

    Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.

    2012-07-01

    The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.

  19. Computational modeling of stationary gastungsten-arc weld pools and comparison to stainless steel 304 experimental results

    NASA Astrophysics Data System (ADS)

    Zacharia, T.; David, S. A.; Vitek, J. M.; Kraus, H. G.

    1991-04-01

    A systematic study was carried out to verify the predictions of a transient multidimensional computational model by comparing the numerical results with the results of an experimental study. The welding parameters were chosen such that the predictions of the model could be correlated with the results of an earlier experimental investigation of the weld pool surface temperatures during spot gas-tungsten-arc (GTA) welding of Type 304 stainless steel (SS). This study represents the first time that such a comprehensive attempt has been made to experimentally verify the predictions of a numerical study of weld pool fluid flow and heat flow. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a truly deformable surface. Theoretical predictions of the weld pool surface temperature distributions, the cross-sectional weld pool size and shape, and the weld pool surface topology were compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement within ±8 pct for the best theoretical models. The predicted surface profiles were found to agree within ±20 pct on dome height and ±8 pct on weld pool diameter for the best theoretical models. The predicted weld cross-sectional profiles were overlaid on macrographs of the actual weld cross sections, and they were found to agree very well for the best theoretical models.

  20. Weld pool flow visualization studies during gas tungsten arc welding of steel and aluminum

    NASA Astrophysics Data System (ADS)

    Schupp, Peter E.

    1992-03-01

    A flow visualization study of current distribution effects on weld pool stirring in GTA steel welds is presented using a pulsed ultraviolet laser vision system. Weld pool stirring is almost eliminated in HY-80 steel by the use of symmetric current flow path within the weld samples. Periodic radial surface pulses are observed at low currents in stationary welds while flows of turbulent nature are observed at higher currents. Autogenous welds on 17.75 cm by 28.0 cm by 1.27 cm thick 6061 aluminum plates are also studied to determine resulting surface flow characteristics and weld pool growth rates. Clockwise stirring in conjunction with a vertical undulation is noted in stationary welds. Solidified weld zone exhibits a profound crater that was not present in welds on HY-80 Steel.

  1. Weld pool flow visualization studies during gas tungsten arc welding of steel and aluminum. Master's thesis

    SciTech Connect

    Schupp, P.E.

    1992-03-01

    A flow visualization study of current distribution effects on weld pool stirring in GTA steel welds is presented using a pulsed ultraviolet laser vision system. Weld pool stirring is almost eliminated in HY-80 steel by the use of symmetric current flow path within the weld samples. Periodic radial surface pulses are observed at low currents in stationary welds while flows of turbulent nature are observed at higher currents. Autogenous welds on 17.75 cm by 28.0 cm by 1.27 cm thick 6061 aluminum plates are also studied to determine resulting surface flow characteristics and weld pool growth rates. Clockwise stirring in conjunction with a vertical undulation is noted in stationary welds. Solidified weld zone exhibits a profound crater that was not present in welds on HY-80 Steel.

  2. TOPICAL REVIEW: Predictions of weld pool profiles using plasma physics

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Lowke, J. J.

    2007-01-01

    This paper gives a review of recent papers which have led to the capability of the prediction of weld depths for gas tungsten arc welding, for any given arc current, electrode shape or separation and welding gas. The methodology is given for deriving plasma composition as a function of temperature and pressure from basic atomic and molecular properties. Transport coefficients of density, specific heat, enthalpy, electrical conductivity, thermal conductivity, viscosity and radiation emission coefficients can then be derived as a function of temperature. The conservation equations of fluid dynamics are then used to derive weld profiles for stainless steel for welding gases such as argon, helium, carbon dioxide and a 10% mixture of hydrogen in argon. The markedly different weld depths which are obtained are related to basic material functions such as specific heat, electrical and thermal conductivity. The temperature dependence of the surface tension coefficient has a marked effect on weld depth and profiles because it can influence the direction of circulatory flow in the weld pool. Electric arcs in helium and carbon dioxide are more constricted than arcs in argon and as a consequence the magnetic pinch pressure of the arc, transmitted to the weld pool, can force strong downward flows in the weld pool and thus lead to a deep weld. It is found that because of the interactions of the arc and the weld pool through effects such as viscous drag forces of the plasma on the weld pool, it is necessary to treat the arc, the electrode and the weld pool in a unified system.

  3. Influence of the arc plasma parameters on the weld pool profile in TIG welding

    NASA Astrophysics Data System (ADS)

    Toropchin, A.; Frolov, V.; Pipa, A. V.; Kozakov, R.; Uhrlandt, D.

    2014-11-01

    Magneto-hydrodynamic simulations of the arc and fluid simulations of the weld pool can be beneficial in the analysis and further development of arc welding processes and welding machines. However, the appropriate coupling of arc and weld pool simulations needs further improvement. The tungsten inert gas (TIG) welding process is investigated by simulations including the weld pool. Experiments with optical diagnostics are used for the validation. A coupled computational model of the arc and the weld pool is developed using the software ANSYS CFX. The weld pool model considers the forces acting on the motion of the melt inside and on the surface of the pool, such as Marangoni, drag, electromagnetic forces and buoyancy. The experimental work includes analysis of cross-sections of the workpieces, highspeed video images and spectroscopic measurements. Experiments and calculations have been performed for various currents, distances between electrode and workpiece and nozzle diameters. The studies show the significant impact of material properties like surface tension dependence on temperature as well as of the arc structure on the weld pool behaviour and finally the weld seam depth. The experimental weld pool profiles and plasma temperatures are in good agreement with computational results.

  4. Modeling of the Weld Shape Development During the Autogenous Welding Process by Coupling Welding Arc with Weld Pool

    NASA Astrophysics Data System (ADS)

    Dong, Wenchao; Lu, Shanping; Li, Dianzhong; Li, Yiyi

    2010-10-01

    A numerical model of the welding arc is coupled to a model for the heat transfer and fluid flow in the weld pool of a SUS304 stainless steel during a moving GTA welding process. The described model avoids the use of the assumption of the empirical Gaussian boundary conditions, and at the same time, provides reliable boundary conditions to analyze the weld pool. Based on the two-dimensional axisymmetric numerical modeling of the argon arc, the heat flux to workpiece, the input current density, and the plasma drag stress are obtained. The arc temperature contours, the distributions of heat flux, and current density at the anode are in fair agreement with the reported experimental results. Numerical simulation and experimental studies to the weld pool development are carried out for a moving GTA welding on SUS304 stainless steel with different oxygen content from 30 to 220 ppm. The calculated result show that the oxygen can change the Marangoni convection from outward to inward direction on the liquid pool surface and make the wide shallow weld shape become narrow deep one. The calculated result for the weld shape and weld D/W ratio agrees well with the experimental one.

  5. Gravitational effects on weld pool shape and microstructural evolution during gas tungsten arc and laser beam welding on 304 stainless steel, nickel, and aluminum-4 wt.% copper alloy

    NASA Astrophysics Data System (ADS)

    Kang, Namhyun

    The objective of the present work was to investigate effects of gravitational (acceleration) level and orientation on Ni 200 alloy (99.5% Ni purity), 304 stainless steel, and Al-4 wt.% Cu alloy during gas tungsten arc welding (GTAW) and laser beam welding (LBW). Main characterization was focused on the weld pool shape, microstructure, and solute distribution as a function of gravitational level and orientation. The welds were divided into two classes, i.e., 'stable' and 'unstable' welds, in view of the variation of weld pool shape as a function of gravitational level and orientation. In general, higher arc current and translational GTAW produced more significant effects of gravitational orientation on the weld pool shape than the case of lower arc current and spot welding. Cross-sectional area (CSA) was a secondary factor in determining the stability of weld pool shape. For the 'stable' weld of 304 stainless steel GTAW, the II-U weld showed less convexity in the pool bottom and more depression of the free surface, therefore producing deeper penetration (10--20%) than the case of II-D weld. The II-D weld of 304 stainless steel showed 31% deeper penetration, 28% narrower width, and more hemispherical shape of the weld pool than the case of II-U weld. For GTAW on 304 stainless steel, gravitational level variation from low gravity (LG ≈ 1.2 go) to high gravity (HG ≈ 1.8 go) caused 10% increase in width and 10% decrease in depth while maintaining the overall weld pool volume. Furthermore, LBW on 304 stainless steels showed mostly constant shape of weld pool as a function of gravitational orientation. GTAW on Ni showed similar trends of weld pool shape compared with GTAW on 304 stainless steel, i.e., the weld pool became unstable by showing more penetration in the II-D weld for slower arc translational velocity (V a) and larger weld pool size. However, the Ni weld pool shape had greater stability of the weld pool shape with respect to the gravitational orientation than the case of 304 stainless steel, i.e., higher current boundary and no humping. Regardless of the gravitational level, the ferrite content and the distribution of the solutes (Cr and Ni) remained constant for GTAW on 304 stainless steel. However, for GTAW on Al-4 wt.% Cu alloys, the gravitational orientation changed the weld pool shape associated with convection flows. In summary, gravity influenced the weld pool shape that was associated with convection flows and weld surface deformation for specific welding conditions. The variation of convection flows and weld pool shape played a role in modifying VS and GL. Solidification orientation and morphology were affected because VS and GL were changed as a function of gravity. Studies of gravity on the welding process are expected to play a significant role in the space-station construction and circumferential pipe welding on the earth. (Abstract shortened by UMI.)

  6. Real time polarization imaging of weld pool surface

    NASA Astrophysics Data System (ADS)

    Stolz, C.; Coniglio, N.; Mathieu, A.; Aubreton, O.

    2015-04-01

    The search for an efficient on-line monitoring system focused on the real-time analysis of arc welding quality is an active area of research. The topography and the superficial temperature field of the weld pool can provide important information which can be used to regulate the welding parameters for depositing consistent welds. One difficulty relies on accessing this information despite the bright dazzling welding arc. In the present work, Stokes polarimetry and associated shape-from-polarization methods are applied for the analysis of the weld pool through its 810 nm-wavelength infrared emissions. The obtained information can provide a better understanding of the process, such as the usage of the topography to seek Marangoni flows direction, or to have a denser 3D map to improve numerical simulation models.

  7. A study of arc force, pool depression and weld penetration during gas tungsten arc welding

    SciTech Connect

    Rokhlin, S.I.; Guu, A.C. . Dept. of Welding Engineering)

    1993-08-01

    Weld pool depression, arc force, weld penetration, and their interrelations have been studied as a function of welding current. Pool depression and welding arc force have been measured simultaneously using a recently developed technique. The authors found quadratic dependence of arc force on current, confirming similar findings in previous studies. Pool depression is essentially zero below a threshold level of current (200 A in this experiment) and then increases quadratically with current. A perfectly linear relation between arc force and pool depression was found in the current range from 200 to 350 A, with pool depression onset at about 0.35 g force (0.34 [center dot] 10[sup [minus]2]N). The total surface tension and gravitational forces were calculated, from the measured surface topography, and found to be about five times that required to balance the arc force at 300 A. Thus electromagnetic and hydrodynamic forces must be taken into account to explain the measured levels of pool depression. The relation between weld penetration and pool depression for different welding currents has been established. Three distinct regimes of weld penetration on weld current were found.

  8. Experimental and Numerical Investigation of an Electromagnetic Weld Pool Control for Laser Beam Welding

    NASA Astrophysics Data System (ADS)

    Bachmann, M.; Avilov, V.; Gumenyuk, A.; Rethmeier, M.

    The objective of this study was to investigate the influence of externally applied magnetic fields on the weld quality in laser beam welding. The optimization of the process parameters was performed using the results of computer simulations. Welding tests were performed with up to 20 kW laser beam power. It was shown that the AC magnet with 3 kW power supply allows for a prevention of the gravity drop-out for full penetration welding of 20 mm thick stainless steel plates. For partial penetration welding it was shown that an0.5 T DC magnetic field is enough for a suppression of convective flows in the weld pool. Partial penetration welding tests with 4 kW beam power showed that the application of AC magnetic fields can reduce weld porosity by a factor of 10 compared to the reference joints. The weld surface roughness was improved by 50%.

  9. Process stability and weld pool oscillation during short circuiting GMA welding

    SciTech Connect

    Hermans, M.J.M.; Ouden, G. den

    1996-12-31

    In this paper the results are presented of an investigation dealing with short circuiting GMA welding. Experiments were carried out under different conditions and during these experiments various process parameters were continuously monitored. It was found that the maximum in process stability coincides with the maximum in the short circuit frequency. Outside this maximum either irregular material transfer takes place with a tendency for open arc droplet transfer, or stubbing of the welding wire in the weld pool starts to occur, accompanied by highly irregular melt-off behavior. The results show that process stability is directly related to weld pool oscillation. More specifically, it appears that process stability is maximum (optimum welding conditions) when the short circuit frequency equals the oscillation frequency of the weld pool. Under these conditions the weld pool touches the droplet at every oscillation, which results in regular droplet transfer and high stability of the overall welding process. This was confirmed by high-speed films. In order to determine the influence of the chemical composition of the liquid metal and the shielding gas on the short circuiting behavior, welding experiments were carried out with different base metals and shielding gas mixtures. The results of these experiments show that the chemical composition of the shielding gas and the weld metal has a pronounced effect on the optimal welding conditions. For instance, when austenitic stainless steel AISI 316 is used, the maximum short circuit frequency (being equal to the oscillation frequency) is approximately 6% higher than in the case of unalloyed steel. The results obtained can be explained in terms of the physical properties of the liquid metal, in particular the surface tension.

  10. Welding pool measurement using thermal array sensor

    NASA Astrophysics Data System (ADS)

    Cho, Chia-Hung; Hsieh, Yi-Chen; Chen, Hsin-Yi

    2015-08-01

    Selective laser melting (SLM) is an additive manufacturing (AM) technology that uses a high-power laser beam to melt metal powder in chamber of inert gas. The process starts by slicing the 3D CAD data as a digital information source into layers to create a 2D image of each layer. Melting pool was formed by using laser irradiation on metal powders which then solidified to consolidated structure. In a selective laser melting process, the variation of melt pool affects the yield of a printed three-dimensional product. For three dimensional parts, the border conditions of the conductive heat transport have a very large influence on the melt pool dimensions. Therefore, melting pool is an important behavior that affects the final quality of the 3D object. To meet the temperature and geometry of the melting pool for monitoring in additive manufacturing technology. In this paper, we proposed the temperature sensing system which is composed of infrared photodiode, high speed camera, band-pass filter, dichroic beam splitter and focus lens. Since the infrared photodiode and high speed camera look at the process through the 2D galvanometer scanner and f-theta lens, the temperature sensing system can be used to observe the melting pool at any time, regardless of the movement of the laser spot. In order to obtain a wide temperature detecting range, 500 °C to 2500 °C, the radiation from the melting pool to be measured is filtered into a plurality of radiation portions, and since the intensity ratio distribution of the radiation portions is calculated by using black-body radiation. The experimental result shows that the system is suitable for melting pool to measure temperature.

  11. Stability of Full Penetration, Flat Position Weld Pools

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Coan, Al. B.

    1999-01-01

    The dynamics of the dropthrough distance of a full penetration, flat position weld pool is described. Close to incipient root side penetration the dropthrough is metastable, so that a small drop in power can cause a loss of penetration if not followed soon enough by a compensating rise in power. The SPA (Soft Plasma Arc) process with higher pressure on top of the weld pool loses penetration more quickly than the GTA (Gas Tungsten Arc) process. 2195 aluminum-lithium alloy with a lower surface tension loses penetration more quickly than 2219 aluminum alloy. An instance of loss of penetration of a SPA weld in 2195 aluminum-lithium alloy is discussed in the light of the model.

  12. Weld pool development during GTA and laser beam welding of Type 304 stainless steel; Part II-experimental correlation

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M. ); Debroy, T. )

    1989-12-01

    In part I of the paper, the results of the heat flow and the fluid flow analysis were presented. Here, in Part II of the paper, predictions of the computational model are verified by comparing the numerically predicted and experimentally observed fusion zone size and shape. Stationary gas tungsten arc and laser beam welds were made on Type 304 stainless steel for different times to provide a variety of solidification conditions such as cooling rate and temperature gradient. Calculated temperatures and cooling rates are correlated with the experimentally observed fusion zone structure. In addition, the effect of sulfur on GTA weld penetration was quantitatively evaluated by considering two heats of 304 stainless steel containing 90 and 240 ppm sulfur. Sulfur, as expected, increased the depth/width ratio by altering the surface tension gradient driven flow in the weld pool.

  13. On the calculation of the free surface temperature of gas-tungsten-arc weld pools from first principles; Part 2. Modeling the weld pool and comparison with experiments

    SciTech Connect

    Choo, R.T.C. . Dept. of Metallurgy and Materials Science); Szekely, J. . Dept. of Materials Science and Engineering); David, S.A. . Metals and Ceramics Div.)

    1992-06-01

    By combining a mathematical model of the welding arc and of the weld pool, calculations are presented here to describe the free surface temperature of weld pools for spot welding operations. The novel aspects of the treatment include the calculation of the heat and current fluxes falling on the free weld pool surface from first principles, a realistic allowance for heat losses due to vaporization, and a realistic allowance for the temperature dependence of the surface tension. The most important finding reported in this article is that the free surface temperature of weld pools appears to be limited by Marangoni convection, rather than heat losses due to vaporization. Furthermore, it was found that once thermocapillary flow can produce high enough surface velocities ({gt}25 cm/s), the precise nature of the relationship between temperature and surface tension will become less important.

  14. Simultaneous vision image sensing of weld pool of pulsed GTAW in multi-orientation in a frame

    NASA Astrophysics Data System (ADS)

    Zhang, Guangjun; Chen, Shanben; Liu, Xiaodong; Wu, Lin

    2001-09-01

    Welding arc light spectrum in the range of 600nm~700nm basically composes of continuous spectrum without metal spectrum and argon spectrum. The radiation strength of this continuous spectrum is low and smooth, which is benefit for reducing process, and the response sensitivity of CCD camera is high at this wavelength range. So, choose a suitable imaging spectrum window, use the continuous spectrum of this window to illuminate the welding pool and use CCD camera to sample the pool image. The reflection of arc light from liquid metal pool surface is specular reflection, the reflection of arc light from the workpiece surface is diffuse reflection, which improves the contrast of the welding pool image. This kind of vision image sensing method takes full advantage of the arc light as a benefit factor, and realizes to acquire the comprehensive information of the pool only from a single sensing source. Based on the above principle, this paper develops a visual image sensing system for weld zone of pulsed GTAW. The system as a part of the control system for weld shape can realize simultaneous image sensing of front topside, back topside and bottom side weld pool in a frame. Both the topside and bottom images concentrate on the same target of the CCD camera through the visual sensing light path system. The composite filter technology with low sampling image current is used to overcome the influence of arc light. The high quality and clear images of weld zones are acquired, which supply plenty information to study the dynamic process of pulsed GTAW. In addition, in order to extract the actual size parameters of weld pool, the image sensing system is calibrated.

  15. Using Taguchi method to optimize welding pool of dissimilar laser-welded components

    NASA Astrophysics Data System (ADS)

    Anawa, E. M.; Olabi, A. G.

    2008-03-01

    In the present work, CO 2 continuous laser welding process was successfully applied and optimized for joining a dissimilar AISI 316 stainless-steel and AISI 1009 low carbon steel plates. Laser power, welding speed and defocusing distance combinations were carefully selected with the objective of producing welded joint with complete penetration, minimum fusion zone size and acceptable welding profile. Fusion zone area and shape of dissimilar austenitic stainless-steel with ferritic low carbon steel were evaluated as a function of the selected laser welding parameters. Taguchi approach was used as statistical design of experiment (DOE) technique for optimizing the selected welding parameters in terms of minimizing the fusion zone. Mathematical models were developed to describe the influence of the selected parameters on the fusion zone area and shape, to predict its value within the limits of the variables being studied. The result indicates that the developed models can predict the responses satisfactorily.

  16. Electrochemical effects on weld pool chemistry in submerged arc and dc electroslag welding

    SciTech Connect

    Blander, M.; Olson, D.L.

    1986-01-01

    Electrochemical reactions could be an important factor governing the chemistry of weld pools in dc welding. The anodic reaction at the weld wire-slag interface leads to a relatively high Po/sub 2/ which leads to the formation of an oxide nO/sup 2 -/ + M(metal) ..-->.. MO/sub n/ + 2ne where M is a metal at the weld wire-slag interface and n is related to the valence of M in the oxide. After the molten weld wire forms a droplet which separates from the wire, the electrochemical reaction ceases and the oxide dissolves in the flux. The cathodic reactions at the weld pool lead to the electrodeposition of metals M/sup 2 +/(slag) + 2e ..-->.. M(metal); Si/sup 4 +/(slag) + 4e ..-->.. Si(metal) where M can be Fe/sup 2 +/, Mn/sup 2 +/. or other metals which are electrodeposited at the interface. The relative amounts of all these deposits wil be readjusted by chemical reactions such as Si(metal) + 2MO(slag) ..-->.. SiO/sub 2/(slag) + 2M(metal); Mn(metal) + FeO(slag) ..-->.. MnO(slag) + Fe(metal). The resultant changes in the compositions of the weld metal and the slag depend on the rates of the electrodeposition reactions relative to the rates of the back reactions. If the proposed mechanism is correct, experimental data would indicate that both the electrochemical and back reactions appear to be important. Analogous electrochemical reactions can occur at metal-plasma interfaces.

  17. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  18. Experimental and numerical studies on three dimensional GTA weld pool convection: Non-axisymmetric effects

    SciTech Connect

    Joshi, Y.; Dutta, P.; Schupp, P.E.; Espinosa, D.

    1995-12-31

    Observations of surface flow patterns of steel and aluminum GTAW pools have been made using a pulsed laser visualization system. The weld pool convection is found to be three dimensional, with the azimuthal circulation depending on the location of the clamp with respect to the torch. Oscillation of steel pools and undulating motion in aluminum weld pools are also observed even with steady process parameters. Current axisymmetric numerical models are unable to explain such phenomena. A three dimensional computational study is carried out in this study to explain the rotational flow in aluminum weld pools.

  19. Detectability of penetration depth based on weld pool geometry and process emission spectrum in laser welding of copper

    NASA Astrophysics Data System (ADS)

    Özmert, Alp; Neisser-Deiters, Paul; Drenker, Alexander

    2014-05-01

    Laser welding is a promising joining process for copper interconnections. A key criterion of quality for these welds is the penetration depth. The penetration depth is subject to intrinsic variation, i.e. by the nature of the welding process. Online detection of penetration depth enables quality assurance and furthermore welding of joint configurations with tighter tolerances via closed-loop control. Weld pool geometry and keyhole optical emission in the wavelength interval of 400-1100 nm are investigated with regard to how suitable they are for the detection of penetration depth in laser welding of copper Cu-ETP. Different penetration depths were induced by stepwise modulation of laser power in bead-on-plate welds. The welds have been monitored with illuminated high-speed videography of the work piece surface and spectrometry. Increase of the weld pool length (in direction of travel) corresponding to increase in penetration depth has been observed while no noticeable change was observed of the weld pool width (transverse to the direction of travel). No significant lines were observed in the spectrum. The radiant power in VIS-spectrum was observed to increase with increasing penetration depth as well. As future work, with increasing understanding and experimental data, online monitoring by indirectly measuring the penetration depth would be possible. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 260153 (QCOALA: Quality Control for Aluminium Laser-Welded Assemblies).

  20. Weld pool development during GTA and laser beam welding of Type 304 stainless steel; Part I - theoretical analysis

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M. ); Debroy, T. )

    1989-12-01

    A computational and experimental study was carried out to quantitatively understand the influence of the heat flow and the fluid flow in the transient development of the weld pool during gas tungsten arc (GTA) and laser beam welding of Type 304 stainless steel. Stationary gas tungsten arc and laser beam welds were made on two heats of Type 304 austenitic stainless steels containing 90 ppm sulfur and 240 ppm sulfur. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool. In this paper, the results of the heat flow and fluid flow analysis are presented.

  1. Analysis of Bubble Flow in the Deep-Penetration Molten Pool of Vacuum Electron Beam Welding

    NASA Astrophysics Data System (ADS)

    Luo, Yi; Wan, Rui; Zhu, Yang; Xie, Xiaojian

    2015-03-01

    Based on the vacuum electron beam welding with deep-penetration process, the convection phenomenon of the bubble flow in partially penetrated and fully penetrated molten pool of AZ91D magnesium alloy was simulated under the unsteady-state conditions. At the same time, the distributions of the cavity-type defects in deep-penetration weld were studied. The results showed that the cavity-type defects are more prone to distribute at the bottom of the weld and accumulate along the axis of the weld for the partially penetrated weld seam; there is a high incidence of cavity-type defects in the middle of the weld for the fully penetrated weld seam. As a smooth escape channel for the gas phase is formed in the fully penetrated molten pool, the possibility of gas escaping is much higher than that in the partially penetrated molten pool. A high liquid convection velocity is more conducive to the escape of the gas in molten pool. The liquid convection velocity in the fully penetrated molten pool is higher than that in the partially penetrated molten pool. So, the final gas fraction in the fully penetrated molten pool is low. Therefore, the appearance of cavity-type defects in the fully penetrated weld seam is less than that in the partially penetrated weld seam.

  2. Experimental measurement of stationary SS 304, SS 316L and 8630 GTA weld pool surface temperatures

    SciTech Connect

    Kraus, H.G. )

    1989-07-01

    The optical spectral radiometric/laser reflectance experimental method, previously developed by the author, was extended to obtain high-resolution surface temperature maps of stationary GTA molten weld pools using thick-plate SS 304, SS316L, and 8630 steel. Increasing the welding current from 50 to 200 A resulted in peak pool surface temperatures from 1050{sup 0} to 2400{sup 0}C for the SS 304. At a constant welding current of 150 A, the SS 304 and various heats of SS 316L and 8630 resulted in peak weld pool temperatures from 2300{sup 0} to 2700{sup 0}C. Temperature contour plots of all the welds made are given. Surface temperature maps are classified into types that are believed to be indicative of the convective circulation patterns present in the weld pools.

  3. Dynamics of keyhole and molten pool in high-power CO2 laser welding

    NASA Astrophysics Data System (ADS)

    Matsunawa, Akira; Seto, Naoki; Kim, Jong-Do; Mizutani, Masami; Katayama, Seiji

    2000-02-01

    A deep cavity called keyhole is formed in the laser weld pool due to the intense recoil pressure of evaporation. The formation of keyhole leads to a deep penetration weld with high aspect ratio. However, a hole drilled in a liquid pool is primarily unstable by its nature and the instability of keyhole also causes the formation of porosity in the weld metal. The porosity formation is one of the serious problems in the very high power laser welding, but its mechanism has not been well understood. The authors have conducted systematic studies on observation of keyhole as well as weld pool dynamics and their related phenomena to reveal the mechanism of porosity formation and its suppression methods. The paper describes the real time observation of keyhole and laser plasma/plume behaviors in the high power CW CO2 laser welding by the high speed optical and X-ray transmission methods, cavity formation process and its suppression measures.

  4. Keyhole behavior and liquid flow in molten pool during laser-arc hybrid welding

    NASA Astrophysics Data System (ADS)

    Naito, Yasuaki; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    Hybrid welding was carried out on Type 304 stainless steel plate under various conditions using YAG laser combined with TIG arc. During arc and laser-arc hybrid welding, arc voltage variation was measured, and arc plasma, laser-induced plume and evaporation spots as well as keyhole behavior and liquid flow in the molten pool were observed through CCD camera and X-ray real-time transmission apparatus. It was consequently found that hybrid welding possessed many features in comparison with YAG laser welding. The deepest weld bead could be produced when the YAG laser beam of high power density was shot on the molten pool made beforehand stably with TIG arc. A keyhole was long and narrow, and its behavior was rather stable inside the molten pool. It was also confirmed that porosity was reduced by the suppression of bubble formation in hybrid welding utilizing a laser of a moderate power density.

  5. Analytical real-time measurement of a three-dimensional weld pool surface

    NASA Astrophysics Data System (ADS)

    Zhang, WeiJie; Wang, XueWu; Zhang, YuMing

    2013-11-01

    The ability to observe and measure weld pool surfaces in real-time is the core of the foundation for next generation intelligent welding that can partially imitate skilled welders who observe the weld pool to acquire information on the welding process. This study aims at the real-time measurement of the specular three-dimensional (3D) weld pool surface under a strong arc in gas tungsten arc welding (GTAW). An innovative vision system is utilized in this study to project a dot-matrix laser pattern on the specular weld pool surface. Its reflection from the surface is intercepted at a distance from the arc by a diffuse plane. The intercepted laser dots illuminate this plane producing an image showing the reflection pattern. The deformation of this reflection pattern from the projected pattern (e.g. the dot matrix) is used to derive the 3D shape of the reflection surface, i.e., the weld pool surface. Based on careful analysis, the underlying reconstruction problem is formulated mathematically. An analytic solution is proposed to solve this formulated problem resulting in the weld pool surface being reconstructed on average in 3.04 ms during welding experiments. A vision-based monitoring system is thus established to measure the weld pool surface in GTAW in real-time. In order to verify the effectiveness of the proposed reconstruction algorithm, first numerical simulation is conducted. The proposed algorithm is then tested on a spherical convex mirror with a priori knowledge of its geometry. The detailed analysis of the measurement error validates the accuracy of the proposed algorithm. Results from the real-time experiments verify the robustness of the proposed reconstruction algorithm.

  6. Simulation of metal transfer and weld pool development in gas metal arc welding of thin sheet metals

    NASA Astrophysics Data System (ADS)

    Wang, Fang

    Gas metal arc welding (GMAW) is the most commonly used arc welding method in industry for joining steels and aluminum alloys. But due to the mathematical difficulties associated with the free surface motion of the molten droplet and the weld pool, the process is not well understood and the development of new welding procedures in the manufacturing industry highly depends on expensive, time-consuming and experience-based trial and error. In this dissertation, numerical methods are developed to overcome the difficulties and to simulate the metal transfer and weld pool development in the GMAW of sheet metals. The simulations are validated by experiments and used to study an industrial welding process. A numerical procedure is first developed to model the free surface motion in fusion welding processes. Thermal and electromagnetic models are integrated with the fluid models. Recommendations are made on the selection and improvement of publicly available numerical algorithms, while alternative methods are also reviewed. A model combining the enthalpy, effective-viscosity and volume-of-fluid methods is then developed to simulate the metal transfer process in globular, spray and short-circuiting transfer modes. The model not only describes the influence of gravity, electromagnetic force and surface tension on droplet profile and transfer frequency, but also models the nonisothermal phenomena such as heat transfer and phase change. The melting front motion, the droplet detachment and oscillation, the satellite formation and the fluid convection within the droplet are analyzed. It has been found that the taper formation in spray transfer is closely related to the heat input on the unmelted portion of the welding wire, and the taper formation affects the globular-spray transition by decelerating the transfer process. Experiments with a high-speed motion analyzer validate the simulation results. The model is then extended to simulate the initiation, development and solidification of the weld pool, with consideration of the droplet impingement on the pool surface. The characteristics of physical variables in the weld pool are analyzed. Burn-through of thin sheet metals and penetration of a multi-layered workpiece are also simulated. Experiments are used to verify the predicted weld penetration. Finally, numerical simulation is used to analyze an industrial welding process---the gas metal arc spot welding of multi-layered workpieces. The traditional spot welding and plug welding methods are simulated. It is shown that the plug method can ensure a stable short-circuiting transfer through a pre-made hole. Both the simulation and tensile-shear tests show that the plug method improves the penetration consistency by ensuring the effective joint diameter.

  7. Experimental characterization of the weld pool flow in a TIG configuration

    NASA Astrophysics Data System (ADS)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  8. Modeling the effect of surface active elements on weld pool fluid flow, heat transfer and geometry

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.; DebRoy, T.

    1989-01-01

    The influence of sulfur on the heat flow and fluid flow and the transient development of the weld pool was quantitatively evaluated for two heats of Type 304 stainless steel containing 90 and 240 ppM sulfur, respectively. A transient heat transfer model was utilized to simulate the heat flow and fluid flow in the weld pool during stationary laser and gas tungsten arc (GTA) spot welds. A recently developed surface tension model was utilized to calculate the temperature coefficient of surface tension (d..gamma../dT) as a function of temperature and sulfur content. This allows a realistic evaluation of the effect of surface-active elements on the fluid flow and weld geometry. The computed results indicate that during stationary welding, the weld pool surface temperatures are fairly high. As a consequence, the temperature coefficient of surface tension becomes negative and a radially outward or a bifurcated flow of weld metal occurs even when the weld pool contains a significant amount of sulfur. The predictions of the model were verified by comparing the calculated and experimentally observed fusion zone geometry. The results indicate very good agreement between the predicted and experimentally observed fusion zone geometry, for both laser and gas tungsten arc (GTA) spot welds, due partly to the accurate treatment of surface tension gradient driven flows. 21 refs., 7 figs., 2 tabs.

  9. Residual Stresses and Critical Initial Flaw Size Analyses of Welds

    NASA Technical Reports Server (NTRS)

    Brust, Frederick W.; Raju, Ivatury, S.; Dawocke, David S.; Cheston, Derrick

    2009-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). A series of weld analyses are performed to determine the residual stresses in a critical region of the USS. Weld residual stresses both increase constraint and mean stress thereby having an important effect on the fatigue life. The purpose of the weld analyses was to model the weld process using a variety of sequences to determine the 'best' sequence in terms of weld residual stresses and distortions. The many factors examined in this study include weld design (single-V, double-V groove), weld sequence, boundary conditions, and material properties, among others. The results of this weld analysis are included with service loads to perform a fatigue and critical initial flaw size evaluation.

  10. Use of Aria to simulate laser weld pool dynamics for neutron generator production.

    SciTech Connect

    Noble, David R.; Notz, Patrick K.; Martinez, Mario J.; Kraynik, Andrew Michael

    2007-09-01

    This report documents the results for the FY07 ASC Integrated Codes Level 2 Milestone number 2354. The description for this milestone is, 'Demonstrate level set free surface tracking capabilities in ARIA to simulate the dynamics of the formation and time evolution of a weld pool in laser welding applications for neutron generator production'. The specialized boundary conditions and material properties for the laser welding application were implemented and verified by comparison with existing, two-dimensional applications. Analyses of stationary spot welds and traveling line welds were performed and the accuracy of the three-dimensional (3D) level set algorithm is assessed by comparison with 3D moving mesh calculations.

  11. Welding deviation detection algorithm based on extremum of molten pool image contour

    NASA Astrophysics Data System (ADS)

    Zou, Yong; Jiang, Lipei; Li, Yunhua; Xue, Long; Huang, Junfen; Huang, Jiqiang

    2016-01-01

    The welding deviation detection is the basis of robotic tracking welding, but the on-line real-time measurement of welding deviation is still not well solved by the existing methods. There is plenty of information in the gas metal arc welding(GMAW) molten pool images that is very important for the control of welding seam tracking. The physical meaning for the curvature extremum of molten pool contour is revealed by researching the molten pool images, that is, the deviation information points of welding wire center and the molten tip center are the maxima and the local maxima of the contour curvature, and the horizontal welding deviation is the position difference of these two extremum points. A new method of weld deviation detection is presented, including the process of preprocessing molten pool images, extracting and segmenting the contours, obtaining the contour extremum points, and calculating the welding deviation, etc. Extracting the contours is the premise, segmenting the contour lines is the foundation, and obtaining the contour extremum points is the key. The contour images can be extracted with the method of discrete dyadic wavelet transform, which is divided into two sub contours including welding wire and molten tip separately. The curvature value of each point of the two sub contour lines is calculated based on the approximate curvature formula of multi-points for plane curve, and the two points of the curvature extremum are the characteristics needed for the welding deviation calculation. The results of the tests and analyses show that the maximum error of the obtained on-line welding deviation is 2 pixels(0.16 mm), and the algorithm is stable enough to meet the requirements of the pipeline in real-time control at a speed of less than 500 mm/min. The method can be applied to the on-line automatic welding deviation detection.

  12. Weld pool penetration measurement using ultrasound with thermal gradient correction factors

    NASA Astrophysics Data System (ADS)

    Anderton, John Martin

    Weld penetration is critical to final weld performance. There are many techniques for determining surface parameters of weld pools but the transient nature of the pools, high temperatures and intense electromagnetic energy make direct measurement of the penetration of weld pools difficult. In order to determine weld pool penetration ultrasonically from below the weld pool it is necessary to compensate for the variation in the time of flight of the ultrasound wave due to temperature gradients. This requires both a precise understanding of the location and magnitude of the temperature gradients and the time of flight of ultrasound at the range of temperatures seen in the gradients. Given this information it is possible to develop a correction factor to an ultrasonic time of flight reading that accurately represents the actual penetration of a weld pool. This research examines the electroslag surfacing (ESS) processing of AISI 1005 low carbon steel clad onto a ductile iron substrate. The high temperature cladding on low temperature substrate provides a deep weld penetration. Ultrasonic time of flight measurements were made from a piezoelectric transducer on the backside of the substrate to the solid/liquid interface of the weld pool during welding. The speed of ultrasound over a range of temperatures was determined from furnace heated ductile iron substrates. The sample was stepped and contact piezoelectric methods used to determine time of flight. A finite element model was developed and analyzed to predict thermal gradients in the substrate around the weld pool. The model was correlated to thermocouple data of substrate heating during welding. The predicted thermal gradients and speed/temperature curves are combined with the time of flight measurement to determine the location of the solid/liquid weld interface. An automated seam tracking system for ESS was also developed. This system utilizes a line laser at right angles to the view of a CCD camera which illuminates the relief of the existing bead for the camera. Optimas software was used to locate the edge of the bead and determine the correct location for the weld head to overlap the existing bead.

  13. Inferral of Step-Pool Hydraulics from Grain Size Distributions

    NASA Astrophysics Data System (ADS)

    Scott, D.; Montgomery, D. R.

    2013-05-01

    Grain size distribution data taken from step-pools in the Cascade Mountains provides evidence that the discharge dependent nappe and skimming flow regimes found to occur in stepped chutes in laboratory flumes occur in step-pool streams. Taking into account the differences between uniform, smooth, rectangular steps and naturally formed step-pools, we predict how this flow regime would occur in a real step-pool, as well as the resulting grain size distribution on the bed of the pool. We quantitatively describe grain size distributions in pools to determine whether they are similar to the predicted grain size distribution in order to determine whether flow over step-pools exhibits nappe and skimming regimes. We examine grain size distributions on the beds of pools in high gradient (0.049-0.264 m/m) alluvial streams. Pools were divided into visually identified grain size patches, and pebble counts were done in each patch to characterize grain size distribution. Pool length, step height, residual depth, and reach average slope around each pool were measured. Grain size distribution was characterized by the ratio of the median grain size of the outer zone to the median grain size of the inner zone of pools. This ratio was found to be between 0.19 and 0.53. This fits the predicted grain size distribution thought to result from the flow regimes observed to occur in stepped chutes. We conclude that the nappe and skimming flow regimes found in stepped chutes are indeed those that occur in naturally formed step-pools.

  14. Separately excited resonance phenomenon of the weld pool and its application

    SciTech Connect

    Wang, Q.L.; Yang, C.L.; Geng, Z. . Dept. of Welding Engineering)

    1993-09-01

    On the basis of a study of weld pool resonance phenomenon in stationary gas tungsten arc (GTA) welding of a thin steel plate with a straight polarity pulsating current of a certain frequency, a new method of real-time full joint penetration detection from the top side of the weld using an arc sensor was developed. The correlation between weld pool resonance frequency and top bead width, as well as under bead width, has been studied. An experimental system of full joint penetration control for a thin steel plate was developed. It is shown that by using this system, the real-time control of top and under bead widths can be successfully realized in thin steel plate welding. Stable and regular weld formation, even under severe external interference, even under severe external interference, has satisfactorily verified its promised controlling capability.

  15. The influence of arc plasma parameters on the form of a welding pool

    NASA Astrophysics Data System (ADS)

    Frolov, V. Ya.; Toropchin, A. I.

    2015-07-01

    The influence of the Marangoni force on the form of a welding pool has been considered. Results of computer simulation of the processes of welding arc generation with a non-consumable tungsten electrode in inert gas are shown. The experimental results are reported and comparatively analyzed. The calculations were carried out in a package of applied programs at various currents.

  16. Vision detecting of arc welding pool surface topography based on projected grating

    NASA Astrophysics Data System (ADS)

    Wang, Yanfeng; Liu, Nansheng; Yuan, Youzhi; Luo, Wei; Liu, Xiaorui

    2008-12-01

    A vision detecting of arc welding pool surface topography system was setup in this paper. A semiconductor laser as an active light-source which is projected laser on to the specialized grating and frost glass by collimating lens, deformed grating fringes are formed on the surface of arc welding pool, narrow band filter and neutral density filter are mounted on CCD for detecting pool surface topography at real time on the other side of the system. When projecting angle and shooting angle are selected properly, it can be avoided the interference of arc for pool image better, deformed grating fringes of pool surface can be detected. Deformed grating fringes are reflected the information of concave or convex of the pool. Two categories of stainless steel are experimented, deformed grating fringes of pool are got clearly under the condition of different welding current and different welding speed, pool edge is extracted by digital image processing technology, the geometric parameters of pool Front-side is obtained by demarcated and calculated successfully.

  17. Numerical study of arc plasmas and weld pools for GTAW with applied axial magnetic fields

    NASA Astrophysics Data System (ADS)

    Yin, Xianqing; Gou, Jianjun; Zhang, Jianxun; Sun, Jiangtao

    2012-07-01

    A 3D numerical model containing the welding arc and the weld pool for gas tungsten arc welding (GTAW) with applied axial magnetic fields is established. The model is validated by comparing the calculated arc temperature with the measured ones. The influence of the magnetic field on the welding process is studied by changing the magnetic inductions, from 0 T to 0.06 T. For welding arcs, a radial spread is discovered, and a reverse flow appears over the anode. The distribution of temperature, heat flux, current density and pressure on the anode surface becomes double-peaked, while the voltage distributes in a double-valley type. For weld pools, the fluid flow cycle brings about a wide and shallow pool. In the circumferential direction, the fluid in the centre areas rotates in an opposite direction to that in the outer regions; in the axial direction, the fluid flows upwards at the centre while downwards in the edge area of the weld pool. All the driving forces including the surface tension, the shear stress from the arc plasma, the electromagnetic force and the buoyancy force that influence the fluid flow are analysed to explain these phenomena. The mechanism of how the applied axial magnetic field regulates the GTAW process is thus clarified.

  18. Optical Spectral Radiometric/Laser Reflectance Method For Noninvasive Measurement Of Weld Pool Surface Temperatures

    NASA Astrophysics Data System (ADS)

    Kraus, H. G.

    1987-12-01

    A unique experimental method has been developed for measuring weld pool surface temperatures. An equation for determining temperature was developed based on Planck's blackbody spectral distribution of emissive power, the definition of spectral directional emissivity, Lambert's cosine law for diffuse emitters, and Kirchhoff's law for spectral directional reflectivity. The necessary measurements are the spectral directional emissive power and the spectral directional emissivity of the weld pool surface. Detailed pool surface temperature measurements were made of gas tungsten arc (GTA) welding of 1.5mm thick stainless steel (SS) 304 plates using an argon cover gas. Because argon plasma arc spectroscopy measurements over molten SS 304 revealed insufficient emission gaps, the spectral emissive power was measured by high speed film radiometry as the arc was shut off so as to obtain information at the instant the obscuring arc emissions disappear. Similar measurements were made of the spectral directional reflectivity (and thus the spectral directional emissivity) by reflecting a focused laser beam off the weld pool. Detailed weld pool surface temperature maps were generated.

  19. Weld pool temperatures of steel S235 while applying a controlled short-circuit gas metal arc welding process and various shielding gases

    NASA Astrophysics Data System (ADS)

    Kozakov, R.; Schöpp, H.; Gött, G.; Sperl, A.; Wilhelm, G.; Uhrlandt, D.

    2013-11-01

    The temperature determination of liquid metals is difficult and depends strongly on the emissivity. However, the surface temperature distribution of the weld pool is an important characteristic of an arc weld process. As an example, short-arc welding of steel with a cold metal transfer (CMT) process is considered. With optical emission spectroscopy in the spectral region between 660 and 840 nm and absolute calibrated high-speed camera images the relation between temperature and emissivity of the weld pool is determined. This method is used to obtain two-dimensional temperature profiles in the pictures. Results are presented for welding materials (wire G3Si1 on base material S235) using different welding CMT processes with CO2 (100%), Corgon 18 (18% CO2 + 82% Ar), VarigonH6 (93.5% Ar + 6.5% H2) and He (100%) as shielding gases. The different gases are used to study their influence on the weld pool temperature.

  20. Monitoring of high-power fiber laser welding based on principal component analysis of a molten pool configuration

    NASA Astrophysics Data System (ADS)

    Xiangdong, Gao; Qian, Wen

    2013-12-01

    There exists plenty of welding quality information on a molten pool during high-power fiber laser welding. An approach for monitoring the high-power fiber laser welding status based on the principal component analysis (PCA) of a molten pool configuration is investigated. An infrared-sensitive high-speed camera was used to capture the molten pool images during laser butt-joint welding of Type 304 austenitic stainless steel plates with a high-power (10 kW) continuous wave fiber laser. In order to study the relationship between the molten pool configuration and the welding status, a new method based on PCA is proposed to analyze the welding stability by comparing the situation when the laser beam spot moves along, and when it deviates from the weld seam. Image processing techniques were applied to process the molten pool images and extract five characteristic parameters. Moreover, the PCA method was used to extract a composite indicator which is the linear combination of the five original characteristics to analyze the different status during welding. Experimental results showed that the extracted composite indicator had a close relationship with the actual welding results and it could be used to evaluate the status of the high-power fiber laser welding, providing a theoretical basis for the monitoring of laser welding quality.

  1. A unified 3D model for an interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding

    NASA Astrophysics Data System (ADS)

    Jian, Xiaoxia; Wu, ChuanSong; Zhang, Guokai; Chen, Ji

    2015-11-01

    A 3D model is developed to perform numerical investigation on the coupled interaction mechanism of the plasma arc, weld pool and keyhole in plasma arc welding. By considering the traveling of the plasma arc along the welding direction, unified governing equations are solved in the whole domain including the torch, plasma arc, keyhole, weld pool and workpiece, which involves different physical mechanisms in different zones. The local thermodynamic equilibrium-diffusion approximation is used to treat the interface between the plasma arc and weld pool, and the volume-of-fluid method is used to track the evolution of the keyhole wall. The interaction effects between the plasma arc, keyhole and weld pool as well as the heat, mass and pressure transport phenomena in the whole welding domain are quantitatively simulated. It is found that when the torch is moving along the joint line, the axis of the keyhole channel tilts backward, and the envelope of molten metal surrounding the keyhole wall inside the weld pool is unsymmetrical relative to the keyhole channel. The plasma arc welding tests are conducted, and the predicted keyhole dimensions and the fusion zone shape are in agreement with the experimentally measured results.

  2. 3D transient multiphase model for keyhole, vapor plume, and weld pool dynamics in laser welding including the ambient pressure effect

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Xin; Zhou, Jianxin; Shao, Xinyu; Wang, Chunming

    2015-11-01

    The physical process of deep penetration laser welding involves complex, self-consistent multiphase keyhole, metallic vapor plume, and weld pool dynamics. Currently, efforts are still needed to understand these multiphase dynamics. In this paper, a novel 3D transient multiphase model capable of describing a self-consistent keyhole, metallic vapor plume in the keyhole, and weld pool dynamics in deep penetration fiber laser welding is proposed. Major physical factors of the welding process, such as recoil pressure, surface tension, Marangoni shear stress, Fresnel absorptions mechanisms, heat transfer, and fluid flow in weld pool, keyhole free surface evolutions and solid-liquid-vapor three phase transformations are coupling considered. The effect of ambient pressure in laser welding is rigorously treated using an improved recoil pressure model. The predicated weld bead dimensions, transient keyhole instability, weld pool dynamics, and vapor plume dynamics are compared with experimental and literature results, and good agreements are obtained. The predicted results are investigated by not considering the effects of the ambient pressure. It is found that by not considering the effects of ambient pressure, the average keyhole wall temperature is underestimated about 500 K; besides, the average speed of metallic vapor will be significantly overestimated. The ambient pressure is an essential physical factor for a comprehensive understanding the dynamics of deep penetration laser welding.

  3. Plasma diagnostics approach to welding heat source/molten pool interaction

    SciTech Connect

    Key, J.F.; McIlwain, M.E.; Isaacson, L.

    1980-01-01

    Plasma diagnostic techniques show that weld fusion zone profile and loss of metal vapors from the molten pool are strongly dependent on both the intensity and distribution of the heat source. These plasma properties, are functions of cathode vertex angle and thermal conductivity of the shielding gas, especially near the anode.

  4. [Impact of introduction of O2 on the welding arc of gas pool coupled activating TIG].

    PubMed

    Huang, Yong; Wang, Yan-Lei; Zhang, Zhi-Guo

    2014-05-01

    In the present paper, Boltzmann plot method was applied to analyze the temperature distributions of the are plasma when the gas pool coupled activating TIG welding was at different coupling degrees with the outer gas being O2. Based on this study of temperature distributions, the changing regularities of are voltage and are appearance were studied. The result shows that compared with traditional TIG welding, the introduction of O2 makes the welding arc constricted slightly, the temperature of the are center build up, and the are voltage increase. When argon being the inner gas, oxygen serving as the outer gas instead of argon makes the are constricted more obviously. When the coupling degree increases from 0 to 2, the temperature of the are center and the are voltage both increase slightly. In the gas pool coupled activating TIG welding the are is constricted not obviously, and the reason why the weld penetration is improved dramatically in the welding of stainless steel is not are constriction. PMID:25095400

  5. Surface temperature distribution of GTA weld pools on thin-plate 304 stainless steel

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.; Kraus, H.G.

    1995-11-01

    A transient multidimensional computational model was utilized to study gas tungsten arc (GTA) welding of thin-plate 304 stainless steel (SS). The model eliminates several of the earlier restrictive assumptions including temperature-independent thermal-physical properties. Consequently, all important thermal-physical properties were considered as temperature dependent throughout the range of temperatures experienced by the weld metal. The computational model was used to predict surface temperature distribution of the GTA weld pools in 1.5-mm-thick AISI 304 SS. The welding parameters were chosen so as to correspond with an earlier experimental study that produced high-resolution surface temperature maps. One of the motivations of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate excellent agreement, thereby verifying the model.

  6. Penetration in GTA welding

    SciTech Connect

    Heiple, C.R.; Burgardt, P.

    1990-01-01

    The size and shape of the weld bead produced in GTA welding depends on the magnitude and distribution of the energy incident on the workpiece surfaces as well as the dissipation of that energy in the workpiece. The input energy is largely controllable through the welding parameters selected, however the dissipation of that energy in the workpiece is less subject to control. Changes in energy dissipation can produce large changes in weld shape or penetration. Heat transport away from the weld pool is almost entirely by conduction, but heat transport in the weld pool is more complicated. Heat conduction through the liquid is an important component, but heat transport by convection (mass transport) is often the dominant mechanism. Convective heat transport is directional and changes the weld pool shape from that produced by conduction alone. Surface tension gradients are often the dominant forces driving fluid flow in GTA weld pools. These gradients are sensitive functions of weld pool chemistry and the energy input distribution to the weld. Experimental and theoretical work conducted primarily in the past decade has greatly enhanced our understanding of weld pool fluid flow, the forces which drive it, and its effects on weld pool shape. This work is reviewed here. While less common, changes in energy dissipation through the unmelted portion of the workpiece can also affect fusion zone shape or penetration. These effects are also described. 41 refs., 9 figs.

  7. Unsteady marangoni flow in a molten pool when welding dissimilar metals

    NASA Astrophysics Data System (ADS)

    Wei, P. S.; Chung, F. K.

    2000-12-01

    The unsteady variations of transport processes in molten pools when welding dissimilar metals are systematically investigated. Convection is driven by Marangoni forces with different directions and magnitudes on a flat free surface. For a clear description without loss of generality, three-dimensional quasi-steady welding is stimulated by an unsteady two-dimensional process. Applying the volume of fluid (VOF) and enthalpy methods to determine the interfaces between the immiscible dissimilar metals and between solid and liquid, the computed results show in detail the unsteady variations in the velocity and temperature fields, the solute concentration on the free surface, and the shapes of the molten regions affected by varying the signs and magnitudes of the surface-tension coefficients. The predicted shapes of the fusion-zone and solute distributions agree with the available experimental results in welding iron to aluminum, copper and iron, and copper to nickle.

  8. Gravity and Heater Size Effects on Pool Boiling Heat Transfer

    NASA Technical Reports Server (NTRS)

    Kim, Jungho; Raj, Rishi

    2014-01-01

    The current work is based on observations of boiling heat transfer over a continuous range of gravity levels between 0g to 1.8g and varying heater sizes with a fluorinert as the test liquid (FC-72/n-perfluorohexane). Variable gravity pool boiling heat transfer measurements over a wide range of gravity levels were made during parabolic flight campaigns as well as onboard the International Space Station. For large heaters and-or higher gravity conditions, buoyancy dominated boiling and heat transfer results were heater size independent. The power law coefficient for gravity in the heat transfer equation was found to be a function of wall temperature under these conditions. Under low gravity conditions and-or for smaller heaters, surface tension forces dominated and heat transfer results were heater size dependent. A pool boiling regime map differentiating buoyancy and surface tension dominated regimes was developed along with a unified framework that allowed for scaling of pool boiling over a wide range of gravity levels and heater sizes. The scaling laws developed in this study are expected to allow performance quantification of phase change based technologies under variable gravity environments eventually leading to their implementation in space based applications.

  9. Plasma effect on weld pool surface reconstruction by shape-from-polarization analysis

    SciTech Connect

    Coniglio, N.; Mathieu, A.

    2014-03-31

    The polarimetric state of the thermal radiations emitted by the weld metal contains geometric information about the emitting surface. Even though the analysed thermal radiation has a wavelength corresponding to a blind spectral window of the arc plasma, the physical presence of the arc plasma itself interferes with the rays radiated by the weld pool surface before attaining the polarimeter, thus modifying the geometric information transported by the ray. In the present work, the effect of the arc plasma-surrounding zone on the polarimetric state and propagation direction of the radiated ray is analyzed. The interaction with the arc plasma zone induces a drop in ray intensity and a refraction of ray optical path.

  10. Ultra-fast in-situ X-ray studies of evolving columnar dendrites in solidifying steel weld pools

    NASA Astrophysics Data System (ADS)

    Mirihanage, W. U.; Di Michiel, M.; Mathiesen, R. H.

    2015-06-01

    High-brilliance polychromatic synchrotron radiation has been used to conduct in-situ studies of the solidification microstructure evolution during simulated welding. The welding simulations were realized by rapidly fusing ∼ 5 mm spot in Fe-Cr-Ni steel. During the solid- liquid-solid phase transformations, a section of the weld pool was placed in an incident 50-150 keV polychromatic synchrotron X-ray beam, in a near-horizontal position at a very low inclination angle. Multiple high-resolution 2D detectors with very high frame rates were utilized to capture time resolved X-ray diffraction data from suitably oriented solid dendrites evolving in the weld pool. Comprehensive analysis of the diffraction data revealed individual and overall dendritic growth characteristics and relevant melt and solid flow dynamics during weld pool solidification, which was completed within 1.5 s. Columnar dendrite tip velocities were estimated from the experimental data and during early stages of solidification were exceeded 4 mm/s. The most remarkable observation revealed through the time-resolved reciprocal space observations are correlated to significant tilting of columnar type dendrites at their root during solidification, presumably caused by convective currents in the weld pool. When the columnar dendrite tilting are transformed to respective metric linear tilting velocities at the dendrite tip; tilting velocities are found to be in the same order of magnitude as the columnar tip growth velocities, suggesting a highly transient nature of growth conditions.

  11. Relationship between spatter formation and dynamic molten pool during high-power deep-penetration laser welding

    NASA Astrophysics Data System (ADS)

    Li, Shichun; Chen, Genyu; Katayama, Seiji; Zhang, Yi

    2014-06-01

    The spatter and the molten pool behavior, which were the important phenomena concerned with the welding quality, were observed and studied by using the high-speed camera and the X-ray transmission imaging system during laser welding under different welding parameters. The formation mechanism of spatter and the corresponding relationships between the spatter and molten pool behavior were investigated. The increase of laser power could cause more intense evaporation and lead to more spatter. When the focal position of laser beam was changed, different forms of spatter were generated, as well as the flow trends of molten metal on the front keyhole wall and at the rear molten pool were changed. The results revealed that the behavior of molten pool, which could be affected by the absorbed energy distribution in the keyhole, was the key factor to determine the spatter formation during laser welding. The relatively sound weld seam could be obtained during laser welding with the focal position located inside the metal.

  12. Effects of shielding gas composition on arc profile and molten pool dynamics in gas metal arc welding of steels

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Wang, H. P.; Murphy, A. B.; Tang, X. H.

    2014-11-01

    In gas metal arc welding, gases of different compositions are used to produce an arc plasma, which heats and melts the workpiece. They also protect the workpiece from the influence of the air during the welding process. This paper models gas metal arc welding (GMAW) processes using an in-house simulation code. It investigates the effects of the gas composition on the temperature distribution in the arc and on the molten pool dynamics in gas metal arc welding of steels. Pure argon, pure CO2 and different mixtures of argon and CO2 are considered in the study. The model is validated by comparing the calculated weld profiles with physical weld measurements. The numerical calculations reveal that gas composition greatly affects the arc temperature profile, heat transfer to the workpiece, and consequently the weld dimension. As the CO2 content in the shielding gas increases, a more constricted arc plasma with higher energy density is generated as a result of the increased current density in the arc centre and increased Lorentz force. The calculation also shows that the heat transferred from the arc to the workpiece increases with increasing CO2 content, resulting in a wider and deeper weld pool and decreased reinforcement height.

  13. Physical-chemical reactions at welding arc/molten pool interfaces: FY-1986 annual report

    SciTech Connect

    Key, J.F.; McIlwain, M.E.

    1987-09-01

    The arc heat source has been shown to have a strong influence on the characteristics of the molten weld pool and resulting weld bead morphology. The existence of nonequilibrium temperature distribution between arc species and the presence of metallic vapor in the arc plasma above the anode have been suggested to have an influence on the current distribution. These two influences have been investigated. A multi-fluid treatment of the arc to discern the impact on the anode current distribution and transport properties by nonequilibrium temperature distribution between electrons and heavy species in the welding arc suggests that nonequilibrium has a pronounced influence on the transport properties. However, the resulting anode current distribution is only slightly perturbed. Results suggest that nonequilibrium between species in the interfacial region of the arc above the anode produces only a second-order influence on the anode current distribution. The presence of small amounts (5-10%) of manganese can significantly enhance the low temperature conductivity of the plasma. This results in broadening of the anode current distribution relative to that found when only argon is present in the arc. Attemps to develop optical and laser diagnostics for the interfacial region above the anode are reported. Results suggest that laser induced fluorescence has considerable merit for determining species distributions in the arc and possibly in the interfacial region. 29 refs., 23 figs., 1 tab.

  14. Number size distribution of fine and ultrafine fume particles from various welding processes.

    PubMed

    Brand, Peter; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas

    2013-04-01

    Studies in the field of environmental epidemiology indicate that for the adverse effect of inhaled particles not only particle mass is crucial but also particle size is. Ultrafine particles with diameters below 100 nm are of special interest since these particles have high surface area to mass ratio and have properties which differ from those of larger particles. In this paper, particle size distributions of various welding and joining techniques were measured close to the welding process using a fast mobility particle sizer (FMPS). It turned out that welding processes with high mass emission rates (manual metal arc welding, metal active gas welding, metal inert gas welding, metal inert gas soldering, and laser welding) show mainly agglomerated particles with diameters above 100 nm and only few particles in the size range below 50 nm (10 to 15%). Welding processes with low mass emission rates (tungsten inert gas welding and resistance spot welding) emit predominantly ultrafine particles with diameters well below 100 nm. This finding can be explained by considerably faster agglomeration processes in welding processes with high mass emission rates. Although mass emission is low for tungsten inert gas welding and resistance spot welding, due to the low particle size of the fume, these processes cannot be labeled as toxicologically irrelevant and should be further investigated. PMID:23028013

  15. Towards and FVE-FAC Method for Determining Thermocapillary Effects on Weld Pool Shape

    NASA Technical Reports Server (NTRS)

    Canright, David; Henson, Van Emden

    1996-01-01

    Several practical materials processes, e.g., welding, float-zone purification, and Czochralski crystal growth, involve a pool of molten metal with a free surface, with strong temperature gradients along the surface. In some cases, the resulting thermocapillary flow is vigorous enough to convect heat toward the edges of the pool, increasing the driving force in a sort of positive feedback. In this work we examine this mechanism and its effect on the solid-liquid interface through a model problem: a half space of pure substance with concentrated axisymmetric surface heating, where surface tension is strong enough to keep the liquid free surface flat. The numerical method proposed for this problem utilizes a finite volume element (FVE) discretization in cylindrical coordinates. Because of the axisymmetric nature of the model problem, the control volumes used are torroidal prisms, formed by taking a polygonal cross-section in the (r, z) plane and sweeping it completely around the z-axis. Conservation of energy (in the solid), and conservation of energy, momentum, and mass (in the liquid) are enforced globally by integrating these quantities and enforcing conservation over each control volume. Judicious application of the Divergence Theorem and Stokes' Theorem, combined with a Crank-Nicolson time-stepping scheme leads to an implicit algebraic system to be solved at each time step. It is known that near the boundary of the pool, that is, near the solid-liquid interface, the full conduction-convection solution will require extremely fine length scales to resolve the physical behavior of the system. Furthermore, this boundary moves as a function of time. Accordingly, we develop the foundation of an adaptive refinement scheme based on the principles of Fast Adaptive Composite Grid methods (FAC). Implementation of the method and numerical results will appear in a later report.

  16. Improvement of Weld Characteristics by Laser-Arc Double-Sided Welding Compared to Single Arc Welding

    NASA Astrophysics Data System (ADS)

    Lei, Zhenglong; Zhang, Kezhao; Hu, Xue; Yang, Yuhe; Chen, Yanbin; Wu, Yichao

    2015-11-01

    The single arc welding and laser-arc double-sided welding (LADSW) processes are investigated by virtue of test welds. The impacts of the laser beam during the LADSW process on the weld characteristics are studied from weld geometry, crystal morphology, and the mechanical properties of the joints. Compared with the single arc welding, the LADSW process improves the energy density and reduces the range of arc action, which together leads to a doubling of weld penetration depth. When penetrated by the laser beam, the liquid metal of the arc welding pool experiences severe fluctuations, leading to a finer grain size in the range of 17-26 μm in the LADSW weld, a reduction of nearly 63% compared to the grains in the single arc weld. The tensile strength and elongation-to-failure of the LADSW weld were increased by nearly 10 and 100% over the single arc welding, respectively.

  17. Adaptive Neuro-Fuzzy Inference System (ANFIS)-Based Models for Predicting the Weld Bead Width and Depth of Penetration from the Infrared Thermal Image of the Weld Pool

    NASA Astrophysics Data System (ADS)

    Subashini, L.; Vasudevan, M.

    2012-02-01

    Type 316 LN stainless steel is the major structural material used in the construction of nuclear reactors. Activated flux tungsten inert gas (A-TIG) welding has been developed to increase the depth of penetration because the depth of penetration achievable in single-pass TIG welding is limited. Real-time monitoring and control of weld processes is gaining importance because of the requirement of remoter welding process technologies. Hence, it is essential to develop computational methodologies based on an adaptive neuro fuzzy inference system (ANFIS) or artificial neural network (ANN) for predicting and controlling the depth of penetration and weld bead width during A-TIG welding of type 316 LN stainless steel. In the current work, A-TIG welding experiments have been carried out on 6-mm-thick plates of 316 LN stainless steel by varying the welding current. During welding, infrared (IR) thermal images of the weld pool have been acquired in real time, and the features have been extracted from the IR thermal images of the weld pool. The welding current values, along with the extracted features such as length, width of the hot spot, thermal area determined from the Gaussian fit, and thermal bead width computed from the first derivative curve were used as inputs, whereas the measured depth of penetration and weld bead width were used as output of the respective models. Accurate ANFIS models have been developed for predicting the depth of penetration and the weld bead width during TIG welding of 6-mm-thick 316 LN stainless steel plates. A good correlation between the measured and predicted values of weld bead width and depth of penetration were observed in the developed models. The performance of the ANFIS models are compared with that of the ANN models.

  18. Instantaneous liquid release from a rail tanker: the influence of noise shields on pool shape and pool size.

    PubMed

    Rosmuller, Nils

    2009-05-30

    In the Netherlands, the Betuweline is a dedicated freight railway. It will, among other things, be used for transportation of all kinds of hazardous materials from the Port of Rotterdam to the German Hinterland and vice versa. The line is approximately 150 km long. Alongside the line, more than 100 km noise shields have been constructed. The question is how, and to what extent, this noise shield will affect the pool shape and size of an instantaneous release of a flammable liquid, such as liquefied petroleum gas (LPG). In case of an instantaneous release of liquid from a rail tanker (50 m(3)), both risk analysts and emergency responders use a circular pool shape of about 600 m(2) would result. To assess the influence of a noise shield, a full scale test was conducted on an already constructed part of the Betuweline. A rail tanker was filled with 50 m(3) red-colored environmentally safe liquid. The liquid was instantaneously released. A very peculiar pool shape actually results due to the presence of a noise shield. A zone between the rails and the noise shield (2m wide and 90 m long) is within 2-3 min filled with 15 cm of liquid. The total pool size area was about 750 m(2). Both shape and size deviate substantially from the traditional figures. These insights are both relevant to emergency responders for disaster abatement purposes and to risk analysts for effective modeling purposes. The Dutch Ministry of Transport is examining possible strategies to deal with these results. The results of this study are based upon one single instantaneous release test. In addition, it is valuable to find out what the pool shape and size would be in case of a continuous release from the rail tanker near a noise shield. PMID:18849112

  19. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  20. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG

  1. Possibility of Underwater Explosive Welding for Making Large-Sized Thin Metal Plate Clad by Overlapping Plates

    NASA Astrophysics Data System (ADS)

    Hokamoto, Kazuyuki; Mori, Akihisa; Fujita, Masahiro

    The authors have developed a new method of explosive welding using underwater shock wave for the welding of thin plate on a substrate. Considering the size limitation of the welding area in using the technique, the possibility of overlapping thin plates to make large-sized welding area is investigated. In general, the results for the welding of Inconel 600 on 304 stainless steel show a macroscopically successful weld, but the microstructure shows some melting spots caused due to the trapping of metal jet during the welding process when the welding condition is changed. The welding process is discussed based on the experimental results in comparison with some numerically simulated results obtained by AUTODYN-2D code.

  2. Effect of species pool size on species occurrence frequencies: Musical chairs on islands

    PubMed Central

    Diamond, Jared

    1982-01-01

    If species interactions affect species distributions, then species occurrence frequencies (νi), defined as the fraction of an archipelago's islands that species i inhabits, should vary with species pool size. A “natural experiment” approximating this test is provided by the Bismarck, Solomon, and New Hebrides archipelagoes, whose bird species pools decrease in that order, the species of each archipelago being mostly a subset of those of the next richer archipelago. The average ν for an archipelago's species decreases with archipelago pool size. In the archipelago with the largest pool, most species are on few islands and few species are on most islands, whereas the reverse is true in the archipelago with the smallest pool. For species shared between two or more archipelagoes, νi decreases with pool size or number of species in the same guild. These interarchipelagal differences in νi or average ν reflect differences in level of interspecific competition, which reduces νs in species-rich archipelagoes in two ways: usually, by reducing a species' incidence on small islands and restricting the species to larger islands; less often (for so-called supertramps), by restricting a species to small islands. PMID:16578762

  3. Low-Temperature Sensitization Behavior of Base, Heat-Affected Zone, and Weld Pool in AISI 304LN

    NASA Astrophysics Data System (ADS)

    Singh, Raghuvir; Das, Gautam; Singh, P. K.; Chattoraj, I.

    2009-05-01

    Present investigations were focused on low-temperature sensitization (LTS) behavior of 304LN stainless steels considered from pipes of two different thicknesses. The specimens for the present study were taken from solution-annealed pipes (of varying thicknesses) and welded pipes (including the heat-affected zone (HAZ)). The specimens were subjected to thermal aging at 400 °C and 450 °C for different durations ranging from 125 to 8000 hours, to evaluate their sensitization susceptibility. The aging durations were worked out to simulate the 30-to-100-year life of the studied stainless steel at 300 °C using the Arrheneous equation and considering the activation energy of 150 kJ/mol. The thermally aged specimens were characterized for their degree of sensitization (DOS) and susceptibility to intergranular corrosion (IGC) by double-loop (DL) electrochemical potentiokinetic reactivation (EPR) and by methods given in the ASTM A262 practices A and E. It has been clearly shown that the weld pool is more sensitive to IGC than are the base and the HAZ at both the aging temperatures (LTS), because they showed IGC cracks during the bending subsequent to the boiling in H2SO4-CuSO4 solution. Both the base and the HAZ of the thicker pipe material showed susceptibility to sensitization, as indicated by the increasing DOS and “dual-type” microstructure during electrolytic oxalic acid (EOA) etching; however, they were found safe from IGC for the studied sensitization times. The susceptibility to sensitization and IGC in the weld pool is related to the presence of copious delta ferrite with chromium diffusivity that is accelerated compared to the austenite phase. The time-temperature-sensitization (TTS) curves were prepared accordingly, based on these results.

  4. Welding and Lung Cancer in a Pooled Analysis of Case-Control Studies

    PubMed Central

    Kendzia, Benjamin; Behrens, Thomas; Jöckel, Karl-Heinz; Siemiatycki, Jack; Kromhout, Hans; Vermeulen, Roel; Peters, Susan; Van Gelder, Rainer; Olsson, Ann; Brüske, Irene; Wichmann, H.-Erich; Stücker, Isabelle; Guida, Florence; Tardón, Adonina; Merletti, Franco; Mirabelli, Dario; Richiardi, Lorenzo; Pohlabeln, Hermann; Ahrens, Wolfgang; Landi, Maria Teresa; Caporaso, Neil; Consonni, Dario; Zaridze, David; Szeszenia-Dabrowska, Neonila; Lissowska, Jolanta; Gustavsson, Per; Marcus, Michael; Fabianova, Eleonora; ‘t Mannetje, Andrea; Pearce, Neil; Tse, Lap Ah; Yu, Ignatius Tak-sun; Rudnai, Peter; Bencko, Vladimir; Janout, Vladimir; Mates, Dana; Foretova, Lenka; Forastiere, Francesco; McLaughlin, John; Demers, Paul; Bueno-de-Mesquita, Bas; Boffetta, Paolo; Schüz, Joachim; Straif, Kurt; Pesch, Beate; Brüning, Thomas

    2013-01-01

    Several epidemiologic studies have indicated an increased risk of lung cancer among welders. We used the SYNERGY project database to assess welding as a risk factor for developing lung cancer. The database includes data on 15,483 male lung cancer cases and 18,388 male controls from 16 studies in Europe, Canada, China, and New Zealand conducted between 1985 and 2010. Odds ratios and 95% confidence intervals between regular or occasional welding and lung cancer were estimated, with adjustment for smoking, age, study center, and employment in other occupations associated with lung cancer risk. Overall, 568 cases and 427 controls had ever worked as welders and had an odds ratio of developing lung cancer of 1.44 (95% confidence interval: 1.25, 1.67) with the odds ratio increasing for longer duration of welding. In never and light smokers, the odds ratio was 1.96 (95% confidence interval: 1.37, 2.79). The odds ratios were somewhat higher for squamous and small cell lung cancers than for adenocarcinoma. Another 1,994 cases and 1,930 controls had ever worked in occupations with occasional welding. Work in any of these occupations was associated with some elevation of risk, though not as much as observed in regular welders. Our findings lend further support to the hypothesis that welding is associated with an increased risk of lung cancer. PMID:24052544

  5. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  6. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene

  7. Detection and Sizing of Fatigue Cracks in Steel Welds with Advanced Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Todorov, E. I.; Mohr, W. C.; Lozev, M. G.

    2008-02-01

    Butt-welded specimens were fatigued to produce cracks in the weld heat-affected zone. Advanced eddy current (AEC) techniques were used to detect and size the cracks through a coating. AEC results were compared with magnetic particle and phased-array ultrasonic techniques. Validation through destructive crack measurements was also conducted. Factors such as geometry, surface treatment, and crack tightness interfered with depth sizing. AEC inspection techniques have the potential of providing more accurate and complete sizing flaw data for manufacturing and in-service inspections.

  8. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    NASA Astrophysics Data System (ADS)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  9. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Resource extensions and resource pool size. 905.32 Section 905.32 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative... of penalties pursuant to § 905.17, Western may make such resources available within the...

  10. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 4 2013-01-01 2013-01-01 false Resource extensions and resource pool size. 905.32 Section 905.32 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative... of penalties pursuant to § 905.17, Western may make such resources available within the...

  11. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 4 2014-01-01 2014-01-01 false Resource extensions and resource pool size. 905.32 Section 905.32 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative... of penalties pursuant to § 905.17, Western may make such resources available within the...

  12. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 4 2011-01-01 2011-01-01 false Resource extensions and resource pool size. 905.32 Section 905.32 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative... of penalties pursuant to § 905.17, Western may make such resources available within the...

  13. 10 CFR 905.32 - Resource extensions and resource pool size.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Resource extensions and resource pool size. 905.32 Section 905.32 Energy DEPARTMENT OF ENERGY ENERGY PLANNING AND MANAGEMENT PROGRAM Power Marketing Initiative... of penalties pursuant to § 905.17, Western may make such resources available within the...

  14. Dynamics of space welding impact and corresponding safety welding study.

    PubMed

    Fragomeni, James M; Nunes, Arthur C

    2004-03-01

    This study was undertaken in order to be sure that no hazard would exist from impingement of hot molten metal particle detachments upon an astronauts space suit during any future electron beam welding exercises or experiments. The conditions under which molten metal detachments might occur in a space welding environment were analyzed. The safety issue is important during welding with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at low earth orbit. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were determined for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. A weld pool detachment parameter for specifying the conditions for metal weld pool detachment by impact was derived and correlated to the experimental results. The experimental results were for the most part consistent with the theoretical analysis and predictions. PMID:14740660

  15. Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui

    2016-05-01

    A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.

  16. Laser assisted non-consumable arc welding process development

    SciTech Connect

    Fuerschach, P.W.; Hooper, F.M.

    1997-09-01

    The employment of Laser Beam Welding (LBW) for many traditional arc welding applications is often limited by the inability of LBW to compensate for variations in the weld joint gap. This limitation is associated with fluctuations in the energy transfer efficiency along the weld joint. Since coupling of the laser beam to the workpiece is dependent on the maintenance of a stable absorption keyhole, perturbations to the weld pool can lead to decreased energy transfer and resultant weld defects. Because energy transfer in arc welding does not similarly depend on weld pool geometry, it is expected that combining these two processes together will lead to an enhanced fusion welding process that exhibits the advantages of both arc welding and LBW. Laser assisted non-consumable arc welds have been made on thin section aluminum. The welds combine the advantages of arc welding and laser welding, with enhanced penetration and fusion zone size. The use of a pulsed Nd:YAG laser with the combined process appears to be advantageous since this laser is effective in removing the aluminum oxide and thereby allowing operation with the tungsten electrode negative. The arc appears to increase the size of the weld and also to mitigate hot cracking tendencies that are common with the pulsed Nd:YAG laser.

  17. Quality of the log-geometric distribution extrapolation for smaller undiscovered oil and gas pool size

    USGS Publications Warehouse

    Chenglin, L.; Charpentier, R.R.

    2010-01-01

    The U.S. Geological Survey procedure for the estimation of the general form of the parent distribution requires that the parameters of the log-geometric distribution be calculated and analyzed for the sensitivity of these parameters to different conditions. In this study, we derive the shape factor of a log-geometric distribution from the ratio of frequencies between adjacent bins. The shape factor has a log straight-line relationship with the ratio of frequencies. Additionally, the calculation equations of a ratio of the mean size to the lower size-class boundary are deduced. For a specific log-geometric distribution, we find that the ratio of the mean size to the lower size-class boundary is the same. We apply our analysis to simulations based on oil and gas pool distributions from four petroleum systems of Alberta, Canada and four generated distributions. Each petroleum system in Alberta has a different shape factor. Generally, the shape factors in the four petroleum systems stabilize with the increase of discovered pool numbers. For a log-geometric distribution, the shape factor becomes stable when discovered pool numbers exceed 50 and the shape factor is influenced by the exploration efficiency when the exploration efficiency is less than 1. The simulation results show that calculated shape factors increase with those of the parent distributions, and undiscovered oil and gas resources estimated through the log-geometric distribution extrapolation are smaller than the actual values. ?? 2010 International Association for Mathematical Geology.

  18. Effects of electrode bevel angle on argon arc properties and weld shape

    NASA Astrophysics Data System (ADS)

    Dong, W. C.; Lu, S. P.; Li, D. Z.; Y Li, Y.

    2012-07-01

    A numerical modeling of coupled welding arc with weld pool is established using FLUENT software for moving shielded GTA welding to systematically investigate the effects of electrode bevel angle on the argon arc properties as well as the weld shape on SUS304 stainless steel. The calculated results show that the argon arc is constricted and the peak values of heat flux and shear stress on the weld pool decrease with increasing electrode bevel angle, while the radial distribution of heat flux and shear stress varying slightly. The weld shape is controlled by the pool flow patterns driving by the surface tension, gas shear stress, electromagnetic force and buoyancy. The Marangoni convection induced by surface tension plays an important role on weld shapes. All the weld shapes are wide and shallow with low weld metal oxygen content, while the narrow and deep weld shapes form under high weld metal oxygen content, which is related with the oxygen concentration in the shielding gas. The weld depth/width (D/W) ratio increases with increasing electrode bevel angle for high weld metal oxygen content and is not sensitive to the electrode bevel angle under low weld metal oxygen content. The calculated results for the weld shape, weld size and weld D/W ratio agree well with the experimental ones.

  19. Readily releasable pool size changes associated with long term depression

    PubMed Central

    Goda, Yukiko; Stevens, Charles F.

    1998-01-01

    We have estimated, for hippocampal neurons in culture, the size of the autaptic readily releasable pool before and after stimulation of the sort that produces culture long term depression (LTD). This stimulation protocol causes a decrease in the pool size that is proportional to the depression of synaptic currents. To determine if depression in this system is synapse specific rather than general, we have also monitored synaptic transmission between pairs of cultured hippocampal neurons that are autaptically and reciprocally interconnected. We find that the change in synaptic strength is restricted to the synapses on the target neuron that were active during LTD induction. When viewed from the perspective of the presynaptic neuron, however, synapse specificity is partial rather than complete: synapses active during induction that were not on the target neuron were partially depressed. PMID:9448323

  20. Constitutive Cylindrospermopsin Pool Size in Cylindrospermopsis raciborskii under Different Light and CO2 Partial Pressure Conditions

    PubMed Central

    Pierangelini, Mattia; Sinha, Rati; Burford, Michele A.; Neilan, Brett A.

    2015-01-01

    Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 μmol photons m−2 s−1), we observed that the rate of CYN pool size production (μCYN) was coupled to the cell division rate (μc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains. PMID:25724956

  1. Constitutive cylindrospermopsin pool size in Cylindrospermopsis raciborskii under different light and CO2 partial pressure conditions.

    PubMed

    Pierangelini, Mattia; Sinha, Rati; Willis, Anusuya; Burford, Michele A; Orr, Philip T; Beardall, John; Neilan, Brett A

    2015-05-01

    Cylindrospermopsin (CYN) and 7-deoxy-cylindrospermopsin (dCYN) are potent hepatotoxic alkaloids produced by numerous species of cyanobacteria, including the freshwater Cylindrospermopsis raciborskii. C. raciborskii is an invasive cyanobacterium, and the study of how environmental parameters drive CYN production has received significant interest from water managers and health authorities. Light and CO2 affect cell growth and physiology in photoautotrophs, and these are potential regulators of cyanotoxin biosynthesis. In this study, we investigated how light and CO2 affect CYN and dCYN pool size as well as the expression of the key genes, cyrA and cyrK, involved in CYN biosynthesis in a toxic C. raciborskii strain. For cells growing at different light intensities (10 and 100 μmol photons m(-2) s(-1)), we observed that the rate of CYN pool size production (μCYN) was coupled to the cell division rate (μc) during batch culture. This indicated that CYN pool size under our experimental conditions is constant and cell quotas of CYN (QCYN) and dCYN (QdCYN) are fixed. Moreover, a lack of correlation between expression of cyrA and total CYN cell quotas (QCYNs) suggests that the CYN biosynthesis is regulated posttranscriptionally. Under elevated CO2 (1,300 ppm), we observed minor effects on QCYN and no effects on expression of cyrA and cyrK. We conclude that the CYN pool size is constitutive and not affected by light and CO2 conditions. Thus, C. raciborskii bloom toxicity is determined by the absolute abundance of C. raciborskii cells within the water column and the relative abundance of toxic and nontoxic strains. PMID:25724956

  2. Increases in plasma pool size of lipoprotein components in copper-deficient hamsters

    SciTech Connect

    Al-Othman, A.A.; Rosenstein, F.; Lei, K.Y. )

    1991-03-15

    Twenty-four male Golden Syrian hamsters, were randomly assigned to 2 dietary copper (Cu) treatments; deficient and adequate. Reductions in weight gain, hematocrit and liver Cu as well as increases in heart weight and plasma volume were observed in CD hamsters after 7 weeks of treatment. Plasma very low (VLDL), low (LDL) and high (HDL) density lipoproteins were isolated by ultracentrifugation and Sepharose column chromatography. The percentage of total plasma cholesterol carried by LDL was increased from 20 to 24% but was reduced from 71 to 68% for HDL as a result of Cu deficiency. In LDL the % composition of triglycerides (TG) and phospholipids (PL) was increased by 25% but that of cholesterol was reduced by 13%. The % composition of protein was reduced 24% but that of TG was increased 18% in VLDL by Cu deficiency. Since plasma volume was increased 50% in CD hamsters, the data were expressed as the amount present in the plasma pool corrected for body weight. With the exceptions of smaller increased in VLDL protein and PL as well as the more than threefold increases in LDL TG and PL plasma pool size, the pool size for the rest of the lipoprotein components were increased about twofold in CD hamsters. The lipoprotein data further indicate that Cu deficiency increased the particle number of VLDL, LDL and HDL but enlarged the size of only VLDL and LDL.

  3. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)

  4. Swimming Pools.

    ERIC Educational Resources Information Center

    Ministry of Housing and Local Government, London (England).

    Technical and engineering data are set forth on the design and construction of swimming pools. Consideration is given to site selection, pool construction, the comparative merits of combining open air and enclosed pools, and alternative uses of the pool. Guidelines are presented regarding--(1) pool size and use, (2) locker and changing rooms, (3)…

  5. Size effect on cold-welding of gold nanowires investigated using molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-Da; Fang, Te-Hua; Wu, Chung-Chin

    2016-03-01

    The size effect on the cold-welding mechanism and mechanical properties of Au nanowires (NWs) in head-to-head contact are studied using molecular dynamics simulations based on the second-moment approximation of the many-body tight-binding potential. The results are discussed in terms of atomic trajectories, slip vectors, stress, radial distribution function, and weld strength ratio. Simulation results show that during the cold-welding process, a few disordered atoms/defects in the jointing area rearrange themselves and transform into a face-centered cubic crystalline structure. With an increase in contact between the two NWs, dislocations gradually form on the (111) slip plane and then on a twin plane, leading to an increase in the lateral deformation of 4-nm-wide NWs. The effect of structural instability increases with decreasing NW width, making the alignment of the two NWs more difficult. The elongation ability of the welded NWs increases with increasing NW width. Smaller NWs have better weld strength.

  6. Postillumination Isoprene Emission: In Vivo Measurements of Dimethylallyldiphosphate Pool Size and Isoprene Synthase Kinetics in Aspen Leaves1

    PubMed Central

    Rasulov, Bahtijor; Copolovici, Lucian; Laisk, Agu; Niinemets, Ülo

    2009-01-01

    The control of foliar isoprene emission is shared between the activity of isoprene synthase, the terminal enzyme catalyzing isoprene formation from dimethylallyldiphosphate (DMADP), and the pool size of DMADP. Due to limited in vivo information of isoprene synthase kinetic characteristics and DMADP pool sizes, the relative importance of these controls is under debate. In this study, the phenomenon of postillumination isoprene release was employed to develop an in vivo method for estimation of the DMADP pool size and to determine isoprene synthase kinetic characteristics in hybrid aspen (Populus tremula × Populus tremuloides) leaves. The method is based on observations that after switching off the light, isoprene emission continues for 250 to 300 s and that the integral of the postillumination isoprene emission is strongly correlated with the isoprene emission rate before leaf darkening, thus quantitatively estimating the DMADP pool size associated with leaf isoprene emission. In vitro estimates demonstrated that overall leaf DMADP pool was very large, almost an order of magnitude larger than the in vivo pool. Yet, the difference between total DMADP pools in light and in darkness (light-dependent DMADP pool) was tightly correlated with the in vivo estimates of the DMADP pool size that is responsible for isoprene emission. Variation in in vivo DMADP pool size was obtained by varying light intensity and atmospheric CO2 and O2 concentrations. From these experiments, the in vivo kinetic constants of isoprene synthase were determined. In vivo isoprene synthase kinetic characteristics suggested that isoprene synthase mainly operates under substrate limitation and that short-term light, CO2, and O2 dependencies of isoprene emission result from variation in DMADP pool size rather than from modifications in isoprene synthase activity. PMID:19129417

  7. Estimation and control of droplet size and frequency in projected spray mode of a gas metal arc welding (GMAW) process.

    PubMed

    Anzehaee, Mohammad Mousavi; Haeri, Mohammad

    2011-07-01

    New estimators are designed based on the modified force balance model to estimate the detaching droplet size, detached droplet size, and mean value of droplet detachment frequency in a gas metal arc welding process. The proper droplet size for the process to be in the projected spray transfer mode is determined based on the modified force balance model and the designed estimators. Finally, the droplet size and the melting rate are controlled using two proportional-integral (PI) controllers to achieve high weld quality by retaining the transfer mode and generating appropriate signals as inputs of the weld geometry control loop. PMID:21444083

  8. Size and age of the non structural carbohydrate pool in boreal trees

    NASA Astrophysics Data System (ADS)

    Czimczik, C. I.; Trumbore, S.

    2005-12-01

    Autotrophic respiration of trees is supposed to be closely linked to CO2 uptake by photosynthesis on a time scale of days. However, several studies have indicated that roots of boreal trees do not respired carbon (C) with a radiocarbon signature Δ14C similar to that of CO2 in the atmosphere, but C that is 3-4 years old. Also, estimates of gross primary productivity obtained by eddy covariance flux measurements do often not correlate with tree ring width (growth). Both these findings point to the presences of a large non-structural C (NSC) pool within the tree, mainly sugars and starches. The concentration of NSC in tree tissue is considered a measure of C shortage or surplus for growth. Studies indicate that the NSC pool in trees is usually large and relatively constant throughout the year, not affected by e.g. leaf flushing. While estimates of the size of the NSC pool are available for a number of trees from various ecosystems, estimated of its turnover time are lacking. We tested if our finding that boreal trees respire 3-4 year old C is an artifact resulting from the depletion of the NSC pool in excised roots over time. We incubated roots with a diameter of 2-4 mm while they were still attached to the tree, and excised roots after 3 hours, and 1 to 4 days. We sampled CO2 for Δ14C analysis of intact roots, freshly excised roots, and after 1 and 3 days. To obtain an estimate of the NSC pool size and its turnover time in roots of various diameter, we excised and incubated roots of 3 diameters: root hairs with mycorrhizal fungi, 2-4 mm, and 1-2 cm. We followed their respiration over the course of one full day. We will also compare the Δ14C of respired CO2 of freshly root hairs to that of the NSC in the roots. To obtain an estimate of the size and turnover of the whole tree NSC pool, we will measure the Δ14C of NSC in wood. Preliminary results indicate that CO2 fluxes were not correlated to temperature or the initial CO2 concentration in the chamber. While CO2 fluxes of medium and coarse roots remained relatively constant over 4 days, the respiration rates of root hairs declined sharply within the first 24 hours.

  9. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  10. Seed Growth Rate and Carbohydrate Pool Sizes of the Soybean Fruit 1

    PubMed Central

    Fader, Gary M.; Koller, H. Ronald

    1985-01-01

    The relationships between various carbohydrate pools of the soybean (Glycine max [L.] Merrill) fruit and growth rate of seeds were evaluated. Plants during midpod-fill were subjected to various CO2 concentrations or light intensities for 7 days to generate different rates of seed growth. Dry matter accumulation rates of seeds and pod wall, along with glucose, sucrose, and starch concentrations in the pod wall, seed coat, and embryo were measured in three-seeded fruits located from nodes six through ten. Seed growth rates ranged from 4 to 37 milligrams·day−1·fruit−1. When seed growth rates were greater than 12 milligrams·day−1·fruit−1, sucrose concentration remained relatively constant in the pod wall (1.5 milligrams·100 milligrams dry weight−1), seed coat (8.5 milligrams·100 milligrams dry weight−1), and embryo (5.0 milligrams·100 milligrams dry weight−1). However, sucrose concentrations decreased in all three parts of the fruit as growth rate of the seeds fell below 12 milligrams·day−1·fruit−1. This relationship suggests that at high seed growth rates, flux of sucrose through the sucrose pools of the fruit was more important than pool size for growth. Starch concentration in the pod wall remained relatively constant (2 milligrams·100 milligrams dry weight−1) at higher rates of seed growth but decreased as seed growth rates fell below 12 milligrams·day−1·fruit−1. This suggests that pod wall starch may buffer seed growth under conditions of limiting assimilate availability. There was no indication that carbohydrate pools of the fruit were a limitation to transport or growth processes of the soybean fruit. PMID:16664469

  11. Welding.

    ERIC Educational Resources Information Center

    Cowan, Earl; And Others

    The curriculum guide for welding instruction contains 16 units presented in six sections. Each unit is divided into the following areas, each of which is color coded: terminal objectives, specific objectives, suggested activities, and instructional materials; information sheet; transparency masters; assignment sheet; test; and test answers. The…

  12. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.…

  13. Welding.

    ERIC Educational Resources Information Center

    Baldwin, Harold; Whitney, Gregory

    This curriculum guide is intended to assist vocational instructors in preparing students for entry-level employment as welders and preparing them for advanced training in the workplace. The package contains an overview of new and emerging welding technologies, a competency/skill and task list, an instructor's guide, and an annotated bibliography.

  14. Determination of an unrelated donor pool size for human leukocyte antigen-matched platelets in Brazil

    PubMed Central

    Bub, Carolina Bonet; Torres, Margareth Afonso; Moraes, Maria Elisa; Hamerschlak, Nelson; Kutner, José Mauro

    2015-01-01

    Background Successful transfusion of platelet refractory patients is a challenge. Many potential donors are needed to sustain human leukocyte antigen matched-platelet transfusion programs because of the different types of antigens and the constant needs of these patients. For a highly mixed population such as the Brazilian population, the pool size required to provide adequate platelet support is unknown. Methods A mathematical model was created to estimate the appropriate size of an unrelated donor pool to provide human leukocyte antigen-compatible platelet support for a Brazilian population. A group of 154 hematologic human leukocyte antigen-typed patients was used as the potential patient population and a database of 65,500 human leukocyte antigen-typed bone marrow registered donors was used as the donor population. Platelet compatibility was based on the grading system of Duquesnoy. Results Using the mathematical model, a pool containing 31,940, 1710 and 321 donors would be necessary to match more than 80% of the patients with at least five completely compatible (no cross-reactive group), partial compatible (one cross-reactive group) or less compatible (two cross-reactive group) donors, respectively. Conclusion The phenotypic diversity of the Brazilian population has probably made it more difficulty to find completely compatible donors. However, this heterogeneity seems to have facilitated finding donors when cross-reactive groups are accepted as proposed by the grading system of Duquesnoy. The results of this study may help to establish unrelated human leukocyte antigen-compatible platelet transfusions, a procedure not routinely performed in most Brazilian transfusion services. PMID:26969768

  15. Computational modeling of GTA (gas tungsten arc) welding with emphasis on surface tension effects

    SciTech Connect

    Zacharia, T.; David, S.A.

    1990-01-01

    A computational study of the convective heat transfer in the weld pool during gas tungsten arch (GTA) welding of Type 304 stainless steel is presented. The solution of the transport equations is based on a control volume approach which utilized directly, the integral form of the governing equations. The computational model considers buoyancy and electromagnetic and surface tension forces in the solution of convective heat transfer in the weld pool. In addition, the model treats the weld pool surface as a deformable free surface. The computational model includes weld metal vaporization and temperature dependent thermophysical properties. The results indicate that consideration of weld pool vaporization effects and temperature dependent thermophysical properties significantly influence the weld model predictions. Theoretical predictions of the weld pool surface temperature distributions and the cross-sectional weld pool size and shape wee compared with corresponding experimental measurements. Comparison of the theoretically predicted and the experimentally obtained surface temperature profiles indicated agreement with {plus minus} 8%. The predicted weld cross-section profiles were found to agree very well with actual weld cross-sections for the best theoretical models. 26 refs., 8 figs.

  16. Influence of the Diadinoxanthin Pool Size on Photoprotection in the Marine Planktonic Diatom Phaeodactylum tricornutum1

    PubMed Central

    Lavaud, Johann; Rousseau, Bernard; van Gorkom, Hans J.; Etienne, Anne-Lise

    2002-01-01

    The pool size of the xanthophyll cycle pigment diadinoxanthin (DD) in the diatom Phaeodactylum tricornutum depends on illumination conditions during culture. Intermittent light caused a doubling of the DD pool without significant change in other pigment contents and photosynthetic parameters, including the photosystem II (PSII) antenna size. On exposure to high-light intensity, extensive de-epoxidation of DD to diatoxanthin (DT) rapidly caused a very strong quenching of the maximum chlorophyll fluorescence yield (Fm, PSII reaction centers closed), which was fully reversed in the dark. The non-photochemical quenching of the minimum fluorescence yield (Fo, PSII centers open) decreased the quantum efficiency of PSII proportionally. For both Fm and Fo, the non-photochemical quenching expressed as F/F′ − 1 (with F′ the quenched level) was proportional to the DT concentration. However, the quenching of Fo relative to that of Fm was much stronger than random quenching in a homogeneous antenna could explain, showing that the rate of photochemical excitation trapping was limited by energy transfer to the reaction center rather than by charge separation. The cells can increase not only the amount of DT they can produce, but also its efficiency in competing with the PSII reaction center for excitation. The combined effect allowed intermittent light grown cells to down-regulate PSII by 90% and virtually eliminated photoinhibition by saturating light. The unusually rapid and effective photoprotection by the xanthophyll cycle in diatoms may help to explain their dominance in turbulent waters. PMID:12114593

  17. Modeling of Heat and Mass Transfer in Fusion Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    In fusion welding, parts are joined together by melting and subsequent solidification. Although this principle is simple, complex transport phenomena take place during fusion welding, and they determine the final weld quality and performance. The heat and mass transfer in the weld pool directly affect the size and shape of the pool, the solidification microstructure, the formation of weld defects such as porosity and humping, and the temperature distribution in the fusion zone and heat-affected zone (HAZ). Furthermore, the temperature evolution affects the kinetics and extent of various solid-state phase transformations, which in turn determine the final weld microstructure and mechanical properties. The formation of residual stresses and distortion originates from the thermal expansion and contraction during welding heating and cooling, respectively.

  18. Phosphoinositide pool sizes and flux in rabbit aortic rings during normoxia and hypoxia

    SciTech Connect

    Not Available

    1986-03-01

    The authors wanted to determine if various ATP-dependent reactions in the phosphatidylinositol cycle are inhibited during hypoxia-induced relaxations (PO/sub 2/ 10-20 mmHg, 10 min). Rings, so treated, show decreases in Pcr/Cr/sub T/ but no change in tissue ATP. Flux measurements were made after a 30 min incubation of resting rings with /sup 3/H-myoinositol. Rings were frozen under resting conditions and 5 min after the muscle was contracted by 5.5 ..mu..M norepinephrine. Effects on pool sizes (nmoles/100 nmole total PL) (N=5) are presented. Data indicate (a) PI resynthesis in the e.r. is inhibited during hypoxia, but plasma membrane kinase reactions may be unaffected; (b) the PI cycle may be altered during hypoxia-induced relaxations of vascular smooth muscle.

  19. Probabilistic Estimation of Critical Flaw Sizes in the Primary Structure Welds of the Ares I-X Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Pai, Shantaram S.; Hoge, Peter A.; Patel, B. M.; Nagpal, Vinod K.

    2009-01-01

    The primary structure of the Ares I-X Upper Stage Simulator (USS) launch vehicle is constructed of welded mild steel plates. There is some concern over the possibility of structural failure due to welding flaws. It was considered critical to quantify the impact of uncertainties in residual stress, material porosity, applied loads, and material and crack growth properties on the reliability of the welds during its pre-flight and flight. A criterion--an existing maximum size crack at the weld toe must be smaller than the maximum allowable flaw size--was established to estimate the reliability of the welds. A spectrum of maximum allowable flaw sizes was developed for different possible combinations of all of the above listed variables by performing probabilistic crack growth analyses using the ANSYS finite element analysis code in conjunction with the NASGRO crack growth code. Two alternative methods were used to account for residual stresses: (1) The mean residual stress was assumed to be 41 ksi and a limit was set on the net section flow stress during crack propagation. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if this limit was exceeded during four complete flight cycles, and (2) The mean residual stress was assumed to be 49.6 ksi (the parent material s yield strength) and the net section flow stress limit was ignored. The critical flaw size was determined by parametrically increasing the initial flaw size and detecting if catastrophic crack growth occurred during four complete flight cycles. Both surface-crack models and through-crack models were utilized to characterize cracks in the weld toe.

  20. Correlation of inclusion size and chemistry with weld metal composition and microstructure arc weldments of high strength steels

    NASA Astrophysics Data System (ADS)

    Eakes, Mark W.

    1994-12-01

    Non-metallic inclusions are crucial to the development of acicular ferrite, the desired microstructure for optimal strength and toughness in weld metal. This study focused on obtaining correlation between the size and chemistry of inclusions and weld metal properties, especially the amount of acicular ferrite, in Gas Metal Arc (GMA) and Submerged Arc (SA) weldments in HY-100 and HSLA-100 steel. A strong correlation was found between the amount of acicular ferrite, flux basicity and inclusion composition and volume fraction in SAW weld metal samples. An index developed to consider the effect of chemistry and volume fraction of inclusions on acicular ferrite showed good correlation. The GMA weld samples were found to contain less acicular ferrite than the SAW samples, principally because of their lower oxygen content. However, it was again found possible to correlate inclusion chemistry and volume fraction with acicular ferrite formation. Unfortunately, the large amount of data scatter precluded the development of an index in this case.

  1. Information content of incubation experiments for inverse estimation of pools sizes in the Rothamsted carbon model: a Bayesian approach

    NASA Astrophysics Data System (ADS)

    Scharnagl, B.; Vrugt, J. A.; Vereecken, H.; Herbst, M.

    2009-09-01

    Turnover of soil organic matter (SOM) is usually described with multi-compartment models. A model compartment (or pool) contains all carbon compounds with similar functional properties, such as decomposition rate and partitioning of decomposition products. These functionally defined carbon pools do not necessarily correspond to measurable (SOC) fractions in real practice. This not only impairs our ability to rigorously evaluate SOC models, but also makes it difficult to derive accurate initial states. In this study, we test the usefulness and applicability of inverse modeling to derive the various carbon pool sizes in the Rothamsted carbon model (ROTHC) using observed mineralization rate data during incubation of soil samples in the laboratory. In the last decade, inverse modeling has found widespread application and use for environmental model calibration, but this methodology has not yet been tested for assessing carbon pools in multi-compartment SOC models. To appropriately consider data and model uncertainty we consider a Bayesian approach using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. This Markov Chain Monte Carlo (MCMC) scheme derives the posterior probability density distribution of the initial pool sizes at the start of incubation from measured mineralization rates. Our results show that measured mineralization rates generally provide sufficient information to reliably estimate the sizes of all active carbon pools in the ROTHC model. However, for soils with slow and intermediate carbon turnover an excessively long incubation time is required to appropriately constrain all carbon pools. The explicit use of prior information on microbial biomass provides a way forward to significantly reduce uncertainty and required duration of incubation. Our illustrative case studies show how Bayesian inverse modeling can be used to provide important insights into the information content of incubation experiments for assessing SOC turnover and dynamics.

  2. Monitoring Weld Penetration Optically From Within Torch

    NASA Technical Reports Server (NTRS)

    Smith, Matthew A.; Gilbert, Jeffrey L.; Linsacum, Deron L.; Gutlow, David A.

    1993-01-01

    Photodetector or optical fiber leading to photodetector mounted inside gas/tungsten arc welding torch to monitor arc light reflected from oscillating surface of weld pool. Proposed optical monitoring components preserve compact profile of welding torch, maintained in fixed aim at weld-pool position at end of welding torch, and protected against bumping external objects.

  3. Size effects on the upper shelf energy of a neutron irradiated pressure vessel weld metal

    NASA Astrophysics Data System (ADS)

    Kumar, A. S.; Schubert, L. E.; Hamilton, M. L.; Cannon, N. S.

    1995-08-01

    The methodologies published earlier for predicting the upper shelf energy (USE) of full size Charpy specimens based on subsize test data appear to work satisfactorily for either highly materials (USE > 200 J) or relatively brittle materials (USE ≪ 100 J). A methodology is proposed here that works well for pressure vessel weld materials in both unirradiated and irradiated conditions having USE in the intermediate region (100 J < USE < 200 J). The methodology uses partitioning of the USE into two components, USE p and δUSE ( = USE - USE p). USE p is the absorbed energy for a specimen fatigue-precracked to half the width. The predicted value of the USE of full-size specimens is a sum of two terms. The first term is equal to product of the normalized δUSE of the subsize specimen and the full-size normalization factor for δUSE. The second term is equal to the product of the normalized USE p of the subsize specimen and the fracture volume of the full-size precracked specimen. The predicted values were within about 10% of the measured values for both unirradiated and irradiated materials.

  4. Orphan G protein-coupled receptor GPR116 regulates pulmonary surfactant pool size.

    PubMed

    Bridges, James P; Ludwig, Marie-Gabrielle; Mueller, Matthias; Kinzel, Bernd; Sato, Atsuyasu; Xu, Yan; Whitsett, Jeffrey A; Ikegami, Machiko

    2013-09-01

    Pulmonary surfactant levels within the alveoli are tightly regulated to maintain lung volumes and promote efficient gas exchange across the air/blood barrier. Quantitative and qualitative abnormalities in surfactant are associated with severe lung diseases in children and adults. Although the cellular and molecular mechanisms that control surfactant metabolism have been studied intensively, the critical molecular pathways that sense and regulate endogenous surfactant levels within the alveolus have not been identified and constitute a fundamental knowledge gap in the field. In this study, we demonstrate that expression of an orphan G protein-coupled receptor, GPR116, in the murine lung is developmentally regulated, reaching maximal levels 1 day after birth, and is highly expressed on the apical surface of alveolar type I and type II epithelial cells. To define the physiological role of GPR116 in vivo, mice with a targeted mutation of the Gpr116 locus, Gpr116(?exon17), were generated. Gpr116(?exon17) mice developed a profound accumulation of alveolar surfactant phospholipids at 4 weeks of age (12-fold) that was further increased at 20 weeks of age (30-fold). Surfactant accumulation in Gpr116(?exon17) mice was associated with increased saturated phosphatidylcholine synthesis at 4 weeks and the presence of enlarged, lipid-laden macrophages, neutrophilia, and alveolar destruction at 20 weeks. mRNA microarray analyses indicated that P2RY2, a purinergic receptor known to mediate surfactant secretion, was induced in Gpr116(?exon17) type II cells. Collectively, these data support the concept that GPR116 functions as a molecular sensor of alveolar surfactant lipid pool sizes by regulating surfactant secretion. PMID:23590306

  5. Effects of Fusion Zone Size and Failure Mode on Peak Load and Energy Absorption of Advanced High Strength Steel Spot Welds

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper examines the effects of fusion zone size on failure modes, static strength and energy absorption of resistance spot welds (RSW) of advanced high strength steels (AHSS). DP800 and TRIP800 spot welds are considered. The main failure modes for spot welds are nugget pullout and interfacial fracture. Partial interfacial fracture is also observed. The critical fusion zone sizes to ensure nugget pull-out failure mode are developed for both DP800 and TRIP800 using limit load based analytical model and micro-hardness measurements of the weld cross sections. Static weld strength tests using cross tension samples were performed on the joint populations with controlled fusion zone sizes. The resulted peak load and energy absorption levels associated with each failure mode were studied for all the weld populations using statistical data analysis tools. The results in this study show that AHSS spot welds with fusion zone size of can not produce nugget pullout mode for both the DP800 and TRIP800 materials examined. The critical fusion zone size for nugget pullout shall be derived for individual materials based on different base metal properties as well as different heat affected zone (HAZ) and weld properties resulted from different welding parameters.

  6. Modeling Grain Size and Strain Rate in Linear Friction Welded Waspaloy

    NASA Astrophysics Data System (ADS)

    Chamanfar, Ahmad; Jahazi, Mohammad; Gholipour, Javad; Wanjara, Priti; Yue, Stephen

    2013-09-01

    The high-temperature deformation behavior of the Ni-base superalloy, Waspaloy, using uniaxial isothermal compression testing was investigated at temperatures above the γ' solvus, 1333 K, 1373 K, and 1413 K (1060 °C, 1100 °C, and 1140 °C) for constant true strain rates of 0.001, 0.01, 0.1, and 1 s-1 and up to a true strain of 0.83. Flow softening and microstructural investigation indicated that dynamic recrystallization took place during deformation. For the investigated conditions, the strain rate sensitivity factor and the activation energy of hot deformation were 0.199 and 462 kJ/mol, respectively. Constitutive equations relating the dynamic recrystallized grain size to the deformation temperature and strain rate were developed and used to predict the grain size and strain rate in linear friction-welded (LFWed) Waspaloy. The predictions were validated against experimental findings and data reported in the literature. It was found that the equations can reliably predict the grain size of LFWed Waspaloy. Furthermore, the estimated strain rate was in agreement with finite element modeling data reported in the literature.

  7. Effect of Fluid Flow on Inclusion Coarsening in Low-Alloy Steel Welds

    SciTech Connect

    Babu, S.S.; David, S.A.; DebRoy, T.; Hong, T.

    1998-02-28

    Oxide inclusions form in welds because of deoxidation reactions in the weld pool. These inclusions control the weld microstructure development. Thermodynamic and kinetic calculation of oxidation reaction can describe inclusion characteristics such as number density, size, and composition. Experimental work has shown that fluid-flow velocity gradients in the weld pool can accelerate inclusion growth by collision and coalescence. Moreover, fluid flow in welds can transport inclusions to different temperature regions that may lead to repeated dissolution and growth of inclusions. These phenomena are being studied with the help of computational coupled heat transfer, fluid-flow, thermodynamic, and kinetic models. The results show that the inclusion formation in steel welds can be described as a function of the welding processes, process parameters, and steel composition.

  8. Nutrient demand interacts with legume maturity to affect rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume maturity on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 16 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 17-d treatment periods. During the preliminary period, the pDMI of individual cows ranged from 22.9 to 30.0 kg/d (mean=25.9 kg/d) and the 3.5% fat-corrected milk yield ranged from 34.1 to 68.2 kg/d (mean=43.7 kg/d). Experimental treatments were diets containing alfalfa silage harvested either a) early-cut, less mature (EC) or b) late-cut, more mature (LC) as the sole forage. Early- and late-cut alfalfa contained 40.8 and 53.1% neutral detergent fiber (NDF) and 23.7 and 18.1% crude protein, respectively. Forage:concentrate ratios were 53:47 and 42:58 for EC and LC, respectively; both diets contained approximately 22% forage NDF and 27% total NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4d of the preliminary period when cows were fed a common diet and used as a covariate. Main effects of alfalfa maturity and their interaction with pDMI were tested by ANOVA. Alfalfa maturity and its interaction with pDMI did not affect milk yield but EC increased DMI compared with LC; thus, EC had lower efficiency of milk production than LC. The EC diet decreased milk fat concentration more per kilogram of pDMI increase than the LC diet, but milk fat yield was not affected. The lower concentration and faster passage rate of indigestible NDF for EC resulted in lower rumen pools of indigestible NDF, total NDF, and dry matter than did LC, which EC increased at a slower rate than did LC as pDMI increased. The EC diet decreased starch intake and increased ruminal pH compared with the LC diet. The rate of ruminal starch digestion was related to level of intake, but this did not affect ruminal or postruminal starch digestion. Total-tract digestibility of NDF, organic matter, and dry matter was higher for EC than LC. Microbial efficiency tended to be related to pDMI and the response differed by treatment. When alfalfa silage was the only source of forage in the diet, cows supplemented with additional concentrate to account for decreased protein and increased fiber concentrations associated with LC produced similar fat-corrected milk yields with greater efficiency than cows fed EC. PMID:22541491

  9. Adenosine triphosphate utilization rates and metabolic pool sizes in intact cells measured by transfer of 18O from water.

    PubMed Central

    Dawis, S M; Walseth, T F; Deeg, M A; Heyman, R A; Graeff, R M; Goldberg, N D

    1989-01-01

    The hydrolytic rates and metabolic pool sizes of ATP were determined in intact cells by monitoring the time courses of 18O incorporation from 18O-water into the gamma-phosphoryl of ATP and orthophosphate. To calculate the rate of ATP hydrolysis, a kinetic model is used to fit the time course of the 18O labeling. The size of the metabolic pool of ATP is calculated from the 18O distribution after isotopic equilibrium has been achieved. Metabolic pools have a binomial distribution of 18O whereas nonmetabolic pools exhibit negligible 18O labeling. The application and limitations of this approach are illustrated with data from isolated toad retinas and human platelets. At 22 degrees C, the time constant of ATP hydrolysis in the dark-adapted toad retina is about 30 s. Under these conditions, over 80% of the retinal ATP is involved in high-energy phosphate metabolism. It is calculated that when cGMP metabolic flux in the photoreceptors is maximally stimulated by light, it accounts for 10% of the ATP utilization by the entire retina. The time constant of ATP hydrolysis in human platelets at 37 degrees C is approximately 1 s, and 60% of the platelet ATP is involved in energy metabolism. PMID:2930826

  10. Laser welding in space

    NASA Technical Reports Server (NTRS)

    Kaukler, W. F.; Workman, G. L.

    1991-01-01

    Autogenous welds in 304 stainless steel were performed by Nd-YAG laser heating in a simulated space environment. Simulation consists of welding on the NASA KC-135 aircraft to produce the microgravity and by containing the specimen in a vacuum chamber. Experimental results show that the microgravity welds are stronger, harder in the fusion zone, have deeper penetration and have a rougher surface rippling of the weld pool than one-g welds. To perform laser welding in space, a solar-pumped laser concept that significantly increases the laser conversion efficiency and makes welding viable despite the limited power availability of spacecraft is proposed.

  11. Solidification of underwater wet welds

    SciTech Connect

    Pope, A.M.; Medeiros, R.C. de; Liu, S.

    1995-12-31

    It is well known that the shape of a weld pool can influence the microstructure and segregation pattern of the final solidified weld metal. Mechanical properties and susceptibility to defects are consequently affected by the solidification mode of the weld. In this work the solidification behavior of weld beads deposited in air and underwater wet welding using rutile electrodes were compared. The welds were deposited by gravity feed, on low carbon, manganese steel plates using similar welding conditions. Macroscopic observation of the weld craters showed that welds deposited in air presented an elliptical weld pool. The underwater wet welds, on the other hand, solidified with a tear drop shape. Although the welds differed in shape, their lengths were approximately the same. Microscopic examinations carried out on transverse, normal and longitudinal sections revealed a coarser columnar grain structure in the underwater welds. These results suggest that the tear-drop shaped pool induced solidification in a preferred orientation with segregation more likely in welds deposited under wet conditions. This change in weld pool geometry can be explained by the surface heat loss conditions that occur in a wet weld: slower when covered by the steam bubble and faster in the region in contact with water behind the pool.

  12. Basic study of heat flow in fusion welding. Progress report to the US Department of Energy, October 1, 1980-October 1, 1982

    SciTech Connect

    Szekely, J.; Eagar, T.W.

    1981-10-15

    Progress is reported in an investigation whose purpose is the development of a fundamental understanding of heat and fluid flow in fusion welding operations and of the role played by heat and fluid flow in determining the mechanical and structural properties of the welds produced. To date, a good quantitative description has been developed of the temperature profiles for electroslag welding systems and an understanding has been derived of factors that determine the size of the heat-affected zone (HAZ). Mathematical models of heat and fluid flow in the weld pool and of the temperature distribution in weldments using a moving heat source were developed. Experiments were performed to determine the effects of welding process parameters on the size and shape of the weld pool and of the HAZ. An unexpected finding was that the size of the HAZ was not markedly dependent on any of the welding process parameters. (LCL)

  13. Pool size measurements facilitate the determination of fluxes at branching points in non-stationary metabolic flux analysis: the case of Arabidopsis thaliana

    PubMed Central

    Heise, Robert; Fernie, Alisdair R.; Stitt, Mark; Nikoloski, Zoran

    2015-01-01

    Pool size measurements are important for the estimation of absolute intracellular fluxes in particular scenarios based on data from heavy carbon isotope experiments. Recently, steady-state fluxes estimates were obtained for central carbon metabolism in an intact illuminated rosette of Arabidopsis thaliana grown photoautotrophically (Szecowka et al., 2013; Heise et al., 2014). Fluxes were estimated therein by integrating mass-spectrometric data of the dynamics of the unlabeled metabolic fraction, data on metabolic pool sizes, partitioning of metabolic pools between cellular compartments and estimates of photosynthetically inactive pools, with a simplified model of plant central carbon metabolism. However, the fluxes were determined by treating the pool sizes as fixed parameters. Here we investigated whether and, if so, to what extent the treatment of pool sizes as parameters to be optimized in three scenarios may affect the flux estimates. The results are discussed in terms of benchmark values for canonical pathways and reactions, including starch and sucrose synthesis as well as the ribulose-1,5-bisphosphate carboxylation and oxygenation reactions. In addition, we discuss pathways emerging from a divergent branch point for which pool sizes are required for flux estimation, irrespective of the computational approach used for the simulation of the observable labeling pattern. Therefore, our findings indicate the necessity for development of techniques for accurate pool size measurements to improve the quality of flux estimates from non-stationary flux estimates in intact plant cells in the absence of alternative flux measurements. PMID:26082786

  14. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1988-01-01

    An optically controlled welding system wherein a welding torch having through-the-torch viewing capabilities is provided with an optical beam splitter to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder to make the welding torch responsive thereto. Other features include an actively cooled electrode holder which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm, and a weld pool contour detector comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom, being characteristic of a penetrated or unpenetrated condition of the weld pool.

  15. Optically controlled welding system

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S. (Inventor)

    1989-01-01

    An optically controlled welding system (10) wherein a welding torch (12) having through-the-torch viewing capabilities is provided with an optical beam splitter (56) to create a transmitted view and a reflective view of a welding operation. These views are converted to digital signals which are then processed and utilized by a computerized robotic welder (15) to make the welding torch responsive thereto. Other features includes an actively cooled electrode holder (26) which minimizes a blocked portion of the view by virtue of being constructed of a single spoke or arm (28) and a weld pool contour detector (14) comprising a laser beam directed onto the weld pool with the position of specular radiation reflected therefrom being characteristic of a penetrated or unpenetrated condition of the weld pool.

  16. Establishing Mathematical Models to Predict Grain Size and Hardness of the Friction Stir-Welded AA 7020 Aluminum Alloy Joints

    NASA Astrophysics Data System (ADS)

    Rahimzadeh Ilkhichi, A.; Soufi, R.; Hussain, G.; Vatankhah Barenji, R.; Heidarzadeh, A.

    2015-02-01

    In this study, response surface methodology in conjunction with a central composite design was applied to predict the grain size and hardness of friction stir-welded AA 7020 aluminum alloy joints. For this purpose, three welding parameters, including tool rotational speed, traverse speed, and tool axial force, at five levels and 20 runs were considered. In order to validate the predicted models, the analysis of variance was performed. Hardness and microstructural features of the joints were investigated using microhardness test and optical microscopy, respectively. In addition, the influences of friction stir welding parameters on grain size and hardness of the joints were examined thoroughly. The analysis of variance results revealed that the developed models were significant and accurate to predict the responses. Furthermore, with increasing the heat input, the hardness of the joints decreased, where the grain size increased continuously. In addition, the optimized condition for achieving the lowest grain size and highest hardness of the joints was reached as 800 rpm, 125 mm/min and 8 kN.

  17. Time-dependent calculations of molten pool formation and thermal plasma with metal vapour in gas tungsten arc welding

    NASA Astrophysics Data System (ADS)

    Tanaka, M.; Yamamoto, K.; Tashiro, S.; Nakata, K.; Yamamoto, E.; Yamazaki, K.; Suzuki, K.; Murphy, A. B.; Lowke, J. J.

    2010-11-01

    A gas tungsten arc (GTA) was modelled taking into account the contamination of the plasma by metal vapour from the molten anode. The whole region of GTA atmosphere including the tungsten cathode, the arc plasma and the anode was treated using a unified numerical model. A viscosity approximation was used to express the diffusion coefficient in terms of viscosity of the shielding gas and metal vapour. The transient two-dimensional distributions of temperature, velocity of plasma flow and iron vapour concentration were predicted, together with the molten pool as a function of time for a 150 A arc current at atmospheric pressure, both for helium and argon gases. It was shown that the thermal plasma in the GTA was influenced by iron vapour from the molten pool surface and that the concentration of iron vapour in the plasma was dependent on the temperature of the molten pool. GTA on high sulfur stainless steel was calculated to discuss the differences between a low sulfur and a high sulfur stainless steel anode. Helium was selected as the shielding gas because a helium GTA produces more metal vapour than an argon GTA. In the GTA on a high sulfur stainless steel anode, iron vapour and current path were constricted. Radiative emission density in the GTA on high sulfur stainless steel was also concentrated in the centre area of the arc plasma together with the iron vapour although the temperature distributions were almost the same as that in the case of a low sulfur stainless steel anode.

  18. On the hot cracking susceptibility of a semisolid aluminium 6061 weld: Application of a coupled solidification- thermomechanical model

    NASA Astrophysics Data System (ADS)

    Zareie Rajani, H. R.; Phillion, A. B.

    2015-06-01

    A coupled solidification-thermomechanical model is presented that investigates the hot tearing susceptibility of an aluminium 6061 semisolid weld. Two key phenomena are considered: excessive deformation of the semisolid weld, initiating a hot tear, and the ability of the semisolid weld to heal the hot tear by circulation of the molten metal. The model consists of two major modules: weld solidification and thermomechanical analysis. 1) By means of a multi-scale model of solidification, the microstructural evolution of the semisolid weld is simulated in 3D. The semisolid structure, which varies as a function of welding parameters, is composed of solidifying grains and a network of micro liquid channels. The weld solidification module is utilized to obtain the solidification shrinkage. The size of the micro liquid channels is used as an indicator to assess the healing ability of the semisolid weld. 2) Using the finite element method, the mechanical interaction between the weld pool and the base metal is simulated to capture the transient force field deforming the semisolid weld. Thermomechanical stresses and shrinkage stresses are both considered in the analysis; the solidification contractions are extracted from the weld solidification module and applied to the deformation simulation as boundary conditions. Such an analysis enables characterization of the potential for excessive deformation of the weld. The outputs of the model are used to study the effect of welding parameters including welding current and speed, and also welding constraint on the hot cracking susceptibility of an aluminium alloy 6061 semisolid weld.

  19. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size

    PubMed Central

    Richman, Julie D.; Livi, Kenneth J.T.; Geyh, Alison S.

    2011-01-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was −0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected. PMID:21625364

  20. A Scanning Transmission Electron Microscopy Method for Determining Manganese Composition in Welding Fume as a Function of Primary Particle Size.

    PubMed

    Richman, Julie D; Livi, Kenneth J T; Geyh, Alison S

    2011-06-01

    Increasing evidence suggests that the physicochemical properties of inhaled nanoparticles influence the resulting toxicokinetics and toxicodynamics. This report presents a method using scanning transmission electron microscopy (STEM) to measure the Mn content throughout the primary particle size distribution of welding fume particle samples collected on filters for application in exposure and health research. Dark field images were collected to assess the primary particle size distribution and energy-dispersive X-ray and electron energy loss spectroscopy were performed for measurement of Mn composition as a function of primary particle size. A manual method incorporating imaging software was used to measure the primary particle diameter and to select an integration region for compositional analysis within primary particles throughout the size range. To explore the variation in the developed metric, the method was applied to 10 gas metal arc welding (GMAW) fume particle samples of mild steel that were collected under a variety of conditions. The range of Mn composition by particle size was -0.10 to 0.19 %/nm, where a positive estimate indicates greater relative abundance of Mn increasing with primary particle size and a negative estimate conversely indicates decreasing Mn content with size. However, the estimate was only statistically significant (p<0.05) in half of the samples (n=5), which all had a positive estimate. In the remaining samples, no significant trend was measured. Our findings indicate that the method is reproducible and that differences in the abundance of Mn by primary particle size among welding fume samples can be detected. PMID:21625364

  1. Thermal finite element formulation and solution versus experimental results for thin-plate GTA welding

    SciTech Connect

    Kraus, H.G.

    1986-08-01

    The problem of steady-state and transient heat transport associated with thin-plate welding is formulated and solved using the finite element method. Phase change is accurately accounted for through an element phase property averaging and quadratic/integral capacitance fitting technique. Three cases of quasi-steady welding of SS (stainless steel) 304 plates were simulated: input powers of 285, 405, and 588 W with corresponding velocities of 0.408 x 10/sup -3/, 1.270 x 10/sup -3/, and 2.540 x 10/sup -3/ m/s. Comparison to experimental results shows good agreement of weld pool size with a shape discrepancy developing as welder power and velocity increase. Arc heat flux and weld pool convection effects are discussed. A review of these results, combined with a survey of current literature, enable possible causes of these weld pool shape differences to be identified and enabled recommendations for future research to be made.

  2. X-ray and neutron diffraction measurements of dislocation density and subgrain size in a friction stir welded aluminum alloy

    SciTech Connect

    Claussen, Bjorn; Woo, Wanchuck; Zhili, Feng; Edward, Kenik; Ungar, Tamas

    2009-01-01

    The dislocation density and subgrain size were determined in the base material and friction-stir welds of 6061-T6 aluminum alloy. High-resolution X-ray diffraction measurement was performed in the base material. The result of the line profile analysis of the X-ray diffraction peak shows that the dislocation density is about 4.5 x 10{sup 14} m{sup 02} and the subgrain size is about 200 nm. Meanwhile, neutron diffraction measurements have been performed to observe the diffraction peaks during friction-stir welding (FSW). The deep penetration capability of the neutron enables us to measure the peaks from the midplane of the Al plate underneath the tool shoulder of the friction-stir welds. The peak broadening analysis result using the Williamson-Hall method shows the dislocation density of about 3.2 x 10{sup 15} m{sup -2} and subgrain size of about 160 nm. The significant increase of the dislocation density is likely due to the severe plastic deformation during FSW. This study provides an insight into understanding the transient behavior of the microstructure under severe thermomechanical deformation.

  3. Systematic Heterogeneity of Fractional Vesicle Pool Sizes and Release Rates of Hippocampal Synapses

    PubMed Central

    Welzel, Oliver; Henkel, Andreas W.; Stroebel, Armin M.; Jung, Jasmin; Tischbirek, Carsten H.; Ebert, Katrin; Kornhuber, Johannes; Rizzoli, Silvio O.; Groemer, Teja W.

    2011-01-01

    Hippocampal neurons in tissue culture develop functional synapses that exhibit considerable variation in synaptic vesicle content (20–350 vesicles). We examined absolute and fractional parameters of synaptic vesicle exocytosis of individual synapses. Their correlation to vesicle content was determined by activity-dependent discharge of FM-styryl dyes. At high frequency stimulation (30 Hz), synapses with large recycling pools released higher amounts of dye, but showed a lower fractional release compared to synapses that contained fewer vesicles. This effect gradually vanished at lower frequencies when stimulation was triggered at 20 Hz and 10 Hz, respectively. Live-cell antibody staining with anti-synaptotagmin-1-cypHer 5, and overexpression of synaptopHluorin as well as photoconversion of FM 1-43 followed by electron microscopy, consolidated the findings obtained with FM-styryl dyes. We found that the readily releasable pool grew with a power function with a coefficient of 2/3, possibly indicating a synaptic volume/surface dependency. This observation could be explained by assigning the rate-limiting factor for vesicle exocytosis at high frequency stimulation to the available active zone surface that is proportionally smaller in synapses with larger volumes. PMID:21281573

  4. Nonphotosynthetic reduction of the intersystem electron transport chain of chloroplasts following heat stress. The pool size of stromal reductants.

    PubMed

    Bukhov, N G; Samson, G; Carpentier, R

    2001-09-01

    The properties of a negative transient signal (negative peak) observed during the first seconds of the induction of the photoacoustic (PA) signal in dark-adapted barley leaves treated with methyl viologen (MV) and diuron and then exposed to high temperatures have been examined. Under those conditions no electron donation from photosystem II (PSII) occurred, and electron flow through PSI could be supported only by soluble reductants located in the chloroplast stroma. The negative peak was observed only if the PA signal had been monitored at low, and not high, frequencies. The peak obviously originated from the oxygen consumption by PSI. The size of the peak increased as the temperature of preheating was raised from 39 to 45 degrees C. The size of the peak decreased exponentially with a half-time of 3.7 s during illumination under low light. This decrease was found to be much faster under strong light. The recovery of the peak during dark acclimation required several minutes. It is concluded that the negative peak reflects the oxygen consumption supported by stromal reductants, their pool being rapidly exhausted under light in the presence of MV. The maximal size of the pool was calculated as 140 eq: P700 in dark-adapated leaves. PMID:11594058

  5. Active weld control

    NASA Technical Reports Server (NTRS)

    Powell, Bradley W.; Burroughs, Ivan A.

    1994-01-01

    Through the two phases of this contract, sensors for welding applications and parameter extraction algorithms have been developed. These sensors form the foundation of a weld control system which can provide action weld control through the monitoring of the weld pool and keyhole in a VPPA welding process. Systems of this type offer the potential of quality enhancement and cost reduction (minimization of rework on faulty welds) for high-integrity welding applications. Sensors for preweld and postweld inspection, weld pool monitoring, keyhole/weld wire entry monitoring, and seam tracking were developed. Algorithms for signal extraction were also developed and analyzed to determine their application to an adaptive weld control system. The following sections discuss findings for each of the three sensors developed under this contract: (1) weld profiling sensor; (2) weld pool sensor; and (3) stereo seam tracker/keyhole imaging sensor. Hardened versions of these sensors were designed and built under this contract. A control system, described later, was developed on a multiprocessing/multitasking operating system for maximum power and flexibility. Documentation for sensor mechanical and electrical design is also included as appendices in this report.

  6. Acoustic-Emission Weld-Penetration Monitor

    NASA Technical Reports Server (NTRS)

    Maram, J.; Collins, J.

    1986-01-01

    Weld penetration monitored by detection of high-frequency acoustic emissions produced by advancing weld pool as it melts and solidifies in workpiece. Acoustic emission from TIG butt weld measured with 300-kHz resonant transducer. Rise in emission level coincides with cessation of weld penetration due to sudden reduction in welding current. Such monitoring applied to control of automated and robotic welders.

  7. ECOLOGICAL STUDIES AND MATHEMATICAL MODELING OF 'CLADOPHORA' IN LAKE HURON: 3. THE DEPENDENCE OF GROWTH RATES ON INTERNAL PHOSPHOROUS POOL SIZE (JOURNAL VERSION)

    EPA Science Inventory

    The relationship between growth rate and internal phosphorus pool size was examined using field populations of Cladophora golmerata from Lake Huron. Algal samples, representing a range of internal phosphorus concentrations, were harvested from the lake and used for laboratory mea...

  8. Evaluation of Molybdenum as a Surrogate for Iridium in the GPHS Weld Development

    SciTech Connect

    Stine, Andrew Martin; Pierce, Stanley W.; Moniz, Paul F.

    2015-10-17

    The welding equipment used for welding iridium containers (clads) at Los Alamos National Laboratory is twenty five years old and is undergoing an upgrade. With the upgrade, there is a requirement for requalification of the welding process, and the opportunity for process improvement. Testing of the new system and requalification will require several welds on iridium test parts and clads, and any efforts to improve the process will add to the need for iridium parts. The extreme high cost of iridium imposes a severe limitation on the extent of test welding that can be done. The 2 inch diameter, 0.027 inch thick, iridium blank disc that the clad cup is formed from, is useful for initial weld trials, but it costs $5000. The development clad sets needed for final tests and requalification cost $15,000 per set. A solution to iridium cost issue would be to do the majority of the weld development on a less expensive surrogate metal with similar weld characteristics. One such metal is molybdenum. Since its melting index (melting temperature x thermal conductivity) is closest to iridium, welds on molybdenum should be similar in size for a given weld power level. Molybdenum is inexpensive; a single 2 inch molybdenum disc costs only $9. In order to evaluate molybdenum as a surrogate for iridium, GTA welds were first developed to provide full penetration on 0.030 inch thick molybdenum discs at speeds of 20, 25, and 30 inches per minute (ipm). These weld parameters were then repeated on the standard 0.027 inch thick iridium blanks. The top surface and bottom surface (root) width and grain structure of the molybdenum and iridium welds were compared, and similarities were evident between the two metals. Due to material and thickness differences, the iridium welds were approximately 35% wider than the molybdenum welds. A reduction in iridium weld current of 35% produce welds slightly smaller than the molybdenum welds yet showed that current could be scaled according to molybdenum/iridium weld width ratio to achieve similar welds. Further weld trials using various thicknesses of molybdenum determined that 0.024 inch thick molybdenum material would best match the 0.027 inch thick iridium in achieving comparable welds when using the same welding parameters. Across the range of welding speeds, the characteristic weld pool shape and solidification grain structure in the two materials was also similar. With the similarity of welding characteristics confirmed, and the appropriate thickness of molybdenum determined, it has been concluded that the use of molybdenum discs and tube sections will greatly expand the weld testing opportunities prior to iridium weld qualification

  9. Welding system

    SciTech Connect

    Church, J.G.

    1984-07-31

    An electric arc welding gas system utilizing a welding gas comprising a mixture of argon, helium, carbon dioxide and oxygen; electrode currents in the range of 100 to 1100 amperes so as to form electrode metal globules of at least the size of the electrode diameter at the rate of 400 to 1200 globules per second.

  10. The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation

    PubMed Central

    Yu, Yang; Cui, Yingjie; Zhao, Yanan; Liu, Shuai; Song, Guohua; Jiao, Peng; Li, Bin; Luo, Tian; Guo, Shoudong; Zhang, Xiangjian; Wang, Hao; Jiang, Xian-Cheng; Qin, Shucun

    2016-01-01

    Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice. PMID:26857615

  11. Laser Beam Welding of Nitride Steel Components

    NASA Astrophysics Data System (ADS)

    Gu, Hongping; Yin, Guobin; Shulkin, Boris

    Laser beam welding is a joining technique that has many advantages over conventional GMAW welding, such as low heat input, short cycle time as well as good cosmetic welds. Laser beam welding has been widely used for welding powertrain components in automotive industry. When welding nitride steel components, however, laser beam welding faces a great challenge. The difficulty lies in the fact that the nitride layer in the joint releases the nitrogen into the weld pool, resulting in a porous weld. This research presents an industrial ready solution to prevent the nitrogen from forming gas bubbles in the weld.

  12. Development of a Comprehensive Weld Process Model

    SciTech Connect

    Radhakrishnan, B.; Zacharia, T.

    1997-05-01

    This cooperative research and development agreement (CRADA) between Concurrent Technologies Corporation (CTC) and Lockheed Martin Energy Systems (LMES) combines CTC's expertise in the welding area and that of LMES to develop computer models and simulation software for welding processes. This development is of significant impact to the industry, including materials producers and fabricators. The main thrust of the research effort was to develop a comprehensive welding simulation methodology. A substantial amount of work has been done by several researchers to numerically model several welding processes. The primary drawback of most of the existing models is the lack of sound linkages between the mechanistic aspects (e.g., heat transfer, fluid flow, and residual stress) and the metallurgical aspects (e.g., microstructure development and control). A comprehensive numerical model which can be used to elucidate the effect of welding parameters/conditions on the temperature distribution, weld pool shape and size, solidification behavior, and microstructure development, as well as stresses and distortion, does not exist. It was therefore imperative to develop a comprehensive model which would predict all of the above phenomena during welding. The CRADA built upon an already existing three- dimensional (3-D) welding simulation model which was developed by LMES which is capable of predicting weld pool shape and the temperature history in 3-d single-pass welds. However, the model does not account for multipass welds, microstructural evolution, distortion and residual stresses. Additionally, the model requires large resources of computing time, which limits its use for practical applications. To overcome this, CTC and LMES have developed through this CRADA the comprehensive welding simulation model described above. The following technical tasks have been accomplished as part of the CRADA. 1. The LMES welding code has been ported to the Intel Paragon parallel computer at ORNL. The timing results illustrate the potential of the modified computer model for the analysis of large-scale welding simulations. 2. The kinetics of grain structure evolution in the weld heat affected zone (HAZ) has been simulated with reasonable accuracy by coupling an improved MC grain growth algorithm with a methodology for converting the MC parameters of grain size and time to real parameters. The simulations effectively captured the thermal pinning phenomenon that has been reported in the weld HAZ. 3. A cellular automaton (CA) code has been developed to simulate the solidification microstructure in the weld fusion zone. The simulations effectively captured the epitaxial growth of the HAZ grains, the grain selection mechanism, and the formation of typical grain structures observed in the weld t%sion zone. 4. The point heat source used in the LMES welding code has ben replaced with a distributed heat source to better capture the thermal characteristics and energy distributions in a commercial welding heat source. 5. Coupled thermal-mechanical and metallurgical models have been developed to accurately predict the weld residual stresses, and 6. Attempts have been made to integrate the newly developed computational capabilities into a comprehensive weld design tool.

  13. Fracture toughness testing of Linde 1092 reactor vessel welds in the transition range using Charpy-sized specimens

    SciTech Connect

    Pavinich, W.A.; Yoon, K.K.; Hour, K.Y.; Hoffman, C.L.

    1999-10-01

    The present reference toughness method for predicting the change in fracture toughness can provide over estimates of these values because of uncertainties in initial RT{sub NDT} and shift correlations. It would be preferable to directly measure fracture toughness. However, until recently, no standard method was available to characterize fracture toughness in the transition range. ASTM E08 has developed a draft standard that shows promise for providing lower bound transition range fracture toughness using the master curve approach. This method has been successfully implemented using 1T compact fracture specimens. Combustion Engineering reactor vessel surveillance programs do not have compact fracture specimens. Therefore, the CE Owners Group developed a program to validate the master curve method for Charpy-sized and reconstituted Charpy-sized specimens for future application on irradiated specimens. This method was validated for Linde 1092 welds using unirradiated Charpy-sized and reconstituted Charpy-sized specimens by comparison of results with those from compact fracture specimens.

  14. Increased cholesterol 7α-hydroxylase expression and size of the bile acid pool in the lactating rat

    PubMed Central

    Wooton-Kee, Clavia Ruth; Cohen, David E.; Vore, Mary

    2008-01-01

    Maximal bile acid secretory rates and expression of bile acid transporters in liver and ileum are increased in lactation, possibly to facilitate increased enterohepatic recirculation of bile acids. We determined changes in the size and composition of the bile acid pool and key enzymes of the bile acid synthetic pathway [cholesterol 7α-hydroxylase (Cyp7a1), sterol 27-hydroxylase (Cyp27a1), and sterol 12α-hydroxylase (Cyp8b1)] in lactating rats relative to female virgin controls. The bile acid pool increased 1.9 to 2.5-fold [postpartum (PP) days 10, 14, and 19–23], compared with controls. A 1.5-fold increase in cholic acids and a 14 to 20% decrease in muricholic acids in lactation significantly increased the hydrophobicity index. In contrast, the hepatic concentration of bile acids and small heterodimer partner mRNA were unchanged in lactation. A 2.8-fold increase in Cyp7a1 mRNA expression at 16 h (10 h of light) demonstrated a shift in the diurnal rhythm at day 10 PP; Cyp7a1 protein expression and cholesterol 7α-hydroxylase activity were significantly increased at this time and remained elevated at day 14 PP but decreased to control levels by day 21 PP. There was an overall decrease in Cyp27a1 mRNA expression and a 20% decrease in Cyp27a1 protein expression, but there was no change in Cyp8b1 mRNA or protein expression at day 10 PP. The increase in Cyp7a1 expression PP provides a mechanism for the increase in the bile acid pool. PMID:18292185

  15. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  16. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    NASA Technical Reports Server (NTRS)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the calculated CFS values compared to the CFS values determined without shakedown. Thus, it is conservative to ignore shakedown effects.

  17. Fluid Flow Phenomena during Welding

    SciTech Connect

    Zhang, Wei

    2011-01-01

    MOLTEN WELD POOLS are dynamic. Liquid in the weld pool in acted on by several strong forces, which can result in high-velocity fluid motion. Fluid flow velocities exceeding 1 m/s (3.3 ft/s) have been observed in gas tungsten arc (GTA) welds under ordinary welding conditions, and higher velocities have been measured in submerged arc welds. Fluid flow is important because it affects weld shape and is related to the formation of a variety of weld defects. Moving liquid transports heat and often dominates heat transport in the weld pool. Because heat transport by mass flow depends on the direction and speed of fluid motion, weld pool shape can differ dramatically from that predicted by conductive heat flow. Temperature gradients are also altered by fluid flow, which can affect weld microstructure. A number of defects in GTA welds have been attributed to fluid flow or changes in fluid flow, including lack of penetration, top bead roughness, humped beads, finger penetration, and undercutting. Instabilities in the liquid film around the keyhole in electron beam and laser welds are responsible for the uneven penetration (spiking) characteristic of these types of welds.

  18. A pilot-scale study of Cryptosporidium-sized microsphere removals from swimming pools via sand filtration.

    PubMed

    Lu, Ping; Amburgey, James E

    2016-02-01

    Cryptosporidium species are the most common cause of gastrointestinal illness in treated recreational water venues. In order to protect public health during swimming, Cryptosporidium-sized microsphere removals by high-rate sand filtration with six coagulants were evaluated with a 5.5 m(3) pilot-scale swimming pool. A sand filter without coagulation removed 20-63% of Cryptosporidium-sized microspheres. Cryptosporidium-sized microsphere removals exceeded 98% by sand filtration with five of the six tested coagulants. Continuously feeding coagulants A, B, and F (i.e., organic polymers) led to coagulant accumulation in the system and decreased removals over time (<2 days). Coagulant E (polyaluminum chloride) consistently removed more than 90% of microspheres at 30 m/h while the removals dropped to approximately 50% at a filtration rate of 37 m/h. Coagulant C was a chitosan-based product that removed fewer microspheres compared with other products, <75%, under the studied conditions. Results indicated aluminum-based coagulants (coagulants D and E) had an overall performance advantage over the organic polymer based coagulants primarily in terms of their tendency not to accumulate in the water and cease to be effective at improving filter efficiency. PMID:26837835

  19. Distortion of laser welded titanium plates.

    PubMed

    Iwasaki, Keiji; Ohkawa, Shoji; Rosca, Iosif D; Uo, Motohiro; Akasaka, Tsukasa; Watari, Fumio

    2004-12-01

    The distortion of laser welded titanium plates was assessed for different operating conditions of the laser welding device, and with different welding parameters (in terms of weld point and prewelding). In this study, Nd : YAG laser welding device was used to join the titanium plates. The results showed that distortion increased stepwise after each welding point along the welding zone (one-side welding), but decreased consecutively as the welding proceeded on the second side of the weld (two-side welding). In the case of one-side welding, the dependence of distortion on current and spot diameter presented maxima--due to changes in the welding pool characteristics. For two-side weld the same parameters exercised little influence on its distortion recovery, due to the effect of solidified weld pools from the first side. Current and spot diameter determined the weld pool, which in turn regulated distortion based on shrinkage. Four-point prewelding significantly decreased the final distortion for both one- and two-side welds. Alternating two-side welding of prewelded assembly showed lower distortion than a classic two-side weld. PMID:15688724

  20. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture.

    PubMed

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S

    2016-01-01

    Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (t lag ) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h(-1) of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced t lag , indicating that favorable abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213

  1. Changes in the Size of the Active Microbial Pool Explain Short-Term Soil Respiratory Responses to Temperature and Moisture

    PubMed Central

    Salazar-Villegas, Alejandro; Blagodatskaya, Evgenia; Dukes, Jeffrey S.

    2016-01-01

    Heterotrophic respiration contributes a substantial fraction of the carbon flux from soil to atmosphere, and responds strongly to environmental conditions. However, the mechanisms through which short-term changes in environmental conditions affect microbial respiration still remain unclear. Microorganisms cope with adverse environmental conditions by transitioning into and out of dormancy, a state in which they minimize rates of metabolism and respiration. These transitions are poorly characterized in soil and are generally omitted from decomposition models. Most current approaches to model microbial control over soil CO2 production relate responses to total microbial biomass (TMB) and do not differentiate between microorganisms in active and dormant physiological states. Indeed, few data for active microbial biomass (AMB) exist with which to compare model output. Here, we tested the hypothesis that differences in soil microbial respiration rates across various environmental conditions are more closely related to differences in AMB (e.g., due to activation of dormant microorganisms) than in TMB. We measured basal respiration (SBR) of soil incubated for a week at two temperatures (24 and 33°C) and two moisture levels (10 and 20% soil dry weight [SDW]), and then determined TMB, AMB, microbial specific growth rate, and the lag time before microbial growth (tlag) using the Substrate-Induced Growth Response (SIGR) method. As expected, SBR was more strongly correlated with AMB than with TMB. This relationship indicated that each g active biomass C contributed ~0.04 g CO2-C h−1 of SBR. TMB responded very little to short-term changes in temperature and soil moisture and did not explain differences in SBR among the treatments. Maximum specific growth rate did not respond to environmental conditions, suggesting that the dominant microbial populations remained similar. However, warmer temperatures and increased soil moisture both reduced tlag, indicating that favorable abiotic conditions activated soil microorganisms. We conclude that soil respiratory responses to short-term changes in environmental conditions are better explained by changes in AMB than in TMB. These results suggest that decomposition models that explicitly represent microbial carbon pools should take into account the active microbial pool, and researchers should be cautious in comparing modeled microbial pool sizes with measurements of TMB. PMID:27148213

  2. Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution.

    PubMed

    DeWalt, R Edward; South, Eric J

    2015-01-01

    Extensive sampling for aquatic insects was conducted in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) of Isle Royale National Park (ISRO), Michigan, United States of America, during summer 2013. The island was ice covered until 8,000 to 10,000 years ago and is isolated by 22-70 km distance from the mainland. Two hypotheses were examined: that ISRO EPT richness would be much reduced from the mainland, and that the species colonizing ISRO would be of smaller size than mainland, adults presumably using updrafts to bridge the distance from mainland sources. Data sets were developed for known mainland EPT species and size for those species. The first hypothesis was confirmed with the mainland species pool consisting of 417 EPT, while ISRO is known to support 73 species. Richness of EPT is directly related to the number of specimens examined. Small streams supported five EPT species, while 15-25 species were found in larger streams. Lakeshores had intermediate diversity. The second hypothesis was substantiated for stoneflies, but not for mayflies or caddisflies. Stoneflies apparently are poorer fliers than either of the other two orders. PMID:26692811

  3. Ephemeroptera, Plecoptera, and Trichoptera on Isle Royale National Park, USA, compared to mainland species pool and size distribution

    PubMed Central

    DeWalt, R. Edward; South, Eric J.

    2015-01-01

    Abstract Extensive sampling for aquatic insects was conducted in the orders Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) (EPT) of Isle Royale National Park (ISRO), Michigan, United States of America, during summer 2013. The island was ice covered until 8,000 to 10,000 years ago and is isolated by 22–70 km distance from the mainland. Two hypotheses were examined: that ISRO EPT richness would be much reduced from the mainland, and that the species colonizing ISRO would be of smaller size than mainland, adults presumably using updrafts to bridge the distance from mainland sources. Data sets were developed for known mainland EPT species and size for those species. The first hypothesis was confirmed with the mainland species pool consisting of 417 EPT, while ISRO is known to support 73 species. Richness of EPT is directly related to the number of specimens examined. Small streams supported five EPT species, while 15–25 species were found in larger streams. Lakeshores had intermediate diversity. The second hypothesis was substantiated for stoneflies, but not for mayflies or caddisflies. Stoneflies apparently are poorer fliers than either of the other two orders. PMID:26692811

  4. The effect of welding parameters on penetration in GTA welds

    SciTech Connect

    Shirali, A.A. ); Mills, K.C. )

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parameters on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.

  5. An Improved Method of Capturing the Surface Boundary of a Ti-6Al-4V Fusion Weld Bead for Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Turner, R. P.; Villa, M.; Sovani, Y.; Panwisawas, C.; Perumal, B.; Ward, R. M.; Brooks, J. W.; Basoalto, H. C.

    2016-02-01

    Weld simulation methods have often employed mathematical functions to describe the size and shape of the molten pool of material transiently present in a weld. However, while these functions can sometimes accurately capture the fusion boundary for certain welding parameters in certain materials, they do not necessarily offer a robust methodology for the more intricate weld pool shapes that can be produced in materials with a very low thermal conductivity, such as the titanium alloy Ti-6Al-4V. Cross-sections of steady-state welds can be observed which contain a dramatic narrowing of the pool width at roughly half way in to the depth of the plate of material, and a significant widening again at the base. These effects on the weld pool are likely to do with beam focusing height. However, the resultant intricacy of the pool means that standard formulaic methods to capture the shape may prove relatively unsuccessful. Given how critical the accuracy of pool shape is in determining the mechanical response to the heating, an alternative method is presented. By entering weld pool width measurements for a series of depths in a Cartesian co-ordinate system using FE weld simulation software Sysweld, a more representative weld pool size and shape can be predicted, compared to the standard double ellipsoid method. Results have demonstrated that significant variations in the mid-depth thermal profile are observed between the two, even though the same values for top and bottom pool-widths are entered. Finally, once the benefits of the Cartesian co-ordinate method are demonstrated, the robustness of this approach to predict a variety of weld pool shapes has been demonstrated upon a series of nine weld simulations, where the two key process parameters (welding laser power and travel speed) are explored over a design space ranging from 1.5 to 3 kW and 50 to 200 mm/s. Results suggest that for the faster travel speeds, the more detailed Cartesian co-ordinate method is better, whereas for slower welds, the traditional double ellipsoid function captures the fusion boundary as successfully as the Cartesian method, and in faster computation times.

  6. Daily consumption of orange-fleshed sweet potato with added fat tends to increase total body vitamin A pool size in vitamin A depleted Bangladeshi women

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We assessed the affect of daily consumption of orange-fleshed sweet potato (OFSP), with or without added fat, on the total body vitamin A (VA) pool size of Bangladeshi women with low initial VA status. Women (n=120) received for 60d either 1) 0 µg RAE/d as boiled white-fleshed sweet potatoes (WFSP) ...

  7. Nutrient demand interacts with legume particle length to affect digestion responses and rumen pool sizes in dairy cows.

    PubMed

    Kammes, K L; Ying, Y; Allen, M S

    2012-05-01

    Effects of legume particle length on dry matter intake (DMI), milk production, ruminal fermentation and pool sizes, and digestion and passage kinetics, and the relationship of these effects with preliminary DMI (pDMI) were evaluated using 13 ruminally and duodenally cannulated Holstein cows in a crossover design with a 14-d preliminary period and two 19-d treatment periods. During the preliminary period, pDMI of individual cows ranged from 22.8 to 32.4 kg/d (mean=26.5 kg/d) and 3.5% fat-corrected milk yield ranged from 22.9 to 62.4 kg/d (mean=35.1 kg/d). Experimental treatments were diets containing alfalfa silage chopped to (1) 19 mm (long cut, LC) or (2) 10 mm (short cut, SC) theoretical length of cut as the sole forage. Alfalfa silages contained approximately 43% neutral detergent fiber (NDF); diets contained approximately 47% forage and 20% forage NDF. Preliminary DMI, an index of nutrient demand, was determined during the last 4 d of the preliminary period, when cows were fed a common diet, and used as a covariate. Main effects of legume particle length and their interaction with pDMI were tested by ANOVA. Alfalfa particle length and its interaction with pDMI did not affect milk yield or rumen pH. The LC diet decreased milk fat concentration more per kilogram of pDMI increase than the SC diet and increased yields of milk fat and fat-corrected milk less per kilogram of pDMI increase than the SC diet, resulting in a greater benefit for LC at low pDMI and for SC at high pDMI. The LC diet tended to decrease DMI compared with the SC diet. Ruminal digestion and passage rates of feed fractions did not differ between LC and SC and were not related to level of intake. The LC diet tended to decrease the rate of ruminal turnover for NDF but increased NDF rumen pools at a slower rate than the SC diet as pDMI increased. This indicated that the faster NDF turnover rate did not counterbalance the higher DMI for SC, resulting in larger NDF rumen pools for SC than LC. As pDMI increased, LC increased ruminal digestibility of potentially digestible NDF and total NDF, and SC decreased them, but total-tract digestibilities of potentially digestible NDF, total NDF, organic matter, and dry matter were lower for LC than for SC. Ruminal digestibilities of starch and organic matter interacted quadratically with level of intake. When legume silage was the only source of forage in the diet, increasing chop length from 10 to 19 mm tended to decrease DMI but did not negatively affect productivity of cows. PMID:22541490

  8. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary.

    PubMed

    Liao, Cheng Zhang; Luo, Yi Qi; Fang, Chang Ming; Chen, Jia Kuan; Li, Bo

    2008-06-01

    Past studies have focused primarily on the effects of invasive plants on litter decomposition at soil surfaces. In natural ecosystems, however, considerable amounts of litter may be at aerial and belowground positions. This study was designed to examine the effects of Spartina alterniflora invasion on the pool sizes and decomposition of aerial, surficial, and belowground litter in coastal marshlands, the Yangtze Estuary, which were originally occupied by two native species, Scirpus mariqueter and Phragmites australis. We collected aerial and surficial litter of the three species once a month and belowground litter once every 2 months. We used the litterbag method to quantify litter decomposition at the aerial, surficial and belowground positions for the three species. Yearly averaged litter mass in the Spartina stands was 1.99 kg m(-2); this was 250 and 22.8% higher than that in the Scirpus (0.57 kg m(-2)) and Phragmites (1.62 kg m(-2)) stands, respectively. The litter in the Spartina stands was primarily distributed in the air (45%) and belowground (48%), while Scirpus and Phragmites litter was mainly allocated to belowground positions (85 and 59%, respectively). The averaged decomposition rates of aerial, surficial, and belowground litter were 0.82, 1.83, and 1.27 year(-1) for Spartina, respectively; these were 52, 62 and 69% of those for Scirpus litter at corresponding positions and 158, 144 and 78% of those for Phragmites litter, respectively. The differences in decomposition rates between Spartina and the two native species were largely due to differences in litter quality among the three species, particularly for the belowground litter. The absolute amount of nitrogen increased during the decomposition of Spartina stem, sheath and root litter, while the amount of nitrogen in Scirpus and Phragmites litter declined during decomposition for all tissue types. Our results suggest that Spartina invasion altered the carbon and nitrogen cycling in the coastal marshlands of China. PMID:18327617

  9. In-process monitoring and feedback control for stable production of full-penetration weld in continuous wave fibre laser welding

    NASA Astrophysics Data System (ADS)

    Kawahito, Yousuke; Ohnishi, Terumasa; Katayama, Seiji

    2009-04-01

    Laser micro-welding has been applied for device sealing in electronics and automobile industries. Welding of corners in goods and products is a problem owing to easier formation of a weld with burn-through, shallow penetration or a non-bonded part when a drastic change in the welding speed or laser power occurs. This research was therefore undertaken with the objective of obtaining a fundamental knowledge of in-process monitoring and feedback control for the stable production of a full-penetration weld with a constant bead width on the bottom surface irrespective of the changes in the laser power and the welding speed. Variation in weld penetration geometry was investigated by rapid deceleration and acceleration in the welding speed during lap welding of pure titanium thin sheets with a continuous wave (CW) single-mode fibre laser beam. The rapid deceleration in the welding speed led to a considerable change in the full-penetration weld geometry or a partially penetrated weld (if the power was accordingly reduced), resulting in the difficulty in the stable production of a full-penetration weld bead. The heat radiation intensity measured from the laser-irradiated area was useful as an in-process monitoring signal for detecting the molten pool size on the laser-irradiated surface. However, the utilization of monitoring of heat radiation was difficult for predicting the weld bead width on the bottom surface due to the formation of partial penetration or the change in the penetration shape. The laser power was controlled at a 4 ms interval according to the heat radiation signal in order to adjust the weld bead width on the laser-irradiated surface to the target weld penetration geometry affected by thermal storage. Consequently, the feedback-controlled laser power produced a stable full-penetration weld with the designed bead width on the bottom surface irrespective of the rapid deceleration of the welding speed and the corresponding decrease in laser power. Furthermore, the developed feedback control algorithm was effective in rapid acceleration of the welding speed. From these results, it was confirmed that the consideration of the feedback control algorithm including a thermophysical property such as thermal storage was essential for the suppression of the effect due to rapid deceleration and acceleration of the welding speed and the laser power in lap seam micro-welding with a CW fibre laser.

  10. Flow Dynamics in Arc Welding

    NASA Astrophysics Data System (ADS)

    Lowke, John J.; Tanaka, Manabu

    2008-02-01

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is "flow dynamics" applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension (3) the effect of a flux, which can produce increased weld depth due to arc constriction (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  11. Flow Dynamics in Arc Welding

    SciTech Connect

    Lowke, John J.; Tanaka, Manabu

    2008-02-21

    The state of the art for numerical computations has now advanced so that the capability is within sight of calculating weld shapes for any arc current, welding gas, welding material or configuration. Inherent in these calculations is 'flow dynamics' applied to plasma flow in the arc and liquid metal flow in the weld pool. Examples of predictions which are consistent with experiment, are discussed for (1) conventional tungsten inert gas welding, (2) the effect of a fraction of a percent of sulfur in steel, which can increase weld depth by more than a factor of two through changes in the surface tension, (3) the effect of a flux, which can produce increased weld depth due to arc constriction, (4) use of aluminium instead of steel, when the much larger thermal conductivity of aluminium greatly reduces the weld depth and (5) addition of a few percent of hydrogen to argon, which markedly increases weld depth.

  12. Nitrogen Stress Affects the Turnover and Size of Nitrogen Pools Supplying Leaf Growth in a Grass1[C][W][OPEN

    PubMed Central

    Lehmeier, Christoph Andreas; Wild, Melanie; Schnyder, Hans

    2013-01-01

    The effect of nitrogen (N) stress on the pool system supplying currently assimilated and (re)mobilized N for leaf growth of a grass was explored by dynamic 15N labeling, assessment of total and labeled N import into leaf growth zones, and compartmental analysis of the label import data. Perennial ryegrass (Lolium perenne) plants, grown with low or high levels of N fertilization, were labeled with 15NO3−/14NO3− from 2 h to more than 20 d. In both treatments, the tracer time course in N imported into the growth zones fitted a two-pool model (r2 > 0.99). This consisted of a “substrate pool,” which received N from current uptake and supplied the growth zone, and a recycling/mobilizing “store,” which exchanged with the substrate pool. N deficiency halved the leaf elongation rate, decreased N import into the growth zone, lengthened the delay between tracer uptake and its arrival in the growth zone (2.2 h versus 0.9 h), slowed the turnover of the substrate pool (half-life of 3.2 h versus 0.6 h), and increased its size (12.4 μg versus 5.9 μg). The store contained the equivalent of approximately 10 times (low N) and approximately five times (high N) the total daily N import into the growth zone. Its turnover agreed with that of protein turnover. Remarkably, the relative contribution of mobilization to leaf growth was large and similar (approximately 45%) in both treatments. We conclude that turnover and size of the substrate pool are related to the sink strength of the growth zone, whereas the contribution of the store is influenced by partitioning between sinks. PMID:23757403

  13. Method for enhanced control of welding processes

    SciTech Connect

    Sheaffer, D.A.; Renzi, R.F.; Tung, D.M.; Schroder, K.

    2000-07-04

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration are disclosed. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100 x 100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  14. Method for enhanced control of welding processes

    DOEpatents

    Sheaffer, Donald A.; Renzi, Ronald F.; Tung, David M.; Schroder, Kevin

    2000-01-01

    Method and system for producing high quality welds in welding processes, in general, and gas tungsten arc (GTA) welding, in particular by controlling weld penetration. Light emitted from a weld pool is collected from the backside of a workpiece by optical means during welding and transmitted to a digital video camera for further processing, after the emitted light is first passed through a short wavelength pass filter to remove infrared radiation. By filtering out the infrared component of the light emitted from the backside weld pool image, the present invention provides for the accurate determination of the weld pool boundary. Data from the digital camera is fed to an imaging board which focuses on a 100.times.100 pixel portion of the image. The board performs a thresholding operation and provides this information to a digital signal processor to compute the backside weld pool dimensions and area. This information is used by a control system, in a dynamic feedback mode, to automatically adjust appropriate parameters of a welding system, such as the welding current, to control weld penetration and thus, create a uniform weld bead and high quality weld.

  15. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    NASA Astrophysics Data System (ADS)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  16. Experimental Investigation into the Effects of Weld Sequence and Fixture on Residual Stresses in Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Kohandehghan, A. R.; Serajzadeh, S.

    2012-06-01

    This study concentrates on the effects of weld sequence and welding fixtures on distribution and magnitude of induced arc welding residual stresses built up in butt-joint of Gas Tungsten Arc Welding (GTAW) AA5251 plates. Aluminum plates have been welded under different welding conditions and then, longitudinal and transverse residual stresses were measured in different points of the welded plates employing hole-drilling technique. The results indicate that welding sequence significantly alters the distributions of both longitudinal and transverse residual stresses while the changing in the weld sequence leads to 44% decrease in longitudinal residual stress. Besides, both the geometry of weld pool and distribution of residual stresses are affected by the welding fixtures while implementation of fixture causes about 21 and 76% reductions in the depth of weld pool and transverse residual stress, respectively, for the material and welding conditions used in this research.

  17. Autogeneous Friction Stir Weld Lack-of-Penetration Defect Detection and Sizing Using Directional Conductivity Measurements with MWM Eddy Current Sensor

    NASA Technical Reports Server (NTRS)

    Goldfine, Neil; Zilberstei, Vladimir; Lawson, Ablode; Kinchen, David; Arbegast, William

    2000-01-01

    Al 2195-T8 plate specimens containing Friction Stir Welds (FSW), provided by Lockheed Martin, were inspected using directional conductivity measurements with the MWM sensor. Sensitivity to lack-of-penetration (LOP) defect size has been demonstrated. The feature used to determine defect size was the normalized longitudinal component of the MWM conductivity measurements. This directional conductivity component was insensitive to the presence of a discrete crack. This permitted correlation of MWM conductivity measurements with the LOP defect size as changes in conductivity were apparently associated with metallurgical features within the first 0.020 in. of the LOP defect zone. Transverse directional conductivity measurements also provided an indication of the presence of discrete cracks. Continued efforts are focussed on inspection of a larger set of welded panels and further refinement of LOP characterization tools.

  18. Dissociation between muscle tricarboxylic acid cycle pool size and aerobic energy provision during prolonged exercise in humans

    PubMed Central

    Gibala, Martin J; González-Alonso, José; Saltin, Bengt

    2002-01-01

    It has been suggested that a decrease in the total concentration of tricarboxylic acid cycle intermediates (TCAIs) - secondary to a reduction in glycogen availability - compromises oxidative energy provision in skeletal muscle during prolonged exercise. However, no study has directly tested this hypothesis. We therefore studied six men (28 ± 2 years) during 90 min of leg kicking exercise at an intensity equivalent to 70 % of maximum. Biopsies (vastus lateralis) were obtained at rest and after 5, 10, 15, 30, 60 and 90 min of exercise, and thigh oxygen uptake (VO2,thigh) was calculated according to the Fick principle. The sum of six measured TCAIs (≈95 % of total pool size) was 1.30 ± 0.15 mmol (kg dry wt)−1 at rest and increased (P ≤ 0.05) rapidly during exercise to a peak value of 3.15 ± 0.23 mmol (kg dry wt)−1 after 10 min. Thereafter, the [TCAI] declined to 2.14 ± 0.23, 1.73 ± 0.32 and 1.62 ± 0.10 mmol (kg dry wt)−1 after 30, 60 and 90 min, respectively (P ≤ 0.05vs.10 min). Despite the 50 % decrease in [TCAI], aerobic energy provision was not compromised, as evidenced by stable VO2,thigh values throughout the entire exercise bout and little change in muscle [phosphocreatine] after 10 min. The largest decrease in [TCAI] (Δ + 1.00 ± 0.24 mmol (kg dry wt)−1) occurred from 10 to 30 min of exercise despite the fact that muscle [glycogen] remained relatively high at this point in exercise (≈274 ± 24 mmol (kg dry wt)−1 after 30 min; ≈65 % of rest value). Conversely, there was little change in [TCAI] during the final 30 min of exercise (Δ + 0.11 ± 0.29 mmol (kg dry wt)−1) despite a decrease in [glycogen] to ≈72 ± 3 mmol (kg dry wt)−1 after 90 min (≈13 % of rest value). We conclude that there is a progressive decrease in muscle [TCAI] during prolonged exercise in humans; however this decrease does not compromise aerobic energy provision and is not attributable to the depletion of muscle [glycogen]. PMID:12456845

  19. Improvement of reliability of welding by in-process sensing and control (development of smart welding machines for girth welding of pipes). Final report

    SciTech Connect

    Hardt, D.E.; Masubuchi, K.; Paynter, H.M.; Unkel, W.C.

    1983-04-01

    Closed-loop control of the welding variables represents a promising, cost-effective approach to improving weld quality and therefore reducing the total cost of producing welded structures. The ultimate goal is to place all significant weld variables under direct closed-loop control; this contrasts with preprogrammed machines which place the welding equipment under control. As the first step, an overall strategy has been formulated and an investigation of weld pool geometry control for gas tungsten arc process has been completed. The research activities were divided into the areas of arc phenomena, weld pool phenomena, sensing techniques and control activities.

  20. An unusual correlation between ppGpp pool size and rate of ribosome synthesis during partial pyrimidine starvation of Escherichia coli.

    PubMed Central

    Vogel, U; Pedersen, S; Jensen, K F

    1991-01-01

    Escherichia coli was exposed to partial pyrimidine starvation by feeding a pyrBI strain orotate as the only pyrimidine source. Subsequently, differential rates of synthesis of rRNA and of a few ribosome-associated proteins as well as the pool sizes of nucleoside triphosphates and ppGpp were measured. As the orotate concentration in the medium was reduced, the growth rate decreased and the pools of pyrimidine nucleotides, particularly UTP, declined. We did not observe the normal inverse relation between concentration of ppGpp and growth rate; rather, we observed that the ppGpp pool was low at slow growth rates. Upshifts in growth rate were made by adding uracil to a culture growing slowly on orotate. Downshifts could be provoked by adding aspartate plus glutamate to a culture growing at a high concentration of orotate. Following the upshift, both the rates of synthesis of the ribosomal components and the pool of ppGpp increased rapidly, while they all decreased after the downshift. These results are discussed in relation to the role of ppGpp in the growth rate control and the stringent response. PMID:1704003

  1. The effect of alloy composition and welding conditions on columnar-equiaxed transitions in ferritic stainless steel gas-tungsten arc welds

    NASA Astrophysics Data System (ADS)

    Villafuerte, J. C.; Pardo, E.; Kerr, H. W.

    1990-07-01

    The columnar-equiaxed transition (CET) was investigated in full penetration gas-tungsten arc (GTA) welds on ferritic stainless steel plates containing different amounts of minor elements, such as titanium and aluminum, for a range of welding conditions. In general, the fraction of equiaxed grains increased, and the size of the equiaxed grains decreased with increasing titanium contents above 0.18 wt pct. At a given level of titanium, the equiaxed fraction increased, and the size of the equiaxed grains decreased with increased aluminum content. The CET was ascribed to heterogeneous nucleation of ferrite on Ti-rich cuboidal inclusions, since these inclusions were observed at the origin of equiaxed dendrites in the grain refined welds. Titanium-rich cuboidal inclusions, in turn, were found to contain Al-Ca-Mg-rich inclusions at their centers, consistent with observations by previous investigators for other processes. The welding conditions, in particular, the welding speed, were observed to affect the occurrence of the CET. Increasing the welding speed from 3 to 8 mm/s increased the equiaxed fraction noticeably, but a further increase in speed to 14 mm/s had a smaller additional effect. A finite element model (FEM) of heat transfer was used to examine the role of the welding conditions on the local solidification conditions along the weld pool edge. The results are compared with existing models for the CET.

  2. Proteasome Inhibition Triggers Activity-Dependent Increase in the Size of the Recycling Vesicle Pool in Cultured Hippocampal Neurons

    PubMed Central

    Willeumier, Kristen; Pulst, Stefan M.; Schweizer, Felix E.

    2008-01-01

    The ubiquitin proteasome system, generally known for its function in protein degradation, also appears to play an important role in regulating membrane trafficking. A role for the proteasome in regulating presynaptic release and vesicle trafficking has been proposed for invertebrates, but it remains to be tested in mammalian presynaptic terminals. We used the fluorescent styrylpyridinium dye FM4-64 to visualize changes in the recycling pool of vesicles in hippocampal culture under pharmacological inhibition of the proteasome. We found that a 2 h inhibition increases the recycling pool of vesicles by 76%, with no change in the rate or total amount of dye release. Interestingly, enhancement did not depend on protein synthesis but did depend on synaptic activity; blocking action potentials during proteasome inhibition abolished the effect whereas increasing neuronal activity accelerated the effect with an increased recycling pool evident after 15 min. We propose that the proteasome acts as a negative-feedback regulator of synaptic transmission, possibly serving a homeostatic role. PMID:17079661

  3. Welding with brilliant lasers: prospects and limitations

    NASA Astrophysics Data System (ADS)

    Kittel, Sonja; Dausinger, Friedrich

    2010-02-01

    Now that high brightness laser sources featuring high output power are commercially available, extremely small focal diameters and high power densities permit laser welding with a high aspect ratio at low heat input. With regard to an increase in productivity this implies a deeper weld depth at a higher feed rate and hence at a shorter processing time. In this research, a modular optical system generates focal diameters from 195 μm down to 15 μm for the purpose of identifying the prospects and limitations of the application of high brightness beam sources in laser welding. Metallographical analysis and observation using a high speed camera give information about the weld seam geometry and weld pool dynamics. Thus, the influence of minimizing focal diameters on process stability is evaluated: From the correlation of longitudinal cross-sections and high speed camera observation, an interrelationship between spiking and keyhole breakdown results. In dependence of the particular spot size and the beam quality of the laser source a new processing range arises. These observations are traced back to theoretical beam properties and a fundamental thesis about the applicability of a high brightness laser is derived. Eventually it shows that a small beam diameter is most advantageous for micro application.

  4. Melting Efficiency During Plasma Arc Welding

    NASA Technical Reports Server (NTRS)

    McClure, J.C.; Evans, D. M.; Tang, W.; Nunes, A. C.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 aluminum. Arc Efficiency was measured calorimetrically and ranged between 48% and 66%. Melting efficiency depends on the weld pool shape. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Higher currents are thought to raise arc pressure and depress the liquid at the bottom of the weld pool causing a more nearly two dimensional heat flow condition.

  5. Optical penetration sensor for pulsed laser welding

    DOEpatents

    Essien, Marcelino; Keicher, David M.; Schlienger, M. Eric; Jellison, James L.

    2000-01-01

    An apparatus and method for determining the penetration of the weld pool created from pulsed laser welding and more particularly to an apparatus and method of utilizing an optical technique to monitor the weld vaporization plume velocity to determine the depth of penetration. A light source directs a beam through a vaporization plume above a weld pool, wherein the plume changes the intensity of the beam, allowing determination of the velocity of the plume. From the velocity of the plume, the depth of the weld is determined.

  6. Impact Modeling of Spot Welds

    NASA Astrophysics Data System (ADS)

    Yancey, Robert N.

    2004-06-01

    Resistance spot welds in most current finite element crash models are characterized as a rigid link at the location of the weld which transfers the load but is not designed to fail. Newer weld elements in the popular finite element analysis codes include the option of incorporating a failure criteria for the weld element. As many automotive companies move towards the use of high-strength steels, the dynamic behavior of the spot welds will become increasingly important and the failure of any welds should be incorporated during the simulation. The failure criteria will be influenced by mesh size, weld element properties, weld element type, surrounding material properties, strain rate, and weld placement. The influence of some of these parameters using current spot weld modeling techniques will be discussed along with recommendations for future work in this area.

  7. Weld seam tracking and lap weld penetration monitoring using the optical spectrum of the weld plume

    SciTech Connect

    Mueller, R.E.; Hopkins, J.A.; Semak, V.V.; McCay, M.H.

    1996-12-31

    Joining of dissimilar materials is a long standing problem in manufacturing, with many tricks and special techniques developed to successfully join specific pairs of materials. Often, these special techniques impose stringent requirements on the process such as precise control of process parameters to achieve the desired joint characteristics. Laser welding is one of the techniques which has had some success in welding dissimilar metal alloys, and appears to be a viable process for these materials. Minimal heat input limits differential thermal expansion, and the small weld pool allows precise control of alloy mixing in the fusion zone. Obtaining optimal weld performance requires accurate monitoring and control of absorbed laser power and weld focus position. In order to monitor the laser welding process, the authors have used a small computer controlled optical spectrometer to observe the emission from the weld plume. Absorbed laser power can be related to the temperature of the weld pool surface and the plume above the weld. Focus position relative to the joint can easily be seen by the proportion of elements from each material existing in the plume. This monitor has been used to observe and optimize the performance of butt and lap welds between dissimilar alloys, where each alloy contains at least one element not found in the other alloy. Results will be presented for a copper-steel butt joint and a lap weld between stainless and low alloy steels.

  8. Nd:YAG laser welding of coated sheet steel

    SciTech Connect

    Graham, M.P.; Kerr, H.W.; Weckman, D.C.

    1994-12-31

    Coated sheet steels are used extensively in the automotive industry for the fabrication of automobile body components; however, their reduced weldability by the traditional welding processes has led to numerous studies into the use of alternate process such as laser welding. In this paper, we present a modified joint geometry which allows high quality lap welds of coated sheet steels to be made by laser welding processes. Hot-dipped galvanized sheet (16 gauge), with a 60 g/m zinc coating was used in this study. A groove was created in the top sheet of a specimen pair by pressing piano wires of various diameters into the sheet. The specimens were clamped together in a lag-joint configuration such that they were in contacted only along the grove projection. A parametric study was conducted using the variables of welding speed, laser mean power (685 W, 1000 W and 1350 W), and grove size. Weld quality and weld pool dimensions were assessed using metallurgical cross-sections and image analysis techniques. Acceptable quality seam welds were produced in the galvanized sheet steel with both grove sizes when using 1000 W and 1350 W laser mean powers and a range of welding speeds. Results of the shear-tensile tests showed that high loads to failure, with failure occurring in the parent material, were predominately found in welds produced at speeds over 1.2 m/min and when using the high mean laser powers: 1000 W and 1350 W. A modified lap joint geometry, in which a groove is pre-placed in the top sheet of the lap-joint configuration, has been developed which permits laser welding of coated sheet steels. Good quality seam welds have been produced in 16 gauge galvanized sheet steels at speeds up to 2.7 m/min using a 2 kW CW Nd:YAG laser operating at 1350 W laser mean power. Weld quality was not affected by changes in groove size.

  9. A Study on the Welding Characteristics of Tailor Welded Blank Metal Sheets Using GTAW and Laser Welding

    NASA Astrophysics Data System (ADS)

    Thasanaraphan, Pornsak

    In this study, a computational and experimental effort was carried out to qualitatively understand the weld pool shape, distortion and residual stress for continuous laser welding and manual pulsed gas metal arc welding. For all the welding simulations given in this dissertation, a welding specific finite element package, SYSWELD, is used. This research focuses on the welding behavior observed in light-weight metal structures known as the tailor-welded blanks, TWBs. They are a combination of two or more metal sheets with different thickness and/or different materials that are welded together in a single plane prior to forming, e.g., stamping. They made from the low carbon steel. As laser welding experiment results show, the weld pool shape at the top and bottom surface, is strongly influenced by surface tension, giving it a characteristic hourglass shape. In order to simulate the hourglass shape, a new volumetric heat source model was developed to predict the transient temperature profile and weld pool shape, including the effect of surface tension. Tailor welded blanks with different thicknesses were examined in the laser welding process. All major physical phenomena such as thermal conduction, heat radiation and convection heat losses are taken into account in the model development as well as temperature-dependant thermal and mechanical material properties. The model is validated for the case of butt joint welding of cold rolled steel sheets. The results of the numerical simulations provide temperature distributions representing the shape of the molten pool, distortion and residual stress with varying laser beam power and welding speed. It is demonstrated that the finite element simulation results are in good agreement with the experiment results. This includes the weld pool shape and sheet metal distortion. While there is no experimental data to compare directly with residual stress results, the distorted shape provides an indirect measure of the welding residual stresses. The welding details such as clamping, butt joint configuration, material, sample thickness are similar for both the laser welding process and the manual pulsed GTAW process. Also as same metallurgical investigation, the weld pool shape displays wider full penetration without the effect of surface tension. The double ellipsoid volumetric heat source is applied in the finite element simulation to determine the temperature distribution, distortion and residual stress. The simulation results are compared with the experimental results and show good agreement. In addition, the results from the laser welding process are compared to the equivalent results from the GTAW process in the order to better understand the fundamental differences between these two welding processes.

  10. NAD kinase regulates the size of the NADPH pool and insulin secretion in pancreatic β-cells.

    PubMed

    Gray, Joshua P; Alavian, Kambiz N; Jonas, Elizabeth A; Heart, Emma A

    2012-07-15

    NADPH is an important component of the antioxidant defense system and a proposed mediator in glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells. An increase in the NADPH/NADP(+) ratio has been reported to occur within minutes following the rise in glucose concentration in β-cells. However, 30 min following the increase in glucose, the total NADPH pool also increases through a mechanism not yet characterized. NAD kinase (NADK) catalyzes the de novo formation of NADP(+) by phosphorylation of NAD(+). NAD kinases have been shown to be essential for redox regulation, oxidative stress defense, and survival in bacteria and yeast. However, studies on NADK in eukaryotic cells are scarce, and the function of this enzyme has not been described in β-cells. We employed INS-1 832/13 cells, an insulin-secreting rat β-cell line, and isolated rodent islets to investigate the role of NADK in β-cell metabolic pathways. Adenoviral-mediated overexpression of NADK resulted in a two- to threefold increase in the total NADPH pool and NADPH/NADP(+) ratio, suggesting that NADP(+) formed by the NADK-catalyzed reaction is rapidly reduced to NADPH via cytosolic reductases. This increase in the NADPH pool was accompanied by an increase in GSIS in NADK-overexpressing cells. Furthermore, NADK overexpression protected β-cells against oxidative damage by the redox cycling agent menadione and reversed menadione-mediated inhibition of GSIS. Knockdown of NADK via shRNA exerted the opposite effect on all these parameters. These data suggest that NADK kinase regulates intracellular redox and affects insulin secretion and oxidative defense in the β-cell. PMID:22550069

  11. Toward laser welding of glasses without optical contacting

    NASA Astrophysics Data System (ADS)

    Richter, S.; Zimmermann, F.; Eberhardt, R.; Tünnermann, A.; Nolte, S.

    2015-10-01

    The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to . The laser-induced welding seams exhibit a base area with a size of up to . Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about . Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.

  12. AMINO ACID SYNTHESIS IN PHOTO-SYNTHESIZING SPINACH CELLS. EFFECTS OF AMMONIA ON POOL SIZES AND RATES OF LABELING FROM {sup 14}CO{sub 2}

    SciTech Connect

    Larsen, Peder Olesen; Cornwell, Karen L.; Gee, Sherry L.; Bassham, James A.

    1980-10-01

    Isolated cells from leaves of Spinacea oleracea have been maintained in a state capable of high rates of photosynthetic CO{sub 2} fixation for more than 60 h. The incorporation of {sup 14}CO{sub 2} under saturating CO{sub 2} conditions into carbohydrates, carboxylic acids, and amino acids, and the effect of ammonia on this incorporation have been studied. Total incorporation, specific radioactivity and pool size have been determined as a function of time for most of the protein amino acids and for {gamma}-aminobutyric acid. the measurements of specific activities and of the approaches to {sup 14}C "saturation" of some amino acids indicate the presence and relative sizes of metabolically active and passive pools of these amino acids. Added ammonia decreased carbon fixation into carbohydrates and increased fixation into carboxylic acids and amino acids. Different amino acids were, however, affected in different and highly specific ways. Ammonia caused large stimulatory effects in incorporation of {sup 14}C into glutamine (a factor of 16), No effect or slight decreases were seen in glycine, serine, phenylalanine, and tyrosine labeling, In.the case of glutamate, {sup 14}C-labeling decreased, but specific activity increased. The production of labeled {gamma}-aminobutyric acid was virtually stopped by ammonia. The results indicate that added ammonia stimulates the reactions mediated by pyruvate kinase and phosphoenolpyruvate carboxylase, as seen with other plant systems. The data on the effects of added ammonia on total labeling, pool sizes, and specific activities of several amino acids provides a number of indications about the intracellular sites of principal synthesis from carbon skeletons of these amino acids and the selective nature of effects of increased intracellular ammonia concentration on such synthesis.

  13. Effects of CO2 perturbation on phosphorus pool sizes and uptake in a mesocosm experiment during a low productive summer season in the northern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Nausch, M.; Bach, L.; Czerny, J.; Goldstein, J.; Grossart, H. P.; Hellemann, D.; Hornick, T.; Achterberg, E.; Schulz, K.; Riebesell, U.

    2015-10-01

    Studies investigating the effect of increasing CO2 levels on the phosphorus cycle in natural waters are lacking although phosphorus often controls phytoplankton development in aquatic systems. The aim of our study was to analyze effects of elevated CO2 levels on phosphorus pool sizes and uptake. Therefore, we conducted a CO2-manipulation mesocosm experiment in the Storfjärden (western Gulf of Finland, Baltic Sea) in summer 2012. We compared the phosphorus dynamics in different mesocosm treatments but also studied them outside the mesocosms in the surrounding fjord water. In the mesocosms as well as in surface waters of Storfjärden, dissolved organic phosphorus (DOP) concentrations of 0.26 ± 0.03 and 0.23 ± 0.04 μmol L-1, respectively, formed the main fraction of the total P-pool (TP), whereas phosphate (PO4) constituted the lowest fraction with mean concentration of 0.15 ± 0.02 μmol L-1 and 0.17 ± 0.07 μmol L-1 in the mesocosms and in the fjord, respectively. Uptake of PO4 ranged between 0.6 and 3.9 nmol L-1 h-1 of which ~ 86 % (mesocosms) and ~ 72 % (fjord) were realized by the size fraction < 3 μm. Adenosine triphosphate (ATP) uptake revealed that additional P was supplied from organic compounds accounting for 25-27 % of P provided by PO4 only. CO2 additions did not cause significant changes in phosphorus (P) pool sizes, DOP composition, and uptake of PO4 and ATP when the whole study period was taken into account. About 18 % of PO4 was transformed into POP, whereby the major proportion (~ 82 %) was converted into DOP suggesting that the conversion of PO4 to DOP is the main pathway of the PO4 turnover. We observed that significant relationships (e.g., between POP and Chl a) in the untreated mesocosms vanished under increased fCO2 conditions. Consequently, it can be hypothesized that the relationship between POP formation and phytoplankton growth changed under elevated CO2 conditions. Significant short-term effects were observed for PO4 and particulate organic phosphorus (POP) pool sizes in CO2 treatments > 1000 μatm during periods when phytoplankton started to grow.

  14. Tailoring weld geometry and composition in fusion welding through convective mass transfer calculations

    NASA Astrophysics Data System (ADS)

    Mishra, Saurabh

    In the past two decades, numerical transport phenomena based models have provided useful information about the thermal cycles and weld pool geometry. However, no effort has been made to apply these concepts to design weld consumables, to study the weld bead shape on welding two plates with different sulfur contents and to tailor weld pool geometry to specified dimensions. The present research focuses on these unexplored areas. The research proposed here seeks to develop a quantitative understanding of mass transport during fusion welding, with special emphasis on the role of surface active elements and the effect of solute distribution on weld defects like liquation cracking. A comprehensive model, incorporating numerical three-dimensional calculations of temperature and velocity fields and solute distribution in the weld pool is developed for the proposed quantitative study. The study identifies the factors that affect the weld pool geometry on joining two plates with different sulfur contents, and predicts the susceptibility of an aluminum-copper alloy GMA weld to liquation cracking. The specific contributions of the present thesis research include (i) development of a numerical solute transport model for fusion welding; (ii) improving the reliability of output of the numerical model; (iii) achieving computational efficiency and economy by developing a neural network trained by data generated by the numerical model; (iv) creating a bi-directional methodology where a target weld attribute like weld pool geometry can be attained via multiple combinations of input process parameters like arc current, voltage and welding speed; (v) calculating sulfur distribution during gas tungsten arc welding of stainless steel plates with different sulfur contents and predicting the arc welding of aluminum-copper alloys by incorporating the heat and mass addition from filler metal and a non-equilibrium solidification model, and using the copper content of the mushy zone to predict the occurrence of liquation cracking.

  15. EB welding of launch vehicles

    NASA Astrophysics Data System (ADS)

    Szabo, Attila

    While large structural components can be electron beam (EB) welded, equipment and operating costs increase with the requisite vacuum chamber's size. Attention is presently given to cost-effective ways of EB welding launch-vehicle assemblies without compromise of weld quality in such alloys as 2219, 2090, Weldalite, and HP9-4-30/20. Weld strengths at both room and cryogenic temperatures that were 50 percent higher than those obtainable for such materials with arc welding have been demonstrated. Fracture toughnesses were also 40-50 percent higher than arc-welded values. Attention is given to EB joint fit-up allowables for 2219-T87 Al alloy.

  16. A mutant allele of the Swi/Snf member BAF250a determines the pool size of fetal liver hemopoietic stem cell populations

    PubMed Central

    Krosl, Jana; Mamo, Aline; Chagraoui, Jalila; Wilhelm, Brian T.; Girard, Simon; Louis, Isabelle; Lessard, Julie; Perreault, Claude

    2010-01-01

    It is believed that hemopoietic stem cells (HSC), which colonize the fetal liver (FL) rapidly, expand to establish a supply of HSCs adequate for maintenance of hemopoiesis throughout life. Accordingly, FL HSCs are actively cycling as opposed to their predominantly quiescent bone marrow counterparts, suggesting that the FL microenvironment provides unique signals that support HSC proliferation and self-renewal. We now report the generation and characterization of mice with a mutant allele of Baf250a lacking exons 2 and 3. Baf250aE2E3/E2E3 mice are viable until E19.5, but do not survive beyond birth. Most interestingly, FL HSC numbers are markedly higher in these mice than in control littermates, thus raising the possibility that Baf250a determines the HSC pool size in vivo. Limit dilution experiments indicate that the activity of Baf250aE2E3/E2E3 HSC is equivalent to that of the wild-type counterparts. The Baf250aE2E3/E2E3 FL-derived stroma, in contrast, exhibits a hemopoiesis-supporting potential superior to the developmentally matched controls. To our knowledge, this demonstration is the first that a mechanism operating in a cell nonautonomous manner canexpand the pool size of the fetal HSC populations. PMID:20522713

  17. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface tension of the liquid metal. For a detachment the initial kinetic energy of the weld pool with respect to the plate has to exceed the energy to form the extra surface required for the detachment of the pool. The difficulty is in transferring the energy from the point of impact through the plate and sample to the cut edge. It is likely that not all of the kinetic energy is available for detaching the pool; some may be sequestered in weld pool oscillations. The coefficient of restitution for the collision will be lower than one if irreversible deformation, for example plastic flow deformation, takes place during the collision. Thus determining the amount of energy from an impact that actually reaches the molten metal droplet is critical. Various molten metal detachment scenarios were tested experimentally in an enclosed vacuum chamber using the Ukrainian Universal Hand Tool, an electron beam welder designed for space welding. The experimental testing was performed in a 4 ft. X 4 ft. vacuum chamber at Marshall Space Flight Center, evacuated to vacuum levels of at least 50 microTorr, and also some welding garment material was utilized to observe the effect of the molten metal detachments on the material. A "carillon" apparatus consisting of four pendulum hammer strikers, each weighing approximately 3.65 lbs, raised to predetermined specific heights was used to apply an impact force to the weld sample/plate during electron beam welding and cutting exercises. The strikers were released by switching on an electric motor to rotate a pin holding wires retaining the strikers at desired heights. The specimens were suspended so as to be free to respond to the blows with a sudden velocity increment. The specimens were mounted on a hinged plate for minimizing effective mass with the option to fasten it down so as to raise its effective mass closer to that anticipated for an actual space welding scenario. Measurements were made of the impact energy and the horizontal fling distances of the detached metal drops. It was not particularly easy to generate the detachments for this experiment. This document presents the details of the theoretical modeling effort and a summary of the experimental effort to measure molten metal drop detachments from terrestrial electron beam welding in the enclosed vacuum chamber. The results of the experimental effort have shown that molten metal detachments can occur from the sample/weld plate only if a sufficiently large impact force is applied to the weld plate. A "weld pool detachment parameter" was determined to indicate whether detachment would occur. Detachment can be either full or partial (dripping), Partial detachment means that the weld pool detached from one side of the liquid-solid boundary so as to leave a hole at the puddle site but remained attached over part of the liquid-solid boundary and dripped down the plate with no fully detached material detected. Full detachment, however, does not necessarily mean that the whole pool fully detached; in some cases only a smaller portion of the pool detached, the remainder dripping down the plate. The weld pool detachment parameter according to theory and according to the empirical data allows a determination of whether full detachments might occur. Theoretical calculations indicated titanium alloy would be the most difficult from which to detach molten metal droplets followed by stainless steel and then by aluminum. The experimental results were for the most part consistent with the theoretical analysis and predictions. The above theory is applicable to other situations as desired for assessing the potential for molten metal detachments.

  18. Fast, Nonspattering Inert-Gas Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Proposed welding technique combines best features of metal (other than tungsten)/inert-gas welding, plasma arc welding, and tungsten/inert-gas welding. Advantages include: wire fed to weld joint preheated, therefore fed at high speed without spattering; high-frequency energy does not have to be supplied to workpiece to initiate welding; size of arc gap not critical, power-supply control circuit adjusts voltage across gap to compensate for changes; only low gas-flow rate needed; welding electrode replaced easily as prefabricated assembly; external wire-feeding manipulator not needed; and welding process relatively forgiving of operator error.

  19. Computerized radiographic sensing and control of an arc welding process

    SciTech Connect

    Rokhlin, S.I.; Guu, A.C. . Dept. of Welding Engineering)

    1990-03-01

    This paper summarizes an effort in which real-time radiography was implemented for on-line arc welding process study and control. X-ray penetrating radiation was used for volume observation in the welding pool and the heat-affected zone during the weld process. The advantages of such a technique are online detection and monitoring of defect formation in the weld and capability to study metal fusion and filler metal/base metal interaction and metal transfer in the welding pool. This technique may also be used for postservice, real-time remote testing of weld quality.

  20. Swimming Pool Safety

    MedlinePlus

    ... Spread the Word Shop AAP Find a Pediatrician Safety & Prevention Immunizations All Around At Home At Play ... Español Text Size Email Print Share Swimming Pool Safety Page Content ​What is the best way to ...

  1. Biology Pool

    ERIC Educational Resources Information Center

    Keller, M.

    1975-01-01

    Describes the conversion of an old swimming pool on the school grounds into a biology pool for the creation of a pond community which became both a useful teaching resource and an attractive part of the school environment. (BR)

  2. Welding on fluid filled or pressurized pipelines: Transient 3D analysis of temperature, microstructure, stress and strain

    SciTech Connect

    Goldak, J.A. )

    1991-11-04

    It is frequently necessary to add new branch connections to existing pipelines; two general types of welds are used: circumferential fillet welds around ends of reinforcing sleeves, and groove welds completely around the joint. Successful hot-tap welds (welds made on pressurized pipelines) must avoid two problems: too high a peak temperature on inner surface, resulting in local rupture or burnthrough, and too high cooling rates caused by the flowing gas/liquid inside the pipeline, resulting in hydrogen-assisted cracking in heat-affected zone (HAZ). This report presents results of a feasibility study of the 3D finite element thermal and stress analysis of welding on fluid-filled, pressurized pipelines. Peak inner-surface temperatures, HAZ cooling rates at 540 C, HAZ hardness and microstructures are presented. Ten different welds were considered; conditions examined comprised branch or sleeve welds on various pipe diameters and thicknesses, on methane and propane filled pipelines. Better data on reinforcement profiles and weld pool sizes are needed. HAZ cooling rates at 540 C computed for methane filled pipelines are somewhat higher than Kiefner model predictions; those for propane filled pipelines are in agreement with experiment.

  3. Development of a Three-Dimensional Heat-Transfer Model for the Gas Tungsten Arc Welding Process Using the Finite Element Method Coupled with a Genetic Algorithm Based Identification of Uncertain Input Parameters

    NASA Astrophysics Data System (ADS)

    Bag, S.; de, A.

    2008-11-01

    An accurate estimation of the temperature field in weld pool and its surrounding area is important for a priori determination of the weld-pool dimensions and the weld thermal cycles. A finite element based three-dimensional (3-D) quasi-steady heat-transfer model is developed in the present work to compute temperature field in gas tungsten arc welding (GTAW) process. The numerical model considers temperature-dependent material properties and latent heat of melting and solidification. A novelty of the numerical model is that the welding heat source is considered in the form of an adaptive volumetric heat source that confirms to the size and the shape of the weld pool. The need to predefine the dimensions of the volumetric heat source is thus overcome. The numerical model is further integrated with a parent-centric recombination (PCX) operated generalized generation gap (G3) model based genetic algorithm to identify the magnitudes of process efficiency and arc radius that are usually unknown but required for the accurate estimation of the net heat input into the workpiece. The complete numerical model and the genetic algorithm based optimization code are developed indigenously using an Intel Fortran Compiler. The integrated model is validated further with a number of experimentally measured weld dimensions in GTA-welded samples in stainless steels.

  4. Investigation of molten pool oscillation during GMAW-P process based on a 3D model

    NASA Astrophysics Data System (ADS)

    Wang, L. L.; Lu, F. G.; Cui, H. C.; Tang, X. H.

    2014-11-01

    In order to better reveal the oscillation mechanism of the pulsed gas metal arc welding (GMAW-P) process due to an alternately varied welding current, arc plasma and molten pool oscillation were simulated through a self-consistent three-dimensional model. Based on an experimental analysis of the dynamic variation of the arc plasma and molten pool captured by a high-speed camera, the model was validated by comparison of the measured and predicted results. The calculated results showed that arc pressure was the key factor causing the molten pool to oscillate. The variation in arc size and temperature from peak time to base time resulted in a great difference in the heat input and arc pressure acting on the molten pool. The surface deformation of the molten pool due to the varying degrees of arc pressure induced alternate displacement and backflow in the molten metal. The periodic iteration of deeper and shallower surface deformation, drain and backflow of molten metal caused the molten pool to oscillate at a certain frequency. In this condition, the arc pressure at the peak time is more than six times higher than that at the base time, and the maximum surface depression is 1.4 mm and 0.6 mm, respectively, for peak time and base time.

  5. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    SciTech Connect

    Murray, P.E.; Smartt, H.B.; Johnson, J.A.

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  6. Remote welding equipment for TPX

    SciTech Connect

    Silke, G.W.; Junge, R.

    1995-12-31

    Remote welding equipment and techniques are necessary for maintenance of the Tokamak Physics Experiment (TPX) Plasma Facing Components (PFCs). The processes identified for this application includes inside diameter (i.d.) and outside diameter (o.d.) Gas Tungsten Arc (GTA) welding of titanium and stainless steel alloys. Welding equipment developed for this application includes some unique features due to the specialized environment of the TPX vessel. Remote features of this equipment must include the ability to acquire and align the parts being welded, perform all welding operations and visually inspect the weld area. Designs for weld heads require the integration of industry proven hardware with the special features include compact size, remote manipulation, remote clamping and alignment, remote vision, full inert gas coverage, arc voltage control, wire feed, programmable weld schedules and failure recovery.

  7. Welding Research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Welding fabrication and welding processes were studied. The following research projects are reported: (1) welding fabrication; (2) residual stresses and distortion in structural weldments in high strength steels; (3) improvement of reliability of welding by in process sensing and control (development of smart welding machines for girth welding of pipes); (4) development of fully automated and integrated welding systems for marine applications; (5) advancement of welding technology; (6) research on metal working by high power laser (7) flux development; (8) heat and fluid flow; (9) mechanical properties developments.

  8. Evaluation of weld porosity in laser beam seam welds: optimizing continuous wave and square wave modulated processes.

    SciTech Connect

    Ellison, Chad M.; Perricone, Matthew; Faraone, Kevin M. (Honeywell FM&T, Kansas City, MO); Roach, Robert Allen; Norris, Jerome T.

    2007-02-01

    Nd:YAG laser joining is a high energy density (HED) process that can produce high-speed, low-heat input welds with a high depth-to-width aspect ratio. This is optimized by formation of a ''keyhole'' in the weld pool resulting from high vapor pressures associated with laser interaction with the metallic substrate. It is generally accepted that pores form in HED welds due to the instability and frequent collapse of the keyhole. In order to maintain an open keyhole, weld pool forces must be balanced such that vapor pressure and weld pool inertia forces are in equilibrium. Travel speed and laser beam power largely control the way these forces are balanced, as well as welding mode (Continuous Wave or Square Wave) and shielding gas type. A study into the phenomenon of weld pool porosity in 304L stainless steel was conducted to better understand and predict how welding parameters impact the weld pool dynamics that lead to pore formation. This work is intended to aid in development and verification of a finite element computer model of weld pool fluid flow dynamics being developed in parallel efforts and assist in weld development activities for the W76 and future RRW programs.

  9. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    NASA Astrophysics Data System (ADS)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  10. Swimming Pool Guidelines. 1997 Edition.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau.

    The state of Alaska, which provides for swimming pools as an eligible project cost in projects approved for state aid, presents guidelines to assist school districts in planning swimming pools, and provides standards for swimming pool size based on the planned educational program and student population. The guidelines are intended to assist school…

  11. Nitrogen in plasmas and steel weld metal

    NASA Astrophysics Data System (ADS)

    Palmer, Todd Allen

    Nitrogen concentrations, well above those predicted by Sieverts' Law, are observed during the arc welding of iron and steel. Several models, which take into account the absorption of monatomic nitrogen and a competition between nitrogen absorption and desorption, have been developed. None, though, provides a means for accurately calculating the nitrogen concentration in a steel weldment, as a function of the welding variables. The aim of this work is therefore to develop a comprehensive model to accurately predict the nitrogen concentration in the weld pool and validate the model with experimental data. Transport phenomena, plasma physics, and thermodynamic calculations have been combined to produce realistic calculations of the nitrogen concentration in the weld metal. The computed residual nitrogen concentrations are affected by complex factors, including the amount of nitrogen in the feed gas, the electron temperature distribution above the weld pool, and the nature of the fluid flow in the weld pool. Each of these factors has been taken into consideration here. Of primary importance in the calculation of the nitrogen concentration is the effect of desorption of dissolved nitrogen from the weld pool via bubble formation. Based on a comparison of modeling and experimental results, it is found that a supersaturation of nitrogen in the liquid metal 50 to 100% greater than the equilibrium nitrogen solubility with one atmosphere of diatomic nitrogen at the weld pool surface is required for bubbles to nucleate. These calculated values have been compared with residual nitrogen concentrations measured for various welding conditions. Experimental nitrogen concentrations fall between 400 and 650 ppm, and the manner in which the nitrogen concentration changes with the nitrogen partial pressure in the feed gas is affected by the changes in the welding speed. Model calculations compare favorably with these experimental results. In total, therefore, this work represents the first comprehensive effort to calculate the nitrogen concentration in iron during GTA welding as a function of welding variables and enhances the understanding of plasma-metal interactions.

  12. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    SciTech Connect

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for PARENT round-robin tests.

  13. Study made to establish parameters and limitations of explosive welding

    NASA Technical Reports Server (NTRS)

    Polhemus, F. C.

    1967-01-01

    It is theorized that metal jetting must be present for welding to occur, therefore an explosive weld interface may indicate the relation between the metal jet velocity and shock wave velocity in welding. Parameters for effecting explosive welding in patches of 3 or 4 inches in diameter were established, and found applicable to explosive welding of patches of various sizes.

  14. Electrode formulation to reduce weld metal hydrogen and porosity

    SciTech Connect

    Liu, S.; Olson, D.L.; Ibarra, S.

    1994-12-31

    Residual weld metal hydrogen is a major concern in high strength steel welding, especially when the weld is performed under high cooling rate conditions. In the case of underwater wet welding, weld metal porosity is also of importance because of the water environment. The control of both problems can be achieved by means of pyrochemical reactions in the weld pool. The hydrogen-oxygen reaction and carbon-oxygen reaction are fundamental in the control of residual hydrogen in the weld metal and the amount of gas pores entrapped. A simple model was proposed to estimate weld metal residual hydrogen content by monitoring the weld pool deoxidation reactions. Potent deoxidizers such as aluminum will first react with oxygen in the liquid weld pool, followed by other elements present such as silicon and manganese. Carbon and hydrogen will be the last ones to react with oxygen prior to the iron atoms. The Ellingham-Richardson diagram frequently applied in describing steel and iron making processes was used in the modeling. Following the sequence of deoxidation, the chemical make-up of the gas pores and the amount of each chemical species in the pores could be estimated. Carbon monoxide and hydrogen were determined to be the major components in the weld pores. To minimize the amount of weld metal porosity and residual hydrogen content, specially designed consumables that will control the oxygen potential of the weld pool must be developed.

  15. Numerical analysis of fume formation mechanism in arc welding

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Zeniya, Tasuku; Yamamoto, Kentaro; Tanaka, Manabu; Nakata, Kazuhiro; Murphy, Anthony B.; Yamamoto, Eri; Yamazaki, Kei; Suzuki, Keiichi

    2010-11-01

    In order to clarify the fume formation mechanism in arc welding, a quantitative investigation based on the knowledge of interaction among the electrode, arc and weld pool is indispensable. A fume formation model consisting of a heterogeneous condensation model, a homogeneous nucleation model and a coagulation model has been developed and coupled with the GTA or GMA welding model. A series of processes from evaporation of metal vapour to fume formation from the metal vapour was totally investigated by employing this simulation model. The aim of this paper is to visualize the fume formation process and clarify the fume formation mechanism theoretically through a numerical analysis. Furthermore, the reliability of the simulation model was also evaluated through a comparison of the simulation result with the experimental result. As a result, it was found that the size of the secondary particles consisting of small particles with a size of several tens of nanometres reached 300 nm at maximum and the secondary particle was in a U-shaped chain form in helium GTA welding. Furthermore, it was also clarified that most part of the fume was produced in the downstream region of the arc originating from the metal vapour evaporated mainly from the droplet in argon GMA welding. The fume was constituted by particles with a size of several tens of nanometres and had similar characteristics to that of GTA welding. On the other hand, if the metal transfer becomes unstable and the metal vapour near the droplet diffuses directly towards the surroundings of the arc not getting into the plasma flow, the size of the particles reaches several hundred nanometres.

  16. The keyhole region in VPPA welds

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1988-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. The effects of microsegregation and transient weld stress on macrosegregation in the weld tool are examined. In addition the electrical character of straight and reverse polarity portions of the arc cycle were characterized. The results of the former study indicate that alloy 2219 is weldable because large liquid volumes are available during latter stages of weld solidification. Strains in the pool region, acting in conjunction with weld microsegregation can produce macrosegregation great enough to produce radiographic contrast effects in welds. Mechanisms of surface copper enrichment were identified. The latter study has demonstrated that increased heat is delivered to workpieces if the reverse polarity proportion of the weld cycle is increased. Current in the straight polarity portion of the welding cycle increased as the reverse cycle proportion increased. Voltage during reverse polarity segments is large.

  17. Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis.

    PubMed

    Noh, Hyuna; Park, Soochul

    2016-02-29

    Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(α)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina- particularly the nasal and temporal regions-is markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina. PMID:26674965

  18. Over-Expression of Ephrin-A5 in Mice Results in Decreasing the Size of Progenitor Pool through Inducing Apoptosis

    PubMed Central

    Noh, Hyuna; Park, Soochul

    2016-01-01

    Eph receptors and their ligands, ephrins, mediate cell-to-cell contacts in a specific brain region and their bidirectional signaling is implicated in the regulation of apoptosis during early brain development. In this report, we used the alpha(?)-Cre transgenic line to induce ephrin-A5 over-expression in the distal region of the neural retina. Using this double transgenic embryo, we show that the over-expression of ephrin-A5 was responsible for inducing massive apoptosis in both the nasal and temporal retinas. In addition, the number of differentiated retinal neurons with the exception of the bipolar neuron was significantly reduced, whereas the laminar organization of the mature retina remained intact. Consistent with this finding, an analysis of the mature retina revealed that the size of the whole retina particularly the nasal and temporal regionsis markedly reduced. These results strongly suggest that the level of ephrin-A5 expression plays a role in the regulation of the size of the retinal progenitor pool in the neural retina. PMID:26674965

  19. Pool Purification

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Caribbean Clear, Inc. used NASA's silver ion technology as a basis for its automatic pool purifier. System offers alternative approach to conventional purification chemicals. Caribbean Clear's principal markets are swimming pool owners who want to eliminate chlorine and bromine. Purifiers in Caribbean Clear System are same silver ions used in Apollo System to kill bacteria, plus copper ions to kill algae. They produce spa or pool water that exceeds EPA Standards for drinking water.

  20. Welding Curriculum.

    ERIC Educational Resources Information Center

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  1. Welding I.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding I, a performance-based course offered at the Community College of Allegheny County to introduce students to shielded arc welding procedures involving stringer beads, butt welds, and lap welds. After introductory material outlining course objectives,…

  2. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society…

  3. Welding IV.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding IV, a competency-based course in advanced arc welding offered at the Community College of Allegheny County to provide students with proficiency in: (1) single vee groove welding using code specifications established by the American Welding Society

  4. The mechanism of penetration increase in A-TIG welding

    NASA Astrophysics Data System (ADS)

    Zhang, Rui-Hua; Pan, Ji-Luan; Katayama, Seiji

    2011-06-01

    The mechanism of the increasing of A-TIG welding penetration is studied by using the activating flux we developed for stainless steel. The effect of flux on the flow and temperature fields of weld pool is simulated by the PHOENICS software. It shows that without flux, the fluid flow will be outward along the surface of the weld pool and then down, resulting in a flatter weld pool shape. With the flux, the oxygen, which changes the temperature dependence of surface tension grads from a negative value to a positive value, can cause significant changes on the weld penetration. Fluid flow will be inward along the surface of the weld pool toward the center and then down. This fluid flow pattern efficiently transfers heat to the weld root and produces a relatively deep and narrow weld. This change is the main cause of penetration increase. Moreover, arc construction can cause the weld width to become narrower and the penetration to become deeper, but this is not the main cause of penetration increase. The effects of flux on fluid flow of the weld pool surface and arc profiles were observed in conventional TIG welding and in A-TIG welding by using high-speed video camera. The fluid flow behavior was visualized in realtime scale by micro focused X-ray transmission video observation system. The result indicated that stronger inward fluid flow patterns leading to weld beads with narrower width and deeper penetration could be apparently identified in the case of A-TIG welding. The flux could change the direction of fluid flow in welding pool. It has a good agreement with the simulation results.

  5. Contribution to study of heat transfer and fluid flow during GTA welding

    NASA Astrophysics Data System (ADS)

    Koudadje, Koffi; Delalondre, Clarisse; Médale, Marc; Carpreau, Jean-Michel

    2014-06-01

    In this paper, the effect of surface-active elements especially sulfur on weld pool shape has been reported. In our contribution, we analyze the influence of the weld pool chemical composition (Mn, Si, …), welding energy, sulphur gradient and electromagnetic effect. The computed results are in good agreement with the corresponding experimental results, indicating the validity of the modeling approach.

  6. Corrosion and Mechanical Properties of Austenic Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Kuznetsov, M. A.; Zernin, E. A.; Danilov, V. I.; Kolmogorov, D. E.; Zoubenko, L. N.

    2015-09-01

    This paper presents results of experiments on how tungsten, molybdenum and aluminum oxyhydroxide nanopowders, imbedded into the weld pool, affect corrosion resistance and mechanical properties of welded joints. It is shown that nanopowders have a significant effect on the intergranular corrosion of the weld.

  7. Probing heat transfer, fluid flow and microstructural evolution during fusion welding of alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Wei

    The composition, geometry, structure and properties of the welded joints are affected by the various physical processes that take place during fusion welding. Understanding these processes has been an important goal in the contemporary welding research to achieve structurally sound and reliable welds. In the present thesis research, several important physical processes including the heat transfer, fluid flow and microstructural evolution in fusion welding were modeled based on the fundamentals of transport phenomena and phase transformation theory. The heat transfer and fluid flow calculation is focused on the predictions of the liquid metal convection in the weld pool, the temperature distribution in the entire weldment, and the shape and size of the fusion zone (FZ) and heat affected zone (HAZ). The modeling of microstructural evolution is focused on the quantitative understanding of phase transformation kinetics during welding of several important alloys under both low and high heating and cooling conditions. Three numerical models were developed in the present thesis work: (1) a three-dimensional heat transfer and free surface flow model for the gas metal arc (GMA) fillet welding considering the complex weld joint geometry, (2) a phase transformation model based on the Johnson-Mehl-Avrami (JMA) theory, and (3) a one-dimensional numerical diffusion model considering multiple moving interfaces. To check the capabilities of the developed models, several cases were investigated, in which the predictions from the models were compared with the experimental results. The cases studied are the follows. For the modeling of heat transfer and fluid flow, the welding processes studied included gas tungsten arc (GTA) linear welding, GTA transient spot welding, and GMA fillet welding. The calculated weldment geometry and thermal cycles was validated against the experimental data under various welding conditions. For the modeling of microstructural evolution, the welded materials investigated included AISI 1005 low-carbon steel, 1045 medium-carbon steel, 2205 duplex stainless steel (DSS) and Ti-6Al-4V alloy. The calculated phase transformation kinetics were compared with the experimental results obtained using an x-ray diffraction technique by Dr. John W. Elmer of Lawrence Livermore National Laboratory. (Abstract shortened by UMI.)

  8. Automatic welding of stainless steel tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    The use of automatic welding for making girth welds in stainless steel tubing was investigated as well as the reduction in fabrication costs resulting from the elimination of radiographic inspection. Test methodology, materials, and techniques are discussed, and data sheets for individual tests are included. Process variables studied include welding amperes, revolutions per minute, and shielding gas flow. Strip chart recordings, as a definitive method of insuring weld quality, are studied. Test results, determined by both radiographic and visual inspection, are presented and indicate that once optimum welding procedures for specific sizes of tubing are established, and the welding machine operations are certified, then the automatic tube welding process produces good quality welds repeatedly, with a high degree of reliability. Revised specifications for welding tubing using the automatic process and weld visual inspection requirements at the Kennedy Space Center are enumerated.

  9. Joint tracking and adaptive robotic welding using vision sensing of the weld joint geometry

    SciTech Connect

    Agapakis, J.E.; Katz, J.M.; Koifman, M.; Epstein, G.N.; Friedman, J.M.; Eyring, D.O.; Rutishauser, H.J.

    1986-11-01

    An approach to the vision-guidance of welding robots and the in-process adjustment of welding conditions is presented. The implementation of a complete vision-guided adaptive robotic welding system is described. The vision-guided adaptive welding system described here has been used to track and weld a wide variety of test and production parts ranging in size from 1.6-mm (1/16-in.) sheet steel to 19.1-mm (3/4-in.) steel plate. Both conventional joint types, including square butt, lap, and V-groove, and special types, such as a multipass square butt submerged arc weld with pre-welded root passes or the axle joints were welded. Various welding procedures, such as GMA welding with a variety of shielding gases and submerged arc welding, have also been used.

  10. Cutting edge: adaptive versus innate receptor signals selectively control the pool sizes of murine IFN-γ- or IL-17-producing γδ T cells upon infection.

    PubMed

    Ribot, Julie C; Chaves-Ferreira, Miguel; d'Orey, Francisco; Wencker, Mélanie; Gonçalves-Sousa, Natacha; Decalf, Jérémie; Simas, João P; Hayday, Adrian C; Silva-Santos, Bruno

    2010-12-01

    γδ T lymphocytes are commonly viewed as embracing properties of both adaptive and innate immunity. Contributing to this is their responsiveness to pathogen products, either with or without the involvement of the TCR and its coreceptors. This study clarifies this paradoxical behavior by showing that these two modes of responsiveness are the properties of two discrete sets of murine lymphoid γδ T cells. Thus, MyD88 deficiency severely impaired the response to malaria infection of CD27((-)), IL-17A-producing γδ T cells, but not of IFN-γ-producing γδ cells. Instead, the latter compartment was severely contracted by ablating CD27, which synergizes with TCRγδ in the induction of antiapoptotic mediators and cell cycle-promoting genes in CD27((+)), IFN-γ-secreting γδ T cells. Hence, innate versus adaptive receptors differentially control the peripheral pool sizes of discrete proinflammatory γδ T cell subsets during immune responses to infection. PMID:21037088

  11. The Size, Strength, and Rainfall Production of Convective Systems Over Southern Mexico, Central America, and the East Pacific Warm Pool During Active Versus Break Rainfall Periods

    NASA Astrophysics Data System (ADS)

    Kerns, B. W.; Liu, C.; Zipser, E. J.

    2007-05-01

    The annual cycle of rainfall over much of southern Mexico, Central America, and parts of the east Pacific warm pool features maxima in June and September-October. The relative break in rainfall, usually during July and August, is known as the Mid Summer Drought. This study focuses on the variations in the properties of the individual convective systems between active and break periods, which may be influencing the rainfall variations. The 3B42 product is used to determine when the active and break periods occur each year for 1998-2006. Then, the University of Utah TRMM Precipitation Feature Database is used to determine the size, intensity, and rainfall production of the individual convective systems during active and break periods. The statistics are compared for the active versus the break periods for each subregion. Preliminary results show that, similar to the Indian and Australian monsoons, active periods are characterized by large but relatively weak convective systems and break periods by smaller but more intense systems.

  12. GLD-4-Mediated Translational Activation Regulates the Size of the Proliferative Germ Cell Pool in the Adult C. elegans Germ Line

    PubMed Central

    Millonigg, Sophia; Eckmann, Christian R.

    2014-01-01

    To avoid organ dysfunction as a consequence of tissue diminution or tumorous growth, a tight balance between cell proliferation and differentiation is maintained in metazoans. However, cell-intrinsic gene expression mechanisms controlling adult tissue homeostasis remain poorly understood. By focusing on the adult Caenorhabditis elegans reproductive tissue, we show that translational activation of mRNAs is a fundamental mechanism to maintain tissue homeostasis. Our genetic experiments identified the Trf4/5-type cytoplasmic poly(A) polymerase (cytoPAP) GLD-4 and its enzymatic activator GLS-1 to perform a dual role in regulating the size of the proliferative zone. Consistent with a ubiquitous expression of GLD-4 cytoPAP in proliferative germ cells, its genetic activity is required to maintain a robust proliferative adult germ cell pool, presumably by regulating many mRNA targets encoding proliferation-promoting factors. Based on translational reporters and endogenous protein expression analyses, we found that gld-4 activity promotes GLP-1/Notch receptor expression, an essential factor of continued germ cell proliferation. RNA-protein interaction assays documented also a physical association of the GLD-4/GLS-1 cytoPAP complex with glp-1 mRNA, and ribosomal fractionation studies established that GLD-4 cytoPAP activity facilitates translational efficiency of glp-1 mRNA. Moreover, we found that in proliferative cells the differentiation-promoting factor, GLD-2 cytoPAP, is translationally repressed by the stem cell factor and PUF-type RNA-binding protein, FBF. This suggests that cytoPAP-mediated translational activation of proliferation-promoting factors, paired with PUF-mediated translational repression of differentiation factors, forms a translational control circuit that expands the proliferative germ cell pool. Our additional genetic experiments uncovered that the GLD-4/GLS-1 cytoPAP complex promotes also differentiation, forming a redundant translational circuit with GLD-2 cytoPAP and the translational repressor GLD-1 to restrict proliferation. Together with previous findings, our combined data reveals two interconnected translational activation/repression circuitries of broadly conserved RNA regulators that maintain the balance between adult germ cell proliferation and differentiation. PMID:25254367

  13. Advanced Welding Concepts

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  14. Thermal and Fluid Flow Characteristics and their Relationships with Porosity in Laser Welding of AA5083

    NASA Astrophysics Data System (ADS)

    Chang, B.; Allen, C.; Blackburn, J.; Hilton, P.

    A computational fluid dynamics (CFD) model was developed to numerically analyse the temperature and fluid flow during laser butt welding, and a heat source model was proposed, which, with adjustment, was suitable for both partial and full penetration welds over a wide range of conditions. The models were then used to study the laser welding of a 4 mm thickness aluminum alloy (AA5083), and the results predicted were analysed to better understand the formation of porosity in aluminium laser welds. The flow patterns predicted in the melt pool are essentially the same for various welding parameters: vortices can be found close to the surfaces of the weld pool (top surface only for partial penetration; both top and bottom surfaces for full penetration). The dimensions of the weld pool are predicted to increase with increasing laser power and decreasing welding speed, and the maximum velocity to increase with increasing laser power and welding speed. In partial penetration cases, there are no simple relations between porosity levels and laser power and welding speed. A sharp decrease in porosity content, when changing from partial to full penetration, was thought to be a result of an extra driving force from the outwards fluid flow at the weld pool bottom for the pores to escape out of the melt pool. In full penetration cases, the lower porosity content when using higher laser power and/or lower welding speed was attributed to the longer time for pores to escape before the weld pool solidifies.

  15. Simulation of temperature fields in arc and beam welding

    NASA Astrophysics Data System (ADS)

    Mahrle, A.; Schmidt, J.; Weiss, D.

    Heat and mass transfer in arc and beam welding is considered. The main objectives are analysis of the heat transfer in the weld pool and the workpiece and to demonstrate how computer simulation can be used as a tool to predict the temperature distribution as the determining element of the heat effects of welding. Simulation results of two particular welding processes are compared and validated with measurements.

  16. Size Distribution and Estimated Respiratory Deposition of Total Chromium, Hexavalent Chromium, Manganese, and Nickel in Gas Metal Arc Welding Fume Aerosols

    PubMed Central

    Cena, Lorenzo G.; Chisholm, William P.; Keane, Michael J.; Cumpston, Amy; Chen, Bean T.

    2016-01-01

    A laboratory study was conducted to determine the mass of total Cr, Cr(VI), Mn, and Ni in 15 size fractions for mild and stainless steel gas-metal arc welding (GMAW) fumes. Samples were collected using a nano multi orifice uniform deposition impactor (MOUDI) with polyvinyl chloride filters on each stage. The filters were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and ion chromatography. Limits of detection (LODs) and quantitation (LOQs) were experimentally calculated and percent recoveries were measured from spiked metals in solution and dry, certified welding-fume reference material. The fraction of Cr(VI) in total Cr was estimated by calculating the ratio of Cr(VI) to total Cr mass for each particle size range. Expected, regional deposition of each metal was estimated according to respiratory-deposition models. The weight percent (standard deviation) of Mn in mild steel fumes was 9.2% (6.8%). For stainless steel fumes, the weight percentages were 8.4% (5.4%) for total Cr, 12.2% (6.5%) for Mn, 2.1% (1.5%) for Ni and 0.5% (0.4%) for Cr(VI). All metals presented a fraction between 0.04 and 0.6 μm. Total Cr and Ni presented an additional fraction <0.03 μm. On average 6% of the Cr was found in the Cr(VI) valence state. There was no statistical difference between the smallest and largest mean Cr(VI) to total Cr mass ratio (p-value D 0.19), hence our analysis does not show that particle size affects the contribution of Cr(VI) to total Cr. The predicted total respiratory deposition for the metal particles was ∼25%. The sites of principal deposition were the head airways (7–10%) and the alveolar region (11–14%). Estimated Cr(VI) deposition was highest in the alveolar region (14%). PMID:26848207

  17. Understanding metal vaporizaiton from laser welding.

    SciTech Connect

    DebRoy, Tarasankar; Fuerschbach, Phillip William; He, Xiuli; Norris, Jerome T.

    2003-09-01

    The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the laser pulse. The peak temperatures and velocities increased significantly with the laser power density. The liquid flow is mainly driven by the surface tension and to a much less extent, by the buoyancy force. Heat transfer by conduction is important when the liquid velocity is small at the beginning of the pulse and during weld pool solidification. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. At very high power densities, the computed temperatures at the weld pool surface were found to be higher than the boiling point of 304 stainless steel. As a result, vaporization of alloying elements resulted from both total pressure and concentration gradients. The calculations showed that the vaporization was concentrated in a small region under the laser beam where the temperature was very high.

  18. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  19. Welding Technician

    ERIC Educational Resources Information Center

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement

  20. Examination of the physical processes associated with the keyhole region of variable polarity plasma arc welds in aluminum alloy 2219

    NASA Technical Reports Server (NTRS)

    Walsh, Daniel W.

    1987-01-01

    The morphology and properties of the Variable Polarity Plasma Arc (VPPA) weld composite zone are intimately related to the physical processes associated with the keyhole. This study examined the effects of oxide, halide, and sulfate additions to the weld plate on the keyhole and the weld pool. Changes in both the arc plasma character and the bead morphology were correlated to the chemical environment of the weld. Pool behavior was observed by adding flow markers to actual VPPA welds. A low temperature analog to the welding process was developed. The results of the study indicate that oxygen, even at low partial pressures, can disrupt the stable keyhole and weld pool. The results also indicate that the Marangoni surface tension driven flows dominate the weld pool over the range of welding currents studied.

  1. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-01

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a "ring" shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  2. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  3. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  4. Mechanical properties and microstructures of a magnesium alloy gas tungsten arc welded with a cadmium chloride flux

    SciTech Connect

    Zhang, Z.D.; Liu, L.M. Shen, Y.; Wang, L.

    2008-01-15

    Gas tungsten arc (GTA) welds were prepared on 5-mm thick plates of wrought magnesium AZ31B alloy, using an activated flux. The microstructural characteristics of the weld joint were investigated using optical and scanning microscopy, and the fusion zone microstructure was compared with that of the base metal. The elemental distribution was also investigated by electron probe microanalysis (EPMA). Mechanical properties were determined by standard tensile tests on small-scale specimens. The as-welded fusion zone prepared using a CdCl{sub 2} flux exhibited a larger grain size than that prepared without flux; the microstructure consisted of matrix {alpha}-Mg, eutectic {alpha}-Mg and {beta}-Al{sub 12}Mg{sub 17}. The HAZ was observed to be slightly wider for the weld prepared with a CdCl{sub 2} flux compared to that prepared without flux; thus the tensile strength was lower for the flux-prepared weld. The fact that neither Cd nor Cl was detected in the weld seam by EPMA indicates that the CdCl{sub 2} flux has a small effect on convection in the weld pool.

  5. Friction welding.

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1972-01-01

    Results of an exploratory study of the structure and properties of friction welds in Udimet 700 (U-700) and TD-nickel (TD-Ni) bar materials, as well as dissimilar U-700/TD-Ni friction welds. Butt welds were prepared by friction welding 12.7-mm-diam U-700 bars and TD-Ni bars. Specimens for elevated temperature tensile and stress rupture testing were machined after a postweld heat treatment. Friction welding of U-700 shows great potential because the welds were found to be as strong as the parent metal in stress rupture and tensile tests at 760 and 980 C. In addition, the weld line was not detectable by metallographic examination after postheating. Friction welds in TD-Ni or between U-700 and TD-Ni were extremely weak at elevated temperatures. The TD-Ni friction welds could support only 9% as much stress as the base metal for 10-hour stress rupture life at 1090 C. The U-700/TD-Ni weld could sustain only 15% as much stress as the TD-Ni parent metal for a 10-hour stress rupture life at 930 C. Thus friction welding is not a suitable joining method for obtaining high-strength TD-Ni or U-700/TD-Ni weldments.

  6. Grain refinement control in TIG arc welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. F.; Whiffen, E. L. (Inventor)

    1975-01-01

    A method for controlling grain size and weld puddle agitation in a tungsten electrode inert gas welding system to produce fine, even grain size and distribution is disclosed. In the method the frequency of dc welding voltage pulses supplied to the welding electrode is varied over a preselected frequency range and the arc gas voltage is monitored. At some frequency in the preselected range the arc gas voltage will pass through a maximum. By maintaining the operating frequency of the system at this value, maximum weld puddle agitation and fine grain structure are produced.

  7. Cave Pool

    A pool in the Caverns of Sonora. This cave, like many others, was formed by water combining with carbon dioxide to create a weak carbonic acid. This acid then dissolved the limestone to carve out chambers. The dissolved calcium from the limestone then combined with the carbon dioxide to create calci...

  8. In-process monitoring and adaptive control for gap in micro butt welding with pulsed YAG laser

    NASA Astrophysics Data System (ADS)

    Kawahito, Yousuke; Kito, Masayuki; Katayama, Seiji

    2007-05-01

    A gap is one of the most important issues to be solved in laser welding of a micro butt joint, because the gap results in welding defects such as underfilling or a non-bonded joint. In-process monitoring and adaptive control has been expected as one of the useful procedures for the stable production of sound laser welds without defects. The objective of this research is to evaluate the availability of in-process monitoring and adaptive control in micro butt welding of pure titanium rods with a pulsed neodymium : yttrium aluminium garnet (Nd : YAG) laser beam of a 150 µm spot diameter. It was revealed that a 45 µm narrow gap was detected by the remarkable jump in a reflected light intensity due to the formation of the molten pool which could bridge the gap. Heat radiation signal levels increased in proportion to the sizes of molten pools or penetration depths for the respective laser powers. As for adaptive control, the laser peak power was controlled on the basis of the reflected light or the heat radiation signals to stably produce a sound deeply penetrated weld reduced underfilling. In the case of a 100 µm gap, the underfilling was greatly reduced by half smaller than those made with a conventional rectangular pulse shape in seam welding as well as spot welding with a pulsed Nd : YAG laser beam. Consequently, the adaptive control of the laser peak power on the basis of in-process monitoring could reduce the harmful effects due to a gap in micro butt laser welding with a pulsed laser beam.

  9. Shielding conditions of local cavity for underwater arc spot welding

    SciTech Connect

    Ogawa, Y.; Koga, H.

    1996-12-01

    Arc spot welding to join lapped plates is an effective maintenance operation for emergent recovering technique of defects under water. The welding operation is easy and effective except for an excessive amount of weld metal for deep penetration. A special nozzle for CO{sub 2} arc spot welding was designed to maintain this defect. A large amount of swirl shielding gas flow is adopted to discharge the excessive weld metal and to reduce digging action of weld pool. An additional high speed air jet is supplied to reinforce these effects. Almost flat weld bead is obtained by using of this nozzle. The effect of swirl shielding flow and additional air jet on the pressure is studied. When an excessive axial gas flow is used, a pressure at the weld pool becomes high enough to press down the weld surface below original surface level of base plate, and some molten metal is splashed out. Then, it is difficult to get a sound weld geometry. A swirl gas flow is tried to reduce the static pressure on the weld pool. The pressure on the weld pool by the swirl flow becomes much lower compared to the case by axial flow. When the swirl flow is used, a flat bead can be obtained. But some molten metal which is blown out by the swirl gas is resolidified at the edge of the nozzle. The additional high speed air jet is required to blow out the splashed metal from the nozzle completely. It has a suction effect itself. The pressure on the weld pool is also decreased. But the interaction between the swirl flow and the additional jet shows a complicated manner. This paper discusses the interaction between main shielding gas flow and the additional air jet to guarantee the good shielding condition for underwater use.

  10. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several possible causes such as welder procedural error, externally applied impulsive forces(s), filler wire entrainment and snap-out, cutting expulsion, and puddle expulsion. Molten metal detachment from either the weld/cut substrate or weld wire could present harm to a astronaut in the space environment it the detachment was ti burn through the fabric of the astronaut Extravehicular Mobility Unit (EMC). In this paper an experimental test was performed in a 4 ft. x 4 ft. vacuum chamber at MSFC enabling protective garment to be exposed to the molten metal drop detachments to over 12 inches. The chamber was evacuated to vacuum levels of at least 1 x 10(exp -5) torr (50 micro-torr) during operation of the 1.0 kW Universal Hand Tool (UHT). The UHT was manually operated at the power mode appropriate for each material and thickness. The space suit protective welding garment, made of Teflon fabric (10 oz. per yard) with a plain weave, was placed on the floor of the vacuum chamber to catch the molten metal drop detachments. A pendulum release mechanism consisting of four hammers, each weighing approximately 3.65 lbs, was used to apply an impact forces to the weld sample/plate during both the electron beam welding and cutting exercises. Measurements were made of the horizontal fling distances of the detached molten metal drops. The volume of a molten metal drop can also be estimated from the size of the cut. Utilizing equations, calculations were made to determine chande in surafec area (Delat a(surface)) for 304 stainless steel for cutting based on measurements of metal drop sizes at the cut edges. For the cut sample of 304 stainless steel based on measurement of the drop size at the edge, Delta-a(surface) was determined to be 0.0054 2 in . Calculations have indicated only a small amount of energy is required to detach a liquid metal drop. For example, approximately only 0.000005 ft-lb of energy is necessary to detach a liquid metal steel drop based on the above theoretical analysis. However, some of the energy will be absorbed by the plate before it reaches the metal drop. Based on the theoretical calculations, it was determined that during a weld cutting exercise, the titanium alloy would be the most difficult to detach molten metal droplets followed by stainless steel and then by aluminum. The results of the experimental effort have shown that molten metal will detach if large enough of a hammer blow is applied to the weld sample plate during the full penetration welding and cutting exercises. However, no molten metal detachments occurred as a result of the filler wire snap-out tests from the weld puddle since it was too difficult to cause the metal to flick-out from the pool. Molten metal detachments, though not large in size, did result from the direct application of the electron beam on the end of the filler weld wire.

  11. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  12. Modeling of the effects of surface-active elements on flow patterns and weld penetration

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Shi, Q.; Tsai, H. L.

    2001-02-01

    A mathematical model was developed to calculate the transient temperature and velocity distributions in a stationary gas tungsten arc (GTA) weld pool of 304 stainless steels with different sulfur concentrations. A parametric study showed that, depending upon the sulfur concentration, one, two, or three vortexes may be found in the weld pool. These vortexes are caused by the interaction between the electromagnetic force and surface tension, which is a function of temperature and sulfur concentration, and have a significant effect on weld penetration. For given welding conditions, a minimum threshold sulfur concentration is required to create a single, clockwise vortex for deep penetration. When two metals with different sulfur concentrations are welded together, the weld-pool shape is skewed toward the metal with a lower sulfur content. Detailed physical insights on complicated fluid-flow phenomena and the resulting weld-pool penetration were obtained, based on the surface tension-temperature-sulfur concentration relationships.

  13. Probing laser induced metal vaporization by gas dynamics and liquid pool transport phenomena

    SciTech Connect

    DebRoy, T.; Basu, S.; Mundra, K. )

    1991-08-01

    During laser beam welding of many important engineering alloys, an appreciable amount of alloying element vaporization takes place from the weld pool surface. As a consequence, the composition of the solidified weld pool is often significantly different from that of the alloy being welded. Currently there is no comprehensive theoretical model to predict, from first principles, laser induced metal vaporization rates and the resulting weld pool composition changes. The weld pool heat transfer and fluid flow phenomena have been coupled with the velocity distribution functions of the gas molecules at various locations above the weld pool to determine the rates of the laser induced element vaporization for pure metals. The procedure allows for calculations of the condensation flux based on the equations of conservation of mass, momentum and energy in both the vapor and the liquid phases. Computed values of the rates of vaporization of pure metals were found to be in good agreement with the corresponding experimentally determined values. The synthesis of the principles of gas dynamics and weld pool transport phenomena can serve as a basis for weld metal composition control.

  14. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2015-12-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  15. Welding polarity effects on weld spatters and bead geometry of hyperbaric dry GMAW

    NASA Astrophysics Data System (ADS)

    Xue, Long; Wu, Jinming; Huang, Junfen; Huang, Jiqiang; Zou, Yong; Liu, Jian

    2016-03-01

    Welding polarity has influence on welding stability to some extent, but the specific relationship between welding polarity and weld quality has not been found, especially under the hyperbaric environment. Based on a hyperbaric dry welding experiment system, gas metal arc welding(GMAW) experiments with direct current electrode positive(DCEP) and direct current electrode negative(DCEN) operations are carried out under the ambient pressures of 0.1 MPa, 0.4 MPa, 0.7 MPa and 1.0 MPa to find the influence rule of different welding polarities on welding spatters and weld bead geometry. The effects of welding polarities on the weld bead geometry such as the reinforcement, the weld width and the penetration are discussed. The experimental results show that the welding spatters gradually grow in quantity and size for GMAW with DCEP, while GMAW with DCEN can produce fewer spatters comparatively with the increase of the ambient pressure. Compared with DCEP, the welding current and arc voltage waveforms for DCEN is more stable and the distribution of welding current probability density for DCEN is more concentrated under the hyperbaric environment. When the ambient pressure is increased from 0.1 MPa to 1.0 MPa, the effects of welding polarities on the reinforcement, the weld width and the penetration are as follows: an increase of 0.8 mm for the weld reinforcement is produced by GMAW with DCEN and 1.3 mm by GMAW with DCEP, a decrease of 7.2 mm for the weld width is produced by DCEN and 6.1 mm by DCEP; and an increase of 3.9 mm for the penetration is produced by DCEN and 1.9 mm by DCEP. The proposed research indicates that the desirable stability in the welding procedure can be achieved by GMAW with DCEN operation under the hyperbaric environment.

  16. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  17. Soldadura (Welding). Spanish Translations for Welding.

    ERIC Educational Resources Information Center

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc

  18. Structure and mechanical properties of 1570C alloy welds produced by friction stir welding

    NASA Astrophysics Data System (ADS)

    Malopheyev, S. S.; Kulitskiy, V. A.

    2012-09-01

    The effect of the conditions of friction stir welding (FSW) of 1570C aluminum alloy sheets on the structure and mechanical properties of the welded joints is studied. A recrystallized fine-grained structure with a grain size changing with the rate of welding tool rotation forms in a weld during FSW. As compared to the base metal, the yield strength of the weld metal decreases by 9-22% depending on the rate of welding tool rotation, and the ultimate tensile strength is almost independent of the FSW conditions and accounts for ˜90% of the ultimate tensile strength of the base metal. The plasticity of the weld metal is >13% for all rates of welding tool rotation. The microstructure and mechanical properties of the weld zone are discussed.

  19. WELDING TORCH

    DOEpatents

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  20. Investigation of underwater welding of steel

    SciTech Connect

    Shannon, G.J.; Watson, J.; Deans, W.F. . Dept. of Engineering)

    1994-12-01

    The preliminary underwater welding study described forms part of a European funded research program (EUREKA EU194) which involves a feasibility study into laser welding applications in the offshore oil industry. An investigation was undertaken using a 1.2 KW carbon dioxide laser for underwater butt welding of BS 4360 43A and 50D steel, in order to assess the quality of the welds and to achieve an understanding of the laser/water/material interaction. Using a high-speed camera, the temporal behavior of the melt pool and ''plasma'' dynamics surrounded by an aqueous environment were monitored. Experiments were undertaken to characterize the attenuation of the laser beam in the water as a function of various focal length optics and depth of water. The effect of energy input conditions on the weld bead appearance and mechanical properties were also examined. The interaction of the laser beam with water produced a wave-guiding mechanism in which the focused beam instantaneously vaporizes the water and directs the beam on to the workpiece. The underwater weld beads exhibited sound microstructures over a range of weld energy inputs, mainly due to the formation of a ''dry region'' during welding. Metallurgical analysis of the welds showed a slight increase in hardness, though other post-weld mechanical strengths were similar to in-air results.

  1. Ultrasound in arc welding: a review.

    PubMed

    da Cunha, Tiago Vieira; Bohórquez, Carlos Enrique Niño

    2015-02-01

    During the last decade, the introduction of ultrasound techniques in arc welding with the intention of improving the operational performance and technical characteristics of the welding processes have been studied intensively. In this work is presented a broad review of the literature surrounding the utilization of this technique. Firstly, we discuss the use of traditional mechanical transducers to generate ultrasound in arc welding. Furthermore, we describe the various methods and their application in arc-welding processes. After, is presented a recent method of introducing ultrasonic energy in arc welding, which forms a potential alternative to the use of traditional mechanical type transducers. This method was originally developed in the late 1990s and is called arc with ultrasonic excitation of current. Here, the arc acts not only as a thermal source but also as an emission mechanism for ultrasound, acting directly on the weld pool. We presented and discussed various innovative concepts based on this method, which allows the introduction of ultrasonic energy in the arc welding without the need of any auxiliary device of welding. In addition, we also presented the variations of this method reported in the literature. Finally, we have described the respective effects attributed to the use of this method in the welding of different materials using various welding processes. PMID:25455190

  2. Plasma arc welding weld imaging

    NASA Technical Reports Server (NTRS)

    Rybicki, Daniel J. (Inventor); Mcgee, William F. (Inventor)

    1994-01-01

    A welding torch for plasma arc welding apparatus has a transparent shield cup disposed about the constricting nozzle, the cup including a small outwardly extending polished lip. A guide tube extends externally of the torch and has a free end adjacent to the lip. First and second optical fiber bundle assemblies are supported within the guide tube. Light from a strobe light is transmitted along one of the assemblies to the free end and through the lip onto the weld site. A lens is positioned in the guide tube adjacent to the second assembly and focuses images of the weld site onto the end of the fiber bundle of the second assembly and these images are transmitted along the second assembly to a video camera so that the weld site may be viewed continuously for monitoring the welding process.

  3. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    NASA Astrophysics Data System (ADS)

    Filacchioni, G.; Montanari, R.; Tata, M. E.; Pilloni, L.

    2002-12-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program.

  4. Damage Tolerance Assessment of Friction Pull Plug Welds

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process developed and patented by The Welding Institute in Cambridge, England. Friction stir welding has been implemented in the aerospace industry in the fabrication of longitudinal welds in pressurized cryogenic propellant tanks. As the industry looks to implement friction stir welding in circumferential welds in pressurized cryogenic propellant tanks, techniques to close out the termination hole associated with retracting the pin tool are being evaluated. Friction pull plug welding is under development as a one means of closing out the termination hole. A friction pull plug weld placed in a friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite, plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size in the test or service environments. Test data relating residual strength capability to flaw size in two aluminum alloy friction plug weld configurations is presented.

  5. Welding II.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding II, a performance-based course offered at the Community College of Allegheny County to introduce students to out-of-position shielded arc welding with emphasis on proper heats, electrode selection, and alternating/direct currents. After introductory…

  6. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will…

  7. Welding Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this welding program is to provide students with skills and techniques to become employed as advanced apprentice welders. The welding program manual includes the following sections: (1) course description; (2) general objectives; (3) competencies; (4) curriculum outline for 13 areas; (5) 13 references; and (6) student progress…

  8. Welding III.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding III, an advanced course in arc welding offered at the Community College of Allegheny County to provide students with the proficiency necessary for industrial certification. The course objectives, which are outlined first, specify that students will

  9. Welding II.

    ERIC Educational Resources Information Center

    Allegheny County Community Coll., Pittsburgh, PA.

    Instructional objectives and performance requirements are outlined in this course guide for Welding II, a performance-based course offered at the Community College of Allegheny County to introduce students to out-of-position shielded arc welding with emphasis on proper heats, electrode selection, and alternating/direct currents. After introductory

  10. Welding Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    The purpose of this welding program is to provide students with skills and techniques to become employed as advanced apprentice welders. The welding program manual includes the following sections: (1) course description; (2) general objectives; (3) competencies; (4) curriculum outline for 13 areas; (5) 13 references; and (6) student progress

  11. Laser Beam Oscillation Strategies for Fillet Welds in Lap Joints

    NASA Astrophysics Data System (ADS)

    Müller, Alexander; Goecke, Sven-F.; Sievi, Pravin; Albert, Florian; Rethmeier, Michael

    Laser beam oscillation opens up new possibilities of influencing the welding process in terms of compensation of tolerances and reduction of process emissions that occur in industrial applications, such as in body-in-white manufacturing. The approaches are to adapt the melt pool width in order to generate sufficient melt volume or to influence melt pool dynamics, e.g. for a better degassing. Welding results are highly dependent on the natural frequency of the melt pool, the used spot diameter and the oscillation speed of the laser beam. The conducted investigations with an oscillated 300 μm laser spot show that oscillation strategies, which are adjusted to the joining situation improve welding result for zero-gap welding as well as for bridging gaps to approximately 0.8 mm. However, a complex set of parameters has to be considered in order to generate proper welding results. This work puts emphasize on introducing them.

  12. WELDING METHOD

    DOEpatents

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  13. Fundamental study of molten pool depth measurement method using an ultrasonic phased array system

    NASA Astrophysics Data System (ADS)

    Mizota, Hirohisa; Nagashima, Yoshiaki; Obana, Takeshi

    2015-07-01

    The molten pool depth measurement method using an ultrasonic phased array system has been developed. The molten pool depth distribution is evaluated by comparing the times taken by the ultrasonic wave to propagate through a molten pool and a solid-phase and through only the solid-phase near the molten pool. Maximum molten pool depths on a flat type-304 stainless-steel plate, formed with a gas tungsten arc welding machine for different welding currents from 70 to 150 A, were derived within an error of ±0.5 mm.

  14. Tailoring defect free fusion welds based on phenomenological modeling

    NASA Astrophysics Data System (ADS)

    Kumar, Amit

    In the last few decades, phenomenological models of fusion welding have provided important understanding and information about the welding processes and welded materials. For example, numerical calculations of heat transfer and fluid flow in welding have enabled accurate quantitative calculations of thermal cycles and fusion zone geometry in fusion welding. In many simple systems such as gas tungsten arc (GTA) butt welding, the computed thermal cycles have been used to quantitatively understand weld metal phase compositions, grain sizes and inclusion structure. However, fabrication of defect free welds with prescribed attributes based on scientific principles still remains to be achieved. In addition, higher fabrication speeds are often limited by the occurrence of humping defects which are characterized by periodic bead-like appearance. Furthermore, phenomenological models have not been applied to tailor welds with given attributes. The goal of the present work is to apply the principles of heat transfer and fluid flow to attain defects free welds with prescribed attributes. Since there are a large number of process variables in welding, the desired weld attributes such as the weld geometry and structure are commonly produced by empirically adjusting the welding variables. However, this approach does not always produce optimum welds and inappropriate choice of variables can lead to poor welds. The existing transport phenomena based models of welding can only predict weld characteristics for a given set of input welding variables. What is needed, and not currently available, is a capability to systematically determine multiple paths to tailor weld geometry and assess robustness of each individual solution to achieve safe, defect free welds. Therefore, these heat transfer and fluid flow based models are restructured to predict the welding conditions to achieve the defect free welds with desired attributes. Systematic tailoring of weld attributes based on scientific principles still remains an important milestone in changing welding from almost an empirical art to a mainstream science-based technology. The ability to determine multiple welding variable sets to achieve desired weld attributes, based on scientific principles, would be an important step to achieve this goal. Furthermore, no comprehensive unified theoretical model exists today that can predict the formation of commonly occurring humping defects considering the effects of important welding variables such as the arc current, voltage, welding speed, nature of the shielding gas, electrode geometry, torch angle and ambient pressure. In this research work, a model is developed to achieve desired weld attributes and avoid high speed weld defects like humping. (Abstract shortened by UMI.)

  15. Thermal cycles in multiple electrode submerged arc welding

    SciTech Connect

    Ahmed, N.U.; Jarvis, B.L.

    1996-01-01

    Multiple electrode submerged arc welding (SAW) is often used to increase the deposition rate in high productivity fabrication. However, while the development and application of the process have succeeded, the approach has not been systematic, and there is limited scientific information available regarding the process. This paper is concerned with the thermal cycles and resulting weld bead shape in four-electrode SAW. The experimental data were obtained with embedded thermocouples, by macroscopic examination of sections, and by weld pool ejection. The discussion considers the relationships between the welding conditions, the thermal responses and bead profiles. Data describing the geometry of the solidification boundary during the welding process are included and used to augment the description of the heat flow outside the weld pool. The study concludes that one may anticipate and control many features of the thermal response and bead profile.

  16. On-line weld penetration detection and control in automated gas tungsten arc welding. Ph.D. Thesis

    SciTech Connect

    Banerjee, P.

    1994-01-01

    The present work was undertaken to study the feasibility of monitoring and controlling weld penetration variations in real-time using an infrared detector. Weld penetration variations induced on mild steel plates were examined with an infrared detector and the acquired data analyzed to detect weld penetration variations using a mathematical analysis. Selected weld penetration indicators were developed and used to demonstrate on-line weld penetration control. A three-dimensional solid-state, transient heat transfer model was also developed to help identify key changes in thermal distributions which could be used as weld penetration indicators. A transient three-dimensional heat transfer model was used to solve the differential energy balance for the GTA welding process. The computed temperatures obtained from the model were used to determine the variation of the isothermal map, surface temperature profile and temperature gradient with weld penetration. Good agreement between experimental and computed indicators was obtained. Gas tungsten arc welds were performed on steel plates with intentionally introduced defects such as sudden thickness changes and minor element content changes. Extensive mathematical analysis helped correlate weld penetration variations to parameters such as the peak infrared intensity, intensity gradient over a fixed distance, intensity gradient at the inflection points in the first differential of the intensity profile (linescan), computed width of the weld pool, intensity gradient at a point in the weld pool, area enclosed by the linescan and area enclosed by the linescan after compensating for background illumination. The shape of the weld pool front was also determined from a differential analysis of the infrared data. Inconsistent behavior of some weld penetration indicators led to their elimination from the selection process for the best error signal.

  17. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals.

    PubMed

    Cena, L G; Chisholm, W P; Keane, M J; Chen, B T

    2015-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8-199 μg/m3; Ni concentrations ranged 10-51 μg/m3; and Cr concentrations ranged 40-105 μg/m3. Cr(VI) concentrations ranged between 0.5-1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm. PMID:25985454

  18. A Field Study on the Respiratory Deposition of the Nano-Sized Fraction of Mild and Stainless Steel Welding Fume Metals

    PubMed Central

    Cena, L. G.; Chisholm, W. P.; Keane, M. J.; Chen, B. T.

    2016-01-01

    A field study was conducted to estimate the amount of Cr, Mn, and Ni deposited in the respiratory system of 44 welders in two facilities. Each worker wore a nanoparticle respiratory deposition (NRD) sampler during gas metal arc welding (GMAW) of mild and stainless steel and flux-cored arc welding (FCAW) of mild steel. Several welders also wore side-by-side NRD samplers and closed-face filter cassettes for total particulate samples. The NRD sampler estimates the aerosol's nano-fraction deposited in the respiratory system. Mn concentrations for both welding processes ranged 2.8–199 μg/m3; Ni concentrations ranged 10–51 μg/m3; and Cr concentrations ranged 40–105 μg/m3. Cr(VI) concentrations ranged between 0.5–1.3 μg/m3. For the FCAW process the largest concentrations were reported for welders working in pairs. As a consequence this often resulted in workers being exposed to their own welding fumes and to those generated from the welding partner. Overall no correlation was found between air velocity and exposure (R2 = 0.002). The estimated percentage of the nano-fraction of Mn deposited in a mild-steel-welder's respiratory system ranged between 10 and 56%. For stainless steel welding, the NRD samplers collected 59% of the total Mn, 90% of the total Cr, and 64% of the total Ni. These results indicate that most of the Cr and more than half of the Ni and Mn in the fumes were in the fraction smaller than 300 nm. PMID:25985454

  19. Vaccum Gas Tungsten Arc Welding, phase 1

    NASA Technical Reports Server (NTRS)

    Weeks, J. L.; Krotz, P. D.; Todd, D. T.; Liaw, Y. K.

    1995-01-01

    This two year program will investigate Vacuum Gas Tungsten Arc Welding (VGTAW) as a method to modify or improve the weldability of normally difficult-to-weld materials. VGTAW appears to offer a significant improvement in weldability because of the clean environment and lower heat input needed. The overall objective of the program is to develop the VGTAW technology and implement it into a manufacturing environment that will result in lower cost, better quality and higher reliability aerospace components for the space shuttle and other NASA space systems. Phase 1 of this program was aimed at demonstrating the process's ability to weld normally difficult-to-weld materials. Phase 2 will focus on further evaluation, a hardware demonstration and a plan to implement VGTAW technology into a manufacturing environment. During Phase 1, the following tasks were performed: (1) Task 11000 Facility Modification - an existing vacuum chamber was modified and adapted to a GTAW power supply; (2) Task 12000 Materials Selection - four difficult-to-weld materials typically used in the construction of aerospace hardware were chosen for study; (3) Task 13000 VGTAW Experiments - welding experiments were conducted under vacuum using the hollow tungsten electrode and evaluation. As a result of this effort, two materials, NARloy Z and Incoloy 903, were downselected for further characterization in Phase 2; and (4) Task 13100 Aluminum-Lithium Weld Studies - this task was added to the original work statement to investigate the effects of vacuum welding and weld pool vibration on aluminum-lithium alloys.

  20. Modeling of transport phenomena during laser welding process

    NASA Astrophysics Data System (ADS)

    Zhou, Jun

    This dissertation, consisting of three papers, presents the results of research investigations on laser welding of zinc-coated steel sheets and three-dimensional laser keyhole welding by numerical analysis. In the first paper, the mathematical model and numerical techniques are developed to simulate the keyhole formation, zinc vapor formation and zinc vapor escaping processes. In the study, the keyhole is used as an effective way to vent the high-pressure zinc vapor generated at the interface between the two zinc-coated metal sheets. The interaction between the weld pool and the escaping zinc vapor is investigated. It is the first comprehensive mathematical model for laser welding of zinc-coated steel sheets. In the second paper, the aforementioned model is employed to study the defect formation mechanisms in laser welding of zinc-coated steel sheets. Welding defects, such as voids at the root of welded metal, the undercut on the top surface and the bubbles trapped in the weld pool are simulated. The reasons causing these welding defects are given through the studies of the zinc vapor-weld pool interaction and the fluid flow and heat transfer during the keyhole collapse and metal solidification processes. In the third paper, the aforementioned stationary 2-D model is extended to modeling a 3-D moving laser keyhole welding process. The heat transfer and fluid flow in the welding pool around the keyhole are calculated. Also, the laser induced plasma inside the keyhole due to the Inverse Bremsstrahlung absorption is considered to calculate the temperature distribution inside the keyhole. Energy distribution inside the keyhole is computed by considering the Fresnel absorption and multiple reflections phenomena.

  1. Effect of friction stir welding parameters on defect formation

    NASA Astrophysics Data System (ADS)

    Tarasov, S. Yu.; Rubtsov, V. E.; Eliseev, A. A.; Kolubaev, E. A.; Filippov, A. V.; Ivanov, A. N.

    2015-10-01

    Friction stir welding is a perspective method for manufacturing automotive parts, aviation and space technology. One of the major problems is the formation of welding defects and weld around the welding zone. The formation of defect is the main reason failure of the joint. A possible way to obtain defect-free welded joints is the selection of the correct welding parameters. Experimental results describing the effect of friction stir welding process parameters on the defects of welded joints on aluminum alloy AMg5M have been shown. The weld joint defects have been characterized using the non-destructive radioscopic and ultrasound phase array methods. It was shown how the type and size of defects determine the welded joint strength.

  2. Internal Wire Guide For Gas/Tungsten-Arc Welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E.; Dyer, Gerald E.

    1990-01-01

    Wire kept in shielding gas, preventing oxidation. Guide inside gas cup of gas/tungsten-arc welding torch feeds filler wire to weld pool along line parallel to axis of torch. Eliminates problem of how to place and orient torch to provide clearance for external wire guide.

  3. Contribution to Numerical Simulation of Laser Welding

    NASA Astrophysics Data System (ADS)

    Turňa, Milan; Taraba, Bohumil; Ambrož, Petr; Sahul, Miroslav

    Contribution deals with numerical simulation of thermal and stress fields in welding tubes made of austenitic stainless CrNi steel type AISI 304 with a pulsed Nd:YAG laser. Process simulation was realised by use of ANSYS 10 software. Experiments were aimed at solution of asymptotic, standard and the so-called shell model. Thermally dependent properties of AISI 304 steel were considered. Thermal fields developed in the course of welding process and also shape of weld pool were assessed. Contribution is aimed at simulation of technological welding process with input parameters regarding the thermal and strain task and comparison of attained results with real experiment. The achieved results of numerical simulation were almost identical with a real weldment thermally affected by welding process.

  4. Dynamic stresses in weld metal hot cracking

    SciTech Connect

    Zacharia, T. . Materials Process Modeling Group)

    1994-07-01

    This paper presents the results of a study aimed at understanding the influence of dynamic stresses, induced by thermal and mechanical loading, on weld metal hot cracking. The study attempts to resolve the relationship between the dynamic stress distribution in the specimen, particularly near the trailing edge of the pool, and the observed cracking behavior in a Sigmajig test specimen. The transient stress distribution in the specimen resulting from mechanical and thermal loading was calculated for a Type 316 stainless steel specimen. The initiation and propagation of the crack during welding was visually monitored using a stroboscopic vision system. The numerical results were used to understand the initiation and propagation of weld metal hot cracks during controlled welding of a specimen subjected to external restraint. The results of this study indicate that for hot cracking to occur, there exists a dynamic relationship between the metallurgical and mechanical factors, which can be influenced by the welding conditions and mechanical restraint.

  5. Cellular automata modeling of weld solidification structure

    SciTech Connect

    Dress, W.B.; Zacharia, T.; Radhakrishnan, B.

    1993-12-31

    The authors explore the use of cellular automata in modeling arc-welding processes. A brief discussion of cellular automata and their previous use in micro-scale solidification simulations is presented. Macro-scale thermal calculations for arc-welding at a thin plate are shown to give good quantitative and qualitative results. Combining the two calculations in a single cellular array provides a realistic simulation of grain growth in a welding process. Results of simulating solidification in a moving melt pool in a poly-crystalline alloy sheet are presented.

  6. Simulation and Technology of Hybrid Welding of Thick Steel Parts with High Power Fiber Laser

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Valdaytseva, Ekaterina; Tzibulsky, Igor; Lopota, Alexander; Velichko, Olga

    The article devoted to steady state and dynamic simulation of melt pool behavior during hybrid laser-arc welding of pipes and shipbuilding sections. The quasi-stationary process-model was used to determine an appropriate welding mode. The dynamical model of laser welding was used for investigation of keyhole depth and width oscillations. The experiments of pipe steel and stainless steel hybrid laser-MAG welding have been made with 15-kW fiber laser in wide range of welding mode parameters. Comparison of experimentally measured and simulated behavior of penetration depth as well as their oscillation spectra approved the self-oscillation nature of melt pool behavior. The welding mode influence of melt pool stability has also been observed. The technological peculiarities, which allow provide high quality weld seam, has been discussed also.

  7. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2016-02-01

    The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 °C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

  8. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2015-12-01

    The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

  9. CO2 laser welding of aluminum alloys at high speeds up to 20 m/min

    NASA Astrophysics Data System (ADS)

    Takahashi, Kunimitsu; Kumagai, Mikio; Katayama, Seiji; Matsunawa, Akira

    2003-03-01

    CO2 laser welding of thin aluminum sheets was performed at welding speeds of up to 20 m/min to investigate the weldability, weld pool dynamics and mechanical properties of the weld bead of aluminum alloys. High-speed camera observation of weld areas showed that the thickness of the keyhole-front-face decreased to 100 μm under high-speed welding conditions and the weld pool became unstable. The focal length was optimized to increase the spot power density and thereby easily melt the aluminum sheets. Using a 76-mm focal length lens, which corresponds to 11 MW/cm2 power density, we obtained a keyhole mode weld bead with a depth of 1.3 mm at 20 m/min welding speed at 2 kW laser power. It was also possible to reduce the heat affected zone (HAZ) width to only 1.6 mm when the welding speed was 20 m/min. The HAZ width decreased as welding speed was increased. The tensile strength test of A6N01 weld beads showed that the fracture strength increased as the welding speed was increased up to 16 m/min, probably because the soft region of weld specimens was decreased. On the other hand, solidification cracks formed in the weld bead center at higher speeds, resulting in decreased strength.

  10. Study of the hovering period and bubble size in fully developed pool nucleate boiling of saturated liquid with a time-dependent heat source

    SciTech Connect

    Pasamehmetoglu, K.O.; Nelson, R.A.

    1987-01-01

    In this paper, the bubble behavior in saturated pool boiling with a time-dependent heat source is analyzed. The study is restricted to the period from fully developed nucleate boiling until critical heat flux occurs. The hovering period and the departure volume of the bubble are selected as the characteristic parameters for bubble behavior. These parameters are quantified by solving the equation of motion for an idealized bubble. This equation is solved for cases in which the surface heat flux changes linearly and exponentially as a function of time. After nondimensionalization, the results are compared directly with the results of the steady-state problem. The comparison shows that the transient heat input has practically no effect on the hovering period. However, the transient heat flux causes a decreased volume at bubble departure. The volume decrease is dependent on the severity of the transient. These results are in qualitative agreement with the experimental observation quoted in the literature.

  11. Wonder Weld

    SciTech Connect

    2012-01-01

    Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory are using the process shown here to create a super-strong weld for the upgrade of a key component of the Lab's experimental nuclear fusion reactor.

  12. Real-time ultrasonic weld evaluation system

    NASA Astrophysics Data System (ADS)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  13. Surface-active element effects on the shape of GTA, laser, and electron-beam welds

    SciTech Connect

    Heiple, C.R.; Roper, J.R.; Stagner, R.T.; Aden, R.J.

    1983-03-01

    Laser and electron-beam welds were passed across selenium-doped zones in 21-6-9 stainless steel. The depth/width (d/w) ratio of a defocused laser weld with a weld pool shape similar to a GTA weld increased by over 200% in a zone where 66 ppm selenium had been added. Smaller increases were observed in selenium-doped zones for a moderately defocused electron beam weld with a higher d/w ratio in undoped base metal. When laser or electron beam weld penetration was by a keyhole mechanism, no change in d/w ratio occurred in selenium-doped zones. The results confirm the surface-tension-driven fluid-flow model for the effect of minor elements on GTA weld pool shape. Other experimental evidence bearing on the effect of minor elements on GTA weld penetration is summarized.

  14. Effects of SO/sub 2/ torch gas additions on GTA weld shape

    SciTech Connect

    Heiple, C.R.; Burgardt, P.

    1984-01-01

    Small additions of sulfur or oxygen to the GTA weld pool in steels with low weld d/w (depth/width) ratios substantially increases the weld d/w ratio and furthermore the improved weld d/w ratio is largely independent of reasonable variations in base metal sulfur and oxygen content. The addition of small concentrations of SO/sub 2/ to the normal argon shielding gas is a simple and effective way to add sulfur to the weld pool and increase weld d/w ratio. Autogenous bead-on-plate welds under otherwise identical welding conditions were made on stainless steel plate with SO/sub 2/ concentrations in the torch gas ranging between 0 and 2000 ppM.

  15. Syllabus in Trade Welding.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  16. Heat transfer and fluid flow in fusion type PA-GTA double-sided welding

    NASA Astrophysics Data System (ADS)

    Honggang, Dong; Hongming, Gao; Lin, Wu

    2005-12-01

    In comparison with conventional single-sided arc welding, double-sided arc welding powered by a single power supply has remarkable advantages in enhancing penetration, minimizing distortion and improving welding production. In this paper, a three-dimensional steady numerical model is developed for the heat transfer and fluid flow in a fusion type plasma arc (PA)-gas tungsten arc (GTA) double-sided welding process. Based on the numerical model, the distributions of the fluid flow and temperature field are calculated. Numerical results show that the peak temperature and temperature gradient in the weld pool in the PA side are higher than the values in the GTA side. Within the weld pool, the electromagnetic force drives the melted metal to move from two sides to the central part of the weld pool, and this effect is positive to penetrating the workpiece. The fluid flow of the melted metal in the free surface of the weld pool is fiercer than the flow within the weld pool, and the biggest flow velocity of the melted metal occurs in the free surface in the PA side. A comparison of the cross section of the weld bead with the experimental result shows that the numerical model's accuracy is reasonable.

  17. Welding and Weldability of Thorium-Doped Iridium Alloys

    SciTech Connect

    David, S.A.; Ohriner, E.K.; King, J.F.

    2000-03-12

    Ir-0.3%W alloys doped with thorium are currently used as post-impact containment material for radioactive fuel in thermoelectric generators that provide stable electrical power for a variety of outer planetary space exploration missions. Welding and weldability of a series of alloys was investigated using arc and laser welding processes. Some of these alloys are prone to severe hot-cracking during welding. Weldability of these alloys was characterized using Sigmajig weldability test. Hot-cracking is influenced to a great extent by the fusion zone microstructure and composition. Thorium content and welding atmosphere were found to be very critical. The weld cracking behavior in these alloys can be controlled by modifying the fusion zone microstructure. Fusion zone microstructure was found to be controlled by welding process, process parameters, and the weld pool shape.

  18. Keyhole and weld shapes for plasma arc welding under normal and zero gravity

    NASA Technical Reports Server (NTRS)

    Keanini, R. G.; Rubinsky, B.

    1990-01-01

    A first order study of the interfacial (keyhole) shape between a penetrating argon plasma arc jet and a stationary liquid metal weld pool is presented. The interface is determined using the Young-Laplace equation by assuming that the plasma jet behaves as a one-dimensional ideal gas flow and by neglecting flow within the weld pool. The solution for the keyhole shape allows an approximate determination of the liquid-solid metal phase boundary location based on the assumption that the liquid melt is a stagnant thermal boundary layer. Parametric studies examine the effect of plasma mass flow rate, initial plasma enthalpy, liquid metal surface tension, and jet shear on weldment shape under both normal and zero gravity. Among the more important findings of this study is that keyhole and weld geometries are minimally affected by gravity, suggesting that data gathered under gravity can be used in planning in-space welding.

  19. A Genetic Cascade of let-7-ncl-1-fib-1 Modulates Nucleolar Size and rRNA Pool in Caenorhabditis elegans

    PubMed Central

    Chiou, Pey-Tsyr; Chen, Po-Hsiang; Lee, Ching-Ming; Chu, Yu-De; Yu, Hsiang; Hsiung, Kuei-Ching; Tsai, Yi-Tzang; Lee, Chi-Chang; Chang, Yu-Sun; Chan, Shih-Peng; Tan, Bertrand Chin-Ming; Lo, Szecheng J.

    2015-01-01

    Ribosome biogenesis takes place in the nucleolus, the size of which is often coordinated with cell growth and development. However, how metazoans control nucleolar size remains largely unknown. Caenorhabditis elegans provides a good model to address this question owing to distinct tissue distribution of nucleolar sizes and a mutant, ncl-1, which exhibits larger nucleoli than wild-type worms. Here, through a series of loss-of-function analyses, we report that the nucleolar size is regulated by a circuitry composed of microRNA let-7, translation repressor NCL-1, and a major nucleolar pre-rRNA processing protein FIB-1/fibrillarin. In cooperation with RNA binding proteins PUF and NOS, NCL-1 suppressed the translation of FIB-1/fibrillarin, while let-7 targeted the 3’UTR of ncl-1 and inhibited its expression. Consequently, the abundance of FIB-1 is tightly controlled and correlated with the nucleolar size. Together, our findings highlight a novel genetic cascade by which post-transcriptional regulators interplay in developmental control of nucleolar size and function. PMID:26492166

  20. Welding method combining laser welding and MIG welding

    SciTech Connect

    Hamasaki, M.

    1985-03-26

    Welding of deep penetration is obtained in a sustrate by a method which comprises first melting the joint portion of the substrates by MIG welding and then focusing a laser beam in the bottom surface of a crater formed in consequence of the MIG welding thereby effecting laser welding of the crater.

  1. Oxygen effect on low-alloy steel weld metal properties

    SciTech Connect

    Potapov, N.N. . Welding Dept.)

    1993-08-01

    It is shown that the weld metal oxygen content in submerged arc low-alloy steel welds, as well as in low-carbon steel welds is dependent on the concentration of oxides decomposed at low temperatures in a weld pool slag phase. The oxygen is mainly in the form of fine dispersed oxide inclusions of less than 0.03 [mu]m. Differentiated evaluation of silicon reduction effects in submerged arc welded low-alloy steels revealed that weld metal brittle fracture strength depends to a considerable degree on total weld metal oxide inclusion content than on silicon increment in the weld. Therefore, the increase of weld metal brittle fracture susceptibility with the growth of weld oxide inclusion content is important to know. Welds with lowered oxygen content [0] [<=] 0.02% also display the tendency to decrease in plasticity because (1) the ferritic-pearlitic matrix of improved purity is likely to generate unbalanced structures on cooling and, (2) when there are no oxide inclusions, the shape of sulfur and phosphor precipitation from the melt changes from globular to film-like. Optimal low-alloy steel weld metal oxygen content is defined in the range of 0.02-0.035.

  2. Smaller Coaxial-View Welding Torch

    NASA Technical Reports Server (NTRS)

    Gangl, Kenneth J.

    1991-01-01

    Coaxial-view torch for gas/tungsten arc welding has only two-thirds length and width of its predecessor. Shape and size similar to that of commercial arc-welding torch (Linde HW-27 or equivalent), even though it contains lens system. Collet that holds electrode has unique design allowing greater passage of light. Used in small spaces previously inaccessible, also introduced into production welding operations with minimum of disturbance.

  3. Electrode carrying wire for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1990-01-01

    A welding torch for gas tungsten arc welding apparatus has a hollow tungsten electrode including a ceramic liner and forms the filler metal wire guide. The wire is fed through the tungsten electrode thereby reducing the size of the torch to eliminate clearance problems which exist with external wire guides. Since the wire is preheated from the tungsten more wire may be fed into the weld puddle, and the wire will not oxidize because it is always within the shielding gas.

  4. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    PubMed

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18min) when using conventional methods were high (18.2mg m(-3) for bare beam; 65.7mg m(-3) for through deck), with estimated mass concentrations of iron (7.8mg m(-3) for bare beam; 15.8mg m(-3) for through deck), zinc (0.2mg m(-3) for bare beam; 15.8mg m(-3) for through deck), and manganese (0.9mg m(-3) for bare beam; 1.5mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17nm) through deck conditions (34±34nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure levels during stud welding simulations, but further development is needed before field deployment is possible. PMID:26602453

  5. Tool For Friction Stir Tack Welding of Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Bjorkman, Gerald W.; Dingler, Johnny W.; Loftus, Zachary

    2003-01-01

    A small friction-stir-welding tool has been developed for use in tack welding of aluminum-alloy workpieces. It is necessary to tack-weld the workpieces in order to hold them together during friction stir welding because (1) in operation, a full-size friction-stir-welding tool exerts a large force that tends to separate the workpieces and (2) clamping the workpieces is not sufficient to resist this force. It is possible to tack the pieces together by gas tungsten arc welding, but the process can be awkward and time-consuming and can cause sufficient damage to necessitate rework. Friction stir tack welding does not entail these disadvantages. In addition, friction stir tack welding can be accomplished by use of the same automated equipment (except for the welding tool) used in subsequent full friction stir welding. The tool for friction stir tack welding resembles the tool for full friction stir welding, but has a narrower shoulder and a shorter pin. The shorter pin generates a smaller workpiece-separating force so that clamping suffices to keep the workpieces together. This tool produces a continuous or intermittent partial-penetration tack weld. The tack weld is subsequently consumed by action of the larger tool used in full friction stir welding tool.

  6. Laser welding of fused quartz

    DOEpatents

    Piltch, Martin S.; Carpenter, Robert W.; Archer, III, McIlwaine

    2003-06-10

    Refractory materials, such as fused quartz plates and rods are welded using a heat source, such as a high power continuous wave carbon dioxide laser. The radiation is optimized through a process of varying the power, the focus, and the feed rates of the laser such that full penetration welds may be accomplished. The process of optimization varies the characteristic wavelengths of the laser until the radiation is almost completely absorbed by the refractory material, thereby leading to a very rapid heating of the material to the melting point. This optimization naturally occurs when a carbon dioxide laser is used to weld quartz. As such this method of quartz welding creates a minimum sized heat-affected zone. Furthermore, the welding apparatus and process requires a ventilation system to carry away the silicon oxides that are produced during the welding process to avoid the deposition of the silicon oxides on the surface of the quartz plates or the contamination of the welds with the silicon oxides.

  7. Enabling high speed friction stir welding of aluminum tailor welded blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  8. Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits II: Local welding

    NASA Astrophysics Data System (ADS)

    Carey, R. J.; Houghton, B. F.; Thordarson, T.

    2008-03-01

    As an alternative to classical welding models of fall deposits due to the progressive accumulation of hot tephra which then weld, we describe here welded deposits on the northern 1875 caldera rim of Askja volcano that have welded due to the influence of hot, discrete spatter bombs impacting into and supplying heat to a halo of surrounding tephra. This style of welding we term 'local welding' in contrast to 'regional welding' which is described elsewhere [Carey, R.J., Houghton, B.F., Thordarson, T., 2008. Contrasting styles of welding observed in the proximal Askja 1875 eruption deposits I: Regional welding. J. Volcanol. Geotherm. Res. 171, 1-19. doi:10.1016/j.jvolgeores.2007.11.020]. Locally welded deposits are associated with the rhyolitic Plinian phase of the 1875 eruption of Askja volcano. Two distinct welding units (W1 and W2) are interbedded with Plinian fall on the northern caldera rim, and grade outwards to weakly dispersed non-welded fall. Spatter bombs are found in both welding units but vary in their characteristic sizes and internal features. In the W1 unit simple bombs with homogeneous internal characteristics up to ˜ 60 cm in diameter are found. In the W2 unit, large discrete spatter bombs with complex internal features range up to 9 m in diameter. We describe here two case studies showing the effects of a) single small spatter bombs; b) multiple small spatter bombs and c) large discrete spatter bombs varying in size. Vertical and lateral profiles through welding zones reveal that the primary controls on local welding are the availability of supplied or added heat and the loading capacity of the spatter bomb. Local welding grades are much higher than that of regional welding, as the combined effects of heat, compaction and insulation can provide suitable conditions which lead to dense welding and, proximal to the spatter bomb, rheomorphic flowage. If heating and loading exceed the critical requirement for welding, porosity loss via matrix welding and vesicle collapse occurs to a point where further strain must be accommodated as shearing and ductile flowage. The spatter bombs are found only within the weakly dispersed welding units and are the final erupted products of each fountaining phase. Their low viscosities are evident by their deformation on impact and fluidal forms, and hold some important clues to eruption dynamics in the shallow conduit and vent regions.

  9. Shielding gas selection for increased weld penetration and productivity in GTA welding

    SciTech Connect

    Leinonen, J.I.

    1996-12-31

    The effects of hydrogen and helium additions to the argon shielding gas on GTA weld pool profiles in the case of two austenitic stainless steel sheets 3 mm thick are investigated here in detail. One of the test steels shows good weldability, with a relatively deep, narrow weld pool profile, but the other is poorly weldable, with a shallow, wide weld pool when argon shielding gas is used. Bead-on-plate test welds were produced with arc shields of argon, argon with hydrogen additions of 2 to 18.2% and argon with helium additions of 20 to 80%. The hydrogen additions increases the depth of weld penetration in both test steels, but productivity with respect to maximum welding speed can be improved to an accepted level only with steel sheets of good weldability in terms of a relatively high depth/width (D/W) ratio. The depth of penetration in the test steel of good weldability increased somewhat with helium additions and the D/W ratio remained unchanged, while these parameters increased markedly in the poorly weldable steel when a He-20% Ar shielding gas was used and resembled those of the more weldable steel.

  10. Recent progress on gas tungsten arc welding of vanadium alloys

    SciTech Connect

    Grossbeck, M.L.; King, J.F.; Alexander, D.J.

    1997-08-01

    Emphasis has been placed on welding 6.4 mm plate, primarily by gas tungsten arc (GTA) welding. The weld properties were tested using blunt notch Charpy testing to determine the ductile to brittle transition temperature (DBTT). Erratic results were attributed to hydrogen and oxygen contamination of the welds. An improved gas clean-up system was installed on the welding glove box and the resulting high purity welds had Charpy impact properties similar to those of electron beam welds with similar grain size. A post-weld heat treatment (PWHT) of 950{degrees}C for two hours did not improve the properties of the weld in cases where low concentrations of impurities were attained. Further improvements in the gas clean-up system are needed to control hydrogen contamination.

  11. A Laser-Based Vision System for Weld Quality Inspection

    PubMed Central

    Huang, Wei; Kovacevic, Radovan

    2011-01-01

    Welding is a very complex process in which the final weld quality can be affected by many process parameters. In order to inspect the weld quality and detect the presence of various weld defects, different methods and systems are studied and developed. In this paper, a laser-based vision system is developed for non-destructive weld quality inspection. The vision sensor is designed based on the principle of laser triangulation. By processing the images acquired from the vision sensor, the geometrical features of the weld can be obtained. Through the visual analysis of the acquired 3D profiles of the weld, the presences as well as the positions and sizes of the weld defects can be accurately identified and therefore, the non-destructive weld quality inspection can be achieved. PMID:22344308

  12. Depth of penetration in gas metal arc welding

    SciTech Connect

    Murray, P.E.; Scotti, A.

    1998-07-01

    The authors present a model of the depth of penetration in gas metal arc welding. This model is based on the assumption that the heat and mass transfer to the weld pool and the depth of penetration may be correlated by a dimensionless relation. This correlation leads to an analytical expression for depth of penetration, which involves empirical constants that are related to the efficiency of heat and mass transfer to the pool. They examine the accuracy of the model by comparing the theoretical depth of penetration and the measured depth of the weld pool for a range of processing variables encompassing short arc and free flight mass transfer. Measurements are obtained from bead on plate welds of stainless steel using a stainless steel electrode and a shielding gas that is rich in argon. The results confirm that the depth of penetration is affected by variations in the rate of mass transfer.

  13. Phase transformations and microstructure development in low alloy steel welds

    SciTech Connect

    Babu, S.S.; David, S.A.; Vitek, J.M.

    1995-07-01

    Microstructure development in low alloy steel welds depends on various phase transformations that are a function of weld heating and cooling. The phase changes include non-metallic oxide inclusion formation in the liquid state, weld pool solidification, and solid state transformations. In this paper the mechanism of inclusion formation during low alloy steel welding is considered and the model predictions are compared with published results. The effect of inclusions on the austenite to ferrite transformation kinetics is measured and the mechanisms of transformation are discussed. The austenite gain development is related to the driving force for transformation of {delta} ferrite to austenite.

  14. Evaluation of electrode shape and nondestructive evaluation method for welded solar cell interconnects

    NASA Technical Reports Server (NTRS)

    Baraona, C. R.; Klima, S. J.; Moore, T. J.; Frey, W. E.; Forestieri, A. F.

    1982-01-01

    Resistance welds of solar cell interconnect tabs were evaluated. Both copper-silver and silver-silver welds were made with various heat inputs and weld durations. Parallel gap and annular gap weld electrode designs were used. The welds were analyzed by light microscope, electron microprobe and scanning laser acoustic microscope. These analyses showed the size and shape of the weld, the relationship between the acoustic micrographs, the visible electrode footprint, and the effect of electrode misalignment. The effect of weld heat input on weld microstructure was also shown.

  15. Welding Curtains

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Concept of transparent welding curtains made of heavy duty vinyl originated with David F. Wilson, President of Wilson Sales Company. In 1968, Wilson's curtains reduced glare of welding arc and blocked ultraviolet radiation. When later research uncovered blue light hazards, Wilson sought improvement of his products. He contracted Dr. Charles G. Miller and James B. Stephens, both of Jet Propulsion Laboratory (JPL), and they agreed to undertake development of a curtain capable of filtering out harmful irradiance, including ultraviolet and blue light and provide protection over a broad range of welding operation. Working on their own time, the JPL pair spent 3 years developing a patented formula that includes light filtering dyes and small particles of zinc oxide. The result was the Wilson Spectra Curtain.

  16. Effect of carbon black on temperature field and weld profile during laser transmission welding of polymers: A FEM study

    NASA Astrophysics Data System (ADS)

    Acherjee, Bappa; Kuar, Arunanshu S.; Mitra, Souren; Misra, Dipten

    2012-04-01

    The influence of the carbon black on temperature distribution and weld profile, during laser transmission welding of polymers, is investigated in the present research work. A transient numerical model, based on conduction mode heat transfer, is developed to analyze the process. The heat input to the model is considered to be the volumetric Gaussian heat source. The computation of temperature field during welding is carried out for polycarbonates having different proportion of carbon black in polymer matrix. The temperature dependent material properties of polycarbonate are taken into account for modeling. The finite element code ANSYS is employed to obtain the numerical results. The numerically computed results of weld pool dimensions are compared with the experimental results. The comparison shows a fair agreement between them, which gives confidence to use the developed model for intended investigation with acceptable accuracy. The results obtained have revealed that the carbon black has considerable influence on the temperature field distribution and the formation of the weld pool geometry.

  17. Interaction of trace elements and welding parameters on GTA weld shape. [Variation with penetration and tip angle

    SciTech Connect

    Burgardt, P.; Heiple, C.R.

    1985-01-01

    Good penetration and poor penetration steels have different responses to changes in temperature distribution on the weld pool surface. Penetration of 304 SS was varied using S and Se dopants. The weld parameter investigated was the electrode tip angle. Results of bead-on-plate GTA welds show that there is a difference in response of weld pool shape to tip angle depending on penetration: Low penetration base metal showed no dependence, intermediate penetration steel showed a small linear decrease of weld depth-to-width ratio (d/w) with tip angle, while high penetration steel showed an increase of d/w up to a maximum at about 50/sup 0/, followed by a decrease in d/w. (DLC)

  18. Weld repair method for aluminum lithium seam

    NASA Technical Reports Server (NTRS)

    McGee, William Floyd (Inventor); Rybicki, Daniel John (Inventor)

    1998-01-01

    Aluminum-lithium plates are butt-welded by juxtaposing the plates and making a preliminary weld from the rear or root side of the seam. An initial weld is then made from the face side of the seam, which may cause a defect in the root portion. A full-size X-ray is made and overlain over the seam to identify the defects. The defect is removed from the root side, and rewelded. Material is then removed from the face side, and the cavity is rewelded. The procedure repeats, alternating from the root side to the face side, until the weld is sound.

  19. Mechanisms giving increased weld depth due to a flux

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.; Tanaka, M.; Ushio, M.

    2005-09-01

    It is known that for 'tungsten inert gas' welding of stainless steel, the weld depth can be increased by a factor of two or more if a thin layer of flux powder is initially coated on the steel. Numerical predictions from a unified electrode-arc-weldpool model are made elucidating the possible role of three different mechanisms previously proposed to explain this effect, and we also examine a new fourth possible mechanism, namely the effect that the flux is an electrical insulator. (1) Calculations support the suggestion that if the dissolved flux in the weld pool changes the temperature dependence of the surface tension to increase rather than decrease with temperature, the direction of convective circulation within the weld pool can change from radially outwards to radially inwards, leading to an increased weld depth of the order of 2 mm. (2) The effect of electron attachment to flux vapour in the arc, if the vapour contains an attaching gas such as oxygen, is found to have a negligible effect in producing arc constriction and thus a higher current density to increase weld depth. (3) Our treatment assumes that the surface of the weld pool is undepressed by the arc, so that we have not examined the suggestion that increased weld depth is caused by the flux lowering surface tension and thus increasing depression of the weld pool surface. But experimental observations indicate that such depression is negligible for currents of less than 200 A. (4) If the flux produces an insulating layer on the metal surface, calculations indicate that there can be a marked increase in weld depth of the order of 5 mm or more due to the flux blocking the current in the outer regions of the arc thus producing a higher current density at the arc centre. Furthermore these calculations indicate that the flux causes an arc spot to form at the anode, in agreement with similar experimental observations of an anode spot in the presence of a flux.

  20. Laser based spot weld characterization

    NASA Astrophysics Data System (ADS)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  1. Effect of welding variables and solidification substructure on weld metal porosity

    SciTech Connect

    Ramirez, J.E.; Liu, S. . Dept. of Metallurgical and Materials Engineering); Han, B. )

    1994-10-01

    Porosity is defined as cavity-type discontinuities formed by gas entrapment during solidification. Causes of porosity in fusion welds are the dissolved gases in weld metal and welding process variables that control the solidification rate. To study the mechanisms of porosity formation in weld metal, single-pass gas tungsten-arc weld metal was produced using the bead-on-plate technique on three nickel-copper alloys (80 wt pct Ni-20 wt pct Cu, 65 wt pct Ni-35 wt pct Cu, 35 wt pct Ni-65 wt pct Cu). Four different welding speeds were used under various amounts of nitrogen content in argon-shielding atmosphere. A qualitative model was proposed to characterize the effect of welding variables and solidification substructure on bulk and interdendritic porosity formation. Increasing amounts of nitrogen gas (from 0.2 pct to 6.0 pct in volume) introduced in argon-shielding atmosphere increased the amount of porosity in weld metal. The amount of bulk and total porosity increased as the solubility of nitrogen in the weld metal alloy decreased. The solidification rate of the weld pool is the most important factor controlling the mechanism of porosity formation. The observed amount of bulk pores in this study increased with the increase of welding speed; that is, if the time is insufficient for dissolved and evolved gases to escape during solidification, porosity will result. However, a decrease in the amount of interdendritic pores was observed with increasing welding speed in the 80Ni-20Cu and 35Ni-65Cu alloys. This decrease can be related to the effect of solidification rate on the balance between the disjoining pressure, resistance of the liquid film to be disrupted, repulsion of the bubble from the solidification front, and the hydrodynamic force resisting the movement of the bubble.

  2. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    NASA Astrophysics Data System (ADS)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  3. Automatic Welding of Stainless Steel Tubing

    NASA Technical Reports Server (NTRS)

    Clautice, W. E.

    1978-01-01

    To determine if the use of automatic welding would allow reduction of the radiographic inspection requirement, and thereby reduce fabrication costs, a series of welding tests were performed. In these tests an automatic welder was used on stainless steel tubing of 1/2, 3/4, and 1/2 inch diameter size. The optimum parameters were investigated to determine how much variation from optimum in machine settings could be tolerate and still result in a good quality weld. The process variables studied were the welding amperes, the revolutions per minute as a function of the circumferential weld travel speed, and the shielding gas flow. The investigation showed that the close control of process variables in conjunction with a thorough visual inspection of welds can be relied upon as an acceptable quality assurance procedure, thus permitting the radiographic inspection to be reduced by a large percentage when using the automatic process.

  4. Structure/property relationships in multipass GMA welding of beryllium.

    SciTech Connect

    Hochanadel, P. W.; Hults, W. L.; Thoma, D. J.; Dave, V. R.; Kelly, A. M.; Pappin, P. A.; Cola, M. J.; Burgardt, P.

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  5. Computational simulation of weld microstructure and distortion by considering process mechanics

    NASA Astrophysics Data System (ADS)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  6. A hot-cracking mitigation technique for welding high-strength aluminum alloy

    SciTech Connect

    Yang, Y.P.; Dong, P.; Zhang, J.; Tian, X.

    2000-01-01

    A hot-cracking mitigation technique for gas tungsten arc welding (GTAW) of high-strength aluminum alloy 2024 is presented. The proposed welding technique incorporates a trailing heat sink (an intense cooling source) with respect to the welding torch. The development of the mitigation technique was based on both detailed welding process simulation using advanced finite element techniques and systematic laboratory experiments. The finite element methods were used to investigate the detailed thermomechanical behavior of the weld metal that undergoes the brittle temperature range (BTR) during welding. As expected, a tensile deformation zone within the material BTR region was identified behind the weld pool under conventional GTA welding process conventional GTA welding process conditions for the aluminum alloy studied. To mitigate hot cracking, the tensile zone behind the weld pool must be eliminated or reduce to a satisfactory level if the weld metal hot ductility cannot be further improved. With detailed computational modeling, it was found that by the introduction of a trailing heat sink at some distance behind the welding arc, the tensile strain rate with respect to temperature in the zone encompassing the BTR region can be significantly reduced. A series of parametric studies were also conducted to derive optimal process parameters for the trailing heat sink. The experimental results confirmed the effectiveness of the trailing heat sink technique. With a proper implementation of the trailing heat sink method, hot cracking can be completely eliminated in welding aluminum alloy 2024 (AA 2024).

  7. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  8. Multi-physical Simulation of Laser Welding

    NASA Astrophysics Data System (ADS)

    Vázquez, Rodrigo Gómez; Koch, Holger M.; Otto, Andreas

    Laser welding is a highly demanded technology for manufacturing of body parts in the automotive industry. Application of powerful multi-physical simulation models permits detailed investigation of the laser process avoiding intricate experimental setups and procedures. Features like the degree of power coupling, keyhole evolution or currents inside the melt pool can be analyzed easily. The implementation of complex physical phenomena, like multi-reflection absorption provides insight into process characteristics under selectable conditions and yields essential information concerning the driving mechanisms. The implementation of additional physical models e. g. for diffusion discloses new potential for investigating welding of dissimilar materials. In this paper we present a computational study of laser welding for different conditions. Applied to a real case model predictions show good agreement with experimental results. Initial tests including species diffusion during welding of dissimilar materials are also presented.

  9. Narrow gap laser welding

    DOEpatents

    Milewski, J.O.; Sklar, E.

    1998-06-02

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables. 34 figs.

  10. Narrow gap laser welding

    DOEpatents

    Milewski, John O.; Sklar, Edward

    1998-01-01

    A laser welding process including: (a) using optical ray tracing to make a model of a laser beam and the geometry of a joint to be welded; (b) adjusting variables in the model to choose variables for use in making a laser weld; and (c) laser welding the joint to be welded using the chosen variables.

  11. Towards a Map of Solidification Cracking Risk in Laser Welding of Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Bermejo, María-Asunción Valiente; DebRoy, Tarasankar; Hurtig, Kjell; Karlsson, Leif; Svensson, Lars-Erik

    In this work, two series of specimens with Hammar and Svensson's Cr- and Ni-equivalents (Creq+Nieq) = 35 and 45 wt% were used to cover a wide range of austenitic grades. These were laser welded with different energy inputs achieving cooling rates in the range of 103 °C/s to 104 °C/s. As high cooling rates and rapid solidification conditions could favour fully austenitic solidification and therefore raise susceptibility to solidification cracking, the solidification modes of the laser welded specimens were compared to the ones experienced by the same alloys under arc welding conditions. It was found that high cooling rates experienced in laser welding promoted fully austenitic solidification for a wider range of compositions, for example specimens with (Creq+Nieq) = 35% under arc welding cooling conditions at 10 °C/s showed fully austenitic solidification up to Creq/Nieq = 1.30, whilst the same specimens laser cooled at 103 °C/s showed fully austenitic solidification up to Creq/Nieq = 1.50 and those cooled at 104 °C/s showed it up to Creq/Nieq = 1.68. Therefore, high cooling rates extended the solidification cracking risk to a wider range of Creq/Nieq values. This work also compares the cooling rates experimentally determined by thermocouples to the computed cooling rates calculated by a highly-advanced computational model. The distance between the thermocouple's wires and the thermal resistance of thermocouples together with the small size of the weld pools proved to be practical limitations in the experimental determination of cooling rates. However, an excellent agreement was found between computed and experimental solidus isotherms at high energy input settings. For low energy input settings cooling rate was in the order of magnitude of 104 °C/s, whilst for high energy input settings cooling rate was found to be in the order of magnitude of 103 °C/s.

  12. High-Speed Friction-Stir Welding To Enable Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current joining technologies for automotive aluminum alloys are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding has been traditionally applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum welded components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability utilizing a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  13. Welded Scoria

    Samples of welded scoria. Scoria is another word for the ‘cinders’ that make up volcanic cinder cones. Roza Member, Columbia River Basalt Group. Southeast of Winona, WA. Cinder cones (otherwise known as scoria cones) are the most common type of volcano on Earth. They’re also one o...

  14. Daily consumption of orange-fleshed sweet potato for 60 days increased plasma β-carotene concentration but did not increase total body vitamin A pool size in Bangladeshi women.

    PubMed

    Jamil, Kazi M; Brown, Kenneth H; Jamil, Maleka; Peerson, Janet M; Keenan, Alison H; Newman, John W; Haskell, Marjorie J

    2012-10-01

    We assessed the effect of daily consumption of orange-fleshed sweet potatoes (OFSP), with or without added fat, on the vitamin A (VA) status of Bangladeshi women with low initial VA status. Women (n = 30/group) received one of the following for 6 d/wk over 10 wk: 1) 0 μg retinol activity equivalents (RAE)/d as boiled white-fleshed sweet potatoes (WFSP) and a corn oil capsule, 2) 600 μg RAE/d as boiled OFSP and a corn oil capsule, 3) fried OFSP and a corn oil capsule, or 4) boiled WFSP and a retinyl palmitate capsule in addition to their home diets. Plasma concentrations of retinol and β-carotene and total body VA pool size were assessed before and after the 60-d intervention. Initial and final plasma retinol concentrations (mean ± SD) were 0.75 ± 0.18 μmol/L and 0.84 ± 0.19 μmol/L, respectively (P = 0.31); final means did not differ by group. Initial and final plasma β-carotene concentrations were 0.10 ± 00 μmol/L and 0.18 ± 0.09 μmol/L, respectively (P < 0.0001); final mean plasma β-carotene concentrations were higher in groups that received OFSP (P < 0.0001), and final mean plasma β-carotene was marginally higher in the group that received fried OFSP compared with boiled OFSP (P = 0.07). Initial and final total body VA pool sizes were 0.060 ± 0.047 mmol and 0.091 ± 0.070 mmol, respectively (P = 0.05, n = 110) and did not differ by group. Despite an increase in plasma β-carotene concentration, the impact of OFSP on VA status appears to be limited in Bangladeshi women residing in a resource-poor community. PMID:22933750

  15. Submerged arc flux welding with CaF/sub 2/-CaO-SiO/sub 2/ fluxes: Possible electrochemical effects on weld metal

    SciTech Connect

    Shah, S.; Blander, M.; Indacochea, J.E.

    1987-01-01

    Compositional changes of weld metal from welds made by submerged arc flux welding of steel using CaF/sub 2/-CaO-SiO/sub 2/ fluxes are consistent with an electrochemical mechanism in which the filler wire is anodically oxidized to form oxides and fluorides, and metals are cathodically deposited at the weld pool-flux interface. This speculative mechanism, if proven by further detailed studies, could make it possible to predict fluxes which will improve the quality of welds. 10 refs., 3 figs., 3 tabs.

  16. Elucidation of high-power fibre laser welding phenomena of stainless steel and effect of factors on weld geometry

    NASA Astrophysics Data System (ADS)

    Kawahito, Yousuke; Mizutani, Masami; Katayama, Seiji

    2007-10-01

    The fibre laser has been receiving great attention due to its advantages of high efficiency, high power and high beam quality, and is expected to be one of the most desirable heat sources for high-speed and deep-penetration welding. In this study, therefore, in bead-on-plate welding of Type 304 stainless steel plates with 6 kW fibre laser, the effects of laser power, power density and welding speed on the formation of sound welds were investigated with four laser beams of 130, 200, 360 and 560 µm in spot diameter, and their welding phenomena were clarified with high-speed video cameras and an x-ray transmission real-time imaging system. The weld beads showed a keyhole type of penetration at any diameter, and the maximum penetration of 11 mm in depth was obtained at 130 µm spot diameter and 0.6 m min-1 welding speed. It was found that the laser power density exerted a remarkable effect on the increase in weld penetration at higher welding speeds, and sound partially penetrated welds without welding defects such as porosity, underfilling or humping could be produced at wide process windows of welding speeds between 4.5 and 10 m min-1 with fibre laser beams of 360 µm or 560 µm in spot diameter. The high-speed video observation pictures and the x-ray images of the welding phenomena at 6 m min-1 welding speed and 360 µm spot diameter show that a sound weld bead was formed owing to a long molten pool suppressing and accommodating spattering and a stable keyhole generating no bubbles from the tip, respectively.

  17. Preliminary Study on the Formability of a Laser-Welded Superplastic Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Sorgente, D.; Corizzo, O.; Brandizzi, M.; Tricarico, L.

    2014-11-01

    In this work, the effect of the laser-material interaction on the formability of a superplastic aluminum alloy was investigated. In applications such as Tailor-Welded Blanks and in the manufacturing of very large components with a complex shape, laser welding combined with superplastic forming may be a very fitting industrial tool. Bead on plate tests were carried out in order to simulate the laser-welding process and then, free inflation tests were performed to evaluate the compatibility of these two processing techniques. The Al-Mg alloy used in this work has a very small grain size which ensures the superplastic behavior. With the aim of preserving this peculiarity, the following aspects on the formability were investigated: (i) the surface condition of the bead before the forming test (with and without the removal of the excess of metal); (ii) the effect of the travel speed of the laser source on the mean grain size; (iii) the introduction of a refiner, commonly used in aluminum casts, in the molten pool in order to further reduce the mean grain size.

  18. ECS DAAC Data Pools

    NASA Astrophysics Data System (ADS)

    Kiebuzinski, A. B.; Bories, C. M.; Kalluri, S.

    2002-12-01

    As part of its Earth Observing System (EOS), NASA supports operations for several satellites including Landsat 7, Terra, and Aqua. ECS (EOSDIS Core System) is a vast archival and distribution system and includes several Distributed Active Archive Centers (DAACs) located around the United States. EOSDIS reached a milestone in February when its data holdings exceeded one petabyte (1,000 terabytes) in size. It has been operational since 1999 and originally was intended to serve a large community of Earth Science researchers studying global climate change. The Synergy Program was initiated in 2000 with the purpose of exploring and expanding the use of remote sensing data beyond the traditional research community to the applications community including natural resource managers, disaster/emergency managers, urban planners and others. This included facilitating data access at the DAACs to enable non-researchers to exploit the data for their specific applications. The combined volume of data archived daily across the DAACs is of the order of three terabytes. These archived data are made available to the research community and to general users of ECS data. Currently, the average data volume distributed daily is two terabytes, which combined with an ever-increasing need for timely access to these data, taxes the ECS processing and archival resources for more real-time use than was previously intended for research purposes. As a result, the delivery of data sets to users was being delayed in many cases, to unacceptable limits. Raytheon, under the auspices of the Synergy Program, investigated methods at making data more accessible at a lower cost of resources (processing and archival) at the DAACs. Large on-line caches (as big as 70 Terabytes) of data were determined to be a solution that would allow users who require contemporary data to access them without having to pull it from the archive. These on-line caches are referred to as "Data Pools." In the Data Pool concept, data is inserted via subscriptions based on ECS events, for example, arrival of data matching a specific spatial context. Upon acquisition, these data are written to the Data Pools as well as to the permanent archive. The data is then accessed via a public Web interface, which provides a drilldown search, using data group, spatial, temporal and other flags. The result set is displayed as a list of ftp links to the data, which the user can click and directly download. Data Pool holdings are continuously renewed as the data is allowed to expire and is replaced by more current insertions. In addition, the Data Pool may also house data sets that though not contemporary, receive significant user attention, i.e. a Chernobyl-type of incident, a flood, or a forest fire. The benefits are that users who require contemporary data can access the data immediately (within 24 hours of acquisition) under a much improved access technique. Users not requiring contemporary data, benefit from the Data Pools by having greater archival and processing resources (and a shorter processing queue) made available to them. All users benefit now from the capability to have standing data orders for data matching a geographic context (spatial subscription), a capability also developed under the Synergy program. The Data Pools are currently being installed and checked at each of the DAACs. Additionally, several improvements to the search capabilities, data manipulation tools and overall storage capacity are being developed and will be installed in the First Quarter of 2003.

  19. An Assessment of Molten Metal Detachment Hazards for Electron Beam Welding in the Space Environment: Analysis and Test Results

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Russell, C.; Bhat, B.; Fragomeni, J. M.

    1998-01-01

    Conditions under which molten metal detachments might occur in a space welding environment are analyzed. A weld pool detachment parameter specifying conditions for pool detachment by impact is derived and corroborated by experimental evidence. Impact detachment for the pool is unlikely. Impact detachment for a drop of metal on the end of the weld wire may be possible under extreme conditions. Other potential causes of molten metal detachment considered, vaporization pressure forces and wire flickout from the pool, did not appear to present significant detachment threats.

  20. Electroslag and electrogas welding

    NASA Technical Reports Server (NTRS)

    Campbell, H. C.

    1972-01-01

    These two new joining methods perform welding in the vertical position, and therein lies the secret of their impressive advantages in material handling, in weld preparation, in welding speed, in freedom from distortion, and in weld soundness. Once the work has been set in the proper vertical position for welding, no further plate handling is required. The molten filler metal is held in place by copper shoes or dams, and the weld is completed in one pass.

  1. Energy Characterization of Short-Circuiting Transfer of Metal Droplet in Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Yi, Luo; Yang, Zhu; Xiaojian, Xie; Rui, Wan

    2015-08-01

    The structure-borne acoustic emission (AE) signals were detected in real time in gas metal arc (GMA) welding and pulse GMA (P-GMA) welding. According to the AE signals, the mode of short-circuiting transfer was analyzed, and the energy gradient and total energy were calculated. The calculation to the AE signals of one metal droplet transfer (MDT) showed that the energy gradient increased with increasing welding heat input not only in GMA welding but also in P-GMA welding. The energy gradient of one MDT in P-GMA welding was higher than that in GMA welding, which indicated that a high energy gradient was the basic reason for the additional vibration energy provided by pulse effect in P-GMA welding. The total energy of AE signals increased with increasing welding heat input not only in GMA welding but also in P-GMA welding. The total energy of AE signals in P-GMA welding was higher than that in GMA welding, which indicated that the additional vibration energy provided by welding pulses was the main cause of the grain structure refining in P-GMA welding. So, the results provided another means to predict the weld grain size and optimize the welding process by AE signals detected in welding.

  2. Fiber laser welding of nickel-based superalloy inconel 718

    NASA Astrophysics Data System (ADS)

    Oshobe, Omudhohwo Emaruke

    Inconel 718 (IN 718) is widely used in applications, such as aircraft and power turbine components. Recently, fiber laser welding has become an attractive joining technique in industry for fabrication and repair of service-damaged components. However, a major limitation in the laser welding of IN 718 is that liquation cracking occurs. In the present work, autogenous fiber laser welding of IN 718 was used to study the effects of welding parameters and different pre-weld heat treatments on liquation cracking. Contrary to previous studies, a dual effect of heat input on cracking is observed. A rarely reported effect of heat input is attributed to process instability. Liquation cracking increases with pre-weld heat treatment temperatures that increase grain size and/or, possibly, intregranular boron segregation. The study shows that pre-weld heat treatment at 950oC can be used for repair welding of IN 718 without significant loss in cracking resistance.

  3. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-03-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  4. Investigation of Laser Parameters in Silicon Pulsed Laser Conduction Welding

    NASA Astrophysics Data System (ADS)

    Shayganmanesh, Mahdi; Khoshnoud, Afsaneh

    2016-01-01

    In this paper, laser welding of silicon in conduction mode is investigated numerically. In this study, the effects of laser beam characteristics on the welding have been studied. In order to model the welding process, heat conduction equation is solved numerically and laser beam energy is considered as a boundary condition. Time depended heat conduction equation is used in our calculations to model pulsed laser welding. Thermo-physical and optical properties of the material are considered to be temperature dependent in our calculations. Effects of spatial and temporal laser beam parameters such as laser beam spot size, laser beam quality, laser beam polarization, laser incident angle, laser pulse energy, laser pulse width, pulse repetition frequency and welding speed on the welding characteristics are assessed. The results show that how the temperature dependent thermo-physical and optical parameters of the material are important in laser welding modeling. Also the results show how the parameters of the laser beam influence the welding characteristics.

  5. Emissions of chromium (VI) from arc welding.

    PubMed

    Heung, William; Yun, Myoung-Jin; Chang, Daniel P Y; Green, Peter G; Halm, Chris

    2007-02-01

    The presence of Cr in the +6 oxidation state (Cr[VI]) is still observed in ambient air samples in California despite steps taken to reduce emissions from plating operations. One known source of emission of Cr(VI) is welding, especially with high Cr-content materials, such as stainless steels. An experimental effort was undertaken to expand and update Cr(VI) emission factors by conducting tests on four types of arc-welding operations: gas-metal arc welding (GMAW), shielded metal arc welding (SMAW), fluxcore arc welding, and pulsed GMAW. Standard American Welding Society hood results were compared with a total enclosure method that permitted isokinetic sampling for particle size-cut measurement, as well as total collection of the aerosol. The fraction of Cr(VI) emitted per unit mass of Cr electrode consumed was determined. Consistent with AP-42 data, initial results indicate that a significant fraction of the total Cr in the aerosol is in the +6 oxidation state. The fraction of Cr(VI) and total aerosol mass produced by the different arc welding methods varies with the type of welding process used. Self-shielded electrodes that do not use a shield gas, for example, SMAW, produce greater amounts of Cr(VI) per unit mass of electrode consumed. The formation of Cr(VI) from standard electrode wires used for welding mild steel was below the method detection limit after eliminating an artifact in the analytical method used. PMID:17355086

  6. Heat and mass transfer in laser dissimilar welding of stainless steel and nickel

    NASA Astrophysics Data System (ADS)

    Hu, Yaowu; He, Xiuli; Yu, Gang; Ge, Zhifu; Zheng, Caiyun; Ning, Weijian

    2012-05-01

    Laser spot welding of stainless steel-nickel dissimilar couple has been studied experimentally and numerically. A three-dimensional heat and mass transfer model is used to simulate the welding process, based on the solution of the equations of mass, momentum, energy conservation and solute transport in weld pool. The calculated fusion zone geometry and element distributions are in good agreement with the corresponding experimental results. The role of fluid flow on temperature field and its evolution is analyzed by comparing two cases with and without considering convection. Temperature fields far away from the weld pool are quite similar, but exhibit large difference close to the heat source. During the early stage after formation of weld pool, the distribution of element Fe in weld pool is non-uniform, due to insufficient time for mixing. The speed for mass transport is the highest during the initial stage of weld pool formation and it decreases with time. Both heat and mass transport are significantly influenced by convection during laser spot welding of stainless steel and nickel.

  7. Field comparison of three inhalable samplers (IOM, PGP-GSP 3.5 and Button) for welding fumes.

    PubMed

    Zugasti, Agurtzane; Montes, Natividad; Rojo, José M; Quintana, M José

    2012-02-01

    Inhalable sampler efficiency depends on the aerodynamic size of the airborne particles to be sampled and the wind speed. The aim of this study was to compare the behaviour of three personal inhalable samplers for welding fumes generated by Manual Metal Arc (MMA) and Metal Active Gas (MAG) processes. The selected samplers were the ones available in Spain when the study began: IOM, PGP-GSP 3.5 (GSP) and Button. Sampling was carried out in a welding training center that provided a homogeneous workplace environment. The static sampling assembly used allowed the placement of 12 samplers and 2 cascade impactors simultaneously. 183 samples were collected throughout 2009 and 2010. The range of welding fumes' mass concentrations was from 2 mg m(-3) to 5 mg m(-3). The pooled variation coefficients for the three inhalable samplers were less than or equal to 3.0%. Welding particle size distribution was characterized by a bimodal log-normal distribution, with MMADs of 0.7 μm and 8.2 μm. For these welding aerosols, the Button and the GSP samplers showed a similar performance (P = 0.598). The mean mass concentration ratio was 1.00 ± 0.01. The IOM sampler showed a different performance (P < 0.001). The mean mass concentration ratios were 0.90 ± 0.01 for Button/IOM and 0.92 ± 0.02 for GSP/IOM. This information is useful to consider the measurements accomplished by the IOM, GSP or Button samplers together, in order to assess the exposure at workplaces over time or to study exposure levels in a specific industrial activity, as welding operations. PMID:22037834

  8. WELDING APPARATUS

    DOEpatents

    Correy, T.B.; DeWitt, D.E.; Nelson, I.V.

    1963-04-23

    This patent covers an arrangement for replacing air in a welding chamber with an inert gas. This operation usually is time-consuming because of the tendency of the inert gas to mix with the air being removed from the welding chamber. The chamber is open at the bottom and has at its top a cover and a porous plate a little below the cover. The inert gas is admitted to the chamber through two screened openings in the cover. On passing through the porous plate, the gas acts as a piston extending across the chamber and moving downwardly to expel the air through the lower open end of the chamber, with a minimum of mixing with the air being expelled. (AEC)

  9. WELDING PROCESS

    DOEpatents

    Zambrow, J.; Hausner, H.

    1957-09-24

    A method of joining metal parts for the preparation of relatively long, thin fuel element cores of uranium or alloys thereof for nuclear reactors is described. The process includes the steps of cleaning the surfaces to be jointed, placing the sunfaces together, and providing between and in contact with them, a layer of a compound in finely divided form that is decomposable to metal by heat. The fuel element members are then heated at the contact zone and maintained under pressure during the heating to decompose the compound to metal and sinter the members and reduced metal together producing a weld. The preferred class of decomposable compounds are the metal hydrides such as uranium hydride, which release hydrogen thus providing a reducing atmosphere in the vicinity of the welding operation.

  10. FCAW orbital pipe welding technology improves fab shop productivity

    SciTech Connect

    Emmerson, J.G.

    1999-11-01

    Fabricators, like all companies facing increasing competition, are reevaluating and redesigning work flow and plant layout, and implementing new techniques to improve productivity and reduce work-in-process times. Submerged arc welding (SAW) has been widely used for years to produce high-quality mechanized butt joint welds in pipe, but requires workpieces to be rotated under a fixed torch. Submerged arc welding can provide high deposition rates, but requires considerable capital expenditures for turning rolls and positioners, especially if the pipe work consists of larger-diameter pipe, long lengths and heavy assemblies. Spool pieces with complex or asymmetrical configurations (elbows, for example) often cannot be conveniently rotated without special and time-consuming fixturing. Many assemblies may consist of pipe connections that must be made in position. Traditionally, these welds have been made using manual techniques: shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) or a combination of processes by skilled welders. With the growing shortage of skilled welders worldwide, fabricators are increasingly evaluating different processes and techniques to compensate for less-skilled welders or to improve the productivity of their skilled work force. One technique increasingly being used in mechanized orbital flux cored arc welding (FCAW). FCAW might be thought of as the submerged arc process turned inside out. With SAW, a solid wire electrode is simultaneously fed into the weld pool along with powdered flux. Instead of solid wire, FCAW substitutes a metal tube or sheath, wrapped around a core of flux. The orbital systems on the market today use additional gas shielding of the weld pool. All-position FCAW wires are formulated with fluxing agents that promote rapid pool solidification, which allow welds to be made in all positions.

  11. Fundamentals of the chemical behavior of select welding fluxes

    SciTech Connect

    Polar, A.; Indacochea, J.E. ); Blander, M. )

    1991-01-01

    This investigation evaluates the relative effects of thermochemical and electrochemical reactions on the transport of elements, particularly manganese, from the flux to the weld metal in submerged arc welding. The experimental fluxes used were silica-calcium oxide-based, containing 20 wt-% MnO, 15 wt-% CaF[sub 2], and SiO[sub 2] to CaO ratios that varies from 5.50 to 1.16. The slags formed show good detachability, and the welds produced have good bead morphology. The dilution effect was eliminated by drawing the welding wire from the same materials as the base plate. The welding parameters were held constant during weld production and two polarities were used. The arc was found to be stable, but was more so for electrode-positive (reverse) polarity welds. The results of chemical analyses of fluxes, slags and welds are consistent with the following three mechanisms working in parallel that all affect the compositions (and the apparent compositions) of weld metal: (1) the pyrochemical reactions between the slag and the metal; (2) electrochemical reactions at the anodes and cathodes (oxidation and reduction, respectively); and (3) occlusion of slag or solid products of reactions in the weld pool. 22 refs., 6 figs., 1 tab.

  12. Friction plug welding

    NASA Technical Reports Server (NTRS)

    Takeshita, Riki (Inventor); Hibbard, Terry L. (Inventor)

    2001-01-01

    Friction plug welding (FPW) usage is advantageous for friction stir welding (FSW) hole close-outs and weld repairs in 2195 Al--Cu--Li fusion or friction stir welds. Current fusion welding methods of Al--Cu--Li have produced welds containing varied defects. These areas are found by non-destructive examination both after welding and after proof testing. Current techniques for repairing typically small (<0.25) defects weaken the weldment, rely heavily on welders' skill, and are costly. Friction plug welding repairs increase strength, ductility and resistance to cracking over initial weld quality, without requiring much time or operator skill. Friction plug welding while pulling the plug is advantageous because all hardware for performing the weld can be placed on one side of the workpiece.

  13. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  14. Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  15. Modeling of thermal stresses in welds

    SciTech Connect

    Zacharia, T.; Aramayo, G.A.

    1993-12-31

    The transient stress distribution in a Sigmajig test specimen resulting from mechanical and thermal loading was calculated for a Type 316 stainless steel specimen using finite element analysis. The study attempted to resolve the relationship between the dynamic stress distribution, particularly near the trailing edge of the pool, and the observed cracking behavior in the test specimen. The initiation and propagation of the crack during welding was visually monitored using a stroboscopic vision system. The numerical results were used to understand the initiation and propagation of hot-cracks during controlled welding of a specimen subjected to external restraint.

  16. Autonomous Mobile Robot System for Monitoring and Control of Penetration during Fixed Pipes Welding

    NASA Astrophysics Data System (ADS)

    Muramatsu, Masahiro; Suga, Yasuo; Mori, Kazuhiro

    In order to obtain sound welded joints in the welding of horizontal fixed pipes, it is important to control the back bead width in the first pass. However, it is difficult to obtain optimum back bead width, because the proper welding conditions change with welding position. In this paper, in order to fully automatize the welding of fixed pipes, a new method is developed to control the back bead width with monitoring the shape and dimensions of the molten pool from the reverse side by autonomous mobile robot system. This robot has spherical shape so as to move in a complex route including curved pipe, elbow joint and so on. It has also a camera to observe inner surface of pipe and recognize a route in which the robot moves. The robot moves to welding point in the pipe, and monitors the reverse side shape of molten pool during welding. The host computer processes the images of molten pool acquired by the robot vision system, and calculates the optimum welding conditions to realize adaptive control of welding. As a result of the welding control experiments, the effectiveness of this system for the penetration control of fixed pipes is demonstrated.

  17. Toughness of 12%Cr ferritic/martensitic steel welds produced by non-arc welding processes

    SciTech Connect

    Ginn, B.J.; Gooch, T.G.

    1998-08-01

    Low carbon 12%Cr steels can offer reduced life cycle costs in many applications. The present work examined the behavior of commercial steels of varying composition when subject to low heat input welding by the electron beam (EB) process and to a forge cycle by linear friction welding (LFW). Charpy impact testing was carried out on the high temperature heat-affected zone (HAZ)/fusion boundary or weld interface, with metallographic examination. With EB welding, the ductile-brittle transition temperature (DBTT) was below 0 C (32 F) only for steel of low ferrite factor giving a fully martensitic weld area. Higher ferrite factor alloys showed predominantly ferritic transformed microstructures and a transition well above room temperature. Grain coarsening was found even with low EB process power, the peak grain size increasing with both heat input and steel ferrite factor. Use of LFW gave a fine weld area structure and DBTTs around 0 C even in high ferrite factor (FF) material.

  18. O-Linked β-N-Acetylglucosamine (O-GlcNAc) Site Thr-87 Regulates Synapsin I Localization to Synapses and Size of the Reserve Pool of Synaptic Vesicles*

    PubMed Central

    Skorobogatko, Yuliya; Landicho, Ashly; Chalkley, Robert J.; Kossenkov, Andrew V.; Gallo, Gianluca; Vosseller, Keith

    2014-01-01

    O-GlcNAc is a carbohydrate modification found on cytosolic and nuclear proteins. Our previous findings implicated O-GlcNAc in hippocampal presynaptic plasticity. An important mechanism in presynaptic plasticity is the establishment of the reserve pool of synaptic vesicles (RPSV). Dynamic association of synapsin I with synaptic vesicles (SVs) regulates the size and release of RPSV. Disruption of synapsin I function results in reduced size of the RPSV, increased synaptic depression, memory deficits, and epilepsy. Here, we investigate whether O-GlcNAc directly regulates synapsin I function in presynaptic plasticity. We found that synapsin I is modified by O-GlcNAc during hippocampal synaptogenesis in the rat. We identified three novel O-GlcNAc sites on synapsin I, two of which are known Ca2+/calmodulin-dependent protein kinase II phosphorylation sites. All O-GlcNAc sites mapped within the regulatory regions on synapsin I. Expression of synapsin I where a single O-GlcNAc site Thr-87 was mutated to alanine in primary hippocampal neurons dramatically increased localization of synapsin I to synapses, increased density of SV clusters along axons, and the size of the RPSV, suggesting that O-GlcNAcylation of synapsin I at Thr-87 may be a mechanism to modulate presynaptic plasticity. Thr-87 is located within an amphipathic lipid-packing sensor (ALPS) motif, which participates in targeting of synapsin I to synapses by contributing to the binding of synapsin I to SVs. We discuss the possibility that O-GlcNAcylation of Thr-87 interferes with folding of the ALPS motif, providing a means for regulating the association of synapsin I with SVs as a mechanism contributing to synapsin I localization and RPSV generation. PMID:24280219

  19. Manganese in occupational arc welding fumes--aspects on physiochemical properties, with focus on solubility.

    PubMed

    Taube, Fabian

    2013-01-01

    Physicochemical properties, such as particle sizes, composition, and solubility of welding fumes are decisive for the bioaccessibility of manganese and thereby for the manganese cytotoxic and neurotoxic effects arising from various welding fumes. Because of the diverse results within the research on welding fume solubility, this article aims to review and discuss recent literature on physicochemical properties of gas metal arc welding, shielded metal arc welding, and flux-cored arc welding fumes, with focus on solubility properties. This article also presents a short introduction to the literature on arc welding techniques, health effects from manganese, and occupational exposure to manganese among welders. PMID:22997412

  20. Investigation of Microstructural Features Determining the Toughness of 980 MPa Bainitic Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, R.; Zhang, X. B.; Wang, Z.; Peng, Y.; Du, W. S.; Tian, Z. L.; Chen, J. H.

    2014-02-01

    The microstructural features that control the impact toughness of weld metals of a 980 MPa 8 pct Ni high-strength steel are investigated using instrumented Charpy V tester, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), electron back-scattered diffraction (EBSD), and finite-element method (FEM) calculation. The results show that the critical event for cleavage fracture in this high-strength steel and weld metals is the propagation of a bainite packet-sized crack across the packet boundary into contiguous packets, and the bainitic packet sizes control the impact toughness. The high-angle misorientation boundaries detected in a bainite packet by EBSD form fine tear ridges on fracture surfaces. However, they are not the decisive factors controlling the cleavage fracture. The effects of Ni content are essential factors for improving the toughness. The extra large cleavage facets seriously deteriorate the toughness, which are formed on the interfaces of large columnar crystals growing in welding pools with high heat input.

  1. The dynamics of droplet formation and detachment in gas metal arc welding

    SciTech Connect

    Johnson, J.A.; Smartt, H.B.; Clark, D.E.; Carlson, N.M.; Watkins, A.D.; Lethcoe, B.J.

    1990-01-01

    Experimental measurements of gas metal arc welding are required for the development and confirmation of models of the process. This paper reports on two experiments that provide information for models of the arc physics and of the weld pool dynamics. The heat transfer efficiency of the spray transfer mode in gas metal arc welding was measured using a calorimetry technique. The efficiency varied from 75 to 85%. A special fixture was used to measure the droplet contribution, which is determined to be between 35 and 45% of the total input energy. A series of experiments was performed at a variety of conditions ranging from globular to spray to streaming transfer. The transfer was observed by taking high-speed movies at 500 to 5000 frames per second of the backlighted droplets. An automatic image analysis system was used to obtain information about the droplets including time between detachments, droplet size, and droplet acceleration. At the boundary between the globular and spray modes, the droplet size varies between small droplets that melt off faster than average, resulting in a smaller electrode extension, and large droplets that melt off slower than average, resulting in an increase in the electrode extension. 5 refs., 4 figs., 2 tabs.

  2. A Quantitative Model of Keyhole Instability Induced Porosity in Laser Welding of Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Pang, Shengyong; Chen, Weidong; Wang, Wen

    2014-06-01

    Quantitative prediction of the porosity defects in deep penetration laser welding has generally been considered as a very challenging task. In this study, a quantitative model of porosity defects induced by keyhole instability in partial penetration CO2 laser welding of a titanium alloy is proposed. The three-dimensional keyhole instability, weld pool dynamics, and pore formation are determined by direct numerical simulation, and the results are compared to prior experimental results. It is shown that the simulated keyhole depth fluctuations could represent the variation trends in the number and average size of pores for the studied process conditions. Moreover, it is found that it is possible to use the predicted keyhole depth fluctuations as a quantitative measure of the average size of porosity. The results also suggest that due to the shadowing effect of keyhole wall humps, the rapid cooling of the surface of the keyhole tip before keyhole collapse could lead to a substantial decrease in vapor pressure inside the keyhole tip, which is suggested to be the mechanism by which shielding gas enters into the porosity.

  3. Modeling of plasma and thermo-fluid transport in hybrid welding

    NASA Astrophysics Data System (ADS)

    Ribic, Brandon D.

    Hybrid welding combines a laser beam and electrical arc in order to join metals within a single pass at welding speeds on the order of 1 m min -1. Neither autonomous laser nor arc welding can achieve the weld geometry obtained from hybrid welding for the same process parameters. Depending upon the process parameters, hybrid weld depth and width can each be on the order of 5 mm. The ability to produce a wide weld bead increases gap tolerance for square joints which can reduce machining costs and joint fitting difficulty. The weld geometry and fast welding speed of hybrid welding make it a good choice for application in ship, pipeline, and aerospace welding. Heat transfer and fluid flow influence weld metal mixing, cooling rates, and weld bead geometry. Cooling rate affects weld microstructure and subsequent weld mechanical properties. Fluid flow and heat transfer in the liquid weld pool are affected by laser and arc energy absorption. The laser and arc generate plasmas which can influence arc and laser energy absorption. Metal vapors introduced from the keyhole, a vapor filled cavity formed near the laser focal point, influence arc plasma light emission and energy absorption. However, hybrid welding plasma properties near the opening of the keyhole are not known nor is the influence of arc power and heat source separation understood. A sound understanding of these processes is important to consistently achieving sound weldments. By varying process parameters during welding, it is possible to better understand their influence on temperature profiles, weld metal mixing, cooling rates, and plasma properties. The current literature has shown that important process parameters for hybrid welding include: arc power, laser power, and heat source separation distance. However, their influence on weld temperatures, fluid flow, cooling rates, and plasma properties are not well understood. Modeling has shown to be a successful means of better understanding the influence of processes parameters on heat transfer, fluid flow, and plasma characteristics for arc and laser welding. However, numerical modeling of laser/GTA hybrid welding is just beginning. Arc and laser welding plasmas have been previously analyzed successfully using optical emission spectroscopy in order to better understand arc and laser plasma properties as a function of plasma radius. Variation of hybrid welding plasma properties with radial distance is not known. Since plasma properties can affect arc and laser energy absorption and weld integrity, a better understanding of the change in hybrid welding plasma properties as a function of plasma radius is important and necessary. Material composition influences welding plasma properties, arc and laser energy absorption, heat transfer, and fluid flow. The presence of surface active elements such as oxygen and sulfur can affect weld pool fluid flow and bead geometry depending upon the significance of heat transfer by convection. Easily vaporized and ionized alloying elements can influence arc plasma characteristics and arc energy absorption. The effects of surface active elements on heat transfer and fluid flow are well understood in the case of arc and conduction mode laser welding. However, the influence of surface active elements on heat transfer and fluid flow during keyhole mode laser welding and laser/arc hybrid welding are not well known. Modeling has been used to successfully analyze the influence of surface active elements during arc and conduction mode laser welding in the past and offers promise in the case of laser/arc hybrid welding. A critical review of the literature revealed several important areas for further research and unanswered questions. (1) The understanding of heat transfer and fluid flow during hybrid welding is still beginning and further research is necessary. (2) Why hybrid welding weld bead width is greater than that of laser or arc welding is not well understood. (3) The influence of arc power and heat source separation distance on cooling rates during hybrid welding are not known. (4) Convection during hybrid welding is not well understood despite its importance to weld integrity. (5) The influence of surface active elements on weld geometry, weld pool temperatures, and fluid flow during high power density laser and laser/arc hybrid welding are not known. (6) Although the arc power and heat source separation distance have been experimentally shown to influence arc stability and plasma light emission during hybrid welding, the influence of these parameters on plasma properties is unknown. (7) The electrical conductivity of hybrid welding plasmas is not known, despite its importance to arc stability and weld integrity. In this study, heat transfer and fluid flow are analyzed for laser, gas tungsten arc (GTA), and laser/GTA hybrid welding using an experimentally validated three dimensional phenomenological model. By evaluating arc and laser welding using similar process parameters, a better understanding of the hybrid welding process is expected. The role of arc power and heat source separation distance on weld depth, weld pool centerline cooling rates, and fluid flow profiles during CO2 laser/GTA hybrid welding of 321 stainless steel are analyzed. Laser power is varied for a constant heat source separation distance to evaluate its influence on weld temperatures, weld geometry, and fluid flow during Nd:YAG laser/GTA hybrid welding of A131 structural steel. The influence of oxygen and sulfur on keyhole and weld bead geometry, weld temperatures, and fluid flow are analyzed for high power density Yb doped fiber laser welding of (0.16 %C, 1.46 %Mn) mild steel. Optical emission spectroscopy was performed on GTA, Nd:YAG laser, and Nd:YAG laser/GTA hybrid welding plasmas for welding of 304L stainless steel. Emission spectroscopy provides a means of determining plasma temperatures and species densities using deconvoluted measured spectral intensities, which can then be used to calculate plasma electrical conductivity. In this study, hybrid welding plasma temperatures, species densities, and electrical conductivities were determined using various heat source separation distances and arc currents using an analytical method coupled calculated plasma compositions. As a result of these studies heat transfer by convection was determined to be dominant during hybrid welding of steels. The primary driving forces affecting hybrid welding fluid flow are the surface tension gradient and electromagnetic force. Fiber laser weld depth showed a negligible change when increasing the (0.16 %C, 1.46 %Mn) mild steel sulfur concentration from 0.006 wt% to 0.15 wt%. Increasing the dissolved oxygen content in weld pool from 0.0038 wt% to 0.0257 wt% increased the experimental weld depth from 9.3 mm to 10.8 mm. Calculated partial pressure of carbon monoxide increased from 0.1 atm to 0.75 atm with the 0.0219 wt% increase in dissolved oxygen in the weld metal and may explain the increase in weld depth. Nd:YAG laser/GTA hybrid welding plasma temperatures were calculated to be approximately between 7927 K and 9357 K. Increasing the Nd:YAG laser/GTA hybrid welding heat source separation distance from 4 mm to 6 mm reduced plasma temperatures between 500 K and 900 K. Hybrid welding plasma total electron densities and electrical conductivities were on the order of 1 x 1022 m-3 and 3000 S m-1, respectively.

  4. Introduction to Welding.

    ERIC Educational Resources Information Center

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  5. Automated Spot Weld Inspection using Infrared Thermography

    SciTech Connect

    Chen, Jian; Zhang, Wei; Yu, Zhenzhen; Feng, Zhili

    2012-01-01

    An automated non-contact and non-destructive resistance spot weld inspection system based on infrared (IR) thermography was developed for post-weld applications. During inspection, a weld coupon was heated up by an auxiliary induction heating device from one side of the weld, while the resulting thermal waves on the other side were observed by an IR camera. The IR images were analyzed to extract a thermal signature based on normalized heating time, which was then quantitatively correlated to the spot weld nugget size. The use of normalized instead of absolute IR intensity was found to be useful in minimizing the sensitivity to the unknown surface conditions and environment interference. Application of the IR-based inspection system to different advanced high strength steels, thickness gauges and coatings were discussed.

  6. Understanding heat and fluid flow in linear GTA welds

    NASA Astrophysics Data System (ADS)

    Zacharia, T.; David, S. A.; Vitek, J. M.

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  7. Understanding heat and fluid flow in linear GTA welds

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-01-01

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  8. Understanding heat and fluid flow in linear GTA welds

    SciTech Connect

    Zacharia, T.; David, S.A.; Vitek, J.M.

    1992-12-31

    A transient heat flow and fluid flow model was used to predict the development of gas tungsten arc (GTA) weld pools in 1.5 mm thick AISI 304 SS. The welding parameters were chosen so as to correspond to an earlier experimental study which produced high-resolution surface temperature maps. The motivation of the present study was to verify the predictive capability of the computational model. Comparison of the numerical predictions and experimental observations indicate good agreement.

  9. Microstructure of AA 2024 fixed joints formed by friction stir welding

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Kalashnikova, T. A.; Tarasov, S. Yu.; Rubtsov, V. E.; Fortuna, S. V.; Kolubaev, E. A.

    2015-10-01

    Friction stir welded butt joints on 2024T3 alloy have been obtained using different process parameters. The microstructures of all the weld joint zones have been examined and such structural parameters as grain size, particle size and volume content of particles have been determined in order to find correlations with the microhardness of the corresponding zones of the weld.

  10. Thin plate gap bridging study for Nd:YAG pulsed laser lap welds.

    SciTech Connect

    Roach, Robert Allen; Fuerschbach, Phillip William; Bernal, John E.; Norris, Jerome T.

    2006-01-01

    In an on going study of gap bridging for thin plate Nd:YAG laser lap welds, empirical data, high speed imaging, and computer modeling were utilized to better understand surface physics attributed to the formation and solidification of a weld pool. Experimental data indicates better gap bridging can be achieved through optimized laser parameters such as pulse length, duration, and energy. Long pulse durations at low energies generating low peak powers were found to create the highest percent of gap bridging ability. At constant peak power, gap-bridging ability was further improved by using a smaller spot diameter resulting in higher irradiances. Hence, welding in focus is preferable for bridging gaps. Gas shielding was also found to greatly impact gap-bridging ability. Gapped lap welds that could not be bridged with UHP Argon gas shielding, were easily bridged when left unshielded and exposed to only air. Incident weld angle and joint offset were also investigated for their ability to improve gap bridging. Optical filters and brightlight surface illumination enabled high-speed imaging to capture the fluid dynamics of a forming and solidifying weld pool. The effects of various laser parameters and the weld pool's interaction with the laser beam could also be observed utilizing the high-speed imaging. The work described is used to develop and validate a computer model with improved weld pool physics. Finite element models have been used to derive insight into the physics of gap bridging. The dynamics of the fluid motion within the weld pool in conjunction with the free surface physics have been the primary focus of the modeling efforts. Surface tension has been found to be a more significant factor in determining final weld pool shape than expected.

  11. Optical Welding Torch

    NASA Technical Reports Server (NTRS)

    Richardson, R. W.

    1987-01-01

    Gas/tungsten-arc welding torch supports electrode at center while enabling viewing of weld area along torch axis. Gas torch accommodates lens and optical fibers, all part of vision system for welding robot. Welding torch includes spoked structure in central bore of optical body. Structure supports welding electrode, carries electric current to it, and takes heat away from it. Spokes formed by drilling six holes 60 degrees apart around center line of torch.

  12. Advanced Welding Applications

    NASA Technical Reports Server (NTRS)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  13. Development of models for welding applications

    SciTech Connect

    Roper, J.R.; Hayer, L.K.

    1990-01-01

    The modeling of welding processes offers considerable potential for help with manufacturing problems but a complete definition of any welding process offers many challenges. However, the modular structure of MARC, and the diverse range of capabilities offered, create a good opportunity for development in this area. This paper discusses these problems and describes techniques used to overcome some of them. Models have been developed to simulate gas tungsten arc (GTA) and electron beam (EB) welding with a moving heat source. Fortran routines for subroutines FLUX and FORCDT have been written to generate a moving heat source. Sequential element activation has permitted the simulation of GTA welding with cold wire feed (CWF), as in filling of a machined weld groove. A program which generates History Definition blocks necessary for this type of welding model is also described in this paper. Semi-infinite heat transfer elements were used to get accurate temperature histories while keeping the size of the model manageable. Time-temperature histories and isothermal contours compare well with experimental measurements, although many areas for improvement and refinement remain. Results have been used to anticipate the necessity for weld parameter changes after part redesign, and the electron beam model relates closely to situations in which information is needed for the minimization of peak temperatures on the underside of the welded part. 8 refs., 11 figs.

  14. ARC and Melting Efficiency of Plasma ARC Welds

    NASA Technical Reports Server (NTRS)

    McClure, J. C.; Nunes, A. C.; Evans, D. M.

    1999-01-01

    A series of partial penetration Variable Polarity Plasma Arc welds were made at equal power but various combinations of current and voltage on 2219 Aluminum. Arc efficiency was measured calorimetrically and ranged between 48% and 66% for the conditions of the welds. Arc efficiency depends in different ways on voltage and current. The voltage effect dominates. Raising voltage while reducing current increases arc efficiency. Longer, higher voltage arcs are thought to transfer a greater portion of arc power to the workpiece through shield gas convection. Melting efficiency depends upon weld pool shape as well as arc efficiency. Increased current increases the melting efficiency as it increases the depth to width ratio of the weld pool. Increased plasma gas flow does the same thing. Higher currents are thought to raise arc pressure and depress liquid at the bottom of the weld pool. More arc power then transfers to the workpiece through increasing plasma gas convection. If the power is held constant, the reduced voltage lowers the arc efficiency, while the pool shape change increases the melting efficiency,

  15. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Pools backing Pool Certificates... Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As set forth in the Program Guide, each Pool must have: (1) A minimum number of guaranteed portions of...

  16. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 13 Business Credit and Assistance 1 2011-01-01 2011-01-01 false Pools backing Pool Certificates... Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As set forth in the Program Guide, each Pool must have: (1) A minimum number of guaranteed portions of...

  17. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 13 Business Credit and Assistance 1 2012-01-01 2012-01-01 false Pools backing Pool Certificates... Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As set forth in the Program Guide, each Pool must have: (1) A minimum number of guaranteed portions of...

  18. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 13 Business Credit and Assistance 1 2013-01-01 2013-01-01 false Pools backing Pool Certificates... Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As set forth in the Program Guide, each Pool must have: (1) A minimum number of guaranteed portions of...

  19. 13 CFR 120.611 - Pools backing Pool Certificates.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 13 Business Credit and Assistance 1 2014-01-01 2014-01-01 false Pools backing Pool Certificates... Secondary Market Certificates § 120.611 Pools backing Pool Certificates. (a) Pool characteristics. As set forth in the Program Guide, each Pool must have: (1) A minimum number of guaranteed portions of...

  20. Performance Study and Dynamic Optimization Design for Thread Pool Systems

    SciTech Connect

    Dongping Xu

    2004-12-19

    Thread pools have been widely used by many multithreaded applications. However, the determination of the pool size according to the application behavior still remains problematic. To automate this process, in this thesis we have developed a set of performance metrics for quantitatively analyzing thread pool performance. For our experiments, we built a thread pool system which provides a general framework for thread pool research. Based on this simulation environment, we studied the performance impact brought by the thread pool on different multithreaded applications. Additionally, the correlations between internal characterizations of thread pools and their throughput were also examined. We then proposed and evaluated a heuristic algorithm to dynamically determine the optimal thread pool size. The simulation results show that this approach is effective in improving overall application performance.

  1. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  2. A Study on Analysis of Weld Distortion in Multi-pass Arc Welding

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, I. S.; Jang, H. K.; Kim, H. J.; Kwak, S. K.; Ryoo, H. S.; Hong, S. H.; Shim, J. Y.

    2011-01-01

    Since prediction and control of welding deformation are one of an important problems connected with reliability of the manufactured structures, welding deformation should be measured and controlled with quickly and actively. Also, welding variables which have lots of effects on welding deformation such as arc voltage, welding current and welding speed can also be controlled. This study focuses on development of a simple 2D(a two-dimension) FEM(Finite Element Method) to calculate not only the transient thermal histories, but also the sizes of Fusion Zone(HZ) and Heat-Affected Zone (HAZ) in multi-pass arc welding including the butt weld type with dissimilar thickness, and to develop the new model for finding the parameters of Godak's heat source model based on a GA(Genetic Algorithm). The developed model included a GA program using MATLB and GA toolbox, and a batch mode thermal model using ANSYS software. The thermal model was verified by comparison with Goldak's work and the molten zone section from obtained the experimental data. In addition, the developed model could be applied the various welding types in order to employ for the manufacturing industries.

  3. Laser beam welding of 5182 aluminum alloys sheet.

    SciTech Connect

    Leong, K. H.; Sabo, K. R.; Altshuller, B.; Wilkinson, T. L.; Albright, C. E.; Technology Development; Alcan International Limited; Reynolds Metals Co.; Ohio State Univ.

    1999-06-01

    Conditions were determined for consistent coupling of a CO{sub 2} laser beam to weld 5182 aluminum alloy sheet. Full penetration butt and bead-on-plate welds on 0.8 and 1.8 mm sheets were performed. Process conditions examined included beam mode, spot size and irradiance, shielding gas flow, and edge quality and fitup. The observed weld quality variations with the different process parameters were consistent with physical phenomena and a threshold irradiance model. Optimal conditions were determined for obtaining consistent welds on 5182 alloy sheets. Formability and tensile tests were performed on the welded samples. All test failures occurred in the fusion zone. Reduction in formability and tensile strength of the welded samples are discussed with respect to weld profiles and process parameters.

  4. Weld geometry strength effect in 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Nunes, A. C., Jr.; Novak, H. L.; Mcilwain, M. C.

    1981-01-01

    A theory of the effect of geometry on the mechanical properties of a butt weld joint is worked out based upon the soft interlayer weld model. Tensile tests of 45 TIG butt welds and 6 EB beads-on-plate in 1/4-in. 2219-T87 aluminum plate made under a wide range of heat sink and power input conditions are analyzed using this theory. The analysis indicates that purely geometrical effects dominate in determining variations in weld joint strength with heat sink and power input. Variations in weld dimensions with cooling rate are significant as well as with power input. Weld size is suggested as a better indicator of the condition of a weld joint than energy input.

  5. Development of techniques for welding V Cr Ti alloys

    NASA Astrophysics Data System (ADS)

    Grossbeck, M. L.; King, J. F.; Alexander, D. J.; Rice, P. M.; Goodwin, G. M.

    1998-10-01

    Welding vanadium alloys is complicated by interstitial impurity introduction and redistribution at elevated temperatures. Gas tungsten arc (GTA) welding, which will probably be required for the fabrication of large tokamak structures, must be done in a glove box environment. Welds were evaluated by Charpy testing. GTA welds could be made with a ductile to brittle transition temperature (DBTT) of 50°C with a post-weld heat treatment (PWHT) or by using a heated Ti getter system on the glove box to reduce interstitial contamination. Titanium-O,N,C precipitates in the fusion zone were found to transform to a more oxygen-rich phase during a PWHT of 950°C/2 h. Hydrogen was found to promote cleavage cracking following welding in cases where the atmosphere was contaminated. Grain size and microstructure also affected weld embrittlement.

  6. Welding Phenomenon and Removal Mechanism of Aluminum-Oxide Films by Space GHTA Welding Process in Vacuum

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Ekuni, Tomohide; Kamei, Misa; Tsukuda, Yoshiyuki; Terajima, Noboru; Yamashita, Masahiro; Imagawa, Kichiro; Masubuchi, Koichi

    Aluminum alloys have been widely used in constructing various space structures including the ISS (International Space Station) and launch vehicles. In order to apply the welding technology in space, welding experiments on aluminum alloy were performed using by the GHTA (Gas Hollow Tungsten Arc) welding processes using an inverter controlled DC/AC GTA welding machine in vacuum. We observed the removal mechanism of aluminum-oxide films on molten metal in detail during the welding using a high-speed video camera. As a result, it is clarified that the impact arc pressure produced by pulsed current mechanically crushes and removes aluminum-oxide films on the molten pool. This removal mechanism of aluminum-oxide films is completely different from a removal mechanism by cleaning action.

  7. Television Monitoring System for Welding

    NASA Technical Reports Server (NTRS)

    Vallow, K.; Gordon, S.

    1986-01-01

    Welding process in visually inaccessible spots viewed and recorded. Television system enables monitoring of welding in visually inaccessible locations. System assists welding operations and provide video record, used for weld analysis and welder training.

  8. Repair Welding of Irradiated Materials: Modeling of Helium Bubble Distributions for Determining Crack-Free Welding Procedures

    SciTech Connect

    Feng, Zhili; Wilkowski, Gery

    2002-07-01

    In this paper, a computational simulation study is presented on the prediction of helium bubble evolution during repair welding of irradiated 304 stainless steel. Realistic spatial and temporal temperature and stress evolution during welding were obtained from simulation of the repair welding operation using the finite element model approach. The helium bubble evolution model by Kawano et al. was adopted as a user subroutine in the finite element model to predict the spatial distribution and temporal evolution of the helium bubble size and density in the heat-affected zone (HAZ) of partial penetration welds. Comparisons with experimental results available in open literature show that the predicted average helium bubble sizes were consistent with those observed experimentally under similar conditions. In addition, the computer simulation revealed strong spatial variation of helium bubble size due to the differences in combined thermal and stress conditions experienced in different locations in the HAZ. The predicted location of the maximum helium bubble agreed well with the observed helium-induced cracking site. The effect of welding heat input and welding speed was also investigated numerically. The modeling approach adopted in this study could be used as a cost-effective tool to quantitatively correlate the welding condition, radiation damage, and the likelihood of cracking, under the influence of welding-induced thermal and stress cycles. The model will also be useful in studying the degradation of properties from helium bubble formation of post-welded structures, even if a successful weld is made. (authors)

  9. Welded solar cell interconnection

    NASA Technical Reports Server (NTRS)

    Stofel, E. J.; Browne, E. R.; Meese, R. A.; Vendura, G. J.

    1982-01-01

    The efficiency of the welding of solar-cell interconnects is compared with the efficiency of soldering such interconnects, and the cases in which welding may be superior are examined. Emphasis is placed on ultrasonic welding; attention is given to the solar-cell welding machine, the application of the welding process to different solar-cell configurations, producibility, and long-life performance of welded interconnects. Much of the present work has been directed toward providing increased confidence in the reliability of welding using conditions approximating those that would occur with large-scale array production. It is concluded that there is as yet insufficient data to determine which of three methods (soldering, parallel gap welding, and ultrasonic welding) provides the longest-duration solar panel life.

  10. Laser weld jig

    DOEpatents

    Van Blarigan, Peter; Haupt, David L.

    1982-01-01

    A system is provided for welding a workpiece (10, FIG. 1) along a predetermined weld line (12) that may be of irregular shape, which includes the step of forming a lip (32) on the workpiece to extend parallel to the weld line, and moving the workpiece by engaging the lip between a pair of rotatable members (34, 36). Rotation of one of the members at a constant speed, causes the workpiece to move so that all points on the weld line sequentially pass a fixed point in space (17) at a constant speed, so that a laser welding beam can be directed at that fixed point to form a weld along the weld line. The workpiece can include a reuseable jig (24) forming the lip, and with the jig constructed to detachably hold parts (22, 20) to be welded at a position wherein the weld line of the parts extends parallel to the lip on the jig.

  11. Variations in welding characteristics within the Plinian air-fall deposit of the Middle Pumice eruption, Santorini, Greece

    NASA Astrophysics Data System (ADS)

    Boyce, Julie Ann; Gertisser, Ralf

    2012-04-01

    The welded Plinian air-fall deposit of the Middle Pumice A (MP-A) eruption, Santorini, Greece (144.6 ka), was analysed in order to document welding characteristics and determine the factors that control welding due to the sintering of hot ash- to block-sized pyroclasts. There are vertical and lateral variations in welding intensity, with welding increasing upwards within deposit sections and decreasing laterally away from the source. Four welding grades are distinguished: a = densely-welded, b = slightly-welded, c = tack-welded, and d = non-welded. Lateral welding zones are defined by the highest welding grade observed: zone A = densely-welded (< 0.25 km from the source); zone B = slightly-welded (0.25-1.26 km); zone C = tack-welded (1.26-3.7 km), and zone D = non-welded (> 3.7 km). Pumice density increases (and porosity decreases) with welding, with the most densely-welded part having a density of 2290 kg m- 3 and a porosity of 5%. Distal, non-welded pumices have a density of 370 kg m- 3 and porosities of > 75%. Clast oblateness varies from 0.79 in the densely-welded proximal deposit sections to 0.54 in the distal, non-welded deposits in southern Thera. Strain, determined using the Rf/ϕ method, indicates that the deposit is moderately flattened but relatively undeformed. The MP-A deposit is dacitic to andesitic in composition, becoming more mafic with stratigraphic height, where the degree of welding is highest. Welding is controlled by geochemical variations, compactional load and local variations in accumulation rate and clast sizes.

  12. Linear dimension establishes weld integrity

    NASA Technical Reports Server (NTRS)

    Lewis, J. C.

    1978-01-01

    Study finds that when automatic in-place tube-welding head is used to butt-weld two stainless-steel tubes together, welding process can be made so reliable that when weld exceeds a certain minimum dimension, penetration of weld can be assumed to be complete. Detailed procedure for tube welding considers effects of arc gap, shielding gas, welding speed, and other parameters related to weld reliability.

  13. Model of international reserve pooling

    SciTech Connect

    Fischer, K.P.

    1985-01-01

    Holding foreign exchange in the form of reserves means foregoing income generating real investment. Thus, the careful management of reserves is required. Reserve pooling is an instrument to enhance this management. This study attempts to develop rigorously the theoretical foundations of the reserve pool. To develop the structure of the model the current account balance of non-oil-developing countries is assumed to follow a Wiener process with a negative drift. The stochastic time, called the hitting time, it takes for a cumulative balance to exhaust a given initial level of reserves is assumed to be the argument for the monetary authorities' utility function. Thus the decision on the management form and size of reserves can be made based on the mean and variance of this hitting time. The first order conditions obtained from a utility maximizing procedure determine the results obtained from the pooling model. This model predicts that reserve pooling is a Pareto optimal choice for the management of foreign exchange reserves for every member of a group of candidates.

  14. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  15. Internal wire guide for GTAW welding

    NASA Technical Reports Server (NTRS)

    Morgan, Gene E. (Inventor); Dyer, Gerald E. (Inventor)

    1989-01-01

    A welding torch for gas tungsten arc welding apparatus has a filler metal wire guide positioned within the torch, and within the shielding gas nozzle. The wire guide is adjacent to the tungsten electrode and has a ceramic liner through which the wire is fed. This reduces the size of the torch and eliminates the outside clearance problems that exit with external wire guides. Additionally, since the wire is always within the shielding gas, oxidizing of the wire is eliminated.

  16. Fusion welding process

    DOEpatents

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  17. Fusion welding process

    SciTech Connect

    Jones, E.D.; Mcbride, M.A.; Thomas, K.C.

    1983-06-28

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  18. Swimming pool granuloma

    MedlinePlus

    ... skin infection. It is caused by the bacteria Mycobacterium marinum . ... A swimming pool granuloma occurs when water containing Mycobacterium marinum bacteria enters a break in the skin. Signs ...

  19. Ultrasonic assessment of tension shear strength in resistance spot welding

    NASA Astrophysics Data System (ADS)

    Moghanizadeh, Abbas

    2015-05-01

    Resistance spot welding is extensively used to join sheet steel in the automotive industry. Ultrasonic non-destructive techniques for evaluation of the mechanical properties of resistance spot welding are presented. The aim of this study is to develop the capability of the ultrasonic techniques as an efficient tool in the assessment of the welding characterization. Previous researches have indicated that the measurements of ultrasonic attenuation are sensitive to grain- size variations in an extensive range of metallic alloys. Other researchers have frequently described grain sizes which are able to have significant effects on the physical characteristics of the material. This research provides a novel method to estimate the tension-shear strengths of the resistance spot welding directly from the ultrasonic attenuation measurements. The effects of spot welding parameters on the ultrasonic waves are further investigated. The results confirm that it is possible to determine the spot welding parameters for individual quality by using ultrasonic test.

  20. A CO2 Laser Weld Shape-Predicting Neural Network

    SciTech Connect

    Fuerschbach, P.W.; Knorovsky, G.A.

    1998-10-05

    We describe two artificial neural networks (ANN) which predict CO2 partial penetration laser welds on grade 304 stainless steel. Given the laser irradiance and travel speed, one ANN (direct) predicts the resulting weld's depth, width, overall shape, energy transfer efficiency, melting efficiency and porosity likelihood in the weld fusion zone. Given the weld size and shape, the second ANN (inverse) predicts the irradiance and travel speed necessary to provide such a weld. The ANNs used 3 nodal layers and perception-type neurons. For the first ANN, with 2 inputs and 17 outputs (12 for shape, and 5 for size, efficiencies and porosity predictions), 12 to 17 intermediate layer neurons were necessary, while for the second, with 14 inputs and 2 outputs, 25 were necessary. Besides their description, data interpretation and weld schedule development via the ANNs will be shown.

  1. Coupling of Laser with Plasma Arc to Facilitate Hybrid Welding of Metallic Materials: A Review

    NASA Astrophysics Data System (ADS)

    Zhiyong, Li; Srivatsan, T. S.; Yan, LI; Wenzhao, Zhang

    2013-02-01

    Hybrid laser arc welding combines the advantages of laser welding and arc welding. Ever since its origination in the late 1970s, this technique has gained gradual attention and progressive use due to a combination of high welding speed, better formation of weld bead, gap tolerance, and increased penetration coupled with less distortion. In hybrid laser arc welding, one of the reasons for the observed improvement is an interaction or coupling effect between the plasma arc, laser beam, droplet transfer, and the weld pool. Few researchers have made an attempt to study different aspects of the process to facilitate a better understanding. It is difficult to get a thorough understanding of the process if only certain information in a certain field is provided. In this article, an attempt to analyze the coupling effect of the process was carried out based on a careful review of the research work that has been done which provides useful information from a different prospective.

  2. Numerical simulation of nanosecond pulsed laser welding of eutectoid steel components

    NASA Astrophysics Data System (ADS)

    Fortunato, Alessandro; Ascari, Alessandro; Orazi, Leonardo; Cuccolini, Gabriele; Campana, Giampaolo; Tani, Giovanni

    2012-10-01

    This paper considers the micro-closed seam laser welding of two nearly eutectoid carbon steel grades. These materials are difficult to weld due to their poor ductility. In particular, in closed seam welding, the laser beam starts and finishes in the same point thus increasing the risk of cracks. A numerical simulation of micro-welding of nearly eutectoid steels by nanosecond pulsed laser is carried out to evaluate the weld pool dimension and the heat-affected zone extension. Optimized welding parameters and strategy are determined by means of simulation and they are successfully applied in the welding of a 1.0%C shaft and a 0.7%C gear.

  3. Damage Tolerance Behavior of Friction Stir Welds in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of various aerospace structures. Self-reacting and conventional friction stir welding are variations of the friction stir weld process employed in the fabrication of cryogenic propellant tanks which are classified as pressurized structure in many spaceflight vehicle architectures. In order to address damage tolerance behavior associated with friction stir welds in these safety critical structures, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data describing fracture behavior, residual strength capability, and cyclic mission life capability of friction stir welds at ambient and cryogenic temperatures have been generated and will be presented in this paper. Fracture behavior will include fracture toughness and tearing (R-curve) response of the friction stir welds. Residual strength behavior will include an evaluation of the effects of lack of penetration on conventional friction stir welds, the effects of internal defects (wormholes) on self-reacting friction stir welds, and an evaluation of the effects of fatigue cycled surface cracks on both conventional and selfreacting welds. Cyclic mission life capability will demonstrate the effects of surface crack defects on service load cycle capability. The fracture data will be used to evaluate nondestructive inspection and proof test requirements for the welds.

  4. In-service Inspection Ultrasonic Testing of Reactor Pressure Vessel Welds for Assessing Flaw Density and Size Distribution per 10 CFR 50.61a, Alternate Fracture Toughness Requirements

    SciTech Connect

    Sullivan, Edmund J.; Anderson, Michael T.; Norris, Wallace

    2012-09-17

    Pressurized thermal shock (PTS) events are system transients in a pressurized water reactor (PWR) in which there is a rapid operating temperature cool-down that results in cold vessel temperatures with or without repressurization of the vessel. The rapid cooling of the inside surface of the reactor pressure vessel (RPV) causes thermal stresses that can combine with stresses caused by high pressure. The aggregate effect of these stresses is an increase in the potential for fracture if a pre-existing flaw is present in a material susceptible to brittle failure. The ferritic, low alloy steel of the reactor vessel beltline adjacent to the core, where neutron radiation gradually embrittles the material over the lifetime of the plant, can be susceptible to brittle fracture. The PTS rule, described in the Code of Federal Regulations, Title 10, Section 50.61 (§50.61), “Fracture Toughness Requirements for Protection against Pressurized Thermal Shock Events,” adopted on July 23, 1985, establishes screening criteria to ensure that the potential for a reactor vessel to fail due to a PTS event is deemed to be acceptably low. The U.S. Nuclear Regulatory Commission (NRC) completed a research program that concluded that the risk of through-wall cracking due to a PTS event is much lower than previously estimated. The NRC subsequently developed a rule, §50.61a, published on January 4, 2010, entitled “Alternate Fracture Toughness Requirements for Protection Against Pressurized Thermal Shock Events” (75 FR 13). Use of the new rule by licensees is optional. The §50.61a rule differs from §50.61 in that it requires licensees who choose to follow this alternate method to analyze the results from periodic volumetric examinations required by the ASME Code, Section XI, Rules for Inservice Inspection (ISI) of Nuclear Power Plants. These analyses are intended to determine if the actual flaw density and size distribution in the licensee’s reactor vessel beltline welds are bounded by the flaw density and size distribution values used in the PTS technical basis. Under a contract with the NRC, Pacific Northwest National Laboratory (PNNL) has been working on a program to assess the ability of current inservice inspection (ISI)-ultrasonic testing (UT) techniques, as qualified through ASME Code, Appendix VIII, Supplements 4 and 6, to detect small fabrication or inservice-induced flaws located in RPV welds and adjacent base materials. As part of this effort, the investigators have pursued an evaluation, based on the available information, of the capability of UT to provide flaw density/distribution inputs for making RPV weld assessments in accordance with §50.61a. This paper presents the results of an evaluation of data from the 1993 Browns Ferry Nuclear Plant, Unit 3, Spirit of Appendix VIII reactor vessel examination, a comparison of the flaw density/distribution from this data with the distribution in §50.61a, possible reasons for differences, and plans and recommendations for further work in this area.

  5. Ultrasonic Spot Welding of a Rare-Earth Containing ZEK100 Magnesium Alloy: Effect of Welding Energy

    NASA Astrophysics Data System (ADS)

    Macwan, A.; Chen, D. L.

    2016-04-01

    Ultrasonic spot welding was used to join a low rare-earth containing ZEK100 Mg alloy at different levels of welding energy, and tensile lap shear tests were conducted to evaluate the failure strength in relation to the microstructural changes. It was observed that dynamic recrystallization occurred in the nugget zone; the grain size increased and microhardness decreased with increasing welding energy arising from the increasing interface temperature and strain rate. The weld interface experienced severe plastic deformation at a high strain rate from ~500 to ~2100 s-1 with increasing welding energy from 500 to 2000 J. A relationship between grain size and Zener-Hollomon parameter, and a Hall-Petch-type relationship between microhardness and grain size were established. The tensile lap shear strength and failure energy were observed to first increase with increasing welding energy, reach the maximum values at 1500 J, and then decrease with a further increase in the welding energy. The samples welded at a welding energy ≤1500 J exhibited an interfacial failure mode, while nugget pull-out occurred in the samples welded at a welding energy above 1500 J. The fracture surfaces showed typical shear failure. Low-temperature tests at 233 K (-40 °C) showed no significant effect on the strength and failure mode of joints welded at the optimal welding energy of 1500 J. Elevated temperature tests at 453 K (180 °C) revealed a lower failure load but a higher failure energy due to the increased deformability, and showed a mixed mode of partial interfacial failure and partial nugget pull-out.

  6. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    NASA Astrophysics Data System (ADS)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  7. Cognitive high speed defect detection and classification in MWIR images of laser welding

    NASA Astrophysics Data System (ADS)

    Lapido, Yago L.; Rodriguez-Araújo, Jorge; García-Díaz, Antón; Castro, Gemma; Vidal, Félix; Romero, Pablo; Vergara, Germán.

    2015-07-01

    We present a novel approach for real-time defect detection and classification in laser welding processes based on the use of uncooled PbSe image sensors working in the MWIR range. The spatial evolution of the melt pool was recorded and analyzed during several welding procedures. A machine learning approach was developed to classify welding defects. Principal components analysis (PCA) is used for dimensionality reduction of the melt pool data. This enhances classification results and enables on-line classification rates close to 1 kHz with non-optimized code prototyped in Python. These results point to the feasibility of real-time defect detection.

  8. Damage Tolerance Assessment of Friction Pull Plug Welds in an Aluminum Alloy

    NASA Technical Reports Server (NTRS)

    McGill, Preston; Burkholder, Jonathan

    2012-01-01

    Friction stir welding is a solid state welding process used in the fabrication of cryogenic propellant tanks. Self-reacting friction stir welding is one variation of the friction stir weld process being developed for manufacturing tanks. Friction pull plug welding is used to seal the exit hole that remains in a circumferential self-reacting friction stir weld. A friction plug weld placed in a self-reacting friction stir weld results in a non-homogenous weld joint where the initial weld, plug weld, their respective heat affected zones and the base metal all interact. The welded joint is a composite plastically deformed material system with a complex residual stress field. In order to address damage tolerance concerns associated with friction plug welds in safety critical structures, such as propellant tanks, nondestructive inspection and proof testing may be required to screen hardware for mission critical defects. The efficacy of the nondestructive evaluation or the proof test is based on an assessment of the critical flaw size. Test data relating residual strength capability to flaw size in an aluminum alloy friction plug weld will be presented.

  9. Critical Initial Flaw Size Analysis

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Raju, Ivatury S.; Cheston, Derrick J.

    2008-01-01

    An independent assessment was conducted to determine the critical initial flaw size (CIFS) for the flange-to-skin weld in the Ares I-X Upper Stage Simulator (USS). The USS consists of several "tuna can" segments that are approximately 216 inches in diameter, 115 inches tall, and 0.5 inches thick. A 6 inch wide by 1 inch thick flange is welded to the skin and is used to fasten adjacent tuna cans. A schematic of a "tuna can" and the location of the flange-to-skin weld are shown in Figure 1. Gussets (shown in yellow in Figure 1) are welded to the skin and flange every 10 degrees around the circumference of the "tuna can". The flange-to-skin weld is a flux core butt weld with a fillet weld on the inside surface, as illustrated in Figure 2. The welding process may create loss of fusion defects in the weld that could develop into fatigue cracks and jeopardize the structural integrity of the Ares I-X vehicle. The CIFS analysis was conducted to determine the largest crack in the weld region that will not grow to failure within 4 lifetimes, as specified by NASA standard 5001 & 5019 [1].

  10. Welding in airplane construction

    NASA Technical Reports Server (NTRS)

    Rechtlich, A; Schrenk, M

    1928-01-01

    The present article attempts to explain the principles for the production of a perfect weld and to throw light on the unexplained problems. Moreover, it is intended to elucidate the possibilities of testing the strength and reliability of welded parts.

  11. Infrared Thermography For Welding

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Lucky, Brian D.; Spiegel, Lyle B.; Hudyma, Russell M.

    1992-01-01

    Infrared imaging and image-data-processing system shows temperatures of joint during welding and provides data from which rates of heating and cooling determined. Information used to control welding parameters to ensure reliable joints, in materials which microstructures and associated metallurgical and mechanical properties depend strongly on rates of heating and cooling. Applicable to variety of processes, including tungsten/inert-gas welding; plasma, laser, and resistance welding; cutting; and brazing.

  12. Low Gravity Improves Welds

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Kaukler, William F.; Plaster, Teresa C.

    1993-01-01

    Hardnesses and tensile strengths greater. Welds made under right conditions in low gravity appear superior to those made under high gravity. Conclusion drawn from results of welding experiments conducted during low- and high-gravity-simulating maneuvers of KC-135 airplane. Results have implications not only for welding in outer space but also for repeated rapid welding on Earth or in airplanes under simulated low gravity to obtain unusually strong joints.

  13. Welding-Current Indicator

    NASA Technical Reports Server (NTRS)

    Hensley, Milton C.; Huston, Steven W.; Kroy, Ralph E.

    1990-01-01

    Light flashes on to indicate high current. Simple, inexpensive display circuit indicates when 3,000-A welding current flows in welding gun. Onset of welding current induces voltage and current in 1,000-turn, 28-gauge copper-wire coil. Single-transistor amplifier amplifies induced current, energizing light-emitting diode (LED) connected to collector of transistor. Light from LED gives simple, direct indication of welding current.

  14. Development of porosity prevention procedures during laser welding

    NASA Astrophysics Data System (ADS)

    Katayama, Seiji; Mizutani, Masami; Matsunawa, Akira

    2003-03-01

    High power CO2, YAG and LD-pumped solid-state lasers have been developed to produce a deep penetration type of high-quality, high-performance and high-speed weld joints. However, porosity is easily formed in such deep keyhole-type weld beads. The authors have developed microfocused X-ray transmission imaging system, and revealed keyhole behavior and porosity formation mechanism in high power laser welding. This paper will describe a summary of porosity formation mechanism and prevention procedures during cw laser welding of aluminum alloys. Especially, many bubbles were formed by the evaporation of the metals from the bottom tip of the keyhole and flowed upwards according to the liquid flow near the solid-liquid interface inside the molten pool. The majority of them were trapped and captured at the solidifying front of the weld beads, leading to the formation of porosity. Moreover, it was revealed that the shielding gas was chiefly included in the porosity. Main melt flows were observed as a function of welding speed. As the speed was increased, vapor plume was ejected from the keyhole inlet more and more normal to the plate surface, and consequently induced the upward flow of the keyhole-surrounding liquid. On the basis of the above knowledge, full penetration welding, properly pulse-modulated laser welding, vacuum or low pressure welding, welding using the tornado nozzle, very low or high speed welding, and so on were investigated, and it was consequently confirmed that these procedures were beneficial to the reduction in porosity.

  15. The predicted influence of turbulence in stationary gas tungsten arc welds

    SciTech Connect

    Hong, K.; Weckman, D.C.; Strong, A.B.

    1996-12-31

    The effects of turbulence in stationary gas tungsten arc welds (GTAW) in AISI 304 stainless steel have been examined using a finite element thermofluids model of the process. It is capable of modelling either laminar or turbulent flow in the weld pool. The model includes buoyancy, Lorentz and Marangoni driven fluid flow, a large deformation model of the free surface, volumetric expansion and a {kappa}-{epsilon} turbulence model. To facilitate implementation of the wall function boundary conditions for the {kappa}-{epsilon} turbulence model, a dynamic numerical grid remapping technique was used to clearly separate elements in the liquid from those in the solid. The laminar and turbulent thermofluids models correctly predicted the qualitative influence of sulphur contents of AISI 304 stainless steels on Marangoni induced flow and weld pool dimensions previously observed in experiments; however, the laminar flow model consistently overpredicted the weld pool depths by more than 54%. Alternatively, all results predicted using the {kappa}-{epsilon} turbulence thermofluids model were found to be within the limits of experimental uncertainty reported for experimental measurements. This strongly suggests that the flow in these stationary GTA welds in AISI 304 stainless steel was turbulent and that accurate predictions of fluid flow patterns and weld pool shapes and dimensions in AISI 304 welds will only be possible if the effects of turbulence are modelled accurately.

  16. Thermocapillary and arc phenomena in stainless steel welding

    SciTech Connect

    Pierce, S.W.; Olson, D.L.; Burgardt, P.

    1999-02-01

    This investigation characterized the effects of power level and Gaussian heat source size on thermocapillary-induced weld shape and estimated the relative influence of various possible arc phenomena in determining weld shape. Welds made with the CTAW process were compared with similar ones made with a conduction-mode EBW process and the differences were related to arc effects. Evidence of thermocapillary flow was readily apparent in both the GTA welds and the conduction-mode EB welds and was qualitatively similar in both. The similarity between the results obtained with the two processes serves to demonstrate that thermocapillary convection is the dominant factor in heat-to-heat weld shape variability. However, a similar one-to-one correspondence between welds produced with the two processes does not exist. Especially at high power, the EB welds showed stronger thermocapillary convection than the GTA welds. One important arc factor that limits thermocapillary flow in ar welds appears to be an increase in arc size with arc length and arc current. A non-Gaussian arc power distribution in GTAW seems to be most important in limiting the fluid flow. Apparently, the arc power distribution is more nearly rectangular in shape for an argon gas arc. At higher currents, above 200 A, plasma shear force may also be an important contributor to weld shape development. The conduction-mode EB welds demonstrate that thermocapillary flow reversal probably does not occur in welds made with a simple Gaussian heat source. The complex shape behavior is likely a result of an arc effect such as plasma shear.

  17. Hardness, Microstructure, and Residual Stresses in Low Carbon Steel Welding with Post-weld Heat Treatment and Temper Bead Welding

    NASA Astrophysics Data System (ADS)

    Aloraier, Abdulkareem S.; Joshi, Suraj; Price, John W. H.; Alawadhi, Khaled

    2014-04-01

    This paper investigates the effects of post-weld heat treatment (PWHT) and temper bead welding (TBW) on hardness, microstructure and residual stresses in multi-layer welding on low carbon steel specimens made with two different weld geometries, viz. (1) smooth-contoured and (2) U-shaped. It was found that the PWHT technique gave overall lower hardness than the TBW technique, but the hardness values in both techniques were acceptable. Microscopy analysis showed that the TBW technique was more effective in tempering the heat affected zone as the grain size decreased slightly at the fusion line in spite of the higher temperature at the fusion line. Residual stresses measured using the hole-drilling method showed that the residual stress is not reduced below yield stress near the last bead solidified in TBW. Only PWHT gives low residual stress results in this area. High tensile residual stresses may result in sensitivity to fatigue loading.

  18. Prediction of residual stresses in butt welded plates using inherent strains

    SciTech Connect

    Ueda, Y. . Welding Research Inst.); Yuan, M.G. . Production Engineering Center)

    1993-10-01

    The source of residual stresses in the vicinity of a weld may be expressed in terms of inherent strains. The characteristics of the inherent strain distributions in butt welds are investigated. It is found that the patterns vary little with changes in the welding conditions and sizes of the welded plates. With some assumptions, simple formulas are derived for the distribution and magnitude of inherent strain in a butt weld. A method of predicting the residual stress in a butt-welded plate using the characteristics of inherent strain distributions is presented. The validity of the method is confirmed by thermal elasto-plastic analysis using the finite element method (FEM).

  19. Radiographic detection of defects in friction stir welding on aluminum alloy AMg5M

    SciTech Connect

    Tarasov, Sergei Yu. Kolubaev, Evgeny A.; Rubtsov, Valery E.

    2014-11-14

    In order to reveal weld defects specific to friction stir welding we undertook radiographic inspection of AMg5M aluminum alloy welded joints. Weld defects in the form of voids have been revealed in the weld obtained under the non-optimal rotation and feed rate. Both shape and size of these defects have been confirmed by examining metallographically successive sections prepared in the weld plane as well as in the plane transversal to the tool feed direction. Linear defects have been also found in the sections that are not seen in the radiographic images. Both the preferable localization and origination of the defects have been analyzed.

  20. In vitro NIR laser tissue welding of porcine ocular tissues

    NASA Astrophysics Data System (ADS)

    Rosen, Richard B.; Savage, Howard E.; Halder, Rabindra K.; Kartazayeu, Uladzimir; McCormick, Steven A.; Katz, Alvin; Perry, Henry D.; Alfano, Robert R.

    2005-04-01

    In this study, 72 different combinations of laser welding parameters were compared for their effectiveness in welding ocular tissue. The laser employed in the welding system was a near infrared (NIR) erbium fiber laser with a wavelength of 1.455 μm . The laser system used a motorized translational stage and shutter to control the laser exposure of the tissue being welded. The emission wavelength of the laser in the NIR range corresponds to one of the lesser absorption bands of water. Parameters of the laser welding system that could be changed to allow a more effective distribution of the laser energy and therefore management of thermal energy included: the number and kinds of intricate offset patterns of light on or around the incision, the number of lines per pattern, the power level, the speed of the laser beam movement over the tissues, the spot size, dwell time and the focus plane of the light beam in the tissue. Histopathology was used as an endpoint indication of the effects that the various sets of welding parameters had on the welded tissues. Standard Hematoxylin and Eosin stain and Sirius Red F3B (Direct Red 80) in combination with polarization microscopy were used to stain and visualize the welded ocular tissue. Paradoxically, the best cornea welds quantified using histopathology occurred with fluence of 4,500 mJ/cm2 or less while the corneal welds exhibiting the strongest tensile strengths, but most tissue damage had a delivered fluence above 7,000 mJ/cm2. The best histological representatives of welded corneas had an average delivered fluence of 2,687 mJ/cm2 and an irradiance of 14 W/cm2. Using the properly determined parameters, the NIR erbium fiber welding system provided full thickness welds without the requirement of extrinsic dyes, chromophores, or solders. The NIR laser system with the appropriately developed parameters can be used effectively to weld ocular tissues.

  1. Microhardness Testing of Aluminum Alloy Welds

    NASA Technical Reports Server (NTRS)

    Bohanon, Catherine

    2009-01-01

    A weld is made when two pieces of metal are united or fused together using heat or pressure, and sometimes both. There are several different types of welds, each having their own unique properties and microstructure. Strength is a property normally used in deciding which kind of weld is suitable for a certain metal or joint. Depending on the weld process used and the heat required for that process, the weld and the heat-affected zone undergo microstructural changes resulting in stronger or weaker areas. The heat-affected zone (HAZ) is the region that has experienced enough heat to cause solid-state microstructural changes, but not enough to melt the material. This area is located between the parent material and the weld, with the grain structure growing as it progresses respectively. The optimal weld would have a short HAZ and a small fluctuation in strength from parent metal to weld. To determine the strength of the weld and decide whether it is suitable for the specific joint certain properties are looked at, among these are ultimate tensile strength, 0.2% offset yield strength and hardness. Ultimate tensile strength gives the maximum load the metal can stand while the offset yield strength gives the amount of stress the metal can take before it is 0.2% longer than it was originally. Both of these are good tests, but they both require breaking or deforming the sample in some way. Hardness testing, however, provides an objective evaluation of weld strengths, and also the difference or variation in strength across the weld and HAZ which is difficult to do with tensile testing. Hardness is the resistance to permanent or plastic deformation and can be taken at any desired point on the specimen. With hardness testing, it is possible to test from parent metal to weld and see the difference in strength as you progress from parent material to weld. Hardness around grain boundaries and flaws in the material will show how these affect the strength of the metal while still retaining the sample. This makes hardness testing a good test for identifying grain size and microstructure.

  2. Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553

    NASA Astrophysics Data System (ADS)

    Wanjara, Priti; Dalgaard, Elvi; Gholipour, Javad; Cao, Xinjin; Cuddy, Jonathan; Jonas, John J.

    2014-10-01

    Linear friction welding allows solid-state joining of near-beta ( β) titanium alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr). In the as-welded condition, the weld zone (WZ) exhibits β grain refinement and marked softening as compared with Ti-5553 in the solution heat treated and aged condition. The softening of the weldment is attributed to the depletion of the strengthening alpha ( α) phase in the WZ and the adjacent thermo-mechanically affected zone (TMAZ). Specifically, in near- β titanium alloys, the strength of the material mainly depends on the shape, size, distribution, and fraction of the primary α and other decomposition products of the β phase. Hence, a combination of pre- and post-weld heat treatments were applied to determine the conditions that allow mitigating the α phase depletion in the WZ and TMAZ of the welds. The mechanical response of the welded samples to the heat treatments was determined by performing microhardness measurements and tensile testing at room temperature with an automated 3D deformation measurement system. It was found that though the joint efficiency in the as-welded condition was high (96 pct), strain localization and failure occurred in the TMAZ. The application of post-weld solution heat treatment with aging was effective in restoring α, increasing the joint efficiency (97 to 99 pct) and inducing strain localization and failure in the parent material region.

  3. Butt Welding Joint of Aluminum Alloy by Space GHTA Welding Process in Vacuum

    NASA Astrophysics Data System (ADS)

    Suita, Yoshikazu; Shinike, Shuhei; Ekuni, Tomohide; Terajima, Noboru; Tsukuda, Yoshiyuki; Imagawa, Kichiro

    Aluminum alloys have been used widely in constructing various space structures including the International Space Station (ISS) and launch vehicles. For space applications, welding experiments on aluminum alloy were performed using the GHTA (Gas Hollow Tungsten Arc) welding process using a filler wire feeder in a vacuum. We investigated the melting phenomenon of the base metal and filler wire, bead formation, and the effects of wire feed speed on melting characteristics. The melting mechanism in the base metal during the bead on a plate with wire feed was similar to that for the melt run without wire feed. We clarified the effects of wire feed speed on bead sizes and configurations. Furthermore, the butt welded joint welded using the optimum wire feed speed, and the joint tensile strengths were evaluated. The tensile strength of the square butt joint welded by the pulsed DC GHTA welding with wire feed in a vacuum is nearly equal to that of the same joint welded by conventional GTA (Gas Tungsten Arc) welding in air.

  4. Welding Course Curriculum.

    ERIC Educational Resources Information Center

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part…

  5. Instructional Guidelines. Welding.

    ERIC Educational Resources Information Center

    Fordyce, H. L.; Doshier, Dale

    Using the standards of the American Welding Society and the American Society of Mechanical Engineers, this welding instructional guidelines manual presents a course of study in accordance with the current practices in industry. Intended for use in welding programs now practiced within the Federal Prison System, the phases of the program are…

  6. Welding Plutonium Storage Containers

    SciTech Connect

    HUDLOW, SL

    2004-04-20

    The outer can welder (OCW) in the FB-Line Facility at the Savannah River Site (SRS) is a Gas Tungsten Arc Weld (GTAW) system used to create outer canisters compliant with the Department of Energy 3013 Standard, DOE-STD-3013-2000, Stabilization, Packaging, and Storage of Plutonium-Bearing Materials. The key welding parameters controlled and monitored on the outer can welder Data Acquisition System (DAS) are weld amperage, weld voltage, and weld rotational speed. Inner 3013 canisters from the Bagless Transfer System that contain plutonium metal or plutonium oxide are placed inside an outer 3013 canister. The canister is back-filled with helium and welded using the outer can welder. The completed weld is screened to determine if it is satisfactory by reviewing the OCW DAS key welding parameters, performing a helium leak check, performing a visual examination by a qualified weld inspector, and performing digital radiography of the completed weld. Canisters with unsatisfactory welds are cut open and repackaged. Canisters with satisfactory welds are deemed compliant with the 3013 standard for long-term storage.

  7. Welding Course Curriculum.

    ERIC Educational Resources Information Center

    Genits, Joseph C.

    This guide is intended for use in helping students gain a fundamental background on the major aspects of the welding trade. The course emphasis is on mastery of the manipulative skills necessary to develop successful welding techniques and on acquisition of an understanding of the specialized tools and equipment used in welding. The first part

  8. Variable polarity arc welding

    NASA Technical Reports Server (NTRS)

    Bayless, E. O., Jr.

    1991-01-01

    Technological advances generate within themselves dissatisfactions that lead to further advances in a process. A series of advances in welding technology which culminated in the Variable Polarity Plasma Arc (VPPA) Welding Process and an advance instituted to overcome the latest dissatisfactions with the process: automated VPPA welding are described briefly.

  9. Portable Weld Tester.

    ERIC Educational Resources Information Center

    Eckert, Douglas

    This training manual, which was developed for employees of an automotive plant, is designed to teach trainees to operate a portable weld tester (Miyachi MM-315). In chapter 1, the weld tester's components are illustrated and described, and the procedure for charging its batteries is explained. Chapter 2 illustrates the weld tester's parts,…

  10. Determination of momentum as a mean of quantifying the mechanical energy delivered by droplets during MIG/MAG welding

    NASA Astrophysics Data System (ADS)

    Scotti, A.; Rodrigues, C. E. A. L.

    2009-01-01

    The objective of this work was to propose and assess, under the light of modern techniques for arc visualization and welding parameter monitoring, a parameter that would quantify properly the effect of the droplets reaching the pool over the bead penetration during MIG/MAG welding (GMAW). High-speed filming shadowgraphy, synchronized with the electrical signals, was used. Dedicated computational programs were employed to measure arc lengths and size, frequency, acceleration and speed of the droplets. Calibration of the system by employing metallic spheres was used to guaranty the performance of the image recording and measurement programs. Statistics were employed for sampling size determination. A non-common approach to correlate Momentum to bead geometry is propose and discussed. The methodology was assessed through MIG/MAG bead-on-plate welds shielded with an Ar+5%O{2} blend, at three levels of currents and arc lengths. It was concluded that the proposed parameter denominated in this paper as “Effective Momentum” is the one which better represents the action of the droplets over bead formation.

  11. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    SciTech Connect

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  12. An engineering model to simulate the thermal response of electronic devices during pulsed Nd:YAG laser welding

    SciTech Connect

    Gianoulakis, S.E.; Voth, T.E.; Fuerschbach, P.W.; Prinzbach, J.H.

    1996-12-31

    A model is developed to predict the thermal response of real electronic devices during pulsed Nd:YAG laser welding. Modeling laser-part interaction requires incorporation of weld pool hydrodynamics, and laser-metal vapor and laser-surface interactions. Although important information can be obtained from these models, they are not appropriate for use in design of actual components due to computational limitations. In lieu of solving for these detailed physics, a simple model is constructed. In this model, laser-part interactions are accounted for through an empirically determined energy transfer efficiency which is developed through the use of modeling and experiments. This engineering model is appropriate since part thermal response near the weld pool and weld pool shape is not of interest here. Reasonable agreement between predictions and experimental measurements for welding of real components are indicated.

  13. Programmable Positioner For Spot Welding

    NASA Technical Reports Server (NTRS)

    Roden, William A.

    1989-01-01

    Welding station mechanized by installing preset indexing system and gear drive. Mechanism includes a low-cost, versatile, single-axis motion control and motor drive to provide fully-automatic weld sequencing and spot-to-spot spacing. Welding station relieves operator of some difficult, tedious tasks and increases both productivity and quality of welds. Results in welds of higher quality and greater accuracy, fewer weld defects, and faster welding operation.

  14. 13 CFR 120.1704 - Pool Loans eligible for Pooling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Establishment of SBA Secondary Market Guarantee Program for First Lien Position 504 Loan Pools § 120.1704 Pool..., construction or renovation of an aquarium, zoo, golf course, or swimming pool; or (iv) To a business covered...

  15. 13 CFR 120.1704 - Pool Loans eligible for Pooling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., construction or renovation of an aquarium, zoo, golf course, or swimming pool; or (iv) To a business covered by... zoos—712130 (“Zoos and Botanical Gardens”). (b) SBA review of a Pool Loan prior to pool formation....

  16. 13 CFR 120.1704 - Pool Loans eligible for Pooling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., construction or renovation of an aquarium, zoo, golf course, or swimming pool; or (iv) To a business covered by... zoos—712130 (“Zoos and Botanical Gardens”). (b) SBA review of a Pool Loan prior to pool formation....

  17. 13 CFR 120.1704 - Pool Loans eligible for Pooling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., construction or renovation of an aquarium, zoo, golf course, or swimming pool; or (iv) To a business covered by... zoos—712130 (“Zoos and Botanical Gardens”). (b) SBA review of a Pool Loan prior to pool formation....

  18. Swimming pool. View of aisle between swimming pool and seating ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Swimming pool. View of aisle between swimming pool and seating area. Non-original spa pool is partially visible on right. - Jewish Community Center of San Francisco, 3200 California Street, San Francisco, San Francisco County, CA

  19. Welding High Strength Modern Line Pipe Steel

    NASA Astrophysics Data System (ADS)

    Goodall, Graeme Robertson

    The effect of modern mechanized girth welding on high strength line pipe has been investigated. The single cycle grain coarsened heat affected zone in three grade 690 line pipe steels and a grade 550 steel has been simulated using a Gleeble thermo-mechanical simulator. The continuous cooling transformation diagrams applicable to the grain coarsened heat affected zone resulting from a range of heat inputs applicable to modern mechanized welding have been established by dilatometry and metallography. The coarse grained heat affected zone was found to transform to lath martensite, bainite, and granular bainite depending on the cooling rate. The impact toughness of the steels was measured using Charpy impact toughness and compared to the toughness of the grain coarsened heat affected zone corresponding to a welding thermal cycle. The ductile to brittle transition temperature was found to be lowest for the steel with the highest hardenability. The toughness resulting from three different thermal cycles including a novel interrupted intercritically reheated grain coarsened (NTR ICR GC HAZ) that can result from dual torch welding at fast travel speed and close torch spacing have been investigated. All of the thermally HAZ regions showed reduced toughness that was attributed to bainitic microstructure and large effective grain sizes. Continuous cooling transformation diagrams for five weld metal chemistries applicable to mechanized pulsed gas metal arc welding of modern high strength pipe steel (SMYS>550 MPa) have been constructed. Welds at heat inputs of 1.5 kJmm-1 and 0.5 kJmm-1 have been created for simulation and analysis. Dilatometric analysis was performed on weld metal specimens cut from single pass 1.5 kJmm-1 as deposited beads. The resulting microstructures were found to range from martensite to polygonal ferrite. There is excellent agreement between the simulated and as deposited weld metal regions. Toughness testing indicates improved energy absorption at -20 °C with increased cooling time.

  20. Fundamentals of friction stir spot welding

    NASA Astrophysics Data System (ADS)

    Badarinarayan, Harsha

    The recent spike in energy costs has been a major contributor to propel the use of light weight alloys in the transportation industry. In particular, the automotive industry sees benefit in using light weight alloys to increase fuel efficiency and enhance performance. In this context, light weight design by replacing steel with Al and/or Mg alloys have been considered as promising initiatives. The joining of structures made of light weight alloys is therefore very important and calls for more attention. Friction Stir Spot Welding (FSSW) is an evolving technique that offers several advantages over conventional joining processes. The fundamentals aspects of FSSW are systematically studied in this dissertation. The effects and influence of process inputs (weld parameters and tool geometry) on the process output (weld geometry and static strength) is studied. A Design of Experiments (DoE) is carried out to identify the effect of each process parameter on weld strength. It is found that the tool geometry, and in particular the pin profile has a significant role in determining the weld geometry (hook, stir zone size etc.) which in turn influences the failure mode and weld strength. A novel triangular pin tool geometry is proposed that suppresses the hook formation and produces welds with twice the static strength as those produced with conventional cylindrical pin tools. An experimental and numerical approach is undertaken to understand the effect of pin geometry on the material flow and failure mechanism of spot welds. In addition, key practical issues have been addressed such as quantification of tool life and a methodology to control tool plunge depth during welding. Finally, by implementing the findings of this dissertation, FSSW is successfully performed on a closure panel assembly for an automotive application.

  1. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  2. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Specification 4E welded aluminum cylinders. 178.68... FOR PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water...

  3. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  4. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  5. 49 CFR 178.68 - Specification 4E welded aluminum cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Specification 4E welded aluminum cylinders. 178.68... PACKAGINGS Specifications for Cylinders § 178.68 Specification 4E welded aluminum cylinders. (a) Type, size and service pressure. A DOT 4E cylinder is a welded aluminum cylinder with a water capacity...

  6. 49 CFR 178.57 - Specification 4L welded insulated cylinders.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Type, size, service pressure, and design service temperature. A DOT 4L cylinder is a fusion welded...: (1) All seams of the cylinder must be fusion welded. A means must be provided for accomplishing... and heads of the cylinder must be by fusion welding and must be of a weldable material complying...

  7. 49 CFR 178.57 - Specification 4L welded insulated cylinders.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Type, size, service pressure, and design service temperature. A DOT 4L cylinder is a fusion welded...: (1) All seams of the cylinder must be fusion welded. A means must be provided for accomplishing... and heads of the cylinder must be by fusion welding and must be of a weldable material complying...

  8. 49 CFR 178.57 - Specification 4L welded insulated cylinders.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Type, size, service pressure, and design service temperature. A DOT 4L cylinder is a fusion welded...: (1) All seams of the cylinder must be fusion welded. A means must be provided for accomplishing... and heads of the cylinder must be by fusion welding and must be of a weldable material complying...

  9. Gas tungsten arc welding of vanadium alloys with impurity control

    NASA Astrophysics Data System (ADS)

    Grossbeck, M. L.; King, J. F.; Nagasaka, T.; David, S. A.

    2002-12-01

    Gas tungsten arc welding in vanadium alloys is controlled by interstitial impurities. Techniques have been developed to weld V-4Cr-4Ti in a high-purity argon atmosphere resulting in a DBTT of -20 °C. The atmosphere was controlled by a Zr-Al getter which is activated at high temperature to obtain a clean surface then cooled and allowed to absorb hydrogen and oxygen impurities. Through the use of low-oxygen base metal and high-purity weld filler wire, a DBTT of -145 °C was obtained. Experiments using electron beam welding have shown that grain size also has an important effect on weld ductility. Introduction of nitrogen and yttrium has been used to study their effect on grain size. Using a combination of atmosphere control, alloy purity control, and grain size control, it is anticipated that V-Cr-Ti alloys will be weldable in field conditions.

  10. Analysis of hybrid Nd:Yag laser-MAG arc welding processes

    NASA Astrophysics Data System (ADS)

    Le Guen, E.; Fabbro, R.; Carin, M.; Coste, F.; Le Masson, P.

    2011-10-01

    In the hybrid laser-arc welding process, a laser beam and an electric arc are coupled in order to combine the advantages of both processes: high welding speed, low thermal load and high depth penetration thanks to the laser; less demanding on joint preparation/fit-up, typical of arc welding. Thus the hybrid laser-MIG/MAG (Metal Inert or Active Gas) arc welding has very interesting properties: the improvement of productivity results in higher welding speeds, thicker welded materials, joint fit-up allowance, better stability of molten pool and improvement of joint metallurgical quality. The understanding of the main relevant involved physical processes are therefore necessary if one wants for example elaborate adequate simulations of this process. Also, for an efficient use of this process, it is necessary to precisely understand the complex physical phenomena that govern this welding technique. This paper investigates the analysis of the effect of the main operating parameters for the laser alone, MAG alone and hybrid Laser/MAG welding processes. The use of a high speed video camera allows us to precisely characterize the melt pool 3D geometry such as the measurements of its depression and its length and the phenomena occurring inside the melt pool through keyhole-melt pool-droplet interaction. These experimental results will form a database that is used for the validation of a three-dimensional thermal model of the hybrid welding process for a rather wide range of operating parameters where the 3-D geometry of the melt pool is taken into account.

  11. Age-related changes in amino acid pool sizes in the adult silkmoth, Bombyx mori, reared at low and high temperature; a biochemical examination of the rate-of-living theory and urea accumulation when reared at high temperature.

    PubMed

    Osanai, M; Yonezawa, Y

    1984-01-01

    To examine the rate-of-living theory, age-related changes in amino acid pool sizes were investigated in the adult silkmoth, Bombyx mori, reared at low and high temperature. At either temperature concentrations of free amino acids contained in silkmoths revealed a great sexual difference. Those in females were generally much higher than in males and the former changed much more dynamically than the latter. Major amino acids or ninhydrin-positive compounds inclusive of some essential amino acids such as Leu, Ile, Val, Thr, Arg, Phe, Met, Ala, Tyr, Gln, Aspn , Lan , Cysta , GABA and PEA accumulated in 4 degrees C-moths. However, the levels of these amino changed irregularly with advanced age. Inhibition of protein synthesis may occur generally at low temperature, while protein degradation may be promoted at high temperature. High concentrations of MSO and Tau in the moths reared at high temperature than in the normal moths suggested also catabolism of amino acids proceeding together with protein degradation at high temperature. Amino acid metabolism seems to be complicated under various temperature conditions. When reared at the optimal temperature of 25 degrees C, urea is not present in the body of the silkmoth except for a slight amount in the secreted meconium. In silkmoths reared at the higher temperature of 35 degrees C, however, an extraordinary accumulation of urea occurs accompanied by a reduction in lifespan by one half. Undoubtedly, urea is produced in this terrestrial insect, although the accumulation mechanism is not clear: in silkmoths reared at various temperatures, arginase is found, but urease is not detected. Arginase activity was found to be higher in male moths than in female moths regardless of the rearing temperature. High temperature rearing also did not induce activity and female activity never exceeded that in males at either 25 degrees C or 35 degrees C rearing. Protein degradation accelerated by rearing at high temperatures may result in increased amounts of free arginine, which could cause the active production of urea. This possibility would be a counter-argument to the rate of living theory relating to longevity and temperature. However, at least the above facts signify that an extrinsic factor influences the longevity of an animal by altering its intrinsic aging process. PMID:6723818

  12. Method for welding beryllium

    DOEpatents

    Dixon, Raymond D.; Smith, Frank M.; O'Leary, Richard F.

    1997-01-01

    A method is provided for joining beryllium pieces which comprises: depositing aluminum alloy on at least one beryllium surface; contacting that beryllium surface with at least one other beryllium surface; and welding the aluminum alloy coated beryllium surfaces together. The aluminum alloy may be deposited on the beryllium using gas metal arc welding. The aluminum alloy coated beryllium surfaces may be subjected to elevated temperatures and pressures to reduce porosity before welding the pieces together. The aluminum alloy coated beryllium surfaces may be machined into a desired welding joint configuration before welding. The beryllium may be an alloy of beryllium or a beryllium compound. The aluminum alloy may comprise aluminum and silicon.

  13. Analysis of Welding Zinc Coated Steel Sheets in Zero Gap Configuration by 3D Simulations and High Speed Imaging

    NASA Astrophysics Data System (ADS)

    Koch, Holger; Kägeler, Christian; Otto, Andreas; Schmidt, Michael

    Welding of zinc coated sheets in zero gap configuration is of eminent interest for the automotive industry. This Laser welding process would enable the automotive industry to build auto bodies with a high durability in a plain manufacturing process. Today good welding results can only be achieved by expensive constructive procedures such as clamping devices to ensure a defined gad. The welding in zero gap configuration is a big challenge because of the vaporised zinc expelled from the interface between the two sheets. To find appropriate welding parameters for influencing the keyhole and melt pool dynamics, a three dimensional simulation and a high speed imaging system for laser keyhole welding have been developed. The obtained results help to understand the process of the melt pool perturbation caused by vaporised zinc.

  14. Shielding gas oxygen equivalent in weld metal microstructure optimization

    SciTech Connect

    Onsoeien, M.I.; Liu, S.; Olson, D.L.

    1996-07-01

    One of the compositional variables that strongly influence low-carbon structural steel weld metal microstructure and mechanical properties is the weld metal oxygen content. As the weld metal oxygen content varies, a change in microstructure occurs. At low concentrations of oxygen, ferrite with aligned or nonaligned second phases may become predominant, slightly higher oxygen levels may result in the formation of the desired acicular ferrite, and further increases in the oxygen content to promote the formation of grain boundary ferrite. The start of austenite decomposition and ferrite nucleation are very sensitive to variations in the amount of oxygen present in the weld metal. Thus, in gas metal arc welding, adjusting the shielding gas oxygen potential provides a means of controlling the weld metal oxygen content. Bead-in-groove gas metal arc welding experiments were performed on HSLA steel coupons using three different welding wires and two heat inputs. A total of 17 different argon-based oxygen and carbon dioxide shielding gas mixtures was used. Complete metallographic and chemical analyses were carried out to evaluate the weld specimens. Sub-size Charpy V-notch toughness testing was performed on selected welds.

  15. Explosive welding of pipes

    NASA Astrophysics Data System (ADS)

    Drennov, O.; Burtseva, O.; Kitin, A.

    2006-08-01

    For connection by welding it is suggested to use the explosive welding method. This method is rather new. Nevertheless, it has become commonly used among the technological developments. This method can be advantageous (saving material and physical resources) comparing to its statical analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. The suggestion is to use water as filler. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gasdynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  16. Evaluation of solar cell welds by scanning acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Klima, S. J.; Frey, W. E.; Baraona, C. R.

    1982-01-01

    Scanning laser acoustic microscopy was used to nondestructively evaluate solar cell interconnect bonds made by resistance welding. Both copper-silver and silver-silver welds were analyzed. The bonds were produced either by a conventional parallel-gap welding technique using rectangular electrodes or new annular gap design with a circular electrode cross section. With the scanning laser acoustic microscope, it was possible to produce a real time television image which reveales the weld configuration as it relates to electrode geometry. The effect of electrode misalinement with the surface of the cell was also determined. A preliminary metallographic analysis was performed on selected welds to establish the relationship between actual size and shape of the weld area and the information available from acoustic micrographs.

  17. Latest Progress in Performance and Understanding of Laser Welding

    NASA Astrophysics Data System (ADS)

    Katayama, Seiji; Kawahito, Yousuke; Mizutani, Masami

    This paper describes a variety of fundamental research results of laser welding which the authors have recently performed. The behavior and characteristics of a laser-induced plume were elucidated. Especially, in remote welding with a fiber laser, the effect of a tall plume leading to shallow weld was interpreted by considering the interaction of an incident laser beam against the zone of a low refractive index from the Mickelson interferometer results. The laser absorption in the plate was higher in the case of a smaller focused beam of fiber laser, lower welding speed and higher power, and the reason was interpreted by considering the size and location of a keyhole inlet and a beam spot. High power tandem laser beams could produce deep penetration, and laser welding in vacuum was developed for production of deeply penetrated welds. Laser direct joining was also developed for joining of metal to plastic or CFRP.

  18. A study on the influence of ultrasonic processing on microstructure during laser welding phases

    NASA Astrophysics Data System (ADS)

    Liu, H. D.; Hu, F. Y.; Cui, A. Y.; Li, H. B.

    2015-12-01

    This paper proposes new welding technology that combines ultrasonic processing across different phases based on laser welding (UPPLW) and laser processing technology. The welding experiment used a 1.5 mm thick titanium alloy. The specimen was made metallographically prepared and the microstructural grain size of the welded joint was rated by metallurgical processing software, verifying that this new process can refine grains and improve joint properties.

  19. Surface preparation effects on GTA weld shape in JBK-75 stainless steel

    SciTech Connect

    Campbell, R.D.; Robertson, A.M. ); Heiple, C.R. ); Sturgill, P.L.; Jamsay, R.

    1993-02-01

    The results of a study are reported here on the effects of surface preparation on the shape of autogenous gas tungsten arc (GTA) welds in JBK-75, an austenitic precipitation hardenable stainless steel similar to A286. Minor changes in surface preparation produced substantial changes in the fusion zone shape and welding behavior of this alloy. Increased and more consistent depth of fusion (higher d/w ratios) along with improved arc stability and less arc wander resulted from wire brushing and other abrasive surface preparations, although chemical and machining methods did not produce any increase in depth of fusion. Abrasive treatments roughen the surface, increase the surface area, increase the surface oxide thickness, and entrap oxide. The increased weld d/w ratio is attributed to oxygen added to the weld pool from the surface oxide on the base metal. The added oxygen alters the surface-tension-driven fluid flow pattern in the weld pool. Increased depth of fusion in wire-fed U-groove weld joints also resulted when welding wire with a greater surface oxide thickness was used. Increasing the amount of wire brushing produced even deeper welds. However, a maximum in depth of fusion was observed with further wire brushing, beyond which weld fusion depth decreased.

  20. Simulation of deep water wet weld microstructures using electrodes with high oxidizing potential

    SciTech Connect

    Pope, A.M.; Liu, S.; Olson, D.L.

    1994-12-31

    The properties of underwater wet (UWW) welds are greatly affected by water depth. Ibarra and Olson [1] showed that the oxygen content of the weld increases with increasing depth while the amount of deoxidants such as Mn and Si decreases. This change in chemical composition adversely affects both the tensile strength and toughness of the weld. The present research was designed to understand the influence of oxidizing ingredients in the electrode covering on the chemical composition, weld bead appearance and microstructure of wet welds. Changes in the ability of the electrode to supply oxygen to the weld pool were made through modifications of the hematite to rutile (Fe{sub 2}O{sub 3}/TiO{sub 2}) ratio in the covering.The weld deposited by the rutile electrode (no hematite addition) presented the lowest oxygen content (1700 ppm). When the oxidizing character of the electrode increased the concentration of inclusions, mainly FeO, in the weld also increased. However, the increase in oxygen pickup was not monotonous but reached a `saturation` value at approximately 2100 ppm. These results suggest that the microstructure and properties of wet welds deposited at great depths by rutile electrodes will be similar to those made by oxidizing electrodes at much shallower depths. Hence studying oxidizing electrodes and improving their properties will help the development of electrodes for wet welding at greater depths. It is also a much cheaper way of `simulating` welding at higher pressures.

  1. Influence of sulfur and welding conditions on penetration in thin strip stainless steel

    SciTech Connect

    Scheller, P.R. ); Brooks, R.F.; Mills, K.C. . Division of Materials Metrology)

    1995-02-01

    Welding trials and surface tension measurements have been carried out on 304 stainless steels with sulfur (S) contents between 20 and 100 ppm. Surface tension measurements, determined by the levitated drop method, indicated that the temperature coefficient of surface tension (d[gamma]/dT) changed from negative to positive values at S contents exceeding approximately 50 ppm. Strips with a thickness of approximately 1 mm were GTA welded on both single-electrode, small-scale and multi-electrode industrial-scale units. Welding speeds of 1 to 2 m min[sup [minus]1] were used on the small-scale unit and up to 5 m min[sup [minus]1] on the industrial unit. The weld penetration was found to increase, for both full and partial penetration welds, with (1) increasing sulfur contents; and (2) increasing linear energy. On the small scale-unit markedly higher penetration was observed in heats with S contents > 60 ppm. But the influence of S contents was only of minor importance for welds obtained on the industrial unit. It was found that the similar weld geometry could be obtained for both low ([<=] 60 ppm) and high (> 60 ppm) sulfur contents by careful adjustment of welding parameters. The observed changes in weld geometry are consistent with the proposition that the fluid flow in the weld pool is dominated by thermo-capillary (Marangoni) forces during the GTA welding of thin strips.

  2. Welding of 316L Austenitic Stainless Steel with Activated Tungsten Inert Gas Process

    NASA Astrophysics Data System (ADS)

    Ahmadi, E.; Ebrahimi, A. R.

    2015-02-01

    The use of activating flux in TIG welding process is one of the most notable techniques which are developed recently. This technique, known as A-TIG welding, increases the penetration depth and improves the productivity of the TIG welding. In the present study, four oxide fluxes (SiO2, TiO2, Cr2O3, and CaO) were used to investigate the effect of activating flux on the depth/width ratio and mechanical property of 316L austenitic stainless steel. The effect of coating density of activating flux on the weld pool shape and oxygen content in the weld after the welding process was studied systematically. Experimental results indicated that the maximum depth/width ratio of stainless steel activated TIG weld was obtained when the coating density was 2.6, 1.3, 2, and 7.8 mg/cm2 for SiO2, TiO2, Cr2O3, and CaO, respectively. The certain range of oxygen content dissolved in the weld, led to a significant increase in the penetration capability of TIG welds. TIG welding with active fluxes can increase the delta-ferrite content and improves the mechanical strength of the welded joint.

  3. Pools for the Handicapped.

    ERIC Educational Resources Information Center

    American School and University, 1979

    1979-01-01

    Three institutions in Ohio now stress hydrotherapy and water recreation as important parts of individual educational programs for the handicapped. Specially designed and adapted pools provide freedom of movement and ego building as well as physical education and recreation. (Author)

  4. Vitamin D Pooling Project

    Cancer.gov

    The Vitamin D Pooling Project of Rarer Cancers brought together investigators from 10 cohorts to conduct a large prospective epidemiologic study of the association between vitamin D status and seven rarer cancers.

  5. Effect of Welding Atmosphere at Bottom Surface on Welding Phenomenan in Full Penetration Laser Welding of Thick Plate

    NASA Astrophysics Data System (ADS)

    Arakane, Goro; Tsukamoto, Susumu; Honda, Hiroshi; Kuroda, Seiji; Fukushima, Takeshi

    The keyhole behaviour and bubble formation were investigated in the full penetration laser welding of 11 and 15 mm thick plate with various kinds of atmosphere at the bottom side. Prevention of some defects was also attempted. Back surface atmosphere was controlled using a shielding box fixed on the sample back surface to avoid contamination from the air and also the effect of gas flow on the keyhole behaviour. A lot of bubbles were formed during welding with the back surface atmosphere of nitrogen and air. This was deduced to be caused by supersaturation of nitrogen, which was dissolved from the backside molten pool. The critical nitrogen concentration in the weld metal to form the porosity was independent of the back surface atmosphere. Oxygen enhanced the porosity formation, since the nitrogen concentration increased in the presence of oxygen. The keyhole was significantly perturbed and hot cracking occurred in the inert gas back shielding. It was shown that the keyhole stability determined by solubility of the shielding gas in the molten steel. Aluminum coating on the sample back surface was effective in preventing the porosity due to denitrification of the molten pool and hot cracking.

  6. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    SciTech Connect

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. ); Moore, K.L. )

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

  7. Friction Stir Welding in HSLA-65 Steel: Part I. Influence of Weld Speed and Tool Material on Microstructural Development

    NASA Astrophysics Data System (ADS)

    Barnes, S. J.; Bhatti, A. R.; Steuwer, A.; Johnson, R.; Altenkirch, J.; Withers, P. J.

    2012-07-01

    A systematic set of single-pass full penetration friction stir bead-on-plate and butt-welds in HSLA-65 steel were produced using a range of different traverse speeds (50 to 500 mm/min) and two tool materials (W-Re and PCBN). Microstructural analysis of the welds was carried out using optical microscopy, and hardness variations were also mapped across the weld-plate cross sections. The maximum and minimum hardnesses were found to be dependent upon both welding traverse speed and tool material. A maximum hardness of 323 Hv(10) was observed in the mixed martensite/bainite/ferrite microstructure of the weld nugget for a welding traverse speed of 200 mm/min using a PCBN tool. A minimum hardness of 179 Hv(10) was found in the outer heat-affected zone (OHAZ) for welding traverse speed of 50 mm/min using a PCBN tool. The distance from the weld centerline to the OHAZ increased with decreasing weld speed due to the greater heat input into the weld. Likewise for similar energy inputs, the size of the transformed zone and the OHAZ increased on moving from a W-Re tool to a PCBN tool probably due to the poorer thermal conductivity of the PCBN tool. The associated residual stresses are reported in Part II of this series of articles.

  8. Dual wire weld feed proportioner

    NASA Technical Reports Server (NTRS)

    Nugent, R. E.

    1968-01-01

    Dual feed mechanism enables proportioning of two different weld feed wires during automated TIG welding to produce a weld alloy deposit of the desired composition. The wires are fed into the weld simultaneously. The relative feed rates of the wires and the wire diameters determine the weld deposit composition.

  9. Robotic Welding Of Injector Manifold

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.; Shelley, D. Mark

    1992-01-01

    Brief report presents history, up through October 1990, of continuing efforts to convert from manual to robotic gas/tungsten arc welding in fabrication of main injector inlet manifold of main engine of Space Shuttle. Includes photographs of welding machinery, welds, and weld preparations. Of interest to engineers considering establishment of robotic-welding facilities.

  10. The effect of the welding direction on the plasma and metal transfer behavior of CO2 laser+GMAW-P hybrid welding processes

    NASA Astrophysics Data System (ADS)

    Zhang, Wang; Hua, Xueming; Liao, Wei; Li, Fang; Wang, Min

    2014-07-01

    During laser-arc hybrid welding, the welding direction exerts direct effects on the plasma properties, the transient behavior of the droplet, the weld pool behavior, and the temperature field. Ultimately, it will affect the welding process and the weld quality. However, the behavior of the CO2 laser+GMAW-P hybrid welding process has not been systematically studied. In this paper, the current-voltage characteristics of different welding processes were analyzed and compared. The dynamics of the droplet transfer, the plasma behavior, and the weld pool behavior were observed by using two high-speed camera systems. Moreover, an optical emission spectroscopy was applied to analyze the plasma temperature and the electron number density. The results indicated that the electrical resistance of the arc plasma reduced in the laser leading mode. For the same pulse duration, the metal transfer mode was the spray type with the laser leading arrangement. The temperature and electron density distribution showed bimodal behavior in the case of arc leading mode, while this phenomenon does not exist in the caser of laser leading mode. The double elliptic-planar distribution which conventional simulation process used was not applicable in the laser leading mode.

  11. The study of surface-active element oxygen on flow patterns and penetration in A-TIG welding

    NASA Astrophysics Data System (ADS)

    Zhao, Yuzhen; Shi, Yaowu; Lei, Yongping

    2006-06-01

    A three-dimensional mathematical model was developed to simulate the flow patterns and temperature distributions in a moving A-TIG weld pool of 304 stainless steels with different oxygen content using PHOENICS software. It is shown that the surface-active element, oxygen, is important, because it affects the weld shape by changing the flow patterns in the weld pool. The weld bead penetration and the depth/width ratio increase first sharply and then remain nearly a constant with increasing oxygen content. Depending upon the oxygen contents, three, one, or two vortexes that have different positions, strength, and directions may be found in the weld pool. Oxygen can cause significant changes in the weld shape by varying the sign of the surface tension coefficient. The situation with the maximum surface tension moves from the edge to the center with increasing oxygen content. As oxygen content exceeds a critical value, a positive surface tension coefficient dominates the flow patterns. The vortexes with opposite directions caused by positive surface tension coefficient can efficiently transfer the thermal energy from the arc, creating a deep weld pool. The critical oxygen content increases with the increase of the welding current.

  12. How to map your industry's profit pool.

    PubMed

    Gadiesh, O; Gilbert, J L

    1998-01-01

    Many managers chart strategy without a full understanding of the sources and distribution of profits in their industry. Sometimes they focus their sights on revenues instead of profits, mistakenly assuming that revenue growth will eventually translate into profit growth. In other cases, they simply lack the data or the analytical tools required to isolate and measure variations in profitability. In this Manager's Tool Kit, the authors present a way to think clearly about where the money's being made in any industry. They describe a framework for analyzing how profits are distributed among the activities that form an industry's value chain. Such an analysis can provide a company's managers with a rich understanding of their industry's profit structure--what the authors call its profit pool--enabling them to identify which activities are generating disproportionately large or small shares of profits. Even more important, a profit-pool map opens a window onto the underlying structure of the industry, helping managers see the various forces that are determining the distribution of profits. As such, a profit-pool map provides a solid basis for strategic thinking. Mapping a profit pool involves four steps: defining the boundaries of the pool, estimating the pool's overall size, estimating the size of each value-chain activity in the pool, and checking and reconciling the calculations. The authors briefly describe each step and then apply the process by providing a detailed example of a hypothetical retail bank. They conclude by looking at ways of organizing the data in chart form as a first step toward plotting a profit-pool strategy. PMID:10179650

  13. Performance Study of Swimming Pool Heaters

    SciTech Connect

    McDonald, R.J.

    2009-01-01

    The objective of this report is to perform a controlled laboratory study on the efficiency and emissions of swimming pool heaters based on a limited field investigation into the range of expected variations in operational parameters. Swimming pool heater sales trends have indicated a significant decline in the number of conventional natural gas-fired swimming pool heaters (NGPH). On Long Island the decline has been quite sharp, on the order of 50%, in new installations since 2001. The major portion of the decline has been offset by a significant increase in the sales of electric powered heat pump pool heaters (HPPH) that have been gaining market favor. National Grid contracted with Brookhaven National Laboratory (BNL) to measure performance factors in order to compare the relative energy, environmental and economic consequences of using one technology versus the other. A field study was deemed inappropriate because of the wide range of differences in actual load variations (pool size), geographic orientations, ground plantings and shading variations, number of hours of use, seasonal use variations, occupancy patterns, hour of the day use patterns, temperature selection, etc. A decision was made to perform a controlled laboratory study based on a limited field investigation into the range of expected operational variations in parameters. Critical to this are the frequency of use, temperature selection, and sizing of the heater to the associated pool heating loads. This would be accomplished by installing a limited amount of relatively simple compact field data acquisition units on selected pool installations. This data included gas usage when available and alternately heater power or gas consumption rates were inferred from the manufacturer's specifications when direct metering was not available in the field. Figure 1 illustrates a typical pool heater installation layout.

  14. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite

    SciTech Connect

    Fernandez, G.J.; Murr, L.E

    2004-03-15

    Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.

  15. Processing-Microstructure Relationships in Friction Stir Welding of MA956 Oxide Dispersion Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Baker, Bradford W.; Menon, E. Sarath K.; McNelley, Terry R.; Brewer, Luke N.; El-Dasher, Bassem; Farmer, Joseph C.; Torres, Sharon G.; Mahoney, Murray W.; Sanderson, Samuel

    2014-12-01

    A comprehensive set of processing-microstructure relationships is presented for friction stir welded oxide dispersion strengthened MA956 steel. Eight rotational speed/traverse speed combinations were used to produce friction stir welds on MA956 plates using a polycrystalline cubic boron nitride tool. Weld conditions with high thermal input produced defect-free, full-penetration welds. Electron backscatter diffraction results showed a significant increase in grain size, a persistent body centered cubic torsional texture in the stir zone, and a sharp transition in grain size across the thermo-mechanically affected zone sensitive to weld parameters. Micro-indentation showed an asymmetric reduction in hardness across a transverse section of the weld. This gradient in hardness was greatly increased with higher heat inputs. The decrease in hardness after welding correlates directly with the increase in grain size and may be explained with a Hall-Petch type relationship.

  16. Bobbin-Tool Friction-Stir Welding of Thick-Walled Aluminum Alloy Pressure Vessels

    SciTech Connect

    Dalder, E C; Pastrnak, J W; Engel, J; Forrest, R S; Kokko, E; Ternan, K M; Waldron, D

    2007-06-06

    It was desired to assemble thick-walled Al alloy 2219 pressure vessels by bobbin-tool friction-stir welding. To develop the welding-process, mechanical-property, and fitness-for-service information to support this effort, extensive friction-stir welding-parameter studies were conducted on 2.5 cm. and 3.8 cm. thick 2219 Al alloy plate. Starting conditions of the plate were the fully-heat-treated (-T62) and in the annealed (-O) conditions. The former condition was chosen with the intent of using the welds in either the 'as welded' condition or after a simple low-temperature aging treatment. Since preliminary stress-analyses showed that stresses in and near the welds would probably exceed the yield-strength of both 'as welded' and welded and aged weld-joints, a post-weld solution-treatment, quenching, and aging treatment was also examined. Once a suitable set of welding and post-weld heat-treatment parameters was established, the project divided into two parts. The first part concentrated on developing the necessary process information to be able to make defect-free friction-stir welds in 3.8 cm. thick Al alloy 2219 in the form of circumferential welds that would join two hemispherical forgings with a 102 cm. inside diameter. This necessitated going to a bobbin-tool welding-technique to simplify the tooling needed to react the large forces generated in friction-stir welding. The bobbin-tool technique was demonstrated on both flat-plates and plates that were bent to the curvature of the actual vessel. An additional issue was termination of the weld, i.e. closing out the hole left at the end of the weld by withdrawal of the friction-stir welding tool. This was accomplished by friction-plug welding a slightly-oversized Al alloy 2219 plug into the termination-hole, followed by machining the plug flush with both the inside and outside surfaces of the vessel. The second part of the project involved demonstrating that the welds were fit for the intended service. This involved determining the room-temperature tensile and elastic-plastic fracture-toughness properties of the bobbin-tool friction-stir welds after a post-weld solution-treatment, quenching, and aging heat-treatment. These mechanical properties were used to conduct fracture-mechanics analyses to determine critical flaw sizes. Phased-array and conventional ultrasonic non-destructive examination was used to demonstrate that no flaws that match or exceed the calculated critical flaw-sizes exist in or near the friction-stir welds.

  17. Welding techniques for high alloy austenitic stainless steel

    SciTech Connect

    Gooch, T.G.; Woollin, P.

    1996-11-01

    Factors controlling corrosion resistance of weldments in high alloy austenitic stainless steel are described, with emphasis on microsegregation, intermetallic phase precipitation and nitrogen loss from the molten pool. The application is considered of a range of welding processes, both fusion and solid state. Autogenous fusion weldments have corrosion resistance below that of the parent, but low arc energy, high travel speed and use of N{sub 2}-bearing shielding gas are recommended for best properties. Conventional fusion welding practice is to use an overalloyed nickel-base filler metal to avoid preferential weld metal corrosion, and attention is given to the effects of consumable composition and level of weldpool dilution by base steel. With non-matching consumables, overall joint corrosion resistance may be limited by the presence of a fusion boundary unmixed zone: better performance may be obtained using solid state friction welding, given appropriate component geometry. Overall, the effects of welding on superaustenitic steels are understood, and the materials have given excellent service in welded fabrications. The paper summarizes recommendations on preferred welding procedure.

  18. Microstructural Characteristics of a Stainless Steel/Copper Dissimilar Joint Made by Laser Welding

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Xia, Jun; Zhang, Hua; Zhao, Xingke

    2013-08-01

    The microstructures and its formation mechanism of a stainless steel/copper dissimilar joint by laser welding were investigated. It was found that the two modes of joining, i.e., welding-brazing and fusion welding, depend on different processing parameters. In the welding-brazing mode, the interface between copper and the fusion zone has scraggy morphology because the molten pool is frozen by solid copper with high thermal conductivity. The interdiffusion of elements occurs in the neighborhood of the interface, which leads to the metallurgy bond of the mode. In the fusion welding mode, the liquid phase in the fusion zone undergoes not only primary but also secondary liquid separation due to the high cooling rate and high supercooling level of laser welding. Some microcracks generated in the fusion zone by thermal stress mismatch are healed by liquid copper filling.

  19. Laser Overlap Welding of Zinc-coated Steel on Aluminum Alloy

    NASA Astrophysics Data System (ADS)

    Kashani, Hamed Tasalloti; Kah, Paul; Martikainen, Jukka

    Local reinforcement of aluminum with laser welded patches of zinc-coated steel can effectively contribute to crashworthiness, durability and weight reduction of car body. However, the weld between Zn-coated steel and aluminum is commonly susceptible to defects such as spatter, cavity and crack. The vaporization of Zn is commonly known as the main source of instability in the weld pool and cavity formation, especially in a lap joint configuration. Cracks are mainly due to the brittle intermetallic compounds growing at the weld interface of aluminum and steel. This study provides a review on the main metallurgical and mechanical concerns regarding laser overlap welding of Zn-coated steel on Al-alloy and the methods used by researchers to avoid the weld defects related to the vaporization of Zn and the poor metallurgical compatibility between steel and aluminum.

  20. Mechanism of laser welding on dissimilar metals between stainless steel and W-Cu alloy

    NASA Astrophysics Data System (ADS)

    Chen, Kai; Wang, Zhiyong; Xiao, Rongshi; Zuo, Tiechuan

    2006-05-01

    CO2 laser is employed to join a piece of powder metallurgical material (PMM) to a stainless steel in butt joint welding mode. The powder Ni35, as a filler powder, is used. The weld metal comes from three parts of stainless steel, powder Ni35, and Cu in W-Cu PMM. It is indicated that some parts of the W-Cu base metal are heated by laser and the metal Cu at the width of 0.06-0.12 mm from the edge is melted into the melting pool in the laser welding process. The formation of firm weld joint is just because that the melting liquid metal could fill the position occupied by metal Cu and surround the metal W granules fully. The analysis results indicate that the mechanism of the laser welding for stainless steel and W-Cu alloy is a special mode of fusion-brazing welding.

  1. VPPA weld model evaluation

    NASA Technical Reports Server (NTRS)

    Mccutcheon, Kimble D.; Gordon, Stephen S.; Thompson, Paul A.

    1992-01-01

    NASA uses the Variable Polarity Plasma Arc Welding (VPPAW) process extensively for fabrication of Space Shuttle External Tanks. This welding process has been in use at NASA since the late 1970's but the physics of the process have never been satisfactorily modeled and understood. In an attempt to advance the level of understanding of VPPAW, Dr. Arthur C. Nunes, Jr., (NASA) has developed a mathematical model of the process. The work described in this report evaluated and used two versions (level-0 and level-1) of Dr. Nunes' model, and a model derived by the University of Alabama at Huntsville (UAH) from Dr. Nunes' level-1 model. Two series of VPPAW experiments were done, using over 400 different combinations of welding parameters. Observations were made of VPPAW process behavior as a function of specific welding parameter changes. Data from these weld experiments was used to evaluate and suggest improvements to Dr. Nunes' model. Experimental data and correlations with the model were used to develop a multi-variable control algorithm for use with a future VPPAW controller. This algorithm is designed to control weld widths (both on the crown and root of the weld) based upon the weld parameters, base metal properties, and real-time observation of the crown width. The algorithm exhibited accuracy comparable to that of the weld width measurements for both aluminum and mild steel welds.

  2. Welding arc plasma physics

    NASA Technical Reports Server (NTRS)

    Cain, Bruce L.

    1990-01-01

    The problems of weld quality control and weld process dependability continue to be relevant issues in modern metal welding technology. These become especially important for NASA missions which may require the assembly or repair of larger orbiting platforms using automatic welding techniques. To extend present welding technologies for such applications, NASA/MSFC's Materials and Processes Lab is developing physical models of the arc welding process with the goal of providing both a basis for improved design of weld control systems, and a better understanding of how arc welding variables influence final weld properties. The physics of the plasma arc discharge is reasonably well established in terms of transport processes occurring in the arc column itself, although recourse to sophisticated numerical treatments is normally required to obtain quantitative results. Unfortunately the rigor of these numerical computations often obscures the physics of the underlying model due to its inherent complexity. In contrast, this work has focused on a relatively simple physical model of the arc discharge to describe the gross features observed in welding arcs. Emphasis was placed of deriving analytic expressions for the voltage along the arc axis as a function of known or measurable arc parameters. The model retains the essential physics for a straight polarity, diffusion dominated free burning arc in argon, with major simplifications of collisionless sheaths and simple energy balances at the electrodes.

  3. Optimal welding of beta titanium orthodontic wires.

    PubMed

    Nelson, K R; Burstone, C J; Goldberg, A J

    1987-09-01

    Today the orthodontist is confronted by an array of new orthodontic wire materials that, when applied to appliance design, can vastly increase the flexibility and versatility of therapy. Welded joints, especially for the newer titanium alloy wires, provide a means to extend the useful applications of these materials. The purpose of this study was to determine the optimum settings for electrical resistance welding of various configurations of titanium-molybdenum (TMA) wires. Specimens were of a t-joint configuration and were mechanically tested in torsion to simulate the failure mode most often observed in clinical practice. Variables included wire size, wire orientation, and welding voltage. Results indicated that excellent welds can be obtained with very little loss of strength and ductility in the area of the weld joint. Torsional loads at failure were at least 90% of the unwelded base material. Although a wide range of voltage settings resulted in high-strength welds, typically a narrow range of voltages yielded optimal ductility. PMID:2888304

  4. Two-Pulse Stitch Welding

    NASA Technical Reports Server (NTRS)

    Torborg, C. J.

    1985-01-01

    Second welding pulse at about 20 percent higher energy repairs bad single-pulse welds. Method used successfully to weld polytetrafluoroethyleneinsulated nickel wire to stainless-steel terminals in back-plane wiring.

  5. Welding skate with computerized controls

    NASA Technical Reports Server (NTRS)

    Wall, W. A., Jr.

    1968-01-01

    New welding skate concept for automatic TIG welding of contoured or double-contoured parts combines lightweight welding apparatus with electrical circuitry which computes the desired torch angle and positions a torch and cold-wire guide angle manipulator.

  6. Impact testing of welded samples

    NASA Technical Reports Server (NTRS)

    Lundeen, Calvin D.

    1992-01-01

    The objective of this paper is to demonstrate how welding practice and joint design affect the performance of the joint. Also demonstrated is the importance of weld inspection to ensure quality welds.

  7. Welding and joining: A compilation

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A compilation is presented of NASA-developed technology in welding and joining. Topics discussed include welding equipment, techniques in welding, general bonding, joining techniques, and clamps and holding fixtures.

  8. Computerized adaptive control weld skate with CCTV weld guidance project

    NASA Technical Reports Server (NTRS)

    Wall, W. A.

    1976-01-01

    This report summarizes progress of the automatic computerized weld skate development portion of the Computerized Weld Skate with Closed Circuit Television (CCTV) Arc Guidance Project. The main goal of the project is to develop an automatic welding skate demonstration model equipped with CCTV weld guidance. The three main goals of the overall project are to: (1) develop a demonstration model computerized weld skate system, (2) develop a demonstration model automatic CCTV guidance system, and (3) integrate the two systems into a demonstration model of computerized weld skate with CCTV weld guidance for welding contoured parts.

  9. Detection of weld line and automatic seam tracking by ultrasonic sensing robot for underwater wet welding

    SciTech Connect

    Suga, Yasuo; Machida, Akira

    1994-12-31

    An underwater wet welding robot with an ultrasonic sensor was developed to detect the weld line and to track the weld line automatically. The robot can move the welding torch toward X and Y directions and the ultrasonic sensor can oscillate along the X direction. As the ultrasonic sensor, an immersion type probe of 9.0 mm in diameter was used. The frequency of the ultrasonic wave is 5.0 MHz. The spot size of the ultrasonic beam is approximately 2 mm at a water distance of 50 mm. As the result of the detecting experiment of weld line by the ultrasonic method, there was no problem in the case of as-received steel plate. However, when the surface condition of the base metal is poor, the robot sometimes makes misjudgment. In the tracking test of the butt weld line of steel plates, which has the angle of 30{degree} to the Y-axis, the tracking error was about 0.5 mm. As the result of the experiments, it was made clear that the robot system is effective on the automatic seam tracking of underwater wet welding.

  10. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques

    NASA Astrophysics Data System (ADS)

    Chatterjee, Anjan; Kumar, Santosh; Tewari, Raghvendra; Dey, Gautam Kumar

    2016-03-01

    In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zones—parent metal, heat-affected zone, and fusion zone—were clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

  11. Welding of Mo-Based Alloy Using Electron Beam and Laser-GTAW Hybrid Welding Techniques

    NASA Astrophysics Data System (ADS)

    Chatterjee, Anjan; Kumar, Santosh; Tewari, Raghvendra; Dey, Gautam Kumar

    2015-12-01

    In the current study, welding of TZM (molybdenum-based alloy) plates in square-butt configuration was carried out using electron beam and laser-GTAW hybrid power sources. Microstructures of weld joint containing three zonesparent metal, heat-affected zone, and fusion zonewere clearly identified when examined through optical and scanning electron microscopy. The weld joints were found to be sound with very wide fusion and heat-affected zones. The microstructure of the fusion zone was coarse-grained. as-solidified microstructure, while the microstructure of heat-affected zone was the recrystallized microstructure with reduction in grain size as distance from the fusion line increased. Microhardness profile using Vickers hardness tester was obtained across the weld region, and the tensile properties of the weld joints were evaluated by performing room temperature tensile test and fracture was examined using scanning electron microscope. Joint coefficient of the weld joints were ~40 to 45 pct of that of the parent metals with nonmeasurable tensile ductility with predominantly transgranular mode of fracture indicating weakness along the grain boundary. Detailed orientation imaging and transmission electron microscopy were carried out to understand the most dominating factor in introducing weld joint brittleness.

  12. Amino acid pool composition of the basidiomycete Coprinus cinereus.

    PubMed

    Ulrich, Cynthia E; Gathman, Allen C; Lilly, Walt W

    2007-11-01

    The leaf-litter fungus Coprinus cinereus maintains a pool of free amino acid in its mycelium. When the organism is grown under conditions of high nitrogen availability with 13.2 mmol.L-1 L-asparagine as the nitrogen source, the primary constituents of this pool are glutamine, alanine, and glutamic acid. Together these 3 amino acids comprise approximately 70% of the pool. Nitrogen deprivation reduces the size of the free amino acid pool by 75%, and neither a high concentration of ammonium nor a protein nitrogen source support a similar pool size as L-asparagine. Nitrogen deprivation also reduces the concentration of glutamine to the pool while increasing glutamate. Concomitant with this shift is a marked increase in mycelial ammonium. PMID:18026222

  13. Automated Weld Characterization Using the Thermoelectric Method

    NASA Technical Reports Server (NTRS)

    Fulton, J. P.; Wincheski, B.; Namkung, M.

    1992-01-01

    The effective assessment of the integrity of welds is a complicated NDE problem that continues to be a challenge. To be able to completely characterize a weld, detailed knowledge of its tensile strength, ductility, hardness, microstructure, macrostructure, and chemical composition is needed. NDE techniques which can provide information on any of these features are extremely important. In this paper, we examine a seldom used approach based on the thermoelectric (TE) effect for characterizing welds and their associated heat affected zone (HAZ). The thermoelectric method monitors the thermoelectric power which is sensitive to small changes in the kinetics of the conduction electrons near the Fermi surface that can be caused by changes in the local microstructure. The technique has been applied to metal sorting, quality testing, flaw detection, thickness gauging of layers, and microscopic structural analysis. To demonstrate the effectiveness of the technique for characterizing welds, a series of tungsten-inert-gas welded Inconel-718 samples were scanned with a computer controlled TE probe. The samples were then analyzed using a scanning electron microscope and Rockwell hardness tests to characterize the weld and the associated HAZ. We then correlated the results with the TE measurements to provide quantitative information on the size of the HAZ and the degree of hardness of the material in the weld region. This provides potentially valuable information on the strength and fatigue life of the weld. We begin the paper by providing a brief review of the TE technique and then highlight some of the factors that can effect the measurements. Next, we provide an overview of the experimental procedure and discuss the results. Finally, we summarize our findings and consider areas for future research.

  14. Computer modeling of heat flow in welds

    NASA Astrophysics Data System (ADS)

    Goldak, J.; Bibby, M.; Moore, J.; House, R.; Patel, B.

    1986-09-01

    This paper summarizes progress in the development of methods, models, and software for analyzing or simulating the flow of heat in welds as realistically and accurately as possible. First the fundamental equations for heat transfer are presented and then a formulation for a nonlinear transient finite element analysis (FEA) to solve them is described. Next the magnetohydrodynamics of the arc and the fluid mechanics of the weld pool are approximated by a flux or power density distribution selected to predict the temperature field as accurately as possible. To assess the accuracy of a model, the computed and experimentally determined fusion zone boundaries are compared. For arc welds, accurate results are obtained with a power density distribution in which surfaces of constant power density are ellipsoids and on radial lines the power density obeys a Gaussian distribution. Three dimensional, in-plane and cross-sectional kinematic models for heat flow are defined. Guidelines for spatial and time discretization are discussed. The FEA computed and experimentally measured temperature field, T(x, y, z, t), for several welding situations is used to demonstrate the effect of temperature dependent thermal properties, radiation, convection, and the distribution of energy in the arc.

  15. Solidification microstructures in single-crystal stainless steel melt pools

    SciTech Connect

    Sipf, J.B.; Boatner, L.A.; David, S.A.

    1994-03-01

    Development of microstructure of stationary melt pools of oriented stainless steel single crystals (70%Fe-15%Ni-15%Cr was analyzed. Stationary melt pools were formed by electron-beam and gas-tungsten-arc heating on (001), (011), and (111) oriented planes of the austenitic, fcc-alloy crystals. Characterization and analysis of resulting microstructure was carried out for each crystallographic plane and welding method. Results showed that crystallography which favors ``easy growth`` along the <100> family of directions is a controlling factor in the microstructural formation along with the melt-pool shape. The microstructure was found to depend on the melting method, since each method forms a unique melt-pool shape. These results are used in making a three-dimensional reconstruction of the microstructure for each plane and melting method employed. This investigation also suggests avenues for future research into the microstructural properties of electron-beam welds as well as providing an experimental basis for mathematical models for the prediction of solidification microstructures.

  16. Low-Temperature Friction-Stir Welding of 2024 Aluminum

    NASA Technical Reports Server (NTRS)

    Benavides, S.; Li, Y.; Murr, L. E.; Brown, D.; McClure, J. C.

    1998-01-01

    Solid state friction-stir welding (FSW) has been demonstrated to involve dynamic recrystallization producing ultra-fine, equiaxed grain structures to facilitate superplastic deformation as the welding or joining mechanism. However, the average residual, equiaxed, grain size in the weld zone has ranged from roughly 0.5 micron to slightly more than 10 micron, and the larger weld zone grain sizes have been characterized as residual or static grain growth as a consequence of the temperatures in the weld zone (where center-line temperatures in the FSW of 6061 Al have been shown to be as high as 480C or -0.8 T(sub M) where T(sub M) is the absolute melting temperature)). In addition, the average residual weld zone grain size has been observed to increase near the top of the weld, and to decrease with distance on either side of the weld-zone centerline, an d this corresponds roughly to temperature variations within the weld zone. The residual grain size also generally decreases with decreasing FSW tool rotation speed. These observations are consistent with the general rules for recrystallization where the recrystallized grain size decreases with increasing strain (or deformation) at constant strain rate, or with increasing strain-rate, or with increasing strain rate at constant strain; especially at lower ambient temperatures, (or annealing temperatures). Since the recrystallization temperature also decreases with increasing strain rate, the FSW process is somewhat complicated because the ambient temperature, the frictional heating fraction, and the adiabatic heating fraction )proportional to the product of strain and strain-rate) will all influence both the recrystallization and growth within the FSW zone. Significantly reducing the ambient temperature of the base metal or work pieces to be welded would be expected to reduce the residual weld-zone grain size. The practical consequences of this temperature reduction would be the achievement of low temperature welding. This study compares the residual grain sizes and microstructures in 2024 Al friction-stir welded at room temperature (about 30C and low temperature (-30C).

  17. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  18. Ultrasonic Stir Welding

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  19. Vernal Pool Lessons and Activities.

    ERIC Educational Resources Information Center

    Childs, Nancy; Colburn, Betsy

    This curriculum guide accompanies Certified: A Citizen's Step-by-Step Guide to Protecting Vernal Pools which is designed to train volunteers in the process of identifying vernal pool habitat so that as many of these pools as possible can be certified by the Massachusetts Natural Heritage and Endangered Species Program. Vernal pools are a kind of…

  20. Tidal Pool on Folly Island

    A tidal pool on Folly Island. Tidal pools are small pools of water that are left when the tide recedes. Because these pools have water more or less permanently, distinct ecosystems can develop separate from the surrounding beach. Folly Island, a preserve owned by the Maine Coast Heritage Trust, is a...