Science.gov

Sample records for western continental margin

  1. Continental margin of Western europe: slope progradation and erosion.

    PubMed

    Curray, J R; Moore, D G; Belderson, R H; Stride, A H

    1966-10-14

    Reflection profiling of the continental margin off western Europe shows seaward-dipping continental-slope deposits that have been dissected by submarine canyons west of the English Channel. These records refute previous interpretation of structural benches of older, nearly horizontal strata outcropping on the slope face. PMID:17810307

  2. The Continental Margins of the Western North Atlantic.

    ERIC Educational Resources Information Center

    Schlee, John S.; And Others

    1979-01-01

    Presents an interpretation of geological and geophysical data, which provides a summary of the structural and sedimentary history of the United States Atlantic Margin. The importance of an understanding of the development of the outer continental shelf to future hydrocarbon exploration is detailed. (BT)

  3. A newly discovered Pliocene volcanic field on the western Sardinia continental margin (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Conforti, Alessandro; Budillon, Francesca; Tonielli, Renato; De Falco, Giovanni

    2016-02-01

    A previously unknown submerged volcanic field offshore western Sardinia (western Mediterranean Sea), has been identified based on swath bathymetric data collected in 2009, 2010 and 2013, and high-resolution seismic profiles collected in 2011 and 2013. About 40 conical-shaped volcanic edifices (maximum width of about 1600 m and maximum height of about 180 m) and several lava outcrops (up to 1,200 m wide) were recognized at 20 to 150 m water depth over an area of 800 km2. The volcanic edifices are mainly eruptive monogenic vents, mostly isolated with a rather distinct shape, or grouped to form a coalescent volcanic body in which single elements are often still recognizable. High-resolution seismics enabled identifying relationships between the volcanic bodies and continental margin successions. The edifices overlie a major erosional surface related to the margin exposure following the Messinian salinity crisis, and are overlain by or interbedded with an early Pliocene marine unit. This seismo-stratigraphic pattern dates the volcanic activity to the early Pliocene, in agreement with the radiometric age of the Catalano island lavas (4.7 Ma) reported in earlier studies. The morphometry of the volcanic bodies suggests that cone erosion was higher at shallow water depths. Indeed, most of the shallow edifices are strongly eroded and flattened at 125 to 130 m water depth, plausibly explained by recurrent sub-aerial exposure during Pleistocene sea-level lowstands, whereas cones in deeper water are much better preserved. Volcanic vents and lava deposits, hereafter named the Catalano volcanic field (CVF), are emplaced along lineaments corresponding to the main directions of the normal fault system, which lowered the Sinis Basin and the western Sardinia continental margin. The CVF represents a volumetrically relevant phase of the late Miocene - Quaternary anorogenic volcanic cycle of Sardinia, which is related to the first stage of the extensional tectonics affecting the island since the late Miocene.

  4. CDP seismic sections of the western Beaufort continental margin

    USGS Publications Warehouse

    Eittreim, S.; Grantz, A.

    1979-01-01

    The continental rise, slope, and shelf in the Beaufort Sea off northern Alaska were surveyed with 5600 km of common-depth-point (CDP) seismic data by the U.S. Geological Survey in 1977. The lower continental rise consists of a wedge of at least 4.5 km of low-velocity, generally flat-lying, parallel-bedded sediments. Slump-related diapiric folds, probably cored by shale, occur on the upper rise and lower slope. The observed minimum depth to oceanic basement in the Canada Basin requires an age for this basin of at least 120 m.y., assuming it to be floored by oceanic crust with a subsidence history similar to that of the Atlantic and Pacific oceans. ?? 1979.

  5. Ophiolites and Continental Margins of the Mesozoic Western U.S. Cordillera

    NASA Astrophysics Data System (ADS)

    Dilek, Y.

    2001-12-01

    The Mesozoic tectonic history of the western U.S. Cordillera records evidence for multiple episodes of accretionary and collisional orogenic events and orogen-parallel strike-slip faulting. Paleozoic-Jurassic volcanic arc complexes and subduction zone assemblages extending from Mexico to Canada represent an East-Pacific magmatic arc system and an accretionary-type orogen evolved along the North American continental margin. Discontinuous exposures of Paleozoic upper mantle rocks and ophiolitic units structurally beneath this magmatic arc system are remnants of the Panthalassan oceanic lithosphere, which was consumed beneath the North American continent. Pieces of this subducted Panthalassan oceanic lithosphere that underwent high-P metamorphism are locally exposed in the Sierra Nevada foothills (e.g. Feather River Peridotite) indicating that they were subsequently (during the Jurassic) educted in an oblique convergent zone along the continental margin. This west-facing continental margin arc evolved in a broad graben system during much of the Jurassic as a result of extension in the upper plate, keeping pace with slab rollback of the east-dipping subduction zone. Lower to Middle Jurassic volcanoplutonic complexes underlain by an Upper Paleozoic-Lower Mesozoic polygenetic ophiolitic basement currently extend from Baja California-western Mexico through the Sierra-Klamath terranes to Stikinia-Intermontane Superterranes in Canada and represent an archipelago of an east-facing ensimatic arc terrane that developed west and outboard of the North American continental margin arc. The Smartville, Great Valley, and Coast Range ophiolites (S-GV-CR) in northern California are part of this ensimatic terrane and represent the island arc, arc basement, and back-arc tectonic settings, respectively. The oceanic Josephine-Rogue-Chetco-Rattlesnake-Hayfork tectonostratigraphic units in the Klamath Mountains constitute a west-facing island arc system in this ensimatic terrane as a counterpart of the east-facing S-GV-CR system to the south. The Guerrero intra-oceanic island arc system in Mexico was also part of the ensimatic arc terrane. Incorporation of this super arc terrane into the North American continent occurred diachronously along the irregular continental margin in the Middle Jurassic (in the north) through Early Cretaceous (in the south) during an arc-continent collision, marking a collisional orogenic episode in the North American Cordilleran history. Rifting of this accreted arc in the Late Jurassic (155-148 Ma) might have resulted from a sinistral transtensional deformation associated with the rapid NW motion of North America. Magmas generated during this rifting event probably migrated through the accreted arc crust and the continental margin units in the tectonic lower plate. The Franciscan subduction zone dipping eastwards beneath the continent was established in the latest Jurassic, following the collisional event and restoring the North American Cordillera back into an accretionary-type, Andean-style orogen. Different episodes of orogen-parallel intra-continental strike-slip faulting facilitated lateral dispersion of accreted terranes and continental margin units during the Early Cretaceous and transpressional deformation and batholithic magmatism in the Sierra Nevada magmatic arc in the Late Cretaceous. A Jurassic-Cretaceous island arc system (Wrangellia-Insular Superterrane) that had developed west of the Jurassic archipelago collapsed into the edge of North America during Late Cretaceous-Tertiary time and underwent northward lateral translation along the continental margin. These observations and interpretations have strong implications for the tectonic evolution of Central America and the Caribbean region.

  6. Estimates of geothermal gradients and heat flow from BSRs along the Western Continental Margin of India

    NASA Astrophysics Data System (ADS)

    Rao, Y. Hanumantha; Subrahmanyam, C.; Sharma, S. R.; Rastogi, A. A.; Deka, B.

    Geothermal gradients and heat flow were estimated from the position of Bottom Simulating Reflectors (BSRs) identified on seismic reflection sections from the Western Continental Margin of India (WCMI). The estimated geothermal gradients along the WCMI range between 35 to 65 C/km and heat flow varies from 50 to 130 mW/m. The geothermal gradient structure of WCMI inferred from the BSRs, shows a landward decrease in heat flow coupled with a high heat flow zone in the north and relatively low heat flow zone at the southern end. A decrease of sediment thickness proximal to the ocean/continent boundary could explain these high heat flow distribution trends west of the Laccadive ridge. The Bombay-Saurashtra offshore region emerges as a zone of high heat flow and its proximity to the Deccan volcanic activity at 65 Ma needs further study.

  7. Stages in evolution of Paleozoic carbonate platform and basin margin types - western United States passive Continental Margin

    SciTech Connect

    Cook, H.E.; Taylor, M.E.

    1987-05-01

    Late Precambrian rifting along the western edge of North America established a passive continental margin that became the site of 5000 m of platform and basin carbonate sediments over a 150-m.y. interval (Cambrian-Devonian). This megaplatform evolved through several stages: (1) Cambrian-Silurian, distally steepened nonrimmed ramp with base-of-slope fan (Hales Limestone) to homoclinal ramp (Hanson Creek Formation); to (2) Silurian-Devonian, rimmed platform (Lone Mountain Dolomite) having low-angle depositional slopes and slope aprons (Roberts Mountains Formation) and basinal debris sheets (Tor Limestone); to (3) Devonian, rimmed platforms having high-angle bypass slopes, slides, and base-of-slope aprons (McColley Canyon Formation and Devils Gate Limestone). The position of the rifted continental margin controlled the overall trend of the platform-slope break. Postrift subsidence with superimposed eustatic sea level changes allowed the platform to accumulate 5000 m of sediment. The stratigraphic progression from nonrimmed ramps in the Cambrian to rimmed platforms with high-angle bypass slopes in the Devonian was a function of both the gradual steepening of the slope, as the platform margin built up and prograded seaward, and the evolution of reef and bank-building organisms through time. Evolution of adjacent basinal carbonates was strongly influenced by slope declivity and relative sea level changes. As slope declivity increased through time, sedimentary processes on the slope changed from small-scale sediment gravity flows that accreted on the slope (ex: Roberts Mountains Formation slope apron) to large-scale sediment gravity flows that deposited debris in base-of-slope settings (ex: Devils Gate Limestone base-of-slope apron).

  8. Continent-ocean transition at the western Barents Sea/Svalbard continental margin

    SciTech Connect

    Eldholm, O.; Faleide, J.I.; Myhre, A.M.

    1987-12-01

    The change in crustal type at the western Barents Sea/Svalbard margin takes place over a narrow zone related to primary rift and shear structures reflecting the stepwise opening of the Greenland Sea. Regionally, the margin is composed of two large shear zones and a central rifted-margin segment. Local transtension and transpression at the plate boundary caused the early Cenozoic tectonism in Svalbard and the western Barents Sea, and might explain the prominent marginal gravity and velocity anomalies.

  9. Inner shelf circulation on the north-western continental margin of the Gulf of Cadiz

    NASA Astrophysics Data System (ADS)

    Relvas, Paulo; Garel, Erwan; Drago, Teresa; Taborda, Rui

    2014-05-01

    It has been recurrently attested that the inner shelf, generally defined as the region where the surface and bottom boundary layers overlap, shows a circulation pattern somewhat independent of the outer shelf. The forcing set that governs the outer shelf dynamics is considerable modified at the inner shelf. Over the outer shelf alongshore flows are geostrophic, as a result of the balance between cross-shore pressure gradients, induced by the wind driven upwelling mechanism, and the Coriolis forces. Contrarily, over the inner shelf alongshore flows may be directly driven by the existence of any alongshore pressure gradient, because Coriolis force cannot balance the pressure gradient force due to the presence of the coastline. This is one reason why warm counter-currents flowing over the inner shelf attached to the coast, inshore of the cold water previously upwelled, are recurrently observed in the Eastern Boundary Upwelling Systems, as revealed by sea surface temperature (SST) satellite imagery. The feature is particularly evident along the western part of the northern continental margin of the Gulf of Cadiz, mainly during the decay of coastal upwelling events. Along this coast the wind driven upwelling prevails roughly from April till October, but it is weak and intermittent. We can define two regimes, upwelling and non-upwelling, that temporally alternate in dominating the alongshore circulation. During non-upwelling conditions, the warm near shore counter-current propagates eastwards, sometimes turning northward at the Cape So Vicente, the western limit of the northern margin of the Gulf of Cadiz. In the present research the flow patterns are studied for two periods, May-Dec 2008 and Aug-Dec 2010. Contemporaneous data of the flow velocity and temperature from a bottom-mounted ADCP deployed on the 25 meters isobaths, along with wind data from the ASCAT scatterometer and from a buoy in the Gulf of Cadiz, remotely sensed SST data and sea level data are analysed. Current reversals associated with relaxation/reversal of upwelling favourable winds and raised water temperatures were identified and the vertical structure of the flow inversion was analysed. Results indicate time lagged temporal agreement between patterns of local wind forcing and current velocities, with propagation of the counter-current during relaxations or reversals of upwelling favourable winds. However, results from a momentum analysis indicate large influence from other factors on this propagation. The magnitude of the external influence calculated by the momentum analysis corresponds to forcing by an alongshore pressure gradient involving sea level differences of around 5 cm over a distance of 100 km in barotropic conditions. This agrees well with earlier sea level measurements, supporting that alongshore pressure gradients are the main factor governing the alongshore circulation along the eastern part of the northern margin of the Gulf of Cadiz.

  10. Geology and petroleum potential of Shumagin continental margin, western Gulf of Alaska

    SciTech Connect

    Bruns, T.R.; Von Huene, R.; Culotta, R.D.; Lewis, S.D.; Ladd, J.W.

    1986-07-01

    Interpretations of multichannel seismic reflection data indicate that the Shumagin continental margin seaward of the Border Ranges fault is underlain by two major seismic sequences, separated by an erosional unconformity beneath the shelf and by the time-correlative conformity seaward. Rocks above the unconformity are late Miocene and younger. Rocks below the unconformity can be as young as middle Miocene beneath the outer shelf and slope, seaward of a paleoshelf break. However, beneath the shelf they are primarily Late Cretaceous turbidites of the Shumagin Formation and Paleocene granodiorite. Late Miocene and younger structures of the Shumagin margin include Shumagin, Sanak, and Unimak basins and Unimak Ridge, a midslope structural high. Strata in Sanak and Unimak basins were deposited on a subsiding outer shelf and slope, and trapped behind Unimak Ridge and its now-buried structural continuation. Sanak and Unimak basins are in part bounded by northwest-trending extensional faults that parallel both the early Tertiary Beringian margin and a transverse tectonic boundary that segments the fore-arc. These faults may have developed during collapse and extension along the southeastward continuation of the old Beringian margin, analogous to the processes that created the Bering Shelf basins. The most promising areas of the Shumagin margin for petroleum potential are Sanak, and Unimak basins, which contain strata 8 and 4.5 km thick, respectively, and beneath the outer shelf and slope. Paleogene source rocks like those on the adjacent Alaska Peninsula may be preserved offshore, seaward of the inferred paleoshelf break. Reservoir rocks might have formed from granitic-rich erosional products derived during Oligocene and Miocene erosion of the shelf plutons.

  11. Mud Volcanoes revealed and sampled on the Western Moroccan Continental Margin

    NASA Astrophysics Data System (ADS)

    Gardner, Joan M.

    We surveyed and sampled two active and 3 inactive mud volcanoes on the Atlantic continental margin of Morocco. The active mud volcanoes (named Yuma and Ginsburg) are each about 4 km in diameter, rise between 150-250 meters above the seafloor and are the first active methane-related mud volcanoes to be identified in this region. The inactive volcanoes range in diameter from 1-3 km, with relief between 50 and 80 meters. Gravity cores from the crest of the active mud volcanoes yielded methane hydrates and mud breccia deposits. Chemosynthetic communities of Pogonophora worms and the bivalve Solemya were found on the surface of the active mud volcanoes. Sediment cores from the inactive volcanoes contained hemipelagic sediments, rich in foraminifera and ahermatypic coral debris, overlying mud breccia

  12. The Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Martins, L. R.; Coutinho, P. N.

    1981-04-01

    The Brazilian continental margin, with its interesting morphology, structure and sediments, has become better known only during the last two decades. Six physiographical provinces can be recognized at the continental margin and the adjacent coast: (1) Cabo Orange-Parnaiba delta; (2) Parnaiba delta-Cabo Sao Roque; (3) Cabo Sao Roque-Belmonte; (4) Belmonte-Cabo Frio; (5) Cabo Frio-Cabo Santa Marta; and (6) Cabo Santa Marta-Chui. The shelf is rather wide near the Amazon Mouth, becoming narrower eastwards, continuing very narrow along the northeastern and eastern coast, and becoming wider again in the south towards the Plate River. Prominent morphological features along the margin are the Amazon cone, the marginal plateaus off northeastern Brazil, the Sao Francisco cone and canyon, the Abrolhos Bank, and the deep-sea plateaus of Pernambuco and Sao Paulo. On the shelf proper a number of relief elements exist, such as sand waves east of the Amazon, submarine terraces at various places, and irregularities of structural origin. The shelf break is rather smooth in the far north and south, more abrupt in the remainder. Surface sediments of the Brazilian shelf show five distinct facies types: littoral quartz sands, mud, transition sand-mud, coralline algae, and biodetrital. The terrigenous elastic fractions dominate off the Amazon and in southern Brazil; between these areas they occupy a very narrow strip near the coast. The carbonate facies, predominantly composed of calcareous algae, is abundant between the Parnaiba delta and Cabo Frio; to the south this facies is more biodetrital and restricted to the outer shelf. Economically important on the Brazilian continental margin besides oil, are sands and gravels, carbonate deposits, evaporites and some subsurface coal. Other possible mineral resources could be phosphate, heavy minerals and clays for ceramics.

  13. Characterizing and identifying structural domains at rifted continental margins: application to the Bay of Biscay margins and its Western Pyrenean fossil remnants

    NASA Astrophysics Data System (ADS)

    Tugend, J.; Manatschal, G.; Kusznir, N. J.; Masini, E.

    2013-12-01

    Over the past decade, the occurrence of hyperextended domains at rifted continental margins consisting of extremely thinned crust and/or exhumed mantle has been increasingly recognized both at present-day rifted margins and in fossils analogues preserved in collisional orogens. However, at present, most studies aiming to characterize rifted continental margin structure and the extreme thinning of the continental crust were either focused offshore relying on indirect geophysical methods, or onshore in deformed remnants offering direct access to geological observations. Marine and onshore examples provide complementary datasets, but their different scale and resolution of observations prevent direct correlations to be done. We use the Bay of Biscay and Western Pyrenees as a natural laboratory to develop and apply an innovative approach to characterize and identify distinctive rifted margin domains in offshore and onshore settings. The Bay of Biscay and Western Pyrenees offer the unique possibility to have access to seismically imaged, drilled and exposed parts of one and the same hyperextended rift margin system. Offshore, we use a gravity inversion technique and flexural backstripping combined with seismic interpretation to provide quantitative estimates of accommodation space, crustal thickness and lithosphere thinning. Onshore, we focus on key outcrops preserving remnants of the former rift domain to describe the nature of sediment and basement rocks and of their interface. This qualitative and quantitative characterisation provides the essential diagnostic elements for the identification of five distinct domains at magma-poor rifted margins and their fossil analogues. We name these 5 domains proximal, necking, hyperthinned, exhumed mantle and oceanic. This new approach can be used to reconcile offshore and onshore observations and aid interpretation especially when only local observations are available. Onshore remnants can be placed in an offshore rifted margin context, enabling the prediction of first order crustal architecture. For the interpretation of offshore seismic reflection sections, geological insights on rift structures and basement nature can be suggested based on onshore analogies. This combined onshore-offshore multidisciplinary approach enables us to identify and distinguish the distinct structural domains of rifted margins, resulting in a new paleogeographic map of the Bay of Biscay and Pyrenean rift. The approach underlying this mapping has general application to unravelling the spatial and temporal complexity of rifted margin structural domains.

  14. Benthic foraminiferal distributions on the Uruguayan continental margin (South-western Atlantic) and controlling environmental factors

    NASA Astrophysics Data System (ADS)

    de Mello, Camila; Burone, Leticia; Ortega, Leonardo; Franco-Fraguas, Paula; Lahuerta, Nuria; Mahiques, Michel; Marin, Yamandu

    2014-12-01

    The data on benthic foraminifera analysed from 110 box-core samples collected on the Uruguayan continental margin (outer shelf and upper and middle slope, between 36.54-34.64S and 51.66-53.71W) were used to evaluate the distribution of the benthic foraminiferal fauna and its relationship with selected abiotic parameters. Primary productivity (PP) and the organic flux (Jz) reaching the sea floor were also estimated for comparison with the foraminiferal distributions. The study area was characterised by elevated PP and Jz values, mainly in the southernmost region, which were associated with thermohaline fronts due to the presence of the Subtropical Shelf Front. The dominant identified taxa were Rhumblerella sepetibaensis (this is the first study recording the ecology of this species) and the opportunistic species Epistominella exigua, Bulimina spp. and Reophax fusiformis, which displayed maximal densities at the southernmost stations, concurrent with the highest Jz levels. The dominant species and vertical foraminiferal distributions responded to the different environmental conditions impacting the area (e.g. PP, grain size, nutrient content), which were most likely related to the hydrodynamic conditions. Hydrodynamic conditions cause differences in PP according to the locations of water masses and their fronts at the surface, according to the depth and current intensity; they determined energetic differences across the benthic environment, controlling organic matter sedimentation as well as grain size, which influenced oxygen availability within sediments.

  15. Edge-driven Rayleigh Taylor Instabilities at Transtensional Continental Margins: Western North Island, New Zealand

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Houseman, G. A.; Evans, L.

    2011-12-01

    At a continental transform system with an element of extension, regular and thinned lithosphere are juxtaposed. Such a system will be gravitationally unstable as negative buoyancy is created by the regular mantle lithosphere terminating at an abrubt edge with less dense asthenospheric mantle. Finite element experiments with dimensionless ratios of viscosity and density show that such a gravitational instability can grow, migrate and eventually drip off into the lower density asthenosphere providing two criteria are met: lithospheric thinning across the edge is at least 30% or more; and that viscosity at the top of the mantle lithosphere is no more than 2.4 or 4.5 x1021 Pa s, for lithospheric thicknesses of 100 and 200 km respectively. These are low values for regular mantle lithosphere, but are in keeping with mantle lithosphere found adjacent to plate boundaries, or paleo subduction zones. As the mantle lithosphere deforms and migrates away from an edge it both thins and thickens different portions of the overlying crust. At the surface regions of subsidence and uplift migrated in concert with the subjacent gravitational instability. A dimensionless variable analysis of instability development shows that 3 critical dimensionless ratios control the shape, migration speed and form of the instability: ?' = ratio of viscosity between crust and mantle; m' = ratio of crust to lithosphere thickness; and d' = portion of mantle lithosphere thinning to initiate the instability. Western North Island, New Zealand, displays characteristics of uplift and subsidence in the past 10-12 Ma, which can be explained by a migrating instability that initiated from the Auckland-Hauraki area around 10 Ma. Transtensional faults developed in mid-North Island from 5 Ma as back-arc spreading from the oceanic Lau Havre trough penetrated into the continental lithosphere of New Zealand. It is this transtensional phase that we argue started the edge-driven instability. The present position of the proposed migrating instability is now beneath the east-west line joining the active volcanoes of Mts Taranaki and Ruapehu. Here seismic, gravity, MT and seismicity evidence show a major, near vertical step in both the Moho and mantle lithosphere. A stacked receiver function profile shows a 7-10 km step in the Moho, and to the north of the step low upper-mantle P and S wave velocities suggests the mantle lithosphere is either very thin or missing. A migrating edge-instability provides a credible explanation for much of the phenomena observed in western North Island providing the mantle lithosphere is of the order of 5 x 1020 Pa s. We propose additional geophysical tests to check on the present position of the instability and to also extend the numerical experiments into three dimensions.

  16. Biogeochemistry and ecosystems of continental margins in the western North Pacific Ocean and their interactions and responses to external forcing - an overview and synthesis

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Kang, C.-K.; Kobari, T.; Liu, H.; Rabouille, C.; Fennel, K.

    2014-07-01

    In this special issue we examine the biogeochemical conditions and marine ecosystems in the major marginal seas of the western North Pacific Ocean, namely, the East China Sea, the Japan/East Sea to its north and the South China Sea to its south. They are all subject to strong climate forcing as well as anthropogenic impacts. On the one hand, continental margins in this region are bordered by the world's most densely populated coastal communities and receive tremendous amounts of land derived materials. On the other hand, the Kuroshio, the strong western boundary current, which is modulated by climate oscillation, exerts strong influences over all three marginal seas. Because these continental margins sustain arguably the most productive marine ecosystems, changes in these stressed ecosystems may threaten the livelihood of a large human population. This special issue reports the latest observations of the biogeochemical conditions and ecosystem functions in the three marginal seas. The studies exemplify many faceted ecosystem functions and biogeochemical expressions, but they reveal only a few long term trends mainly due to lack of long term records. It is critical to develop and sustain time series observations in order to detect biogeochemical changes and ecosystem responses in continental margins and to attribute the causes for better management of the environment and resources in these marginal seas.

  17. Biogeochemistry and ecosystems of continental margins in the western North Pacific Ocean and their interactions and responses to external forcing - an overview and synthesis

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Kang, C.-K.; Kobari, T.; Liu, H.; Rabouille, C.; Fennel, K.

    2014-12-01

    In this special issue we examine the biogeochemical conditions and marine ecosystems in the major marginal seas of the western North Pacific Ocean, namely, the East China Sea, the Japan/East Sea to its north and the South China Sea to its south. They are all subject to strong climate forcing as well as anthropogenic impacts. On the one hand, continental margins in this region are bordered by the world's most densely populated coastal communities and receive tremendous amount of land-derived materials. On the other hand, the Kuroshio, the strong western boundary current of the North Pacific Ocean, which is modulated by climate oscillation, exerts strong influences over all three marginal seas. Because these continental margins sustain arguably some of the most productive marine ecosystems in the world, changes in these stressed ecosystems may threaten the livelihood of a large population of humans. This special issue reports the latest observations of the biogeochemical conditions and ecosystem functions in the three marginal seas. The studies exemplify the many faceted ecosystem functions and biogeochemical expressions, but they reveal only a few long-term trends mainly due to lack of sufficiently long records of well-designed observations. It is critical to develop and sustain time series observations in order to detect biogeochemical changes and ecosystem responses in continental margins and to attribute the causes for better management of the environment and resources in these marginal seas.

  18. Comparison of deep structure along three transects of the western North American continental margin

    USGS Publications Warehouse

    Fuis, G.S.; Clowes, R.M.

    1993-01-01

    Similarities in geology and potential field data that have in the past been noted among the regions of southern Alaska, southern Vancouver Island, and central California are now seen to be accompanied by similarities in deep crustal structure. A number of tectonic elements have been identified in the deep structure along transects in these three regions, although not all elements are present along each transect. These elements are A) an actively subducting oceanic plate and B) an overriding continental plate that consists of 1) a Cenozoic accretionary prism, 2) a Mesozoic accretionary prism, 3) a backstop to the Mesozoic prism, 4) a tectonically underplated body of oceanic rocks, and 5) a crustal root. -from Authors

  19. Atlantic Rifts and Continental Margins

    NASA Astrophysics Data System (ADS)

    Mohriak, Webster; Taiwani, Manik

    In compiling this volume, we have aimed to develop and enhance our current understanding of the structural evolution and sedimentation processes along divergent continental margins. To counteract the unfortunate situation of a lack of modern seismic and potential fields data on circum-Atlantic passive margins in the literature, we have linked new data from oil companies with that of research institutions. To update the data offered in most volumes used as reference works for the study of continental margins, now upwards of 20 years old, and to remedy the dispersal of important, more recent contributions in specialized journals, we present a current synthesis of materials in one volume focused on the deeper geology of the sedimentary basins along continental margins.

  20. Long-term landscape evolution, cooling and exhumation history at the Moroccan passive continental margin, Western Anti-Atlas

    NASA Astrophysics Data System (ADS)

    Sehrt, Manuel; Glasmacher, Ulrich A.

    2014-05-01

    The ENE-trending Anti-Atlas of Morocco is located at the northwestern fringe of the West African Craton and south of the High Atlas and represents the Phanerozoic foreland of the Late Palaeozoic North African Variscides and the Cenozoic Atlas Belt. The Anti-Atlas mountain belt extends from the Atlantic Ocean over 500 km into the Moroccan interior and shows a rugged topography with elevations of about 2700 m. The exhumation of the Precambrian basement and the deformation and erosion of the Palaeozoic cover is mainly related to the Variscan orogeny in the Upper Carboniferous-Lower Permian. Subsequently, exhumation of the inliers occurred in the Triassic-Jurassic, as the Anti-Atlas formed the shoulder of the Atlantic rift and finally in the Upper Eocene-Pleistocene, contemporaneously with the uplift of the Atlas belt. In Morocco, a large amount of Mesozoic terrigenous sedimentary rocks are deposited in most of the basins along the continental margin indicating a major episode of erosion during the rift and early post-rift period in the Central Atlantic. In the Tarfaya-Laâyoune-Dakhla Basin, south of the Anti-Atlas, the sedimentary cover reach a thickness of up to 12 km. The presence of high surface elevations in the Anti-Atlas mountain belt indicates a potential source area for the surrounding basins. Currently, phases of exhumation in the Anti-Atlas during the Central Atlantic rifting and places where the associated erosion products are deposited are poorly constrained and there is little quantitative data available at present. The present study was focused on the thermal and exhumation history of the Western Anti-Atlas, the burial and inversion history of the Tarfaya-Laâyoune-Dakhla Basin and on provenance analysis of the Meso-Cenozoic sedimentary rocks in the basin. In order to characterize the t-T history, apatite and zircon fission-track dating, apatite and zircon (U-Th-Sm)/He dating and furthermore 2-D modelling with 'HeFTy' software has been carried out at Precambrian rocks of the Western Anti-Atlas and Cretaceous to Neogene sedimentary rocks from the Northern Tarfaya-Laâyoune-Dakhla Basin. Thermochronological data and t-T path modelling indicate exhumation in the Western Anti-Atlas between Upper Carboniferous and Lower Cretaceous, whereby 9 km of Precambrian-Palaeozoic overburden has been eroded.

  1. The northern Egyptian continental margin

    NASA Astrophysics Data System (ADS)

    Badawy, Ahmed; Mohamed, Gad; Omar, Khaled; Farid, Walid

    2015-01-01

    Africa displays a variety of continental margin structures, tectonics and sedimentary records. The northern Egyptian continental margin represents the NE portion of the North African passive continental margin. Economically, this region is of great importance as a very rich and productive hydrocarbon zone in Egypt. Moreover, it is characterized by remarkable tectonic setting accompanied by active tectonic processes from the old Tethys to recent Mediterranean. In this article, seismicity of the northern Egyptian continental margin has been re-evaluated for more than 100-years and the source parameters of three recent earthquakes (October 2012, January 2013 and July 2013) have been estimated. Moment tensor inversions of 19th October 2012 and 17th January 2013 earthquakes reveal normal faulting mechanism with strike-slip component having seismic moment of 3.5E16 N m and 4.3E15 N m respectively. The operation of the Egyptian National Seismic Network (ENSN) since the end of 1997 has significantly enhanced the old picture of earthquake activity across northern Egyptian continental margin whereas; the record-ability (annual rate) has changed from 2-events/year to 54-event/year before and after ENSN respectively. The spatial distribution of earthquakes foci indicated that the activity tends to cluster at three zones: Mediterranean Ridge (MR), Nile Cone (NC) and Eratosthenes Seamount (ERS). However, two seismic gaps are reported along Levant Basin (LEV) and Herodotus Basin (HER).

  2. East Africa continental margins

    SciTech Connect

    Bosellini, A.

    1986-01-01

    New well data from Somalia, together with the history of sea-floor spreading in the Indian Ocean derived from magnetic anomalies, show that the East African margins from latitude 15/sup 0/S into the Gulf of Aden comprise four distinct segments that formed successively by the southward drift of Madagascar from Somalia during the Middle to Late Jurassic and Early Cretaceous, by the northeastward drift of India along the Owen Transform during the Late Cretaceous and Paleocene, and by the opening of the Gulf of Aden during the Neogene.

  3. Factors controlling late Cenozoic continental margin growth from the Ebro Delta to the western Mediterranean deep sea

    USGS Publications Warehouse

    Nelson, C.H.; Maldonado, A.

    1990-01-01

    The Ebro continental margin sedimentation system originated with a Messinian fluvial system. This system eroded both a major subaerial canyon cutting the margin southeastward from the present Ebro Delta and an axial valley that drained northeastward down Valencia Trough. Post-Messinian submergence of this topography and the Pliocene regime of high sea levels resulted in a marine hemipelagic drape over the margin. Late Pliocene to Pleistocene glacial climatic cycles, drainagebasin deforestation, and sea-level lowstands combined to increase sediment supply, cause the margin to prograde, and create a regime of lowstand sediment-gravity flows in the deeper margin. The depositional patterns of regressive, transgressive and highstand sea-level regimes suggest that location of the sediment source near the present Ebro Delta throughout the late Cenozoic, southward current advection of sediment, and greater subsidence in the southern margin combined to cause generally asymmetric progradation of the margin to the southeast. Thicker, less stable deposits filling the Messinian subaerial canyon underwent multiple retrograde failures, eroded wide gullied canyons and formed unchanneled base-of-slope sediment aprons in the central margin area; other margin areas to the north and south developed a series of channel-levee complexes. On the basin floor, the formation of Valencia Valley over the Messinian subaerial valley and earlier faults led to draining of about 20% of the Ebro Pleistocene sediment from channel-levee complexes through the valley to prograde Valencia Fan as much as 500 km northeast of the margin. Thus, the Ebro margin has two growth directions, mainly southeastward during higher sea levels, and eastward to northeastward during lower sea levels. The northeastward draining of turbidity currents has produced unusually thin and widely dispersed turbidite systems compared to those on ponded basin floors. During the past few centuries, man's impact has exceeded natural controls on Ebro margin growth. Deforestation of the drainage basin more than doubled the normal Holocene sediment supply, and construction of dams then reduced the supply by 95%. This reduction of the past 50 years has caused erosion of the delta and contamination of bottom sediment because normal Holocene sediment discharge is not available to prograde the delta or help dilute pollutants. ?? 1990.

  4. Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Singh, R.; Ingole, B. S.

    2016-01-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and low oxygen levels on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14° N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. The oxygen minimum zone extended from 102 to 1001 m. Nematodes (described and undescribed) were identified to species and classified according to biological and functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Three depth zones were identified: the shelf (depth range: 34-102 m; highest nematode mean density: 176.6 ± 37 ind 10 cm-2), the slope (525-1524 m; 124.3 ± 16 ind 10 cm-2), and the basin (2001-2546 m; 62.9 ± 2 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, Desmodora sp. 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Nematode communities in different zones differed in species composition. Chromadorita sp. 2 (2.78 %) and Sphaerolaimus gracilis (2.21 %) were dominant on the shelf, whereas Terschellingia longicaudata (4.73 %) and Desmodora sp. 1 (4.42 %) were dominant on the slope, but in the basin, Halalaimus sp. 1(1.11 %) and Acantholaimus elegans (1.11 %) were dominant. The information in a particular functional group was not a simple reflection of the information in species abundance. Ecological information captured by adult length, adult shape, and life-history strategy was less site-specific and thus differed notably from information contained in other taxonomic groups. The functional composition of nematodes was strongly linked to the organic-carbon and dissolved-oxygen concentration. Seven species were found exclusively in the oxygen minimum zone: Pselionema sp. 1, Choanolaimus sp. 2, Halichoanolaimus sp. 1, Cobbia dentata, Daptonema sp. 1, Trissonchulus sp. 1, and Minolaimus sp. 1. Correlation with a number of environmental variables indicated that food quantity (measured as the organic-carbon content and chlorophyll content) and oxygen level were the major factors that influenced nematode community structure and function.

  5. Reconstructing Rodinia by Fitting Neoproterozoic Continental Margins

    USGS Publications Warehouse

    Stewart, John H.

    2009-01-01

    Reconstructions of Phanerozoic tectonic plates can be closely constrained by lithologic correlations across conjugate margins by paleontologic information, by correlation of orogenic belts, by paleomagnetic location of continents, and by ocean floor magmatic stripes. In contrast, Proterozoic reconstructions are hindered by the lack of some of these tools or the lack of their precision. To overcome some of these difficulties, this report focuses on a different method of reconstruction, namely the use of the shape of continents to assemble the supercontinent of Rodinia, much like a jigsaw puzzle. Compared to the vast amount of information available for Phanerozoic systems, such a limited approach for Proterozoic rocks, may seem suspect. However, using the assembly of the southern continents (South America, Africa, India, Arabia, Antarctica, and Australia) as an example, a very tight fit of the continents is apparent and illustrates the power of the jigsaw puzzle method. This report focuses on Neoproterozoic rocks, which are shown on two new detailed geologic maps that constitute the backbone of the study. The report also describes the Neoproterozoic, but younger or older rocks are not discussed or not discussed in detail. The Neoproterozoic continents and continental margins are identified based on the distribution of continental-margin sedimentary and magmatic rocks that define the break-up margins of Rodinia. These Neoproterozoic continental exposures, as well as critical Neo- and Meso-Neoproterozoic tectonic features shown on the two new map compilations, are used to reconstruct the Mesoproterozoic supercontinent of Rodinia. This approach differs from the common approach of using fold belts to define structural features deemed important in the Rodinian reconstruction. Fold belts are difficult to date, and many are significantly younger than the time frame considered here (1,200 to 850 Ma). Identifying Neoproterozoic continental margins, which are primarily extensional in origin, supports recognition of the Neoproterozoic fragmentation pattern of Rodinia and outlines the major continental masses that, prior to the breakup, formed the supercontinent. Using this pattern, Rodinia can be assembled by fitting the pieces together. Evidence for Neoproterozoic margins is fragmentary. The most apparent margins are marked by miogeoclinal deposits (passive-margin deposits). The margins can also be outlined by the distribution of continental-margin magmatic-arc rocks, by juvenile ocean-floor rocks, or by the presence of continent-ward extending aulacogens. Most of the continental margins described here are Neoproterozoic, and some had an older history suggesting that they were major, long-lived lithospheric flaws. In particular, the western margin of North America appears to have existed for at least 1,470 Ma and to have been reactivated many times in the Neoproterozoic and Phanerozoic. The inheritance of trends from the Mesoproterozoic by the Neoproterozoic is particularly evident along the eastern United States, where a similarity of Mesoproterozoic (Grenville) and Neoproterozoic trends, as well as Paleozoic or Mesozoic trends, is evident. The model of Rodinia presented here is based on both geologic and paleomagnetic information. Geologic evidence is based on the distribution and shape of Neoproterozoic continents and on assembling these continents so as to match the shape, history, and scale of adjoining margins. The proposed model places the Laurasian continents?Baltica, Greenland, and Laurentia?west of the South American continents (Amazonia, Rio de La Plata, and Sa? Francisco). This assembly is indicated by conjugate pairs of Grenville-age rocks on the east side of Laurentia and on the west side of South America. In the model, predominantly late Neoproterozoic magmatic-arc rocks follow the trend of the Grenville rocks. The boundary between South America and Africa is interpreted as the site of a Wilson cycle

  6. Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago

    NASA Astrophysics Data System (ADS)

    Pusceddu, A.; Carugati, L.; Gambi, C.; Mienert, J.; Petani, B.; Sanchez-Vidal, A.; Canals, M.; Heussner, S.; Danovaro, R.

    2016-01-01

    We investigated organic matter (OM) quantity, nutritional quality and degradation rates, as well as abundance and biodiversity of meiofauna and nematodes along the deep continental margin off Spitsbergen, in the Svalbard Archipelago. Sediment samples were collected in July 2010 and 2011 along a bathymetric gradient between 600 m and 2000 m depth, and total mass flux measured at the same depths from July 2010 to July 2011. In both sampling periods sedimentary OM contents and C degradation rates increased significantly with water depth, whereas OM nutritional quality was generally higher at shallower depths, with the unique exception at 600 m depth in 2010. Meiofaunal abundance and biomass (largely dominated by nematodes) showed the highest values at intermediate depths (ca 1500 m) in both sampling periods. The richness of meiofaunal higher taxa and nematode species richness did not vary significantly with water depth in both sampling periods. We suggest here that patterns in OM quantity, C degradation rates, and meiofauna community composition in 2011 were likely influenced by the intensification of the warm West Spitsbergen Current (WSC). We hypothesize that the intensity of the WSC inflow to the Arctic Ocean could have an important role on benthic biodiversity and functioning of deep-sea Arctic ecosystems.

  7. High-resolution seismic-reflection interpretations of some sediment deposits, Antarctic continental margin: Focus on the western Ross Sea

    USGS Publications Warehouse

    Karl, Herman A.

    1989-01-01

    High-resolution seismic-reflection data have been used to a varying degree by geoscientists to interpret the history of marine sediment accumulations around Antarctica. Reconnaissance analysis of 1-, 3.5-, and 12-kHz data collected by the U.S. Geological Survey in the western Ross Sea has led to the identification of eight echo-character facies and six microtopographic facies in the sediment deposits that overlie the Ross Sea unconformity. Three depositional facies regions, each characterized by a particular assemblage of echo-character type and microtopographic facies, have been identified on the continental shelf. These suites of acoustic facies are the result of specific depositional processes that control type and accumulation of sediment in a region. Evidence of glacial processes and products is uncommon in regions 1 and 2, but is abundant in region 3. McMurdo Sound, region 1, is characterized by a monospecific set of acoustic facies. This unique assemblage probably represents turbidity current deposition in the western part of the basin. Most of the seafloor in region 2, from about latitude 77??S to 75??S, is deeper than 600 m below sealevel. The microtopographic facies and echo-character facies observed on the lower slopes and basin floor there reflect the thin deposits of pelagic sediments that have accumulated in the low-energy conditions that are typical of deep-water environments. In shallower water near the boundary with region 3, the signature of the acoustic facies is different from that in deeper water and probably indicates higher energy conditions or, perhaps, ice-related processes. Thick deposits of tills emplaced by lodgement during the most recent advance of the West Antarctic Ice Sheet are common from latitude 75??S to the northern boundary of the study area just south of Coulman Island (region 3). The signature of microtopographic facies in this region reflects the relief of the base of the grounded ice sheet prior to decoupling from the seafloor. Current winnowing and scour of shallow parts of the seafloor inhibits sediment deposition and maintains the irregular, hummocky relief that characterizes much of the region. Seafloor relief of this type in other polar areas could indicate the former presence of grounded ice. ?? 1989.

  8. Geodynamic models for the Neoproterozoic Yenisey Ridge orogenic belt (western Siberian Craton continental margin) and evolution of granitoid and alkaline magmatism

    NASA Astrophysics Data System (ADS)

    Vernikovsky, Valery; Vernikovskaya, Antonina

    2010-05-01

    We assume that the genesis of the Yenisey Ridge accretional orogen is a result of three events: a) syn-collisional events (probably outside the Siberian craton), which resulted in the forming of the S- and I-type 880-860 Ma Teya granites in the Central Angara terrane; b) the collision between the Central Angara terrane and the Siberian craton and the forming of the syn- and post-collisional S- and A- type 760-720 Ma Ayakhta and Glushikha granites; c) the forming of island arcs and ophiolites along the margin of the Siberian craton, their accretion and obduction onto the continent in the interval of 700-630 Ma. The last event is of special interest because at the same time in the Tatarka-Ishimba suture zone of the Yenisey Ridge, which is subparallel to the continental margin, the forming of intrusive and volcanic rocks of various composition and heightened alkalinity was taking place, including alkaline syenites as well as carbonatites and A-type granites, whose magmatic sources vary from mantle to mantle-crustal and crustal. These rocks form small plutons of round or oval shape, dikes, bedded bodies, tracing this tectonic zone along its entire length. Some of the A-type granites may be considered as hybrid rocks as suggested by mineralogical-petrographical features: inclusions of rocks of basic composition and magma-mingling structures. These granites are slightly peraluminous rocks. In contrast to the 760-720 Ma A-type granites, they have higher REE and Nb and Ta contents. They formed synchronously with the rocks of the island arc complex and their accretion and obduction onto the continental margin of Siberia in the interval of 700-630 Ma. It is quite probable that their forming in the back-arc suprasubduction zone was taking place at the same time that the oceanic plate was subducting below the continent from the western margin of the Siberian craton and reached the asthenospheric layer. The obtained data and the developed models uncover the geodynamic evolution of the forming of accretional orogens in the western margin of the Siberian craton in the Neoproterozoic.

  9. Fluid history in hyper-extended rifted margins: Examples from the fossil Alpine and western Pyrenean rift systems and the present-day Iberia rifted continental margin.

    NASA Astrophysics Data System (ADS)

    Pinto, Victor Hugo; Manatschal, Gianreto; Karpoff, Anne Marie; Masini, Emmanuel; Lemarchand, Damien; Hayman, Nicholas; Trow, Rudolph; Viana, Adriano

    2013-04-01

    The evolution of deep-water, magma-poor rifted margins is intimately linked with complex and polyphase fault structures. These structures, known as detachment faults, are responsible for extreme crustal thinning and mantle exhumation. During the evolution of detachment faults fluid-rock interaction plays an important role, changing the chemical and physical properties of rocks. These processes likely have major implications for the strain localization and structural evolution of the margin. The change in rock chemistry and rheology is best indicated by the breakdown of feldspars and olivine into clay and serpentine minerals and the pervasive cementation and precipitation of quartz along the fault zones. Although the chemical and mineral reactions are well known, it is still unclear to what extent these reactions lead to changes in the overall rheology of the extending lithosphere and how they can affect the thermal evolution of the hyper-extended rifted margins. In order to answer to these questions it is important to understand the origin, timing, pathways and composition of the fluids generated during rifting. Are fluids solely of marine origin or do they have a metamorphic- or mantle-derived component? Can we determine the range of temperature and consequently at what depth these fluids are formed? And can we constrain the age of their migration? These questions can be addressed in the well-known hyper-extended rift systems such as the Alpine Tethys margins exposed in the Alps, the Maulon basin in the Western Pyrenees and the Deep Iberia margin drilled and seismically imaged offshore Portugal. All of these rift settings show evidence for detachment systems associated with hyper-extension and mantle exhumation. The aim of this ongoing study is to characterize the fluid signature in hyper-extended domain in magma-poor rifted margins. Including different sites with different degrees of compressional and metamorphic overprint enables us to compare results and to define the general importance of fluid systems in the development of hyper-extended rifts systems. The first results show that in all three geological settings fluid percolation can be recognized in fault rocks linked to the detachment systems. Evidence for the presence of fluids comes from the analyses of hydration reactions in fault zones. In the Alps the major and trace elements show a gain in elements typical from mantle rocks (Mg, Ni, Cu, Co, V). In the Pyrenees, microstructural studies show that detachment faulting crossed a range of crustal depths providing constraints on the depths of fluid migration. Future analyses will focus on additional major and trace elements and isotopic ratios (Sr and B) of hydrated rocks recovered from these hyper-extended domains, which will be linked with the temporal and spatial evolution of the major detachment structures.

  10. Significance of indigenous Eocene larger foraminifera Discocyclina dispansa in Western Foothills, Central Taiwan: A Paleogene marine rift basin in Chinese continental margin

    NASA Astrophysics Data System (ADS)

    Huang, Chi-Yue; Yen, Yi; Liew, Ping-Mei; He, Dai-Jie; Chi, Wen-Ron; Wu, Min-Shyan; Zhao, Meixun

    2013-01-01

    The Western Foothills of Taiwan was known to be composed of Late Oligocene to Pleistocene shallow marine strata continuously deposited on the stable passive Chinese continental margin without significant stratigraphic break. Here we present multiple micropaleontological evidences, including occurrence of larger foraminifera Discocyclina dispansa ex. interc. sella-dispansa and calcareous nannoplanktons, to show that there are Middle Eocene marine strata (first named as the Chungliao Formation) exposed in the Tsukeng anticline of the Western Foothills, central Taiwan. Occurrences of intact tests with thin delicate outer rims and well-preserved embryonic chambers suggest that the Discocyclina dispansa ex. interc. sella-dispansa (Lutetian to Bartonian in the Tethys region) are buried indigenously on shallow inner shelf during an episodic transgression in the Early Middle Eocene. The conclusion is consistent with a biostratigraphy study of calcareous nannoplanktons (Zones NP14-15) in the shale/sandstone alternations overlying the Discocyclina-bearing bed of the Chungliao Formation and calcareous nannofossils of Zone NP16 integrated with an age dating of 38.8 1 Ma (Late Middle Eocene) on zircon grains of the overlying Pinglin Tuff. The Middle Eocene syn-rift sequences (Chungliao Formation and Pinglin Tuff) exposed along the Tsukeng anticline are unconformably covered by the latest Oligocene-Miocene post-rift sequence, a scenario similar to what have been drilled in the East China Sea-Taiwan Strait-South China Sea. This rift basin (named as the Nantou Basin) is sitting on the Peikang Basement High margin which further extends southwestward to the Central Uplift of the Pearl River Mouth Basin in the northern slope of the South China Sea. The present work documents a hitherto unknown occurrence of the exposed early Tertiary marine rift basin sequence in the Western Foothills of Taiwan. The study extends our knowledge of the Western Foothills geohistory from the Late Oligocene downward to the Early Middle Eocene. The occurrence of the Paleogene Nantou rift basin in the Western Foothills may also suggest that there could have similar Paleogene rift sequences exposed in other parts of the Taiwan mountain belt like the Hsehshan Range and the Central Range east of the Western Foothills.

  11. Geochemical and 3He/ 4He evidence for mantle and crustal contributions to geothermal fluids in the western Canadian continental margin

    NASA Astrophysics Data System (ADS)

    Clark, I. D.; Phillips, R. J.

    2000-12-01

    Isotopic and geochemical evidence together with helium isotopes are used to identify contributions of deep crustal to upper mantle volatile components in thermal waters at three sites across the western North American plate margin: (1) the low heat-flow forearc of the Cascadia subduction zone; (2) the high heat-flow volcanic arc; and (3) the interior crystalline terrain of the ancestral continental margin. Western continental margin hotsprings issue 50C, low salinity Na-Cl water and N 2 gas with 0.25% CH 4. Stable isotopes and 14C indicate local meteoric recharge during the early Holocene. Redox is buffered by sulphate reduction, suggesting that the methane originates from a deeper source. The waters have high helium contents (He/He air=30) and a 3He-excess ( R/ Rair=0.27; 3He/ 3Heair=8), representing a mixture of radiogenic 4He production in crystalline rock with >10% He from subducted oceanic crust. Geophysical data indicate fluid-filled discontinuities in the subduction zone that may provide a pathway for He, and possibly for CH 4 and a saline fluid component from depth. In the Garibaldi belt of Quaternary arc-volcanism, 60C Na-Cl hotsprings and 200C geothermal well waters discharge from fractures in the basement rocks. ?18O and ?2H show the thermal waters to be a mixture of local recharge with up to 8% "andesitic" water from the upper mantle. He isotopes indicate a mantle origin ( R/ Rair=6.0), with a minor crustal signature, consistent with observations in the Cascadia range to the south and at other circum-Pacific volcanic arc settings. High PCO 2, an enriched ?13C DIC, elevated 3He/CO 2 ratios and elevated Cl - are likely to be derived from subducted Juan de Fuca plate sediments and pore waters. Thermal Na-SO 4 waters (up to 58C) from the Omineca Crystalline Belt are locally recharged and have an unusually rapid circulation time of less than 40 years. This contrasts with their high radiogenic He content (17610 -7 cc/g) with minimal mantle input ( R/ Rair=0.06). The underlying Columbia River Fault Zone is the likely pathway for helium migration from depth.

  12. Late tertiary structure and stratigraphy of north Sinai continental margin

    SciTech Connect

    Ben-Avraham, Z.; Mart, Y.

    1981-06-01

    New seismic data provide information on the structural development and late Tertiary stratigraphy of the continental slope and rise off northern Sinai. The upper continental slope is characterized by a marginal plateau composed of a series of platforms or steps. The lower continental slope is smooth, except for a low ridge paralleling the western part. Numerous diapiric structures along the continental margin north of the Sinai Peninsula emerge from an evaporitic layer of late Tertiary age. The diapirs usually are aligned along west-northwest-trending faults. A salt ridge 90 km long produces a submarine ridge in the lower continental rise. Two main fault trends have been mapped. In the western part of the continental margin they trend west-northwest and, in the eastern part, northeast. These trends parallel the continental slopes of northern Sinai and southern Israel, respectively. The structural grain of the Sinai margin appears to be controlled by two main tectonic elements: (1) rejuvenated basement faults of the continent-ocean transition zone; and (2) salt diapirism due to loading of Messinian evaporites with Nile-derived upper Tertiary clastics.

  13. The Continental Margins Program in Georgia

    USGS Publications Warehouse

    Cocker, M.D.; Shapiro, E.A.

    1999-01-01

    From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These addtional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.From 1984 to 1993, the Georgia Geologic Survey (GGS) participated in the Minerals Management Service-funded Continental Margins Program. Geological and geophysical data acquisition focused on offshore stratigraphic framework studies, phosphate-bearing Miocene-age strata, distribution of heavy minerals, near-surface alternative sources of groundwater, and development of a PC-based Coastal Geographic Information System (GIS). Seven GGS publications document results of those investigations. In addition to those publications, direct benefits of the GGS's participation include an impetus to the GGS's investigations of economic minerals on the Georgia coast, establishment of a GIS that includes computer hardware and software, and seeds for additional investigations through the information and training acquired as a result of the Continental Margins Program. These additional investigations are quite varied in scope, and many were made possible because of GIS expertise gained as a result of the Continental Margins Program. Future investigations will also reap the benefits of the Continental Margins Program.

  14. The basins on the Argentine continental margin

    SciTech Connect

    Urien, C.M.

    1996-08-01

    After the stabilization of the central Gondwana Craton, orogenic belts were accreted, as a result of convergence events and an extensive passive margin developed in southwestern Gondwana. Thermal subsidence in Parana, Karoo-Ventania basins and the Late Paleozoic-Early Mesozoic rifts, were modified by the Gondwana breakup and the South Atlantic opening. Early Paleozoic marine transgressions deposited the Table Mountain Group in Ventania. In southwestern Patagonia foreland clastics were deposited. Magmatic arcs and marine units indicate a tectonic trough was formed, alternating with continental sequences, over Late Paleozoic metamorphics and intrusives, resulting from plastered terrains along the Gondwana margin. In Patagonia, Permo-Carboniferous continental and glacio marine clastics infill the basins, while in Ventania, paralic sequences, grade from neritic to continental to the northeast, extending beneath the continental margin. The Triassic-Jurassic rift basins progressed onto regional widespread acid lavas and were infilled by lagoonal organic-rich sequences. Early drift phase built basins transverse to the margin, with fluvio-lacustrine sequences: Salado, Colorado, Valdes-Rawson, San Julian and North Malvinas intracratonic basins, which underwent transtensional faulting. Post-Oxfordian to Neocomian brackish sequences, onlapped the conjugate basins during the margin`s drift, with petroleum systems, as in Austral and Malvinas. In the Valanginian, basic extrusions commenced to form on the continental border, heralding the oceanic phase. Due to thermal subsidence, offlaping sediments prograded onto the remaining half-grabens. Several petroleum systems, proven and hypothetical, are identified in this region.

  15. Structural and functional study of the nematode community from the Indian western continental margin with reference to habitat heterogeneity and oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Singh, R.; Ingole, B. S.

    2015-07-01

    We studied patterns of nematode distribution along the western Indian continental margin to determine the influence of habitat heterogeneity and oxygen minimum on the community's taxonomic and functional structure. A single transect, perpendicular to the coast at 14 N latitude was sampled from 34 to 2546 m depth for biological and environmental variables during August 2007. Nematodes were identified to species and classified according to biological/functional traits. A total of 110 nematode species belonging to 24 families were found along the transect. Mean nematode density was higher on the shelf (176 ind 10 cm-2, 34 m depth) than on the slope (124 ind 10 cm-2) or in the basin 62.9 ind 10 cm-2). Across the entire study area, the dominant species were Terschellingia longicaudata, (15.2 %), Desmodora sp 1, Sphaerolaimus gracilis, and Theristus ensifer; their maximum density was at shelf stations. Multidimensional scaling ordination (nMDS) of the nematode species abundance data indicated the effect of different zones (ANOSIM; Global R = 0.607; P = 0.028), but it was not the same in case of functional traits. Only seven species were found exclusively in the oxygen minimum zone: Pselionema sp 1, Choanolaimus sp 2, Halichoanolaimus sp 1, Cobbia dentata, Daptonema sp 1, Trissonchulus sp 1, and Minolaimus sp 1. Moreover, in our study, species diversity was higher on the shelf than on the slope or in the basin. The distinctive features of all three zones as based on nematofaunal abundance were also reflected in the functional traits (feeding types, body shape, tail shape, and life history strategy). Correlation with a number of environmental variables indicated that food quality (measured as the organic carbon content and chlorophyll content) and oxygen level were the major factors that influenced the nematode community (structural and functional).

  16. Subduction-Driven Recycling of Continental Margin Lithosphere

    NASA Astrophysics Data System (ADS)

    Levander, Alan; Bezada, Maximiliano; Niu, Fenglin; Palomeras, Imma; Thurner, Sally; Humphreys, Eugene; Carbonell, Ramon; Gallart, Josep; Schmitz, Michael; Miller, Meghan

    2015-04-01

    Subduction recycling of oceanic lithosphere, a central theme of plate tectonics, is relatively well understood, whereas recycling continental lithosphere is more difficult to recognize, and appears far more complicated. Delamination and localized convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we describe another process that can lead to the loss of continental lithosphere adjacent to a subduction zone: Subducting oceanic plates can entrain and recycle lithospheric mantle from an adjacent continent and disrupt the continental lithosphere far inland from the subduction zone. Seismic images from recent dense broadband seismograph arrays in northeastern South America (SA) and in the western Mediterranean show higher than expected volumes of positive anomalies identified as the subducted Atlantic slab under northeastern SA, and the Alboran slab beneath the Gibraltar arc region (GA). The positive anomalies lie under and are aligned with the continental margins at depths greater than 200 km. Closer to the surface we find that the continental margin lithospheric mantle is significantly thinner than expected beneath the orogens adjacent to the subduction zones. The thinner than expected lithosphere extends inland as far as the edges of nearby cratonic cores. These observations suggest that subducting oceanic plates viscously entrain and remove continental mantle lithosphere from beneath adjacent continental margins, modulating the surface tectonics and pre-conditioning the margins for further deformation. The latter can include delamination of the entire lithospheric mantle, as around GA, inferred by results from active and passive seismic experiments. Viscous removal of continental margin lithosphere creates lithosphere-asthenosphere boundary (LAB) topography which can give rise to secondary downwellings under the continental interior far inland from the subduction zone: We image one under SA and we infer that one or more have occurred in the past under the western Mediterranean. The process of subduction-driven continental margin lithosphere removal reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these two subduction zones.

  17. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  18. Continental margin tectonics - Forearc processes

    SciTech Connect

    Lundberg, N.; Reed, D.L. )

    1991-01-01

    Recent studies of convergent plate margins and the structural development of forearc terranes are summarized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the geometry of accretionary prisms (Coulomb wedge taper and vertical motion in response to tectonic processes), offscraping vs underplating or subduction, the response to oblique convergence, fluids in forearc settings, the thermal framework and the effects of fluid advection, and serpentinite seamounts. Also included is a comprehensive bibliography for the period.

  19. Dynamics of the continental margins

    SciTech Connect

    Not Available

    1990-11-01

    On 18--20 June 1990, over 70 oceanographers conducting research in the ocean margins of North America attended a workshop in Virginia Beach, Virginia. The purpose of the workshop was to provide the Department of Energy with recommendations for future research on the exchange of energy-related materials between the coastal and interior ocean and the relationship between the ocean margins and global change. The workshop was designed to optimize the interaction of scientists from specific research disciplines (biology, chemistry, physics and geology) as they developed hypotheses, research questions and topics and implementation plans. The participants were given few restraints on the research they proposed other than realistic time and monetary limits. The interdisciplinary structure of the meeting promoted lively discussion and creative research plans. The meeting was divided into four working groups based on lateral, vertical, air/sea and sediment/water processes. Working papers were prepared and distributed before the meeting. During the meeting the groups revised the papers and added recommendations that appear in this report, which was reviewed by an Executive Committee.

  20. Crustal structure of the eastern Algerian continental margin and adjacent deep basin: implications for late Cenozoic geodynamic evolution of the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, B.; Sage, F.; Abtout, A.; Klingelhoefer, F.; Yelles-Chaouche, K.; Schnürle, P.; Marok, A.; Déverchère, J.; Arab, M.; Galve, A.; Collot, J. Y.

    2015-06-01

    We determine the deep structure of the eastern Algerian basin and its southern margin in the Annaba region (easternmost Algeria), to better constrain the plate kinematic reconstruction in this region. This study is based on new geophysical data collected during the SPIRAL cruise in 2009, which included a wide-angle, 240-km-long, onshore-offshore seismic profile, multichannel seismic reflection lines and gravity and magnetic data, complemented by the available geophysical data for the study area. The analysis and modelling of the wide-angle seismic data including refracted and reflected arrival travel times, and integrated with the multichannel seismic reflection lines, reveal the detailed structure of an ocean-to-continent transition. In the deep basin, there is an ˜5.5-km-thick oceanic crust that is composed of two layers. The upper layer of the crust is defined by a high velocity gradient and P-wave velocities between 4.8 and 6.0 km s-1, from the top to the bottom. The lower crust is defined by a lower velocity gradient and P-wave velocity between 6.0 and 7.1 km s-1. The Poisson ratio in the lower crust deduced from S-wave modelling is 0.28, which indicates that the lower crust is composed mainly of gabbros. Below the continental edge, a typical continental crust with P-wave velocities between 5.2 and 7.0 km s-1, from the top to the bottom, shows a gradual seaward thinning of ˜15 km over an ˜35-km distance. This thinning is regularly distributed between the upper and lower crusts, and it characterizes a rifted margin, which has resulted from backarc extension at the rear of the Kabylian block, here represented by the Edough Massif at the shoreline. Above the continental basement, an ˜2-km-thick, pre-Messinian sediment layer with a complex internal structure is interpreted as allochthonous nappes of flysch backthrusted on the margin during the collision of Kabylia with the African margin. The crustal structure, moreover, provides evidence for Miocene emplacement of magmatic intrusions in both the deep basin and the continental margin. Based on the crustal structure, we propose that the eastern Algerian basin opened during the southeastward migration of the European forearc before the collision, along a NW-SE elongated spreading centre that ran perpendicular to the subduction trend. Such an atypical geometry is explained by the diverging directions of the subduction rollback during the backarc opening: eastward for the Corsica-Sardinia block, and southward for the Kabylian blocks. This geometry of the forearc can be interpreted as the surface expression of a slab tear at depth, which is responsible for atypical magmatism in the overlying backarc oceanic basin.

  1. Crustal Structure and Miocene Geodynamic Evolution of the Easternmost Algerian Back-Arc Basin and Continental Margin (western Mediterranean Sea) from Wide-Angle and Multichannel Seismics

    NASA Astrophysics Data System (ADS)

    Bouyahiaoui, B.; Sage, F.; Abtout, A.; Klingelhoefer, F.; Yelles-Chaouche, A.; Schenini, L.; Philippe, S.; Marok, A.; Deverchere, J.; Arab, M.; Galve, A.; Collot, J. Y.

    2014-12-01

    We use new wide-angle seismic and multichannel seismic reflection data (SPIRAL cruise, 2009) and additional geophysical data to study the crustal structure of the eastern Algerian back-arc basin that was born during the Miocene Tethys subduction rollback, before the collision of the European forearc (Kabylian blocks) with the northern African continent ~16-18 Ma ago. In the deep basin, the P-wave velocity model images a thin, 5.5-km-thick oceanic crust with velocity ranging between 4.8 km/s and 7.1 km/s. It is composed of two layers, with a velocity-gradient higher in the upper layer than in the lower one. S-wave modeling indicates a Poisson ratio of 0.28 in the lower crust, supporting a dominant gabbroic composition. Below the continental edge, we define two segments: (1) West of 745'E, a typical continental crust with P-wave velocities between 5.2 km/s and 7.0 km/s depicts a gradual seaward thinning of ~15 km over an ~35-km distance characterizing a stretched margin resulting from back-arc extension; (2) East of 745'E, the continental crust is a few kilometers thinner, arguing for a variable crustal thickness along the forearc before collision. Based on the deep basin crustal structure and magnetic anomalies, we propose that the eastern Algerian basin opened during the southeastward migration of the European forearc along a NW-SE elongated spreading center that ran perpendicular to the subduction trend, which is an unusual configuration for back-arc opening. Such an atypical geometry of the accretion and the oceanic crustal structure may result from a slab tear at depth related to diverging directions of the subduction rollback (and hence the forearc blocks) during back-arc opening: eastward for the Corsica-Sardinia block, and southward for the Kabylian blocks. The variable thickness of the continental crust along the margin may result from the crustal stretching along the forearc that accommodated the opening of the oceanic domain north of it.

  2. A review of the geology and petroleum possibilities of the continental margins of India

    SciTech Connect

    Sahay, B.

    1984-05-01

    Continental margins which flank western and eastern limits of India are broadly divided into West and East Coast. The width of the Western Continental Shelf varies from 300 km near Bombay to approximately 80 kms near Porbandar, narrowing further towards south to 60 kms near Cochin. The Eastern Continental Shelf which extends from Cape Comorin to Calcutta, has the width varying from 2.5 km, about 150 kms south of Madras to 210 kms upto Ganges river delta, near Calcutta.

  3. Evolution of Northeast Atlantic magmatic continental margins

    NASA Astrophysics Data System (ADS)

    England, Richard; Cornwell, David; Ramsden, Alice

    2014-05-01

    One of the major problems interpreting the evolution of magmatic continental margins such as those which dominate the Irish, UK and Norwegian margins of the NE Atlantic is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging contraints we have examined the Ethiopian Afar rift system to try to understand the rifting process. This magmatic rift system provides, along its length, a series of snapshots into the possible tectonic evolution of a magmatic continental margin which are associated with different amounts of extension. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echlon magmatic zones at the centre. Further north toward Afar the rift becomes infilled with extensive lava flows fed from fissure systems in the widening rift zone. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) of basaltic lavas overlying extended crust and lower crustal sill complexes of intruded igneous rock, often referred to as underplate, which extend back beneath the continental margin. The ODRS show a variety of morphologies and settings but frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. The oceanward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition. The structure of the Main Ethiopian rift appears to have been influenced by the pre-existing basement structure at an early stage in the rift process, defining the geometry of the rift and providing a control on the later magmatic phase and modification of the crust. This early influence of existing structure is less clear on the NE Atlantic margins and in the UK and Irish sectors it is difficult to link substantial along strike variations in the properties of the margin to variations in basement structures which can be traced across the continental shelf. It is possible that such variations are completely overprinted by magmatic additions to the crust to the point at which they no longer influence the break-up mechanism.

  4. Southern African continental margin: Dynamic processes of a transform margin

    NASA Astrophysics Data System (ADS)

    Parsiegla, N.; Stankiewicz, J.; Gohl, K.; Ryberg, T.; Uenzelmann-Neben, G.

    2009-03-01

    Dynamic processes at sheared margins associated with the formation of sedimentary basins and marginal ridges are poorly understood. The southern African margin provides an excellent opportunity to investigate the deep crustal structure of a transform margin and to characterize processes acting at these margins by studying the Agulhas-Falkland Fracture Zone, the Outeniqua Basin, and the Diaz Marginal Ridge. To do this, we present the results of the combined seismic land-sea experiments of the Agulhas-Karoo Geoscience Transect. Detailed velocity-depth models show crustal thicknesses varying from 42 km beneath the Cape Fold Belt to 28 km beneath the shelf. The Agulhas-Falkland Fracture Zone is embedded in a 50 km wide transitional zone between continental and oceanic crust. The oceanic crust farther south exhibits relatively low average crustal velocities (6.0 km/s), which can possibly be attributed to transform-ridge intersection processes and the thermal effects of the adjacent continental crust during its formation. Crustal stretching factors derived from the velocity-depth models imply that extension in the Outeniqua Basin acted on regional as well as more local scales. We highlight evidence for two episodes of crustal stretching. The first, with a stretching factor ? of 1.6, is interpreted to have influenced the entire Outeniqua Basin. The stresses possibly originated from the beginning breakup between Africa and Antarctica (169-155 Ma). The second episode can be associated with a transtensional component of the shear motion along the Agulhas-Falkland Transform from 136 Ma. This episode caused additional crustal stretching with ? = 1.3 and is established to only have affected the southern parts of the basin. Crustal velocities directly beneath the Outeniqua Basin are consistent with the interpretation of Cape Supergroup rocks underlying most parts of the basin and the Diaz Marginal Ridge. We propose that the formation of this ridge can be either attributed to a transpressional episode along the Agulhas-Falkland Transform or, more likely, to thermal uplift accompanying the passage of a spreading ridge to the south.

  5. Repeated Pleistocene glaciation of the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Hong, Jong Kuk; Hegewald, Anne; Matthiessen, Jens; Stein, Rdiger; Kim, Hyoungjun; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung-Il; Kang, Sung-Ho

    2013-10-01

    During the Pleistocene glaciations, Arctic ice sheets on western Eurasia, Greenland and North America terminated at their continental margins. In contrast, the exposed continental shelves in the Beringian region of Siberia are thought to have been covered by a tundra landscape. Evidence of grounded ice on seafloor ridges and plateaux off the coast of the Beringian margin, at depths of up to 1,000m, have generally been attributed to ice shelves or giant icebergs that spread oceanwards during glacial maxima. Here we identify marine glaciogenic landforms visible in seismic profiles and detailed bathymetric maps along the East Siberian continental margin. We interpret these features, which occur in present water depths of up to 1,200m, as traces from grounding events of ice sheets and ice shelves. We conclude that the Siberian Shelf edge and parts of the Arctic Ocean were covered by ice sheets of about 1km in thickness during several Pleistocene glaciations before the most recent glacial period, which must have had a significant influence on albedo and oceanic and atmospheric circulation.

  6. Seismic view on the svalbard passive continental margin

    NASA Astrophysics Data System (ADS)

    Czuba, Wojciech

    2013-10-01

    Deep seismic sounding measurements were performed in the continent-ocean transition zone of the western Svalbard and Barents Sea margin, during the expeditions in 1985-2008. Seismic energy (airgun and TNT shots) was recorded along several profiles by onshore seismic stations and ocean bottom seismometers, and hydrophone systems. Good quality reflected and refracted P waves provided an excellent data base for a seismic modelling along the profiles. TNT sources were recorded even up to 300 km distances. A minimal depth of about 6 km of the Moho interface was found east of the Molloy Deep. The Moho discontinuity dips down to 28 km beneath the continental part of the northernmost profile and down to maximum 32 km beneath other profiles. The evolution of the region is considered to be within a shearrift tectonic setting. The continent-ocean transition zone along the northernmost profile is mostly dominated by extension; therefore, the last stage of the development of the margin can be classified as rifting. The uplifted Moho interface close to the Molloy Deep can be interpreted as a south-western end of the Molloy Ridge. The margin of the southern Spitsbergen is rather of sheared character while the western Barents Sea margin is of slow to ultraslow spreading type.

  7. Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America

    ERIC Educational Resources Information Center

    Poli, Maria-Serena; Capodivacca, Marco

    2011-01-01

    Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North

  8. Investigating Continental Margins: An Activity to Help Students Better Understand the Continental Margins of North America

    ERIC Educational Resources Information Center

    Poli, Maria-Serena; Capodivacca, Marco

    2011-01-01

    Continental margins are an important part of the ocean floor. They separate the land above sea level from the deep ocean basins below and occupy about 11% of Earth's surface. They are also economically important, as they harbor both mineral resources and some of the most valuable fisheries in the world. In this article students investigate North…

  9. Understanding Continental Margin Biodiversity: A New Imperative

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Sibuet, Myriam

    2012-01-01

    Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know.

  10. Structure of the North American Atlantic Continental Margin.

    ERIC Educational Resources Information Center

    Klitgord, K. K.; Schlee, J. S.

    1986-01-01

    Offers explanations on the origin of the North American Atlantic continental margin. Provides an analysis and illustrations of structural and strategraphic elements of cross sections of the Atlantic continental margin. Also explains the operations and applications of seismic-relection profiles in studying ocean areas. (ML)

  11. Understanding continental margin biodiversity: a new imperative.

    PubMed

    Levin, Lisa A; Sibuet, Myriam

    2012-01-01

    Until recently, the deep continental margins (200-4,000 m) were perceived as monotonous mud slopes of limited ecological or environmental concern. Progress in seafloor mapping and direct observation now reveals unexpected heterogeneity, with a mosaic of habitats and ecosystems linked to geomorphological, geochemical, and hydrographic features that influence biotic diversity. Interactions among water masses, terrestrial inputs, sediment diagenesis, and tectonic activity create a multitude of ecological settings supporting distinct communities that populate canyons and seamounts, high-stress oxygen minimum zones, and methane seeps, as well as vast reefs of cold corals and sponges. This high regional biodiversity is fundamental to the production of valuable fisheries, energy, and mineral resources, and performs critical ecological services (nutrient cycling, carbon sequestration, nursery and habitat support). It is under significant threat from climate change and human resource extraction activities. Serious actions are required to preserve the functions and services provided by the deep-sea settings we are just now getting to know. PMID:22457970

  12. Metazoan meiobenthos along continental margins: a review

    NASA Astrophysics Data System (ADS)

    Soltwedel, T.

    2000-05-01

    The sediment-inhabiting meiofauna is a major component of benthic ecosystems, particularly in the deep sea. Knowledge on the deep-sea meiobenthos has increased considerably during recent decades, and attempts have been made to relate standing stocks with various environmental factors. The flux of organic matter from surface productivity to the seafloor has been proven to exert considerable control on benthic standing stocks. The energy content of sedimentating organic matter generally decreases with water depth because of degradation processes within the water column. Consequently, benthic standing stocks decrease with increasing water depth. Generally enhanced densities of benthic animals are to be expected in areas of increased surface production and subsequently enhanced flux of organic matter to the seafloor. Thus, meiobenthic densities and biomasses should show perceptible differences not only with water depth, but also between areas with different primary productivity in surface layers. The objective of this paper is to condense current information focusing on the abundance of metazoan meiofauna along continental margins, and to compare meiofauna stocks from various climatic regions of the world, representing areas of diverse productivity in the water column. Results clearly demonstrate regional differences on global scale: richer communities were generally found in areas with increased productivity and enhanced input of organic matter to the seafloor.

  13. The Effect of Temperature Dependent Rheology on a Kinematic Model of Continental Breakup and Rifted Continental Margin Formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2004-12-01

    The effect of temperature dependent rheology has been examined for a model of continental lithosphere thinning by an upwelling divergent flow field within continental lithosphere and asthenosphere leading to continental breakup and rifted continental margin formation. The model uses a coupled FE fluid flow and thermal solution and is kinematically driven using a half divergence rate Vx and upwelling velocity Vz. Viscosity structure is modified by the evolving temperature field of the model through the temperature dependent Newtonian rheology. Continental lithosphere and asthenosphere material are advected by the fluid-flow field in order to predict crustal and mantle lithosphere thinning leading to rifted continental margin formation. The results of the temperature dependent rheology model are compared with those of a simple isoviscous model. The temperature dependent rheology model predicts continental lithosphere thinning and depth dependent stretching, similar to that predicted by the uniform viscosity model. However compared with the uniform viscosity model the temperature dependent rheology predicts greater amounts of thinning of the continental crust and lithospheric mantle than the isoviscous solutions. An important parameter within the kinematic model of continental lithosphere breakup and rifted continental margin development is the velocity ratio Vz/Vx. For non-volcanic margins, Vz/Vx is thought to be around unity. Applying a velocity ratio Vz/Vx of unity gives a diffuse ocean-continent transition and exhumation of continental lithospheric mantle. For volcanic margins, Vz/Vx is of order 10, falling to unity with a half-life of order 10 Ma, leading to a more sharply defined ocean-continent transition. While Vx during continental breakup may be estimated, Vz can only be inferred. FE fluid flow solutions, in which Vz is not imposed and without an initial buoyancy driven flow component, predict a velocity ratio Vz/Vx of around unity for both temperature dependent rheology and isovisous fluid-flow solutions. The effect of incorporating a lithology dependent continental lithosphere rheology (quartz-feldspar crust, olivine mantle) with temperature dependence is also being investigated. The work forms part of the Integrated Seismic Imaging and Modelling of Margins (iSIMM*) project. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research & Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, R Spitzer, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & D. Healy.

  14. Global distribution of naturally occurring marine hypoxia on continental margins

    NASA Astrophysics Data System (ADS)

    Helly, John J.; Levin, Lisa A.

    2004-09-01

    Hypoxia in the ocean influences biogeochemical cycling of elements, the distribution of marine species and the economic well being of many coastal countries. Previous delineations of hypoxic environments focus on those in enclosed seas where hypoxia may be exacerbated by anthropogenically induced eutrophication. Permanently hypoxic water masses in the open ocean, referred to as oxygen minimum zones, impinge on a much larger seafloor surface area along continental margins of the eastern Pacific, Indian and western Atlantic Oceans. We provide the first global quantification of naturally hypoxic continental margin floor by determining upper and lower oxygen minimum zone depth boundaries from hydrographic data and computing the area between the isobaths using seafloor topography. This approach reveals that there are over one million km 2 of permanently hypoxic shelf and bathyal sea floor, where dissolved oxygen is <0.5 ml l -1; over half (59%) occurs in the northern Indian Ocean. We also document strong variation in the intensity, vertical position and thickness of the OMZ as a function of latitude in the eastern Pacific Ocean and as a function of longitude in the northern Indian Ocean. Seafloor OMZs are regions of low biodiversity and are inhospitable to most commercially valuable marine resources, but support a fascinating array of protozoan and metazoan adaptations to hypoxic conditions.

  15. Transform continental margins - part 1: Concepts and models

    NASA Astrophysics Data System (ADS)

    Basile, Christophe

    2015-10-01

    This paper reviews the geodynamic concepts and models related to transform continental margins, and their implications on the structure of these margins. Simple kinematic models of transform faulting associated with continental rifting and oceanic accretion allow to define three successive stages of evolution, including intra-continental transform faulting, active transform margin, and passive transform margin. Each part of the transform margin experiences these three stages, but the evolution is diachronous along the margin. Both the duration of each stage and the cumulated strike-slip deformation increase from one extremity of the margin (inner corner) to the other (outer corner). Initiation of transform faulting is related to the obliquity between the trend of the lithospheric deformed zone and the relative displacement of the lithospheric plates involved in divergence. In this oblique setting, alternating transform and divergent plate boundaries correspond to spatial partitioning of the deformation. Both obliquity and the timing of partitioning influence the shape of transform margins. Oblique margin can be defined when oblique rifting is followed by oblique oceanic accretion. In this case, no transform margin should exist in the prolongation of the oceanic fracture zones. Vertical displacements along transform margins were mainly studied to explain the formation of marginal ridges. Numerous models were proposed, one of the most used is being based on thermal exchanges between the oceanic and the continental lithospheres across the transform fault. But this model is compatible neither with numerical computation including flexural behavior of the lithosphere nor with timing of vertical displacements and the lack of heating related to the passing of the oceanic accretion axis as recorded by the Cte d'Ivoire-Ghana marginal ridge. Enhanced models are still needed. They should better take into account the erosion on the continental slope, and the level of coupling of the transform continental margin with the adjacent oceanic lithosphere.

  16. Basement inheritance controls on continental margin architecture: steep basement fabrics and segmented margins

    NASA Astrophysics Data System (ADS)

    Wilson, R.; McCaffrey, K. J.; Holdsworth, R. E.; Japsen, P.

    2009-12-01

    The extent to which continental rifting and margin development is influenced by pre-existing anisotropies has been debated since Tuzo Wilsons seminal 1966 paper on Atlantic opening and closing. Using digital fieldwork methodologies to acquire and analyse structural datasets, our investigation of the role of pre-existing structures on the development of basins and margins shows that, in general, steep belts seem to control inheritance during rifting. In contrast, gently inclined surfaces such as bedding and unconformities are more likely to be reactivated during crustal shortening,. In detail, the relative strain intensity, mineralogy, fabric dip and strike, and depth of reactivation are all likely to be important controls. Greenlands margins provide an excellent example of how changes in margin trend and geometry commonly coincide with changes in basement structure. Thus, intra-cratonic rifting and break-up between Greenland and Labrador shows strong evidence for basement inheritance, with relatively simple orthogonal margins in the Archaean North Atlantic Craton, and complex oblique-margin segments in Proterozoic shear belts (i.e. Ketilidian, Nagssugtoqidian). Using a combination of structural geological mapping, geomorphology and new AFTA data, we have constructed a model for the tectonic evolution and influence of pre-existing structures on the development of this margin. The Nagssugtoquidian belt of central West Greenland is cut by at least two phases brittle faulting (early extension, late strike-slip), both of which are partitioned by steep discreet shear zones (Norder Stromfjord and Norder Isotoq). These shear zones may also be traced offshore where they also segment basin/rift patterns. A distinct contrast in fault style and geometry can be seen in steep belts and intervening fold belts, leading the interpretation that brittle fault patterns are partitioned in to domains of basement influence (steep belts) and non-basement influence (fold belts). In South Greenland, topography, gravity and aeromagnetic maps for the Ketilidian all show coincident changes, with particularly noticeable high elevations developed in the east and a distinct left lateral step on the western margin. Kinematic studies of the SW margin reveal a consistent kinematic story of NE-SW extension dominated by dextral shear and reactivation of steep Kelitidian fabrics. AFTA data provide an age constraint on footwall uplift of these faults which is comparable in age to the offshore faulting. In contrast, the SE margin appears to be unaffected by the sub-horizontal Ketilidian basement fabrics that predominate in the east. We suggest that both these examples emphasise the importance of steep basement shear zones and fabrics in continental rifting.

  17. Glaciomarine sedimentation and bottom current activity on the north-western and northern continental margins of Svalbard during the late Quaternary

    NASA Astrophysics Data System (ADS)

    Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.

    2015-12-01

    Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.

  18. Electrical resistivity structure under the western Cosmonauts Sea at the continental margin of East Antarctica inferred via a marine magnetotelluric experiment

    NASA Astrophysics Data System (ADS)

    Matsuno, Tetsuo; Nogi, Yoshifumi; Seama, Nobukazu

    2015-06-01

    The western Cosmonauts Sea, off the coast of East Antarctica, was a site of rifting of the Gondwana supercontinent and subsequent early seafloor spreading. To improve our understanding of the breakup of Gondwana, we conducted a marine magnetotelluric experiment to determine the electrical resistivity structure within the uppermost several hundred kilometers beneath the western Cosmonauts Sea. Magnetotelluric response functions at two sites, obtained after considering possible influences of non-plane magnetic field sources, suggest that these responses include distortions by topographic variations and conductive anomalies around the observation sites. Three-dimensional forward modeling confirmed that these distortions due to topographic variations and a thin (2-km thick) conductive layer immediately under the sites (mostly sediments) are severe. Furthermore, three-dimensional forward modeling to investigate the resistivity structure at deeper depths revealed an upper resistive layer (?300 ?-m), with a thickness of <100 km, and an underlying conductive half-space (10 ?-m). The upper resistive layer and the underlying conductive structure most likely represent dry and water/melt-rich oceanic upper mantle, respectively. The upper resistive layer may be thinner than anticipated under the old seafloor of the study area (likely >90 Ma), and may suggest a conductive anomaly in the upper mantle produced by mantle convection and/or upwelling.

  19. Continental margin sedimentation: from sediment transport to sequence stratigraphy

    USGS Publications Warehouse

    Nittrouer, Charles A., (Edited By); Austin, James A.; Field, Michael E.; Kravitz, Joseph H.; Syvitski, James P.M.; Wiberg, Patricia L.

    2007-01-01

    This volume on continental margin sedimentation brings together an expert editorial and contributor team to create a state-of-the-art resource. Taking a global perspective, the book spans a range of timescales and content, ranging from how oceans transport particles, to how thick rock sequences are formed on continental margins. - Summarizes and integrates our understanding of sedimentary processes and strata associated with fluvial dispersal systems on continental shelves and slopes - Explores timescales ranging from particle transport at one extreme, to deep burial at the other - Insights are presented for margins in general, and with focus on a tectonically active margin (northern California) and a passive margin (New Jersey), enabling detailed examination of the intricate relationships between a wide suite of sedimentary processes and their preserved stratigraphy - Includes observational studies which document the processes and strata found on particular margins, in addition to numerical models and laboratory experimentation, which provide a quantitative basis for extrapolation in time and space of insights about continental-margin sedimentation - Provides a research resource for scientists studying modern and ancient margins, and an educational text for advanced students in sedimentology and stratigraphy

  20. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    USGS Publications Warehouse

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2014-01-01

    The ocean’s continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services including primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  1. Comparative biogeochemistry-ecosystem-human interactions on dynamic continental margins

    NASA Astrophysics Data System (ADS)

    Levin, Lisa A.; Liu, Kon-Kee; Emeis, Kay-Christian; Breitburg, Denise L.; Cloern, James; Deutsch, Curtis; Giani, Michele; Goffart, Anne; Hofmann, Eileen E.; Lachkar, Zouhair; Limburg, Karin; Liu, Su-Mei; Montes, Enrique; Naqvi, Wajih; Ragueneau, Olivier; Rabouille, Christophe; Sarkar, Santosh Kumar; Swaney, Dennis P.; Wassman, Paul; Wishner, Karen F.

    2015-01-01

    The oceans' continental margins face strong and rapid change, forced by a combination of direct human activity, anthropogenic CO2-induced climate change, and natural variability. Stimulated by discussions in Goa, India at the IMBER IMBIZO III, we (1) provide an overview of the drivers of biogeochemical variation and change on margins, (2) compare temporal trends in hydrographic and biogeochemical data across different margins, (3) review ecosystem responses to these changes, (4) highlight the importance of margin time series for detecting and attributing change and (5) examine societal responses to changing margin biogeochemistry and ecosystems. We synthesize information over a wide range of margin settings in order to identify the commonalities and distinctions among continental margin ecosystems. Key drivers of biogeochemical variation include long-term climate cycles, CO2-induced warming, acidification, and deoxygenation, as well as sea level rise, eutrophication, hydrologic and water cycle alteration, changing land use, fishing, and species invasion. Ecosystem responses are complex and impact major margin services. These include primary production, fisheries production, nutrient cycling, shoreline protection, chemical buffering, and biodiversity. Despite regional differences, the societal consequences of these changes are unarguably large and mandate coherent actions to reduce, mitigate and adapt to multiple stressors on continental margins.

  2. Subduction-driven recycling of continental margin lithosphere.

    PubMed

    Levander, A; Bezada, M J; Niu, F; Humphreys, E D; Palomeras, I; Thurner, S M; Masy, J; Schmitz, M; Gallart, J; Carbonell, R; Miller, M S

    2014-11-13

    Whereas subduction recycling of oceanic lithosphere is one of the central themes of plate tectonics, the recycling of continental lithosphere appears to be far more complicated and less well understood. Delamination and convective downwelling are two widely recognized processes invoked to explain the removal of lithospheric mantle under or adjacent to orogenic belts. Here we relate oceanic plate subduction to removal of adjacent continental lithosphere in certain plate tectonic settings. We have developed teleseismic body wave images from dense broadband seismic experiments that show higher than expected volumes of anomalously fast mantle associated with the subducted Atlantic slab under northeastern South America and the Alboran slab beneath the Gibraltar arc region; the anomalies are under, and are aligned with, the continental margins at depths greater than 200 kilometres. Rayleigh wave analysis finds that the lithospheric mantle under the continental margins is significantly thinner than expected, and that thin lithosphere extends from the orogens adjacent to the subduction zones inland to the edges of nearby cratonic cores. Taking these data together, here we describe a process that can lead to the loss of continental lithosphere adjacent to a subduction zone. Subducting oceanic plates can viscously entrain and remove the bottom of the continental thermal boundary layer lithosphere from adjacent continental margins. This drives surface tectonics and pre-conditions the margins for further deformation by creating topography along the lithosphere-asthenosphere boundary. This can lead to development of secondary downwellings under the continental interior, probably under both South America and the Gibraltar arc, and to delamination of the entire lithospheric mantle, as around the Gibraltar arc. This process reconciles numerous, sometimes mutually exclusive, geodynamic models proposed to explain the complex oceanic-continental tectonics of these subduction zones. PMID:25391963

  3. Continental transform margins : state of art and future milestones

    NASA Astrophysics Data System (ADS)

    Basile, Christophe

    2010-05-01

    Transform faults were defined 45 years ago as a new class of fault' (Wilson, 1965), and transform margins were consequently individualized as a new class of continental margins. While transform margins represent 20 to 25 % of the total length of continent-ocean transitions, they were poorly studied, especially when compared with the amount of data, interpretations, models and conceptual progress accumulated on divergent or convergent continental margins. The best studied examples of transform margins are located in the northern part of Norway, south of South Africa, in the gulf of California and on both sides of the Equatorial Atlantic. Here is located the Cte d'Ivoire - Ghana margin, where the more complete data set was acquired, based on numerous geological and geophysical cruises, including ODP Leg 159. The first models that encompassed the structure and evolution of transform margins were mainly driven by plate kinematic reconstructions, and evidenced the diachronic end of tectonic activity and the non-cylindrical character of these margins, with a decreasing strike-slip deformation from the convex to the concave divergent-transform intersections. Further thermo-mechanical models were more specifically designed to explain the vertical displacements along transform margins, and especially the occurrence of high-standing marginal ridges. These thermo-mechanical models involved either heat transfer from oceanic to continental lithospheres across the transform faults or tectonically- or gravity-driven mass transfer in the upper crust. These models were far from fully fit observations, and were frequently dedicated to specific example, and not easily generalizable. Future work on transform continental margins may be expected to fill some scientific gaps, and the definition of working directions can benefit from the studies dedicated to other types of margins. At regional scale the structural and sedimentological variability of transform continental margins has to be emphasized. There is not only one type of transform margins, but as for divergent margins huge changes from one margin to another in both structure and evolution. Multiple types have to be evidenced together with the various parameters that should control the variability. As for divergent margins, special attention should be paid to conjugated transform margins as a tool to assess symmetrical / asymmetrical processes in the oceanic opening. Attention should also be focused on the three-dimensional structure of the intersections between transform and divergent margins, such as the one where the giant oil field Jubilee was recently discovered. There is almost no 3D data available in these area, and their structures still have to be described. An other key point to develop is the mechanical behavior of the lithosphere in and in the vicinity of transform margins. The classical behaviors (isostasy, elastic flexure) have be tested extensively. The localization of the deformation by the transform fault, and the coupling of continental and oceanic lithosphere across the transform fault have to be adressed to understand the evolution of these margins. Again as for divergent margins, new concepts are needed to explain the variations in the post-rift and post-transform subsidence, that can not always be explained by classical subsidence models. But the most remarkable advance in our understanding of transform margins may be related to the study of interactions between the lithosphere and adjacent envelops : deep interactions with the mantle, as underplating, tectonic erosion, or possible lateral crustal flow ; surficial interactions between structural evolution, erosion and sedimentation processes in transform margins may affect the topography and bathymetry, thus the oceanic circulation with possible effects on regional and global climate.

  4. Western Ross Sea continental slope gravity currents

    NASA Astrophysics Data System (ADS)

    Gordon, Arnold L.; Orsi, Alejandro H.; Muench, Robin; Huber, Bruce A.; Zambianchi, Enrico; Visbeck, Martin

    2009-06-01

    Antarctic Bottom Water of the world ocean is derived from dense Shelf Water that is carried downslope by gravity currents at specific sites along the Antarctic margins. Data gathered by the AnSlope and CLIMA programs reveal the presence of energetic gravity currents that are formed over the western continental slope of the Ross Sea when High Salinity Shelf Water exits the shelf through Drygalski Trough. Joides Trough, immediately to the east, offers an additional escape route for less saline Shelf Water, while the Glomar Challenger Trough still farther east is a major pathway for export of the once supercooled low-salinity Ice Shelf Water that forms under the Ross Ice Shelf. The Drygalski Trough gravity currents increase in thickness from ˜100 to ˜400 m on proceeding downslope from ˜600 m (the shelf break) to 1200 m (upper slope) sea floor depth, while turning sharply to the west in response to the Coriolis force during their descent. The mean current pathway trends ˜35° downslope from isobaths. Benthic-layer current and thickness are correlated with the bottom water salinity, which exerts the primary control over the benthic-layer density. A 1-year time series of bottom-water current and hydrographic properties obtained on the slope near the 1000 m isobath indicates episodic pulses of Shelf Water export through Drygalski Trough. These cold (<-1 °C), salty (>34.75) pulses correlate with strong downslope bottom flow. Extreme examples occurred during austral summer/fall 2003, comprising concentrated High Salinity Shelf Water (-1.9 °C; 34.79) and approaching 1.5 m s -1 at descent angles as large as ˜60° relative to the isobaths. Such events were most common during November-May, consistent with a northward shift in position of the dense Shelf Water during austral summer. The coldest, saltiest bottom water was measured from mid-April to mid-May 2003. The summer/fall export of High Salinity Shelf Water observed in 2004 was less than that seen in 2003. This difference, if real, may reflect the influence of the large iceberg C-19 over Drygalski Trough until its departure in mid-May 2003, when there was a marked decrease in the coldest, saltiest gravity current adjacent to Drygalski Trough. Northward transport of cold, saline, recently ventilated Antarctic Bottom Water observed in March 2004 off Cape Adare was ˜1.7 Sv, including ˜0.4 Sv of High Salinity Shelf Water.

  5. Structure of the North American Atlantic Continental Margin.

    USGS Publications Warehouse

    Schlee, J.S.; Klitgord, K.K.

    1986-01-01

    Off E N America, where the structure of the continental margin is essentially constructional, seismic profiles have approximated geologic cross sections up to 10-15km below the sea floor and revealed major structural and stratigraphic features that have regional hydrocarbon potential. These features include a) a block-faulted basement hinge zone; b) a deep, broad, rifted basement filled with clastic sediment and salt; and c) a buried paleoshelf-edge complex that has many forms. The mapping of seismostratigraphic units over the continental shelf, slope, and rise has shown that the margin's developmental state included infilling of a rifted margin, buildup of a carbonate platform, and construction of an onlapping continental-rise wedge that was accompanied by erosion of the slope. -from Authors

  6. Modelling of sea floor spreading initiation and rifted continental margin formation

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Isimm Team

    2003-04-01

    Recent observations of depth dependent (heterogeneous) stretching where upper crustal extension is much less than that of the lower crust and lithospheric mantle at both non-volcanic and volcanic margins plus the discovery of broad domains of exhumed continental mantle at non-volcanic rifted margins are not predicted by existing quantitative models of rifted margin formation which are usually based on intra-continental rift models subjected to very large stretching factors. New conceptual and quantitative models of rifted margin formation are required. Observations and continuum mechanics suggest that the dominant process responsible for rifted continental margin formation is sea-floor spreading of the young ocean ridge, rather than pre-breakup intra-continental rifting. Simple fluid flow models of ocean ridge processes using analytical iso-viscous corner-flow demonstrate that the divergent motion of the upwelling mantle beneath the ocean ridge, when viewed in the reference frame of the young continental margin, shows oceanward flow of the lower continental crust and lithospheric mantle of the young rifted margin giving rise to depth dependent stretching as observed. Single-phase fluid-models have been developed to model the initiation of sea-floor spreading and the thermal, stretching and thinning evolution of the young rifted continental margin. Finite element fluid-flow modelling incorporating the evolving temperature dependent viscosity field on the fluid flow also show depth dependent stretching of the young continental margin. Two-phase flow models of ocean ridges incorporating the transport of both solid matrix and melt fluid (Spiegelman &Reynolds 1999) predict the divergent motion of the asthenosphere and lithosphere matrix, and the focusing of basaltic melt into the narrow axial zone spreading centre at ocean ridges. We are adapting two-phase flow models for application to the initiation of sea-floor spreading and rifted continental margin formation. iSIMM investigators are V Tymms, NJ Kusznir, RS White, AM Roberts, PAF Christie, N Hurst, Z Lunnon, CJ Parkin, AW Roberts, LK Smith, R Spitzer, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco.

  7. On isostasy at Atlantic-type continental margins

    NASA Technical Reports Server (NTRS)

    Karner, G. D.; Watts, A. B.

    1982-01-01

    The concept of isostasy describes the manner in which topographic features on the earth's surface are compensated at depth. The present investigation is concerned with the isostatic mechanism at Atlantic-type continental margins. Particular attention is given to the question whether the flexure model of isostasy, which has successfully been used at other geological features in oceans, is applicable at margins. Cross-spectral techniques are used to analyze the relationship between free air gravity and topography at Atlantic-type continental margins. The relatively old eastern North America is found to be associated with the highest value of the effective elastic thickness in the range 10-20 km, while the relatively young Coral Sea/Lord Howe rise is associated with the lowest value of less than 5 km. The differences in estimates of effective elastic thickness between margins can be explained by a simple model in which the flexural strength of the basement increases with age.

  8. Antarctic Drilling Recovers Stratigraphic Records From the Continental Margin

    NASA Astrophysics Data System (ADS)

    Harwood, David; Florindo, Fabio; Talarico, Franco; Levy, Richard; Kuhn, Gerhard; Naish, Tim; Niessen, Frank; Powell, Ross; Pyne, Alex; Wilson, Gary

    2009-03-01

    The Antarctic Geological Drilling (ANDRILL) programa collaboration between Germany, Italy, New Zealand, and the United States that is one of the larger programs endorsed by the International Polar Year (IPY; http://www.ipy.org)-successfully completed the drilling phase of the Southern McMurdo Sound (SMS) Project in December 2007. This second drill core of the program's campaign in the western Ross Sea, Antarctica, complements the results of the first drilling season [Naish et al., 2007] by penetrating deeper into the stratigraphic section in the Victoria Land Basin and extending the recovered time interval back to approximately 20 million years ago. The primary objectives of ANDRILL (http://www.andrill.org/) were to recover stratigraphic records from the Antarctic continental margin that document key steps in Antarcticas Cenozoic (0- to 65-million-year-old) climatic and glacial history, and in the tectonic evolution of the Transantarctic Mountains and the West Antarctic Rift System [Harwood et al., 2006]. These two ANDRILL stratigraphic drill cores are guiding the understanding of the speed, size, and frequency of the past 20 million years of glacial and interglacial changes in the Antarctic region. The drill cores will help to establish, through their correlation to existing records and their integration with climate and ice sheet models, how these local changes relate to regional and global events.

  9. Electromagnetic study of the active continental margin in northern Chile

    NASA Astrophysics Data System (ADS)

    Echternacht, Friedrich; Tauber, Sebastian; Eisel, Markus; Brasse, Heinrich; Schwarz, Gerhard; Haak, Volker

    1997-06-01

    Magnetotelluric and geomagnetic deep sounding measurements were carried out in the magmatic arc and forearc regions of northern Chile between 19.5 and 22S to study the electrical conductivity structures of this active continental margin. The instruments used covered a very broad period range from 10 -4 s to approx. 2 10 4 s and thus enabled a resolution of deep as well as shallow structures. In this paper we focus on the interpretation of data from an east-west profile crossing Chile from the Pacific coast to the Western Cordillera at 20.5S. A decomposition of the impedance tensors using the Groom-Bailey decomposition scheme shows that a two-dimensional interpretation is possible. The resulting regional strike direction is N9W. Two-dimensional models were calculated in this coordinate frame and include the significant bathymetry of the trench as well as the topography of the Andes. The final model shows a generally high resistivity in the forearc and a very good conductor below the Precordillera. Unlike earlier models from areas further south, a good conductor is not observed below the magmatic arc itself. This correlates with the so-called Pica gap in the volcanic chain and a higher age of volcanic activity compared with adjacent areas.

  10. The continental margin is a key source of iron to the HNLC North Pacific Ocean

    SciTech Connect

    Lam, P.J.; Bishop, J.K.B

    2008-01-15

    Here we show that labile particulate iron and manganese concentrations in the upper 500m of the Western Subarctic Pacific, an iron-limited High Nutrient Low Chlorophyll (HNLC) region, have prominent subsurface maxima between 100-200 m, reaching 3 nM and 600 pM, respectively. The subsurface concentration maxima in particulate Fe are characterized by a more reduced oxidation state, suggesting a source from primary volcagenic minerals such as from the Kuril/Kamchatka margin. The systematics of these profiles suggest a consistently strong lateral advection of labile Mn and Fe from redox-mobilized labile sources at the continental shelf supplemented by a more variable source of Fe from the upper continental slope. This subsurface supply of iron from the continental margin is shallow enough to be accessible to the surface through winter upwelling and vertical mixing, and is likely a key source of bioavailable Fe to the HNLC North Pacific.

  11. Cenozoic evolution of the Antarctic Peninsula continental margin

    SciTech Connect

    Anderson, J.B. )

    1990-05-01

    Cenozoic evolution of the Antarctic Peninsula continental margin has involved a series of ridge (Aluk Ridge)-trench collisions between the Pacific and Antarctic plates. Subduction occurred episodically between segments of the Pacific plate that are bounded by major fracture zones. The age of ridge-trench collisions decreases from south to north along the margin. The very northern part of the margin, between the Hero and Shackleton fracture zones, has the last surviving Aluk-Antarctic spreading ridge segments and the only remaining trench topography. The sedimentary cover on the northern margin is relatively thin generally less than 1.5 km, thus providing a unique setting in which to examine margin evolution using high resolution seismic methods. Over 5,000 km of high resolution (water gun) seismic profiles were acquired from the Antarctic Peninsula margin during four cruises to the region. The margin is divided into discrete fracture-zone-bounded segments; each segment displays different styles of development. Highly tectonized active margin sequences have been buried beneath a seaward-thickening sediment wedge that represents the passive stage of margin development Ice caps, which have existed in the Antarctic Peninsula region since at least the late Oligocene, have advanced onto the continental shelf on numerous occasions, eroding hundreds of meters into the shelf and depositing a thick sequence of deposits characterized by till tongues and glacial troughs. Glacial erosion has been the main factor responsible for overdeepening of the shelf; isostasy is of secondary importance. As the shelf was lowered by glacial erosion, it was able to accommodate thicker and more unstable marine ice sheets. The shelf also became a vast reservoir for cold, saline shelf water, one of the key ingredients of Antarctic bottom water.

  12. Deformation and seismicity associated with continental rift zones propagating toward continental margins

    NASA Astrophysics Data System (ADS)

    Lyakhovsky, V.; Segev, A.; Schattner, U.; Weinberger, R.

    2012-01-01

    We study the propagation of a continental rift and its interaction with a continental margin utilizing a 3-D lithospheric model with a seismogenic crust governed by a damage rheology. A long-standing problem in rift-mechanics, known as thetectonic force paradox, is that the magnitude of the tectonic forces required for rifting are not large enough in the absence of basaltic magmatism. Our modeling results demonstrate that under moderate rift-driving tectonic forces the rift propagation is feasible even in the absence of magmatism. This is due to gradual weakening and "long-term memory" of fractured rocks that lead to a significantly lower yielding stress than that of the surrounding intact rocks. We show that the style, rate and the associated seismicity pattern of the rift zone formation in the continental lithosphere depend not only on the applied tectonic forces, but also on the rate of healing. Accounting for the memory effect provides a feasible solution for thetectonic force paradox. Our modeling results also demonstrate how the lithosphere structure affects the geometry of the propagating rift system toward a continental margin. Thinning of the crystalline crust leads to a decrease in the propagation rate and possibly to rift termination across the margin. In such a case, a new fault system is created perpendicular to the direction of the rift propagation. These results reveal that the local lithosphere structure is one of the key factors controlling the geometry of the evolving rift system and seismicity pattern.

  13. Tectonic structure and evolution of the Atlantic continental margin

    SciTech Connect

    Klitgord, K.D.; Schouten, H.; Hutchinson, D.R.

    1985-01-01

    The Atlantic continental margin developed across the boundary between continental and oceanic crust as rifting and then sea-floor spreading broke apart and separated the North American and African plates, forming the Atlantic Ocean Basin. Continental rifting began in Late Triassic with reactivation of Paleozoic thrust faults as normal faults and with extension across a broad zone of subparallel rift basins. Extension became localized in Early to Middle Jurassic along the zone that now underlies the large marginal basins, and other rift zones, such as the Newark, Hartford, and Fundy basins, were abandoned. Rifting and crustal stretching between the two continents gave way to sea-floor spreading Middle Jurassic and the formation of oceanic crust. This tectonic evolution resulted in formation of distinctive structural features. The marginal basins are underlain by a thinner crust and contain a variety of fault-controlled structures, including half-grabens, seaward- and landward-tilted blocks, faults that die out within the crust, and faults that penetrate the entire crust. This variable structure probably resulted from the late Triassic-Early Jurassic pattern of normal, listric, and antithetic faults that evolved from the Paleozoic thrust fault geometry. The boundary between marginal basins and oceanic crust is marked approximately by the East Coast Magnetic Anomaly (ECMA). A major basement fault is located in the Baltimore Canyon trough at the landward edge of the ECMA and a zone of seaward dipping reflectors is found just seaward of the ECMA off Georges Bank. The fracture zone pattern in Mesozoic oceanic crust can be traced landward to the ECMA.

  14. Paleogeography and evolution of the Ordovician/Silurian (Whiterockian-Llandoverian) continental margin in central Nevada

    SciTech Connect

    Britt, L.W. )

    1991-02-01

    In central Nevada, stratigraphic successions of Whiterockian-Llandoverian lithofacies, transitional with autochthonous platform/shelf carbonates to the east, occur in isolated windows in outer slope to basinal lithotopes of the Roberts Mountains allochthon. Petrologic, chronostratigraphic and lithostratigraphic, and paleontologic comparison of those successions with platform/shelf facies to the east is integral for reconstruction of Ordovician-Silurian platform margin paleogeography and pre-Antler genesis of the western North American continental margin. Numerous facies changes and/or stratigraphic omissions in central Nevada can be related to sea level fluctuation and aggradation/progradation of the carbonate platform to the east, and not to a postulated, offshore geanticline (i.e., the Toiyabe Ridge). Stratigraphic omission of the Eureka Quartzite above Pogonip equivalents in transitional successions of the Toquima Range and the presence of correlative quartzite in outer slope/basinal parautochthonous facies of the Toiyabe Range suggest development of a possible bypass-margin during the Middle Ordovician. Deposition of Late Ordovician platform margin dolostones (Ely Springs Dolostone) and upper ramp limestones (Hanson Creek Formation and Martin Ridge strata) followed Late Ordovician transgression that drowned the margin and reestablished the carbonate factory. Glacioeustatic drawdown of Late Ordovician-earliest Silurian seas due to the Gondwanan glacial fluctuation can be recognized in strata along the platform margin and upper ramp. Rapid, Early Silurian transgression produced dark-gray carbonates and may have induced marginal flexure and regional, massive slope failure in central Nevada, generating stratigraphic hiatuses west of the platform margin.

  15. Neoproterozoic accretionary orogens of the western margin of Siberian craton

    NASA Astrophysics Data System (ADS)

    Vernikovsky, V. A.

    2003-04-01

    The tectonic evolutions of the Yenisey Ridge and Taimyr fold-and-thrust belts are discussed in the context of the western margin of Siberian craton during the Neoproterozoic. They have key significance for understanding the Precambrian tectonic evolution of the Siberian craton, for global paleotectonic reconstructions and correlations, and for solving the problem of the formation and breakup of the Rodinia supercontinent. Previous work in the Yenisey Ridge and Taimyr had led to the interpretation that the fold belts are composed of high-grade metamorphic and igneous rocks comprising an Archean and Paleoproterozoic basement with an unconformably overlying Mesoproterozoic-Neoproterozoic cover, which was mainly, metamorphosed under greenschist - facies conditions. The geological, structural, petrological, and geochronological investigations carried out at Yenisey Ridge and Taimyr in recent years allow us to re-evaluate the tectonic structure and evolution of these regions. Based on the existing data and new geological and zircon U-Pb data, we recognize several terranes of different age and composition that were assembled during Neoproterozoic collisional-accretional processes on the western margin of the Siberian craton. We suggest that there were three main Neoproterozoic tectonic events involved in the formation of the Yenisey Ridge and Taimyr fold-and-thrust belts: 1) 920 - 865 Ma, formation of syncollisional Mamont and Faddey (Taimyr), Eruda and Teya (Yenisey Ridge) granites; 2) 760 - 720 Ma, formation of the syn to post-collisional Cherimba, Ayakhta, Garevka, Glushikha, Strelka, Lendakha granites (Yenisey Ridge); 3) 700 - 600 Ma, formation of island-arc plagiogranites and volcanic rocks of the Chelyuskin and Stanovoy (Taimyr), Isakov and Predivinsk ophiolite belts (Yenisey Ridge), and their obduction onto the Siberia continental margin. At present, we cannot say on which continent or microcontinent the 920-865 Ma granites formed. It is probable that they were emplaced outside of the Siberian craton during formation of the Rodinia supercontinent and were parts of the Central Angara terrane (Yenisey Ridge) and Mamont-Shrenk and Faddey terranes (Taimyr) before they collided with Siberia. We propose that the Cherimba, Ayakhta, Garevka, and Glushikha granites (760-720 Ma) were formed as a result of the Central Angara terrane and Siberia continent collision. The 700-600 Ma event was accompanied by the formation of an island arc system around Siberia and its subsequent obduction onto the continental margin. Correlation of the 700-630 Ma ophiolites and island arc complexes of the Yenisey Ridge and Taimyr with these of other regions of the Siberian craton margin has been discussed elsewhere (Vernikovsky, 1996; Khain et al., 1997; Bogdanov et al., 1998). Besides, ophiolites and island-arc complexes of close age (640-600 Ma) occur to the south of Yenisey Ridge in the East Sayan fold-thrust belt. These complexes formed along the active continental margin of Siberia and their obduction onto the continental margin occurred at a similar time (630-600 Ma).

  16. An Assessment of Global Organic Carbon Flux Along Continental Margins

    NASA Technical Reports Server (NTRS)

    Thunell, Robert

    2004-01-01

    This project was designed to use real-time and historical SeaWiFS and AVHRR data, and real-time MODIS data in order to estimate the global vertical carbon flux along continental margins. This required construction of an empirical model relating surface ocean color and physical variables like temperature and wind to vertical settling flux at sites co-located with sediment trap observations (Santa Barbara Basin, Cariaco Basin, Gulf of California, Hawaii, and Bermuda, etc), and application of the model to imagery in order to obtain spatially-weighted estimates.

  17. The Aravalli sequence of Rajasthan, India: A Precambrian continental margin?

    NASA Technical Reports Server (NTRS)

    Macdougall, J. D.; Willis, R.; Lugmair, G. W.; Roy, A. B.; Gopalan, K.

    1985-01-01

    The extent to which plate tectonics in its present form operated during the Precambrian is unknown, but is a subject of considerable current interest. A remarkable succession of Precambrian rocks in Rajasthan, Northwestern India, which may help to shed more light on this question are discussed. Data indicates that the Aravalli sequence has a number of characteristics generally ascribed to active continental margins. Although much more work is required to bear this out, the evidence suggests that the processes operating in such an environment in the early Proterozoic or late Archean were not vastly different from today.

  18. The Conjugate Volcanic Continental Margins of the South Atlantic

    NASA Astrophysics Data System (ADS)

    Neben, S.; Franke, D.; Schreckenberger, B.; Temmler, T.

    2005-12-01

    In November-December 2004 the German Federal Institute for Geosciences and Natural Resources (BGR) undertook a marine geophysical cruise along the South Atlantic continental margin off Uruguay and Southern Argentina. In total more than 3,700 km of combined multi-channel reflection seismic (MCS), magnetic and gravity and an additional of 1,300 km with only magnetic and gravity were acquired. In combination with the extensive MCS (>24,000 km) data set from the Argentine and South African margins we are able to interpret conjugate traverses over almost exact conjugate parts of the South Atlantic. Continental break-up and initial sea-floor spreading were accompanied by large-scale magmatism and volcanism as manifested in the seismic data by a huge wedge of seaward dipping reflectors (SDRS). The interpretation of eight refraction/wide-angle seismic traverses show the SDRS are underlain by a distinct and wide spread high-velocity (values 7.1-7.3 km/s) lower crustal body. From the reflection seismic data we tentatively suggest that the (volcanic) features (associated with break-up volcanism?) are mirror images on both margins. The emplacement of the deeply buried, 60-120km wide SDRS was probably episodic as documented by at least three superimposed SDRS units. A similar distinct partitioning of the SDRS into three to four individual wedges is present on the South African margin. From the data a detailed correlation of timing of these individual pulses is intended. Furthermore, it was possible to estimate the amount of extruded material during the phases of emplacement. The seismic data from the Argentine margin document the presence of a narrow, north-east striking half-graben system beneath the upper continental slope. This buried half-graben system developed during the final stage of rifting in the Early Cretaceous, whereas the east-west trending Colorado-Basin probably formed earlier. Further to the south the new data from the Falkland Plateau show widespread small-scale half grabens.

  19. Carbonate comparison of west Florida continental margin with margins of eastern United States

    SciTech Connect

    Doyle, L.J.

    1986-05-01

    Temperate carbonate margins may have as many similarities to clastic margins as to other carbonate systems. An example is the west Florida continental margin north of Florida Bay, a vast area of more than 150,000 km/sup 2/. The facies of this area differ from those of other Holocene carbonates, such as the Bahama Banks, the Great Barrier Reef, and the Caribbean and Pacific bioherms. The west Florida margin is analogous to the predominantly clastic southeastern US in both physiology and sedimentary processes. The shelf facies is a veneer of carbonate sand, primarily molluscan shell fragments, with low sedimentation rates. It is similar to the southeastern US sand veneer with the clastic component removed. Like the US system, the west Florida shelf has a ridge and swale topography replete with sedimentary structures, such as sand waves, with a series of drainage systems incised into its surface at lower stands of sea level. On the outer edge, it is commonly bounded by outcrops with considerable positive relief. The upper slope of the west Florida margin is a calcilutite, a Holocene chalk deposit accumulating at rates of tens of centimeters/1000 years, comparable to the clastic lutite depositional rates of the eastern US continental slope, and two orders of magnitude higher than deep-sea oozes of similar composition. These relatively high rates are probably caused by fines pumped from and across the coarser shelf-sand sheets in both systems.

  20. Predicting Rifted Continental Margin Subsidence History From Satellite Gravity Derived Crustal Thinning: Application to North Atlantic Margins

    NASA Astrophysics Data System (ADS)

    Hurst, N. W.; Kusznir, N. J.; Roberts, A. M.; White, R. S.

    2004-05-01

    3D spectral inversion of satellite derived gravity anomaly data (Smith and Sandwell 1997) and bathymetry data (Gebco 2003) has been used to determine oceanic and continental margin crustal thickness for the North Atlantic between 50 and 70 degrees N. The inverse technique incorporates a correction for the large negative thermal gravity anomaly present in the oceanic and stretched continental lithosphere. This correction can be determined using ocean isochron data for oceanic lithosphere, and margin rift age and beta stretching estimates derived iteratively from crustal basement thickness determined from the gravity inversion for the stretched continental lithosphere. A correction for the gravity anomaly contribution from sediments may be determined using thickness estimates derived from seismic reflection MCS data. Density depth variation within sediments is predicted assuming compaction. Crustal thicknesses determined using a thermal gravity correction derived from ocean isochron data give crustal thicknesses that are consistent with seismic observations. The resulting basement thickness determined from gravity inversion for the thinned continental margin lithosphere may be used to produce estimates of crustal thinning and stretching. Flexural backstripping and reverse post-breakup thermal subsidence modelling may be used to restore present 2D (or 3D) stratigraphic cross sections to earlier post-breakup times. Thermal subsidence arises from the cooling of stretched continental lithosphere and the recently formed oceanic lithosphere, and may be predicted from beta stretching factor (McKenzie 1978) and rift age. Beta stretching factors derived from gravity anomaly inversion have been used to predict reverse thermal subsidence for N Atlantic rifted margins. The resulting palaeo-bathymetric restorations show emergence of the Hatton Bank and NE Faroes rifted margins in early post-breakup times. The predicted palaeo-bathymetries are consistent with palaeo-bathymetry indicators observed in ODP and DSDP wells. Due to errors in the location of Continent-Ocean Boundary within the ocean isochron data set an alternative method may be used to determine the thermal gravity correction. This alternative method ignores the ocean isochron data and the thermal gravity correction is determined using only the rift age specified for continental breakup and lithosphere beta stretching factors derived from crustal basement thickness from gravity inversion. This method has the advantage that it does not assume the location of the COB but has the disadvantage that it fails to predict the increasing thermal gravity correction towards the ocean ridge, and hence overpredicts margin crustal thickness and underpredicts margin beta stretching factors. Failure to include volcanic addition in the gravity inversion for crustal basement thickness results in an overestimate of basement thickness, an underestimate of beta stretching factor and resulting overprediction of palaeo-bathymetry. Sensitivity to lithosphere flexural strength during flexural backstripping has been carried out. This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Schlumberger Cambridge Research and Badley Geoscience, supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco-Phillips, Shell, Statoil and WesternGeco.

  1. Antarctic glacial history from numerical models and continental margin sediments

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Cooper, A. K.; Huybrechts, P.

    1999-01-01

    The climate record of glacially transported sediments in prograded wedges around the Antarctic outer continental shelf, and their derivatives in continental rise drifts, may be combined to produce an Antarctic ice sheet history, using numerical models of ice sheet response to temperature and sea-level change. Examination of published models suggests several preliminary conclusions about ice sheet history. The ice sheet's present high sensitivity to sea-level change at short (orbital) periods was developed gradually as its size increased, replacing a declining sensitivity to temperature. Models suggest that the ice sheet grew abruptly to 40% (or possibly more) of its present size at the Eocene-Oligocene boundary, mainly as a result of its own temperature sensitivity. A large but more gradual middle Miocene change was externally driven, probably by development of the Antarctic Circumpolar Current (ACC) and Polar Front, provided that a few million years' delay can be explained. The Oligocene ice sheet varied considerably in size and areal extent, but the late Miocene ice sheet was more stable, though significantly warmer than today's. This difference probably relates to the confining effect of the Antarctic continental margin. Present-day numerical models of ice sheet development are sufficient to guide current sampling plans, but sea-ice formation, polar wander, basal topography and ice streaming can be identified as factors meriting additional modelling effort in the future.

  2. Geoacoustic characteristics at the DH-2 long-core sediments in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil; Hahn, Jooyoung

    2015-04-01

    A long core of 27.2 m was acquired at the DH-2 site (37°34.355'N and 129°19.516'E) in the Korean continental margin of the western East Sea. The core site is located near the Donghae City and the water depth is 316.6 m deep. The long-core sediment was recovered using the Portable Remotely Operated Drill (PROD), a fully contained drilling system, remotely operated at the seafloor. The recovered core sediments were analyzed for physical, sedimentological, and geoacoustic properties mostly at 10~30 cm intervals. Based on the long-core data with subbottom and air-gun profiles at the DH-2 core site, geoacoustic characteristics of the deeper sedimentary successions were firstly investigated in the Korean continental margin of the western East Sea. The geoacoustic measurements comprise 86 P-wave velocities and 76 attenuation values. These geoacoustic characteristics of the DH-2 long core probably contribute for reconstruction of geoacoustic models reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: long core, geoacoustic, East Sea, continental margin, P-wave speed Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025733) and by the Agency of Defense Development (UD140003DD).

  3. Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles

    NASA Astrophysics Data System (ADS)

    Alvarez-Marrn, J.; Prez-Estan, A.; Danobeitia, J. J.; Pulgar, J. A.; Martnez^Cataln, J. R.; Marcos, A.; Bastida, F.; Ayarza^Arribas, P.; Aller, J.; Gallart, A.; Gonzalez-Lodeiro, F.; Banda, E.; Comas, M. C.; Crdoba, D.

    1996-10-01

    By the end of the Carboniferous, the crust of the continental shelf in northwestern Spain was made up of deeply rooted structures related to the Variscan collision. From Permian to Triassic times the tectonic setting had changed to mainly extensional and the northern Iberian continental margin underwent rifting during Late Jurassic-Early Cretaceous times, along with sea-floor spreading and the opening of the Bay of Biscay until the Late Cretaceous. Subsequently, the northern Iberian margin was active during the north-south convergence of Eurasia and Iberia in the Tertiary. A multichannel seismic experiment, consisting of two profiles, one north-south (ESCIN-4) crossing the platform margin offshore Asturias, and another (ESCIN-3) crossing the platform margin to the northwest of Galicia, was designed to study the structure of the northern Iberian margin. The ESCIN-4 stacked section reveals inverted structures in the upper crust within the Le Danois Basin. North of the steep continental slope, ESCIN-4 shows a thick sedimentary package from 6 to 9.5 s, two-way travel time (TWT). Within this latter package, a 40-km-long, north-tapering wedge of inclined, mainly south-dipping reflections is thought to represent a buried, Alpine-age accretionary prism. In the north western part of the ESCIN-3 (ESCIN-3-1) stacked section, horizontal reflections from 6.5 to 8.5 s correspond to an undisturbed package of sediments lying above oceanic-type basement. In this part of the line, a few kilometres long, strong horizontal reflection at 11.2 s within the basement may represent an oceanic Moho reflection. Also, a band of reflections dips gently towards the southeast, from the base of the gently dipping continental slope. The part of ESCIN-3 line that runs parallel to the NW-Galicia coast (ESCIN-3-2), is characterized by bright, continuous lower crustal reflections from 8 to 10 s. Beneath the lower crustal reflectivity, a band of strong reflections dips gently toward the southwest from 10 to 13.5 s. The part of ESCIN-3 that parallels the northern margin (ESCIN 3-3), shows good reflectivity in all levels. Upper crustal reflections image the sedimentary fill of probable Mesozoic to recent basins. Mid-crustal reflectivity is characterized by dipping reflections until 8 s that are probably related to compressional Variscan features. The lower crustal level shows 'layered' reflections between 8 and 12 s. Dipping reflections are found below the continental Moho.

  4. Crustal thinning and topography at passive continental margins

    NASA Astrophysics Data System (ADS)

    Terje Osmundsen, Per; Redfield, Thomas F.; Ebbing, Jrg

    2010-05-01

    There is a relationship between crustal thinning patterns and onshore topography at passive continental margins. This relationship appears to be governed principally by the crustal thinning gradient (taper) of the crystalline crust from unrifted crustal thickness down to a thickness less than 10 km. Surprisingly, the relationship appears to hold for very long time intervals (> 150 ma) after rifting and breakup. Offshore Norway, two end-member styles of crustal thinning are observed. Along the Mre margin, a basin-flank detachment complex thinned the crust dramatically from c. 40 to less than 10 km over a horizontal distance of < 100 km. Along the Trndelag Platform, however, thinning down to less than 10 km was distributed between 2-3 large-magnitude normal faults over a much broader region, which evolved into platform and terrace areas. The location, displacement magnitude and lateral arrangement of faults that developed in the margi?s `thinnin? phase governed the position of the proximal-distal margin boundary and thus the gross-scale thinning gradient, or taper, of the crystalline crust. In the onshore areas, the effects on topography, landscape and fault reactivation patterns are profound. The highest escarpment and the most asymmetric margin topography developed inboard of sharply tapering crystalline crust. Inboard of sharp tapers, strong landscape contrasts developed across lineaments that were reactivated after the main phase of Mesozoic rifting, but prior to the glaciations. Glacial erosion enhanced tectonically induced drainage patterns, resulting in an asymmetric landscape distribution with high-relief alpine topography preferentially developed on the footwall sides of reactivated faults. This, in turn, pre-destined these landscapes to increased rockslide susceptibility because in the deeply incised escarpment topography, glacial incision undercut structures that had been reactivated in the brittle mode. The above relationships indicate that extensional faulting exerts a long-term control on escarpment topography, landscape contrasts, geohazard susceptibility and sediment routing patterns along passive margins, through the establishment of the taper. On more than 40 published profiles through passive margins, we have measured the distance from the taper break (where the crust is thinned to 10 km or less) to the point of maximum topographic elevation on the adjacent escarpment (apparent taper length) and plotted it against the maximum escarpment elevation measured on each profile. Our analysis indicates that breakup age, glaciations and calculated mantle effects are all subordinate to the taper in controlling escarpment topography. Also, substituting the taper break with the COB does not yield a particularly tight relationship. These observations indicate that it is the thinning of continental crystalline crust down to <10 km and not the replacement of continental with oceanic crust that matters for the topography of the escarpment. Moreover, sharp reductions in the thickness of crystalline crust from <30 km down to less than 10 km do not appear to produce long-standing escarpments.

  5. From collision to extension: The roots of the southeastern continental margin of Brazil

    NASA Astrophysics Data System (ADS)

    Heilbron, Monica; Mohriak, Webster U.; Valeriano, Cludio M.; Milani, Edison J.; Almeida, Julio; Tupinamb, Miguel

    The South Atlantic Meso-Cenozoic continental margins are located in regions characterized by a long-lived history of Proterozoic extension, structural inversion and compressional remobilization of basement and supracrustal rocks. The roots of the present-day southeastern Brazilian continental margin (e.g. Santos and Campos basins) are associated with terranes directly affected by the Brasiliano orogenic collage. This event was responsible for the Ribeira fold belt, which is characterized by compressional, metamorphic and magmatic episodes from Late Precambrian to the earliest Paleozoic. The initial phases of subsidence of the intracratonic Paran basin, located west of the Ribeira fold belt, correspond to early Paleozoic siliciclastic rocks deposited in depocenters that were probably controlled by Brasiliano fabrics. The basin-forming stress fields may be related to the lithospheric convergence between Panthalassa oceanic crust and cratonic blocks of western Gondwana. The last phase of subsidence in the Paran basin is marked by Late Jurassic/Early Cretaceous tholeiitic continental flood basalts. These basalts heralded the breakup of Gondwana. They were also deposited on the Precambrian basement offshore, and are believed to be part of the rift succession. The breakup of western Gondwana and the onset of a new phase of plate divergence in the South Atlantic were marked by thick wedges of seaward-dipping reflectors near the incipient oceanic-ridge spreading center. Subsequently, a few episodes of intraplate tectonic and magmatic activity are also possibly related to compressional stresses resulting from subduction in the Andean margin and ridge push in the mid-Atlantic spreading ridge.

  6. Some depositional patterns at continental margin of southeastern Mediterranean Sea

    SciTech Connect

    Mart, Y.; Gai, Y.B.

    1982-04-01

    The upper Miocene to Holocene sedimentary strata in the continental margin of the southeastern Mediterranean Sea depict two depositional regimes. The upper Miocene sequence is predominantly evaporitic and forms the southeastern portion of the upper Miocene evaporites present throughout the Mediterranean region. The Pliocene-Quaternary sequence is predominantly detrital and its major source of sediments has been the Nile River. Interpretation of data derived from several multichannel seismic profiles suggested facial variations in the upper Miocene and the Pliocene-Pleistocene formations. Two depositional facies of the upper Miocene evaporites, indicating basinal and shelf depositional environments, were found. Statistical analyses show correlations of the thickness of the evaporites with their interval seismic velocity, their depth, and the present bathymetry, indicating the autochthonous characteristics of the sequence. The basinal and the shelf depositional facies are separated by a transition zone that trends NNE-SSW and is associated with faulting. It is suggested that this zone, commonly known as The Pelusium Line, was the shelf-edge zone during the late Miocene. Facial analysis of the data pertaining to the Pliocene-Pleistocene sequence depicts its allochthonous characteristics. Statistical negative correlation was calculated between the distance from the continental shelf and the thickness of this sequence, indicating its detrital origin. Variations in thicknesses of both formations compared with the bathymetric depths suggest a post-Miocene subsidence of the southeast Mediterranean basin. 6 figures, 4 tables.

  7. Effects of Trawling on Sedimentation of Continental Margins

    NASA Astrophysics Data System (ADS)

    Palanques, A.; Martn, J.; Puig, P.; Guilln, J.; Demestre, M.

    2006-12-01

    Human activities have become relevant control factors of sediment transfer in continental margins during the last decades. In the framework of several projects, different findings demonstrate that trawling has been one of the most relevant human-induced factors affecting the proprieties of the seabed during the last decades, since this activity increased dramatically. The direct physical effects of trawling include scraping and ploughing of the seabed and sediment resuspension. In mud prodeltas fishing grounds, it has been observed that trawling increases near-bottom turbidity (feeding constantly the bottom nepheloid layer), winnowing part of the finer sediment fraction and causing a slight coarsening upwards trend and an increase of organic matter content in the upper centimeters of the sediment column. On the continental slopes, it has been observed that trawling in canyon walls can trigger sediment gravity flows and increase sediment accumulation rates in deep canyon depositional areas. Thus, trawling is transferring sediment, changing the seabed and altering the habitat of marine organisms, and must be considered as a dynamic process whose effects should be taken into account in addition to natural processes.

  8. Macrobenthic community structure over the continental margin of Crete (South Aegean Sea, NE Mediterranean)

    NASA Astrophysics Data System (ADS)

    Tselepides, Anastasios; Papadopoulou, Konstantia-N.; Podaras, Dimitris; Plaiti, Wanda; Koutsoubas, Drosos

    2000-08-01

    Macrobenthic faunal composition, abundance, biomass and diversity together with a suite of sedimentary environmental parameters were investigated on a seasonal basis in order to determine factors regulating faunal distribution over the oligotrophic continental margin of the island of Crete (South Aegean Sea, North Eastern Mediterranean). Macrofaunal species composition was similar to that of the western Mediterranean and the neighboring Atlantic having several common dominant species. Mean benthic biomass, abundance and diversity decreased with depth, with a major transition zone occurring at 540 m, beyond which values declined sharply. At comparable depths biomass and abundance values were considerably lower to those found in the Atlantic, high-lighting the extreme oligotrophy of the area. The continental margin of Crete was characterised by a high diversity upper continental shelf environment (dominated by surface deposit feeding polychaetes) and a very low diversity slope and deep-basin environment (dominated by carnivorous and filter feeding polychaetes). Classification and ordination analyses revealed the existence of four principle clusters divided by a faunal boundary between 200 and 540 m, as well as beyond 940 m depth. Significant correlations between macrofauna and sediment parameters led to the conclusion that besides depth, food availability (as manifested by the concentration of chloroplastic pigments) is the principle regulating factor in the system. Such being the case, the prevailing hydrographic features that structure the pelagic food web and are directly responsible for the propagation of organic matter to the benthos also affect its community structure.

  9. Fault reactivation within Avalonia: plate margin to continental interior deformation

    NASA Astrophysics Data System (ADS)

    Murphy, J. Brendan; Keppie, J. Duncan; Nance, R. Damian

    1999-05-01

    Lithotectonic terranes commonly have faults with movement histories that reflect their original tectonic setting and their subsequent re-activation during terrane accretion and post-accretionary dispersal. Since later movements tend to overprint evidence of earlier motions, documenting fault reactivation can be a difficult task. Avalonia, the largest terrane within the Canadian Appalachians preserves evidence for repeated episodes of movement along NE-trending fault zones in a variety of tectonic settings between the late Neoproterozoic and late Paleozoic. Evidence of Neoproterozoic motion is preserved in pre-final crystallization deformation fabrics in arc-related igneous complexes which intrude shear zones. These record strike-slip motion related to oblique subduction along the continental margin of Gondwana. In the Paleozoic, Avalonia migrated from its original peri-Gondwanan setting. Mid-Ordovician to earliest Silurian deformation and magmatism is attributed to the sinistral accretion of Avalonia to Laurentia. This reactivated Neoproterozoic shear zones and resulted in basin inversion in mainland Nova Scotia and the formation of mylonites and injection of dikes into brittle fractures in southern New Brunswick. Sinistral motion was accompanied by terrane dispersal and was followed in the Late Silurian and Early Devonian by further reactivation in the form of dextral strike-slip that reflects convergence between Laurentia and Gondwana. Following the accretion and dispersal of Avalonia, the fault zones became stranded within the continental interior. Subsequently, the fault zones accommodated local stresses which were far-field responses to collisional tectonics associated with the mid-Late Devonian Acadian and the Late Carboniferous Alleghanian orogenies. Hence, the generation of these fault systems along plate margins in the late Neoproterozoic and early Paleozoic profoundly influenced the tectonic evolution of late Paleozoic intra-continental deformation. Late Carboniferous deformation is recorded in (a) the mylonitic and cataclastic fabrics of the shear zones themselves, (b) the orientations of spatially related fold structures, (c) local controls on basin formation and sedimentary facies and (d) offsets in stratigraphy. This motion was predominantly dextral and records continued convergence between Laurentia and Gondwana during the amalgamation of Pangea.

  10. Geochemical evidence of mantle reservoir evolution during progressive rifting along the western Afar margin

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Mohr, Paul; Dosso, Laure; Hall, Chris

    2013-02-01

    The Afar triple junction, where the Red Sea, Gulf of Aden and African Rift System extension zones converge, is a pivotal domain for the study of continental-to-oceanic rift evolution. The western margin of Afar forms the southernmost sector of the western margin of the Red Sea rift where that margin enters the Ethiopian flood basalt province. Tectonism and volcanism at the triple junction had commenced by ˜31 Ma with crustal fissuring, diking and voluminous eruption of the Ethiopian-Yemen flood basalt pile. The dikes which fed the Oligocene-Quaternary lava sequence covering the western Afar rift margin provide an opportunity to probe the geochemical reservoirs associated with the evolution of a still active continental margin. 40Ar/39Ar geochronology reveals that the western Afar margin dikes span the entire history of rift evolution from the initial Oligocene flood basalt event to the development of focused zones of intrusion in rift marginal basins. Major element, trace element and isotopic (Sr-Nd-Pb-Hf) data demonstrate temporal geochemical heterogeneities resulting from variable contributions from the Afar plume, depleted asthenospheric mantle, and African lithosphere. The various dikes erupted between 31 Ma and 22 Ma all share isotopic signatures attesting to a contribution from the Afar plume, indicating this initial period in the evolution of the Afar margin was one of magma-assisted weakening of the lithosphere. From 22 Ma to 12 Ma, however, diffuse diking during continued evolution of the rift margin facilitated ascent of magmas in which depleted mantle and lithospheric sources predominated, though contributions from the Afar plume persisted. After 10 Ma, magmatic intrusion migrated eastwards towards the Afar rift floor, with an increasing fraction of the magmas derived from depleted mantle with less of a lithospheric signature. The dikes of the western Afar margin reveal that magma generation processes during the evolution of this continental rift margin are increasingly dominated by shallow decompressional melting of the ambient asthenosphere, the composition of which may in part be controlled by preferential channeling of plume material along the developing neo-oceanic axes of extension.

  11. Late Mesozoic North African continental margin: Sedimentary sequences and subsidence history

    SciTech Connect

    Kuhnt, W.; Obert, D.

    1988-08-01

    Cretaceous facies types and subsidence history have been studied along two well outcropping and almost complete transversals through the Tellian units of the Mesozoic North African margin, the Western Rif (Morocco), and the Babors (Algeria). Sedimentologic observations and characteristic foraminiferal assemblages enabled estimates for Late Cretaceous paleobathymetries. Both palinspastic reconstruction and sedimentologic and biofacies analyses led to the following results. (1) The morphology and evolution of the Cretaceous North African margin, which in general represents a classic passive continental margin, were complicated by various factors such as Late Cretaceous compressional and lateral movements, the onset of (tectonically controlled ) diapirism, and the existence of intramarginal highs and basins. (2) The Cretaceous subsidence history of both areas can be divided into four stages which are accompanied by characteristic sedimentary formations: (I) distension and subsidence of the margin (Early Cretaceous); (II) a first compressional phase with uplift and slight metamorphism in the Albian/early Cenomanian which affected mainly the northerly paleogeographic zones, accompanied by first diapiric movements and resedimentation of Triassic saliferous material; (III) a Late Cretaceous stage of subsidence (Cenomanian-Santonian); and (IV) a second compressional phase starting with the Campanian and reflected by the formation of sedimentary klippes and olistostromes. (3) As a general trend, sedimentary basins deepened from south to north during Campanian/Maastrichtian time, giving rise to a characteristic succession of bathymetric zones which have been observed on both transversals.

  12. Recent carbonate slope development on southwest Florida continental margin

    SciTech Connect

    Brooks, G.R.; Holmes, C.W.

    1987-05-01

    The southwest Florida continental slope bordering the Florida Strait contains a thick sequence of seaward-prograding sediments. Sediments consist principally of a mixture of shallow water and pelagic carbonate sands and muds deposited rapidly on the upper slope. Sedimentary patterns are interpreted to be a function of high-frequency sea level fluctuations. Most vigorous off-shelf transport and highest sedimentation rates (exceeding 2.5 m/1000 years) occur during early transgressions and late regressions when water depths on the shelf are shallow. During sea level highstands, off-shelf transport is less vigorous and sedimentation rates decrease. During sea level lowstands, no off-shelf transport takes place and erosion of the previously deposited sequence occurs as a result of an increase in erosional capacity of the Florida Current. The presence of at least nine such sequences, all with similar characteristics, indicates that these processes have been occurring since at least the late Pleistocene in response to high-frequency glacial fluctuations. The location of the southwest Florida slope between the rimmed Bahama platform and the nonrimmed remainder of the west Florida margin, as well as similarities with ancient carbonate slope deposits formed during periods when shelf-edge reef-forming organisms were lacking, suggest that depositional patterns on the southwest Florida slope may be indicative of a transition between rimmed and nonrimmed carbonate platform environments. The southwest Florida slope may provide a valuable modern analog for identifying similar transitional environments in the geologic record.

  13. Characterizing, identifying and mapping structural domains at rifted continental margins: insights from the Bay of Biscay margins and its Pyrenean fossil analogue

    NASA Astrophysics Data System (ADS)

    Tugend, Julie; Manatschal, Gianreto; Kusznir, Nick J.

    2014-05-01

    The occurrence of hyperextended domains at rifted continental margins consisting of extremely thinned crust and/or exhumed mantle has been increasingly recognized over the past decades, both at present-day rifted margins and in deformed remnants preserved in collisional orogens. At present, most studies aiming to characterize rifted continental margin structure and the extreme thinning of the continental crust and lithosphere are either focused offshore using geophysical methods, or onshore on fossil analogues relying on geological field observations. Marine and onland examples provide complementary datasets, but their different scale and resolution of observations prevent straightforward correlations to be done. In this contribution, we use the Bay of Biscay and Western Pyrenees to develop and apply a geological/geophysical approach to characterize and identify distinctive rifted margin domains both in offshore and onshore settings. The Bay of Biscay and Western Pyrenees represent a unique natural laboratory that offer the possibility to have access to seismically imaged, drilled and exposed parts of one and the same hyperextended rift system. Quantitative techniques (gravity inversion and flexural backstripping) are used on offshore examples (Western Approach margin and Parentis basin) to estimate accommodation space, crustal thickness and lithosphere thinning while seismic interpretations enable the recognition of extensional settings (low- and high-? settings). Field observations (Maulon basin) and drill-hole data (Parentis basin) focused on key outcrops enables the description of the nature of sediment and basement rocks and of the structures forming fossil remnants of rifted margins. This qualitative and quantitative characterisation provides diagnostic elements to identify and map structural domains at magma-poor rifted margins and their fossil analogues. We name these 5 domains proximal, necking, hyperthinned, exhumed mantle and oceanic. This new geological/geophysical approach can be further used as an interface between onshore and offshore observations. Offshore seismic interpretations can take advantage of onshore observations on the nature of sediment, basement and of their interface. The large scale geometry and stratigraphic architecture imaged offshore can be used to restore onshore fossil remnants back into a rifted margin context. The application of this multidisciplinary approach to the Bay of Biscay margins and their onshore Pyrenean fossils remnants enables us to propose a new map of the different rift systems preserved at the transition between the European and Iberian plates. The approach underlying this mapping has general global application to unravelling the spatial and temporal complexity of rifted margin structural domains.

  14. Lomonosov Ridge as a Natural Component of Continental Margin

    NASA Astrophysics Data System (ADS)

    Poselov, V.; Kaminsky, V. D.; Butsenko, V. V.; Grikurov, G. E.

    2010-12-01

    In geodynamic context, Lomonosov Ridge is interpreted as a rifted passive margin framing the Eurasian oceanic basin. At the same time its near-Siberian segment is intimately associated with the Russian Arctic shelf, as evidenced by morphological data and the results of Trans-Arctic 1992 and Arctic-2007 geotransect studies. Coring and ACEX data demonstrated the presence in the uppermost geological section of the ridge of Late Cretaceous through Cenozoic sediments and Jurassic-Cretaceous sedimentary rocks; the latter may belong to deeper levels of sedimentary cover, or may represent the Mesozoic folded basement. Coarse bottom debris contains also the fragments of Riphean-Paleozoic rocks probably derived from the local bedrock source. Structure of sedimentary cover is imaged by continuous seismic observations from the shelf of East Siberian Sea along the length of Lomonosov Ridge to 85 N. In the upper part of the section there are two sedimentary sequences separated by a regional unconformity; their seismic velocities are 2.4-3.1 km/s in the upper sequence and 3.4-4.0 km/s in the lower one, and the total thickness reaches ~ 8 km in the deepest part of New Siberian Basin. Both these sequences and the unconformity are traced from Lomonosov Ridge into Amundsen Basin on seismic reflection sections obtained by drifting ice stations North Pole 2479 and 2480. The low-velocity sediments are underlain by a metasedimetary sequence with velocities decreasing from 4.7-4.9 km/s on the shelf to 4.4-4.9 km/s beneath continental slope and 4.2-4.8 km/s on Lomonosov Ridge. The thickness of metasedimentary sequence is about 7 km on the shelf, up to 3.5 km under continental slope, and strongly variable (1-5 km) on Lomonosov Ridge. The upper layer of consolidated crust is 8-9 km thick on the shelf with velocities 6.1-6.2 km/s; on Lomonosov Ridge both its thickness and velocities increase to 10 km and 6.0-6.4 km/s, respectively. In the lower crust the velocities do not exceed 6.7 km/; its thickness is 8-9 km on shelf, 5 km under continental slope and gradually increases to 9 km on Lomonosov Ridge. The velocity in upper mantle is approximately 8.0 km/s; the depth to Moho changes from 28 km on the shelf to 22 km on Lomonosov Ridge. Our data demonstrate that principal features of deep crustal structure recognized on Lomonosov Ridge can continuously be traced along its length onto adjacent Siberian shelf, and in orthogonal direction across the periphery of Amundsen Basin. Recognition of these features beneath the Siberian continental slope is somewhat obscured by normal faults but the latter do not appreciably affect the seismic stratigraphy and/or seismic facies characteristics of the distinguished sequences. The northward prolongation of the Kotelny Island horst is articulated by a chain of elevated blocks expressed in the Lomonosov Ridge surface; this offers an additional confirmation of uninterrupted connection between the ridge and the New Siberian Islands shelf. The evidence presented herein suggests an autochtonous position of Lomonosov Ridge which can therefore be regarded a part of submerged natural prolongation of the Russian Arctic landmass.

  15. Fishing down the coast: Historical expansion and collapse of oyster fisheries along continental margins

    PubMed Central

    Kirby, Michael Xavier

    2004-01-01

    Estuarine ecosystems have changed dramatically from centuries of fishing, habitat disturbance, sedimentation, and nutrient loading. Degradation of oyster reefs by destructive fishing practices in particular has had a profound effect on estuarine ecology, yet the timing and magnitude of oyster-reef degradation in estuaries is poorly quantified. Here, I evaluate the expansion and collapse of oyster fisheries in 28 estuaries along three continental margins through the analysis of historical proxies derived from fishery records to infer when oyster reefs were degraded. Exploitation for oysters did not occur randomly along continental margins but followed a predictable pattern. Oyster fisheries expanded and collapsed in a linear sequence along eastern North America (Crassostrea virginica), western North America (Ostreola conchaphila), and eastern Australia (Saccostrea glomerata). Fishery collapse began in the estuaries that were nearest to a developing urban center before exploitation began to spread down the coast. As each successive fishery collapsed, oysters from more distant estuaries were fished and transported to restock exploited estuaries near the original urban center. This moving wave of exploitation traveled along each coastline until the most distant estuary had been reached and overfished. PMID:15326294

  16. Fishing down the coast: historical expansion and collapse of oyster fisheries along continental margins.

    PubMed

    Kirby, Michael Xavier

    2004-08-31

    Estuarine ecosystems have changed dramatically from centuries of fishing, habitat disturbance, sedimentation, and nutrient loading. Degradation of oyster reefs by destructive fishing practices in particular has had a profound effect on estuarine ecology, yet the timing and magnitude of oyster-reef degradation in estuaries is poorly quantified. Here, I evaluate the expansion and collapse of oyster fisheries in 28 estuaries along three continental margins through the analysis of historical proxies derived from fishery records to infer when oyster reefs were degraded. Exploitation for oysters did not occur randomly along continental margins but followed a predictable pattern. Oyster fisheries expanded and collapsed in a linear sequence along eastern North America (Crassostrea virginica), western North America (Ostreola conchaphila), and eastern Australia (Saccostrea glomerata). Fishery collapse began in the estuaries that were nearest to a developing urban center before exploitation began to spread down the coast. As each successive fishery collapsed, oysters from more distant estuaries were fished and transported to restock exploited estuaries near the original urban center. This moving wave of exploitation traveled along each coastline until the most distant estuary had been reached and overfished. PMID:15326294

  17. Convective Removal of Continental Margin Lithosphere at the Edges of Subducting Oceanic Plates

    NASA Astrophysics Data System (ADS)

    Levander, A.; Bezada, M. J.; Palomeras, I.; Masy, J.; Humphreys, E.; Niu, F.

    2013-12-01

    Although oceanic lithosphere is continuously recycled to the deeper mantle by subduction, the rates and manner in which different types of continental lithospheric mantle are recycled is unclear. Cratonic mantle can be chemically reworked and essentially decratonized, although the frequency of decratonization is unclear. Lithospheric mantle under or adjacent to orogenic belts can be lost to the deeper mantle by convective downwellings and delamination phenomena. Here we describe how subduction related processes at the edges of oceanic plates adjacent to passive continental margins removes the mantle lithosphere from beneath the margin and from the continental interior. This appears to be a widespread means of recycling non-cratonic continental mantle. Lithospheric removal requires the edge of a subducting oceanic plate to be at a relatively high angle to an adjacent passive continental margin. From Rayleigh wave and body wave tomography, and receiver function images from the BOLIVAR and PICASSO experiments, we infer large-scale removal of continental margin lithospheric mantle from beneath 1) the northern South American plate margin due to Atlantic subduction, and 2) the Iberian and North African margins due to Alboran plate subduction. In both cases lithospheric mantle appears to have been removed several hundred kilometers inland from the subduction zones. This type of ';plate-edge' tectonics either accompanies or pre-conditions continental margins for orogenic activity by thinning and weakening the lithosphere. These processes show the importance of relatively small convective structures, i.e. small subducting plates, in formation of orogenic belts.

  18. Structure and evolution of an obliquely sheared continental margin: Rio Muni, West Africa

    NASA Astrophysics Data System (ADS)

    Turner, Jonathan P.; Rosendahl, Bruce R.; Wilson, Paul G.

    2003-10-01

    Oblique-shear margins are divergent continental terrains whose breakup and early drift evolution are characterized by significant obliquity in the plate divergence vector relative to the strike of the margin. We focus on the Rio Muni margin, equatorial West Africa, where the ca. 70-km-wide Ascension Fracture Zone (AFZ) exhibits oblique-slip faulting and synrift half-graben formation that accommodated oblique extension during the period leading up to and immediately following whole lithosphere failure and continental breakup (ca. 117 Ma). Oblique extension is recorded also by strike-slip and oblique-slip fault geometry within the AFZ, and buckling of Aptian synrift rocks in response to block rotation and local transpression. Rio Muni shares basic characteristics of both rifted and transform margins, the end members of a spectrum of continental margin kinematics. At transform margins, continental breakup and the onset of oceanic spreading (drifting) are separate episodes recorded by discrete breakup and drift unconformities. Oceanic opening will proceed immediately following breakup on a rifted margin, whereas transform and oblique-shear margins may experience several tens of millennia between breakup and drift. Noncoeval breakup and drift have important consequences for the fit of the equatorial South American and African margins because, in reconstructing the configuration of conjugate continental margins at the time of their breakup, it cannot be assumed that highly segmented margins like the South Atlantic will match each other at their ocean-continent boundaries (OCBs). Well known 'misfits' in reconstructions of South Atlantic continental margins may be accounted for by differential timing of breakup and drifting between oblique-shear margins and their adjacent rifted segments.

  19. New Low-Temperature Thermochronology Reveals Contrasting Modes of Continental Extension Across the Sonoran Rifted Margin

    NASA Astrophysics Data System (ADS)

    Kohn, B. P.; Fletcher, J. M.; Gleadow, A. J.; Calmus, T.; Nourse, J. A.

    2003-12-01

    The Sonoran rifted margin extends 250 km from the western flanks of the Sierra Madre Occidental to the Gulf of California and contains a classic Basin and Range morphology that indicates "broad-rift" mode of continental extension. However, new low-temperature thermochronology reveals that the Sonoran rifted margin is also internally composed of at least two temporally and spatially distinct belts that display other distinct styles of extension. Mountain ranges that lie within a narrow belt (20 km wide) along the coast of the Gulf of California between Puerto Libertad and Bahia Kino yield highly discordant apatite fission track (AFT) ages that range from 5 to 54 Ma and likely reflect the strong tilting of these tectonic blocks. The widespread occurrence of AFT ages between 5 and 7 Ma, which are typically found in the deepest crustal levels of the tilt blocks, and the presence of Quaternary scarps indicate that extension in the coastal region largely occurred from late Miocene to recent times. We infer that this belt is dominated by a "narrow-rift" mode of extension where deformation has been focused to produce the Gulf depression. Well inland from the coast (175 km east) is a belt of metamorphic core complexes that extends more than 200 km from Magdalena to Mazatan and typically yields older and more concordant AFT ages from 14 to 23 Ma. However, the presence of ages as young as 8 to 11 Ma indicate that the "metamorphic-core-complex" mode of extension in this belt likely overlapped in time with the "narrow-rift" mode of extension in the Gulf of California. We conclude that the juxtaposition of major deformation belts each with different modes of continental extension reflects the diverse processes that have affected the Sonoran margin through time.

  20. Surficial sediments on the western Canadian continental shelf

    NASA Astrophysics Data System (ADS)

    Bornhold, Brian D.; Barrie, J. Vaughn

    1991-08-01

    The active continental margin off western Canada is characterized in the south by convergence between the Explorer and Juan de Fuca Plates and the America Plate, and in the north by transform fault motion between the Pacific and America Plates along the Queen Charlotte Fault. Except in some of the deepest troughs and basins shelf sediments are dominated by immature lithic arenites reflecting this tectonic setting. The Vancouver Island shelf is from 5 to 75 km wide and displays complex topography on the inner shelf and a relatively featureless mid- and outer shelf. An exception is the area off southwestern Vancouver Island where large basins bounded by morainal deposits extend more than two-thirds of the distance across the shelf. The shelf edge varies from 180 to 225 m depth and is indented by numerous canyons. Nearshore sediments consist mainly of gravels and boulders and become finer offshore such that muds are slowly accumulating in depths greater than 100 m. Off northwestern Vancouver Island calcareous sediments are abundant with carbonate values often exceeding 75%. High wave and current energies and efficient sediment trapping in coastal fiords have resulted in low rates of accumulation. Olive, glauconitic, Holocene muds and muddy sands are generally less than 0.3 m thick and accumulate only on the outer shelf over an extensive stiff, gray, glaciomarine sandy mud. Queen Charlotte Sound exhibits three broad, shallow, glacially scoured troughs, filled mainly with clayey silts and fine sands and separated by sand and gravel covered banks. Hecate Strait, between the Queen Charlotte Islands and the mainland, consists of a prominent southward-opening trough along the east side of the Strait bounded by Dogfish and Laskeek Banks on the west adjacent to Graham and Moresby Islands, respectively. The trough below 200 m is filled by silts. The banks are covered by discontinuous sands and gravels of variable calcareous content. The bank edges often display megaripples and sand waves. Shore-parallel and oblique sand and gravel ridges occur along northernmost Dogfish Bank. Except for the inshore area (less than 100 m) off northern Graham Island little is known of the sediment distribution in Dixon Entrance. Off northwestern Graham Island the near shore zone is dominated by bedrock and discontinuous sands and gravels made up of up to 90% skeletal carbonate. Off northeastern Graham Island sandy sediments predominate in the nearshore. No studies have been undertaken on the narrow shelf off the western Queen Charlotte Islands.

  1. Abbot Ice Shelf, the Amundsen Sea Continental Margin and the Southern Boundary of the Bellingshausen Plate Seaward of West Antarctica

    NASA Astrophysics Data System (ADS)

    Cochran, J. R.; Tinto, K. J.; Bell, R. E.

    2014-12-01

    The Abbot Ice Shelf extends 450 km along the coast of West Antarctica between 103°W and 89°W and straddles the boundary between the Bellingshausen Sea continental margin, which overlies a former subduction zone, and Amundsen Sea rifted continental margin. Inversion of NASA Operation IceBridge airborne gravity data for sub-ice bathymetry shows that the western part of the ice shelf, as well as Cosgrove Ice Shelf to the south, are underlain by a series of east-west trending rift basins. The eastern boundary of the rifted terrain coincides with the eastern boundary of rifting between Antarctica and Zealandia and the rifts formed during the early stages of this rifting. Extension in these rifts is minor as rifting quickly jumped north of Thurston Island. The southern boundary of the Cosgrove Rift is aligned with the southern boundary of a sedimentary basin under the Amundsen Embayment continental shelf to the west, also formed by Antarctica-Zealandia rifting. The shelf basin has an extension factor, β, of 1.5 - 1.7 with 80 -100 km of extension occurring in an area now ~250 km wide. Following this extension early in the rifting process, rifting centered to the north of the present shelf edge and proceeded to continental rupture. Since then, the Amundsen Embayment continental shelf has been tectonically quiescent and has primarily been shaped though subsidence, sedimentation and the passage of the West Antarctic Ice Sheet back and forth across it. The former Bellingshausen Plate was located seaward of the Amundsen Sea margin prior to its incorporation into the Antarctic Plate at ~62 Ma. During the latter part of its existence, Bellingshausen plate motion had a clockwise rotational component relative to Antarctica producing convergence between the Bellingshausen and Antarctic plates east of 102°W. Seismic reflection and gravity data show that this convergence is expressed by an area of intensely deformed sediments beneath the continental slope from 102°W to 95°W and by incipient subduction beneath the Bellingshausen Gravity Anomaly on the western edge of a salient of the Antarctic plate near 94°W. West of 102°W, relative motion was extensional and occurred in a diffuse zone occupied by the Marie Byrd Seamounts that are dated at 65-56 Ma and extend 800 km along the continental margin near the base of the continental rise.

  2. Structure Characteristics and Sediment Distribution of the Passive Continental Margin in Northeastern South China Sea

    NASA Astrophysics Data System (ADS)

    Hsieh, C.; Liu, C.; Tsai, Y.; Hsu, H.

    2012-12-01

    The continental margin east of the Donsha Island in the northeastern South China Sea (SCS) is not a typical passive continental margin. It presents a wide deep outer shelf where the shelf-slope break is around 700 m in depth, and the continental slope trends NE-SW comparing to mostly E-W trending continental slope of the northern SCS. In this study, we investigate structural characters and sediment distribution of the northeastern SCS continental margin from a recently collected multichannel seismic data set. Based on morphology, we divide the study area into 3 zones: the deep outer shelf, the steep continental slope, and the continental rise and SCS basin. Grabens and normal faults are the major structures in the upper part of the continental margin, and igneous activities are prevailing in the lower part of the continental margin. On seismic profiles, we map the Mesozoic basement and sediment thickness, and identify different structure characters for the deep outer shelf, continent slope and deep sea basin, respectively. In outer shelf, NE-SW trending basement highs are observed, and grabens, listric normal faults and roll-over anticlines are dominated structural features. We suggest that the up-lifted and bended basement high blocked sediment transport on the shelf and formed the deeper outer shelf. In the continental slope zone, there are many submarine canyons and buried paleo-channels, suggesting active sedimentary processes, Intrusive igneous activities can be identified in the upper basin, and an ENE-WSW seamount zone extends from the Donsha Island running across the continental slope obliquely to the SCS basin. Seismic characters of the SCS basin basement are different from that of typical oceanic crust, tilted basement blocks and igneous intrusions that uplifted the sediment strata above the basement are widely observed, however, the nature of the basement here needs further investigation.

  3. Wintertime phytoplankton bloom in the subarctic Pacific supported by continental margin iron

    NASA Astrophysics Data System (ADS)

    Lam, Phoebe J.; Bishop, James K. B.; Henning, Cara C.; Marcus, Matthew A.; Waychunas, Glenn A.; Fung, Inez Y.

    2006-03-01

    Heightened biological activity was observed in February 1996 in the high-nutrient low-chlorophyll (HNLC) subarctic North Pacific Ocean, a region that is thought to be iron-limited. Here we provide evidence supporting the hypothesis that Ocean Station Papa (OSP) in the subarctic Pacific received a lateral supply of particulate iron from the continental margin off the Aleutian Islands in the winter, coincident with the observed biological bloom. Synchrotron X-ray analysis was used to describe the physical form, chemistry, and depth distributions of iron in size fractionated particulate matter samples. The analysis reveals that discrete micron-sized iron-rich hot spots are ubiquitous in the upper 200 m at OSP, more than 900 km from the closest coast. The specifics of the chemistry and depth profiles of the Fe hot spots trace them to the continental margins. We thus hypothesize that iron hot spots are a marker for the delivery of iron from the continental margin. We confirm the delivery of continental margin iron to the open ocean using an ocean general circulation model with an iron-like tracer source at the continental margin. We suggest that iron from the continental margin stimulated a wintertime phytoplankton bloom, partially relieving the HNLC condition.

  4. Influence of the Iceland mantle plume on North Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    White, R. S.; Isimm Team

    2003-04-01

    Early Tertiary breakup of the North Atlantic was accompanied by widespread magmatism. The histories of the Iceland mantle plume, of rifting and of magmatism are intimately related. The magmatism provides a challenge both to imaging structure, and to modelling the subsidence and development of the continental margins. We report new work which integrates state-of-the-art seismic imaging and new acquisition on the Atlantic volcanic margins with new techniques for modelling their evolution. We discuss the distribution of igneous rocks along the North Atlantic margins and discuss the temporal and spatial variations in the Iceland mantle plume in the early Tertiary, which have largely controlled this pattern of magmatism. Igneous rocks are added to the crust on rifted margins as extrusive lavas, as sills intruded into the sub-surface and as lower crustal intrusions or underplate. Each provide different, but tractable problems to seismic imaging. We show that many of these difficulties can be surmounted by using very long offsets (long streamers or two-ship methods) with a broad-band, low-frequency source, and by using fixed ocean bottom receivers. We report results from surveys on the North Atlantic continental margins using these methods. Imaging results are shown from the recent FLARE project and from the iSIMM project, which recorded new seismic data recorded in summer 2002. The iSIMM project acquired two seismic surveys, using 85 4-component ocean bottom seismometers with long streamers for wide-angle data, and vertical arrays for far-field source signature recording. One survey crosses the Faroes Shelf and adjacent continental margin, and a second the Hatton-Rockall Basin, Hatton Bank and adjacent oceanic crust. The Faroes wide-angle profiles were overshot by WesternGeco's Topaz using three single-sensor, Q-Marine streamers, 12km plus two 4km. We designed deep-towed, broad-band low-frequency sources tuned to enhance the bubble pulses, with peak frequencies at 8-11 Hz. The OBS survey used a 14-gun, 6,300 cu. in. array towed at 20 m depth, and the Q-marine survey used a 48-gun, 10,170 cu. in. array, with shot-by-shot signature recording. They provided excellent arrivals to ranges beyond 120 km, with penetration through the basalts and well into the upper mantle. iSIMM investigators are R.S. White, N.J. Kusznir, P.A.F. Christie, A.M. Roberts, N. Hurst, Z.C. Lunnon, C.J. Parkin, A.W. Roberts, L.K. Smith, R. Spitzer , V. Tymms, A. Davies and A. Surendra, with funding from NERC, DTI, Agip UK, BP, Amerada Hess Ltd., Anadarko, Conoco, Phillips, Shell, Statoil, and WesternGeco

  5. Differential seafloor spreading of the North Atlantic and consequent deformation of adjacent continental margins

    NASA Astrophysics Data System (ADS)

    Le Breton, Eline; Cobbold, Peter R.; Roperch, Pierrick; Dauteuil, Olivier

    2010-05-01

    One of the main assumptions of the theory of plate tectonics is that all plates are rigid. However, in some plate reconstructions, the fits improve if the continents deform. Moreover, along parts of the North Atlantic continental margins, there is good evidence for post-rift deformation, in the form of inverted basins and compressional domes. Possible causes of these features are (1) tectonic stress from the Alpine orogeny, (2) ridge push, (3) a mantle plume under Iceland, and (4) differential spreading at mid-oceanic ridges. Here we investigate the last of these possibilities, focussing on the spreading history of the Reykjanes, Aegir and Mohns ridges. In particular, we consider jumps in plate velocity across the main fracture zones, and their possible effects on Tertiary deformation of the continental margins. We have reconstructed the opening of an area of the northern North Atlantic, using magnetic anomalies. Instead of traditional Euler poles, we have used an iterative least-squares method, which minimizes the gaps and overlaps between conjugate anomalies in a plane that is tangent to the Earth's surface. For this purpose, we have subdivided the northern North Atlantic region into a finite number of oceanic blocks, lying between magnetic anomalies and fracture zones. Minimization of the gaps and overlaps involves rigid translations and rotations of the blocks. The algorithm converts these motions into rotations on a sphere. Thus we obtain a palinspastic restoration of the opening of the North Atlantic, including the full pattern of displacement of all material points. The pattern depends on the kinematic boundary conditions for the restored area. For example, we have investigated what happens if the western side of the area is rigid, whereas the eastern side is deformable. Our reconstructions then show that the spreading history of the Aegir ridge was different from those of the nearby Mohns and Reykjanes ridges. In the late Eocene to early Oligocene, there was a change in the direction and rate of spreading of the Aegir ridge, so that its eastern side rotated relative to the northern Mohns zone and southern Reykjanes zone. This generated strike-slip displacements along the Jan Mayen Fracture Zone and the Faeroe Fracture Zone. The late Eocene to early Oligocene was also one of the main periods of inversion on the continental shelf of N.W. Europe, especially in the Faeroe-Rockall-Shetland area and at the ends of the Jan Mayen and Faeroe fracture zones. We therefore suggest that differential seafloor spreading in the North Atlantic was responsible for some of the post-rift deformation on the continental shelf of N.W. Europe.

  6. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea

    NASA Astrophysics Data System (ADS)

    Cochrane, Ryan; Spikings, Richard; Gerdes, Axel; Ulianov, Alexey; Mora, Andres; Villagómez, Diego; Putlitz, Benita; Chiaradia, Massimo

    2014-03-01

    Crustal anatectites are frequently observed along ocean-continent active margins, although their origins are disputed with interpretations varying between rift-related and collisional. We report geochemical, isotopic and geochronological data that define an ~ 1500 km long belt of S-type meta-granites along the Andes of Colombia and Ecuador, which formed during 275-223 Ma. These are accompanied by amphibolitized tholeiitic basaltic dykes that yield concordant zircon U-Pb dates ranging between 240 and 223 Ma. A model is presented which places these rocks within a compressive Permian arc setting that existed during the amalgamation of westernmost Pangaea. Anatexis and mafic intrusion during 240-223 Ma are interpreted to have occurred during continental rifting, which culminated in the formation of oceanic crust and initiated the break-up of western Pangaea. Compression during 275-240 Ma generated small volumes of crustal melting. Rifting during 240-225 Ma was characterized by basaltic underplating, the intrusion of tholeiitic basalts and a peak in crustal melting. Tholeiitic intrusions during 225-216 Ma isotopically resemble depleted mantle and yield no evidence for contamination by continental crust, and we assign this period to the onset of continental drift. Dissected ophiolitic sequences in northern Colombia yield zircon U-Pb dates of 216 Ma. The Permo-Triassic margin of Ecuador and Colombia exhibits close temporal, faunal and geochemical similarities with various crustal blocks that form the basement to parts of Mexico, and thus these may represent the relict conjugate margin to NW Gondwana. The magmatic record of the early disassembly of Pangaea spans ~ 20 Ma (240-216 Ma), and the duration of rifting and rift-drift transition is similar to that documented in Cretaceous-Tertiary rift settings such as the West Iberia-Newfoundland conjugate margins, and the Taupo-Lau-Havre System, where rifting and continental disassembly also occurred over periods lasting ~ 20 Ma.

  7. Atmospheric methane emissions along the western Svalbard margin

    NASA Astrophysics Data System (ADS)

    Pohlman, J.; Greinert, J.; Silyakova, A.; Casso, M.; Ruppel, C. D.; Mienert, J.; Lund Myhre, C.; Bunz, S.

    2014-12-01

    Documented warming of intermediate waters by ~1oC over the past 30 years along the western Svalbard margin has been suggested as a driver of climate-change induced dissociation of marine methane hydrate. However, recent evidence suggests methane release from gas hydrate has been occurring for thousands of years near the upper limit of methane hydrate stability and that seasonal changes in bottom water temperature may be more important than longer-term warming of intermediate waters. Nevertheless, this area has been and remains an active area for researching the physical and climate controls of methane release from the seafloor, yet the amount of methane reaching the atmosphere (the ultimate climate driver) in this region is largely unknown. As part of the MOCA project led by the Norwegian Institute for Air Research (NILU), water column and atmospheric marine boundary layer methane data were collected in June 2014 aboard the R/V Helmer Hanssenduring a collaboration among CAGE at University of Tromsӧ, NILU, GEOMAR, and the USGS. The results provide a continuous record of surface methane concentration and carbon isotope data from continental slope sites near temperature-sensitive hydrate-bearing seeps along the shelf-break and upper slope, the deep-water pockmarked gas-venting Vestnesa Ridge and a shallow water seep area within the Forlandet moraine complex at the shelf. Surface water methane and associated data used to calculate sea-air fluxes were obtained with the cavity ring-down spectrometer-based USGS Gas Analysis System (USGS-GAS). Only the shallow seep site (~90 m water depth) had appreciable methane in surface waters. We conducted an exhaustive survey of this site, mapping the full extent of the surface methane plume. To provide three-dimensional constraints, we acquired 65 vertical dissolved methane profiles to delineate the vertical and horizontal extent of the subsurface methane plume. Using these data, we assess how effectively shallow arctic seeps transmit methane to the atmosphere by determining what fraction of methane in the geochemical plume is emitted to the atmosphere. We also compare the methane mass flux from the seep site to an adjacent section of the Prins Karls Forland coastal margin to constrain the relative importance of different types of high-latitude seafloor methane emissions.

  8. Evolution of magma-poor continental margins from rifting to seafloor spreading.

    PubMed

    Whitmarsh, R B; Manatschal, G; Minshull, T A

    2001-09-13

    The rifting of continents involves faulting (tectonism) and magmatism, which reflect the strain-rate and temperature dependent processes of solid-state deformation and decompression melting within the Earth. Most models of this rifting have treated tectonism and magmatism separately, and few numerical simulations have attempted to include continental break-up and melting, let alone describe how continental rifting evolves into seafloor spreading. Models of this evolution conventionally juxtapose continental and oceanic crust. Here we present observations that support the existence of a zone of exhumed continental mantle, several tens of kilometres wide, between oceanic and continental crust on continental margins where magma-poor rifting has taken place. We present geophysical and geological observations from the west Iberia margin, and geological mapping of margins of the former Tethys ocean now exposed in the Alps. We use these complementary findings to propose a conceptual model that focuses on the final stage of continental extension and break-up, and the creation of a zone of exhumed continental mantle that evolves oceanward into seafloor spreading. We conclude that the evolving stress and thermal fields are constrained by a rising and narrowing ridge of asthenospheric mantle, and that magmatism and rates of extension systematically increase oceanward. PMID:11557977

  9. Seismic-reflection signature of cretaceous continental breakup on the Wilkes Land margin, Antarctica

    USGS Publications Warehouse

    Eittreim, S.L.; Hampton, M.A.; Childs, J. R.

    1985-01-01

    The passive (rifted) continental margin of Wilkes Land, Antarctica, is characterized on seismic reflection records by (i) in the south, a block-faulted sequence of highly stratified continental beds overlain by two distinct unconformities; (ii) a transitional, greatly thinned continental crust overlain by material interpreted to be flood basalt; and (iii) in the north, oceanic crust with a boundary ridge at its edge. The Mohorovic??ic?? discontinuity can be followed across the continent-ocean boundary and shows a progressive thinning of continental crust to a minimum of 2.5 kilometers at its northern edge.

  10. Cretaceous Tertiary convergence and continental collision, Sanandaj Sirjan Zone, western Iran

    NASA Astrophysics Data System (ADS)

    Mohajjel, M.; Fergusson, C. L.; Sahandi, M. R.

    2003-01-01

    The Sanandaj-Sirjan Zone contains the metamorphic core of the Zagros continental collision zone in western Iran. The zone has been subdivided into the following from southwest to northeast: an outer belt of imbricate thrust slices (radiolarite, Bisotun, ophiolite and marginal sub-zones, which consist of Mesozoic deep-marine sediments, shallow-marine carbonates, oceanic crust and volcanic arc, respectively) and an inner complexly deformed sub-zone (late Palaeozoic-Mesozoic passive margin succession). Rifting and sea-floor spreading of Tethys occurred in the Permian to Triassic but in the Sanandaj-Sirjan Zone extension-related successions are mainly of Late Triassic age. Subduction of Tethyan sea floor in the Late Jurassic to Cretaceous produced deformation, metamorphism and unconformities in the marginal and complexly deformed sub-zones. Deformation climaxed in the Late Cretaceous when a major southwest-vergent fold belt formed associated with greenschist facies metamorphism and post-dated by abundant Palaeogene granitic plutons. In the southwest of the zone a Late Cretaceous island arcpassive margin collision occurred with ophiolite emplacement onto the northern Arabian margin similar to that in Oman. Final closure of Tethys was not completed until the Miocene when Central Iran collided with the northeast Arabian margin.

  11. Living Bulimina marginata in the SW Atlantic continental margin: Effect of the Subtropical Shelf Front and South Atlantic Central Water

    NASA Astrophysics Data System (ADS)

    Eichler, Patrcia P. B.; Pimenta, Felipe M.; Eichler, Beatriz B.; Vital, Helenice

    2014-10-01

    The western South Atlantic continental margin, between 27 and 37S, is dominated by three main water masses: cold-fresh Subantarctic Shelf Water (SASW), warm-salty Subtropical Shelf Water (STSW) and Plata Plume Water (PPW). Despite the large seasonal variability of PPW extension along the shelf, an intense and relatively stable temperature-salinity gradient separates the SASW and the STSW forming the Subtropical Shelf Front (STSF) around 32S. This article demonstrates that the distribution of Bulimina marginata, (shelf environment and deep-sea) a species of benthic foraminifera is influenced by the front location and it can be used as a proxy of the STSF in sediment core analysis.

  12. Pleistocene marine ice sheets and ice shelves at the East Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Niessen, Frank; Kuk Hong, Jong; Hegewald, Anne; Matthiessen, Jens; Stein, Rüdiger; Kim, Sookwan; Jensen, Laura; Jokat, Wilfried; Nam, Seung Il

    2014-05-01

    RV "Polarstern" cruise ARK-XIII/3 (2008) and RV "Araon" cruise ARA03B (2012) investigated an area in the Arctic Ocean located between the Chukchi Borderland and the East Siberian Sea (between 165°W and 170°E). Based on swath bathymetry, sediment echosounding, seismic profiling and sediment coring we present evidence that the western Arctic Ocean had a glaciated continental margin during several glacial periods of the Pleistocene (Niessen et al. 2013). At the southern end of the Mendeleev Ridge and on the Chukchi and East Siberian continental slopes ice sheets and ice shelves grounded in up to 1200 m present water depth. We found mega-scale glacial lineations (MSGL) associated with deposition of glaciogenic wedges and debris-flow deposits indicative of sub-glacial erosion and deposition close to the former grounding lines. Glacially lineated areas are associated with large-scale erosion, capped with diamicton and draped by, in places, several metres of pelagic sediments. On the Arlis Plateau, a detailed bathymetric map exhibits several generations of MSGL, which we interpret as relicts of different Pleistocene glaciations. Traces of former grounding line positions suggest that an ice shelf of approximately 900 m in thickness has spread across the Southern Mendeleev Ridge in a north-easterly direction. According to our results, ice sheets of more than one km in thickness continued onto, and likely centered over, the East Siberian Shelf. A preliminary age model suggests that the youngest and shallowest grounding event of an ice sheet should be within Marine Isotope Stage (MIS) 3 and clearly predates the Last Glacial Maximum. The oldest and deepest event predates MIS 6. The youngest grounding event on the Arlis Plateau is tentatively dated to have occurred during MIS 4. These results have important implication for the former distribution of thick ice masses in the Arctic Ocean during the Pleistocene. They are relevant for albedo, ocean-atmosphere heat exchange, moisture supply to and freshwater export from the Arctic Ocean and the formation of submarine permafrost on the East Siberian Shelf. Niessen, F., Hong, J. K. , Hegewald, A. , Matthiessen, J. , Stein, R. , Kim, H. , Kim, S. , Jensen, L. , Jokat, W. , Nam, S. I. and Kang, S. H. (2013) Repeated Pleistocene glaciation of the East Siberian continental margin, Nature Geoscience, 6 (10), pp. 842-846.

  13. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  14. Manganese and copper fluxes from continental margin sediments

    SciTech Connect

    Heggie, D.; Klinkhammer, G.; Cullen, D.

    1987-05-01

    Total dissolvable Cu and Mn have been measured in sea water collected from the continental shelf of the eastern Bering Sea. Copper concentrations of <3 nmole kg/sup -1/ were measured over the shelf break but concentrations increased to >4 nmole kg/sup -1/ inshore of a hydrographic front over the 100 m isobath. Manganese concentrations also were low over the shelf break, <10 nmole kg/sup -1/, and increased systematically to concentrations >10 nmole kg/sup -1/ inshore of the hydrographic front. Depth distributions of Mn at all continental shelf stations showed gradients into the sediments, with concentrations typically >20 nmole kg/sup -1/ in a bottom layer extending about 30 m off the bottom. Benthic Cu and Mn fluxes are indicated by cross-shelf pore water profiles that show interfacial concentrations more than an order of magnitude greater than in bottom water. These data and the results of a model of metal transport across the shelf suggest that Cu and Mn fluxes, estimated at 2 and 18 nmole cm/sup -2/y/sup -1/, respectively, from continental shelf sediments may be one source of these metals to the deep sea.

  15. iSIMM (Integrated Seismic Imaging and Modelling of Margins): Seismic Acquisition on the Faroes Shelf, Hatton Bank and adjacent Continental Margins

    NASA Astrophysics Data System (ADS)

    White, B.; Kusznir, N.; Christie, P.; Roberts, A. M.; Lunnon, Z.; Roberts, A. W.; Hurst, N.; Smith, L.; Parkin, C.; Surendra, A.; Davies, A.

    2002-12-01

    The iSIMM project is using state-of-the art seismic techniques with long-offset and wide-angle data, to image the crust formed on volcanic continental margins in parallel with developing and testing new quantitative models of rifted margin formation, incorporating heterogeneous stretching, the effects of melt generation and emplacement and varying thermal anomalies in the mantle. During June-July 2002, we used RRS Discovery to acquire wide angle and normal incidence seismic data on the Faroes Shelf and adjacent continental margin, Hatton-Rockall Basin, Hatton Bank and the adjacent oceanic crust using OBS and MCS. In August 2002, WesternGeco's Topaz used three single-sensor, Q-Marine streamers, 12km plus two 4km, to overshoot the wide-angle profiles on the Faroes Shelf and adjacent continental margin. In the Faroes region we deployed 85 4-component ocean bottom seismometers (OBS) and 5 vertical arrays along a 350km-long profile extending from the Faroes-Shetland Channel across the Faroes Shelf and continental margin into the oceanic crust of the Norwegian Sea. The entire profile was shot twice. First with a 6,300 cubic inch airgun array towed at 20 m depth and tuned to enhance the initial peak output pressure pulse. Second, with the airguns reconfigured to enhance the low-frequency bubble waveform, producing a source rich in low frequency energy (centred on 10-12 Hz), and with a broad bandwidth. Shots were spaced at either 75 m or 100 m, giving shot repetition rates in excess of 60 secs, thus avoiding contaminating with wrap-round energy from the previous shot. The Q-Marine acquisition used a 48-gun, 10,170 cu. in. airgun array, also tuned to enhance the low-frequency bubble signature, shooting at 50m/20s intervals and recorded on individual sensors for optimal grouping. The streamer configuration provides swath coverage at shorter offsets, while the long offsets record diving waves and wide-angle reflections. Shot-by-shot source signature recording will facilitate the integration of high-quality, long-offset streamer data with 4-component bottom recording on the OBS to allow imaging of the sub-basalt and deep underplated crust in this region. In the Hatton Bank region we deployed 89 4-component OBS and 1 vertical array along a 450 km dip line, running perpendicular to the continental margin from the centre of the Hatton-Rockall Basin across Hatton Bank into the oceanic South Iceland Basin, with two strike lines totalling 240 km length (one on the continental margin and one oceanic). MCS was acquired simultaneously with airgun shooting into the OBS, using the same 6,300 cubic inch airgun array with peak-pulse tuning. Excellent recordings of crustal and mantle arrivals were made to ranges in excess of 150 km. The vertical arrays were deployed to monitor the far-field waveforms, and to test theoretical modelling of the array signature. Gravity and magnetic data was acquired simultaneously with seismic data. The iSIMM project is supported by NERC, WesternGeco, 8 oil companies and DTI.

  16. Manganese flux from continental margin sediments in a transect through the oxygen minimum

    SciTech Connect

    Johnson, K.S. Monterey Bay Aquarium Research Inst., Pacific Grove, CA ); Berelson, W.M.; Iams, H.D.; Kilgore, T.E. ); Coale, K.H.; Coley, T.L.; Elrod, V.A.; Fairey, W.R.; Nowicki, J.L. )

    1992-08-28

    The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest flux occurred in the oxygen minimum zone (at a depth of 600 to 1,000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

  17. Climate changes control offshore crustal structure at South China Sea continental margin

    NASA Astrophysics Data System (ADS)

    Clift, Peter D.; Brune, Sascha; Quinteros, Javier

    2015-06-01

    Rifted continental lithosphere subsides as a consequence of combined crustal thinning and mantle lithosphere cooling yet basins on some continental margins experience anomalous subsidence events that postdate active extension. Deep basins on the northern margin of the South China Sea, notably the Baiyun Sag, show basement subsidence accelerating after ?21 Ma, postdating extension by several million years. We combine geophysical observations and numerical forward modeling to show that loading of the offshore basins by increased sediment flux caused by faster onshore erosion following Early Miocene monsoon intensification is a viable trigger for ductile flow after the cessation of active extension. This illustrates that offshore basin dynamics at continental margins with weak crust can be controlled by onshore surface processes in a newly recognized form of climate-tectonic coupling.

  18. Preface - 'Biogeochemistry-ecosystem interaction on changing continental margins in the Anthropocene'

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Emeis, Kay-Christian; Levin, Lisa A.; Naqvi, Wajih; Roman, Michael

    2015-01-01

    This special issue is a product of Workshop 1 of IMBIZO III held in Goa, India in January 2013 (Bundy et al., 2013). This IMBIZO (a Zulu word for gathering) has been organized by IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) biannually since 2008. It employs a format of three concurrent but interacting workshops designed to synthesize information on topical research areas in marine science. Workshop 1 addressed the issue, "Biogeochemistry-ecosystem interaction in changing continental margins," which belongs to the purview of the Continental Margins Working Group (CMWG), co-sponsored by IMBER and LOICZ (Land-Ocean Interaction in the Coastal Zone). As a way to explore the emerging issues that concern the CMWG, the workshop had attracted 25 talks and 18 posters that explored the following topics: Human impacts on continental margins

  19. Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins

    NASA Astrophysics Data System (ADS)

    Laruelle, G. G.; Drr, H. H.; Lauerwald, R.; Hartmann, J.; Slomp, C. P.; Goossens, N.; Regnier, P. A. G.

    2013-05-01

    Past characterizations of the land-ocean continuum were constructed either from a continental perspective through an analysis of watershed river basin properties (COSCATs: COastal Segmentation and related CATchments) or from an oceanic perspective, through a regionalization of the proximal and distal continental margins (LMEs: large marine ecosystems). Here, we present a global-scale coastal segmentation, composed of three consistent levels, that includes the whole aquatic continuum with its riverine, estuarine and shelf sea components. Our work delineates comprehensive ensembles by harmonizing previous segmentations and typologies in order to retain the most important physical characteristics of both the land and shelf areas. The proposed multi-scale segmentation results in a distribution of global exorheic watersheds, estuaries and continental shelf seas among 45 major zones (MARCATS: MARgins and CATchments Segmentation) and 149 sub-units (COSCATs). Geographic and hydrologic parameters such as the surface area, volume and freshwater residence time are calculated for each coastal unit as well as different hypsometric profiles. Our analysis provides detailed insights into the distributions of coastal and continental shelf areas and how they connect with incoming riverine fluxes. The segmentation is also used to re-evaluate the global estuarine CO2 flux at the air-water interface combining global and regional average emission rates derived from local studies.

  20. The structure of the Alpine distal margin: insights from the proximal margin shortening kinematics during collision, Western Alps

    NASA Astrophysics Data System (ADS)

    Bellahsen, N.; Mouthereau, F.; Lacombe, O.; Jolivet, L.

    2011-12-01

    In mountain belts, along strike variations of inherited passive margin structure can affect the collision dynamics. Particularly, the structure the distal part can potentially drive the collision evolution and thus the proximal part inversion. In most orogens however (as in the Alps for example), the initial structure of the subducted distal margin is largely hidden by subduction- and exhumation-related deformations and metamorphism. In this contribution, the structure of the European distal margin in Western Alps is discussed in the light of the collision kinematics. More precisely, we aim at constraining the structure of the "distal" Dauphinois/Helvetic that might be the western lateral termination of the Valais ocean in Switzerland separating Europe and the Brianconnais block. The Dauphinois/Helvetic zone deformation is characterized and described using several balanced cross-sections. The timing, amount of shortening and exhumation of various External Crystalline Massifs from France to Switzerland (Oisans, Mont Blanc, Aar) are compared. In the Aar and Mont Blanc massifs, the averaged amount of shortening and exhumation during Oligo-Miocene times is around three times higher than in the Oisans massif. The P,T conditions are of higher grade in the Aar and Mont Blanc and the foreland basin (the Oligo-miocene molasse) is more developed. Finally, deformation mechanisms and geometries are significantly different, from brittle-ductile to ductile, from south to north, respectively. We tentatively propose that these differences can be due to an evolution from hyper-extended crust with mantle exhumation in the Northeast (Aar) to an "aborted rift" configuration in the Southwest (Oisans). The presence of a (light) continental crust in the Southwest may have prevented a strong tectonic burying of the proximal margin and promoted its early shortening.

  1. Imaging proto-oceanic crust off the Brazilian Continental Margin

    NASA Astrophysics Data System (ADS)

    Klingelhoefer, F.; Evain, M.; Afilhado, A.; Rigoti, C.; Loureiro, A.; Alves, D.; Leprtre, A.; Moulin, M.; Schnurle, P.; Benabdellouahed, M.; Baltzer, A.; Rabineau, M.; Feld, A.; Viana, A.; Aslanian, D.

    2014-01-01

    During the Sanba (Santos basin seismic transect) experiment in 2010-2011, a 380-km-long combined wide-angle and reflection seismic profile has been acquired using 30 ocean-bottom seismometers, a 4.5 km seismic streamer and a 8900 in.3 airgun array. The Sanba 3 profile crosses the southern flank of the Sao Paulo Plateau, the Sao Paulo Ridge and the easternmost Santos Basin in an east-west direction. Its eastern end is located on undisturbed oceanic crust. Tomographic and forward modelling of the wide-angle seismic data reveals that the sedimentary thickness is variable with only 1-2 km on top of the ridge and thickening to 4-5 km in the basin. Crustal thickness at the ridge is about 18 km and the relative layer thickness and velocity gradients indicate a continental origin of this ridge. The eastern Santos Basin is underlain by crust of only 5 km thickness, characterized by high seismic velocities between 6.20 km s-1 in the upper crust and 7.40 km s-1 in the lower crust. Three hypotheses for the nature of the crust in this region are tested here: (i) thinned continental crust, (ii) serpentinized upper mantle material, (iii) thin oceanic crust. As seismic velocity gradients seem to rule out a continental origin of this region, and clear Moho reflections argue against serpentinized upper mantle, we propose that the crust underlying the easternmost Santos Basin is of oceanic origin. Deviations from normal oceanic crustal velocities in the lower crust (6.70-7.00 km s-1) can be explained by accretion at slow spreading rates leading to the inclusion of serpentinite into the lower crust at the onset of organized seafloor spreading.

  2. Comparative development of the Western United States and southern Kazakhstan, Soviet Union - Two early Paleozoic carbonate passive margins

    SciTech Connect

    Cooke, H.E. ); Taylor, M.E. ); Zhemchuzhnikov, S.V.; Apollonov, M.K.; Ergaliev, G. Kh.; Sargaskaev, Z.S. ); Dubinina, S.V. )

    1991-02-01

    Early Paleozoic passive continental margins of the Western united States and southern Kazakhstan evolved at low latitudes on rifted Precambrian continental crust adjacent to the proto-Pacific Ocean. In the Western United States, early Paleozoic carbonate submarine fans and slides formed on continental slopes in central Nevada. Coeval shoal-water carbonate sediments occurred to the east, in Utah, where they interfingered with siliciclastic sediments and onlapped the craton. In contrast, early Paleozoic carbonate sediments of the Malyi Karatau, southern Kazakhstan, were deposited on isolated microcontinental blocks that developed during Late Proterozoic rifting of the continental crust. Comparison of stratigraphic sections from Nevada and Malyi Karatau indicate a similar upward-shallowing and seaward-prograding evolution. The Hot Creek Range section in Nevada consists of the Upper Cambrian Swarbrick Formation and Tybo Shale, and Upper Cambrian and lowest Ordovician Hales Limestone. These depositional facies include basin plain (about 500 m), carbonate submarine fan and slides (200 m), upperslope (150 m), and platform margin (150 m). The Kyrshabakty and Batyrbay sections in the Malyi Karatau consist of Cambrian and lowest Ordovician rocks of the Shabakty Suite. Stratigraphic sections in both the Western United States and Malyi Karatau record three coeval episodes of sea level lowstands. These lowstands, which the authors interpret to be eustatic, are recognized by times of seaward collapse of large segments of the platform margins and deeper water slopes and by solution breccias and faunal discontinuities in shoal-water platform-interior sites.

  3. Illustrations of the importance of mass wasting in the evolution of continental margins

    SciTech Connect

    Pratson, L.; Ryan, W. ); Twichell, D. )

    1990-05-01

    Side-looking sonar imagery and swath bathymetry from a variety of contemporary continental slopes all display erosional scars and debris aprons, illustrating the importance of mass wasting in the evolution of continental margins. The continental slopes examined include slopes fed directly from the fronts of ice sheets, slopes adjacent to continental shelves that were the sites of glacial outwash, slopes supplied exclusively by fluvial drainage, slopes at carbonate platforms, and slopes on accretionary prisms. Examples are drawn from the Atlantic Ocean, the Gulf of Mexico, and the Mediterranean Sea in both passive and active continental margin settings. The sonar imagery and bathymetry used in this study indicate that continental slopes in different tectonic and climatic environments show similar forms of mass wasting. However, in some cases the dominant mode of erosion and/or the overall degree of mass wasting appears to be distinct to particular sedimentary environments. Timing of both recent and older exhumed erosional surfaces identified in the imagery and in seismic reflection profiles is obtained by ground truth observations using submersibles, towed camera sleds, drilling, and coring. These observations suggest that eustatic fluctuations common to all the margins examined do not explain the range in magnitude and areal density of the observed mass wasting. More localized factors such as lithology, diagenesis, pore fluid conditions, sediment supply rates, and seismic ground motion appear to have a major influence in the evolution of erosional scars and their corresponding unconformities.

  4. Continental margin evolution of the northern Arabian platform in Syria

    SciTech Connect

    Best, J.A.; Barazangi, M. ); Al-Saad, D.; Sawaf, T.; Gebran, A. )

    1993-02-01

    Synthesis of available geological and geophysical data in the Syrian Arab Republic permits a descriptive account of the pre-Cenozoic geologic history of the northern Arabian platform. The northern Arabian platform appears to be a composite plate similar up to that interpreted in the rocks of the Arabian shield. The structural and stratigraphic relationships of the Paleozoic and Mesozoic sedimentary sections in Syria record the transformation of an eastward-facing Gondwana passive margin in the early Paleozoic into a westward-facing Levantine margin in the Mesozoic, at which time the northern platform was closely associated with the creation of the eastern Mediterranean basin. Timing of the margin transformation is inferred from the orientation and thickness variations of Lower Triassic rocks, but the transformation may have initiated as early as the Permian. The diversity and timing of geological features in Syria suggest that the northern Arabian platform did not behave as a rigid plate throughout its geological history. The present-day Palmyride mountain belt, located within the northern Arabian platform in Syria and initiated in the early Mesozoic as a northeast-trending rift nearly perpendicular to the Levantine margin, subsequently was inverted in the Cenozoic by transpression. The location of the rift may be associated with the reactivation of a zone of crustal weakness, i.e., a Proterozoic suture zone previously proposed from modeling of Bouguer gravity data. Thus, the northern and southern parts of the Arabian platform are similar in their respective geologic histories during the Proterozoic and Paleozoic; however, the northern Arabian platform was greatly affected by Mesozoic rifting and the creation of the eastern Mediterranean basin during the Mesozoic. 13 figs.

  5. Cenozoic transtensional to transpressional basin development at the sheared Western Barents Sea - Svalbard Margin

    NASA Astrophysics Data System (ADS)

    Leever, Karen; Faleide, Jan Inge; Gabrielsen, Roy H.

    2010-05-01

    The Western margin of the Barents Sea evolved as a sheared margin in response to early Cenozoic continental breakup and subsequent opening of the Norwegian-Greenland Sea. An Oligocene change in spreading direction led to oblique opening of the Fram Strait between Greenland and Eurasia and ended the transform margin stage. In such a sheared margin setting, sedimentation is strongly controlled by tectonic uplift and subsidence which vary in space and in time. The tectonic evolution of sedimentary basins associated with a sheared margin is determined by (1) the orientation of the margin with respect to the relative displacement of the plates, as well as (2) changes in spreading direction and (3) earlier tectonic events affecting the crustal thickness and shaping the basement grain. The Western Barents -- Svalbard margin may be subdivided in different segments based on its geometry. South of Bjrnya, the margin forms a releasing bend with right stepping dextral shear zones and is characterized by transtension and pull-apart basin formation (Troms and Srvestsnaget basins and Vestbakken volcanic province). Transpression was dominant in the restraining bend to the north, leading to the formation of the Paleocene-Eocene West Spitsbergen fold and thrust belt and its associated 'foreland basin'. Before it evolved into a sheared margin, the southern part of the margin experienced a series of post-Caledonian rift episodes which caused crustal thinning and formed the basement grain of major horst and graben structures trending in a generally NE-SW to N-S direction. The northern part, in contrast, has been largely unaffected by rifting since Carboniferous time. Besides the two main stages in the first order plate tectonic model for the region, recent refined models (e.g. Gaina et al., 2009) propose local complexities due to minor changes in the spreading direction. The margin segments are thus characterized by distinct structural and magmatic styles, expressed in the geometry and kinematics of the Cenozoic sedimentary basins along the margin. Not only the style, also the age of the basin forming events changes along strike due to the factors mentioned above: different areas are in the same tectonic setting at different points in time. Interpretation of seismic reflection and refraction data combined with insight from analogue and numerical modelling allowed us to highlight the differences and similarities in the evolution of the sedimentary basins in the different margin segments. Reference: Gaina, C., Gernigon, L. and Ball, P., 2009. Palaeocene-Recent plate boundaries in the NE Atlantic and the formation of the Jan Mayen microcontinent. Journal of the Geological Society, 166: 601-616.

  6. Constraining Lithosphere Deformation Modes during Continental Breakup for the Iberia-Newfoundland Conjugate Margins

    NASA Astrophysics Data System (ADS)

    Jeanniot, L.; Kusznir, N. J.; Mohn, G.; Manatschal, G.

    2014-12-01

    How the lithosphere and asthenosphere deforms during continental rifting leading to breakup and sea-floor spreading initiation is poorly understood. Observations at present-day and fossil analogue rifted margins show a complex OCT architecture which cannot be explained by a single simplistic lithosphere deformation modes. This OCT complexity includes hyper-extended continental crust and lithosphere, detachments faults, exhumed mantle, continental slivers and scattered embryonic oceanic crust. We use a coupled kinematic-dynamic model of lithosphere and asthenosphere deformation to determine the sequence of lithosphere deformation modes leading to continental breakup for Iberia-Newfoundland conjugate margin profiles. We quantitatively calibrate the models using observed present-day water loaded subsidence and crustal thickness, together with subsidence history and the age of melt generation. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FE-Margin), and used to advect lithosphere and asthenosphere temperature and material. FE-Margin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling below. Buoyancy enhanced upwelling (Braun et al. 2000) is also kinematically included. Melt generation by decompressional melting is predicted using the methodology of Katz et al., 2003. The extension magnitudes used in the lithosphere deformation models are taken from Sutra et al (2013). The best fit calibrated models of lithosphere deformation evolution for the Iberia-Newfoundland conjugate margins require (i) an initial broad region of lithosphere deformation and passive upwelling, (ii) lateral migration of deformation, (iii) an increase in extension rate with time, (iv) focussing of deformation and (v) buoyancy induced upwelling. The preferred calibrated models predict faster extension rates and earlier continental crustal rupture and mantle exhumation for the Iberia Abyssal Plain - Flemish Pass conjugate margin profile than for the Galicia Bank - Flemish Cap profile. The predicted N-S differences in deformation mode evolution give insights into the 3D evolution of Iberia-Newfound margin breakup.

  7. Geoacoustic model at the DH-1 long-core site in the Korean continental margin of the East Sea

    NASA Astrophysics Data System (ADS)

    Ryang, Woo Hun; Kim, Seong Pil

    2014-05-01

    A long core of 23.6 m was acquired at the DH-1 site (3736.651'N and 12919.709'E) in the Korean continental margin of the western East Sea. The core site is located near the Donghae City and the water depth is 357.8 m deep. The long-core sediment was recovered using the Portable Remotely Operated Drill (PROD), a fully contained drilling system, remotely operated at the seafloor. The recovered core sediments were analyzed for physical, sedimentological, and geoacoustic properties mostly at 10~30 cm intervals. Based on the long-core data with subbottom and air-gun profiles at the DH-1 core site, a geoacoustic model was firstly reconstructed including water mass. The geoacoustic model comprises 7 geoacoustic units of the core sediments, based on the measurements of 125 P-wave velocities and 121 attenuations. The P-wave speed was compensated to in situ depth below the sea floor using the Hamilton method. The geoacoustic model DH-1 probably contributes for reconstruction of geoacoustic models reflecting vertical and lateral variability of acoustic properties in the Korean continental margin of the western East Sea. Keywords: long core, geoacoustic model, East Sea, continental margin, P-wave speed Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0025733) and by the Ministry of Knowledge Economy through the grant of Marine Geology and Geophysical Mapping Project (GP2010-013).

  8. Glacial erosion, transport, and deposition on the rifted continental margin of Dronning Maud Land

    NASA Astrophysics Data System (ADS)

    Huang, Xiaoxia; Jokat, Wilfried

    2015-04-01

    The seismic refraction data suggest that the continental margin off Dronning Maud Land had complex and long-lived rift history, which were formed during break-up of Gondwana. The relief of the Dronning Maud Land by middle and late Mesozoic tectonic activity had a strong spatial control on both early fluvial and subsequent glacial erosion. In the later, ice streams have formed along pre-existing tectonic grabens and fluvial valleys and played significant role in transporting sediments. The existing topography determines where ice grows, flows, and erodes as well as how sediment has been deposited. The East Antarctic Ice sheet is moist erosive near its margins, where high driving forces, flow velocities and basal pressure gradients combine to create distinct glacial geomorphology. However, Our multichannel seismic reflection data and marine records demonstrate lack of glacial sediments and severe glacial erosions on the Dronning Maud Land continental margin. We proposed that the continuous uplift of Dronning Maud Land had acted as barrier, which blocked the sediments to be transported further to the continental margin and deep sea since the Middle and Late Mesozoic. A series of glacial erosional and sedimentary features will be reported based on seismic reflection data from several surveys to understand the sedimentation process and geomorphology of the glaciated Dronning Maud Land continental margin.

  9. Localized Deformation along an Inverted Rifted Margin: Example of the Northern Ligurian Margin, Western Mediterranean

    NASA Astrophysics Data System (ADS)

    SAGE, F.; Beslier, M.; Mercier De Lepinay, B. F.; Bthoux, N.; Gaullier, V.; Larroque, C.; Corradi, N.; Schenini, L.; Dessa, J.; Bigot, A.; Migeon, S.; Ruiz-Constn, A.

    2013-12-01

    Along rifted margins, continental edges are heterogeneous systems that juxtapose lithospheres with different nature, mechanical behavior and structural inheritance. In this study, we focus on the northern Ligurian margin to examine how such complex systems might deform when they are submitted to a compressive stress field. The northern Ligurian margin, of Oligo-Miocene age, has been undergoing contraction over at least the past ~ 6 Ma. Active thrust faults and folds responsible for the regional uplift of the continental edge have previously been identified below the margin. Although seismicity extends as far as the axis of the basin, no recent or active crustal compressional structure has been identified so far in the oceanic domain. We used new 12-channel high-resolution seismic data (FABLES cruise, 2012) and other seismic reflexion lines from the last decades to image the sedimentary cover in the Ligurian oceanic basin, down to the bottom of the Messinian salt layer ~ 3 km below the seafloor. Because the Messinian event is well dated over the Mediterranean (5.96-5.32 Ma) and well identified in the seismic data, it forms a clear marker characterizing the recent deformation related to both salt and crustal tectonics. Noticeable deformation within the oceanic domain is restricted to large, SW-NE elongated salt walls located 10 to 40 km from the margin toe, over a 70-km length. The salt walls have a specific structure and arrangement that cannot result from salt tectonics only. We thus interpret them as resulting from combined deep-seated crustal and thin-skinned deformations. However, although the salt walls are well expressed in the seafloor morphology, their seismic images do not reveal any significant vertical throw across their trace, and they gradually disappear toward the SW. We thus interpret the salt walls as strike-slip structures with possibly very moderate compression. Overall, the post-Messinian deformation taken along these features is likely moderate as well. Thus, most of the contractional deformation would be focused along the margin since ~5 Ma. The synchronicity of the crustal deformation in the oceanic and the continental domains supports the idea that the lower deformation rates observed within the deep basin are related to somewhat different mechanical behaviors within the continental margin and the adjacent oceanic domain, rather than resulting from a recent basinward propagation of the deformation. Thermo-mechanical models suggest that mainly two factors could control the focused deformation along the margin: (1) the locus of highest topographic gradient of the main crustal interfaces, (2) the thermal contrast between the cooling subsiding oceanic domain and the warming uplifting margin. According to these models, the continental versus oceanic nature of the lithospheres would be of second order in the localization of the deformation.

  10. Rift basins in western margin of India and their hydrocarbon prospects with special reference to Kutch basin

    SciTech Connect

    Biswas, S.K.

    1982-10-01

    The western continental margin of India can be classed as a divergent or passive margin. The western continental shelf is an extensive carbonate bank (Bombay offshore basin) passing into clastic sediments on the north and south. Three craton-margin embayed basins-Kutch, Cambay, and Narmada- in the northern part of the shelf, are filled predominantly with clastic sediments. These basins occupy grabens bounded by faults diverging seaward. The grabens were formed by three rift systems along major Precambrian tectonic trends. The rifting developed sequentially from north to south around the Saurashtra horst. Kutch basin was formed in the Early Jurassic, followed by Cambay basin in Early Cretaceous time, and the Narmada in the Late Cretaceous. It appears that these rifting events occurred at successive stages during the northward migration of the Indian plate after its break from Gondwanaland in Late Triassic or Early Jurassic. It is inferred that these rift basins opened up successively as a result of the counterclockwise drift of the Indian craton. Bombay offshore and Cambay are two major oil-producing basins in the western margin. These basins are characterized by high geothermal gradients attributed to the shallowness of the mantle in this region. Oil has not been found in KUtch basin, which is mainly an onshore Mesozoic basin. The basin basin depocenter shifted offshore at the northwestern part of the continental shelf where the shelf is wide.

  11. Organic geochemistry of continental margin and deep ocean sediments

    SciTech Connect

    Whelan, J.K.; Hunt, J.M.; Eglinton, T.; Dickinson, P.; Johnson, C.; Buxton, L.; Tarafa, M.E.

    1990-08-01

    The objective of this research continues to be the understanding of the complex processes of fossil fuel formation and migration. DOE funded research to date has focused on case histories'' of down-hole well profiles of light hydrocarbons, pyrograms, pyrolysis-GC and -GCMS parameters, and biomarker data from wells in the Louisiana and Texas Gulf Coasts the Alaskan North Slope. In the case of the Alaskan North Slope, geological data and one-dimensional maturation modeling have been integrated in order to better constrain possible source rocks, timing, and migration routes for oil and gas generation and expulsion processes.This period, biomarker analyses and organic petrographic analyses were completed for the Ikpikpuk well. In the case of the Gulf Coast, we have obtained a one-dimensional maturation model of the Cost B-1 well in E. Cameron field of the Louisiana Gulf Coast. The completed E. Cameron data set adds to the enigma of the Gulf Coast oils found on the continental shelf of Louisiana. If significant quantities of the oil are coming from relatively organic lean Tertiary rocks, then non-conventional'' expulsion and migration mechanisms, such as gas dissolved in oil must be invoked to explain the Gulf Coast oils reservoired on the Louisiana continental shelf. We are designing and starting to assemble a hydrous pyrolysis apparatus to follow, the laboratory, rates of generation and expulsion of sediment gases. Initiation of some new research to examine {delta}{sup 13}C of individual compounds from pyrolysis is also described. We are beginning to examine both the laboratory and field data from the Gulf Coast in the context of a Global Basin Research Network (GBRN). The purpose is to better understand subsurface fluid flow processes over geologic time in sedimentary basins and their relation to resource accumulation (i.e., petroleum and metal ores). 58 refs.

  12. Convergent tectonics and coastal upwelling: a history of the Peru continental margin ( Pacific).

    USGS Publications Warehouse

    Von Huene, R.; Suess, E.; Emeis, K.C.

    1987-01-01

    Late in 1986, scientists on the ODP drillship JOIDES Resolution confirmed that the upper slope of the Peruvian margin consists of continental crust whereas the lower slope comprises an accretionary complex. An intricate history of horizontal and vertical movements can be detected, and the locations of ancient centers of upwelling appear to have varied, partly due to tectonic movements of the margin. In this review of Leg 112, the 3 scientific leaders on this cruise discuss their results. -from Journal Editor

  13. Extension on rifted continental margins: Observations vs. models.

    NASA Astrophysics Data System (ADS)

    Skogseid, Jakob

    2014-05-01

    Mapping the signature of extensional deformation on rifted margins is often hampered by thick sedimentary or volcanic successions, or because salt tectonics makes sub-salt seismic imaging challenging. Over the past 20 years the literature is witnessing that lack of mapable faults have resulted in a variety of numerical models based on the assumption that the upper crust takes little or no extensional thinning, while the observed reduction of crustal thickness is taken up in the middle and lower crust, as well as in the mantle. In this presentation two case studies are used to highlight the difference that 3D seismic data may have on our understanding. The small patches of 3D resolution data allow us to get a glance of the 'real' signature of extensional faulting, which by analogy can be extrapolate from one margin segment to the next. In the South Atlantic salt tectonics represents a major problem for sub-salt imaging. The conjugate margins of Brazil and Angola are, however, characterized by pronounced crustal thinning as documented by crustal scale 2D reflection and refraction data. Off Angola the 3D 'reality' demonstrates that upper crustal extension by faulting is comparable to the full crustal, as well as lithospheric thinning as derived from refraction data and basin subsidence analysis. The mapped faults are listric low angle faults that seem to detach at mid crustal levels. 2D seismic has in the past been interpreted to indicate that almost no extensional faulting can be mapped towards the base of the so-called 'sag basin'. The whole concept of the 'sag basin', often ascribed to as crustal thinning without upper crustal deformation, is in fact related to this 'lack of observation', and furthermore, have caused the making of different types of dynamic models attempting to account for this. In the NE Atlantic significant Paleocene extensional faulting is locally seen adjacent to the 50 to more than 200 km wide volcanic cover on each side of the breakup axis. The associated amount of lateral motion on these, mainly listric, normal faults represents several tens of km. These observations contrast with the general lack of observed faults along volcanic margins due to the overall problem with sub-basalt imaging. A variety of models with respect to mode and duration of extension, including narrow and fast breakup, melt generation by small scale convection, and different modes of mantle flow have been suggested. The interesting aspect is that it is all based on features we can't see. Both study areas clearly points towards the importance of improved seismic imaging, a need for revised understanding of strain rates and strain partitioning during rift development, and the necessity of moving from 2D cross section modeling to more realistic 3D spatial distribution of rift elements and subsequent break-up processes. One important aspect is that both volcanic and non-volcanic margins are rifted margins formed by a protracted rift development.

  14. Joint geophysical and petrological models for the lithosphere structure of the Antarctic Peninsula continental margin

    NASA Astrophysics Data System (ADS)

    Yegorova, Tamara; Bakhmutov, Vladimir; Janik, Tomasz; Grad, Marek

    2011-01-01

    The Antarctic Peninsula (AP) is a composite magmatic arc terrane formed at the Pacific margin of Gondwana. Through the late Mesozoic and Cenozoic subduction has stopped progressively from southwest to northeast as a result of a series of ridge trench collisions. Subduction may be active today in the northern part of the AP adjacent to the South Shetland Islands. The subduction system is confined by the Shackleton and Hero fracture zones. The magmatic arc of the AP continental margin is marked by high-amplitude gravity and magnetic anomaly belts reaching highest amplitudes in the region of the South Shetland Islands and trench. The sources for these anomalies are highly magnetic and dense batholiths of mafic bulk composition, which were intruded in the Cretaceous, due to partial melting of upper-mantle and lower-crustal rocks. 2-D gravity and magnetic models provide new insights into crustal and upper-mantle structure of the active and passive margin segments of the northern AP. Our models incorporate seismic refraction constraints and physical property data. This enables us to better constrain both Moho geometry and petrological interpretations in the crust and upper mantle. Model along the DSS-12 profile crosses the AP margin near the Anvers Island and shows typical features of a passive continental margin. The second model along the DSS-17 profile extends from the Drake Passage through the South Shetland Trench/Islands system and Bransfield Strait to the AP and indicates an active continental margin linked to slow subduction and on-going continental rifting in the backarc region. Continental rifting beneath the Bransfield Strait is associated with an upward of hot upper mantle rocks and with extensive magmatic underplating.

  15. Block glides offshore Newport Beach, Southern California continental margin

    SciTech Connect

    Greene, H.G.; Clarke, S.H. Jr.; Kennedy, M.P.

    1988-01-01

    The continental slope offshore Newport Beach, California, is characterized by a relatively gentle (approximately 1/sup 0/) grade and is dissected by numerous channels and canyons, of which the most conspicuous is Newport Canyon. An unusual series of block-glide landslides have developed on this lope adjacent to many of these channels. Locally, secondary channels that develop along pull-apart fractures between the slide blocks may service as conduits for downslope sediment movement. A detailed seismic-reflection survey of the area shows that the slope is underlain by soft water-saturated unstable sediment of Quaternary age. The block-glides lie wholly within this sediment; displaced blocks appear to have moved only a short distance downslope and are preserved as intact masses that exhibit downward increasing internal deformation. This deformation reaches a maximum near the front of the displaced mass and in basal beds nearest the slip surface. The morphology of the blocks and their intervening channellike erosional scarps is similar to that of glacial blocks and their associated bergschrunds. The formation of new scarps and the widening of channels formed as pull-aparts by the ongoing process of block movement may contribute to headward erosion and widening of Newport Canyon and its tributaries. Slope failure might be greatly enhanced by strong ground motion associated with nearby earthquakes. The authors suspect that renewed movement occurs on these blocks during major seismic events on the nearby Newport-Inglewood fault (e.g., 1933 M/sub L/ 6.3 event).

  16. Salt diapirs bordering the continental margin of northern kenya and southern somalia.

    PubMed

    Rabinowitz, P D; Coffin, M F; Falvey, D

    1982-02-01

    The presence of newly discovered diapirs of presumed salt origin is documented for the continental margin of northeastern Kenya and southeastern Somalia. These structures are probably a manifestation of a significant thickness of Lower Jurassic evaporites deposited during the rift and early-drift stages of the separation of Madagascar from the African continent. PMID:17842401

  17. Regional tectonic framework, structure and evolution of the western marginal basins of India

    NASA Astrophysics Data System (ADS)

    Biswas, S. K.

    1987-04-01

    The Kutch-Saurashtra, Cambay and Narmada basins are pericontinental rift basins in the western margin of the Indian craton. These basins were formed by rifting along Precambrian tectonic trends. Interplay of three major Precambrian tectonic trends of western India, Dharwar (NNW-SSE), Aravalli-Delhi (NE-SW) and Satpura (ENE-WSW), controlled the tectonic style of the basins. The geological history of the basins indicates that these basins were formed by sequential reactivation of primordial faults. The Kutch basin opened up first in the Early Jurassic (rifting was initiated in Late Triassic) along the Delhi trend followed by the Cambay basin in the Early Cretaceous along the Dharwar trend and the Narmada basin in Late Cretaceous time along the Satpura trend. The evolution of the basins took place in four stages. These stages are synchronous with the important events in the evolution of the Indian sub-continentits breakup from Gondwanaland in the Late Triassic-Early Jurassic, its northward drifting during the Jurassic-Cretaceous and collision with the Asian continent in the Early Tertiary. The most important tectonic events occurred in Late Cretaceous time. The present style of the continental margins of India evolved during Early Tertiary time. The Saurashtra arch, the extension of the Aravalli Range across the western continental shelf, subsided along the eastern margin fault of the Cambay basin during the Early Cretaceous. It formed an extensive depositional platform continuous with the Kutch shelf, for the accumulation of thick deltaic sediments. A part of the Saurashtra arch was uplifted as a horst during the main tectonic phase in the Late Cretaceous. The present high thermal regime of the Cambay-Bombay High region is suggestive of a renewed rifting phase.

  18. Bending and slicing of eastern Gondwana's continental margin: late Paleozoic to early Mesozoic reconstruction

    NASA Astrophysics Data System (ADS)

    Rosenbaum, G.; Li, P.; Babaahmadi, A.; Shaanan, U.; Mochales, T.

    2012-12-01

    The SW Pacific is a classic example of "ribbon tectonics" whereby continental fragments were either accreted to the continental margins by subduction processes or separated from it by backarc extension. While the more recent tectonic processes (e.g. the latest Mesozoic and Cenozoic opening of the Tasman Sea), are relatively well constrained, the earlier tectonic history of eastern Gondwana is poorly understood. Here we present results from onshore study in eastern Australia, showing that bending and fragmentation of eastern Gondwana's continental margin in a backarc extensional environment commenced at ~300 Ma, giving rise to large vertical-axis block rotations and oroclinal bending. The subduction zone has subsequently migrated eastward, in a series of episodes of trench rollback and backarc extension, alternating with episodes of contractional and transpressional tectonism. We attribute this behavior to switches between trench rollback and trench advance, controlled by the heterogeneous nature of the subducted oceanic lithosphere.

  19. Wintertime pytoplankton bloom in the Subarctic Pacific supportedby continental margin iron

    SciTech Connect

    Lam, Phoebe J.; Bishop, James K.B.; Henning, Cara C.; Marcus,Matthew A.; Waychunas, Glenn A.; Fung, Inez

    2004-06-08

    Heightened biological activity was observed in February 1996in the high-nutrient low-chlorophyll (HNLC) subarctic North PacificOcean, a region that is thought to beiron-limited. Here we provideevidence supporting the hypothesis that Ocean Station Papa (OSP) in thesubarctic Pacific received a lateral supply of particulate iron from thecontinental margin off the Aleutian Islands in the winter, coincidentwith the observed biological bloom. Synchrotron X-ray analysis was usedto describe the physical form, chemistry, and depth distributions of ironin size fractionated particulate matter samples. The analysis revealsthat discrete micron-sized iron-rich hotspots are ubiquitous in the upper200m at OSP, more than 900km from the closest coast. The specifics of thechemistry and depth profiles of the Fe hot spots trace them to thecontinental margins. We thus hypothesize that iron hotspots are a markerfor the delivery of iron from the continental margin. We confirm thedelivery of continental margin iron to the open ocean using an oceangeneral circulation model with an iron-like tracer source at thecontinental margin. We suggest that iron from the continental marginstimulated a wintertime phytoplankton bloom, partially relieving the HNLCcondition.

  20. Data based 3D modelling of the southwest African continental margin

    NASA Astrophysics Data System (ADS)

    Freymark, J.; Sippel, J.; Scheck-Wenderoth, M.; Gtze, H.-J.; Reichert, C.

    2012-04-01

    The volcanic passive continental margin of southwest Africa was formed in consequence of rifting and continental break-up of Gondwana in the Late Mesozoic. Our study focusses on an area extending from the Walvis Ridge in the north to the Agulhas Falkland Fracture Zone in the south including some important petroliferous sedimentary basins such as the Walvis Basin, the Luderitz Basin, and the Orange Basin. Due to decades of industrial exploration and scientific research, some of these areas reveal a large pool of structural and geophysical data. Thus, much is known about the individual tectonic and depositional histories of several subdomains of the area. The goal of our study is to understand the margin in its entirety. We present a 3D model of the present-day configuration of the southwest African continental margin. This model integrates well information, seismic reflection and refraction data, a previously published 3D structural model (Maystrenko et al., 2011), as well as freely available global data sets on the crustal structure (e.g. crust2.0 of Bassin, Laske & Masters, 2000). To extrapolate local information on crustal thickness (respectively the depth of the Moho) across the whole margin, we perform 3D gravity modelling using the software IGMAS+ (Gtze & Schmidt, 2010; Schmidt et al., 2011). As parts of the first results, we show margin-wide depth and thickness distributions of a Palaeozoic to Cenozoic sedimentary layer and a Paleoproterozoic to Mesozoic crystalline crustal layer.

  1. Continental margin large-scale instability controlling the flank sliding of Etna volcano

    NASA Astrophysics Data System (ADS)

    Chiocci, F. L.; Coltelli, M.; Bosman, A.; Cavallaro, D.

    2011-05-01

    Etna volcano is affected by a downward sliding of its eastern flank, as rapid as a few cm/year, whose nature is highly debated. Recently collected marine geological and geophysical data allows a detailed image of the morphostructural setting of the continental margin facing the volcano. Here, a large bulge offsets the margin that is deeply affected by widespread semicircular steps, interpreted as evidence of large-scale gravitational instability. Such features permeate the whole margin and extend inshore to the volcano sector where the larger ground deformations are measured. Both submarine instability and subaerial flank sliding are bounded by two regional tectonic lineaments interpreted as weakness lines. These cross the coastline to accommodate the basinward movement of this large sector of the continental margin topped by the Etna volcanic pile. The new data allows re-interpreting the tectonic setting of the coastal belt and proposing a novel structural model, highlighting the active role of the continental margin instability to drive the seaward sliding of the volcano's eastern flank. This model may suggest why a very active basaltic volcano has so unusually developed in front of an active thrust belt.

  2. Erosion and tectonics at the margins of continental plateaus

    NASA Technical Reports Server (NTRS)

    Masek, Jeffrey G.; Isacks, Bryan L.; Gubbels, Timothy L.; Fielding, Eric J.

    1994-01-01

    We hypothesize that the steep frontal slope and high peaks of the Beni region and Himalayan front largely reflect the high orographic precipitation and high erosion rates occurring in these regions and that the more gentle topography of the semiarid Pilcomayo region reflects a tectonic landform only slightly modified by erosion. We propose that orographic precipitation impinging on a plateau margin will generally tend to drop moisture low on the slope, eroding back the plateau while enhancing or maintaining the steep long-wavelength slope. A numerical model coupling orographic precipitation, erosion, and tectonic uplift demonstrates the plausibility of this hypothesis. The erosional efflux in both the Beni and Nepal Himalaya have been considerable, and simple mass balance calculations for the Himalaya suggest that during the Neogene, the erosional mass efflux has generally outpaced the tectonic mass influx. This contrasts with the apparent prior domination of tectonic influx and may reflect a decrease in the rate of tectonic addition during the same period, and/or increased late Cenozoic erosion rates.

  3. Evolution of continental slope gullies on the northern california margin

    USGS Publications Warehouse

    Spinelli, G.A.; Field, M.E.

    2001-01-01

    A series of subparallel, downslope-trending gullies on the northern California continental slope is revealed on high-resolution seismic reflection profiles imaging the uppermost 50 m of sediment. The gullies are typically 100 m wide and have 1 to 3 m of relief. They extend for 10 to 15 km down the slope and merge into larger channels that feed the Trinity Canyon. In the lower half of the 50 m stratigraphic section, the gullies increase in both relief and number up section, to maxima at a surface 5 to 10 m below the last glacial maximum lowstand surface. Gully relief increased as interfluves aggraded more rapidly than thalwegs. Erosion is not evident in the gully bottoms, therefore gully growth was probably due to reduced sediment deposition within the gullies relative to that on interfluves. As the gullies increased in relief, their heads extended upslope toward the shelfbreak. At all times, a minimum of 10 km of non-gullied upper slope and shelf stretched between the heads of the gullies and the paleo-shoreline; the gullies did not connect with a subaerial drainage network at any time. Gully growth occurred when the gully heads were in relatively shallow water (??? 200 m paleo-water depth) and were closest to potential sediment sources. We suggest that prior to the last glacial maximum, the Mad River, then within 10 km of the gully heads, supplied sediment to the upper slope, which fed downslope-eroding sediment flows. These flows removed sediment from nearly parallel gullies at a rate slightly slower than sediment accumulation from the Eel River, 40 km to the south. The process or processes responsible for gully growth and maintenance prior to the last glacial maximum effectively ceased following the lowstand, when sea level rose and gully heads lay in deeper water (??? 300 m water depth), farther from potential sediment sources. During sea-level highstand, the Mad River is separated from the gully heads by a shelf 30 km wide and no longer feeds sediment flows down the gullies, which fill with sediment from the distal Eel River. Approximately one-half of the subsurface gullies have no expression on the seafloor, because they have completely filled with sediment following the last glacial maximum lowstand of sea level. Copyright ?? 2001, SEPM (Society for Sedimentary Geology).

  4. Trophic state of sediments from two deep continental margins off Iberia: a biomimetic approach

    NASA Astrophysics Data System (ADS)

    Dell'Anno, A.; Pusceddu, A.; Corinaldesi, C.; Canals, M.; Heussner, S.; Thomsen, L.; Danovaro, R.

    2012-12-01

    The trophic state of benthic deep-sea ecosystems can greatly influence key ecological processes (e.g. biomass production and nutrient cycling). Thus, assessing the trophic state of the sediment at different spatial and temporal scales is crucial for a better understanding of deep-sea ecosystem functioning. Here, using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools, we assess the bioavailability of organic detritus and its nutritional value in the uppermost layer of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when higher primary production processes occur in surface waters, than in summer and autumn. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. Overall our findings indicate that deep-sea sediments are characterized by relatively high amounts of bioavailable organic matter. We suggest that the interactions between biological-related processes in surface waters and particle transport and deposition dynamics can play a crucial role in shaping the quantity and distribution of bioavailable organic detritus and its nutritional value along deep continental margins.

  5. Sequence stratigraphy and continental margin development of the northwestern shelf of the South China Sea

    SciTech Connect

    Chen, P.P.H. ); Zhi Yuong Chen; Qi Min Zhang )

    1993-05-01

    Based on the sequence stratigraphic analyses of the Tertiary in the northwestern continental margin of the South China Sea, this paper summarizes the regional tectonics and their influences on the basin developments and discusses the systems tract distributions through the continental margin growth. The study area is underlain by two Tertiary basins separated by a major basin boundary fault across which two distinctly different basin structural styles developed. The Qiongdongnan basin shows characteristic rift structures and is closely related to the opening of the South China Sea. The Yinggehai basin is filled with thick Neogene monoclines overlying basement without apparent rift structures. The Yinggehai's genesis has been linked to the tectonism along the Red River suture zone. The margin development is characterized by depositional environments of sediment influx constantly exceeding accommodation space. Under these environments, the highstand deltas frequently developed near shelf edges, where vertically stacked shallow water sands of both highstand deltas and lowstand wedges/deltas could produce favorable exploration targets. High rates of sedimentation in the study area allow the identification of fourth-order cyclicity in the Quaternary. Regional sequence stratigraphic correlations suggest that many sequence boundaries appear to be synchronous, but not all boundaries exist in all basins along the eastern and southern continental margins of mainland China. The margin evolved through the repeated development of lowstand fans, lowstand wedges, transgressive systems tracts, and highstand deltas. Prior to the Pliocene, the shelf was sourced both from Vietnam and Hainan Island and, as a result, two shelf margins developed. The southwestern margin stopped growing in the late Miocene, and the northern margin continued to prograde with possible additional sediment inputs through the Red River system in the Quaternary. 29 refs., 22 figs.

  6. Trophic state of benthic deep-sea ecosystems from two different continental margins off Iberia

    NASA Astrophysics Data System (ADS)

    Dell'Anno, A.; Pusceddu, A.; Corinaldesi, C.; Canals, M.; Heussner, S.; Thomsen, L.; Danovaro, R.

    2013-05-01

    The bioavailability of organic matter in benthic deep-sea ecosystems, commonly used to define their trophic state, can greatly influence key ecological processes such as biomass production and nutrient cycling. Here, we assess the trophic state of deep-sea sediments from open slopes and canyons of the Catalan (NW Mediterranean) and Portuguese (NE Atlantic) continental margins, offshore east and west Iberia, respectively, by using a biomimetic approach based on enzymatic digestion of protein and carbohydrate pools. Patterns of sediment trophic state were analyzed in relation to increasing water depth, including repeated samplings over a 3 yr period in the Catalan margin. Two out of the three sampling periods occurred a few months after dense shelf water cascading events. The benthic deep-sea ecosystems investigated in this study were characterized by high amounts of bioavailable organic matter when compared to other deep-sea sediments. Bioavailable organic matter and its nutritional value were significantly higher in the Portuguese margin than in the Catalan margin, thus reflecting differences in primary productivity of surface waters reported for the two regions. Similarly, sediments of the Catalan margin were characterized by significantly higher food quantity and quality in spring, when the phytoplankton bloom occurs in surface waters, than in summer and autumn. Differences in the benthic trophic state of canyons against open slopes were more evident in the Portuguese than in the Catalan margin. In both continental margins, bioavailable organic C concentrations did not vary or increase with increasing water depth. Overall, our findings suggest that the intensity of primary production processes along with the lateral transfer of organic particles, even amplified by episodic events, can have a role in controlling the quantity and distribution of bioavailable organic detritus and its nutritional value along these continental margin ecosystems.

  7. The continent-ocean transition of the rifted South China continental margin

    NASA Astrophysics Data System (ADS)

    Cameselle, Alejandra L.; Ranero, César R.; Franke, Dieter; Barckhausen, Udo

    2014-05-01

    The continent to ocean transition (COT) architecture of rifted margins represents a key aspect in the study of the variability of different rifting systems and thus, to understand lithospheric extension and final break-up processes. We used 2250 km of reprocessed multichannel seismic data along 4 regional lines and magnetic data acquired across the NW South China continental margin to investigate a previously poorly defined COT. The along-strike structure of the NW subbasin of the South China Sea presents different amounts of extension allowing the study of conjugate pairs of continental margins and their COT in a relative small region. The time-migrated seismic sections allow us to interpreted clear continental and oceanic domains from differences in internal reflectivity, faulting style, fault-block geometry, the seismic character of the top of the basement, the geometry of sediment deposits, and Moho reflections. The continental domain is characterized by arrays of normal faults and associated tilted blocks overlaid by syn-rift sedimentary units. The Moho is imaged as sub-horizontal reflections that define a fairly continuous boundary typically at 8-10 s TWT. Estimation of the thickness of the continental crust using 6 km/s average velocity indicates a ~22 km-thick continental crust under the uppermost slope thinning abruptly to ~9-6 km under the lower slope. The oceanic crust has a comparatively highly reflective top of basement, little-faulting, not discernible syn-tectonic strata, and fairly constant thickness (4-8 km) over tens of km distance defined by usually clear Moho reflections. The COT can be very well defined based on MSC images and occurs across a ~5-10 km narrow zone. Rifting in the NW subbasin resulted in asymmetric conjugate margins. Arrays of tilted fault blocks covered by abundant syn-rift sediment are displayed across the northwestern South China continental margin, whereas the conjugate Macclesfield Bank margin shows abrupt thinning and little faulting. Seismic profiles also show a clear change in the tectonic structure of the margin from NE to SW. On the two NE-most lines, the abrupt crustal thinning occurs over a 20-40 km wide area resulting in final breakup. To the SW, the area of stretched continental crust extends over a comparatively broader ~100-110 km segment of tilted fault-blocks. We interpret that the 3D structural variability and the narrow COT is related to the lateral NE to SW propagation of a spreading center. The early spreading center propagation in the NE suddenly stopped continental stretching during ongoing rifting, causing an abrupt break-up and a narrow COT. Later arrival of spreading center to the SW resulted in a comparatively broader segment of highly stretched continental crust. We suggest that the final structure of the northwest South China continental margin have been governed by the 3D interaction between rifting and oceanic spreading center propagation to a degree larger than by the local lithospheric structure during rifting.

  8. Allochthonous deep-water basin deposits of the western US: Implications for Paleozoic paleogeography and plate margin tectonics

    SciTech Connect

    Miller, E.L. . Geology Dept.)

    1993-04-01

    The stratigraphy and sedimentology of the lower Paleozoic Roberts Mts. and upper Paleozoic Golconda allochthons can be used to reconstruct their general paleogeographic setting in the Paleozoic. Basalt pillow lavas and radiolarian chert, were once considered straightforward evidence that the allochthons represented imbricated ocean crust formed at sites far removed from continental influences. Better stratigraphic definition, provenance studies and geochemistry of lavas now indicate that clastic components were derived from the continental shelf or interior and basalts in the Roberts Mountains allochthon were erupted in an intraplate setting through thinned continental crust (Madrid, 1987). Both in the earliest Mississippian and in the Late Permian, the Antler Basin (Roberts Mts.) and the Havallah Basin (Golconda) received proximal detritus from island arc sources to the west, immediately prior to closure of the basins by thrust-faulting. These data suggest that both systems of basins formed as marginal basins by rifting on the continental shelf (Antler Basin) and along the continental margin (Havallah Basin) and were flanked to the west by active island arcs at least during part of their history. As such, their stratigraphy provides a great deal of insight regarding tectonism along the western plate margin of North America during the Paleozoic.

  9. Accretion, subduction, and underplating along the southern Alaska continental margin

    SciTech Connect

    Plafker, G.; Ambos, E.L.; Fuis, G.S.; Mooney, W.D.; Nokleberg, W.J.; Campbell, D.L.

    1985-01-01

    In 1984-1985 the Trans Alaska Crustal Transect (TACT) program completed geologic, seismic refraction, gravity, and magnetic studies along a 350-km-long corridor that extends northward from the Gulf of Alaska coast near Cordova to the Denali fault at the Richardson Highway. From south to north, this segment of the transect traverses: 1) part of the Prince William terrance (PWT), composed of an accreted Paleocene and Eocene deep-sea fan complex, oceanic volcanic rocks, and pelagic sediments; 2) the Chugach terrane (CGT) composed of a) accreted Late Cretaceous flysch and oceanic basaltic rocks, b) accreted and subducted (.) Late Jurassic to Early Cretaceous sheared melange, and c) subducted Early (.) Jurassic or older blueschist/greenschist; and 3) Wrangellia-Peninsular terranes (WRT/PET) consisting primarily of late Paleozoic intraoceanic andesitic arc rocks with associated mafic and ultramafic plutonic rocks, an overlying distinctive Triassic sedimentary and volcanic sequence, and superposed intrusive and extrusive magmatic rocks of the Jurassic Talkeetna arc. At the southern margin of both the CGT and WRT/PET, shallow high-velocity zones characterized by positive gravity and magnetic anomalies reflect uplift of mafic and ultramafic basement along these thrusts. The Contact and Border Ranges fault systems appear to merge into a subhorizontal low-velocity zone of uncertain origin that underlies the CGT and southern WRT/PET at 5-9 km depth. A few kilometers beneath the shallow low-velocity zone in a 30-km-thick stack of eight northward-dipping layers of alternating high and low velocity, interpreted as subducted and underplated mantle and oceanic crust rocks. Distribution of earthquake hypocenters suggests that active subduction involves at least the lowest two and possibly the lower four layers.

  10. The Formation of Non-Volcanic Rifted Margins by the Progressive Extension of the Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Reston, T. J.; Perez-Gussinye, M.; Gaw, V.; Phipps Morgan, J.

    2003-12-01

    Rifted margins include two main end-members: those termed "Volcanic Rifted Margins - VRMs" where magmatism is much more voluminous than predicted by passive asthenospheric upwelling (e.g. White et al., 1989), and those where magmatism is consistent or even less than the same predictions. The latter are termed "Non-Volcanic Rifted Margins - NVRMs" to emphasise the contrast with the VRMs: the name does not exclude the presence of minor amounts of magmatic activity. The NVRMs are typified by the North Biscay, south Australian, SW Greenland, and the West Iberian margins, which share a number of common characteristics: - extreme crustal thinning, increasing towards the ocean; - presence of well-defined rotated fault blocks. However at the feather edge of the continent there is an extension discrepancy: the amount that can be inferred from the geometry of these faults is far less than that indicated by the crustal thinning observed; - presence in places of a detachment fault at the base of the fault blocks; - little evidence for synrift magmatism; - the presence of a broad zone of partially serpentinised mantle (Boillot et al., 1988; Whitmarsh et al., 1996; Krawczyk et al., 1996; Pickup et al., 1996), both occurring beneath the highly thinned and faulted continental crust, and as a zone of exhumed continental mantle, now largely buried by postrift sediments. We show that such margins are the logical result of progressive extension of continental lithosphere above cool sub-lithospheric mantle. The key factors controlling the development of the margin are the rheological evolution of the crust (explaining the serpentinisation of the mantle), the occurrence of multiple phases of faulting (explaining the apparent extension discrepancy), and the temperature structure of the sub-continental mantle (explaining the lack of magmatism).

  11. Anthropogenic impacts on continental margins: New frontiers and engagement arena for global sustainability research and action

    NASA Astrophysics Data System (ADS)

    Liu, K. K.; Glavovic, B.; Limburg, K.; Emeis, K. C.; Thomas, H.; Kremer, H.; Avril, B.; Zhang, J.; Mulholland, M. R.; Glaser, M.; Swaney, D. P.

    2014-12-01

    There is an urgent need to design and implement transformative governance strategies that safeguard Earth's life-support systems essential for long-term human well-being. From a series of meetings of the Continental Margins Working Group co-sponsored by IMBER and LOICZ of IGBP, we conclude that the greatest urgency exists at the ocean-land interface - the continental margins or the Margin - which extends from coastlands over continental shelves and slopes bordering the deep ocean. The Margin is enduring quadruple squeeze from (i) Population growth and rising demands for resources; (ii) Ecosystem degradation and loss; (iii) Rising CO2, climate change and alteration of marine biogeochemistry and ecosystems; and (iv) Rapid and irreversible changes in social-ecological systems. Some areas of the Margin that are subject to the greatest pressures (e.g. the Arctic) are also those for which knowledge of fundamental processes remains most limited. Aside from improving our basic understanding of the nature and variability of the Margin, priority issues include: (i) investment reform to prevent lethal but profitable activities; (ii) risk reduction; and (iii) jurisdiction, equity and fiscal responsibility. However, governance deficits or mismatches are particularly pronounced at the ocean-edge of the Margin and the prevailing Law of the Sea is incapable of resolving these challenges. The "gold rush" of accelerating demands for space and resources, and variability in how this domain is regulated, move the Margin to the forefront of global sustainability research and action. We outline a research strategy in 3 engagement arenas: (a) knowledge and understanding of dynamic Margin processes; (b) development, innovation and risk at the Margin; and (c) governance for sustainability on the Margin. The goals are (1) to better understand Margin social-ecological systems, including their physical and biogeochemical components; (2) to develop practical guidance for sustainable development and use of resources; (3) to design governance regimes to stem unsustainable practices; (4) to investigate how to enable equitable sharing of costs and benefits from sustainable use of resources; and (5) to evaluate alternative research approaches and partnerships that address the challenges faced on the Margin.

  12. A new reconstruction of the Paleozoic continental margin of southwestern North America: Implications for the nature and timing of continental truncation and the possible role of the Mojave-Sonora megashear

    USGS Publications Warehouse

    Stevens, C.H.; Stone, P.; Miller, J.S.

    2005-01-01

    Data bearing on interpretations of the Paleozoic and Mesozoic paleogeography of southwestern North America are important for testing the hypothesis that the Paleozoic miogeocline in this region has been tectonically truncated, and if so, for ascertaining the time of the event and the possible role of the Mojave-Sonora megashear. Here, we present an analysis of existing and new data permitting reconstruction of the Paleozoic continental margin of southwestern North America. Significant new and recent information incorporated into this reconstruction includes (1) spatial distribution of Middle to Upper Devonian continental-margin facies belts, (2) positions of other paleogeographically significant sedimentary boundaries on the Paleozoic continental shelf, (3) distribution of Upper Permian through Upper Triassic plutonic rocks, and (4) evidence that the southern Sierra Nevada and western Mojave Desert are underlain by continental crust. After restoring the geology of western Nevada and California along known and inferred strike-slip faults, we find that the Devonian facies belts and pre-Pennsylvanian sedimentary boundaries define an arcuate, generally south-trending continental margin that appears to be truncated on the southwest. A Pennsylvanian basin, a Permian coral belt, and a belt of Upper Permian to Upper Triassic plutons stretching from Sonora, Mexico, into westernmost central Nevada, cut across the older facies belts, suggesting that truncation of the continental margin occurred in the Pennsylvanian. We postulate that the main truncating structure was a left-lateral transform fault zone that extended from the Mojave-Sonora megashear in northwestern Mexico to the Foothills Suture in California. The Caborca block of northwestern Mexico, where Devonian facies belts and pre-Pennsylvanian sedimentary boundaries like those in California have been identified, is interpreted to represent a missing fragment of the continental margin that underwent ???400 km of left-lateral displacement along this fault zone. If this model is correct, the Mojave-Sonora megashear played a direct role in the Pennsylvanian truncation of the continental margin, and any younger displacement on this fault has been relatively small. ?? 2005 Geological Society of America.

  13. Rift to drift transition in Siberian Arctic and its impact on continental margin architecture

    NASA Astrophysics Data System (ADS)

    Drachev, S. S.

    2003-04-01

    The East Siberian Arctic Continental Margin (ESAM) represents a rare case of rifting to spreading transition. Present-day geodynamics of this plate tectonic interplay is characterized by a very slow plate divergence in the Laptev Sea as this regions is located just landward of the slowest spreading center worldwide (the Gakkel Ridge), close to the pole of North American/Eurasian plate rotation. However the existing geological and geophysical data, mainly seismic reflection and potential field data, allow conclusion that this situation has been far different in the past. Just after its formation at the end of Late Cretaceous through a series of plate convergence and folding episodes the crust of the ESAM has been strongly modified by an intense rifting. The earliest rift episode took place eastward of the present Laptev Sea, in the East Siberian Sea and probably Chukchi seas, where presently abandoned rifts are stretched landward along the principal weakened zones in the ESAM basement. This rifting might have been related to a spreading episode in the Amerasia Basin and perhaps was triggered by a mantle plume ca. 120 mln. yr. ago (De Long and Franz Joseph Land basalts). Outer parts of the ERAM might have also been rifted away to create marginal blocks, as the Arlis and Chukchi plateau. Second rift event was clearly related to the opening of the Eurasia Basin, preceding it and remaining active through the Cenozoic. The rift to drift transition has been taking place in a huge, dry and still active Laptev Rift System, which is a landward projection of the Gakkel Ridge spreading axis. This extension had a major effect on the western ERAM causing strong normal faulting and crustal thinning, up to 70% in some places. However, total crustal extension in the Laptev Rift System is considerably smaller than a value of total opening of the Eurasia Basin, so the spreading is not completely accommodated by the rifting. It may be speculated that a major portion of this extension, especially at its initial stage, has been transferred along the Khatanga-Lomonosov Fracture (Charlie Fault by A. Grantz) far to the east. These transcurrent movements shifted the Lomonosov Ridge eastward along the Laptev Sea margin. Further to the east the Early Tertiary extensional features of the Chukchi Borderland and Maastrichtian-Paleocene alkaline volcanism of the Chukchi Peninsula may be attributed to that eastward transferred extension. This work was supported by the Russian Basic Research Foundation (grant 01-05-64979).

  14. Structure of continental margin off Mid-Atlantic states (Baltimore Canyon Trough)

    USGS Publications Warehouse

    Schlee, John Stevens; Behrendt, John Charles; Mattick, Robert E.; Taylor, P.T.

    1975-01-01

    Increasing interest in the Atlantic continental margin as a future petroleum province has resulted in several recent papers (Emmerich, 1974; Burk and Drake, 1974) that attempt to summarize the structure and stratigraphic framework of this area. Most papers tend to portray the margin as a wedge of Mesozoic and Cenozoic sediment that thins at the edge of the shelf over a "basement ridge" and then thickens again under the continental rise. Off the northeastern United States, the sediment wedge under the shelf attains a thickness of 8-11 km in the Georges Bank basin (Schultz and Glover, 1974; Mattick and others, 1974; Sheridan, 1974b; Behrendt and others, 1974) and 12 km in thickness in the Baltimore Canyon trough off the middle Atlantic states of Delaware, Maryland, Virginia and New Jersey (fig. 1). Seaward of the continental shelf and its sediment prism, Emery and Uchupi (1972, figs. 133-135) infer slump deposits (eroded in some areas) covering a buried ridge thought to extend from the Laurentian Channel to Cape Hatteras, where it splits in two. The lower slope and continental rise are inferred by Drake and later investigators to be a thick prism of deep sea sediment (turbidites, hemipelagic clays, slump deposits) overlying oceanic basement in a welt that parallels the continental edge and reaches a maximum thickness of 6 km (Emery and Uchupi, 1972, fig. 188).

  15. Emplacement of the Peridotite Ridge Within the Ocean-Continent Transition on the West Iberia Continental Margin

    NASA Astrophysics Data System (ADS)

    Henning, A. T.; Sawyer, D. S.

    2003-12-01

    The West Iberia continental margin began to form in the Late Triassic with the breakup of Pangea and culminated with the opening of the North Atlantic Ocean in the Early Cretaceous. While it is perhaps the best-studied continental margin in the world, the formation of a north-south segmented ridge of serpentinized peridotite located within the ocean-continent transition is not fully understood. The relatively thin sediment cover and lack of obvious volcanics make the Iberia margin an ideal place to study crustal features using seismic methods, and in 1997 the Iberia Seismic Experiment (ISE 97) collected over 4000 km of two-dimensional seismic reflection data off Iberia. Nine lines were recorded normal to the margin at a 10-25 km spacing and therefore provide cross-sections of the margin at regular intervals over a 200 km north-south distance. We prestack depth migrated the western portions of the nine margin-normal ISE 97 seismic lines. Interpretation of the depth sections suggests that the peridotite ridge is located within a broad zone of exhumed upper mantle that has been serpentinized. Total tectonic subsidence analyses provide minimum bounds on the thickness of the serpentinized layer, which extends from the zone of exhumed mantle landward under thinned continental crust. Exhumed upper mantle has previously been identified in the wider ocean-continent transition to the south in the southern Iberia Abyssal Plain, and we conclude that similar but narrower exposures occur to the north in the Galicia Bank area. While upper mantle appears to have been exhumed along all the ISE 97 lines, it does not always form a distinct basement ridge. Three ISE 97 profiles do not image a well-defined basement ridge, offering the first seismic evidence of a gap in the otherwise continuous peridotite ridge. Where it is well-developed, the peridotite ridge parallels a deeply-penetrating normal fault that developed near the end of rifting. This fault appears to penetrate into the upper mantle. We propose that this fault served as a conduit for water to localize serpentinization and cause the peridotite ridge to form diapirically within a broader zone of tectonically exhumed mantle.

  16. Comparison of marine gas hydrates in sediments of an active and passive continental margin

    USGS Publications Warehouse

    Kvenvolden, K.A.

    1985-01-01

    Two sites of the Deep Sea Drilling Project in contrasting geologic settings provide a basis for comparison of the geochemical conditions associated with marine gas hydrates in continental margin sediments. Site 533 is located at 3191 m water depth on a spit-like extension of the continental rise on a passive margin in the Atlantic Ocean. Site 568, at 2031 m water depth, is in upper slope sediment of an active accretionary margin in the Pacific Ocean. Both sites are characterized by high rates of sedimentation, and the organic carbon contents of these sediments generally exceed 0.5%. Anomalous seismic reflections that transgress sedimentary structures and parallel the seafloor, suggested the presence of gas hydrates at both sites, and, during coring, small samples of gas hydrate were recovered at subbottom depths of 238m (Site 533) and 404 m (Site 568). The principal gaseous components of the gas hydrates wer methane, ethane, and CO2. Residual methane in sediments at both sites usually exceeded 10 mll-1 of wet sediment. Carbon isotopic compositions of methane, CO2, and ??CO2 followed parallel trends with depth, suggesting that methane formed mainly as a result of biological reduction of oxidized carbon. Salinity of pore waters decreased with depth, a likely result of gas hydrate formation. These geochemical characteristics define some of the conditions associated with the occurrence of gas hydrates formed by in situ processes in continental margin sediments. ?? 1984.

  17. Morphology and sedimentation along the Kongsfjord Channel System, Svalbard continental margin, European Arctic

    NASA Astrophysics Data System (ADS)

    Forwick, M.; Vorren, T. O.; Hass, C. H.; Laberg, J.; Vanneste, M.

    2011-12-01

    The continental margin off northwestern Svalbard (between 79 and 80 N) has been affected by repeated mass wasting, as well as from northward-flowing contourite currents. One on the most striking morphological features is the approximately 120 km long, SE-NW oriented Kongsfjord Channel System (KCS) that can be traced from the shelf break at 250-300 m water depth to a maximum water depth of about 4000 m. Several channels/gullies starting at the shelf break merge into the main channel at around 1400 m. The main channel is at maximum 500 m wide and 80 m deep. Repeated interaction of the channel with contourite deposition has occurred. This includes relocation of the channel's axis related to the northward migration of the contourites, as well as renewed incision of contourites by activitiy within the channel. Two sediment cores were retrieved from either side of the main channel at 1430 m water depth, and two from about 1560 m water depth, respectively. The stratigraphy of these cores can easily be correlated to dated cores from the west Spitsbergen continental margin (Jessen et al., 2010). Preliminary results reveal that the sedimentation rates (SRs) at the shallower locations are generally higher than at the deeper stations during the past c. 30,000 years. At the sites from 1430 m water depth, the SRs were rather uniform during the past c. 10,000 years. However, prior to c. 10,000 cal. years BP, the SRs were significantly higher at the location of the core that was retrieved northeast of the channel. We assume that this is related to enhanced down-slope sediment transport within the channel and deposition to the right (northeast) of the transport direction - due to the Coriolis force and/or the northward-flowing contourite currents. The sources for sediment transport within the channel are most probably 1) enhanced sediment supply from the Kongsfjorden ice stream during the last glacial, and 2) winnowing of fine-grained material in the upper parts of the KCS and on the continental shelf following the retreat of the ice-stream front from the shelf break around 20,000 years ago. At the 1560 m water-depth sites, the SR was higher to the south of the channel prior to c. 14,000 cal. years BP, but higher to the north after c. 14,000 cal. years BP. This indicates that the northward migration of a contourite drift had the largest impact on the southern location prior to c. 14,000 cal. years BP. After c. 14,000 cal. years BP, down-slope sediment transport probably exceeded along-slope sediment transport, resulting in higher rates in the north. Reference: Jessen, S.P., Rasmussen, T.L., Nielsen, T. & Solheim, A., 2010. A new Late Weichselian and Holocene marine chronology for the westerns Svalbard slope 30,000-0 cal years BP. Quaternary Science Reviews 29, 1301-1312.

  18. Temporal and spatial patterns of Cenozoic and Late Mesozoic erosion and deposition along the western margin of southern Africa

    SciTech Connect

    Brown, R.W.; Gleadow, A.J.W. ); Rust, D.J.; Summerfield, M.A. )

    1990-05-01

    Compared with subsidence history and eustatic sea level change, sediment supply has been a neglected component of studies of passive margin stratigraphy. The spatial and temporal pattern of sediment supply to continental margin, however, is a critical factor in determining the architecture of offshore sedimentary sequences. Sediment routing across passive margins is controlled primarily by their tectonic development and the consequent morphological evolution of the subaerial part of the margin. By combining offshore sediment volume and sedimentation rate data based on isopach maps and borehole records with apatite fission-track analysis and denudational modeling onland, the depositional history of the western margin of southern Africa has been related to its geomorphic response to continental rifting. The sediment volume data indicate a declining rate of sedimentation after rifting in the Early Cretaceous despite a probable enlargement of the sediment source area through time. Similarly, apatite fission-track ages and confined track length distributions indicate an Early Cretaceous episode of relatively high erosion rates which affected areas both inland and oceanward of the major topographic discontinuity along the margin represented by the Great Escarpment. Late Cenozoic rates of erosion and sediment supply have been low, although much of the sediment source area is still at a significant elevation. Although aridity may have contributed to this reduction in sediment supply, the morphological response to the tectonic evolution of the margin has also been crucial.

  19. Arctic and Antarctic submarine gulliesA comparison of high latitude continental margins

    NASA Astrophysics Data System (ADS)

    Gales, J. A.; Forwick, M.; Laberg, J. S.; Vorren, T. O.; Larter, R. D.; Graham, A. G. C.; Baeten, N. J.; Amundsen, H. B.

    2013-11-01

    Submarine gullies are common features of high latitude continental slopes and, over the last decade, have been shown to play a key role in continental margin evolution, submarine erosion, downslope sediment transport, slope deposits, and the architecture of petroleum reservoirs. However, the processes that form these gullies, the timescales over which they develop, and the environmental controls influencing their morphology remain poorly constrained. We present the first systematic and comparative analysis between Arctic and Antarctic gullies with the aim of identifying differences in slope character, from which we infer differences in processes operating in these environments. Quantitative analysis of multibeam echosounder data along 2441 km of the continental shelf and upper slope and morphometric signatures of over 1450 gullies show that six geomorphically distinct gully types exist on high latitude continental margins. We identify distinct differences between Arctic and Antarctic gully morphologies. In the Arctic data sets, deep relief (> 30 m gully incision depth at 50 m below the shelf edge) and shelf-incising gullies are lacking. These differences have implications for the timescales over which the gullies were formed and for the magnitude of the flows that formed them. We consider two hypotheses for these differences: (1) some Antarctic gullies developed through several glacial cycles; and (2) larger Antarctic gullies were formed since the Last Glacial Maximum as a result of erosive flows (i.e., sediment-laden subglacial meltwater) being more abundant on parts of the Antarctic margin over longer timescales. A second difference is that unique gully signatures are observed on Arctic and on Antarctic margins. Environmental controls, such as the oceanographic regime and geotechnical differences, may lead to particular styles of gully erosion observed on Arctic and Antarctic margins.

  20. Quaternary Contourite Drifts of the Western Spitsbergen Margin

    NASA Astrophysics Data System (ADS)

    Laberg, J. S.; Rebesco, M.; Wahlin, A.; Schauer, U.; Beszczynska-Möller, A.; Lucchi, R. G.; Noormets, R.; Accettella, D.; Zarayskaya, Y.; Diviacco, P.

    2014-12-01

    The study of contourite drifts is an increasingly used tool for understanding the climate history of the oceans. In this paper we analyse two contourite drifts along the continental margin west of Spitsbergen, just south of the Fram Strait where significant water mass exchanges impact the Arctic climate. We detail the internal geometry and the morphologic characteristics of the two drifts on the base of multichannel seismic reflection data, sub-bottom profiles and bathymetry. These mounded features, that we propose to name Isfjorden and Bellsund drifts, are located on the continental slope between 1200 and 1800 m depth, whereas the upper slope is characterized by reduced- or non-deposition. The more distinct Isfjorden Drift is about 25 km wide and 45 km long, and over 200 ms TWT thick. We revise the 13 years-long time series of velocity, temperature, and salinity obtained from a mooring array across the Fram Strait. Two distinct current cores are visible in the long-term average. The shallower current core has an average northward velocity of about 20 cm/s, while the deeper bottom current core at about 1450 m depth has an average northward velocity of about 9 cm/s. We consider Norwegian Sea Deep Water episodically ventilated by relatively dense and turbid shelf water from the Barents Sea responsible for the accumulation of the contourites. The onset of the drift growth west of Spitsbergen is inferred to be about 1.3 Ma and related to the Early Pleistocene glacial expansion recorded in the area. The lack of mounded contouritic deposits on the continental slope of the Storfjorden is related to consecutive erosion by glacigenic debris flows. The Isfjorden and Bellsund drifts are inferred to contain the record of the regional palaeoceanography and glacial history and may constitute an excellent target of future scientific drilling.

  1. Crustal differentiation due to partial melting of granitic rocks in an active continental margin, the Ryoke Belt, Southwest Japan

    NASA Astrophysics Data System (ADS)

    Akasaki, Eri; Owada, Masaaki; Kamei, Atsushi

    2015-08-01

    The continental margin of Pacific Asia is dominated by the voluminous Cretaceous to Paleogene granitic rocks. The Ryoke granitoids that occur in the Ryoke Belt in the Southwest Japan Arc are divided into the older and younger granites. The high-K Kibe Granite represents the younger granitic intrusion and is exposed in the Yanai area in the western part of Ryoke Belt. The Kibe Granite is associated with the coeval Himurodake Quartz Diorite and their intrusive age is 91 Ma. However, the Gamano-Obatake Granodiorite, the older granite, intruded the host Ryoke gneisses at 95 Ma. The Gamano-Obatake Granodiorite is characterized by the localized development of migmatitic structure attributed to the intrusion of the Himurodake Quartz Diorite into the granodiorite. Leucocratic pools and patches occur in the granodiorite in the vicinity of the quartz diorite. The Sr and Nd isotopic compositions of the Gamano-Obatake Granodiorite corrected to 91 Ma are plotted within those of the Kibe Granite. Geochemical modeling suggests that partial melting took place in the Gamano-Obatake Granodiorite and resulted in the formation of the Kibe Granite magma. The Himurodake Quartz Diorite is believed to be a heat source for this event. This can be considered as an essential process for the formation of the evolved younger Ryoke granite and for the crustal differentiation in the active continental margin.

  2. Structure and petroleum potential of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska

    USGS Publications Warehouse

    Bruns, T.R.

    1982-01-01

    Major structural features of the Yakutat segment, the segment of the continental margin between Cross Sound and Icy Bay, northern Gulf of Alaska, are delineated by multichannel seismic reflection data. A large structural high is centered on Fairweather Ground and lies generally at the edge of the shelf from Cross Sound to west of the Alsek Valley. A basement uplift, the Dangerous River zone, along which the seismic acoustic basement shallows by up to two kilometers, extends north from the western edge of Fairweather Ground towards the mouth of the Dangerous River. The Dangerous River zone separates the Yakutat segment into two distinct subbasins. The eastern subbasin has a maximum sediment thickness of about 4 km, and the axis of the basin is near and parallel to the coast. Strata in this basin are largely of late Cenozoic age (Neogene and Quaternary) and approximately correlate with the onshore Yakataga Formation. The western subbasin has a maximum of at least 9 km of sediment, comprised of a thick (greater than 4.5 km) Paleogene section overlain by late Cenozoic strata. The Paleogene section is truncated along the Dangerous River zone by a combination of erosion, faulting, and onlap onto the acoustic basement. Within the western subbasin, the late Cenozoic basin axis is near and parallel to the coast, but the Paleogene basin axis appears to trend in a northwest direction diagonally across the shelf. Sedimentary strata throughout the Yakutat shelf show regional subsidence and only minor deformation except in the vicinity of the Fairweather Ground structural high, near and along the Dangerous River zone, and at the shoreline near Lituya Bay. Seismic data across the continental slope and adjacent deep ocean show truncation at the continental slope of Paleogene strata, the presence of a thick (to 6 km) undeformed or mildly deformed abyssal sedimentary section at the base of the slope that in part onlaps the slope, and a relatively narrow zone along the slope or at the base of the slope where faulting may have occurred. Observed deformation at the base of the slope is primarily related to the late Cenozoic uplift of Fairweather Ground, and to Quaternary folding perpendicular to the Pacific-North America relative convergence vector. No accretionary section or major deformation is observed along the continental slope. The absence of these features suggests that no major subduction of the Pacific plate beneath the Yakutat margin has occurred during the late Cenozoic. However, transform faulting along the base of the slope has occurred, because probable Oligocene oceanic basement is juxtaposed against Mesozoic and Paleogene sedimentary strata of the Yakutat slope. This juxtaposition most likely occurred during late Oligocene and Miocene time. During much of the late Cenozoic, and especially during Pliocene-Pleistocene time, the Yakutat segment has apparently been moving northward with the Pacific plate. Dredge samples from the continental slope recovered potential hydrocarbon source and reservoir rocks from the Paleogene sedimentary sequence. Most of the organic matter from these samples is immature to marginally mature. Lopatin calculations suggest that rocks beneath the shelf are likely to be thermally mature at a depth of 4 to 5 km and deeper. In general, the strata at these depths are largely of Paleogene age. Thus, the Paleogene strata may have significant resource potential if source and reservoir rocks similar to those dredged at the slope are present below the shelf. The Paleogene strata are contained primarily within the western subbasin; strata in the east subbasin appear to have little resource potential. Structural traps are apparently present in parts of the basin near and along the Dangerous River zone. These traps are in an updip position from potentially mature strata of the western subbasin, and may hold commercial accumulations of hydrocarbons, if sufficient hydrocarbon generation and migration has occurred

  3. Palaeoceanographic significance of sedimentary features at the Argentine continental margin revealed by multichannel seismic reflection data

    NASA Astrophysics Data System (ADS)

    Gruetzner, Jens; Uenzelmann-Neben, Gabriele; Franke, Dieter

    2010-05-01

    The thermohaline circulation in the Argentine Basin today is characterized by the interaction of northward flowing Antarctic water masses (Antarctic Intermediate Water, AAIW; Circumpolar Deep Water, CDW; Antarctic Bottom Water, AABW) and southward flowing North Atlantic Deep Water (NADW). The transfer of heat and energy via both AABW and NADW constitutes an important component in maintaining the global conveyor belt. We aim at a better understanding of both paths and intensity of this current system in the past by investigating an extensive (> 11000 km) set of high quality seismic reflection profiles from the Argentine continental margin. The profiles show a significant contourite system containing both erosive and depositional features that formed through the evolution of water masses and their modifications (path, physical and chemical properties) due to plate tectonic events such as the opening of the Drake Passage or the extensive emplacement of volcanic flows at the Rio Grande Rise. Overall the depositional features indicate that along slope (contour current) transport dominates over down slope (turbiditic) processes at the southern Argentine margin south of 45 S. Further to the North down slope transport was more extensive as indicated by the presence of submarine canyons crossing the slope down to a depth of ~3500 m. Here we present preliminary results from the southern part of the continental margin (42-50 S) where we focus on a set of ~50 km wide terraces on the slope and rise separated by contouritic channels. The terraces developed over time in alternating constructional (depositional) and erosive phases. An initial age frame was developed by mapping regional reflectors and seismic units known from previous studies. The sedimentary layer between regional reflectors AR 4 and AR 5 spanning roughly the time interval from the Eocene/Oligocene boundary to the early middle Miocene is thin (0.1 - 0.4 s TWT) below the Valentine Feilberg Terrace but thickens towards the East forming a giant buried drift and also towards the West building a unit of plastered drifts below the Piedra Buena Terrace. Here, the maximum thickness of this unit is ~1.4 s (TWT). In contrast to this the sediments of late Miocene to recent age are very thin or completely eroded over the Piedra Buena terrace but form drifts at the Valentin Feilberg terrace that can be further divided into subunits whose reflections have stratified facies with good lateral continuity. Mounded drift structures on the western and eastern edges of the terrace are bounding an onlap fill structure possibly associated with bottom currents of reduced activity. With an assumed age of ~15 Ma for reflector AR5 the average sedimentation rate since the middle Miocene is estimated to be > 10 cm/ka and thus would make a drill site on the terrace suitable for high resolution palaeoclimate studies.

  4. Crustal and upper mantle structure beneath south-western margin of the Arabian Peninsula from teleseismic tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Basuyau, Clémence; Leroy, Sylvie; Tiberi, Christel; Ahmed, Abdulhakim; Stuart, Graham W.; Keir, Derek; Rolandone, Frédérique; Ganad, Ismail; Khanbari, Khaled; Boschi, Lapo

    2014-07-01

    image the lithospheric and upper asthenospheric structure of western continental Yemen with 24 broadband stations to evaluate the role of the Afar plume on the evolution of the continental margin and its extent eastward along the Gulf of Aden. We use teleseismic tomography to compute relative P wave velocity variations in south-western Yemen down to 300 km depth. Published receiver function analysis suggest a dramatic and localized thinning of the crust in the vicinity of the Red Sea and the Gulf of Aden, consistent with the velocity structure that we retrieve in our model. The mantle part of the model is dominated by the presence of a low-velocity anomaly in which we infer partial melting just below thick Oligocene flood basalts and recent off-axis volcanic events (from 15 Ma to present). This low-velocity anomaly could correspond to an abnormally hot mantle and could be responsible for dynamic topography and recent magmatism in western Yemen. Our new P wave velocity model beneath western Yemen suggests the young rift flank volcanoes beneath margins and on the flanks of the Red Sea rift are caused by focused small-scale diapiric upwelling from a broad region of hot mantle beneath the area. Our work shows that relatively hot mantle, along with partial melting of the mantle, can persist beneath rifted margins after breakup has occurred.

  5. How widely is the Andean type of continental margin represented in the Archean

    NASA Technical Reports Server (NTRS)

    Burke, Kevin

    1988-01-01

    Application of the principle of uniformitarianism to the Archean was discussed in a search for evidence of Archean-type continental margins in Archean rocks. The author cautioned that Archean rocks represent only 2 percent of the current exposure of the continents, half of which is in the North American Superior Province. Care must be taken in interpreting the global tectonic significance of relatively small exposures of Archean rocks, such as South India. Andean margins were characterized by their elongate shape, magmatic associations, and isotopic signatures. Although the compositional evidence alone will always be ambiguous, it was suggested that supporting structural evidence may aid in the identification of Archean Andean margins. Andean margin remains have been recognized in the Superior Province of Canada by these criteria, and the author suggested that the Closepet granite of South India may represent another example.

  6. On the relationship between sequential faulting, margin asymmetry and highly thinned continental crust

    NASA Astrophysics Data System (ADS)

    Brune, Sascha; Heine, Christian; Prez-Gussiny, Marta; Sobolev, Stephan

    2014-05-01

    The architecture of magma-poor continental margins is remarkably variable. The width of highly thinned continental crust (with a thickness < 10 km) varies from 70 km off Iberia, and 200 km offshore Angola, to over 300 km in the Antarctic Enderby Basin. The respective conjugate margin, however, is restricted to few tens of kilometres resulting in large scale crustal asymmetry. Growing evidence from rifted continental margins in the North and South Atlantic, as well as from the East Australia/Lord Howe Rise margin pair supports the idea that rifts with a very wide margin and a narrow conjugate are rather the rule than the exception. In this study, we use numerical thermo-mechanical models to investigate the dynamics of rifting. Our simulations apply an elasto-visco-plastic rheology formulation that relies on laboratory-derived flow laws for crustal and mantle rock. The models are constrained by geophysical and geological observations like limited melt generation, cold initial geotherms, and mafic lower crustal rheology. We show that small-scale lateral rift migration simultaneously explains the observed margin asymmetry and the presence of highly thinned continental crust. Rift migration results from two fundamental processes: (1) Strain hardening in the rift centre due to cooling of upwelling mantle material; (2) Formation of a low viscosity exhumation channel adjacent to the rift centre that is generated by heat transfer from the upwelling mantle and enhanced by viscous strain softening. Rift migration takes place in a steady-state manner and is accomplished by oceanward-younging sequential faults within the upper crust and balanced through lower crustal flow. We demonstrate that the rate of extension has paramount control on margin width. Since higher velocities lead to elevated heat flow within the rift and hence to hot and weak lower crust, a larger low-viscosity exhumation channel is generated that facilitates rift migration leading to wider margins. The South Atlantic is an ideal test bed for the hypothesis of velocity-dependent margin width since rifting was fast in the south, but slow in the northern part. As predicted by our numerical models, the maximum present-day margin width increases almost linearly from the conjugate Equatorial margin segments to the Florianopolis/Walvis ridge. Even though the polarity of the magma-poor South Atlantic margins alternates, the asymmetry and the width of the wider margin are in very good agreement with our simulations. The described rift evolution has three fundamental implications: (1) It implies sustained transfer of material across the extensional plate boundary thereby predicting that large portions of a wide margin originate from its conjugate side. (2) Migration of the deformation locus causes faulting in the distal parts of the margin to postdate that of the proximal parts by as much as 10 million years. This means that syn-rift and post-rift phase are location-dependent. (3) Lateral movement of the rift centre generates drastically different peak heat flow and subsidence histories at the proximal and the distal margin.

  7. Meiofauna of the western continental shelf of India, Arabian Sea

    NASA Astrophysics Data System (ADS)

    Sajan, S.; Joydas, T. V.; Damodaran, R.

    2010-03-01

    Meiofaunal standing stock and nematode community structure were investigated in the western continental shelf of India by collecting samples from every degree square of the shelf during two cruises of the FORV ( Fishery and Oceanographic Research Vessel) Sagar Sampada, conducted in 1998 and 2001. Samples were collected from 30, 50, 100 and 200 m depths using a Smith Mc Intyre grab. Meiofaunal density ranged from 8 Ind. 10 cm -2 to 1208 Ind. 10 cm -2 and biomass from 0.07 mg 10 cm -2 to 6.11 mg 10 cm -2. Nematodes were the dominant meiofaunal group, contributing 88% of the density and 44% of the biomass. Harpacticoid copepods were the second important taxa, contributing 8% of both biomass and density. Altogether, 154 species of nematodes belonging to 28 families were recorded from the study area. Numerically, Desmodora spp., Dorylaimopsis sp. , Tricoma spp., Theristus spp. and Halalaimus spp. were the dominant species. In general, there was a decrease in biomass and density of meiofauna and species diversity of nematodes with increase in depth. There was a 67% drop in species number from 51 to 100 m (106 species) to the shelf edge (35 species). Species richness and diversity indices showed consistent decrease with depth. The species dominance index was higher below 150 m depth. ANOSIM (from PRIMER) showed a significant difference between the nematodes of the near shore and shelf edge. Latitudinal variation was observed only in the number of nematode species. Biomass and abundance of nematodes were found to increase from coarse to fine sediment, while copepods showed an opposite trend. Multivariate analyses of nematode communities did not reveal any latitudinal or substratum differences. Variables such as depth, latitude, organic matter (OM) and amount of clay were the most relevant parameters influencing the biomass and density of meiofauna, while depth and temperature were the important parameters explaining the distribution of the nematode communities along the western Indian shelf.

  8. Prebreakup sedimentary and volcanic sequences on rifted Continental Margin of Wilkes Land, Antarctica

    SciTech Connect

    Eittreim, S.L.; Hampton, M.A.

    1986-07-01

    The transition zone from continental crust to oceanic crust on the Wilkes Land, Antarctica, margin was surveyed with 24-fold multichannel seismic reflection along 1800 line-km in 1984. The northward transition from extended continental crust to normal oceanic crust is characterized by a progression through three distinct volcanic sequences. The first, deposited on extremely thin continental crust, is interpreted to be a flood basalt, presumably deposited during the late rifting stage. The second, which overlaps the first at its northern end, is a seaward-dipping reflector sequence that forms anomalously thick oceanic crust. The third, which in turn onlaps the second, is normal oceanic crust with a rough upper surface and no internal reflectors.

  9. Filaments on the Western Iberian Margin: A modeling study

    NASA Astrophysics Data System (ADS)

    Cordeiro, Nuno G. F.; Nolasco, Rita; Cordeiro-Pires, Ana; Barton, Eric D.; Dubert, Jesus

    2015-08-01

    Coastal upwelling filaments off the Western Iberian Margin, detected in AVHRR satellite imagery and in a realistic ROMS simulation of sea surface temperature, were studied in the upwelling seasons (May-October) of 2001-2010. Sea surface temperature data were retrieved from AVHRR satellite imagery and from a realistic ROMS numerical simulation. The development and variability of the observed filaments were characterized and analyzed during each upwelling season of the 10 year period. Filaments were generally found anchored to the main bathymetric and coastal features but off the more regular northern coast of the Western Iberian Margin their locations were more variable. The results from the modeling analysis reproduced well the general features of filament development. Moreover results of model and observation showed very similar characteristics as those found in the earlier study of Haynes et al. (1993). The model output was used to relate filament patterns, eddy activity, and wind forcing. There was a clear relation between upwelling-favorable wind strength and number and length of filaments, although the relation was weaker in the north of the region. Model filaments were clearly related to eddies only during periods of weak winds. The filament detection method was also applied to a climatologically forced ROMS simulation, which reproduced only gross features of the observed and interannually forced model filament development. This suggests that direct wind forcing and its spatial structure are highly important.

  10. Sediment storage and stability along the western Tibetan plateau margin

    NASA Astrophysics Data System (ADS)

    Blthe, J. H.; Munack, H.; Korup, O.

    2012-04-01

    The Indus is one of the major rivers draining the western Tibetan plateau. Many studies have stressed rapid incision and uplift along the river's course through the western Himalayan syntaxis, whereas process rates in the upper reaches near the western Tibetan plateau margin have yet to be quantified. Moreover, little is known about the volumetric amount of sediment that is stored along the low-gradient plateau margin, let alone the potential rates at which this sediment may be released by glacial and fluvial processes. We start filling this knowledge gap by offering a first-order regional quantification of intramontane sediment storage. We compare different geospatial algorithms for objectively delineating sediment storage contained in large valley fills from digital topographic data, and estimate the stored total sediment using a probabilistic volume-area scaling approach. Before applying this scaling to real topography, we conducted a geometrical scaling for different shape factors to quantitatively constrain prediction errors associated with bedrock geometry. Finally, we applied the volume-area scaling to using 90-m SRTM sample data representing different valley types and lithologies in the Ladakh and Zanskar Ranges drained by the upper Indus River. Our estimates show that >40 km3 of sediment are stored in the 15,000 km2 Zanskar catchment, which is mostly an arid bedrock landscape with mean elevations of ~3500 m. Storage potential on hillslopes is limited such that most material is perched along deeply incised reaches (~80%) or infilling low-gradient headwaters (~20%), where the otherwise steep and rugged drainage network of the Zanskar grades into the gently sloping low-relief topography that characterizes the Tibetan Plateau. Sediment storage covers between 3 and 8 % of the total catchment areas of dissected basins. This is consistent with storage estimates from other mountain belts with grossly differing climatic and lithological conditions. However, the fraction of sediment storage may be as high as 25% in low-relief high-elevation basins on the plateau. Depending on published estimates of regional rates of denudation and exhumation, we infer average sediment residence times of ~25 to >260 kyr in this region along the western Tibetan Plateau margin. This estimate is consistent with the preservation and landform ages of some of the oldest glacigenic deposits in the Himalaya-Tibet orogen, and points to the importance of sediment flux and storage in preserving bedrock topography, while providing spatially distributed reservoirs for highly episodic sediment transport events.

  11. Sea level rise and submarine mass failures on open continental margins

    NASA Astrophysics Data System (ADS)

    Smith, D. E.; Harrison, S.; Jordan, J. T.

    2013-12-01

    Submarine mass failures (which include submarine slides or submarine landslides) occur widely on open continental margins. Understanding their cause is of great importance in view of the danger that they can pose both to coastal populations through tsunamis and to the exploitation of ocean floor resources through mass movement of the sea floor. Present knowledge of the causes of submarine mass failures is briefly reviewed, focussing on the role of sea level rise, a process which has previously only infrequently been cited as a cause. It is argued that sea level rise could easily have been involved in at least some of these events by contributing to increased overpressure in sediments of the continental margin whilst causing seismic activity. The Holocene Storegga Slide off South West Norway may have been partly caused by the early Holocene sea level rise in the area, accentuated by meltwater flux from the discharges of Lake Agassiz-Ojibway in North America. Relative sea level rise increased water loading on the Norwegian continental margin, increasing overpressure in the sediments and also causing seismic activity, triggering the Holocene Storegga Slide. Given that some forecasts of future sea level rise are not greatly different from rises which obtained during the early Holocene, the implications of rising sea levels for submarine mass failures in a global warming world are considered.

  12. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2004-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated temperature and excess flux, and magmatism dies off as this rift-restricted material is spent. The buoyancy of the plume-material also elevates the plate boundaries and enhances plate spreading forces initially. The rapid drop in magma productivity to the north correlates with the northern boundary of the wide and deep Cretaceous Vøring Basin, thus less plume material was accommodated off Lofoten. This model predicts that the magma segmentation will show little variation in the geochemical signature.

  13. The dynamics of continental breakup-related magmatism on the Norwegian volcanic margin

    NASA Astrophysics Data System (ADS)

    Breivik, A. J.; Faleide, J. I.; Mjelde, R.

    2007-12-01

    The Vøring margin off mid-Norway was initiated during the earliest Eocene (~54 Ma), and large volumes of magmatic rocks were emplaced during and after continental breakup. In 2003, an ocean bottom seismometer survey was acquired on the Norwegian margin to constrain continental breakup and early seafloor spreading processes. The profile P-wave model described here crosses the northern part of the Vøring Plateau. Maximum igneous crustal thickness was found to be 18 km, decreasing to ~6.5 km over ~6 M.y. after continental breakup. Both the volume and the duration of excess magmatism after breakup is about twice of what is observed off the Møre Margin south of the Jan Mayen Fracture Zone, which offsets the margin segments by ~170 km. A similar reduction in magmatism occurs to the north over an along-margin distance of ~100 km to the Lofoten margin, but without a margin offset. There is a strong correlation between magma productivity and early plate spreading rate, which are highest just after breakup, falling with time. This is seen both at the Møre and the Vøring margin segments, suggesting a common cause. A model for the breakup- related magmatism should be able to (1) explain this correlation, (2) the magma production peak at breakup, and (3) the magmatic segmentation. Proposed end-member hypotheses are elevated upper-mantle temperatures caused by a hot mantle plume, or edge-driven small-scale convection fluxing mantle rocks through the melt zone. Both the average P-wave velocity and the major-element data at the Vøring margin indicate a low degree of melting consistent with convection. However, small scale convection does not easily explain the issues listed above. An elaboration of the mantle plume model by N. Sleep, in which buoyant plume material fills the rift-topography at the base of the lithosphere, can explain these: When the continents break apart, the buoyant plume-material flows up into the rift zone, causing excess magmatism by both elevated temperature and excess flux, and magmatism dies off as this rift-restricted material is spent. The buoyancy of the plume-material also elevates the plate boundaries and enhances plate spreading forces initially. The rapid drop in magma productivity to the north correlates with the northern boundary of the wide and deep Cretaceous Vøring Basin, thus less plume material was accommodated off Lofoten. This model predicts that the magma segmentation will show little variation in the geochemical signature.

  14. Plume-lithosphere interactions near a passive continental margin: a thermo-mechanical modelling study

    NASA Astrophysics Data System (ADS)

    Franois, Thomas; Cloetingh, Sierd; Burov, Evgueni; Matenco, Liviu

    2015-04-01

    Plume head-lithosphere (PLI) interactions have important consequences both for tectonic and mineralogical evolution of the lithosphere and are often considered to be an important factor of continental break-up. Nevertheless, the interaction between plume and post break-up tectonics (i.e. evolution of passive margins) remain unclear. The passive margins represent important geometrical, thermal and rheological barriers that interact with the plume head material during its emplacement below the lithosphere. For example on the Scandinavia's North Atlantic passive margin the large Cenozoic uplift comprised uplift of basin margins as well as accelerated subsidence of basin centres adjacent to the uplifted landmasses while the compressional reactivation coincides with the postulated Iceland-plume events associated with massive magma emplacement. The goal of this study is to understand the role of the Iceland plume in the Cenozoic evolution of the Scandinavia's North Atlantic passive margin. To investigate the interactions between the plume and passive margin we use fully coupled thermo-mechanical 2D numerical code (Flamar v12). The model area is 700 km deep and 1500 km wide comprising rheologically realistic lithosphere and the entire upper mantle Our models have free upper surface boundary, surface erosion, account for the rheological stratification (upper crust, lower crust, lithospheric mantle and asthenosphere), brittle-elastic-ductile rheology, metamorphic phase changes (density and physical properties) and for the specific crustal and thermal structure of the Scandinavia's North Atlantic passive margin. We have tested several parameters including the lateral position of the plume, the rate of extension and the thermo-rheological profile of the continental lithosphere.

  15. Interrelation between rifting, faulting, sedimentation, and mantle serpentinization during continental margin formation

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Schmid, D. W.; Perez-Gussinye, M.; Hartz, E. H.

    2013-12-01

    We explore the conditions under which mantle serpentinization may take place during continental rifting with 2D thermotectonostratigraphic basin models. The basic concept follows the idea that the entire extending continental crust has to be brittle for crustal scale faulting and mantle serpentinization to occur. The new model tracks the rheological evolution of the continental crust and allows for kinetically controlled mantle serpentinization processes. The isostatic and latent heat effects of the reaction are fully coupled to the structural and thermal solutions. A systematic parameter study shows that a critical stretching factor exists for which complete crustal embrittlement and serpentinization occurs. Sedimentation shifts this critical stretching factor to higher values as both deeper burial and the low thermal conductivity of sediments lead to higher crustal temperatures. Serpentinization reactions are therefore only likely in settings with low sedimentation rates and high stretching factors. In addition, we find that the rate of sediment supply has first order controls on the rheology of the lower crust, which may control the overall margin geometry. We further test these concepts in ideas in a case study for the Norwegian margin. In particular, we evaluate whether the inner lower crustal bodies (LCB) imaged beneath the More and Voring margin could be serpentinized mantle. For this purpose we reconstruct multiple 2D transects through a 3D data set. This reconstruction of the Norwegian margin shows that serpentinization reactions are indeed possible and likely during the Jurassic rift phase. Predicted present-day thicknesses and locations of partially serpentinized mantle rocks fit well to information on LCBs from seismic and gravity data. We conclude that some of the inner LCBs beneath the Norwegian margin may, in fact, be partially serpentinized mantle.

  16. Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach

    USGS Publications Warehouse

    Barker, P.F.; Barrett, P.J.; Camerlenghi, A.; Cooper, A. K.; Davey, F.J.; Domack, E.W.; Escutia, C.; Kristoffersen, Y.; O'Brien, P.E.

    1998-01-01

    The Antarctic Ice Sheet is today an important part of the global climate engine, and probably has been so for most of its long existence. However, the details of its history are poorly known, despite the measurement and use, over two decades, of low-latitude proxies of ice sheet volume. An additional way of determining ice sheet history is now available, based on understanding terrigenous sediment transport and deposition under a glacial regime. It requires direct sampling of the prograded wedge of glacial sediments deposited at the Antarctic continental margin (and of derived sediments on the continental rise) at a small number of key sites, and combines the resulting data using numerical models of ice sheet development. The new phase of sampling is embodied mainly in a suite of proposals to the Ocean Drilling Program, generated by separate regional proponent groups co-ordinated through ANTOSTRAT (the Antarctic Offshore Acoustic Stratigraphy initiative). The first set of margin sites has now been drilled as ODP Leg 178 to the Antarctic Peninsula margin, and a first, short season of inshore drilling at Cape Roberts, Ross Sea, has been completed. Leg 178 and Cape Roberts drilling results are described briefly here, together with an outline of key elements of the overall strategy for determining glacial history, and of the potential contributions of drilling other Antarctic margins investigated by ANTOSTRAT. ODP Leg 178 also recovered continuous ultra-high-resolution Holocene biogenic sections at two sites within a protected, glacially-overdeepened basin (Palmer Deep) on the inner continental shelf of the Antarctic Peninsula. These and similar sites from around the Antarctic margin are a valuable resource when linked with ice cores and equivalent sections at lower latitude sites for studies of decadal and millenial-scale climate variation.

  17. Submarine canyon and slope processes of the U.S. Atlantic continental margin

    USGS Publications Warehouse

    McGregor, B.A.

    1983-01-01

    Two regions on the U.S. Atlantic continental margin were surveyed using single-channel, seismic-reflection profiling techniques: the Mid-Atlantic Continental Slope and Rise seaward of New Jersey in the vicinity of Baltimore Canyon and the Continental Slope and upper Rise just north of Cape Hatteras. Submarine canyons are the dominant morphologic feature in both areas. The Continental Slope in the Baltimore Canyon area has a general sea-floor gradient of 3?-4? and a width of approximately 40 km, whereas the study area north of Cape Hatteras has a general sea-floor gradient of approximately 9? and a width of 20 km. The dominant slope process differs in each area. In the Baltimore Canyon area, subbottom reflectors suggest that sediment deposition with progradation of the slope is related to canyon processes. In the study area north of Cape Hatteras, the canyons appear erosional and mass wasting is the dominant erosional process. Dominant slope processes appear to be correlated with the width and sea-floor gradient of the Continental Slope. Although the absolute age of the canyons is difficult to determine without rotary-drill cores for stratigraphic control, Baltimore Canyon is suggested to be older than the shelf-indenting canyon just north of Cape Hatteras. An anomalously large ridge flanking Baltimore Canyon on the upper rise appears to be related to canyon depositional and erosional processes.

  18. Submarine slope failures along the convergent continental margin of the Middle America Trench

    NASA Astrophysics Data System (ADS)

    Harders, Rieka; Ranero, CSar R.; Weinrebe, Wilhelm; Behrmann, Jan H.

    2011-06-01

    We present the first comprehensive study of mass wasting processes in the continental slope of a convergent margin of a subduction zone where tectonic processes are dominated by subduction erosion. We have used multibeam bathymetry along 1300 km of the Middle America Trench of the Central America Subduction Zone and deep-towed side-scan sonar data. We found abundant evidence of large-scale slope failures that were mostly previously unmapped. The features are classified into a variety of slope failure types, creating an inventory of 147 slope failure structures. Their type distribution and abundance define a segmentation of the continental slope in six sectors. The segmentation in slope stability processes does not appear to be related to slope preconditioning due to changes in physical properties of sediment, presence/absence of gas hydrates, or apparent changes in the hydrogeological system. The segmentation appears to be better explained by changes in slope preconditioning due to variations in tectonic processes. The region is an optimal setting to study how tectonic processes related to variations in intensity of subduction erosion and changes in relief of the underthrusting plate affect mass wasting processes of the continental slope. The largest slope failures occur offshore Costa Rica. There, subducting ridges and seamounts produce failures with up to hundreds of meters high headwalls, with detachment planes that penetrate deep into the continental margin, in some cases reaching the plate boundary. Offshore northern Costa Rica a smooth oceanic seafloor underthrusts the least disturbed continental slope. Offshore Nicaragua, the ocean plate is ornamented with smaller seamounts and horst and graben topography of variable intensity. Here mass wasting structures are numerous and comparatively smaller, but when combined, they affect a large part of the margin segment. Farther north, offshore El Salvador and Guatemala the downgoing plate has no large seamounts but well-defined horst and graben topography. Off El Salvador slope failure is least developed and mainly occurs in the uppermost continental slope at canyon walls. Off Guatemala mass wasting is abundant and possibly related to normal faulting across the slope. Collapse in the wake of subducting ocean plate topography is a likely failure trigger of slumps. Rapid oversteepening above subducting relief may trigger translational slides in the middle Nicaraguan upper Costa Rican slope. Earthquake shaking may be a trigger, but we interpret that slope failure rate is lower than recurrence time of large earthquakes in the region. Generally, our analysis indicates that the importance of mass wasting processes in the evolution of margins dominated by subduction erosion and its role in sediment dynamics may have been previously underestimated.

  19. Rift migration explains continental margin asymmetry and crustal hyper-extension.

    PubMed

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  20. Rift migration explains continental margin asymmetry and crustal hyper-extension

    PubMed Central

    Brune, Sascha; Heine, Christian; Pérez-Gussinyé, Marta; Sobolev, Stephan V.

    2014-01-01

    When continents break apart, continental crust and lithosphere are thinned until break-up is achieved and an oceanic basin is formed. The most remarkable and least understood structures associated with this process are up to 200 km wide areas of hyper-extended continental crust, which are partitioned between conjugate margins with pronounced asymmetry. Here we show, using high-resolution thermo-mechanical modelling, that hyper-extended crust and margin asymmetry are produced by steady state rift migration. We demonstrate that rift migration is accomplished by sequential, oceanward-younging, upper crustal faults, and is balanced through lower crustal flow. Constraining our model with a new South Atlantic plate reconstruction, we demonstrate that larger extension velocities may account for southward increasing width and asymmetry of these conjugate magma-poor margins. Our model challenges conventional ideas of rifted margin evolution, as it implies that during rift migration large amounts of material are transferred from one side of the rift zone to the other. PMID:24905463

  1. A Geo-traverse at a Passive Continental Margin: the Tagus Abyssal Plain, West Iberia

    NASA Astrophysics Data System (ADS)

    Afilhado, A.; Matias, L.; Mendes-Victor, L.

    2006-12-01

    The crustal and lithospheric mantle structure was investigated along a 370km profile at the south segment of the west Iberian margin, from 12.9W to 8.7W, at approximately 38N. The profile crosses from inland unthinned continental to oceanic crust, IAM5. Both MCS data and wide-angle, WA, data were considered. WA data set includes 6 OBSs and 2 inland seismic stations. Free air and total field magnetic anomalies profiles were extracted from available grided data. WA data cinematic and dynamic modeling provided a 2D velocity model that proved to be consistent with the free air anomaly profile. 2.5D generalized inversion on pseudo- susceptibility was performed. A Bouguer anomaly grid was calculated and a similar procedure was performed for the undulation of the geoid grid. First and second derivatives grids of this surface and its upward continued surfaces were calculated to locate lineated lows and highs. MCS and WA data sets indicate four main crustal domains. East of 9.4W the complete crustal section of slightly thinned continental crust is present. From 9.4W to 9.7W crustal thinning is abrupt and the lower continental crust pinches out. From 9.7W to 10.5W the transitional crust has a complex structure that varies both horizontally and vertically. Within the eastern most transitional domain the exhumed mid continental crust thins to zero; small scale heterogeneities exist at its lower interface; the under-laying lower crust nature is unknown, correlating both to exhumed continental mantle and to continental gabbros. From 10.2W to 10.5W the transitional crust is very heterogeneous, having higher than usual density at its upper levels; the absence of Moho reflections suggests that exhumed and intruded mantle might be present at the lower transitional crust. West of 10.5W thin oceanic crust is found, probably generated in a slow spreading environment; around 12W the data suggests a very thin or even absent layer 3. Deep reflectors imaged within the oceanic domain and transitional domain suggests a layered structure for the lithospheric mantle. The location of the main features and trend changes seen on the magnetic anomaly and the Bouguer anomaly maps are compatible to the seismically defined transition to the oceanic domain. Both magnetic and free air profiles modeling are also consistent to a major rock property contrast at this location. Minor features within the oceanic domain indicate some variability of the mass and magnetic dipoles distribution that might be related to different cross cutting of the segment axis and/or non stationary thermo-mechanical conditions of the sea floor spreading process. From 9.4W to the foot of the continental slope, at 10.2W, in a 65km distance, the Bouguer anomaly strongly increases due both to continental crust thinning and Moho shallowing. Magnetic anomalies having peak to peak values of 30 to 90nT and wave length of at least 30km plus the high density blocks modeled at shallow levels, indicate that dense and magnetic rocks should be present at the continental margin. A large body of exhumed continental mantle at the OCT is hardly supported by the data. Even so, the eastern 35km segment of the abyssal plain adjacent to the continental margin is a mass excess segment, bordered by significant magnetic anomalies, in good agreement to an intruded and partly ultramafic lower transitional crust, as suggested by the seismic data.

  2. Evolution of Northeast Atlantic Magmatic Continental Margins from an Ethiopian-Afar Perspective

    NASA Astrophysics Data System (ADS)

    England, R. W.; Cornwell, D. G.; Ramsden, A. M.

    2014-12-01

    One of the major problems interpreting the evolution of magmatic continental margins is that the structure which should record the pre-magmatic evolution of the rift and which potentially influences the character of the rifting process is partially or completely obscured by thick basalt lava flows and sills. A limited number of deep reflection seismic profiles acquired with tuned seismic sources have penetrated the basalts and provide an image of the pre-magmatic structure, otherwise the principle data are lower resolution wide-angle/refraction profiles and potential field models which have greater uncertainties associated with them. In order to sidestep the imaging constraints we have examined the Ethiopian - Afar rift system to try to understand the rifting process. The Main Ethiopian rift contains an embryonic magmatic passive margin dominated by faulting at the margins of the rift and en-echelon magmatic zones at the centre. Further north toward Afar the rift becomes in-filled with extensive lava flows fed from fissure systems in the widening rift zone. This rift system provides, along its length, a series of 'snapshots' into the possible tectonic evolution of a magmatic continental margin. Deep seismic profiles crossing the NE Atlantic margins reveal ocean dipping reflector sequences (ODRS) overlying extended crust and lower crustal sill complexes of intruded igneous rock, which extend back beneath the continental margin. The ODRS frequently occur in fault bounded rift structures along the margins. We suggest, by analogy to the observations that can be made in the Ethiopia-Afar rift that these fault bounded basins largely form at the embryonic rift stage and are then partially or completely filled with lavas fed from fissures which are now observed as the ODRS. Also in the seismic profiles we identify volcanic constructs on the ODRS which we interpret as the equivalent of the present day fissure eruptions seen in Afar. The ocean ward dip on the ODRS is predominantly the result of post-eruption differential subsidence, as opposed to syn-eruption extension. The timing of intrusion of the lower crustal sill complexes remains unclear but they are most likely to have been emplaced as the supply of magma increased, which implies they are a late stage addition.

  3. Geometry of the neoproterozoic and paleozoic rift margin of western Laurentia: Implications for mineral deposit settings

    USGS Publications Warehouse

    Lund, K.

    2008-01-01

    The U.S. and Canadian Cordilleran miogeocline evolved during several phases of Cryogenian-Devonian intracontinental rifting that formed the western mangin of Laurentia. Recent field and dating studies across central Idaho and northern Nevada result in identification of two segments of the rift margin. Resulting interpretations of rift geometry in the northern U.S. Cordillera are compatible with interpretations of northwest- striking asymmetric extensional segments subdivided by northeast-striking transform and transfer segments. The new interpretation permits integration of miogeoclinal segments along the length of the western North American Cordillera. For the U.S. Cordillera, miogeoclinal segments include the St. Mary-Moyie transform, eastern Washington- eastern Idaho upper-plate margin, Snake River transfer, Nevada-Utah lower-plate margin, and Mina transfer. The rift is orthogonal to most older basement domains, but the location of the transform-transfer zones suggests control of them by basement domain boundaries. The zigzag geometry of reentrants and promontories along the rift is paralleled by salients and recesses in younger thrust belts and by segmentation of younger extensional domains. Likewise, transform transfer zones localized subsequent transcurrent structures and igneous activity. Sediment-hosted mineral deposits trace the same zigzag geometry along the margin. Sedimentary exhalative (sedex) Zn-Pb-Ag ??Au and barite mineral deposits formed in continental-slope rocks during the Late Devonian-Mississippian and to a lesser degree, during the Cambrian-Early Ordovician. Such deposits formed during episodes of renewed extension along miogeoclinal segments. Carbonate-hosted Mississippi Valley- type (MVT) Zn-Pb deposits formed in structurally reactivated continental shelf rocks during the Late Devonian-Mississippian and Mesozoic due to reactivation of preexisting structures. The distribution and abundance of sedex and MVT deposits are controlled by the polarity and kinematics of the rift segment. Locally, discrete mineral belts parallel secondary structures such as rotated crustal blocks at depth that produced sedimentary subbasins and conduits for hydrothermal fluids. Where the miogeocline was overprinted by Mesozoic and Cenozoic deformation and magmatism, igneous rock-related mineral deposits are common. ??2008 Geological Society of America.

  4. Ocean Drilling Program Leg 178 (Antarctic Peninsula): Sedimentology of glacially influenced continental margin topsets and foresets

    USGS Publications Warehouse

    Eyles, N.; Daniels, J.; Osterman, L.E.; Januszczak, N.

    2001-01-01

    Ocean Drilling Program Leg 178 (February-April 1998) drilled two sites (Sites 1097 and 1103) on the outer Antarctic Peninsula Pacific continental shelf. Recovered strata are no older than late Miocene or early Pliocene (<4.6 Ma). Recovery at shallow depths in loosely consolidated and iceberg-turbated bouldery sediment was poor but improved with increasing depth and consolidation to allow description of lithofacies and biofacies and interpretation of depositional environment. Site 1097 lies on the outer shelf within Marguerite Trough which is a major outlet for ice expanding seaward from the Antarctic Peninsula and reached a maximum depth drilled of 436.6 m below the sea floor (mbsf). Seismic stratigraphic data show flat-lying upper strata resting on strata that dip gently seaward. Uppermost strata, to a depth of 150 mbsf, were poorly recovered, but data suggest they consist of diamictites containing reworked and abraded marine microfauna. This interval is interpreted as having been deposited largely as till produced by subglacial cannibalization of marine sediments (deformation till) recording ice sheet expansion across the shelf. Underlying gently dipping strata show massive, stratified and graded diamictite facies with common bioturbation and slump stuctures that are interbedded with laminated and massive mudstones with dropstones. The succession contains a well-preserved in situ marine microfauna typical of open marine and proglacial marine environments. The lower gently dipping succession at Site 1097 is interpreted as a complex of sediment gravity flows formed of poorly sorted glacial debris. Site 1103 was drilled in that part of the continental margin that shows uppermost flat-lying continental shelf topsets overlying steeper dipping slope foresets seaward of a structural mid-shelf high. Drilling reached a depth of 363 mbsf with good recovery in steeply dipping continental slope foreset strata. Foreset strata are dominated by massive and chaotically stratified diamictites interbedded with massive and graded sandstones and mudstones. The sedimentary record and seismic stratigraphy is consistent with deposition on a continental slope from debris flows and turbidity currents released from a glacial source. Data from Sites 1097 and 1103 suggest the importance of aggradation of the Antarctic Peninsula continental shelf by tilt deposition and progradation of the slope by mass flow. This may provide a model for the interpretation of Palaeozoic and Proterozoic glacial successions that accumulated on glacially influenced continental margins.

  5. Modelling of Continental Lithosphere Breakup and Rifted Margin Formation in Response to an Upwelling Divergent Flow Field Incorporating a Temperature Dependent Rheology

    NASA Astrophysics Data System (ADS)

    Tymms, V. J.; Kusznir, N. J.

    2005-05-01

    We numerically model continental lithosphere deformation leading to breakup and sea floor spreading initiation in response to an imposed upwelling and divergent flow field applied to continental lithosphere and asthenosphere. The model is used to predict rifted continental margin lithosphere thinning and temperature structure. Model predictions are compared with observed rifted margin structure for four diverse case studies. Prior to application of the upwelling divergent flow field the continental lithosphere is undeformed with a uniform temperature gradient. The upwelling divergent flow field is defined kinematically using boundary conditions consisting of the upwelling velocity Vz at the divergence axis and the half divergence rate Vx . The resultant velocity field throughout the continuum is computed using finite element (FE) code incorporating a Newtonian temperature dependent rheology. The flow field is used to advect the continental lithosphere material and lithospheric and asthenospheric temperatures. Viscosity structure is hence modified and the velocities change correspondingly in a feedback loop. We find the kinematic boundary conditions Vz and Vx to be of first order importance. A high Vz/Vx (greater than10), corresponding to buoyancy assisted flow, leads to minimal mantle exhumation and a well defined continent ocean transition consistent with observations at volcanic margins. For Vz/Vx near unity, corresponding to plate boundary driven divergence, mantle exhumation over widths of up to 100 km is predicted which is consistent with observations at non-volcanic margins. The FE method allows the upwelling velocity Vz to be propagated upwards from the top of the asthenosphere to the Earth's surface without the requirement of imposing Vx. When continental breakup is achieved the half divergence velocity Vx can be applied at the lithosphere surface and the upwelling velocity Vz left free. We find this time and space dependent set of boundary conditions is more plausible than a constant corner flow type solution and predicts levels of depth dependent stretching and continent ocean transitions consistent with observation. Depth dependent lithosphere stretching, which is observed at rifted continental margins, is predicted to occur before continental breakup and sea-floor spreading initiation. The model may be used to predict surface heat flow and bathymetry, and to provide estimates of melt production rates and cumulative thickness. We compare model predictions with observed margin structure for four diverse rifted margins: the Lofoten Margin (a mature volcanic margin), Goban Spur (a mature non-volcanic margin), the Woodlark Basin (a neotectonic young ocean basin) and the Faroe-Shetland Basin (a failed attempt at continental breakup). This work forms part of the NERC Margins iSIMM project. iSIMM investigators are from Liverpool and Cambridge Universities, Badley Geoscience & Schlumberger Cambridge Research supported by the NERC, the DTI, Agip UK, BP, Amerada Hess Ltd, Anadarko, Conoco¬Phillips, Shell, Statoil and WesternGeco. The iSIMM team comprises NJ Kusznir, RS White, AM Roberts, PAF Christie, A Chappell, J Eccles, R Fletcher, D Healy, N Hurst, ZC Lunnon, CJ Parkin, AW Roberts, LK Smith, V Tymms & R Spitzer.

  6. Sedimentary sequences of the Pacific-Indian Ocean sector of the Antarctic continental margin

    SciTech Connect

    Cooper, A.; Eittreim, S. ); Anderson, J. ); Stagg, H. )

    1990-06-01

    Seismic-reflection data across the Pacific-Indian Ocean sector of the Antarctic continental margin commonly reveal preglacial and glacial sedimentary sections up to 14 km thick. In this sector, diverse tectonic regimes have controlled the locations of preglacial rift deposits as well as glacial-till deltas. These regimes include major rift embayments, passive margins, formerly active and presently active margins, and active rifts. The sedimentary sections are principally of Mesozoic and Cenozoic age, although Paleozoic strata may exist at great depth. The upper parts of these sections commonly comprise prograding and aggrading sigmoidal sequences that are separated by unconformities and are up to 6 km thick. Where drilled in Prydz Bay and the Ross Sea, these upper sequences are solely glacial marine rocks of early Oligocene and younger age. The lower portions of the sections are commonly well-layered sequences that infill structural basins. The evolution of these sedimentary sequences is strongly controlled by extensional tectonic processes. Depocenters are located primarily within rift structures that formed initially during Gondwana breakup and later during magmatic-arc development. Rift-related deposits fill the basement grabens and are unconformably covered by glacial-till deltas. The till deltas apparently have been deposited beneath and at the front of former grounded ice sheets that selectively moved through rift embayments and over thermally subsiding margins. Since initial Cenozoic glaciation, these thick till deltas have prograded the continental shelf edge up to 70 km seaward to its present location. The sedimentary sequences underlying the Antarctic margin hold a record of Antarctic (Gondwana) rifting and glaciation - a record that would, if drilled, greatly improve their understanding of global climate and sea-level changes.

  7. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jrg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  8. Continental Margins and the Law of the Sea - an `Arranged Marriage' with Huge Research Potential

    NASA Astrophysics Data System (ADS)

    Parson, L.

    2005-12-01

    The United Nations Convention on the Law of the Sea (UNCLOS) requires coastal states intending to secure sovereignty over continental shelf territory extending beyond 200 nautical miles to submit geological/geophysical data, along with their analysis and synthesis of the relevant continental margin in support of their claim. These submissions are scrutinised and assessed by a UN Commission of experts who decide if the claim is justified, and thereby ultimately allowing the exploitation of non-living resources into this extended maritime space. The amount of data required to support the case will vary from margin to margin, depending on the local geological evolution, but typically will involve the running of new, dedicated marine surveys, mostly bathymetric and seismic. Key geological/geophysical issues revolve around proof of `naturalness' of the prolongation of land mass (cue - wide-angle seismics, deep drilling and sampling programmes) and shelf and slope morphology and sediment section thickness (cue - swath bathymetry and multichannel seismics programmes). These surveys, probably primarily funded by government agencies anxious not to lose out on the `land grab', will generate datasets which will inevitably boost not only the research effort leading to increased understanding of margin evolution in academic terms, but also contribute to wider applied aspects of the work such as those leading to refinement of deepwater hydrocarbon resource potential. It is conservatively estimated that in the region of fifty coastal states world-wide have a significant potential for claiming continental shelf beyond 200 nautical miles, and that the total area available as extended shelf could easily exceed 7 million square kilometres. However, while for the vast majority of these states a UNCLOS deadline of 2009 exists for submitting a claim - to date only four have done so (Russia, Brazil, Australia and Ireland). It is therefore predictable, if not inevitable, that within the next four years an unprecedented phase of surveying and analysis on margins will take place in order to prepare for the deadline. The international scientific community as a whole must recognise the potential for research in this work and ensure the data is made available as soon as practically possible for the scientific community. In conclusion, by way of a reality check, this presentation highlights the likely areas of most intense UNCLOS-driven research activity up to 2009, the type of data acquisition anticipated and their likely location, and speculates on the areas of understanding of margin evolution which will be most advanced by this process.

  9. Ophiolitic basement to the Great Valley forearc basin, California, from seismic and gravity data: Implications for crustal growth at the North American continental margin

    USGS Publications Warehouse

    Godfrey, N.J.; Beaudoin, B.C.; Klemperer, S.L.; Levander, A.; Luetgert, J.; Meltzer, A.; Mooney, W.; Trehu, A.

    1997-01-01

    The nature of the Great Valley basement, whether oceanic or continental, has long been a source of controversy. A velocity model (derived from a 200-km-long east-west reflection-refraction profile collected south of the Mendocino triple junction, northern California, in 1993), further constrained by density and magnetic models, reveals an ophiolite underlying the Great Valley (Great Valley ophiolite), which in turn is underlain by a westward extension of lower-density continental crust (Sierran affinity material). We used an integrated modeling philosophy, first modeling the seismic-refraction data to obtain a final velocity model, and then modeling the long-wavelength features of the gravity data to obtain a final density model that is constrained in the upper crust by our velocity model. The crustal section of Great Valley ophiolite is 7-8 km thick, and the Great Valley ophiolite relict oceanic Moho is at 11-16 km depth. The Great Valley ophiolite does not extend west beneath the Coast Ranges, but only as far as the western margin of the Great Valley, where the 5-7-km-thick Great Valley ophiolite mantle section dips west into the present-day mantle. There are 16-18 km of lower-density Sierran affinity material beneath the Great Valley ophiolite mantle section, such that a second, deeper, "present-day" continental Moho is at about 34 km depth. At mid-crustal depths, the boundary between the eastern extent of the Great Valley ophiolite and the western extent of Sierran affinity material is a near-vertical velocity and density discontinuity about 80 km east of the western margin of the Great Valley. Our model has important implications for crustal growth at the North American continental margin. We suggest that a thick ophiolite sequence was obducted onto continental material, probably during the Jurassic Nevadan orogeny, so that the Great Valley basement is oceanic crust above oceanic mantle vertically stacked above continental crust and continental mantle.

  10. Neotectonics and basin development at a continental/island arc transition in the Western Alaska Peninsula shelf

    SciTech Connect

    Newcomb, K.R.

    1985-01-01

    A transition in shelf structure occurs between the eastern Alaska Peninsula and the Aleutians. In the east, compressive structures striking parallel to the margin characterize the outer shelf off of Kodiak, Chirikov, and Semidi Islands. Further to the west, multichannel seismic (MSC) data exhibit a systematic transition in style of deformation and orientation of recently active structures in the shelf region of the Shumagin and Sanak Islands. In this area, deformation near the trench slope break is manifested by drapelike folds and normal faults striking parallel to the margin. In contrast, further west between the Shumagin and Sanak Island, MCS profiles for the shelf region reveal basement-involved extensional structures transverse to the margin that have controlled the development of the Sanak and East Sanak Basis. These fault bounded basins have hanging wall sequences with syndepositional rotational displacements over normal faults, indicating a protracted history of extensional faulting and basin subsidence. Present displacement is indicated by the effects of many of the faults upon the uppermost basin and shelf strata, which in some cases offset the sea floor. The aforementioned systematic change in shelf structure of the Alaska Peninsula is coincident with an arcward shift in bathymetric contours of the trench and slope. This transition zone, from margin-parallel compressive structures in the east, to margin-transverse extensional structures in the west, coincides with the continental to island arc transition in the North American plate that reflects the ancient Beringian margin of western Alaska.

  11. Tertiary evolution and petroleum potential of Oregon-Washington continental margin

    SciTech Connect

    Snavely, P.D. Jr.

    1986-07-01

    The Oregon-Washington continental margin was the site of a deep marginal basin in which more than 7000 m of Tertiary sedimentary and volcanic rocks accumulated. Oceanic basalts of Paleocene to early Eocene age form the basin floor and are interpreted to represent eruptions in an elongate trough formed by rifting of the continental margin. Middle Eocene turbidite sandstone overlapped both the oceanic crust and the pre-Tertiary rocks of the Klamath Mountains, thus indicating that suturing of the Coast Range-Olympic terrane to North America was about 50 Ma. Oblique convergence between the Farallon and North American plates occurred during most of the middle Eocene to middle Miocene. Sedimentation, punctuated by episodes of volcanism, was essentially continuous in a forearc basin whose axis lay along the present inner continental shelf. The oblique interaction between the plates was interrupted by two periods of more head-on convergence during the middle late Eocene and late middle Miocene. Thick accretionary melange wedges of Eocene and of late Oligocene to late middle Miocene ages were formed during these strongly compressive episodes. Geochemical analyses indicate that the accretionary melange wedges, which crop out along the west side of the Olympic Peninsula and beneath the adjacent shelf, have the highest potential for oil and gas generation. They are the source rocks for numerous gas seeps and oil and gas shows in exploratory wells, and for the 12,000 bbl of 38.9 /sup 0/ API paraffin-based oil produced from a well drilled on the southwest Washington coast. Potential exploration targets exist where the Eocene and Oligocene-Miocene melanges are underplated to a position beneath the lower Eocene oceanic basalt. Hydrocarbons generated in the melanges could migrate upward into structures in strata that overlie the basalt in the upper plate.

  12. Crustal structure of the northern Nova Scotia rifted continental margin (eastern Canada)

    NASA Astrophysics Data System (ADS)

    Funck, Thomas; Jackson, H. Ruth; Louden, Keith E.; Dehler, Sonya A.; Wu, Yue

    2004-09-01

    The Nova Scotia continental margin off eastern Canada marks a transition from a volcanic to a nonvolcanic style of rifting. The northern (nonvolcanic) segment of the margin was studied by a 490-km-long refraction seismic line with dense air gun shots, coincident with previous deep reflection profiles. A P wave velocity model was developed from forward and inverse modeling of the wide-angle data from 19 ocean bottom seismometers and coincident normal incidence reflection profiles. The continental crust has a maximum thickness of 36 km and is divided into three layers with velocities of 5.7-6.9 km/s. Crustal thinning down to 3 km occurs in a 180-km-wide zone and the sediment cover in this area is up to 15 km thick. Farther seaward, a 150-km-wide transition zone is observed with a 5-km-thick lower layer (7.2-7.6 km/s) interpreted as partially serpentinized mantle. At the landward end, this layer is overlain by highly altered continental crust (5.4 km/s) extending up to the seaward limit of the Jurassic salt province. Farther seaward, the upper layer is interpreted as exhumed and highly serpentinized mantle (5.1 km/s) separated from the lower layer by subhorizontal reflectivity, which probably represents a serpentinization front. Oceanic crustal thickness is 4 km with layer 2 velocities of 4.6-5.0 km/s. Layer 3 velocities of 6.4-6.55 km/s are lower than typical lower oceanic crust velocities but consistent with a low magma supply and increased tectonism as observed on the reflection profile. This reduced magma production might be related to the proximity of the Newfoundland transform margin.

  13. Stratigraphic evolution of Mesozoic continental margin and oceanic sequences northwest Australia and north Himalayas

    SciTech Connect

    Gradstein, F.M. ); Von Rad, U. )

    1990-05-01

    The authors are investigating continental margin to ocean sequences of the incipient Indian Ocean as it replaced central Tethys. Objectives of this study are the dynamic relation between sedimentation, tectonics, and paleogeography. Principal basins formation along the northern edge of eastern Gondwana started in the Late Permian to the Triassic. By the Late Triassic-Early Jurassic, platform carbonates with thin, organic-rich lagoonal shales were laid down in a subtropical climate. This unit, which harbors some of the oldest known nannofossils, shows repeated shallowing-upward sequences. Subsequent southward drift of the Gondwana margin during the Middle Jurassic increased siliciclastic input in Nepal, when widespread sediment starvation or erosion during local uplift took place off parts of northwest Australia. A middle Callovian-early Oxfordian hiatus in Nepal is submarine and appears global in extent. The overlying 250-m-thick organic-rich black shales, correlative to the Oxford/Kimmeridge clays of circum-Atlantic petroleum basins, may be traced along the northern Himalayan Range, and probably represent an extensive continental slope deposit formed under an oxygen minimum layer in southern Tethys. The deposit's diverse foraminiferal microfauna was previously only known from boreal Laurasia. The Callovian breakup unconformity, off northwest Australia, precedes onset of sea-floor spreading at least 15-25 Ma. Sea-floor spreading, leading to the present Indian Ocean started in the Argo Abyssal Plain around 140 Ma, at the end of the Jurassic, was about 15 m.y. later than previously postulated. Australia and Greater India separated as early as the Late Valanginian, about 130 Ma. Mafic volcaniclastics in Nepalese deltaic sediments probably testify to concurrent continental margin volcanic activity, which may be a precursor to the slightly younger Rajmahal traps in eastern India.

  14. Structure maps and seismic stratigraphy of the Yakataga segment of the continental margin, northern Gulf of Alaska

    USGS Publications Warehouse

    Bruns, T.R.; Schwab, W.C.

    1983-01-01

    Multichannel seismic-reflection data show the late Cenozoic structure, seismic stratigraphy, and geologic history of the Yakataga segment of the continental margin, between Icy Bay and Kayak Island, northern Gulf of Alaska. The structure of the Yakataga segment consists of broad folds and associated thrust faults beneath the continental shelf and slope, trending generally northeast in the eastern part of the s~gment to east-west in the western part. Anticlines are generally asymmetric and doubly plunging and are commonly bounded on the seaward side by high-angle thrust faults. The degree of deformation is less intense than is observed in adjacent onshore areas. The age of deformation decreases seaward and the deformation shows an overall southeastward migration with time. Structures of similar age define three structural zones; structural growth was roughly contemporaneous in each structural zone, although the local growth pattern is complex in detail. Deformation within each structural zone was followed by subsidence and burial by rapidly deposited marine sediment. Deformation appears to have been continuous during the late Cenozoic, rather than a series of discrete events, because subsidence of a particular structural zone is accompanied by initiation of growth on a younger, more seaward zone. Varying degrees of reactivation of the older structures within recent time have resulted in renewed uplift of these structures. Average sedimentation, uplift, and subsidence rates are all extremely high, and generally range from about 1 to 2 m/1,000 yr; these rates can locally be much higher. The average strike of structures in the Yakataga segment indicates northwest-southeastward compression and is consistent with the current convergence direction between the Pacific and North America plates. Observed shortening within the segment is much less than required by the late Cenozoic convergence rate (about 6 cm/yr), and the major deformation is taken up elsewhere, primarily onshore. Thus, the deformation of the Yakataga segment is caused by minor shortening of the continental margin between Cross Sound and Kayak Island, which together comprise the Yakutat block, as the margin moves northwestward with the Pacific plate and collides with the North America plate.

  15. Submarine mass wasting features at the southern central Chilean continental margin - a new database

    NASA Astrophysics Data System (ADS)

    Voelker, David; Geersen, Jacob; Weinrebe, Willi R.; Behrmann, Jan H.

    2010-05-01

    Based on an extensive set of swath bathymetry data that was obtained on 12 cruises and cover about 72% of the Chilean continental margin between 33S and 43S, up to now more than 60 submarine mass wasting features were detected, mapped and described. They form a wide spectrum in size, apparent slide mechanism and volume. Most of them are small if compared to mass wasting features on passive continental margins. We analyze the database with the aim to determine the main tectonic preconditioning factors for mass wasting along this densely populated partof the Chilean coastline. Major factorsare (1) slope undercutting by the incision of erosive submarine canyons, (2) slope oversteepening by active folding and faulting,and (3) accretionary wedge collapse due to localized sediment underplating and/or frontal accretion. A major stratigraphic control on mass wasting may be in the form of offshore deposition of thick volcanic ash fallout of the Southern Volcanic Zone of Chile. Also fluid seepage from overpressured faults tapping dewatering subducted sediments at depth may contribute to destabilization of sediments on the continental slope. Obvious triggers are the large thrust earthquakes that shake the region with a historical recurrence time of ~ 150 y. About half of the features are directly related to the active submarine canyons on the forearc. The collapse of canyon walls partly impinges on the open slope where thin translational slides detach from discrete horizons . Apart from the slides directly related to canyons, we identified medium-sized (5-25 km3) blocky slides that affect the lowermost continental slope, and small spoon-shaped headscarps of slides, which deliver their material into slope basins. A particular feature is given by Valdes Slide which developed on an upper slope thrust ramp , with mass wasting directed landward. There is no straight-forward relationship between simple geomorphic parameters such als slope gradient or curvature, and the spatial distribution of slump features, as was previously observed e.g. offshore the Pacific coast of Nicaragua. The database will serve as comparison to other regional datasets of convergent margins such as for Central America, but also to the COSTA database of mass wasting features on the North Atlantic passive margin.

  16. Si-WEBS, a European network for the study of Si fluxes on continental margins

    NASA Astrophysics Data System (ADS)

    Ragueneau, O.; Si-Webs Team

    2003-04-01

    Diatoms play an essential role in the export of carbon (C) towards both higher trophic levels and the deep ocean. They have a crucial need for silicon (Si) to build their frustule, but this element has clearly been neglected in studies of carbon and nutrient (N, P) fluxes in continental margins. Over the last 20 years however, coastal ecosystems of temperate regions became particularly sensitive to declining Si:N and Si:P nutrient ratios. Such declines have been related to increased eutrophication and the build-up of dams in river systems. As a result of these anthropogenic perturbations, many ecosystems have switched from nitrate limitation to silicic acid (DSi) limitation, with important consequences for phytoplankton dynamics (from diatoms to less desirable species) and cascading effects on pelagic and benthic food webs. Short-term consequences of Si availability on the shelf mostly affect the resource whereas long-term consequences may affect carbon dioxide (CO2) sequestration on the shelf and the auxiliary biological pump. Continental margins also play a filtering role so that changes in Si delivery to the hydrosphere and/or retention along the Land-Ocean-Continuum (LOC) may have a long-term impact on the oceanic C cycle. Here, we suggest an approach to improve our understanding of (1) the role of Si in the functioning of coastal ecosystems and (2) Si delivery to the open ocean at global scale. This approach implies (1) extending the LOICZ budgeting approach to the element Si to derive worldwide Si budgets on continental margins; (2) improving our knowledge of the processes that control Si transformations along the LOC. The EU-SiWEBS Research Training Network (2002-2006) will work in this last direction, by (a) improving the parameterization of the Si cycle in three river, coastal zone and open ocean models, (b) building quantitative modeling tools to describe Si transformations along the land-ocean continuum, and (c) using these tools to evaluate the ecological, biogeochemical and socio-economical consequences of natural and anthropogenic perturbations of the Si cycle. Although centered on coastal zone processes, SiWEBS will clearly build links towards the two ends of continental margins, by linking the terrestrial and aquatic Si cycles and by providing a means of quantifying temporal variations in Si river inputs to the global ocean.

  17. Controlled-Source Seismic Survey to Constrain Evolution of the Continental Cratonic Margin in Idaho and Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Petit, R.; Davenport, K.; Hole, J. A.; Harder, S.; Tikoff, B.; Russo, R. M.; Vervoort, J. D.; Han, L.; Sabey, L.; Wang, K.

    2012-12-01

    In August 2012, crustal-scale wide-angle reflection and refraction data were collected across Idaho and eastern Oregon. A unique feature of this area is the narrow juxtaposition between the North American continental craton and accreted oceanic terranes. This narrowness is a result of the sub-vertical Western Idaho Shear Zone (WISZ) formed by late Cretaceous transpression. Geochemical studies suggest that the crustal portion of the WISZ was offset 120-150 km east of the lithospheric mantle portion by Sevier thrusting. Post-WISZ, the cratonic margin has been modified by emplacement of the Idaho Batholith east of the WISZ, Eocene extension and related Challis volcanism, and Miocene extension associated with the Basin and Range and Columbia River Basalts. The seismic survey is part of the multidisciplinary IDOR project, funded by Earthscope, encompassing geochemistry, geochronology, structural geology, and broadband and controlled-source seismology. IDOR's goal is to understand how the steep continental margin modified and was modified by magmatism and deformation that occurred since its formation. Primary targets at depth include the deep geometry of the WISZ, the root of the Idaho Batholith, and deep signatures of Cenozoic extension. The 440 km long seismic line, running from the accreted terranes in the west, across the shear zone, the Idaho Batholith and beyond, is long enough to obtain reflections from the Moho and refractions from upper mantle. Along this line a crew of over 60 volunteers from twenty-two different universities deployed ~2600 vertical component seismometers at a 100-200 meter spacing. These instruments recorded the energy from nine 2000 pound explosive shots. These data will be used to produce a seismic velocity and structure model of the crust and upper-most mantle. Preliminary data and observations will be presented.

  18. The George V Land Continental Margin (East Antarctica): new Insights Into Bottom Water Production and Quaternary Glacial Processes from the WEGA project

    NASA Astrophysics Data System (ADS)

    Caburlotto, A.; de Santis, L.; Lucchi, R. G.; Giorgetti, G.; Damiani, D.; Macri', P.; Tolotti, R.; Presti, M.; Armand, L.; Harris, P.

    2004-12-01

    The George Vth Land represents the ending of one of the largest subglacial basin (Wilkes Basin) of the East Antarctic Ice Sheet (EAIS). Furthermore, its coastal areas are zone of significant production of High Salinity Shelf Water (HSSW). Piston and gravity cores and high resolution echo-sounding (3.5 kHz) and Chirp profiles collected in the frame of the joint Australian and Italian WEGA (WilkEs Basin GlAcial History) project provide new insights into the Quaternary history of the EAIS and the HSSW across this margin: from the sediment record filling and draping valleys and banks along the continental shelf, to the continuous sedimentary section of the mound-channel system on the continental rise. The discovery of a current-lain sediment drift (Mertz Drift, MD) provides clues to understanding the age of the last glacial erosive events, as well as to infer flow-pathways of bottom-water masses changes. The MD shows disrupted, fluted reflectors due to glacial advance during the LGM (Last Glacial Maximum) in shallow water, while undisturbed sediment drift deposited at greater water depth, indicates that during the LGM the ice shelf was floating over the deep sector of the basin. The main sedimentary environment characterising the modern conditions of the continental rise is dominated by the turbiditic processes with a minor contribution of contour currents action. Nevertheless, some areas (WEGA Channel) are currently characterised by transport and settling of sediment through HSSW, originating in the shelf area. This particular environment likely persisted since pre-LGM times. It could indicate a continuous supply of sedimentary material from HSSW during the most recent both glacial and interglacial cycles. This would be consistent with the results obtained in the continental shelf suggesting that the Ice Sheet was not grounding over some parts of the continental shelf. Furthermore, the comparison of the studied area with other Antarctic margins indicate that, contrary to what happens on the Antarctic Peninsula margin, the relation between the Quaternary sedimentation and the glacial - interglacial cycles are less evident in the lithofacies observed on the continental rise area. This characteristic suggests a different glacial dynamic along the Wilkes Land continental margin that is less sensitive to the small climatic changes, with respect to the western (Antarctic Peninsula) margin.

  19. Sources, sinks and long-term cycling of iodine in the hyperarid Atacama continental margin

    NASA Astrophysics Data System (ADS)

    Álvarez, Fernanda; Reich, Martin; Pérez-Fodich, Alida; Snyder, Glen; Muramatsu, Yasuyuki; Vargas, Gabriel; Fehn, Udo

    2015-07-01

    The Atacama region in northern Chile hosts the driest desert on Earth and is the world's premier iodine production province. The origin of iodine enrichment in Atacama is controversial and fundamentally different processes have been invoked over the years that involve marine, eolian and more recently deep sedimentary fluid and groundwater sources. As a result of the very limited geochemical iodine data in Atacama and the western South American margin, the origin of iodine enrichment in this region still remains elusive. In this study, we present a comprehensive survey of iodine concentrations and isotopic ratios (129I/I) of different reservoirs in the Atacama Desert of northern Chile, including nitrate soils, supergene copper deposits, marine sedimentary rocks, geothermal fluids, groundwater and meteoric water. Nitrate soils along the eastern slope of the Coastal Cordillera are found to have mean iodine concentrations of at least three orders of magnitude higher than the mean crustal abundances of ∼0.12 ppm, with a mean concentration of ∼700 ppm. Soils above giant copper deposits in the Central Depression are also highly enriched in iodine (100's of ppm range), and Cu-iodide and iodate minerals occur in the supergene enrichment zones of some of these deposits. Further east in the Precordillera, Jurassic sedimentary shales and limestones show above-background iodine concentrations, the latter averaging ∼50 ppm in the southern portion of the study area. The highest iodine concentrations in fluids were measured in groundwater below nitrate soils in the Coastal Range (∼3.5-10 ppm) and in geothermal waters (1-3 ppm) along the volcanic arc. Although highly variable, the iodine isotopic ratios (129I/I) of Jurassic marine sedimentary rocks (∼300-600 × 10-15), nitrate soils (∼150-1500 × 10-15) and waters (∼215 × 10-15) are consistently low (<1500 × 10-15), indicating that recent anthropogenic additions are almost negligible in most surficial and deeper reservoirs. Geochemical mixing models reveal that the measured 129I/I ratios in Atacama are in agreement with multiple sources of iodine that include variable contributions from old organic iodine sources (i.e., marine sedimentary rocks) and younger fluids such as pore waters, geothermal fluids and meteoric waters. Our results show that the large variation observed in the iodine isotopic ratios of different reservoirs (129I/I from 150 to 1580 × 10-15) is indicative of significant mixing and circulation of fluids of meteoric, sedimentary and volcanic origin along the Chilean continental margin in the last 30 million years. We conclude that this protracted and large-scale fluid flow was driven by tectonic uplift and highly influenced by the climatic history of the Atacama Desert. The combination of such factors has played an unforeseen role in transporting and accumulating iodine and other soluble components in the Atacama region, and is evidence that elemental remobilization is a key process in the overall crustal cycle of iodine over scales of millions of years.

  20. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismeal; Basuyau, Clemence

    2013-04-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure, and bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ~35 km; (2) this thins to ~22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high velocity lower crust (HVLC) is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ~1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ~130 km wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which at the surface we observe the presence of seaward dipping reflectors (SDRs)_and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower-crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point toward a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  1. Crustal structure of the rifted volcanic margins and uplifted plateau of Western Yemen from receiver function analysis

    NASA Astrophysics Data System (ADS)

    Ahmed, Abdulhakim; Tiberi, Christel; Leroy, Sylvie; Stuart, Graham W.; Keir, Derek; Sholan, Jamal; Khanbari, Khaled; Al-Ganad, Ismael; Basuyau, Clémence

    2013-06-01

    We analyse P-wave receiver functions across the western Gulf of Aden and southern Red Sea continental margins in Western Yemen to constrain crustal thickness, internal crustal structure and the bulk seismic velocity characteristics in order to address the role of magmatism, faulting and mechanical crustal thinning during continental breakup. We analyse teleseismic data from 21 stations forming the temporary Young Conjugate Margins Laboratory (YOCMAL) network together with GFZ and Yemeni permanent stations. Analysis of computed receiver functions shows that (1) the thickness of unextended crust on the Yemen plateau is ˜35 km; (2) this thins to ˜22 km in coastal areas and reaches less than 14 km on the Red Sea coast, where presence of a high-velocity lower crust is evident. The average Vp/Vs ratio for the western Yemen Plateau is 1.79, increasing to ˜1.92 near the Red Sea coast and decreasing to 1.68 for those stations located on or near the granitic rocks. Thinning of the crust, and by inference extension, occurs over a ˜130-km-wide transition zone from the Red Sea and Gulf of Aden coasts to the edges of the Yemen plateau. Thinning of continental crust is particularly localized in a <30-km-wide zone near the coastline, spatially co-incident with addition of magmatic underplate to the lower crust, above which on the surface we observe the presence of seaward dipping reflectors (SDRs) and thickened Oligo-Miocene syn-rift basaltic flows. Our results strongly suggest the presence of high-velocity mafic intrusions in the lower crust, which are likely either synrift magmatic intrusion into continental lower crust or alternatively depleted upper mantle underplated to the base of the crust during the eruption of the SDRs. Our results also point towards a regional breakup history in which the onset of rifting was synchronous along the western Gulf of Aden and southern Red Sea volcanic margins followed by a second phase of extension along the Red Sea margin.

  2. Numerical Models of Salt Tectonics and Associated Thermal Evolution of Rifted Continental Margins

    NASA Astrophysics Data System (ADS)

    Goteti, R.; Beaumont, C.; Ings, S. J.

    2011-12-01

    Salt tectonics at rifted continental margins reflects the interplay between the geometry of the initial evaporite basin and subsequent mobilization of the salt which is partly controlled by the density and strength of the overburden. Salt mobility is also influenced by the overall thermo-mechanical evolution of the margin which includes factors such as: initial seaward tilt of the margin basement owing to crustal thinning; an initial thermal anomaly owing to the rifting and the subsequent long-term postrift thermal subsidence; and the flexural isostatic response to sedimentation which may reverse the basal tilt. The high thermal conductivity of salt also has a significant impact on the thermal evolution of rifted margin sedimentary basins. We present two-dimensional thermo-mechanical finite element models designed to assess salt mobility and its impact on the thermal evolution of the surrounding sediments and underlying crust in the context of an evolving rifted margin, that includes the processes listed above. Model experiments include: the initial geometry of the rifted margin and the embedded autochthonous salt basin, and its subsequent thermal subsidence, sedimentation and water loading and their flexural response, erosion and, sediment compaction. Salt is mobilized by aggrading sediments with a sinusoidally perturbed surface that represents natural bathymetric unevenness. The model results indicate that the presence of a highly conductive salt layer perturbs the initial thermal structure of the rifted margin resulting in a negative thermal anomaly beneath the autochthonous salt basin. For a given thickness of the salt layer, the depth of this perturbation increases with the width of the salt basin. Flow of salt initially occurs by gliding owing to the initial seaward tilt of the margin which is enhanced by thermal subsidence as the margin cools and, subsequently by a combination of gliding and gravitational spreading when loaded by aggrading sediments. Uneven sediment loading results in well-developed minibasins and intervening salt diapirs. The seaward flow of salt, and down-dip contraction owing to the evolving margin tilt, result in wider diapirs at the seaward end of the basin; a geometry consistent with observations in rifted margins (e.g., south Atlantic margins). Salt flow results in the migration of the associated thermal perturbation. The expulsion of salt by the sediment loading results in higher temperatures beneath the grounded minibasins. However, owing to the thermal focusing of heat by salt, the minibasins remain significantly cooler than the sediments outside the salt basin where standard geothermal gradients are established as the margin cools. Under these circumstances hydrocarbons generation will be delayed until sediments of significant thickness are deposited in salt minibasins. With all other parameters being equal, the down-dip flow of salt, maximum temperature (thickness) attained in the basin are higher for narrower margins. The thermal refraction of heat owing to the salt basin observed in our models has important implications for thermal and petroleum systems modeling of rifted margin sedimentary basins.

  3. The Crustal Structure of the Northern South China Sea continental margin revealed by Multi-Channel Seismic Reflection and Ocean Bottom Seismometer Observations

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chao Huang, I.; Shine Liu, Char; Chang, Emmy T. Y.

    2015-04-01

    The South China Sea (SCS) is an ideal place to examine the nature of continental rifting, break-up, and the onset of seafloor spreading. Being mostly inactive today, the SCS basin is measured to get spreading in the early Oligocene and to generate a series of syn-rift structures on the margins, therefore, to know the crustal structures of continental margin can help us to understand the evolution of the SCS. In this study, we use multi-channel seismic (MCS) reflection data to reveal the upper crustal structures and ocean bottom seismometer (OBS) data to probe the lower crustal structures. Accompanying the MCS experiments with active sources, 39 OBS stations were deployed along 2 NW-SE trending profiles in the northern SCS. The eastern profile is located southeast of Dongsha atoll, while the western profile extends from the Zhu II depression to the NW sub-basin of SCS. For construction crustal velocity models, we extract shallow velocity structure from the MCS profile data, then we conduct travel-time tomographic inversion on OBS data to derive 2D velocity models. Finally, forward modeling using RAYINVR is subsequently applied to refine the velocity models. Both MCS profiles show that the basement has been offset by normal faults and thick sediments are deposited in the grabens. Many volcanic bodies are observed in the eastern profile, but few appear in the western profile. The OBS velocity model of the eastern profile reveals that the crustal thickness decreases gradually toward the oceanic basin. However the continental crust thins abruptly from continental slope toward the NW sub-basin. A high velocity layer (>7km/s) in the lower crust can be identified in the eastern profile, but not in the western profile. This high velocity layer has been interpreted to be underplating material, however, another possibility is that it might be serpentinized upper mantle, which frequently found in necking zones and COTs zones.

  4. Physical resuspension and vertical mixing of sediments on a high energy continental margin (Sydney, Australia).

    PubMed

    Matthai, C; Birch, G F; Jenkinson, A; Heijnis, H

    2001-01-01

    Four sediment cores from the continental margin adjacent to Sydney were analyzed for 210Pb, 137Cs, trace metals (Ag, Cd, Co, Cu, Mn, Ni, Pb, Zn), iron, dry bulk density, mud and moisture content. The concentrations of trace metals in the total sediment are low at all sites, although slightly elevated concentrations of Ag, Cu, Pb and Zn are present in the fine fraction of sediment (< 62.5 microns) near a major ocean outfall. Concentrations of trace metals in the fine fraction of sediment are similar in the upper 10-15 cm, indicating strong vertical mixing of the sediments, whereas an upward coarsening grain size in the upper 1-3 cm of sediment supports physical resuspension during storms. Sediment accumulation rates on the middle shelf adjacent to Sydney were estimated from downcore profiles of 210Pb and 137Cs and range between 0.2 and 0.4 cm yr-1. Although the mass fluxes of Cu, Pb and Zn within a distance of 2 km from the outfall (up to 36.1, 30.8 and 86.2 micrograms cm-2 yr-1, respectively) are greater than 20 km north of the outfall (< 23.5 micrograms cm-2 yr-1), the low concentrations of trace metals in sediments near the outfall support an efficient dispersal of anthropogenic contaminants on this continental margin. PMID:11202687

  5. Sinking jelly-carbon unveils potential environmental variability along a continental margin.

    PubMed

    Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E; Lloris, Domingo; Mlin, Frdric; Beni-Casadella, Laia

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m(2) after trawling and integrating between 30,000 and 175,000 m(2) of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems. PMID:24367499

  6. First Evidence for the Presence of Iron Oxidizing Zetaproteobacteria at the Levantine Continental Margins

    PubMed Central

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A.; Coleman, Dwight F.; Goodman-Tchernov, Beverly N.; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010–2011 E/V Nautilus exploration of the Levantine basin’s sediments at the depth of 300–1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp. – like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column. PMID:24614177

  7. First evidence for the presence of iron oxidizing zetaproteobacteria at the Levantine continental margins.

    PubMed

    Rubin-Blum, Maxim; Antler, Gilad; Tsadok, Rami; Shemesh, Eli; Austin, James A; Coleman, Dwight F; Goodman-Tchernov, Beverly N; Ben-Avraham, Zvi; Tchernov, Dan

    2014-01-01

    During the 2010-2011 E/V Nautilus exploration of the Levantine basin's sediments at the depth of 300-1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV) operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp.-like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column. PMID:24614177

  8. Fission track analysis, rift shoulder uplift, and tectonic modeling of the Norwegian Continental Margin

    SciTech Connect

    Andriessen, P.; Van Der Beek, P.; Cloetingh, S.; Rohrman, M. )

    1993-09-01

    Apatite fission track analysis from southern Norway and Sweden, across the Permian Carboniferous Oslo rift, are presented and discussed in relation to different rifting scenarios. Vertical and horizontal apatite fission tack profiles in middle and southern Norway unravel the post-Carboniferous history of the Fennoscandian shield. Fission track apatite ages range from 240 Ma in the south to 160 Ma in the north, and according to spontaneous fission track length measurements, they must be interpreted as mixed ages, indicating minor amounts of Paleozoic-Mesozoic sedimentary cover. Apatite fission track length and age modeling suggest rapid cooling and uplift in the Tertiary for the southernmost part of Norway, suggesting a differential uplift of the basement. the obtained data are important for the reconstruction of burial and thermal histories of Cenozoic sedimentary basins of the Norwegian continental margin in the northern North Sea, where diverse rifting events, intraplate stress regimes, and inversion tectonics are involved. Fission track analysis puts constraints on tectonic modeling of uplift of rift flanks and the Norwegian continental margin and yields information for these assessment of hydrocarbon potentials of the sedimentary basins.

  9. Sinking Jelly-Carbon Unveils Potential Environmental Variability along a Continental Margin

    PubMed Central

    Lebrato, Mario; Molinero, Juan-Carlos; Cartes, Joan E.; Lloris, Domingo; Mélin, Frédéric; Beni-Casadella, Laia

    2013-01-01

    Particulate matter export fuels benthic ecosystems in continental margins and the deep sea, removing carbon from the upper ocean. Gelatinous zooplankton biomass provides a fast carbon vector that has been poorly studied. Observational data of a large-scale benthic trawling survey from 1994 to 2005 provided a unique opportunity to quantify jelly-carbon along an entire continental margin in the Mediterranean Sea and to assess potential links with biological and physical variables. Biomass depositions were sampled in shelves, slopes and canyons with peaks above 1000 carcasses per trawl, translating to standing stock values between 0.3 and 1.4 mg C m2 after trawling and integrating between 30,000 and 175,000 m2 of seabed. The benthopelagic jelly-carbon spatial distribution from the shelf to the canyons may be explained by atmospheric forcing related with NAO events and dense shelf water cascading, which are both known from the open Mediterranean. Over the decadal scale, we show that the jelly-carbon depositions temporal variability paralleled hydroclimate modifications, and that the enhanced jelly-carbon deposits are connected to a temperature-driven system where chlorophyll plays a minor role. Our results highlight the importance of gelatinous groups as indicators of large-scale ecosystem change, where jelly-carbon depositions play an important role in carbon and energy transport to benthic systems. PMID:24367499

  10. Seismic stratigraphy of Long Island platform, United States Atlantic Continental Margin

    SciTech Connect

    Jowett, R.A.; Hutchinson, D.R.

    1987-09-01

    Approximately 2000 km of single- and multichannel seismic reflection profiles collected over the Long Island platform on the US Atlantic continental margin show that the basement beneath the platform was rifted prior to the separation of Africa from North America and that it subsided after the separation. Postrift sediment thicknesses range from less than 1 km in the northwest part of the platform to several kilometers in the southeast, near the Atlantis and Nantucket rift basins. Flanking the platform are the Georges Bank basin to the east and Baltimore Canyon Trough to the south, where sedimentary rocks are 10-15 km thick. Nine major unconformities have been delineated in analysis of the seismic profiles. The most conspicuous unconformities are correlated with the end of rifting and the upper surfaces of the Bathonian, Tithonian, Albian, Turonian-Coniacian, Maestrichtian, upper Eocene, mid-Oligocene, and mid-Miocene sections. Ages are determined by tracing reflectors and unconformities to the COST (Continental Offshore Stratigraphic Test), AMCOR (Atlantic Margin Coring Project), and coastal wells. Several of these unconformities coincide with pronounced fluctuations in the Vail curve of relative sea level.

  11. Middle Jurassic to early Cretaceous igneous rocks along eastern North American continental margin

    SciTech Connect

    Jansa, L.F.; Pe-Piper, G.

    1988-03-01

    Late Middle Jurassic and Early Cretaceous mafic dikes, sills, flows, and local volcaniclastic sediments are intercalated within continental shelf sediments from the Baltimore Canyon Trough northward to the Grand Banks of Newfoundland. The igneous rocks on the eastern North American margin are mainly alkali basalts of intraplate affinity. The late Middle Jurassic igneous activity was of short duration, at about 140 Ma, and was restricted to Georges Bank where it led to construction of several volcanic cones. The main period of igneous activity was concentrated at about 120 Ma in the Aptian/Berremian. The activity consists of dike swarms in Baltimore Canyon, occasional dikes on the Scotian Shelf, and the growth of stratovolcanoes on the Scotian Shelf and Grand Banks. Younger dikes (approx. 95 Ma) also are present on the Grand Banks. With regard to oil exploration on the continental margin, care must be taken to properly identify igneous and volcaniclastic rocks on mechanical logs, drill cuttings, and cores. Reflection seismic profiles can be used to map the areal extent of sills, flows, and low-angle dikes, which commonly show distinctive seismic responses. However, steeply dipping dikes generally produce little, if any, seismic response. Isotopic-age determinations of igneous rocks, combined with biostratigraphic-age determinations of adjacent strata, are invaluable for stratigraphic correlation, establishing chronology of seismic sequences, and analysis of basin sedimentation and tectonic history. 9 figures, 2 tables.

  12. Submarine erosion and karstification on the west Florida Continental margin: disparate environments yield similar features

    SciTech Connect

    Doyle, L.J.; Brooks, G.; Herbert, J.H.

    1985-01-01

    Thousands of kilometers of high resolution seismic profiles from the carbonate West Florida continental margin reveal two large bands of solution features. One band is found on the inner portion of the shelf and includes a variety of buried and filled karst features, the most spectacular of which are large solution valleys, paleodrainage extensions of the extent Tampa Bay and Charlotte Harbor estuaries. These features were probably formed subaerially during lower stands of sea level. This band of karst dies out in a line at mid-shelf between 75 m and 100 m water depth, marking a low stand of sea level. A second band of solution features is found on the upper slope at water depths of between 500 and 800 m. It is partially exposed in outcrop. Although many of the features are similar in appearance to those of the karst inner shelf band, their origin in submarine. They could have formed from dissolution by groundwater percolating down from the Florida mainland, from submarine erosion by the Loop Current which sweeps this portion of the slope or by a combination of the above processes. Although karstification is considered a continental process, extensive solution feature scan also form in the marine environment. Subsequently, these can be raised above sea level and be modified by continental processes, making it difficult to distinguish marine or partially marine solution features form those of traditional subaerial origin.

  13. Cenozoic prograding sequences of the Antarctic continental margin - What balance between structural and eustatic control

    SciTech Connect

    Cooper, A.K. ); Barrett, P. ); Hinz, K. ); Stagg, H. ); Traube, V. )

    1990-05-01

    Multichannel seismic reflection profiles across the Antarctic continental margin commonly reveal prograding sedimentary sequences that are bounded by unconformities. These sequences are as much as 5 km thick and, where sampled, are composed entirely of late Eocene( )-early Oligocene and younger glacial rocks. On nonpolar margins, prograding sequences generally are attributed to relative changes in sea level, sediment supply, and tectonism. Around Antarctica, ice sheets have also been important in controlling the geometry and location of prograding sequences. The Antarctic sequences may provide a proximal record of major Cenozoic ice volume changes and related sea level changes not obtainable from low-latitude continental shelves. Presently, the Antarctic record is poorly known because of limited core data. Two categories of prograding (P) and aggrading (A) sigmoidal sequences are observed around Antarctica: (1) P sequences that build principally outward (common) and (2) AP sequences that build largely upward and outward (less common). P sequences may result principally from grounded ice sheets, and AP sequences from open-marine basinal processes. Major rift embayments of Antarctica (e.g., eastern Ross Sea eastern Weddell Sea Lambert graben Wilkes basin) are also pathways for major ice movement. In general, most areas with P sequences lie within or adjacent to Mesozoic or older rift embayment, whereas the primary area with AP sequences (eastern Ross Sea) lies within a likely Cenozoic rift embayment. The Pacific side of the Antarctic Peninsula where Cenozoic ice sheets and Cenozoic tectonism have been active, is also marked by a P sequence. Scientific drilling on the Antarctic continental shelf has recovered openwater glacial deposits (Ross Sea) as well as glacial diamicts that were deposited beneath and in front of grounded glacier ice (Ross Sea and Prydz Bay).

  14. Shear wave velocity structure of Reed Bank, southern continental margin of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wei, Xiaodong; Ruan, Aiguo; Zhao, Minghui; Qiu, Xuelin; Wu, Zhenli; Niu, Xiongwei

    2015-03-01

    The shear wave velocity structure of a wide angle seismic profile (OBS973-2) across Reed Bank in the southern continental margin of the South China Sea (SCS) is simulated by 2-D ray-tracing method, based on its previous P-wave model. This profile is 369-km-long and consists of fifteen three-component ocean bottom seismometers (OBS). The main results are as follows.(1) The model consists of seven layers and the shear wave velocity increases from 0.7 km/s at the top of sediment layer to 4.0 km/s in the lower crust. (2) The Moho depth decreases from 20-22 km at the Reed Bank to 9-11 km at the deep oceanic basin with the shear wave velocity of 4.2 km/s below the Moho. (3) The Vp/Vs ratio decreases with depth through the sedimentary layers, attributed to increased compaction and consolidation of the rocks. (4) In the continental upper crust (at model distance 90-170 km), S-wave velocity (2.5-3.2 km/s) is relatively low and Vp/Vs ratio (1.75-1.82) is relatively high compared with the other parts of the crust, corresponding to the lower P-wave velocity in the previous P-wave model and normal faults revealed by MCS data, indicating that a strong regional extensional movement had occurred during the formation process of the SCS at the Reed Bank area. (5) The S-wave structures indicate that Reed Bank crust has different rock compositions from that in the east section of the northern margin, denying the presence of conjugate relationship of Reed Bank with Dongsha islands. According to P-wave models and other data, we inferred that Reed Bank and Macclesfield were separated from the same continental crust during the rifting and break-up process.

  15. Spatiotemporal relationships between earthquakes of the mid-Atlantic Ridge and the Atlantic continental margins

    NASA Astrophysics Data System (ADS)

    Bolarinwa, Oluwaseyi J.

    The seismicity of the mid Atlantic Ridge (MAR) was compared in space and time with the seismicity along the Atlantic continental margins of Europe, Africa, North America, the Carribean and South America in a bid to appraise the level of influence of the ridge push force at the MAR on the Atlantic coastal seismicity. By analyzing the spatial and temporal patterns of many earthquakes (along with the patterns in their stress directions) in diverse places with similar tectonic settings, it is hoped that patterns that might be found indicate some of the average properties of the forces that are causing the earthquakes. The spatial analysis of the dataset set used shows that areas with higher seismic moment release along the north MAR spatially correlate with areas with relatively lower seismic moment release along the north Atlantic continental margins (ACM) and vice versa. This inverse spatial correlation observed between MAR seismicity and ACM seismicity might be due to the time (likely a long time) it takes stress changes from segments of the MAR currently experiencing high seismic activity to propagate to the associated passive margin areas presently experiencing relatively low seismic activity. Furthermore, the number of Atlantic basin and Atlantic coast earthquakes occurring away from the MAR is observed to be independent of the proximity of earthquake's epicenters from the MAR axis. The effect of local stress as noted by Wysession et al. (1995) might have contributed to the independence of Atlantic basin and Atlantic coast earthquake proximity from the MAR. The Latchman (2011) observation of strong earthquakes on a specific section of the MAR being followed by earthquakes on Trinidad and Tobago was tested on other areas of the MAR and ACM. It was found that that the temporal delay observed by Latchman does not exist for the seismicity along other areas along the MAR and ACM. Within the time window used for this study, it appears that seismicity is occurring randomly in space away from the MAR. The weak anticorrelations between ACM and MAR seismicity show that the ridge push force probably has some level of influence on the ACM seismicity. However, as revealed from previous research on the study area, the forces resulting from lateral density contrasts related to topographic features and lateral density variations between oceanic and continental crust also appear to significantly influence the seismicity of the Atlantic coastal margins.

  16. Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust

    USGS Publications Warehouse

    Von Huene, R.; Scholl, D. W.

    1991-01-01

    At ocean margins where two plates converge, the oceanic plate sinks or is subducted beneath an upper one topped by a layer of terrestrial crust. This crust is constructed of continental or island arc material. The subduction process either builds juvenile masses of terrestrial crust through arc volcanism or new areas of crust through the piling up of accretionary masses (prisms) of sedimentary deposits and fragments of thicker crustal bodies scraped off the subducting lower plate. At convergent margins, terrestrial material can also bypass the accretionary prism as a result of sediment subduction, and terrestrial matter can be removed from the upper plate by processes of subduction erosion. Sediment subduction occurs where sediment remains attached to the subducting oceanic plate and underthrusts the seaward position of the upper plate's resistive buttress (backstop) of consolidated sediment and rock. Sediment subduction occurs at two types of convergent margins: type 1 margins where accretionary prisms form and type 2 margins where little net accretion takes place. At type 2 margins (???19,000 km in global length), effectively all incoming sediment is subducted beneath the massif of basement or framework rocks forming the landward trench slope. At accreting or type 1 margins, sediment subduction begins at the seaward position of an active buttress of consolidated accretionary material that accumulated in front of a starting or core buttress of framework rocks. Where small-to-mediumsized prisms have formed (???16,300 km), approximately 20% of the incoming sediment is skimmed off a detachment surface or decollement and frontally accreted to the active buttress. The remaining 80% subducts beneath the buttress and may either underplate older parts of the frontal body or bypass the prism entirely and underthrust the leading edge of the margin's rock framework. At margins bordered by large prisms (???8,200 km), roughly 70% of the incoming trench floor section is subducted beneath the frontal accretionary body and its active buttress. In rounded figures the contemporary rate of solid-volume sediment subduction at convergent ocean margins (???43,500 km) is calculated to be 1.5 km3/yr. Correcting type 1 margins for high rates of terrigenous seafloor sedimentation during the past 30 m.y. or so sets the long-term rate of sediment subduction at 1.0 km3/yr. The bulk of the subducted material is derived directly or indirectly from continental denudation. Interstitial water currently expulsed from accreted and deeply subducted sediment and recycled to the ocean basins is estimated at 0.9 km3/yr. The thinning and truncation caused by subduction erosion of the margin's framework rock and overlying sedimentary deposits have been demonstrated at many convergent margins but only off northern Japan, central Peru, and northern Chile has sufficient information been collected to determine average or long-term rates, which range from 25 to 50 km3/m.y. per kilometer of margin. A conservative long-term rate applicable to many sectors of convergent margins is 30 km3/km/m.y. If applied to the length of type 2 margins, subduction erosion removes and transports approximately 0.6 km3/yr of upper plate material to greater depths. At various places, subduction erosion also affects sectors of type 1 margins bordered by small- to medium-sized accretionary prisms (for example, Japan and Peru), thus increasing the global rate by possibly 0.5 km3/yr to a total of 1.1 km3/yr. Little information is available to assess subduction erosion at margins bordered by large accretionary prisms. Mass balance calculations allow assessments to be made of the amount of subducted sediment that bypasses the prism and underthrusts the margin's rock framework. This subcrustally subducted sediment is estimated at 0.7 km3/yr. Combined with the range of terrestrial matter removed from the margin's rock framework by subduction erosion, the global volume of subcrustally subducted materia

  17. Transition from magma dominant to magma poor rifting along the Nova Scotia Continental Margin

    NASA Astrophysics Data System (ADS)

    Lau, K. H.; Louden, K. E.; Nedimović, M. R.; Whitehead, M.; Farkas, A.; Watremez, L.; Dehler, S. A.

    2011-12-01

    Passive margins have been characterized as magma-dominant (volcanic) or magma-poor (non-volcanic). However, the conditions under which margins might switch states are not well understood as they typically have been studied as end member examples in isolation to each other. The Nova Scotia (NS) continental margin, however, offers an opportunity to study the nature of such a transition between the magma-dominant US East Coast margin to the south and the magma-poor Newfoundland margin to the north within a single rift segment. This transition is evidenced by a clear along-strike reduction in features characteristic of syn-rift volcanism from south-to-north along the NS margin, such as the weakening of the East Coast Magnetic Anomaly (ECMA) and the coincident disappearance of seaward dipping reflector sequences (SDRS) on multichannel seismic (MCS) reflection profiles. Results from recent industry MCS profiles along and across the margin suggest a potentially narrow magma-dominant to magma-poor along-strike transition between the southern and the central NS margin. Such a transition is broadly consistent with results of several widely-spaced, across-strike ocean bottom seismometer (OBS) wide-angle profiles. In the southern region, the crustal structure exhibits a narrow (~120-km wide) ocean-continent transition (OCT) with a high velocity (7.2 km/s) lower crust, interpreted as a gabbro-rich underplated melt, beneath the SDRS and the ECMA, similar to crustal models across the US East Coast. In contrast, profiles across the central and northern margin contain a much wider OCT (150-200-km wide) underlain by a low velocity mantle layer (7.3-7.9 km/s), interpreted as partially serpentinized olivine, which is similar to the magma-poor Newfoundland margin to the north. However, the central-to-northern OBS profiles also exhibit significant variations within the OCT and the along-strike continuity of these OCT structures is not yet clear. In November 2010, we acquired, in the OCTOPUS survey, wide-angle seismic data along a 240-km-long margin parallel profile extending from the central to the northern margin segments along an existing industry MCS profile (Ion/GX Technology NovaSPAN 5100). Twenty OBSs at 10-km spacing were analysed. A preliminary p-wave velocity model along the profile indicates that the cross-strike structures are continuous within the OCT. However, a substantial anisotropy in velocity (~8% lower parallel to the margin) is observed within the OCT. This result is consistent with an interpretation of partially serpentinized mantle that flowed perpendicular to the margin during its extension. In addition, along strike variations are also observed along the profile, which suggest a higher degree of volcanism and a thinner layer of serpentinized mantle to the southwest. These results provide a framework for future studies to the southwest to further investigate the transition to a magma-dominant regime towards the US East Coast.

  18. Warm-water flow above deep water methane hydrates at an Arctic continental margin - A view on climate impacts

    NASA Astrophysics Data System (ADS)

    Mienert, J.; Bnz, S.; Greinert, J.

    2009-12-01

    We detected geophysical evidence for the base of the gas hydrate stability zone (GHSZ) in form of a bottom simulating reflector (BSR) at mid slope of the continental margin of NW-Svalbard and collected acoustic and video-footage evidence for major methane release at the shelf (flares). Flares are acoustic expressions of methane bubbles emanating from the seabed. Warming of upper ocean water masses that impinge on sediments of the upper continental slope may reduce the methane hydrate stability zone. As a result, it can cause melting of gas hydrates, overpressure build up, abrupt releases of methane from the seabed, and geohazards. However, the warm-water core of the W-Spitsbergen current does not intercept with the continental slope (July 2009). There is also no evidence for a BSR pinch out on the upper continental slope. Accordingly, warming of the W-Spitsbergen current at this location may have less or no effects on the release of methane from the seabed by reducing the GHSZ. Alternatively, fluids may be released by reactivation of faults due to seismic activity (< 7 magnitude) around Svalbard. Earthquakes occur frequently along the divergent plate boundary and the nearby continental-ocean boundary (COB) of the W-Svalbard continental margin. We therefore consider two major ways to release fluids: 1) an upward migration of free gas beneath the GHSZ towards the projected outcrop zone at the upper continental margin, and/ or 2) a migration and release of methane at active fault zones.

  19. Lithoprobe east: marine deep seismic reflection results across the Appalachians and the rifted continental margin northeast of Newfoundland

    SciTech Connect

    Keen, C.E.; Stockmal, G.S.; O'Brien, S.J.; Quinlan, G.

    1985-01-01

    Marine deep seismic reflection data have been collected across the Appalachian Orogen and the rifted continental margin northeast of Newfoundland. Results across the Appalachian Orogen show the extent of the ancient Grenvillian passive margin beneath the terranes to the east, the nature of terrane boundaries at depth, and the relationships between surface geological features and the seismically defined crustal geometry. The results across the rifted margin define a decollement zone below the faulted continental basement. These basement fault blocks do not exhibit a listric geometry. The continental crust thins beneath the sedimentary basins occupying the rifted margin, although there does not appear to be a simple relationship between crustal thickness and basin subsidence. The ocean-continent transition is marked by a landward dip of the oceanic crust which disappears below the thinned continental crust near the transition. The ocean-continent boundary is not a vertical boundary between crustal types, rather there appears to be continuity of oceanic-type crust below the continent, perhaps forming a high velocity lower crustal layer across the continental margin.

  20. Geology and tectonic development of the continental margin north of Alaska

    USGS Publications Warehouse

    Grantz, A.; Eittreim, S.; Dinter, D.A.

    1979-01-01

    The continental margin north of Alaska, as interpreted from seismic reflection profiles, is of the Atlantic type and consists of three sectors of contrasting structure and stratigraphy. The Chukchi sector, on the west, is characterized by the deep late Mesozoic and Tertiary North Chukchi basin and the Chukchi Continental Borderland. The Barrow sector of central northern Alaska is characterized by the Barrow arch and a moderately thick continental terrace build of Albian to Tertiary clastic sediment. The terrace sedimentary prism is underlain by lower Paleozoic metasedimentary rocks. The Barter Island sector of northeastern Alaska and Yukon Territory is inferred to contain a very thick prism of Jurassic, Cretaceous and Tertiary marine and nonmarine clastic sediment. Its structure is dominated by a local deep Tertiary depocenter and two regional structural arches. We postulate that the distinguishing characteristics of the three sectors are inherited from the configuration of the rift that separated arctic Alaska from the Canadian Arctic Archipelago relative to old pre-rift highlands, which were clastic sediment sources. Where the rift lay relatively close to northern Alaska, in the Chukchi and Barter Island sectors, and locally separated Alaska from the old source terranes, thick late Mesozoic and Tertiary sedimentary prisms extend farther south beneath the continental shelf than in the intervening Barrow sector. The boundary between the Chukchi and Barrow sectors is relatively well defined by geophysical data, but the boundary between the Barrow and Barter Island sectors can only be inferred from the distribution and thickness of Jurassic and Cretaceous sedimentary rocks. These boundaries may be extensions of oceanic fracture zones related to the rifting that is postulated to have opened the Canada Basin, probably beginning during the Early Jurassic. ?? 1979.

  1. Evolution of the Southwest Indian continental divergent margin: Constraints from 40Ar-39Ar dating of lateritic paleolandsurfaces

    NASA Astrophysics Data System (ADS)

    Bonnet, Nicolas; Beauvais, Anicet; Chardon, Dominique; Arnaud, Nicolas

    2015-04-01

    The western continental passive margin of Peninsular India is marked by the Western Ghats escarpment, which separates a coastal lowland from an East-dipping highland plateau and is carved both into the 63-Ma old Deccan traps and their Archean basement. Previous studies suggested establishment of the escarpment by differential erosion across an elevated rift shoulder, and thermochronologic models predicted escarpment formation from higher denudation in the coastal lowland than on the plateau until ~ 50 Ma. We provided complementary time constraints on the evolution of the passive margin by 40Ar-39Ar dating of supergene K-Mn oxides (cryptomelane) sampled in lateritic formations exposed on paleosurfaces, which are preserved as relicts on both sides of the escarpment. Three main lateritic paleosurfaces were identified in the highland at altitude ranges of 1200-1000 m (S1), 1000-900 m (S2) and 850-600 m (S3), and a lower paleosurface in the lowland at 150-50 m (S4). All the 40Ar-39Ar ages obtained on either side of the escarpment document major weathering periods for each paleosurface: 53 to 45 Ma (S1-S4) synchronously with the bauxitic weathering, 40 to 32 Ma (S2), 30 to 23 Ma (S3), and 24 to 19 Ma (S4). These ages indicate that most of the incision and dissection of plateau landsurfaces S1, S2, and S3 must therefore have taken place after 45, 32 and 23 Ma respectively, while the coastal lowland surface S4 was incised after 19 Ma. Preservation of laterites as old as 47 Ma in the coastal lowland implies that the escarpment already existed in the Mid-Eocene while intense bauxitic weathering was taking place on both sides of the escarpment. The ages obtained in the lowland are also indicative of limited erosion (~ 4 m Ma-1) at the foot of the escarpment since 45 Ma, and particularly low incipient incision of the lowland (~ 5 m Ma-1) since 19 Ma. Ages obtained on the highland plateau indicate further Neogene denudation inland but at less than 15 m Ma-1 since 45 Ma, and incision lower than 6 m Ma-1 since 23 Ma. Limited erosion in the coastal lowland contrasts with Late Neogene increase in clastic fluxes on the offshore margin, which may therefore be attributed to erosion of the shelf edge or material imported from the Indus fan. Our results attest to the antiquity of the first-order relief and topography of the high-elevation margin of Southwest India and to a divergent erosion pattern on either side of its escarpment since at least 47 Ma.

  2. Thermal history of the Rio Muni (West Africa) NE Brazil margins during continental breakup

    NASA Astrophysics Data System (ADS)

    Turner, Jonathan P.; Green, Paul F.; Holford, Simon P.; Lawrence, Stephen R.

    2008-06-01

    We document the thermal record of breakup of the conjugate Rio Muni (West Africa) and NE Brazil margins using apatite fission track analysis, vitrinite reflectance data and stratigraphic observations from both margins. These results permit determination of the timing of four cooling episodes, and the temperature of samples at the onset of each episode. All samples are interpreted to have experienced higher temperatures in the geological past due to i) elevated basal heatflow (palaeogeothermal gradient in Rio Muni-1 well decaying from 58 C/km during the Mid Cretaceous to 21.5 C/km in the Late Cenozoic) and ii) progressive exhumation from formerly greater burial depth. A well constrained history of changing palaeogeothermal gradient allows for much more precise quantification of the thickness of eroded section (exhumation) than if a constant heatflow is assumed. Cooling episodes identified from the palaeotemperature data at 110-95 Ma (both margins) and 85-70 Ma (Rio Muni only) coincide with major unconformities signifying, respectively, the cessation of rifting (breakup) and compressional shortening that affected the African continent following the establishment of post-rift sedimentation (drift). The interval between these separate unconformities is occupied by allochthonous rafts of shallow-water carbonates recording gravitational collapse of a marginal platform. The rift shoulder uplift that triggered this collapse was enhanced by local transpression associated with the obliquely divergent Ascension Fracture Zone, and thermal doming due to the coeval St Helena and Ascension Plumes. The data also reveal a c.45-35 Ma cooling episode, attributed to deep sea erosion at the onset of Eo-Oligocene ice growth, and a c.15-10 Ma episode interpreted as the record of Miocene exhumation of the West African continental margin related to continent-wide plume development. Integration of thermal history methods with traditional seismic- and stratigraphy-based observations yields a dynamic picture of kilometre-scale fluctuations in base level through the breakup and early drift phases of development of these margins. Major unconformities at ocean margins are likely to represent composite surfaces recording not only eustasy, but also regional plate margin-generated deformation, local 'intra-basinal' reorganization, and the amplifying effect of negative feedbacks between these processes.

  3. Grounding-zone wedges (GZWs) on high-latitude continental margins

    NASA Astrophysics Data System (ADS)

    Batchelor, Christine; Dowdeswell, Julian

    2014-05-01

    The grounding-zone of marine-terminating ice sheets is the area at which the ice-sheet base ceases to be in contact with the underlying substrate. The grounding-zone is a key site at which ice, meltwater and sediment are transferred from ice sheets to the marine environment. GZWs are asymmetric sedimentary depocentres which form through the rapid accumulation of glacigenic debris along a line source at the grounding-zone largely through the delivery of deforming subglacial sediments, together with sediment remobilisation from gravity flows. The presence of GZWs in the geomorphological record indicates an episodic style of ice retreat punctuated by still-stands in the grounding-zone position. GZWs may take decades to centuries to form. Moraine ridges and ice-proximal fans may also build up at the grounding-zone during still-stands or re-advances of the ice margin, but these require either considerable vertical accommodation space or are derived from point-sourced subglacial meltwater streams. We present an inventory of GZWs which is compiled from available studies of bathymetric, shallow acoustic and reflection seismic data from high-latitude continental margins. The objectives are to present locations of and morphological data on GZWs from the Arctic and Antarctic, alongside a synthesis of their key architectural and geomorphic characteristics. We use, for example, newly-available two-dimensional seismic reflection data to show the approximate locations of GZWs off northwest and northeast Greenland. Controls on GZW formation are considered in relation to shelf topography and ice-sheet internal dynamics. A total of 129 GZWs are described from high-latitude continental shelves. GZWs are only observed within cross-shelf troughs and major fjord systems, which are the former locations of ice streams and fast-flowing outlet glaciers. Typical high-latitude GZWs are less than 15 km long and 15 to 100 m thick. A positive correlation between GZW length and thickness is inferred for GZWs on the Greenland, Norwegian, Canadian and Barents Sea margins. However, no significant relationship between GZW length and thickness exists for the GZWs described from the Antarctic margin. GZWs typically possess a semi-transparent to chaotic acoustic character, which reflects the delivery of diamictic subglacial debris. Many GZWs contain low-amplitude, seaward-dipping internal reflections, which indicate sediment progradation and wedge-growth through continued delivery of basal sediments from the flow of active ice. The formation of GZWs is inferred to require high rates of sediment delivery to a relatively stable, fast-flowing ice margin. Ice-margin stabilisation, and consequently GZW formation, is dependent on a number of factors, including the ice-sheet mass balance, sea-level fluctuations, and the rate of inland-ice delivery to the grounding-zone. GZWs may be formed preferentially by glaciers with termini ending as floating ice shelves, which restrict vertical accommodation space and prevent the build-up of high-amplitude moraine ridges. The basal topography of the continental shelf can also act as a control on GZW formation. The majority of high-latitude GZWs are located at topographic or lateral pinning points within cross-shelf troughs, which encourage ice-margin stabilisation through reducing iceberg calving and increasing basal and lateral drag.

  4. Thermal evolution of a sheared continental margin: Insights from the Ballenas transform in Baja California, Mexico

    NASA Astrophysics Data System (ADS)

    Seiler, Christian; Gleadow, Andrew J. W.; Fletcher, John M.; Kohn, Barry P.

    2009-07-01

    The Ballenas transform margin in central Baja California offers an unparalleled opportunity to study the thermal behaviour of a sheared continental margin during various stages of its evolution. Apatite fission track and (U-Th)/He results from two transects perpendicular to the coast reveal a pronounced latest Pliocene to Pleistocene (~ 1.8 Ma) heating event related to the Neogene opening of the Gulf of California. Proximity to a regional pre-rift unconformity indicates that samples remained at near-surface levels since Paleogene unroofing, despite having experienced reheating to maximum paleotemperatures within or above the fission track partial annealing zone. In general, maximum paleotemperatures during overprinting decrease from > 100-120 C near the coast to below 60 C ca. 5-8 km further inland, suggesting lateral heat flow from a source within the Gulf of California. Heat sources related to the structural development of the Ballenas transform fault, located approximately 1.5-4.5 km offshore from the two sample transects, most likely controlled the observed reheating. Overprinting patterns do not support conductive reheating due to reburial, magmatism or frictional shear. Instead, a pronounced thermal spike in between much less overprinted neighbouring samples strongly favours convective heating by hydrothermal fluids as the dominant overprinting process. Hydrothermal activity may be caused by either deep fluid circulation along newly formed shear zones of the transform fault or, more likely, magmatic leaking along the transform fault. Latest Pliocene to Pleistocene (~ 1.8 Ma) activity on the Ballenas transform fault is closely linked to extension in the Lower and Upper Delfn basins and provides a minimum age for the structural reorganisation and the relocation of extension in the northern Gulf of California. This study shows that hydrothermal activity can cause significant thermal events in a transform margin before the passage of the spreading centre. Paleotemperatures from the Ballenas transform are similar to those of other transform margins after passage of a spreading centre, which suggests that hydrothermal fluids may have an important thermal buffering effect, moderating the maximum temperatures of the ridge segments near their intersection with a continental transform margin.

  5. Assessment of OSCAT winds for coastal circulation on the north western continental shelf of India

    NASA Astrophysics Data System (ADS)

    Salim, M.; Nagendra, K.; Bansal, S.; Nayak, R. K.; Rao, M. S.; Sasmal, S. K.; Dutt, C. B. S.; Rao, K. H.; Dadhwal, V. K.

    2014-11-01

    Winds and tides are the major driving forces of the circulation in the coastal and marginal seas. Data Interpolating Variation Analysis (DIVA) method is used to generate spatial and time series data of sea surface winds for the period 2010-2013 at daily time scale from the OSCAT observations. Validity and consistency of the data were examined against the in situ observations and ECMWF re-analysis at different time scales. Amplitude of semi-annual cycle of OSCAT winds in the coastal domain is 30 % larger than the ECMWF winds while the amplitude of annual cycle of OSCAT winds is 20 % smaller than the ECMWF winds. On the open oceans, intensity of respective semi-annual cycles are mostly similar while annual cycle of OSCAT wind is 20 % smaller than the ECMWF winds. Wind driven currents over the western continental shelf of India were simulated by forcing OSCAT and ECMWF winds to a coastal circulation model. It is observed that the mean seasonal circulations from both the simulations are identical spatial pattern however the magnitude of simulated currents based on OSCAT winds are much stronger than ECMWF wind forcing. These currents used in a lagrangian tracer transport code to model the oil-spill events occurred in this region. It revealed that OSCAT based ocean currents has performed better in simulating the trajectory than the ECMWF wind driven currents.

  6. Neotectonic evolution of the Brazilian northeastern continental margin based on sedimentary facies and ichnology

    NASA Astrophysics Data System (ADS)

    Gandini, Rosana; Rossetti, Dilce de Ftima; Netto, Renata Guimares; Bezerra, Francisco Hilrio Rego; Ges, Ana Maria

    2014-09-01

    Quaternary post-Barreiras sediments are widespread along Brazil's passive margin. These deposits are well exposed in the onshore Paraba Basin, which is one of the rift basins formed during the Pangean continental breakup. In this area, the post-Barreiras sediments consist of sandstones with abundant soft-sediment deformation structures related to seismicity contemporaneous with deposition. The trace fossils Thalassinoides and Psilonichnus are found up to 38 m above modern sea level in sandstones dated between 60.0 ( 1.4) and 15.1 ( 1.8) ka. The integration of ichnological and sedimentary facies suggests nearshore paleoenvironments. Such deposits could not be related to eustatic sea-level rise, as this time coincides with the last glaciation. Hence, an uplift of 0.63 mm/yr, or 1.97 mm/yr if sea level was 80 m lower in the last glaciation, would have been required to ascend the post-Barreiras sediments several meters above the present-day sea level during the last 60 ka. This would suggest that the post-rift stage of the South American eastern passive margin may have experienced tectonic reactivation more intense than generally recognized. Although more complete data are still needed, the information presented herein may play an important role in studies aiming to decipher the Quaternary evolution of this passive margin.

  7. Two-dimensional numerical modeling of tectonic and metamorphic histories at active continental margins

    NASA Astrophysics Data System (ADS)

    Gerya, Taras; Stckhert, Bernhard

    2006-04-01

    The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative P T paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5 3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10 20 Myr (after 400 600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the P T paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable lid.

  8. 7Be as a tracer of flood sedimentation on the northern California continental margin

    USGS Publications Warehouse

    Sommerfield, C. K.; Nittrouer, C. A.; Alexander, C. R.

    1999-01-01

    Sediment inventories of the cosmogenic radionuclide 7Be (t1/2=53 d) were measured on the Eel River shelf and slope (northern California continental margin) to investigate sedimentation processes associated with coastal river flooding. Seabed coring shortly after major riverflow events in 1995 and 1997 documented a shelf-wide flood deposit, and subsequent radionuclide studies determined 7Be to be a powerful tracer of fine-grained river sediment. In addition, distinctive signatures of 234Th and 210Pb were observed in oceanic flood deposits and provided additional information regarding depositional processes. During the 1995–1997 monitoring period, 7Be was present (2–35 dpm cm-2) in shelf and slope sediments only after periods of high rainfall and river runoff during the winter months. It is suggested that fluvial input was the primary source of 7Be in shelf sediments after the floods. 7Be sediment inventories and sediment-trap fluxes determined after the 1997 flood revealed that fine-grained fluvial sediments were rapidly (within one month) broadcast over the continental margin, to the 500 m isobath. Dispersal was apparently facilitated by energetic storm waves, which resuspended and redistributed some fraction of the suspended load residing on the shelf prior to accretion as flood deposits. These observations illustrate that floods are an important sedimentary process for modern environments of the Eel shelf and slope, and perhaps for other fluviomarine sedimentary systems of the northern California continental margin. Ratios of the 210Pb sediment-accumulation rate (100 yr average) to the 7Be deposition rate (1–2 month average) for shelf sites illustrate the episodic nature of shelf sedimentation, and suggest that a minimum of 3–30 depositional events complete the most recent stratigraphic record. This observation is consistent with the magnetude and frequency of fluvial sediment input, as Eel River floods with return periods of 3–33 yr (3% of the time of record) have supplied >80% of the total 85 yr suspended load. Based on radionuclide and hydrologic data, it can be concluded that a small number of flood depositional events have had a disproportionate impact on the sedimentary record of the Eel shelf.

  9. A geophysical overview of the southern continental margin of North America in the Late Precambrian/Cambrian

    SciTech Connect

    Keller, G.R. . Dept. of Geological Sciences)

    1993-02-01

    Recent geophysical studies have shed considerable light on the nature and extent of the southern Continental margin of North America which formed during the Late Precambrian/Cambrian. To the east between Arkansas and Alabama, the PASSCAL/Ouachita seismic experiment and older results in Mississippi indicate that this margin is largely preserved beneath allochthonous rocks emplaced during the Ouachita orogeny. Here the margin is fairly abrupt suggesting transtension was important in this origin. The Wiggins and Sabine blocks appear to be continental fragments which may have formed along this margin. In Texas, the margin extends around the Llano uplift in a sinuous fashion. In this area, Mesozoic extension clouds the picture considerably. However, structural complexities along this portion of he margin can be inferred form gravity data. In West Texas, the margin bends westward and then southward. A very deep oil exploration test which was recently drilled in this area provides valuable constraints for geophysical models of this portion of the margin. Recent results in Mexico allows the authors to trace this margin further south into the state of Chihuahua than previously possible.

  10. Electrical resistivity image of the South Atlantic continental margin derived from onshore and offshore magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Kapinos, G.; Weckmann, U.; Jegen-Kulcsar, M.; Meqbel, N.; Neska, A.; Katjiuongua, T. T.; Hoelz, S.; Ritter, O.

    2016-01-01

    We present a deep electrical resistivity image from the passive continental margin in Namibia. The approximately 700 km long magnetotelluric profile follows the Walvis Ridge offshore, continues onshore across the Kaoko Mobile Belt and reaches onto the Congo Craton. Two-dimensional inversion reveals moderately resistive material offshore, atypically low for oceanic lithosphere, reaching depths of 15-20 km. Such moderate resistivities are consistent with seismic P wave velocity models, which suggest up to 35 km thick crust. The Neoproterozoic rocks of the Kaoko Mobile Belt are resistive, but NNW-striking major shear-zones are imaged as subvertical, conductive structures in the upper and middle crust. Since the geophysical imprint of the shear zones is intact, opening of the South Atlantic in the Cretaceous did not alter the middle crust. The transition into the cratonic region coincides with a deepening of the high-resistive material to depths of more than 60 km.

  11. Silicon uptake by sponges: a twist to understanding nutrient cycling on continental margins

    PubMed Central

    Maldonado, Manuel; Navarro, Laura; Grasa, Ana; Gonzalez, Alicia; Vaquerizo, Isabel

    2011-01-01

    About 75% of extant sponge species use dissolved silicon (DSi) to build a siliceous skeleton. We show that silicon (Si) uptake by sublittoral Axinella demosponges follows an enzymatic kinetics. Interestingly, maximum uptake efficiency occurs at experimental DSi concentrations two orders of magnitude higher than those in the sponge habitats, being unachievable in coastal waters of modern oceans. Such uptake performance appears to be rooted in a former condition suitable to operate at the seemingly high DSi values characterizing the pre-Tertiary (>65 mya) habitats where this sponge lineage diversified. Persistence of ancestral uptake systems causes sponges to be outcompeted by the more efficient uptake of diatoms at the low ambient DSi levels characterizing Recent oceans. Yet, we show that sublittoral sponges consume substantial coastal DSi (0.010.90?mmol Si m?2 day?1) at the expenses of the primary-production circuit. Neglect of that consumption hampers accurate understanding of Si cycling on continental margins. PMID:22355549

  12. Exploring the Continental Margin of Israel: “Telepresence” at Work

    NASA Astrophysics Data System (ADS)

    Coleman, Dwight F.; Austin, James A., Jr.; Ben-Avraham, Zvi; Ballard, Robert D.

    2011-03-01

    A multidisciplinary team of American and Israeli scientists conducted ocean exploration with a “telepresence” component offshore Israel in September 2010 on board the new E/V Nautilus, which is a reincarnation of the former East German R/V Alexander von Humboldt. This was the first comprehensive geological and biological exploration of the Israel continental margin using deep submergence vehicle systems. Diverse seafloor environments in water depths between 500 and 1300 meters were sampled and imaged using two remotely operated vehicle (ROV) systems, Hercules and Argus. The ROV dives within three areas (Figure 1) investigated high-priority acoustic targets representing geological, biological, or archaeological features as identified by the onboard scientific team. During the dives, biological and geological samples and more than 100 kilometers of high-resolution side-scan sonar data were collected.

  13. Authigenic carbonate formation at hydrocarbon seeps in continental margin sediments: A comparative study

    USGS Publications Warehouse

    Naehr, T.H.; Eichhubl, P.; Orphan, V.J.; Hovland, M.; Paull, C.K.; Ussler, W., III; Lorenson, T.D.; Greene, H. Gary

    2007-01-01

    Authigenic carbonates from five continental margin locations, the Eel River Basin, Monterey Bay, Santa Barbara Basin, the Sea of Okhotsk, and the North Sea, exhibit a wide range of mineralogical and stable isotopic compositions. These precipitates include aragonite, low- and high-Mg calcite, and dolomite. The carbon isotopic composition of carbonates varies widely, ranging from -60??? to +26???, indicating complex carbon sources that include 13C-depleted microbial and thermogenic methane and residual, 13C-enriched, bicarbonate. A similarly large variability of ??18O values (-5.5??? to +8.9???) demonstrates the geochemical complexity of these sites, with some samples pointing toward an 18O-enriched oxygen source possibly related to advection of 18O-enriched formation water or to the decomposition of gas hydrate. Samples depleted in 18O are consistent with formation deeper in the sediment or mixing of pore fluids with meteoric water during carbonate precipitation. A wide range of isotopic and mineralogical variation in authigenic carbonate composition within individual study areas but common trends across multiple geographic areas suggest that these parameters alone are not indicative for certain tectonic or geochemical settings. Rather, the observed variations probably reflect local controls on the flux of carbon and other reduced ions, such as faults, fluid conduits, the presence or absence of gas hydrate in the sediment, and the temporal evolution of the local carbon reservoir. Areas with seafloor carbonates that indicate formation at greater depth below the sediment-water interface must have undergone uplift and erosion in the past or are still being uplifted. Consequently, the occurrence of carbonate slabs on the seafloor in areas of active hydrocarbon seepage is commonly an indicator of exhumation following carbonate precipitation in the shallow subsurface. Therefore, careful petrographic and geochemical analyses are critical components necessary for the correct interpretation of processes related to hydrocarbon seepage in continental margin environments and elsewhere. ?? 2007 Elsevier Ltd. All rights reserved.

  14. Tectonic framework of interior Alaska - a model of Continental Margin extension, collapse, and dispersion

    SciTech Connect

    Dover, J.H.

    1985-04-01

    Preliminary results of geologic mapping and structural studies raise questions about terrane accretion models as presently applied to interior Alaska and suggest an alternative model of tectonic development. Among the regional geologic patterns and problems pertinent to any model for interior Alaska are (a) the present Z-shaped configuration of the northern Cordilleran fold-and-thrust belt (CFTB), (b) the means by which 450 km of dextral strike-slip is dispersed on splays of the Tintina fault system (c) the original continuity of the crystalline terranes of interior Alaska and their pre-Tintina Z-shaped distribution paralleling that of CFTB, and (d) the origins of two belts of deep-water deposits with mafic-igneous and locally ophiolitic associations - one outboard and the other inboard of the crystalline belt. The proposed model features (1) a relatively straight and passive North American margin with a Proterozoic to Middle Devonian sedimentary prism that underwent intermittent extension and volcanism in its distal part, (2) a Devonian-Mississippian continental arc at the outer edge of (1) and flanked cratonward by (3), an extending and rapidly subsiding basin also developed on (1) but containing Mississippian to Triassic deep-water sediments and abundant mafic-igneous material. Collapse and structural telescoping of the margin and intense reactivation of the continental arc occurred in Jurassic through Early Cretaceous time as oceanic crust converged with North America, and exotic terranes were accreted to the outboard side of arc. Oroclinal Z-bending of Cordilleran trends probably accompanied Late Cretaceous and earliest Tertiary strike-slip movement on the tintina and other fault systems based and rearranged.

  15. A synopsis of the circulation in the Gulf Of Mexico and on its continental margins

    NASA Astrophysics Data System (ADS)

    Schmitz, W. J., Jr.; Biggs, D. C.; Lugo-Fernandez, A.; Oey, L.-Y.; Sturges, W.

    This article is a synopsis of the state-of-the-art knowledge and understanding of the circulation in the deep Gulf of Mexico as well as in the coastal flow regimes on its continental margins. The primary purpose is to review the ideas and results in this special new volume on the circulation in the Gulf of Mexico and integrate them with material from selected previous publications. This overview therefore contains more repetition and expository discussion than normally found in journal articles. An extensive reference list is provided for interested readers, a special feature for students. This volume is also meant to appeal to an audience beyond the general population of physical oceanographers, to include a more diverse community of Marine Scientists and Engineers, along with social interests of a scientific/technical nature. The article in this volume by Biggs et al. is focused on a study of some specific biogeochemical implications of on- and off-margin flow (on- and off- continental shelf/slope regions) in the northern Gulf of Mexico. The articles by Chassignet et al. [this volume] and Morey et al. [this volume], for example, note particular applications. Potential influences by the currents in the Gulf of Mexico on processes of interest in other branches of Marine Science are occasionally considered in this synopsis (for example, there is a special section on the effects of current patterns on coral reefs). The reader may also refer to a comparatively recent review of some of the physical oceanographic influences that regulate the biology of the Gulf of Mexico by Wiseman and Sturges [1999]. Finally, this synopsis is meant to complement and expand upon the Introduction to this volume by Sturges et al., which includes consideration of some general societal interests motivating marine research in the Gulf of Mexico.

  16. Authigenic apatite formation and burial in sediments from non-upwelling, continental margin environments

    SciTech Connect

    Ruttenberg, K.C.; Berner, R.A. )

    1993-03-01

    Evidence for precipitation of authigenic carbonate fluorapatite (CFA) in Long Island Sound and Mississippi Delta sediments suggests that formation of CFA is not restricted to environments of active coastal upwelling. The authors present porewater data suggestive of CFA formation in both these areas. Application of a sequential leaching procedure, designed specifically to separate authigenic carbonate fluorapatite from other phosphorus-containing phases, including detrital apatite of igneous or metamorphic origin, provides strong supporting evidence for authigenic apatite formation in these sediments. The size of the authigenic apatite reservoir increases with depth, indicating continued formation of CFA during early diagenesis. This depth increase is mirrored by a decrease in solid-phase organic P at both sites, suggesting that CFA is forming at the expense of organic P. Mass balance considerations, application of diagenetic models to intersitital water nutrient data, and the saturation state of the interstitial water are consistent with this interpretation. Diagenetic redistribution of phosphorus among the different solid-phase reservoirs is observed at both sites, and results in near perfect retention of P by these sediments over the depth intervals sampled. Formation of CFA in continental margins which do not conform to the classically defined regions of phosphorite formation renders CFA a quantitatively more important sink than has previously been recognized. Including this reservoir as a newly identified sink for reactive P in the ocean, the residence time of P in the modern ocean must be revised downward. The implication for ancient oceans of CFA formation in continental margin sediments other than phosphorites is that phosphorite formation may be less a representation of episodicity in removal of reactive P from the oceans than of localized concentration of CFA in phosphatic sediments by secondary physical processes. 90 refs., 5 figs., 2 tabs.

  17. Stability of Gas Hydrates on Continental Margins: Implications of Subsurface Fluid Flow

    NASA Astrophysics Data System (ADS)

    Nunn, J. A.

    2008-12-01

    Gas hydrates are found at or just below the sediment-ocean interface in continental margins settings throughout the world. They are also found on land in high latitude regions such as the north slope of Alaska. While gas hydrate occurrence is common, gas hydrates are stable under a fairly restricted range of temperatures and pressures. In a purely conductive thermal regime, near surface temperatures depend on basal heat flow, thermal conductivity of sediments, and temperature at the sediment-water or sediment-air interface. Thermal conductivity depends on porosity and sediment composition. Gas hydrates are most stable in areas of low heat flow and high thermal conductivity which produce low temperature gradients. Older margins with thin continental crust and coarse grained sediments would tend to be colder. Another potentially important control on subsurface temperatures is advective heat transport by recharge/discharge of groundwater. Upward fluid flow depresses temperature gradients over a purely conductive regime with the same heat flow which would make gas hydrates more stable. Downward fluid flow would have the opposite effect. However, regional scale fluid flow may substantially increase heat flow in discharge areas which would destabilize gas hydrates. For example, discharge of topographically driven groundwater along the coast in the Central North Slope of Alaska has increased surface heat flow in some areas by more than 50% over a purely conductive thermal regime. Fluid flow also alters the pressure regime which can affect gas hydrate stability. Modeling results suggest a positive feedback between gas hydrate formation/disassociation and fluid flow. Disassociation of gas hydrates or permafrost due to global warming could increase permeability. This could enhance fluid flow and associated heat transport causing a more rapid and/or more spatially extensive gas hydrate disassociation than predicted solely from conductive propagation of temporal changes in surface or water bottom temperature. Model results from both the North Slope of Alaska and the Gulf of Mexico are compared.

  18. Built-up of the continental margin offshore Central Mozambique from marine geophysical investigations

    NASA Astrophysics Data System (ADS)

    Heyde, I.; Block, M.; Ehrhardt, A.; Reichert, C. J.; Schreckenberger, B.

    2009-12-01

    In September/October 2007, along with institutes from Germany, France and Portugal BGR conducted the cruise MoBaMaSis (Mozambique Basin Marine Seismic Survey) using RV MARION DUFRESNE. The goal of the marine geophysical measurements offshore central Mozambique was the investigation of the continental margin in terms of its structure and formation history with special focus on the opening history of Eastern Gondwana and the hydrocarbon potential. A total of four long transects (450 to 225 km long) and a number of connection lines were acquired from the shelf and the slope into the deep Mozambique Basin. The data comprises multichannel seismic reflection (MCS), magnetic, gravimetric and swath bathymetry. On the eastern two transects two on-/offshore seismic refraction studies were carried out. Apart from results of the MCS and the magnetic work, in particular the results of the gravity data are presented. A 3D density model was developed. In the Mozambique Basin a large thick sedimentary succession of up to 8 km thickness from Jurassic to present is observed. Two deep reaching wells supported, at least in part, the identification of stratigraphy. Faint indications for SDR sequences related to volcanic flows are found in the northern part of the study area. In the south, the Beira High represents a prominent structure. The basement high with sediments of considerable reduced thickness is characterized by a distinct gravity minimum. A possible explanation is that the high is formed by a continental fragment. In addition, no clear magnetic chrons are identifiable. Thus, stretched continental crust is assumed underlying this part of the Mozambique Basin.

  19. Geological and Sediment Thickness Data Sources From the U.S. Continental Margins

    NASA Astrophysics Data System (ADS)

    Hutchinson, D. R.; Childs, J. R.; Edgar, N. T.; Barth, G.; Hammar-Klose, E.; Dadisman, S. V.; Rowland, R.

    2005-12-01

    Although the United States has not yet ratified the United Nations Convention on the Law of the Sea (UNCLOS), work has begun to assess the geophysical and geological data sources that might be applied to an extended continental shelf submission under Article 76 of the UNCLOS. The U.S. Geological Survey, as a follow-up to the Congressional Report published by the University of New Hampshire on data relevant to a potential U.S. submission (Mayer and others, 2002), has identified existing seismic reflection, seismic refraction, and drill-hole data on the U.S. margins for the areas where an extended continental shelf submission could be considered. This work complements ongoing NOAA efforts to map the foot-of-the-slope. The USGS compilation includes more than 80,000 km of multichannel seismic data, 70,000 km of single-channel seismic reflection data, 25 refraction experiments, and 12 drill holes that penetrate to basement. Data quality varies according to year collected and acquisition system used. Data coverage is generally excellent within the 200-nm EEZ boundary, but new data will be required to adequately assess sediment thickness in the area beyond 200-nm in some of the poorly surveyed regions (e.g., the Arctic). Velocity and drill-hole control for deeper sedimentary units is generally poor; this deficiency will also need to be addressed in new data gathering efforts. Subsea mineral resources that might exist in the region of an extended continental shelf vary by region and include conventional hydrocarbons, gas hydrate, ferro-manganese crusts and nodules, and possibly phosphorite deposits. On-going efforts are directed at interpreting these data with reference to UNCLOS criteria and guidelines, as well as evaluating how recent submissions to the United Nations by other States might affect a possible U.S. submission.

  20. Distribution and sources of organic matter in surface sediments of the eastern continental margin of India

    NASA Astrophysics Data System (ADS)

    Krishna, M. S.; Naidu, S. A.; Subbaiah, Ch. V.; Sarma, V. V. S. S.; Reddy, N. P. C.

    2013-12-01

    sources and distribution of organic matter (OM) in surface sediments of the eastern continental margin of India, including the region influenced by river discharge, were investigated using content, molar C:N ratios and stable isotopes of carbon and nitrogen. Despite relatively high water column integrated chlorophyll-a concentrations were found in the continental shelf than the slope; however, the lower sediment organic carbon (SOC) was found in the former than the latter region suggesting that in situ production did not play significant role on preservation of SOC in the coastal Bay of Bengal. The broad range of ?13C of SOC (-23.2 to -16.7) suggests that OM is a broad mixture of terrestrial and marine OM. Relative contributions from terrestrial C3 and C4 plants and marine sources are quantified as 34%, 23%, and 43%, respectively, indicating that dominant source of allochthonous OM (~57%) in the coastal Bay of Bengal. Relatively higher contribution of OM from C4 plants was found in the sediments at off river Krishna indicating that this region received detritus of agricultural crops such as jowar, bajra, and sugar cane, which are dominant in its drainage basin, during SW monsoon. This study revealed that relatively high OM preserved in the slope than shelf region along the coastal Bay of Bengal and the composition of OM is primarily controlled by the type of agricultural crops and vegetation in the drainage basin of the river.

  1. Late Cretaceous - Cenozoic development of outer continental margin, southwestern Nova Scotia

    SciTech Connect

    Swift, S.A.

    1987-06-01

    The growth pattern for the outer continental margin of Nova Scotia during the Late Cretaceous and Cenozoic was studied using seismic stratigraphy and well data. Sediment accumulation was broadly controlled by temporal changes in relative sea level, but significant spatial and temporal changes in accumulation patterns were caused by changes in sediment supply rate, morphology, erosion by abyssal currents, and salt tectonics. A Jurassic-Early Cretaceous carbonate platform remained exposed until the Late Cretaceous and controlled the location and steepness of the paleoslope until the late Miocene. Local erosion of the outer shelf and slope in the late Paleocene-early Eocene produced chalky fans on the upper rise. The relationship between erosion of the shelf in the late Eocene and early Oligocene, and abyssal current erosion of the upper rise in the Oligocene, is unclear. Seaward extensions of Tertiary shelf-edge canyons are poorly defined except for the Eocene fans. In the Miocene, abyssal currents eroded a bench on the upper continental rise. Subsequently, sediments lapped onto and buried the paleoslope. The lower rise above horizon A/sup u/ (Oligocene) is composed of fans and olistostromes shed from halokinetic uplift of the upper rise. Current eroded unconformities are common in the rise sequence, but the only current deposit is a Pliocene interval (< 300 m) restricted to the lowermost rise. Pleistocene turbidity currents eroded the present canyon morphology. 15 figures, 2 tables.

  2. Average QLg, QSn, and observation of Lg blockage in the Continental Margin of Nova Scotia

    NASA Astrophysics Data System (ADS)

    Mousavi, S. Mostafa; Cramer, Chris H.; Langston, Charles A.

    2014-10-01

    The term "Lg blockage" refers to the sudden disappearance of the Lg phase along a particular propagation path which is commonly seen at continental-oceanic transition zones. In this paper we present observational evidence of Lg blockage across the continental margin of Nova Scotia in eastern Canada. Regional Lg and Sn spectra from 91 events with epicentral distances between 100 and 1200 km and magnitudes between 2.5 and 4.7 are inverted simultaneously for the source spectrum, site amplification, and average attenuation. The vertical displacement spectra were estimated between 0.9 and 10.75 Hz. The assumptions include a fixed frequency-independent geometric spreading rate for Lg and a frequency-dependent spreading model for the Sn. Estimates for the apparent regional attenuations are QLg (f) = 615(25) f0.35(0.04) and QSn (f) = 404(23) f0.45(0.03). Results from this study provide an accurate parameterization of observed amplitude spectra and are valuable for representing wave propagation in the region. Based on the observation of a strong trade-off between Sn and Lg amplitudes which have different attenuation characteristics, we conclude any attenuation study based on measuring amplitude of a package of several different phases, without taking into consideration the propagation characteristics of individual waveforms at the region of study, may bias the estimation of average regional Q.

  3. Crustal Structure of the Gulf of Aden Continental Margins, from Afar to Oman, by Ambient Noise Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Korostelev, F.; Weemstra, C.; Boschi, L.; Leroy, S. D.; Ren, Y.; Stuart, G. W.; Keir, D.; Rolandone, F.; Ahmed, A.; Al Ganad, I.; Khanbari, K. M.; Doubre, C.; Hammond, J. O. S.; Kendall, J. M.

    2014-12-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Gulf of Aden presents volcanic margins to the west, where they are influenced by the Afar hotspot, and non volcanic margins east of longitude 46 E. We imaged the crustal structure of the Gulf of Aden continental margins from Afar to Oman to evaluate the role of the Afar plume on the evolution of the passive margin and its extent towards the East. We use Ambient Noise Seismic Tomography to better understand the architecture and processes along the Gulf of Aden. This recent method, developed in the last decade, allows us to study the seismic signal propagating between two seismic stations. Ambient Noise Seismic Tomography is thus free from artifacts related to the distribution of earthquakes. We collected continuous records from about 200 permanent or temporary stations since 1999 to compute Rayleigh phase velocity maps over the Gulf of Aden.

  4. Uplift along passive continental margins, changes in plate motion and mantle convection

    NASA Astrophysics Data System (ADS)

    Japsen, Peter; Green, Paul F.; Chalmers, James A.; Bonow, Johan M.

    2014-05-01

    The origin of the forces that produce elevated, passive continental margins (EPCMs) is a hot topic in geoscience. It is, however, a new aspect in the debate that episodes of uplift coincide with changes in plate motion. This has been revealed, primarily, by studies of the burial, uplift and exhumation history of EPCMs based on integration on stratigraphic landscape analysis, low-temperature thermochronology and evidence from the geological record (Green et al., 2013). In the Campanian, Eocene and Miocene, uplift and erosion affected the margins of Brazil and Africa (Japsen et al., 2012b). The uplift phases in Brazil coincided with main phases of Andean orogeny which were periods of relatively rapid convergence at the Andean margin of South America (Cobbold et al., 2001). Because Campanian uplift in Brazil coincides, not only with rapid convergence at the Andean margin of South America, but also with a decline in Atlantic spreading rate, Japsen et al. (2012b) suggested that all these uplift events have a common cause, which is lateral resistance to plate motion. Because the uplift phases are common to margins of diverging plates, it was also suggested that the driving forces can transmit across the spreading axis; probably at great depth, e.g. in the asthenosphere. Late Eocene, Late Miocene and Pliocene uplift and erosion shaped the elevated margin of southern East Greenland (Bonow et al., in review; Japsen et al., in review). These regional uplift phases are synchronous with phases in West Greenland, overlap in time with similar events in North America and Europe and also correlate with changes in plate motion. The much higher elevation of East Greenland compared to West Greenland suggests dynamic support in the east from the Iceland plume. Japsen et al. (2012a) pointed out that EPCMs are typically located above thick crust/lithosphere that is closely juxtaposed to thinner crust/lithosphere. The presence of mountains along the Atlantic margin of Brazil and in East and West Greenland, close to where continental crust starts to thin towards oceanic crust, illustrates the common association between EPCMs and the edges of cratons. These observations indicate that the elevation of EPCMs may be due to processes operating where there is a rapid change in crustal/lithosphere thickness. Vertical motion of EPCMs may thus be related to lithosphere-scale folding caused by compressive stresses at the edge of a craton (e.g. Cloetingh et al., 2008). The compression may be derived either from orogenies elsewhere on a plate or from differential drag at the base of the lithosphere by horizontal asthenospheric flow (Green et al., 2013). Bonow, Japsen, Nielsen. Global Planet. Change in review. Cloetingh, Beekman, Ziegler, van Wees, Sokoutis, 2008. Geol. Soc. Spec. Publ. (London) 306. Cobbold, Meisling, Mount, 2001. AAPG Bull. 85. Green, Lidmar-Bergström, Japsen, Bonow, Chalmers, 2013. GEUS Bull. 2013/30. Japsen, Chalmers, Green, Bonow 2012a, Global Planet. Change 90-91. Japsen, Bonow, Green, Cobbold, Chiossi, Lilletveit, Magnavita, Pedreira, 2012b. GSA Bull. 124. Japsen, Green, Bonow, Nielsen. Global Planet. Change in review.

  5. Origin of increased terrigenous supply to the NE South American continental margin during Heinrich Stadial 1 and the Younger Dryas

    NASA Astrophysics Data System (ADS)

    Zhang, Yancheng; Chiessi, Cristiano M.; Mulitza, Stefan; Zabel, Matthias; Trindade, Ricardo I. F.; Hollanda, Maria Helena B. M.; Dantas, Elton L.; Govin, Aline; Tiedemann, Ralf; Wefer, Gerold

    2015-12-01

    We investigate the redistribution of terrigenous materials in the northeastern (NE) South American continental margin during slowdown events of the Atlantic Meridional Overturning Circulation (AMOC). The compilation of stratigraphic data from 108 marine sediment cores collected across the western tropical Atlantic shows an extreme rise in sedimentation rates off the Parnaíba River mouth (about 2°S) during Heinrich Stadial 1 (HS1, 18-15 ka). Sediment core GeoB16206-1, raised offshore the Parnaíba River mouth, documents relatively constant 143Nd/144Nd values (expressed as εNd(0)) throughout the last 30 ka. Whereas the homogeneous εNd(0) data support the input of fluvial sediments by the Parnaíba River from the same source area directly onshore, the increases in Fe/Ca, Al/Si and Rb/Sr during HS1 indicate a marked intensification of fluvial erosion in the Parnaíba River drainage basin. In contrast, the εNd(0) values from sediment core GeoB16224-1 collected off French Guiana (about 7°N) suggest Amazon-sourced materials within the last 30 ka. We attribute the extremely high volume of terrigenous sediments deposited offshore the Parnaíba River mouth during HS1 to (i) an enhanced precipitation in the catchment region and (ii) a reduced North Brazil Current, which are both associated with a weakened AMOC.

  6. The continental Etirol-Levaz slice (Western Alps, Italy): Tectonometamorphic evolution of an extensional allochthon

    NASA Astrophysics Data System (ADS)

    Ewerling, Kathrin; Obermller, Gerrit; Kirst, Frederik; Froitzheim, Nikolaus; Nagel, Thorsten; Sandmann, Sascha

    2013-04-01

    The Etirol-Levaz slice (ELS) in the western Valtournenche of Italy is a continental fragment trapped between two oceanic units, the eclogite-facies Zermatt-Saas Zone in the footwall and the greenschist-facies Combin Zone in the hanging wall. It has been interpreted as an extensional allochthon derived from the Adriatic continental margin and stranded inside the Piemont-Ligurian oceanic domain during Jurassic rifting (Dal Piaz et al., 2001; Beltrando et al., 2010). The slice consists of Variscan high-grade gneisses, micaschists and metabasics overprinted under eclogite-facies conditions during Early Tertiary Alpine subduction. Eclogites generally consist of garnet + omphacite epidote amphibole phengite quartz. We investigate their metamorphic history using equilibrium phase diagrams, mineral compositions, and textural relations between prograde, peak, and retrograde phases. In sample FD328, garnets have compositions of Alm52-61 Grs18-41 Prp5-22 Sps0.5-2 and typical growth zoning. Some garnet grains are brittlely fractured, strongly corroded and overgrown by epidote. Amphibole occurs as a major phase in the matrix and shows a progressive evolution from glaucophane in the core to pargasitic hornblende towards the rim. Sample FD329 with a particular Ca-rich bulk composition (18.3 wt% Ca) displays two distinct garnet generations. Perfectly euhedral cores show compositions of Grs42-45 Alm47-51 Prp3-6 Sps2-7 and typical prograde growth zoning. These cores are overgrown by irregularly shaped rims characterised by an initial rise in Mn and the Fe-Mg ratio. Omphacite in this sample with jadeite-contents of 19-28 mol% apparently has been fractured and annealed by jadeite-poor (7-12 mol%) omphacite suggesting brittle behaviour at eclogite-facies conditions or two high-pressure stages with lower metamorphic conditions in between. We discuss whether the ELS experienced the same monocyclic metamorphic history as the Zermatt-Saas Zone or not. Some of our observations suggest that the ELS experienced two independent stages of high-pressure metamorphism during the Alpine orogeny, e.g. as proposed by Rubatto et al. (2011) for the Sesia Nappe. A lower-pressure stage in between might have been associated with brittle fracturing of high-pressure phases like garnet, glaucophane, and omphacite while the second generations of these minerals might indicate a new stage of increasing pressures and/or temperatures. References Beltrando, M., Rubatto, D. & Manatschal, G. (2010): From passive margins to orogens: The link between ocean-continent transition zones and (ultra)high-pressure metamorphism. Geology, 6, 559-562. Dal Piaz, G.V., Cortiana, G., Del Moro, A., Martin, S., Pennacchioni, G. & Tartarotti, P. (2001): Tertiary age and paleostructural inferences of the eclogitic imprint in the Austroalpine outliers and Zermatt-Saas ophiolite, western Alps. Int. J. Earth Sci., 90, 668-684. Rubatto, D., Regis, D., Hermann, J., Boston, K., Engi, M., Beltrando, M. & McAlpine, S.R.B. (2011): Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geoscience, 4, 338-342.

  7. Upper Devonian depositional system of Bel'kov Island (New Siberian Islands): An intracontinental rift or a continental margin?

    NASA Astrophysics Data System (ADS)

    Danukalova, M. K.; Kuzmichev, A. B.; Aristov, V. A.

    2014-09-01

    The archipelago of New Siberian Islands situated on the northeastern continental shelf of Eurasia is considered a part of an exotic terrane that collided with Siberia in the Early Cretaceous. Bel'kov Island is located close to the inferred western boundary of this terrane and thus should demonstrate attributes of its localization at the margin of the Paleozoic oceanic basin. The Upper Devonian section on Bel'kov Island is a continuous sequence of deepwater terrigenous rocks, which indicates a tendency toward deepening of the basin previously revealed on adjacent Kotel'ny Island. The lowermost Upper Devonian unit on Bel'kov Island is represented by thin Domanik-like strata resting on the Middle Devonian carbonate platform. The main body of the Upper Devonian sequence, more than 4 km in total thickness, is made up of gravity-flow sediments including turbidites, clay and block diamictites, and olistostromes in the upper part of the section, which accumulated at the slope of the basin or its rise. At many levels, these sediments have been redeposited by along-slope currents. The uppermost unit of organogenic limestone is evidence for compensation of the trough. According to conodont assemblages, the deepwater terrigenous rocks were deposited from the early Frasnian to the early Tournaisian. This time is known for extensive rifting in the eastern Siberian Platform. The data obtained allowed us to reconstruct a NNW-trending Late Devonian rift basin on the Laptev Sea shelf similar to other rifts at the eastern margin of the Siberian Platform.

  8. Gas hydrates and active mud volcanism on the South Shetland continental margin, Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Tinivella, U.; Accaino, F.; Della Vedova, B.

    2008-04-01

    During the Antarctic summer of 2003 2004, new geophysical data were acquired from aboard the R/V OGS Explora in the BSR-rich area discovered in 1996 1997 along the South Shetland continental margin off the Antarctic Peninsula. The objective of the research program, supported by the Italian National Antarctic Program (PNRA), was to verify the existence of a potential gas hydrate reservoir and to reconstruct the tectonic setting of the margin, which probably controls the extent and character of the diffused and discontinuous bottom simulating reflections. The new dataset, i.e. multibeam bathymetry, seismic profiles (airgun and chirp), and two gravity cores analysed by computer-aided tomography as well as for gas composition and content, clearly shows active mud volcanism sustained by hydrocarbon venting in the region: several vents, located mainly close to mud volcanoes, were imaged during the cruise and their occurrence identified in the sediment samples. Mud volcanoes, vents and recent slides border the gas hydrate reservoir discovered in 1996 1997. The cores are composed of stiff silty mud. In core GC01, collected in the proximity of a mud volcano ridge, the following gases were identified (maximum contents in brackets): methane (46 μg/kg), pentane (45), ethane (35), propane (34), hexane (29) and butane (28). In core GC02, collected on the flank of the Vualt mud volcano, the corresponding data are methane (0 μg/kg), pentane (45), ethane (22), propane (0), hexane (27) and butane (25).

  9. Tectonic and eustatic controls on sedimentary successions at passive continental margins

    SciTech Connect

    Christie-Blick, N. )

    1990-05-01

    The configuration and internal characteristics of sedimentary successions at passive continental margins are controlled largely by patterns of tectonically driven subsidence and deformation by eustasy, by the character and flux of available terrigenous sediment, and by the rate of in-situ production of carbonate and other chemical sediments, Rates of subsidence and sediment accumulation are also influenced by the effects of sediment loading and deformation and by the manner in which sediments become lithified through compaction and diagenesis. The purpose of this presentation is to explore, with reference to passive margins of Mesozoic and Cenozoic age, some of the complex interconnections and feedbacks between these controls, their characteristic time scales and rates, and the leads and lags that may be involved. In particular, the authors draw attention to the controversy concerning the roles of tectonics and eustasy in the development of unconformities. A practical application of this ongoing research is the promise of new concepts and tools for the exploration and production of oil and gas. An inherent difficulty is that none of the important variables can be isolated completely, and simplifying assumptions, although necessary for analysis, unfortunately tend to take on the aura of established fact, Models have already outstripped the data available to test them, and at best they can place bounds only on what is possible. The apparent success of a stratigraphic simulation is no guarantee that all (or even any) of the important variables are included within the starting assumptions.

  10. Cretaceous source rock characterization of the Atlantic Continental margin of Morocco

    SciTech Connect

    Jabour, H. )

    1993-02-01

    Characterization of the petroleum potential for the Atlantic margin of Morocco has been based primarily on limited, antiently acquired organic geochemical data. These indicate the area of drilling behind the paleoshelf edge to be only fair in organic carbon and C15+ extract values with predominantly terrestrial kerogen types. Recently acquired geochemical data obtained from relatively recent drilling both behind and beyond the paleoshelf edge indicate 4 depositional facies containing hydrogen rich amorphous kerogen assemblages. These are: (1) Lower to Mid Jurassic inner shelf facies probably deposited in algal rich lagoon-like, (2) Lower Cretaceous non marine coaly facies probably deposited in algal rich swamplike environments, (3) Middle Cretaceous facies characterized by restrited anoxic environment with sediments rich in marine kerogen types deposited under sluggish wather circulation, (4) Upper Cretaceous to Tertiary outer-shelf to Upper slope facies probably deposited under algal-rich upwelling systems. Of these, the Cretaceous facies is the most widespread and represents the best source rock potential characteristics. Correlation of these facies to recently acquired good quality seismic packages allows for extrapolation of probable organic facies distribution throughout the continental margin. This should enhance the hydrocarbon potential of the Mesozoic and Cenozoic sediments both landward and seaward of the paleoshelf edge and thus permits refinement of strategies for hydrocarbon exploration in the area.

  11. Subsidence and eustasy at the continental margin of eastern North America

    NASA Technical Reports Server (NTRS)

    Watts, A. B.; Steckler, M. S.

    1979-01-01

    Biostratigraphic data from the COST B-2 well off New York and four deep commercial wells off Nova Scotia have been used to remove the effect of sediment loading at the Atlantic-type continental margin off the East Coast of North America. The resulting subsidence contains terms due to both 'tectonic' and 'eustatic' effects. By assuming the tectonic subsidence is thermal in origin these effects can be separated. The 'eustatic' effects have been isolated by least squares fitting an exponential curve to the subsidence data. The resulting sea-level curve shows a maximum rise in sea level during the Late Cretaceous era which probably does not exceed 150 m. The tectonic subsidence has been interpreted in terms of a simple thermal model for the cooling lithosphere. Based on this model the thermal thickness of the lithosphere and the total amount of crustal thinning are estimated. These estimates which are consistent with surface ship gravity and GEOS-3 altimeter measurements are used to define the structural elements which control the tectonic evolution of the margin.

  12. New Data From the Southern Levantine Continental Margin and outer Nile Cone - the GEMME Project

    NASA Astrophysics Data System (ADS)

    Huebscher, C. P.; Ben-Avraham, Z.; Dehghani, A.; Gohl, K.; Paetzold, J.

    2002-12-01

    In order to investigate the tectonic and sedimentary setting of the southern Levantine continental margin as well as the Late Quaternary paleoceanography of the outer Nile Cone a geophysical and geological survey - the GEMME project - was carried out in the eastern Mediterranean between February and March 2002. The German research vessel METEOR operated for 5 weeks in the territorial waters of Israel and Egypt. The experiments included refraction and reflection seismics, gravity and magnetics, swath sounding and subbottom profiling, and sediment sampling with gravity and multi-corer. We found a strong correlation between salt tectonic features and the position of channel levee complexes evolved on the outer Nile Cone, which is different to other submarine fans without a mobile layer beneath where the location of the complexes is an autocyclic process. The high-resolution stratigraphy of the Post-Messinian sediment prism reflects the interplay between sediment input, transport mechanisms, uplift and subsidence, halokinetics, and changes of sea level and climate. We found a wide abundance of gassy clastic sediments above the basal Pliocene unconformity and relation between chemoherms, faulting, and gas/fluid migration. The dominant disturbances along the continental slope off Israel are most likely triggered by salt (gravity) tectonic. The position of the landward termination of the Messinian evaporites is located beneath the present shelf in the north but beneath the lower continental slope of bottomset in the south. The salt tectonic is most likely responsible for the along-strike variation of the margin morphology. The Pelusium line reflects the salt tectonic and is presumably not a basement tectonic feature. We found evidence of active tectonic off Haifa Bay in the prolongation of the Carmel rift and it related branches. The paleoclimate history of the Nile deposits will be studied from the extensive sediment core collection. Four different sediment profiles were covered, i.e. three core transects representing the three different provinces of the Nile fan and one core transect across the continental margin of southern Israel. High resolution dating by AMS 14C and high resolution logger methods will reveal detailed sedimentological and geochemical chronologies in proximal and distal provinces of the marine Nile fan. High resolution geochemical and stable isotope chronologies will reveal climatic and oceanographic changes in the southeastern Mediterranean under the impact of the Nile. Special emphasis will be given to reconstruct the late glacial and Holocene climatic record and to compare it with the terrestrial archives of African and Middle East climate change. It will be also possible to reconstruct changes in sedimentation in post-Aswan dam times. To better understand land-ocean interactions it will be needed to link our high resolution marine sediment records with terrestrial paleoclimate archives. We also expect an improved understanding of the impact of short term global climatic changes on the deposition of Nile sediments and the climate of the southeastern Mediterranean. The analysis of the data will be carried out within a science network, that developed during the initial phase of the EUROCORES/EUROMARGIN program of the ESF. Institutions form Germany, Egypt, England, France, Israel, Netherlands, and Palestine are involved.

  13. Benthic remineralization in the northeast European continental margin (northern Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Suykens, Kim; Schmidt, Sabine; Delille, Bruno; Chou, Lei; de Bodt, Caroline; Harlay, Jrme; Fagel, Nathalie; Borges, Alberto V.

    2010-05-01

    We report a data-set of sediment characteristics and biogeochemical fluxes at the water-sediment interface at the northeast European continental margin (northern Bay of Biscay). Cores were obtained in June 2006, May 2007 and 2008, at 8 stations on the shelf break (120 to 180 m), and at 2 stations on the continental slope (520 m and 680 m). Sediment-water fluxes of dissolved oxygen (O2), total alkalinity (TA), nitrate (NO3-), and dissolved silicate (DSi) were measured at a total of 20 stations. Sediment characteristics include: grain size, chlorophyll-a (Chl-a) and phaeopigment (Phaeo) content, particulate organic (POC) and inorganic (PIC) carbon content, and 234Th and 210Pb activities. Sediments were sandy (fine to coarse) with organic matter (OM) (1.0 - 4.0 %) and Chl-a (0.01 - 0.95 g g-1) contents comparable to previous publications in the same region, and a relatively high PIC fraction (0.8 - 10.2 %). Sediment-water O2 fluxes (-2.4 to -8.4 mmol O2 m-2 d-1) were low compared to other coastal environments and correlated well with OM and Chl-a content. 234Th activity profiles indicated that Chl-a sediment content (apparently the main driver of total benthic organic carbon degradation) was mainly controlled by physical mixing processes related to local hydrodynamics. The correlation between sediment-water fluxes of O2 and NO3- indicated a close coupling of nitrification/denitrification and total benthic organic carbon degradation. Dissolution of biogenic silica (0.05 to 0.95 mmol m-2 d-1) was uncoupled from organic carbon degradation, characterized by sediment-water O2 fluxes. The link between sediment-water fluxes of TA and O2 indicated metabolic driven dissolution (~ 0.33 0.47 mmol m-2 d-1) of calcium carbonates (CaCO3) in the sediments which represented ~ 1 % of the pelagic calcification rates due to coccolithophores. These rates were below those reported in sediments of continental slopes and of the deep ocean, probably due to the high over-saturation with respect to CaCO3 of the water column overlying the continental shelf sediments of the northern Bay of Biscay. Rates of total benthic organic carbon degradation and CaCO3 dissolution were low compared to water column rates of primary production, aphotic community respiration and CaCO3 production obtained during the cruises.

  14. Benthic remineralization in the northwest European continental margin (northern Bay of Biscay)

    NASA Astrophysics Data System (ADS)

    Suykens, K.; Schmidt, S.; Delille, B.; Harlay, J.; Chou, L.; De Bodt, C.; Fagel, N.; Borges, A. V.

    2011-04-01

    We report a dataset of sediment characteristics and biogeochemical fluxes at the water-sediment interface at the northwest European continental margin (northern Bay of Biscay). Cores were obtained in June 2006, May 2007 and 2008, at 18 stations on the shelf break (120-180 m), and at 2 stations on the continental slope (520 and 680 m). Water-sediment fluxes of dissolved oxygen (O 2), total alkalinity (TA), nitrate ( NO3-), and dissolved silicate (DSi) were measured at a total of 20 stations. Sediment characteristics include: grain size, chlorophyll- a (Chl- a) and phaeopigment (Phaeo) content, particulate organic (POC) and inorganic (PIC) carbon content, and lead-210 ( 210Pb) and thorium-234 ( 234Th) activities. Sediments were sandy (fine to coarse) with organic matter (OM) (1.0-4.0%) and Chl- a (0.01-0.95 ?g g -1) contents comparable to previous investigations in the same region, and a relatively high PIC fraction (0.8-10.2%). Water-sediment O 2 fluxes (-2.4 to -8.4 mmol O 2 m -2 d -1) were low compared to other coastal environments and correlated well with OM and Chl- a content. 234Th activity profiles indicated that Chl- a sediment content was mainly controlled by physical mixing processes related to local hydrodynamics. The correlation between water-sediment fluxes of O 2 and NO3- indicated a close coupling of nitrification/denitrification and total benthic organic carbon degradation. Dissolution of biogenic silica (0.05-0.95 mmol m -2 d -1) seemed uncoupled from organic carbon degradation, as characterized by water-sediment O 2 fluxes. The link between water-sediment fluxes of TA and O 2 indicated the occurrence of metabolic driven dissolution of calcium carbonates (CaCO 3) in the sediments (0.330.47 mmol m -2 d -1), which represented 1% of the pelagic calcification rates due to coccolithophores measured during the cruises. These CaCO 3 dissolution rates were below those reported in sediments of continental slopes and of the deep ocean, probably due to the high over-saturation with respect to CaCO 3 of the water column overlying the continental shelf sediments of the northern Bay of Biscay. Rates of total benthic organic carbon degradation were low compared to water column rates of primary production and aphotic community respiration obtained during the cruises.

  15. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    NASA Astrophysics Data System (ADS)

    Archer, D.

    2014-06-01

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.

  16. A nitrogen budget for the continental margin of the Peruvian oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Dengler, Marcus; Bryant, Lee; Sommer, Stefan; Bourbonnais, Annie; Dullo, Christian; Dale, Andy

    2015-04-01

    In oxic environments, nitrogen (N) is frequently a limiting nutrient for primary production and hence a controlling element in marine ecosystems. The fixed form of N, i.e., bioavailable N for primary production, is primarily in the oxidized form of nitrate (NO3-). However, in the sub-oxic environments of oxygen minimum zones (OMZs), N-species are biochemically converted to biogenic N2 gas which is then released, or lost, to the atmosphere. N-cycling under sub-oxic conditions thus diminishes the oceanic pool of bioavailable N. It has been suggested that although OMZs constitute only about 1% of global ocean volume, they account for about 20-40% of global oceanic N loss. However, to date these estimates are subject to largely uncertainties. Here, we quantify the rate of N-cycling and the associated N-loss by evaluating all terms of a benthic-pelagic nutrient transport budget at the continental margin off Peru using observations from an extensive measurement program conducted along the continental slope and shelf region at 12S. The data set was collected during austral summer in 2013 and consists of nutrient, microstructure and CTD/O2 profiles as well as shipboard velocity data from two research cruises, a glider swarm experiment and current time series from a moored array. To constrain the benthic contribution to the nutrient budget, benthic nutrient fluxes were measured in benthic chambers using Biogeochemical Observatory (BIGO) landers. Detailed budget determinations were performed on the upper continental slope and shelf break as well as at the shelf. Both regions were anoxic but different with regard to nutrient distribution as well as benthic nutrient release rates. Three major conclusions can be inferred from the study: (1) Unexpectedly, the results showed that diapycnal nutrient fluxes, driven by turbulent mixing caused by the breaking of non-linear internal waves, was one to two orders of magnitude larger than advective and lateral-diffusive fluxes. (2) The relative contribution of benthic nutrient fluxes to nutrient cycling was between 30% and 50%. (3) Nitrogen conversion rates on the shelf (50m-100m water depth) were an order of magnitude larger that at the continental slope (200m-300m water depth). The strong differences in the magnitude of the nutrient cycling rates most likely originate from the presence of sulfidic bottom waters that were observed on the shelf.

  17. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    DOE PAGESBeta

    Archer, D.

    2014-06-03

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbonmore » (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales, decreasing the efficiency of bubble transit through the water column. The methane cycle on the shelf responds to climate change on a long time constant of thousands of years, because hydrate is excluded thermodynamically from the permafrost zone by water limitation, leaving the hydrate stability zone at least 300 m below the sediment surface.« less

  18. Continental margin deformation along the Andean subduction zone: Thermo-mechanical models

    NASA Astrophysics Data System (ADS)

    Gerbault, Muriel; Cembrano, J.; Mpodozis, C.; Farias, M.; Pardo, M.

    2009-12-01

    The Chilean Andes extend north-south for about 3000 km over the subducting Nazca plate, and show evidence of local rheological controls on first-order tectonic features. Here, rheological parameters are tested with numerical models of a subduction driven by slab-pull and upper plate velocities, and which calculate the development of stress and strain over a typical period of 4 Myr. The models test the effects of subduction interface strength, arc and fore-arc crust rheology, and arc temperature, on the development of superficial near-surface faulting as well as viscous shear zones in the mantle. Deformation geometries are controlled by the intersection of the subduction interface with continental rheological heterogeneities. Upper plate shortening and trench advance are both correlated, and favored, to a first-order by upper plate weakness, and to a second-order by interface strength. In cases of a strong interface, a weak fore-arc crust is dragged downward by tectonic erosion, a scenario for which indications are found along the northern Chilean margin. In contrast for a resistant fore-arc, the slab-pull force transmits to the surface and produces topographic subsidence. This process may explain present-day subsidence of the Salar de Atacama basin and/or the persistence of a Central Depression. Specific conditions for northern Chile produce a shear zone that propagates from the subduction zone in the mantle, through the Altiplano lower crust into the Sub-Andean crust, as proposed by previous studies. Models with a weak interface in turn, allow buoyant subducted material to rise into the continental arc. In case of cessation of the slab-pull, this buoyant material may rise enough to change the stress state in the continental crust, and lead to back-arc opening. In a case of young and hydrated oceanic plate forced by the slab-pull to subduct under a resistant continent, this plate is deviated and indented by the continental mantle, and stretches horizontally at 100 km depth. This situation might explain the flat Wadati-Benioff zone of Central Chile.

  19. Cenozoic ice sheet history from East Antarctic Wilkes Land continental margin sediments

    USGS Publications Warehouse

    Escutia, C.; De Santis, L.; Donda, F.; Dunbar, R.B.; Cooper, A. K.; Brancolini, Giuliano; Eittreim, S.L.

    2005-01-01

    The long-term history of glaciation along the East Antarctic Wilkes Land margin, from the time of the first arrival of the ice sheet to the margin, through the significant periods of Cenozoic climate change is inferred using an integrated geophysical and geological approach. We postulate that the first arrival of the ice sheet to the Wilkes Land margin resulted in the development of a large unconformity (WL-U3) between 33.42 and 30 Ma during the early Oligocene cooling climate trend. Above WL-U3, substantial margin progradation takes place with early glacial strata (e.g., outwash deposits) deposited as low-angle prograding foresets by temperate glaciers. The change in geometry of the prograding wedge across unconformity WL-U8 is interpreted to represent the transition, at the end of the middle Miocene "climatic optimum" (14-10 Ma), from a subpolar regime with dynamic ice sheets (i.e., ice sheets come and go) to a regime with persistent but oscillatory ice sheets. The steep foresets above WL-U8 likely consist of ice proximal sediments (i.e., water-lain till and debris flows) deposited when grounded ice-sheets extended into the shelf. On the continental rise, shelf progradation above WL-U3 results in an up-section increase in the energy of the depositional environment (i.e., seismic facies indicative of more proximal turbidite and of bottom contour current deposition from the deposition of the lower WL-S5 sequence to WL-S7). Maximum rates of sediment delivery to the rise occur during the development of sequences WL-S6 and WL-S7, which we infer to be of middle Miocene age. During deposition of the two uppermost sequences, WL-S8 and WL-S9, there is a marked decrease in the sediment supply to the lower continental rise and a shift in the depocenters to more proximal areas of the margin. We believe WL-S8 records sedimentation during the final transition from a dynamic to a persistent but oscillatory ice sheet in this margin (14-10 Ma). Sequence WL-S9 forms under a polar regime during the Pliocene-Pleistocene, when most sediment delivered to the margin is trapped in the outer shelf and slope-forming steep prograding wedges. During the warmer but still polar, Holocene, biogenic sediment accumulates quickly in deep inner-shelf basins during the high-stand intervals. These sediments contain an ultrahigh resolution (annual to millennial) record of climate variability. Validation of our inferences about the nature and timing of Wilkes Land glacial sequences can be achieved by deep sampling (i.e., using IODP-type techniques). The most complete record of the long-term history of glaciation in this margin can be obtained by sampling both (1) the shelf, which contains the direct (presence or no presence of ice) but low-resolution record of glaciation, and (2) the rise, which contains the distal (cold vs. warm) but more complete record of glaciation. The Wilkes Land margin is the only known Antarctic margin where the presumed "onset" of glaciation unconformity (WL-U3) can be traced from shelf to the abyssal plain, allowing links between the proximal and the distal records of glaciation to be established. Additionally, the eastern segment of the Wilkes Land margin may be more sensitive to climate change because the East Antarctic Ice Sheet (EAIS) is grounded below sea level. Therefore, the Wilkes Land margin is not only an ideal location to obtain the long-term EAIS history but also to obtain the shorter-term record of ice sheet fluctuations at times that the East Antarctic Ice Sheet is thought to have been more stable (after 15 Ma-recent). ?? 2004 Elsevier B.V. All rights reserved.

  20. The Davie Ridge: a Marginal Transform Ridge not Formed During Continental Breakup

    NASA Astrophysics Data System (ADS)

    Phethean, J. J. J.; Van Hunen, J.; McCaffrey, K. J. W.; Davies, R. J.

    2014-12-01

    The breakup of Gondwana translated Madagascar southwards relative to Africa along the Davie Fracture Zone (DFZ). This fracture zone now forms the Transform Passive Continental Margin (TPCM) from Kenya to Mozambique. The Davie Ridge (DR), a transform marginal ridge, has formed along the DFZ between 5 and 2S and 22 and 11S, but with little expression in-between. It has been proposed that this marginal ridge was formed by the thermal effects of a passing Mid Ocean Ridge (MOR) during the separation of Gondwana. Plate kinematic reconstructions, however, constrained by ocean magnetic anomalies, show that the MOR only passed between the north and south expressions of the DR. Therefore the positive linear gravity anomalies of the DR cannot be attributed to the effects of a passing MOR, and some other mechanism must be found to explain their formation. Interpretation of seismic reflection profiles along the DR shows that the gravity highs occur adjacent to large basin structures. In the north this correlates with a basin-bounding basement high of ~Albian age, and in the south with the rift flank uplifts of the currently active Quirimbas graben. This suggests that the northern and southern DR segments are instead shoulder uplifts resulting from two separate extensional episodes during different stress regimes. These are the Cretaceous NE-SW extension during the breakup of the south Atlantic, and the E-W extension of the Neogene-recent Afar-East Africa rift system, respectfully. The lack of deformation and DR formation along the region of the TPCM passed by the MOR suggests it has been coupled by thermal effects and/or the injection of magma.

  1. Organic matter diagenesis and hydrocarbon generation on outer Continental Margin of northwestern Australia

    SciTech Connect

    Meyers, P.A.; Snowdon, L.R.; Heggie, D.; Bent, A.

    1989-03-01

    Organic geochemical analyses of sediments and rocks obtained from drill sites on the Exmouth and Wombat Plateaus and the Argo Abyssal Plain on the northwestern margin of Australia were done onboard the JOIDES Resolution during Ocean Drilling Program Legs 122 and 123. These analyses provide information about the sources of organic matter to these offshore locations from Triassic to Holocene times and also indicate the degree of postdepositional diagenesis and maturation the organic matter has experienced. Because this margin has interest to petroleum explorationists, these data have practical as well as fundamental significance. Triassic claystones (equivalent to the onshore Mungeroo Formation) from the Wombat Plateau contain up to several percent of land-derived organic carbon. Neocomian siltstones and claystones (equivalent to the Barrow Group and Muderong Shale) from the Exmouth Plateau hold similar organic matter but at lower concentrations. Younger sediments are generally very lean in organic matter. Gas chromatographic analysis of extractable hydrocarbons shows a large and often dominant contribution of continental components, notably n-alkanes with a strong odd/even ratio and tricyclic diterpanes. Both Rock-Eval and hydrocarbon results agree in indicating low to moderate levels of thermal maturity. Locations on the Exmouth Plateau typically contain large amounts of thermogenic gaseous hydrocarbons dominated by methane. Concentrations peak in Senonian chalk sequences. In Neocomian siltstones and claystones, methane-ethane ratios diminish as concentrations decrease. The source of these hydrocarbons is likely to be the Triassic coals and coaly material below the Dingo claystone, which was not drilled during these legs but has been characterized from industry wells on this passive margin.

  2. Comparison of Sedimentary Processes on Adjacent Passive and Active Continental Margins Offshore of Southwest Taiwan Based on Echo Character Studies

    NASA Astrophysics Data System (ADS)

    Liu, C.; Chiu, J.

    2008-12-01

    Echo character recorded on Chirp sub-bottom sonar data from offshore area of southwest Taiwan were analyzed to examine and compare the sedimentary processes of adjacent passive and active continental margin settings. Seafloor echoes in the study area are classified into four types: (1) distinct echoes, (2) indistinct echoes, (3) hyperbolic echoes, and (4) irregular echoes. Based on the mapped distribution of the echo types, the sedimentary processes offshore of southwest Taiwan are different in the two tectonic settings. On the passive South China Sea margin, slope failure is the main process on the upper continental slope, whereas turbidite deposits accumulate in the lower continental slope. In contrast, the submarine Taiwan orogenic wedge is characterized by fill-and-spill processes in the intraslope basins of the upper slope, and mass-transport deposits are observed in the canyons and on the lower Kaoping slope. This difference is largely caused by the huge influx of terrigenous sediments into the submarine Taiwan orogenic wedge province compared to the passive South China Sea continental margin. In the passive South China Sea margin, loading and movement of the Taiwan orogenic wedge has had significant effect on the seafloor morphology, and triggered retrogressive failures. Gas hydrate dissociation may have enhanced the slope failure processes at some locations.

  3. Investigation of the shelf break and continental slope in the Western part of the Black Sea using acoustic methods

    NASA Astrophysics Data System (ADS)

    Dutu, F.; Ion, G.; Jugaru Tiron, L.

    2009-04-01

    The Black Sea is a large marginal sea surrounded by a system of Alpine orogenic chains, including the Balkanides-Pontides, Caucasus, Crimea and North Dobrogea located to the south, northeast, north and northwest, respectively (Dinu et al., 2005). The north-western part of the Black Sea is the main depocentre for sediment supply from Central Europe via the Danube River, but also from Eastern Europe through the Ukrainian rivers Dniepr, Dniestr and Southern Bug (Popescu et al., 2004). The shelfbreak is located at water depths of 120-140 m southward of the Danube Canyon, and up to 170 m northward of the canyon possibly due to recent faulting which is very common in this area. The continental slope is dissected by numerous canyons, each of which is fed by several tributaries. The Danube Canyon (also known as Viteaz Canyon) is a large shelf-indenting canyon located in the north-western Black Sea and connected to the youngest channel-levee system of the Danube Fan (Popescu et al., 2004). The acoustic methods are a useful way for investigate the shelf break and the continental slope giving us information about landslides on the continental slope, the topography of the investigated area, the sedimentary zones affected by instability and to quantify the geometry of the underwater landslides. The measurements made on the continental slope from north-western part of the Black Sea gave us the possibility to make a digital terrain model. After processing the data the model offer information about the main access ways of the sediments through gravitational slide on the submarines canyons, with forming of turbidity currents, debris flows and also other transport/transformation phenomena of the sediments on the continental slope like submarine landslides and submarine collapse. References Dinu, C., Wong, H.K., Tambrea, D., Matenco, L., 2005. Stratigraphic and structural characteristics of the Romanian Black Sea shelf. Tectonophysics 410, 417-435. Popescu, I., Lericolais, G., Panin, N., Normand, A., Dinu, C., Le Drezen, E., 2004. The Danube submarine canyon (Black Sea): morphology and sedimentary processes. Marine Geology 206, 249- 265.

  4. The breakup sequence and associated lithospheric breakup surface: Their significance in the context of rifted continental margins (West Iberia and Newfoundland margins, North Atlantic)

    NASA Astrophysics Data System (ADS)

    Soares, Duarte M.; Alves, Tiago M.; Terrinha, Pedro

    2012-11-01

    Regional (2D) seismic-reflection profiles and borehole data are used to characterise the syn- to post-rift transition in the shallow offshore Porto Basin, and in deep-offshore regions of West Iberia and Newfoundland (East Canada). The interpreted data highlight the development of a regional stratigraphic surface at the time of complete lithospheric breakup between West Iberia and Newfoundland. This surface, usually called "breakup unconformity", is renamed in this work as Lithospheric Breakup Surface (LBS), on the basis that: (1) it is not always developed as an unconformity and (2) all lithosphere is involved on the breakup process, not only the continental crust. Depositional changes occur across the LBS in association with Late Aptian lithospheric breakup, which is marked by the deposition of a breakup sequence (BS) rather than a single stratigraphic surface. Stratigraphic correlations between strata in shallow and deeper parts of the two margins lead us to propose the breakup sequence (BS) as representing the transitional period between lithospheric breakup and the establishment of thermal relaxation as the main process controlling subsidence on divergent continental margins. The results in this work are important for other continental margins as they demonstrate that during lithospheric breakup significant quantities of sediment bypassed the inner proximal margins of West Iberia and Newfoundland on their way to the outer proximal margin. In addition, the interpreted data show that complete lithospheric breakup between conjugate margins is recorded by similar tectono-stratigraphic events. In Iberia and Newfoundland, these events are associated with reservoir successions in sediment overfilled basins and with carbon-rich strata ('black shales') in sediment-starved basins.

  5. Compressional tectonic inversion of the Algero-Balearic basin: Latemost Miocene to present oblique convergence at the Palomares margin (Western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Giaconia, Flavio; Booth-Rea, Guillermo; Ranero, César R.; Gràcia, Eulàlia; Bartolome, Rafael; Calahorrano, Alcinoe; Lo Iacono, Claudio; Vendrell, Montserrat G.; Cameselle, Alejandra L.; Costa, Sergio; Gómez de la Peña, Laura; Martínez-Loriente, Sara; Perea, Hector; Viñas, Marina

    2015-07-01

    Interpretation of new multichannel seismic reflection profiles indicates that the Palomares margin was formed by crustal-scale extension and coeval magmatic accretion during middle to late Miocene opening of the Algero-Balearic basin. The margin formed at the transition between thinned continental crust intruded by arc volcanism and back-arc oceanic crust. Deformation produced during the later positive inversion of the margin offshore and onshore is partitioned between ~N50°E striking reverse faults and associated folds like the Sierra Cabrera and Abubacer anticlines and N10-20°E sinistral strike-slip faults like Palomares and Terreros faults. Parametric subbottom profiles and multibeam bathymetry offshore, structural analysis, available GPS geodetic displacement data, and earthquake focal mechanisms jointly indicate that tectonic inversion of the Palomares margin is currently active. The Palomares margin shows a structural pattern comparable to the north Maghrebian margins where Africa-Eurasia plate convergence is accommodated by NE-SW reverse faults, NNW-SSE sinistral faults, and WNW-ESE dextral ones. Contractive structures at this margin contribute to the general inversion of the Western Mediterranean since ~7 Ma, coeval to inversion at the Algerian margin. Shortening at the Alboran ridge and Al-Idrisi faults occurred later, since 5 Ma, indicating a westward propagation of the compressional inversion of the Western Mediterranean.

  6. The Wide Bay Canyon system: A case study of canyon morphology on the east Australian continental margin

    NASA Astrophysics Data System (ADS)

    Yu, P. W.; Hubble, T.; Airey, D.; Gallagher, S. J.; Clarke, S. L.

    2014-12-01

    A voyage was conducted aboard the RV Southern Surveyor in early 2013 to investigate the east Australian continental margin. From the continental slope of the Wide Bay region offshore Fraser Island, Queensland, Australia, remote sensing data and sediment samples were collected. Bathymetric data reveals that the continental slope of the region presents a mature canyon system. Eight dredge samples were recovered from the walls of Wide Bay Canyon and the adjacent, relatively intact continental slope along the entire length of the slope, from the start of the shelf break to the toe, in water depths ranging from 1100-2500 m. For these samples, sediment composition, biostratigraphic age, and bulk mineralogy data are reported. These slope-forming sediments are primarily comprised of calcareous sandy-silts. Occasional terrestrial plant fossils and minerals can be found in a mostly marine-fossiliferous composition, suggesting minor but significant riverine and aeolian input. Biostratigraphic dates extracted from the foraminiferal contents of these samples indicate that the intra-canyon and slope material was deposited between Middle Miocene to Pliocene, implying that the incision of this section of the margin and formation of the erosional features took place no earlier than the Pliocene. In conjunction with bathymetric data of the local continental slope, the depositional origins of this section of the east Australian continental margin, and the timing of major morphological events such as slope failure and canyon incision can be interpreted. The Wide Bay Canyon system can serve as a representative case study of local canyon formation, allowing a better understanding of the past or ongoing processes that are shaping the margin and giving way to similar morphologies.

  7. Mesozoic architecture of a tract of the European-Iberian continental margin: Insights from preserved submarine palaeotopography in the Longobucco Basin (Calabria, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Santantonio, Massimo; Fabbi, Simone; Aldega, Luca

    2016-01-01

    The sedimentary successions exposed in northeast Calabria document the Jurassic-Early Cretaceous tectonic-sedimentary evolution of a former segment of the European-Iberian continental margin. They are juxtaposed today to units representing the deformation of the African and Adriatic plates margins as a product of Apenninic crustal shortening. A complex pattern of unconformities reveals a multi-stage tectonic evolution during the Early Jurassic, which affected the facies and geometries of siliciclastic and carbonate successions deposited in syn- and post-rift environments ranging from fluvial to deep marine. Late Sinemurian/Early Pliensbachian normal faulting resulted in exposure of the Hercynian basement at the sea-floor, which was onlapped by marine basin-fill units. Shallow-water carbonate aprons and reefs developed in response to the production of new accommodation space, fringing the newborn islands which represent structural highs made of Paleozoic crystalline and metamorphic rock. Their drowning and fragmentation in the Toarcian led to the development of thin caps of Rosso Ammonitico facies. Coeval to these deposits, a thick (> 1 km) hemipelagic/siliciclastic succession was sedimented in neighboring hanging wall basins, which would ultimately merge with the structural high successions. Footwall blocks of the Early Jurassic rift, made of Paleozoic basement and basin-margin border faults with their onlapping basin-fill formations, are found today at the hanging wall of Miocene thrusts, overlying younger (Middle/Late Jurassic to Late Paleogene) folded basinal sediments. This paper makes use of selected case examples to describe the richly diverse set of features, ranging from paleontology to sedimentology, to structural geology, which are associated with the field identification of basin-margin unconformities. Our data provide key constraints for restoring the pre-orogenic architecture of a continental margin facing a branch of the Liguria-Piedmont ocean in the Western Tethys, and for estimating displacements and slip rates along synsedimentary faults.

  8. Submarine glacigenic debris flows, deep-sea channels and past ice-stream behaviour of the East Greenland continental margin

    NASA Astrophysics Data System (ADS)

    Wilken, Manon; Mienert, Juergen

    2006-04-01

    Former glacigenic debris flow (GDF) and deep-sea channel build-up is shown from side-scan sonar, seismic and sediment core data of the passive continental margin of the Greenland Sea. The well-developed deep-sea channel systems cross GDF systems and point towards sediment-laden meltwater production. There is no indication for large-scale submarine sliding such as observed on several locations on the Norwegian margin, where deep-sea channels are far less frequent or do not exist whereas seabed erosion, GDF stacking and trough mouth fans dominate. The observed pattern on the East Greenland margin reflects a contrast to the Norwegian margin in paleo ice-stream extent, dynamics and type of sediment delivery. A conceptual model for ice-sheet behaviour on the continental margin of the Greenland Sea has been developed based on the characteristics, distribution and morphology of GDFs and deep-sea channels in four periods at ca 2.5 Ma, 1.5 Ma, 0.2 Ma and 25 ka. We argue that the erosional capabilities of ice streams on the NE Greenland margin indicated by aggradation versus progradation were less then those of the fast flowing ice streams of the Norwegian margin, and that the ice streams in cross-shelf troughs remained probably distal from the shelf break during the Late Weichselian.

  9. Plumes of bubbles release methane gas from the seabed along the West Spitsbergen continental margin

    NASA Astrophysics Data System (ADS)

    Westbrook, G. K.

    2009-04-01

    Over 250 plumes of gas bubbles have been discovered emanating from the seabed of the West Spitsbergen continental margin, at and above the upper limit of the gas hydrate stability zone (GHSZ), at depths of 150-400 m. Some plumes extend upward to within 50 m of the sea surface. The gas is predominantly methane, and seismic reflection data indicate free gas beneath the plume field. A 1C warming of the northward-flowing West Spitsbergen current over the last thirty years is likely to have increased the release of methane from the seabed by reducing the extent of the GHSZ, causing the liberation of methane from decomposing hydrate. If this process is widespread along Arctic continental margins, the methane released could be a large proportion of global methane flux. Methane released from gas hydrate in submarine sediments has been invoked as an agent of past climate change, yet comparatively little is known about methane fluxes in the present-day marine environment. Global atmospheric methane concentration continues to rise, following a period of stability between 1998 and 2006. A multidisciplinary marine geological, geophysical, and geochemical expedition was undertaken with the Royal Research Ship James Clark Ross between 23 August and 24 September 2008, as part of the International Polar Year, to investigate the role of the GHSZ in the release and retention of methane from geological sources along the West Spitsbergen continental margin, between 78 and 80 N. The techniques employed in the expedition included: detailed (10-m resolution) mapping of sea-floor morphology; detailed acoustic imaging of sea-floor stratigraphy and of features extending into the water column; seismic portrayal of geological features to depths of several hundreds of metres beneath the seabed, such as depositional and tectonic structures and the bottom-simulating reflector (BSR, the boundary between free-gas-containing sediment and hydrate-containing sediment); sediment coring to obtain sequences for geochemical and palaeoceanographic investigations; water-column sampling for chemical analyses of the water and dissolved gases; and atmospheric sampling for gas concentration (notably methane). In the Arctic, the GHSZ is especially sensitive to climate-induced changes in temperature, because the degree of temperature change is greater than at lower latitudes. The GHSZ for a specific gas or gases and salinity of water is defined by conditions of temperature and pressure (dependent on water depth plus depth beneath seabed), both of which have varied greatly in this area over the past 15 kyr. At present, the GHSZ (for pure methane gas and water with 3.5 wt % NaCl) is expected to taper out at its landward limit where water temperature is 3C at a depth of about 396 m. It is in water just shallower than this depth that most of the bubble plumes occur.

  10. Geometry of the Iapetus Baltoscandian continental margin; evidence for basement highs from the external imbricate zone.

    NASA Astrophysics Data System (ADS)

    Rice, A. Hugh N.

    2015-04-01

    The geometry of the Iapetus Baltoscandian continental margin prior to Scandinavian Caledonian collision is important, since only with a detailed initial input can synthetic palaeogeographic and deformation models be correctly applied. The Scandes comprise ~SE-directed nappes pierced by tectonic windows exposing basement with condensed, post-Gaskiers-glaciation (582-580Ma) cover sequences. Here, evidence, largely from the Lower Allochthon (external imbricate zone), for major displacement of these basement rocks ('Window Allochthon'), is summarized; palaeogeographically they formed a topographic-high along the Baltoscandian continental margin. In the Oslo Graben and East Finnmark areas (southernmost/northernmost Scandinavia), the transition from (par)-autochthon to allochthon is preserved (Osen-Roa Nappe Complex/Gaissa Thrust Belt; ORNC/GTB). These areas give reliable templates for other parts of the orogen, where the orogen leading edge has been extensively eroded. In the ORNC and GTB, bulk shortening was ~50%, with values rising towards the hinterland; metamorphic grades also increase towards the hinterland. Balanced-sections restore the trailing-edges of the ORNC and GTB to Norwegian coastal areas. In Finnmark, restoration places pre-Marinoan (pre~650 Ma) GTB anchizone-grade rocks above epizone-grade post-Gaskiers rocks lying unconformably on basement in the Komagfjord tectonic window. In southern Norway, restored pre-Gaskiers ORNC rocks overlie Cambro-Ordovician sediments unconformable on basement in the Atnsjen/Spekedalen windows and WGR. Caledonian Middle Allochthon deformation in Finnmark was SE-directed and in the GTB E- to ESE-directed. In the Komagfjord window basement, Caledonian imbrication was SE-directed, but the overlying basal Middle Allochthon mylonites have an out-of-sequence E-ESE overprint. Thus the Komagfjord basement/cover lies structurally between the Middle and Lower Allochthons. In the Atnsjen/Spekedalen windows, SE-directed Caledonian greenschist facies stretching lineations underlie SSE-directed very-low metamorphic grade deformation in the restored ORNC. In both sections, restorations place lower metamorphic grades rocks over higher grades. Thus, stratigraphic, structural and metamorphic evidence indicate that the basement rocks in the windows in southernmost and northernmost Scandinavia are fully allochthonous. Elsewhere, metamorphic data from the Luo-Pakte/Rombak section indicates that the Rombak window basement is allochthonous. Restoration of the Blaik Nappe Complex (LA) in the Central Scandes produces a stratigraphic repetition over cover sediments on basement in the Brgefjellet tectonic window. The basement window rocks are given to be allochthonous. Thus where data is available, an allochthonous model has been applied. An allochthonous origin for the Window Allochthon is expected, since the lower part of the overlying Middle Allochthon is often dominated by basement, sometimes with massively thick debris-flow deposits requiring a proximal topographic-high source area. A simplified palaeogeographic model for the Iapetus Baltoscandian continental margin, applicable with minor variations to all of the orogen, shows a thin-shelf sequence seen in the Autochthon, which extends for an unknown distance under the nappe pile, and in the Lower Allochthon, passing into a deeper water basin (Lower Allochthon). Outboard, lay a topographic basement high, with a thin cover succession (Window Allochthon). The basement dominated parts of the Middle Allochthon which lay west of the restored Window Allochthon should properly be assigned to the latter. These passed into a deeper basin (Middle Allochthon sediments) which merged with Iapetus oceanic crust.

  11. Tectonic-geodynamic settings of OIB-magmatism on the eastern Asian continental margin during the Cretaceous-Paleogene transition

    NASA Astrophysics Data System (ADS)

    Filatova, N. I.

    2015-11-01

    At the Cretaceous-Paleogene transition, the convergent boundary between the Asian and Pacific plates was replaced by a transform boundary to determine destruction of the continental margin including the Okhotsk-Chukotka Cretaceous subduction-related belt along left-lateral strike-slip and downdip-strikeslip faults. The newly formed East Asian rift system (EARS) continues in the easterly direction the Mongol-Okhotsk zone of left-lateral strike-slip faults, a former transform boundary of the Asian continent. Basaltoids of the East Asian rift system that erupted through fractures onto the former active margin are similar intraplate OIB volcanics related to the lower mantle source. The specific feature of OIB-type magmatism in the system consists in its continental marginal position near the transform boundary.

  12. Germanium-silicon fractionation in a river-influenced continental margin: The Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Baronas, J. Jotautas; Hammond, Douglas E.; Berelson, William M.; McManus, James; Severmann, Silke

    2016-04-01

    In this study we have sampled the water column and sediments of the Gulf of Mexico to investigate the effects of high riverine terrigenous load and sediment redox conditions on the cycling of Ge and Si. Water column Ge/Si ratios across the Gulf of Mexico continental shelf range from 1.9 to 25 μmol/mol, which is elevated compared to the global ocean value of 0.7 μmol/mol. The Ge enrichment in the Gulf of Mexico seawater is primarily due to anthropogenic contamination of the Mississippi river, which is the main Ge and Si source to the area, and to a smaller extent due to discrimination against Ge during biogenic silica (bSi) production (Ge/Si = 1.2-1.8 μmol/mol), especially by radiolarians and siliceous sponges (Ge/Si = 0.6-1.1 μmol/mol). Most sediment pore waters (Ge/Si = 0.3-4.5 μmol/mol) and sediment incubation experiments (benthic flux Ge/Si = 0.9-1.2 μmol/mol) indicate precipitation of authigenic phases that sequester Ge from pore waters (non-opal sink). This process appears to be independent of oxidation-reduction reactions and suggests that authigenic aluminosilicate formation (reverse weathering) may be the dominant Ge sink in marine sediments. Compilation of previously published data shows that in continental margins, non-opal Ge burial flux is controlled by bSi supply, while in open ocean sediments it is 10-100 times lower and most likely limited by the supply of lithogenic material. We provide a measurement-based estimate of the global non-opal Ge burial flux as 4-32 Mmol yr-1, encompassing the 2-16 Mmol yr-1 needed to keep the global marine Ge cycle at steady state.

  13. Methane Derived Authigenic Carbonates from the Upper Continental Margin of the Bay of Biscay (France)

    NASA Astrophysics Data System (ADS)

    Pierre, C.; Blanc-Valleron, M. M.; Dupr, S.

    2014-12-01

    Extensive seafloor carbonate pavements are present at water depth from 140 to 180 meters on the upper continental margin of the Bay of Biscay, 50 to 60 km away from the present-day coastline. They form at the seafloor meter-high sub-circular reliefs with a diameter from 10 m to 100 m that are surrounded by light brown silto-sandy unconsolidated sediments. All these structures are associated with active methane seeps that cover an area of 80km from N to S and up to 8km from W to E. These carbonates were sampled during the two cruises GAZCOGNE 1 (july-august 2013) and GAZCOGNE 2 (september 2013). The carbonate crusts are porous sandstones, dark brown to black by impregnation with Fe-Mn oxides/hydroxides. Subseafloor concretions are homogenous light to medium grey fine-grained sandstones. The bulk carbonate content varies in the range 36-42 weight %. The carbonate mineralogy is dominated by aragonite that cements the detrital grains whereas calcite comes from the biogenic carbonates. Dolomite occurs in significant amount in a few samples. Circular cavities of 5 to 10 m of diameter in the carbonate cement represent traces of gas bubbles; smaller holes in the aragonite crystals are due to carbonate dissolution by CO2 issued from aerobic oxidation of methane. The oxygen isotopic compositions of the bulk carbonate (+1.7 to +4.5) and aragonite cement (-0.2 to +1.4) are lower than the values in equilibrium with the present-day temperature and salinity conditions. This indicates that the carbonate precipitated in mixtures of seawater and continental water, i.e. in a context of submarine groundwater discharge. The carbon isotopic compositions of the bulk carbonate (-51.9 to -38.2) and aragonite cement (-49.9 to -29.3) demonstrate that most carbon derived from methane oxidized as bicarbonate during microbial anaerobic oxidation of methane. The GAZCOGNE study is co-funded by TOTAL and IFREMER as part of the PAMELA (Passive Margin Exploration Laboratories) scientific project.

  14. Key controls of surface carbonate system dynamics around the northwest European continental margin

    NASA Astrophysics Data System (ADS)

    Jiang, Z.; Hydes, D. J.; Hartman, S. E.; Hartman, M. C.

    2011-12-01

    Monthly sampling coupled to continuous underway observation from a ship-of-opportunity (Pride of Bilbao) provides new insights into the relative importance of processes controlling the seasonal to inter-annual variability of the carbonate system around the northwest European continental margin. Total alkalinity (TA) and total dissolved inorganic carbon (DIC) were determined alongside measurements of nutrients and continuous records of temperature, salinity, chlorophyll-fluorescence, and dissolved oxygen (DO). The northwest European continental margin is temperate latitude system with a strong seasonal cycle in biological productivity determined by light, nutrient supply, and stratification. Here we contrast findings in two areas: the shallow non stratified English Channel (depth ~50 m) and seasonally stratified oligotrophic waters of the central Bay of Biscay (depth >3000 m). In the Bay of Biscay, the seasonal variations of the carbonate system, nutrient, and DO were mainly controlled by the winter mixing and spring phytoplankton bloom. DIC and nutrients in the Bay increased from autumn and reached the annual maxima in later winter, they then decreased significantly during the spring bloom corresponding to the biological uptake. DIC fell during the spring bloom with a near Redfield ratio in relation to the nutrient uptake. In contrast, post bloom in summer, a continued decrease in DIC in the absence of measurable nitrate was possibly related to the nutrient supply from the turbulent mixing. pCO2 and pH showed a double peak in the annual cycles modulated by temperature which counterbalanced the influence of winter mixing and biological production. The inter-annual biogeochemical variability was closely related to the changes in winter mixed layer depth and the phytoplankton biomass. The Bay of Biscay acted as a sink for atmospheric CO2 in all seasons, with higher air-to-sea CO2 fluxes observed in cold winter and the productive spring season. In the more dynamic English Channel, the seasonal biogeochemical variations were complicated by the river influence and the biological activities of the benthic community. A striking feature was the TA decline in the summer with the removal rate up to 0.55 ?mol m-2 d-1. This can be possibly ascribed to the growth of Echinoderms, and provides evidence for the significance of this so far poorly documented process. The seasonal pattern in the CO2 sink/source behavior of the channel was characterized as a CO2 sink during the winter and spring months because of the low temperature and biological productions, and a CO2 source during the summer and autumn due to the increasing temperature and the heterotrophic processes involving degradation of the organic matter.

  15. Gas emissions at the continental margin west of Svalbard: mapping, sampling, and quantification

    NASA Astrophysics Data System (ADS)

    Sahling, H.; Rmer, M.; Pape, T.; Bergs, B.; dos Santos Fereirra, C.; Boelmann, J.; Geprgs, P.; Tomczyk, M.; Nowald, N.; Dimmler, W.; Schroedter, L.; Glockzin, M.; Bohrmann, G.

    2014-11-01

    We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m water depth. Flares from this depth have gained significant attention in the scientific community in recent years because they may be caused by bottom-water warming-induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m water depth, which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the Forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost. Focused seafloor investigations were performed with the remotely operated vehicle (ROV) "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m water depth as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70%) of microbial origin (average ?13C = -55.7 V-PDB). Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single-beam echosounder data, bubble stream mapping using a ROV-mounted horizontally looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 106 mol methane were annually emitted at the two areas and allow for a large range of uncertainty due to our method (9 to 118 106 mol yr-1). First, these amounts show that gas emissions at the continental margin west of Svalbard were on the same order of magnitude as bubble emissions at other geological settings; second, they may be used to calibrate models predicting hydrate dissolution at present and in the future; and third, they may serve as a baseline (year 2012) estimate of the bubble flux that will potentially increase in the future due to ever-increasing global-warming-induced bottom water warming and hydrate dissociation.

  16. Gas emissions at the continental margin west off Svalbard: mapping, sampling, and quantification

    NASA Astrophysics Data System (ADS)

    Sahling, H.; Rmer, M.; Pape, T.; Bergs, B.; dos Santos Fereirra, C.; Boelmann, J.; Geprgs, P.; Tomczyk, M.; Nowald, N.; Dimmler, W.; Schroedter, L.; Glockzin, M.; Bohrmann, G.

    2014-05-01

    We mapped, sampled, and quantified gas emissions at the continental margin west of Svalbard during R/V Heincke cruise He-387 in late summer 2012. Hydroacoustic mapping revealed that gas emissions were not limited to a zone just above 396 m below sea level (m b.s.l.). Flares from this depth gained significant attention in the scientific community in recent years because they may be caused by bottom water-warming induced hydrate dissolution in the course of global warming and/or by recurring seasonal hydrate formation and decay. We found that gas emissions occurred widespread between about 80 and 415 m b.s.l. which indicates that hydrate dissolution might only be one of several triggers for active hydrocarbon seepage in that area. Gas emissions were remarkably intensive at the main ridge of the forlandet moraine complex in 80 to 90 m water depths, and may be related to thawing permafrost. Focused seafloor investigations were performed with the remotely operated vehicle (ROV) "Cherokee". Geochemical analyses of gas bubbles sampled at about 240 m b.s.l. as well as at the 396 m gas emission sites revealed that the vent gas is primarily composed of methane (> 99.70%) of microbial origin (average ?13C = -55.7 V-PDB). Estimates of the regional gas bubble flux from the seafloor to the water column in the area of possible hydrate decomposition were achieved by combining flare mapping using multibeam and single beam echosounder data, bubble stream mapping using a ROV-mounted horizontally-looking sonar, and quantification of individual bubble streams using ROV imagery and bubble counting. We estimated that about 53 106 mol methane were annually emitted at the two areas and allow a large range of uncertainty due to our method (9 to 118 106 mol yr-1). These amounts, first, show that gas emissions at the continental margin west of Svalbard were in the same order of magnitude as bubble emissions at other geological settings, and second, may be used to calibrate models predicting hydrate dissolution at present and in the future, third, may serve as baseline (year 2012) estimate of the bubble flux that will potentially increase in future due to ever-increasing global-warming induced bottom water-warming and hydrate dissolution.

  17. Dynamic sedimentation of Paleoproterozoic continental margin iron formation, Labrador Trough, Canada: Paleoenvironments and sequence stratigraphy

    NASA Astrophysics Data System (ADS)

    Pufahl, P. K.; Anderson, S. L.; Hiatt, E. E.

    2014-07-01

    The Paleoproterozoic Sokoman Formation (ca. 1.88 Ga) of the Labrador Trough, eastern Canada, is a ca. 100-m-thick succession of interbedded iron formation and fine-grained, terrigenous clastic sedimentary rocks. Detailed examination of drill cores and outcrops indicates a dynamic paleoshelf where an oxygen-stratified water column, coastal upwelling of hydrothermally derived Fe and Si, as well as tide- and storm-generated currents controlled lithofacies character. Vertical and lateral facies stacking patterns record deposition through two relative sea-level cycles that produced seven distinct lithofacies comprising two unconformity-bounded sequences. Sequence 1 reflects deposition of hematitic peritidal iron formation as deep as the upper shoreface. Sequence 2 is truncated by later erosion and encompasses the change to deeper-water accumulation of magnetite and Fe silicate-rich iron formation. The character and lateral distribution of redox-sensitive facies indicate that iron formation accumulation was controlled as much by shelf hydraulics as oxygen levels. The development of a suboxic surface ocean is interpreted to reflect photosynthetic oxygen production from a combination of peritidal stromatolites and cyanobacterial phytoplankton that flourished in nutrient-rich, upwelled waters offshore. Deposition of other continental margin iron formations also occurred on Paleoproterozoic shelves that were favorably positioned for coastal upwelling. Variability between iron formations reflects intrinsic factors such as shelf profile, fluvial contribution, eolian input, evaporation rates, and coastal current systems, which influenced upwelling dynamics and the delivery of Fe, Si, and nutrients. Aridity onshore was a primary depositional control since it governed the transport and type of diluting terrigenous clastics as well as evaporative precipitation along the coastline. As in the Phanerozoic, unconformities, and transgressive and maximum flooding surfaces frame iron formation sequences, but with important differences. The absence of trace and body fossils as well as lack of terrestrial vegetation can make the recognition of these surfaces difficult. Transgressive surfaces can also be easily mistaken for Phanerozoic-style maximum flooding surfaces since stratigraphic condensation was restricted to inboard environments during ravinement. Outboard the accumulation of fresh precipitates increased sedimentation to produce a maximum flooding surface not usually marked by a prominent depositional hiatus. Understanding these differences is essential for establishing an accurate sequence stratigraphic framework. Such context is the backdrop for properly interpreting the sedimentology, oceanography, microbial ecology, and geochemistry of continental margin iron formations.

  18. Seismic study of the '41st Parallel' Fault System offshore the Campanian Latial continental margin, Italy

    NASA Astrophysics Data System (ADS)

    Bruno, Pier Paolo; Di Fiore, Vincenzo; Ventura, Guido

    2000-09-01

    A set of seismic reflection lines, collected in the Southern Tyrrhenian Sea offshore the Campanian-Latial continental margin has been selected and interpreted. The aim is to characterize: (1) the structural features of the 41st Parallel Line (41PL), an E-W elongated magnetic anomaly zone separating the Northern Tyrrhenian domain from the Southern Tyrrhenian domain; and (2) to study the relationships between the 41PL and the Ortona-Roccamonfina Line (ORL), a tectonic structure transversal to the Apennines along which the Northern Apennine Arc merges the Southern Arc. The interpretation of the seismic lines is discussed in light of the available geological (stratigraphic and structural) and geophysical (gravimetric and magnetic) information. Results show that the Campanian-Latial continental margin is characterized by a series of structural lows and highs that match with the main structures on the mainland (Mt. Massico horst, the Volturno and Garigliano depressions). The study area is characterized by ESE-WNW to E-W and NE-SW striking faults. The activity of these faults developed during Pliocene-Early Pleistocene times. ESE-WNW to E-W faults display structures consistent with strike-slip movements. These faults, which are located on the maximum gradient of the E-W elongated magnetic alignment of 41PL, are responsible for the SSE translation of the offshore sector of the Mt. Massico horst. The horizontal dislocation of Mt. Massico suggests left-lateral movements for the ESE-WNW to E-W faults. The NE-SW faults that affect the Mt. Massico horst, which represents the southern tip of ORL, show seismic features consistent with normal movements, as also revealed by inland data. Since: (1) background seismicity is virtually absent along the study area; and (2) the uppermost seismic reflectors seem unaffected by faults, it is very likely that both the ORL and 41PL fault zones are now inactive, at least in the Campanian-Latial area. Seismic data indicate that ORL is older than 41PL and support the interpretation that the 41PL represents a deep-seated transfer fault system formed in response to the different rates of opening of the Tyrrhenian Sea. The strike-slip movements along the 41PL faults and the normal movements along the ORL faults are consistent with a NW-SE extension, which is responsible for the longitudinal extension in the Southern Apennines belt.

  19. Using crustal thickness and subsidence history on the Iberia-Newfoundland margins to constrain lithosphere deformation modes during continental breakup

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Mohn, Geoffroy

    2014-05-01

    Observations at magma-poor rifted margins such as Iberia-Newfoundland show a complex lithosphere deformation history during continental breakup and seafloor spreading initiation leading to complex OCT architecture with hyper-extended continental crust and lithosphere, exhumed mantle and scattered embryonic oceanic crust and continental slivers. Initiation of seafloor spreading requires both the rupture of the continental crust and lithospheric mantle, and the onset of decompressional melting. Their relative timing controls when mantle exhumation may occur; the presence or absence of exhumed mantle provides useful information on the timing of these events and constraints on lithosphere deformation modes. A single lithosphere deformation mode leading to continental breakup and sea-floor spreading cannot explain observations. We have determined the sequence of lithosphere deformation events for two profiles across the present-day conjugate Iberia-Newfoundland margins, using forward modelling of continental breakup and seafloor spreading initiation calibrated against observations of crustal basement thickness and subsidence. Flow fields, representing a sequence of lithosphere deformation modes, are generated by a 2D finite element viscous flow model (FeMargin), and used to advect lithosphere and asthenosphere temperature and material. FeMargin is kinematically driven by divergent deformation in the upper 15-20 km of the lithosphere inducing passive upwelling beneath that layer; extensional faulting and magmatic intrusions deform the topmost upper lithosphere, consistent with observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). Buoyancy enhanced upwelling, as predicted by Braun et al. (2000) is also kinematically included in the lithosphere deformation model. Melt generation by decompressional melting is predicted using the parameterization and methodology of Katz et al. (2003). The distribution of lithosphere deformation, the contribution of buoyancy driven upwelling and their spatial and temporal evolution including lateral migration are determined by using a series of numerical experiments, tested and calibrated against observations of crustal thicknesses and water-loaded subsidence. Pure-shear widths exert a strong control on the timing of crustal rupture and melt initiation; to satisfy OCT architecture, subsidence and mantle exhumation, we need to focus the deformation from a broad to a narrow region. The lateral migration of the deformation flow axis has an important control on the rupture of continental crust and lithosphere, melt initiation, their relative timing, the resulting OCT architecture and conjugate margin asymmetry. The numerical models are used to predict margin isostatic response and subsidence history.

  20. Role of differential erosion in uplifting continental margins: examples from Antarctica, New Zealand and Norway

    NASA Astrophysics Data System (ADS)

    Stern, T. A.; Stratford, W. R.; Davies, R.

    2010-05-01

    Uplifted and back-tilted continental margins are common but the processes that drive uplift are not always obvious. Isostatic rebound as a response to incisional erosion is an important process that can produce rock uplift of the order of kilometer or two on a time scale of millions of years. Here we compare contrasting continental margins where glacial (and fluvial) erosion have produced fiord structures of the order of a kilometre or two deep, and 1-40 kilometres wide. The uplift response is a function of the depth of erosion, the width of erosion and the spacing of the eroded fiords, relative to the flexural parameter. We calculate the 3D response with a flexural model that allows either a continuous or free-edged plate. By far the largest fiord system we know of is that created by the outlet glaciers of the East Antarctic ice cap as they pass through the Transantarctic mountains (TAM). Here we calculate a rebound response for mountain peaks of ~ 2000 m, or about 50% of the peak heights. In Fiordland, New Zealand, incision is not as deep or as wide as in the TAM and the rebound for Te =20 km is less at ~ 150 m. Peak heights in Fiordland are typically ~ 1500 m so the rebound is about 10% of the peak height. In both the TAM and Fiordland the regions are bounded by major plate-boundary-type faults that suggest a flexural uplift model with a free-edge. The Norwegian margin, in contrast, sits on a continuous plate, with elastic thicknesses that likely decrease towards the Atlantic margin. Here the fiords cut to depths of up to 1300 m but the calculated rebound response is still significant at ~ 500-700 m (for constant Te=20 km)). Peak heights are up to 2500 m and thus predicted rebound is about 25 % of the peak height. Based on these examples we conclude that magnitude of incision and subsequent rebound is related to climate. For alpine type glaciations of Fiordland over the last 2-3 myr the rebound as a function of the peak height is a minimum. At the other end of the scale some 34 my of glacial history, of which 15 my was in polar conditions, created a condition in the TAM of wet based glaciers efficiently carving deep troughs that are bounded by frozen and thus preserved peaks. The second consequence of rebound from incision is that an apparent isostatic imbalance can be created whereby the mountain peak height implies a crustal thickness which is greater than that observed. This is particularly evident at the TAM where the highest mountain peaks are ~ 4500m high but the crustal thickness is only 35-40 km. An important contribution of the rebound analysis is partitioning of an observed rock-uplift history into that due to tectonics versus the isostatic response to incisional erosion. This is well illustrated in Fiordland where a flight of uplifted marine terraces can be ascribed to both subduction processes and isostatic rebound.

  1. Potential tsunamigenic hazard associated to submarine mass movement along the Ionian continental margin (Mediterranean Sea).

    NASA Astrophysics Data System (ADS)

    Ceramicola, S.; Tinti, S.; Praeg, D.; Zaniboni, F.; Planinsek, P.

    2012-04-01

    Submarine mass movements are natural geomorphic processes that transport marine sediment down continental slopes into deep-marine environments. Type of mass wasting include creep, slides, slump, debris flows, each with its own features and taking place over timescale from seconds to years. Submarine landslides can be triggered by a number of different causes, either internal (such as changes in physical chemical sediment properties) or external (e.g. earthquakes, volcanic activity, salt movements, sea level changes etc.). Landslides may mobilize sediments in such a way as to form an impulsive vertical displacement of a body of water, originating a wave or series of waves with long wavelengths and long periods called tsunamis ('harbor waves'). Over 600 km of continental margin has been investigated by OGS in the Ionian sea using geophysical data - morpho-bathymetry (Reson 8111, 8150) and sub-bottom profiles (7-10 KHz) - collected aboard the research vessel OGS Explora in the framework of the MAGIC Project (Marine Geohazard along the Italian Coasts), funded by the Italian Civil Protection. The objective of this project is the definition of elements that may constitute geological risk for coastal areas. Geophysical data allowed the recognition of four main types of mass wasting phenomena along the slopes of the ICM: 1) mass transport complexes (MTCs) within intra-slope basins. Seabed imagery show the slopes of all the seabed ridges to be marked by headwall scarps recording widespread failure, multiple debris flows in several basins indicate one or more past episodes of failure that may be linked to activity on the faults bounding the structural highs. 2) submarine landslide - a multiple failure event have been identified (Assi landslide) at about 6 km away from the coastline nearby Riace Marina. Headwall scars up to 50 m high across water depths of 700 to 1400 m, while sub-bottom profiles indicate stacked slide deposits at and near seabed. 4) canyon headwalls - in the upper parts of all canyons, numerous headwall scarps are consistent with retrogressive activity of the canyons. 3) possible gravity sliding -elongate seabed features oriented subparallel to contours are observed, associated with diapiric structures suggest that the elongate seabed features may record a form of downslope sediment sliding above salt. The aim of this work is to reconstruct the dynamics of different type of submarine mass movements on the tectonically active Ionian Calabrian margin (ICM), calculate the volume of sediment mobilized and assess the potential tsunamigenic hazard associated to different type of mass movements. Assessments of tsunami arrival time in adjacent coastal areas, period and wavelength of the tsunami and implication for coastal geohazards have been formulated for the Calabrian margin (small scale) and extrapolated to adjacent margins of the Mediterranean basin (large scale).

  2. GAS HYDRATES ON THE MID-NORWEGIAN CONTINENTAL MARGIN: PACEMAKERS OF SLOPE STABILITY THROUGH TIME

    NASA Astrophysics Data System (ADS)

    Waldmann, N.; Haflidason, H.; Hjelstuen, B.; Sejrup, H. P.

    2009-12-01

    Gas hydrate is stable in marine sediments on many Arctic continental slopes under present temperature and pressure fields. Yet, changes in the physical conditions have been shown to trigger dissolution and emanation of methane into the ocean. Access to a huge database of 2D and 3D seismic records, covering the entire mid-Norwegian margin, now provide an exceptional opportunity to test the relationship between methane release and slope stability. On the mid-Norwegian margin wedges of thick glacigenic units were deposited during past glacial intervals and covers older sequences of fine-grained hemipelagic siliceous ooze. This stratigraphic architecture combined with subsidence, large amount of biogenic methane, deep thermogenic methane reservoirs and thermal processes, provide a natural laboratory where to study the development and dynamics of methane hydrates and other digenetic processes through Cenozoic time. Gas hydrate bearing sediments are commonly detected in our seismic profiles by the presence of cross-cutting bottom simulating reflectors (BSRs). We also recognize the presence of a second, deeper BSR. This reflector has previously been interpreted as a fossil base of the gas hydrate stability zone caused by hydrate dissociation during postglacial sea level rise and increase bottom water temperature. Several submarine slides confine the spatial distribution of present day gas hydrates, whereas the occurrence of the second BSR is patchy and discontinuous, but appears to be detached from the mass wasting structures. This observation indicates the possible link between methane dissociation and migration from the deeper BSR to the present-day gas hydrate stability depth with ocean floor destabilization at different temporal scales. The presence of a diagenetic-related BSR deeper in the stratigraphical sequence may also suggest thermal gradient increase at depth, thus providing a complementary scenario for methane hydrates dynamics through time.

  3. Epi-benthic megafaunal zonation across an oxygen minimum zone at the Indian continental margin

    NASA Astrophysics Data System (ADS)

    Hunter, William R.; Oguri, Kazumasa; Kitazato, Hiroshi; Ansari, Zakir A.; Witte, Ursula

    2011-06-01

    The Arabian Sea oxygen minimum zone (OMZ) impinges upon the Indian continental margin at bathyal depths (150-1500 m) producing changes in ambient oxygen availability and sediment geochemistry across the seafloor. The influence of these environmental changes upon the epi-benthic megafaunal assemblage was investigated by video survey at six stations spanning the OMZ core (540 m), lower boundary (800-1100 m) and below the OMZ (2000 m), between September and November 2008. Structural changes in the megafaunal assemblage were observed across the six stations, through changes in both megafaunal abundance and lebensspuren (biogenic traces). Most megafauna were absent in the OMZ core (540 m), where the assemblage was characterised by low densities of fishes (0.02-0.03 m -2). In the lower OMZ boundary, megafaunal abundance peaked at 800 m, where higher densities of ophiuroids (0.20-0.44 m -2) and decapods (0.11-0.15 m -2) were present. Total abundance declined with depth between 800 and 2000 m, as the number of taxa increased. Changes in the megafaunal assemblage were predicted by changes in abundance of seven taxonomic groups, correlated to both oxygen availability and sediment organic matter quality. Lebensspuren densities were highest in the OMZ boundary (800-1100 m) but traces of large infauna (e.g., echiurans and enteropneusts) were only observed between 1100 and 2000 m station, where the influence of the OMZ was reduced. Thus, changes in the megafaunal assemblage across the Indian margin OMZ reflect the responses of specific taxa to food availability and oxygen limitation.

  4. Turbidite paleoseismology along the active continental margin of Chile - Feasible or not?

    NASA Astrophysics Data System (ADS)

    Bernhardt, Anne; Melnick, Daniel; Hebbeln, Dierk; Lckge, Andreas; Strecker, Manfred R.

    2015-07-01

    Much progress has been made in estimating recurrence intervals of great and giant subduction earthquakes using terrestrial, lacustrine, and marine paleoseismic archives. Recent detailed records suggest these earthquakes may have variable recurrence periods and magnitudes forming supercycles. Understanding seismic supercycles requires long paleoseismic archives that record timing and magnitude of such events. Turbidite paleoseismic archives may potentially extend past earthquake records to the Pleistocene and can thus complement commonly shorter-term terrestrial archives. However, in order to unambiguously establish recurring seismicity as a trigger mechanism for turbidity currents, synchronous deposition of turbidites in widely spaced, isolated depocenters has to be ascertained. Furthermore, characteristics that predispose a seismically active continental margin to turbidite paleoseismology and the correct sample site selection have to be taken into account. Here we analyze 8 marine sediment cores along 950 km of the Chile margin to test for the feasibility of compiling detailed and continuous paleoseismic records based on turbidites. Our results suggest that the deposition of areally widespread, synchronous turbidites triggered by seismicity is largely controlled by sediment supply and, hence, the climatic and geomorphic conditions of the adjacent subaerial setting. The feasibility of compiling a turbidite paleoseismic record depends on the delicate balance between sufficient sediment supply providing material to fail frequently during seismic shaking and sufficiently low sedimentation rates to allow for coeval accumulation of planktonic foraminifera for high-resolution radiocarbon dating. We conclude that offshore northern central Chile (29-32.5S) Holocene turbidite paleoseismology is not feasible, because sediment supply from the semi-arid mainland is low and almost no Holocene turbidity-current deposits are found in the cores. In contrast, in the humid region between 36 and 38S frequent Holocene turbidite deposition may generally correspond to paleoseismic events. However, high terrigenous sedimentation rates prevent high-resolution radiocarbon dating. The climatic transition region between 32.5 and 36S appears to be best suited for turbidite paleoseismology.

  5. Shaping of the Southern Adriatic Continental Margin Through Widespread Mass Wasting and Bottom Currents

    NASA Astrophysics Data System (ADS)

    Trincardi, F.; Cattaneo, A.; Correggiari, A.; Verdicchio, G.; Tobi, T.

    2003-12-01

    New TOBI seafloor images and VHR Chirp sonar profiles reveal widespread collapsing of the South Adriatic continental slope including: multiple overlapping slide scars affecting more than 100 km of Pleistocene regressive shelf-margin deposits below the shelf edge, extensive blocky slides on the lower slope (block sizes up to 200 x 500 m), and a basin wide acoustically-transparent deposit up to 40 m thick, buried under a late-Pleistocene-Holocene mud section, in water depths greater than 1000 m. Lateral variations in internal geometry and seafloor morphology likely reflects along margin differences in sediment composition and thickness of the mass-transport deposits and variable run outs (up to 40 km). Preliminary correlation to published cores in the area indicates that the main mass transport deposit reached the basin floor during the Last Glacial Maximum, but younger failures of smaller size may have affected the slope in more recent times. The new data show that the entire slope area is swept by bottom currents generating furrowed areas up to several tens of km2 in extent, moats on the downdrift side of seafloor irregularities (slide blocks) and preferential sediment deposition on the inferred updrift side, and growth of upslope-migrating sediment waves. In particular, two fields of sediment waves can be mapped in water depths of 400-600 and 1000 m. The former may reflect the activity of the Levantine Intermediate Waters, while the latter may be linked to the downslope flow of the Northern Adriatic Dense Waters. Future work will focus on the definition of intervals of growth vs quiescence of the sediment waves, their possible relation to paleoceanographic reconfigurations, and their interplay with seafloor irregularities dictated by slope instability. A smaller-scale possibly comparable interaction of seafloor morphology generated by sediment deformation and differential deposition of muddy deposits on the shelf emphasizes the importance of bottom-hugging currents in the semi-enclosed Adriatic basin in a wide range of water depths.

  6. Tectonic development of passive continental margins of the southern and central Red Sea with a comparison to Wilkes Land, Antarctica

    USGS Publications Warehouse

    Bohannon, R.G.; Eittreim, S.L.

    1991-01-01

    The continental margins of the southern and central Red Sea and most of Wilkes Land, Antarctica have bulk crustal configurations and detailed structures that are best explained by a prolonged history of magmatic expansion that followed a brief, but intense period of mechanical extension. Extension on the Red Sea margins was spatially confined to a rift that was 20-30 km in width. The rifting phase along the Arabian margin of the central and southern Red Sea occurred 25-32 Ma ago, primarily by detachment faulting at upper crustal levels and ductile uniform stretching at depth. Rifting was followed by an early magmatic phase during which the margin was invaded by dikes and plutons, primarily of gabbro and diorite, at 20-24 Ma, after the crust was mechanically thinned from 40 km to ??? 20 km. We infer continued spreading after that in which broad shelves were formed by a process of magmatic expansion, because the offshore crust is only 8-15 km thick, including sediment, and seismic reflection data do not depict horst and graben or half graben structures from which mechanical extension might be inferred. The Wilkes Land margin is similar to the Arabian example. The margin is about 150 km in width, the amount of upper crustal extension is too low to explain the change in sub-sediment crustal thickness from ??? 35 km on the mainland to < 10 km beneath the margin and reflectors in the deepest seismic sequence are nearly flat lying. Our model requires large volumes of melt in the early stages of continental rifting. The voluminous melt might be partly a product of nearby hot spots, such as Afar and partly the result of an initial period of partial fusion in the deep continental lithosphere under lower temperatures than ordinarily required by dry solidus conditions. ?? 1991.

  7. Natural constraints on exploring Antarctica's continental margin, existing geophysical and geological data basis, and proposed drilling program

    SciTech Connect

    Anderson, J.B.

    1987-05-01

    There have been a number of multichannel seismic reflection and seismic refraction surveys of the Antarctic continental shelf. While glacial erosion has left acoustic basement exposed on portions of the inner shelf, thick sedimentary sequences occur on the passive margin of east Antarctica. The thickness and age of these strata vary due to different breakup histories of the margin. Several sedimentary basins have been identified. Most are rift basins formed during the early stages of Antarctica's separation from other Gondwana continents and plateaus. The west Antarctic continental shelf is extensive, being approximately twice the size of the Gulf of Mexico shelf. It has been poorly surveyed to date, owing mainly to its perennial sea ice cover. Gradual subduction of the spreading center from south to north along the margin resulted in old active margin sequences being buried beneath passive margin sequences. The latter should increase in thickness from north to south along the margin although no data bear this out. Hydrocarbon potential on the northern portion of the west Antarctic margin is considered low due to a probable lack of reservoir rocks. Establishment of ice sheets on Antarctica caused destruction of land vegetation and greatly restricted siliciclastic sand-producing environments. So only sedimentary basins which contain pre-early Miocene deposits have good hydrocarbon prospectivity. The Antarctic continental shelf is the deepest in the world, averaging 500 m and in places being more than a kilometer deep. The shelf has been left rugged by glacial erosion and is therefore prone to sediment mass movement. Widespread sediment gravity flow deposits attest to this. The shelf is covered with sea ice most of the year and in a few areas throughout the year. Icebergs, drift freely in the deep waters of the shelf; drift speeds of 1 to 2.5 km/year are not uncommon.

  8. High-Resolution Holocene Records of Paleoceanographic and Paleoclimatic Variability from the Southern Alaskan Continental Margin

    NASA Astrophysics Data System (ADS)

    Finney, B. P.; Jaeger, J. M.; Mix, A. C.; Cowan, E. A.; Gulick, S. S.; Mayer, L. A.; Pisias, N. G.; Powell, R. D.; Prahl, F.; Stoner, J. S.

    2004-12-01

    We are investigating sediments from the fjords and continental margin of southern Alaska to develop high-resolution climatic and oceanographic records for the Late Quaternary. Our goal is to better understand linkages between climatic, terrestrial and oceanic systems in this tectonically active and biologically productive region. A field program was conducted aboard the R/V Maurice Ewing in August/September 2004 utilizing geophysical surveys (high-resolution swath bathymetric and backscatter imaging, shallow sub-bottom profiling, and where permitted, high-resolution seismic reflection profiling), piston and multi-coring, and CTD/water sampling at about 30 sites in this region. Cores are being analyzed for sedimentological, microfossil, geochemical and stable isotopic proxies, with chronologies constrained by Pb-210, AMS radiocarbon, tephrochronolgic and paleomagnetic dating. Our preliminary results demonstrate that these rapidly accumulating sedimentary archives can resolve environmental changes on annual to decadal timescales. Records of recent changes in lithogenic sediment accumulation and biological productivity on the Gulf of Alaska shelf track historical climatic data that extends to the early 20th century in this region. The records also correlate with multi-decadal climate regimes during the Little Ice Age as suggested by tree-ring, glacial advance and salmon abundance records from nearby coastal sites. Jack Dymond's enthusiasm for collaborative, interdisciplinary research will help guide us in unraveling the fingerprints of key processes in this relatively unexplored region.

  9. Late Cretaceous - early Tertiary dextral transpression in north Sinai: Reactivation of the Tethyan Continental Margin

    SciTech Connect

    Moustafa, A.R.; Khalil, M.H. )

    1988-08-01

    Detailed photogeologic study and field checks indicate the North Sinai folds are associated with northwest-dipping upthrusts, especially on their southeastern steeply dipping flanks. These northeast-southwest-plunging folds include both large folded ranges (tens of kilometers long, e.g., Gebels Yelleq, El Maghara, and El Halal) and smaller folds (2-10 km long). The smaller folds have right-stepping en echelon arrangement and define six east-northeast elongated belts which were probably formed by right-lateral wrenching in Late Cretaceous-early Tertiary time. These belts are called the G, El Amrar belt, the G. El Mistan belt, the G. Um Latiya belt, the G. Falig belt, the El Giddi Pass-G. El Minsherah-G. El Burqa belt, and the Mitla Pass-G. Kherim-G. Araif El Naq belt. The existence of northwest-dipping upthrusts within and between these en echelon fold belts probably indicates the wrenching was convergent. The en echelon fold belts are proposed to overlie pre-existing deep-seated faults which could have been formed by the Late Triassic-Liassic rifting of north Africa-Arabia to form the southern passive continental margin of the Tethys sea. Mesozoic rocks thicken across these faults. Late Cretaceous-early Tertiary reactivation of these faults by dextral transpression probably resulted from the oblique movement between Africa and Eurasia to close the Tethys sea.

  10. Formation of modern and Paleozoic stratiform barite at cold methane seeps on continental margins

    USGS Publications Warehouse

    Torres, M.E.; Bohrmann, G.; Dube, T.E.; Poole, F.G.

    2003-01-01

    Stratiform (bedded) Paleozoic barite occurs as large conformable beds within organic- and chert-rich sediments; the beds lack major sulfide minerals and are the largest and most economically significant barite deposits in the geologic record. Existing models for the origin of bedded barite fail to explain all their characteristics: the deposits display properties consistent with an exhalative origin involving fluid ascent to the seafloor, but they lack appreciable polymetallic sulfide minerals and the corresponding strontium isotopic composition to support a hydrothermal vent source. A new mechanism of barite formation, along structurally controlled sites of cold fluid seepage in continental margins, involves barite remobilization in organic-rich, highly reducing sediments, transport of barium-rich fluids, and barite precipitation at cold methane seeps. The lithologic and depositional framework of Paleozoic and cold seep barite, as well as morphological, textural, and chemical characteristics of the deposits, and associations with chemosymbiotic fauna, all support a cold seep origin for stratiform Paleozoic barite. This understanding is highly relevant to paleoceanographic and paleotectonic studies, as well as to economic geology.

  11. Revisiting submarine mass movements along the U.S. Atlantic Continental Margin: implications for tsunami hazards

    USGS Publications Warehouse

    Chaytor, J.D.; Twichell, D.C.; ten Brink, U.S.; Buczkowski, B.J.; Andrews, B.D.

    2007-01-01

    Interest in the generation of tsunamis by submarine mass movements has warranted a reassessment of their distribution and the nature of submarine landslides offshore of the eastern U.S. The recent acquisition and analysis of multibeam bathymetric data over most of this continental slope and rise provides clearer view into the extent and style of mass movements on this margin. Debris flows appear to be the dominant type of mass movement, although some translational slides have also been identified. Areas affected by mass movements range in size from less than 9 km2 to greater than 15,200 km2 and reach measured thicknesses of up to 70 m. Failures are seen to originate on either the open-slope or in submarine canyons. Slope-sourced failures are larger than canyonsourced failures, suggesting they have a higher potential for tsunami generation although the volume of material displaced during individual failure events still needs to be refined. The slope-sourced failures are most common offshore of the northern, glaciated part of the coast, but others are found downslope of shelf-edge deltas and near salt diapirs, suggesting that several geological conditions control their distribution.

  12. Fluid flow during early compartmentalisation of rafts: A North Sea analogue for divergent continental margins

    NASA Astrophysics Data System (ADS)

    Alves, Tiago M.; Elliott, Claire

    2014-11-01

    High-quality 3D seismic data tied to eighteen (18) boreholes are used to investigate the styles of faulting and associated fluid flow features in Triassic-early Jurassic rafts of the Broad Fourteens Basin, Southern North Sea. The study area is presented as an analogue for continental margins experiencing early stage gravitational gliding, i.e. prior to complete separation and downslope translation of individual rafts. In such a setting, and for present-day stress conditions, fault slip data indicate that chasms and faults separating rafts in the Broad Fourteens Basin comprise structures subject to dip slip and strike-slip reactivation. Chasms and faults sub-parallel to these latter chasms comprise the most significant bypass areas for fluid sourced from pre-salt strata. Faults sub-parallel to the main chasms show limited propagation into Early Cretaceous and Cenozoic strata draping the rafts, a character further stressed by the depth of occurrence of fluid pipes and dim spots. This is an important observation, and leads us to postulate that faults formed during early stage rafting control fluid flow in regions where gravitational gliding is limited such as West and Equatorial Africa, Southeast Brazil and parts of the Gulf of Mexico.

  13. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W. A.; Kitazato, H.

    2014-12-01

    Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their elemental and stable isotopic organic carbon (Corg) and total nitrogen compositions, grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that appears on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, but consistent predominance (80-100%) of marine OM on the shelf and slope. Thus, riverine terrigenous OM is diluted or replaced by autochthonous marine OM and/or is efficiently re-mineralised, within or immediately offshore of the estuaries. Organic C contents of surface shelf sediments varied from < 0.5 wt% in relict shelf sands to up to ~ 4 wt% for nearshore muds, while upper slope sites within the OMZ showed a wide range (~ 2 to 7 + wt%), progressively decreasing below the OMZ to ? 1 wt% at 2000 m. Thus, major variability (~ 5 wt%) was found at slope sites within the OMZ of similar depth and near-identical bottom-water O2 concentrations. A strong relationship between %Corg and sediment grain size was seen for sediments within the OMZ, but lower relative Corg contents were found for sites on the shelf and below the OMZ. Further, Corg loadings, when related to estimated sediment surface area, indicated distinct enrichment of Corg in the OMZ sediments relative to sites above and below the OMZ and to sediments from normoxic margins. Diagenetic indices confirmed that lower Corg content below the OMZ is associated with more extensive OM degradation, but that shelf sediment OM is not consistently more degraded than that found within the OMZ. Together, the results indicate that OM distribution across the margin is controlled by interplay between hydrodynamic processes and varying preservation associated with O2 availability. This inference is supported by multiple regression analysis. Hydrodynamic processes (expressed as %Silt) followed by O2 availability, can explain the large majority of %Corg variability when the shelf and slope are considered as a whole. However, while O2 becomes the primary influence on %Corg for sediments below the OMZ, %Silt is the primary influence across the OMZ and, apparently, the shelf. Thus, reduced O2 exposure is responsible for OM enrichment within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distributions across both the shelf and the OMZ.

  14. Uplift, exhumation and erosion along the Angolan continental margin: an integrated approach

    NASA Astrophysics Data System (ADS)

    Grger, Heike R.; Machado, Vladimir; Di Pinto, Giuseppe

    2013-04-01

    The topographical development along the SW African margin is not exclusively rift-related. In addition to the onset of rifting in the Early Cretaceous, additional Late Cretaceous and Cenozoic events of uplift, exhumation and erosion are discussed. Thermochronology has proven to be a valuable tool to constrain phases of exhumation in passive continental margins. For South Africa and Namibia a large number of thermochronological data are available. Angola on the other hand is still scarcely investigated. This study is based on thermochronological data from onshore Angola, integrated with quantitative morphotectonic analysis and the on- and offshore stratigraphic record. In South Africa and Namibia published thermochronological data document pronounced Early and Late Cretaceous cooling events, which can be related to 2.5-3.5 km of removed section during the Cretaceous. An additional 1-2 km of removed section are estimated during the Cenozoic. In Angola predominantly Permo-Triassic apatite fission track ages indicate significantly less Cretaceous to Cenozoic erosion (< 2.5 km). The apatite fission track data do not provide high resolution constraints on the syn-post rift topographical development along the Angolan margin. However, thermal modelling points to a pronounced Miocene final cooling event. River bed topography upstream the Angolan escarpment is in equilibrium, while the escarpment itself forms a major knick zone. Downstream the main knick point towards the coast, river long-profiles are characterised by convex reaches which are the evidence of an immature, non steady-state topography. Estimation from knick point migration reveals about 1 km uplift within the Cenozoic (< 57 Ma). Published basin reconstructions offshore South Africa and Namibia confirm the general picture of pronounced Cretaceous erosion in the offshore sedimentary record of the basins south of the Walvis ridge (Walvis, Lderitz and Orange basin). More pronounced Cenozoic erosion in Angola (Kwanza basin) is corroborated by enhanced Oligocene and Miocene sedimentation offshore. Thus the on- and offshore geological record in Angola appear directly linked. Cenozoic erosion onshore is mirrored by enhanced Oligocene to Miocene sedimentation offshore. The geomorphological information as well as the stratigraphic record are compatible with the Cenozoic cooling and exhumation as suggested by thermal modelling of apatite fission track data. Although direct indicators for Cretaceous cooling and erosion are missing in Angola, minor amounts of Cretaceous erosion may be disguised by the Miocene final event.

  15. Polychaete community structure in the South Eastern Arabian Sea continental margin (200-1000 m)

    NASA Astrophysics Data System (ADS)

    Abdul Jaleel, K. U.; Anil Kumar, P. R.; Nousher Khan, K.; Correya, Neil S.; Jacob, Jini; Philip, Rosamma; Sanjeevan, V. N.; Damodaran, R.

    2014-11-01

    Macrofaunal polychaete communities (>500 μm) in the South Eastern Arabian Sea (SEAS) continental margin (200-1000 m) are described, based on three systematic surveys carried out in 9 transects (at ~200 m, 500 m and 1000 m) between 7°00‧and 14°30‧N latitudes. A total of 7938 polychaetes belonging to 195 species were obtained in 136 grab samples collected at 27 sites. Three distinct assemblages were identified in the northern part of the SEAS margin (10-14°30‧N), occupying the three sampled depth strata (shelf edge, upper and mid-slope) and two assemblages (shelf edge and slope) in the south (7-10°N). Highest density of polychaetes and dominance of a few species were observed in the shelf edge, where the Arabian Sea oxygen minimum zone (OMZ) impinged on the seafloor, particularly in the northern transects. The resident fauna in this region (Cossura coasta, Paraonis gracilis, Prionospio spp. and Tharyx spp.) were characteristically of smaller size, and well suited to thrive in the sandy sediments in OMZ settings. Densities were lowest along the most northerly transect (T9), where dissolved oxygen (DO) concentrations were extremely low (<0.15 ml l-1, i.e.<6.7 μmol l-1). Beyond the realm of influence of the OMZ (i.e. mid-slope, ~1000 m), the faunal density decreased while species diversity increased. The relative proportion of silt increased with depth, and the dominance of the aforementioned species decreased, giving way to forms such as Paraprionospio pinnata, Notomastus sp., Eunoe sp. and lumbrinerids. Relatively high species richness and diversity were observed in the sandy sediments of the southern sector (7-9°N), where influence of the OMZ was less intense. The area was also characterized by certain species (e.g. Aionidella cirrobranchiata, Isolda pulchella) that were nearly absent in the northern region. The gradients in DO concentration across the core and lower boundary of the OMZ, along with bathymetric and latitudinal variation in sediment texture, were responsible for differences in polychaete size and community structure on the SEAS margin. Spatial and temporal variations were observed in organic matter (OM) content of the sediment, but these were not reflected in the density, diversity or distribution pattern of the polychaetes.

  16. Timing and Magnitude of Depth-dependent Lithosphere Stretching on the Lofoten Segment of the Norwegian Rifted Continental Margin

    NASA Astrophysics Data System (ADS)

    Kusznir, N.; Roberts, A.; Hunsdale, R.

    2002-12-01

    Flexural backstripping and forward structural-and-stratigraphic modelling show that depth-dependent lithosphere stretching occurs on the outer part of the Norwegian rifted margin. Subsidence analysis on the Lofoten segment of the margin shows substantial thinning of the continental lithosphere within 100 km of the COB at continental breakup time (at approx. 54 Ma), while the upper crust shows no significant faulting and extension at breakup or immediately preceding breakup in the Palaeocene. For the Lofoten Margin beta stretching-factors approaching infinity are required at 54 Ma west of the Utroest Ridge to restore Top Basalt and the Top Taare to presumed sub-aerial depositional environments. Breakup age beta stretching-factors are predicted to rapidly reduce towards the east of the Utroest Ridge. For the mid-Lofoten margin, an additional Eocene crustal thinning event younger than 54 Ma is required to explain observed margin subsidence; post-breakup subsidence with a beta stretching-factor of infinity is insufficient to generate observed post-breakup subsidence. The absence of significant Palaeocene extension on the Lofoten margin, and the additional Eocene subsidence and faulting, implies that depth-dependent stretching of the Norwegian rifted margin occurred during early sea-floor spreading rather than during pre-breakup intra-continental rifting. For the Voering segment of the Norwegian rifted margin, south of the Bivroest Transform and Lineament System, smaller b stretching-factors of ~ 1.8 to 2.5 are needed to restore Top Basalt and Top Taare to sea level. No similar magnitude of extension by faulting is observed in the upper crust (Roberts et al.1997). Depth dependent stretching of margin lithosphere is also observed in the northern Moere Basin. Depth-dependent stretching has been observed at other rifted continental margins including the Galicia, Goban Spur, NW Australian and South China Sea rifted margins (Driscoll and Karner 1998, Davis and Kusznir 2002). Stretching estimates, independently determined from upper crustal faulting, whole crustal thinning and post-rift lithosphere thermal subsidence, show that extension increases with depth within 100 to 150 km of the COB such that upper-crustal extension is significantly smaller than whole-crustal or whole-lithosphere extension. Finite-element models of early sea-floor spreading predict depth-dependent lithosphere stretching and imply that depth dependent stretching of young rifted margin lithosphere is an inevitable consequence of early sea-floor spreading. The timing of depth dependent stretching on the Lofoten margin supports the hypothesis that depth dependent stretching of continental rifted margin lithosphere occurs during early sea-floor spreading rather than during pre-breakup rifting. Depth dependent stretching may have a similar causal mechanism to that responsible for observed mantle exhumation on the Iberian rifted margin (Pickup et al 1996, Whitmarsh et al 2001). *current address Teknologi, Tektonikk og Stratigrafi, Statoil ASA, Grensveien 21, 4035 Stavanger, Norway

  17. A volcanic province near the western termination of the Charlie-Gibbs Fracture Zone at the rifted margin, offshore northeast Newfoundland

    NASA Astrophysics Data System (ADS)

    Keen, C. E.; Dafoe, L. T.; Dickie, K.

    2014-06-01

    A mid-Cretaceous to Late Cretaceous volcanic province, named here the Charlie-Gibbs Volcanic Province, is described near the western termination of the Charlie-Gibbs Fracture Zone, against the rifted continental margin northeast of Newfoundland. We used seismic data to map 14 volcanic seamounts, now buried below younger sediments. They rise 0.7 to 2 s two-way time (twt) above the surrounding basement level and are about 8-30 km wide. Some are conical while others are more flat-topped. Underlying igneous units resembling flows and sills are also observed. Based on magnetic modeling of the large positive magnetic anomalies associated with the seamounts, the total thickness of igneous rocks can locally reach about 8 km. This magmatism occurred in the vicinity of the Charlie-Gibbs Fracture Zone and extends about 150 km to the north along the rifted continental margin. The volcanic province also forms the northern boundary of the Jurassic-Early Cretaceous Orphan Basin, along a major transform margin there. Truncation of rift-related structures which extend to deep crustal levels is observed at the transform, along trends similar to those of prerift Appalachian terrane boundaries on the adjacent shelf. This suggests the existence of a preexisting weak zone in the continental lithosphere within which a complex strike-slip fault system developed and may have controlled the location of final continental breakup between the Rockall and North American plates in the Late Cretaceous.

  18. Thermal history and evolution of the South Atlantic passive continental margin in northern Namibia

    NASA Astrophysics Data System (ADS)

    Menges, Daniel; Karl, Markus; Glasmacher, Ulrich Anton

    2013-04-01

    From Permo-Carboniferous to Mid Jurassic northern Namibia was affected by deep erosion of the Damara Orogen, Permo-Triassic collisional processes along the southern margin of Gondwana and eastern margin of Africa (Coward and Daly 1984, Daly et al. 1991), and the deposition of the Nama Group sediments and the Karoo megasequence. The lithostratigraphic units consist of Proterozoic and Cambrian metamorphosed rocks with ages of 534 (7) Ma to 481 (25) Ma (Miller 1983, Haack 1983), as well as Mesozoic sedimentary and igneous rocks. The Early Jurassic Karoo flood basalt lavas erupted rapidly at 183 (1) Ma (Duncan et al. 1997). The Early Cretaceous Paraná-Etendeka flood basalts (132 (1) Ma) and mafic dike swarms mark the rift stage of the opening of the South Atlantic (Renne et al. 1992, Milner et al. 1995, Stewart et al. 1996, Turner et al. 1996). The "passive" continental margin in northern Namibia is a perfect location to quantify exhumation and uplift rates, model the long-term landscape evolution and provide information on the influence of mantle processes on a longer time scale. The poster will provide first information on the long-term landscape evolution and thermochronological data. References Coward, M. P. and Daly, M. C., 1984. Crustal lineaments and shear zones in Africa: Their relationships to plate movements, Precambrian Research 24: 27-45. Duncan, R., Hooper, P., Rehacek, J., March, J. and Duncan, A. (1997). The timing and duration of the Karoo igneous event, southern Gondwana, Journal of Geophysical Research 102: 18127-18138. Haack, U., 1983. Reconstruction of the cooling history of the Damara Orogen by correlation of radiometric ages with geography and altitude, in H. Martin and F. W. Eder (eds), Intracontinental fold belts, Springer Verlag, Berlin, pp. 837-884. Miller, R. M., 1983. Evolution of the Damara Orogen, Vol. 11, Geological Society, South Africa Spec. Pub.. Milner, S. C., le Roex, A. P. and O'Connor, J. M., 1995. Age of Mesozoic igneous rocks in northwestern Namibia, and their relationship to continental breakup, Journal of the Geological Society of London 152: 97-104. Renne, P.R., Ernesto, M., Pacca, I.I., G. Coe, R.S., Glen, J. M., Prévot, M., Perrin, M., 1992. The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic -Cretaceous boundary. Science 258, 975 - 979. Stewart, K. S., Turner, S., Kelly, S., Hawkesworth, C. J., Kirstein, L. and Mantovani, M. S. M., 1996. 3D 40Ar-39Ar geochronology in the Parańa flood basalt province, Earth and Planetary Science Letters 143: 95-110. Turner, S., Hawkesworth, C., Gallagher, K., Stewart, K., Peate, D. and Mantovani, M., 1996. Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: Assessment of a conductive heating model and application to the Parana, Journal of Geophysical Research 101: 11503- 11518.

  19. Crustal structure of a transform plate boundary: San Francisco Bay and the central California continental margin

    USGS Publications Warehouse

    Holbrook, W.S.; Brocher, T.M.; ten Brink, U.S.; Hole, J.A.

    1996-01-01

    Wide-angle seismic data collected during the Bay Area Seismic Imaging Experiment provide new glimpses of the deep structure of the San Francisco Bay Area Block and across the offshore continental margin. San Francisco Bay is underlain by a veneer (<300 m) of sediments, beneath which P wave velocities increase rapidly from 5.2 km/s to 6.0 km/s at 7 km depth, consistent with rocks of the Franciscan subduction assemblage. The base of the Franciscan at-15-18 km depth is marked by a strong wide-angle reflector, beneath which lies an 8- to 10-km-thick lower crust with an average velocity of 6.75??0.15 km/s. The lower crust of the Bay Area Block may be oceanic in origin, but its structure and reflectivity indicate that it has been modified by shearing and/or magmatic intrusion. Wide-angle reflections define two layers within the lower crust, with velocities of 6.4-6.6 km/s and 6.9-7.3 km/s. Prominent subhorizontal reflectivity observed at near-vertical incidence resides principally in the lowermost layer, the top of which corresponds to the "6-s reflector" of Brocher et al. [1994]. Rheological modeling suggests that the lower crust beneath the 6-s reflector is the weakest part of the lithosphere; the horizontal shear zone suggested by Furlong et al. [1989] to link the San Andreas and Hayward/Calaveras fault systems may actually be a broad zone of shear deformation occupying the lowermost crust. A transect across the continental margin from the paleotrench to the Hayward fault shows a deep crustal structure that is more complex than previously realized. Strong lateral variability in seismic velocity and wide-angle reflectivity suggests that crustal composition changes across major transcurrent fault systems. Pacific oceanic crust extends 40-50 km landward of the paleotrench but, contrary to prior models, probably does not continue beneath the Salinian Block, a Cretaceous arc complex that lies west of the San Andreas fault in the Bay Area. The thickness (10 km) and high lower-crustal velocity of Pacific oceanic crust suggest that it was underplated by magmatism associated with the nearby Pioneer seamount. The Salinian Block consists of a 15-km-thick layer of velocity 6.0-6.2 km/s overlying a 5-km-thick, high-velocity (7.0 km/s) lower crust that may be oceanic crust, Cretaceous arc-derived lower crust, or a magmatically underplated layer. The strong structural variability across the margin attests to the activity of strike-slip faulting prior to and during development of the transcurrent Pacific/North American plate boundary around 29 Ma. Copyright 1996 by the American Geophysical Union.

  20. Measurement of sediment and crustal thickness corrected RDA for 2D profiles at rifted continental margins: Applications to the Iberian, Gulf of Aden and S Angolan margins

    NASA Astrophysics Data System (ADS)

    Cowie, Leanne; Kusznir, Nick

    2014-05-01

    Subsidence analysis of sedimentary basins and rifted continental margins requires a correction for the anomalous uplift or subsidence arising from mantle dynamic topography. Whilst different global model predictions of mantle dynamic topography may give a broadly similar pattern at long wavelengths, they differ substantially in the predicted amplitude and at shorter wavelengths. As a consequence the accuracy of predicted mantle dynamic topography is not sufficiently good to provide corrections for subsidence analysis. Measurements of present day anomalous subsidence, which we attribute to mantle dynamic topography, have been made for three rifted continental margins; offshore Iberia, the Gulf of Aden and southern Angola. We determine residual depth anomaly (RDA), corrected for sediment loading and crustal thickness variation for 2D profiles running from unequivocal oceanic crust across the continental ocean boundary onto thinned continental crust. Residual depth anomalies (RDA), corrected for sediment loading using flexural backstripping and decompaction, have been calculated by comparing observed and age predicted oceanic bathymetries at these margins. Age predicted bathymetric anomalies have been calculated using the thermal plate model predictions from Crosby & McKenzie (2009). Non-zero sediment corrected RDAs may result from anomalous oceanic crustal thickness with respect to the global average or from anomalous uplift or subsidence. Gravity anomaly inversion incorporating a lithosphere thermal gravity anomaly correction and sediment thickness from 2D seismic reflection data has been used to determine Moho depth, calibrated using seismic refraction, and oceanic crustal basement thickness. Crustal basement thicknesses derived from gravity inversion together with Airy isostasy have been used to correct for variations of crustal thickness from a standard oceanic thickness of 7km. The 2D profiles of RDA corrected for both sediment loading and non-standard crustal thickness provide a measurement of anomalous uplift or subsidence which we attribute to mantle dynamic topography. We compare our sediment and crustal thickness corrected RDA analysis results with published predictions of mantle dynamic topography from global models.

  1. Transition From Rift to Drift at Obliquely Divergent Continental Rifts: the Paired Rio Muni (W Africa) and NE Brazilian Margins

    NASA Astrophysics Data System (ADS)

    Turner, J. P.; Green, P. F.; Wilson, P. G.; Westbrook, G. K.; Lawrence, S.

    2005-12-01

    We develop a synoptic model for the breakup and drift of a major sheared continental margin system: the Rio Muni basin and its NE Brazilian counterpart. It relates the evolution of crustal structure determined from seismic interpretation (including gravity-modelling of the deep-imaging PROBE dataset) to the cooling history of this margin system yielded from thermal history data (mainly apatite fission track analysis - AFTAr - and vitrinite reflectance data). Shear margins initiate as a leaky transform fracture system accommodating the oblique (i.e. non-orthogonal) divergence of opposing rifted continental margins. As such, the transition from continental breakup (i.e. rupture) to continental drift (i.e. ocean opening) at shear margins exhibits significant differences from that of the much better understood normally divergent rifts, where the spreading vector is normal to the strike of the opposing rift margins. For example, unlike at normally divergent rifts, continental breakup and drift are separate episodes in the early evolution of shear margins. In Rio Muni-NE Brazil, they are recorded by separate breakup and drift unconformities spanning a 15-20Ma. interval, the time taken for the ocean ridge to traverse the length of the margin before a continuous arm of oceanic crust separated Rio Muni from its Brazilian counterpart. In the Rio Muni basin, the c.70km-wide Ascension Fracture Zone (AFZ) exhibits oblique-slip faulting and synrift half-graben formation that accommodated oblique extension during the period leading up to and immediately following whole-lithosphere failure and continental breakup 117Ma. Gravity-modelling of PROBE seismic profiles reveals a land-locked precursor oceanic basin that preceded full ocean opening and which subsequently was stranded on the African margin. Its existence supports the idea of multiple rift suture lines accommodating episodic breakup and it emphasizes the significance of separate breakup and drift episodes at shear margins. Oblique extension is recorded also by strike- and oblique-slip fault geometry within the AFZ and buckling of Aptian synrift rocks in response to block rotation and local transpression. Principal cooling episodes affecting both margins identified from the AFTAr occurred in the Mid-Cretaceous 110-90Ma., following a period of high heatflow during which the geothermal gradient was more than twice that of the present day 25C/km gradient, and 45-35Ma. coinciding with a major change in the pole of rotation at Chron 34 some 84Ma. Additional cooling episodes between 85-75Ma. and 10-2Ma. are restricted to the African side. Given that this margin system underwent breakup some 117Ma., it appears that thermal equilibrium was maintained throughout the initial breakup meaning that no significant uplift and erosion is recorded by the thermal history data during this period. Instead, Mid-Cretaceous cooling is interpreted as a response to the influence of i) the c.105Ma. St Helena Plume and ii) transpressional shortening and inversion that accompanied the breakup to drift period.

  2. Subglacial geomorphology reveals connections between glacial dynamics and deeper hydrocarbon reservoir leakages at the Polar north Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Andreassen, Karin; Deryabin, Alexey; Rafaelsen, Bjarne; Richarsen, Morten

    2014-05-01

    Three-dimensional (3D) seismic data from the Barents Sea continental shelf and margin reveal spatial links between subsurface distributions of inferred glacitectonic geomorphic landforms and seismic indications of fluid flow from deeper hydrocarbon reservoirs. Particularly 3D seismic techniques allow detailed mapping and visualization of buried glacial geomorphology and geophysical indications of fluid flow and gas accumulations. Several subsurface glacitectonic landforms show pronounced depressions up to 200 m deep and several km wide. These appear in many locations just upstream from hills of similar sizes and volumes, and are inferred to be hill-hole pairs. The hills are interpreted as thrusted and compressed slabs of sediments and bedrock which have been removed from their original location by moving glaciers during the last glacial, leaving the holes as depressions. The mapped depressions seem often to appear in sediments of different lithology and age. The appearance of mega-scale glacial lineations indicates that fast-flowing ice streams, draining the former Barents Sea and Fennoscandian ice sheets were the main agents of these glacitectonic landforms. Mapped fluid flow migration pathways from deeper reservoirs and shallow gas accumulations show evidence of active fluid migration systems over longer time periods, and their spatial relationship with the glacitectonic landforms is documented for several areas of the Barents Sea continental shelf. A conceptual model is proposed for the depressions, where brittle glacitectonic deformation takes place along a weak layer at the base of gas-hydrate cemented sediments. Fluid flow from deeper hydrocarbon reservoirs is inferred to be associated with cycles of glaciations and unloading due to glacial erosion and ice retreat, causing gas to expand, which in turn potentially breaks the traps, reactivates faults and creates new faults. Gas hydrate stability modeling indicates that the south-western Barents Sea is today outside the stability area for methane gas hydrates of structure I, but hydrates of this type would have been stable when grounded ice covered the area. Structure II hydrates, with a few percent of heavier hydrocarbons are likely stable within the area today. Acknowledgements. This research is part of the Centre of Excellence for Gas Hydrate, Environment and Climate (CAGE) funded by the Research Council of Norway (RCN) grant 223259. It is also a contribution to the project "Glaciations in the Barents Sea area (GlaciBar)" RCN grant 20067 and to the Research Centre for Arctic Petroleum Exploration (ARCEx) RCN grant 228107.

  3. Upper Jurassic and Lower Cretaceous facies relationships in a passive margin basin, western North Atlantic

    SciTech Connect

    Prather, B.E.

    1988-02-01

    Correlation of facies from hydrocarbon-bearing continental and transitional marine sandstones to time-equivalent high-energy shelf-margin carbonates provide insight into hydrocarbon habitats of the Baltimore Canyon basin. These facies occur within a thick (> 10,000 ft) prograded wedge of shelf sediments in this passive margin basin. Wells drilled to test structural closures in shallow-water (< 600 ft) areas of Baltimore Canyon penetrate clastic facies which are time-equivalent to the downdip carbonate facies tested in deep-water wells. Numerous hydrocarbon shows, including a noncommercial gas and gas-condensate accumulation, occur with sandstone units that were deposited in prograding continental/fluvial and transitional marine environments located updip of the Oxfordian/Kimmeridgian carbonate shelf edge. The continental and transitional facies are overlain by a fine-grained deltaic complex which forms a regionally extensive top seal unit. The deltaic complex was deposited during aggradation of the Kimmeridgian through Berriasian shelf-margin carbonates penetrated by the deep-water wells. Deep-water wells (> 5000 ft) drilled off the continental shelf edge to test large structural closures along the downdip termination of the Upper Jurassic/Lower Cretaceous carbonate shelf edge encountered no significant hydrocarbon shows. Reservoir rocks in these wells consist of (1) oolite grainstone which was deposited within a shoal-water complex located at the Aptian shelf edge, and (2) coral-stromatoporoid grainstone and boundstone which formed an aggraded shelf-margin complex located at the Kimmeridgian through Berriasian shelf edge. Structural closures with reservoir and top seals are present in both updip and downdip trends. The absence of hydrocarbon shows in downdip carbonate reservoirs suggests a lack of source rocks available to charge objectives at the shelf margin.

  4. Gulf of Aden: Structure and evolution of a young ocean basin and continental margin

    SciTech Connect

    Cochran, J.R.

    1981-01-10

    New marine geophysical data are used to describe the structure and history of the Gulf of Aden. Magnetic anomaly data shows seafloor spreading magnetic anomalies of Sheba Ridge from the axial anomaly to anomaly 5 (10 m.y. B.P.) between the Owen fracture zone and 45 /sup 0/E and to anomaly 2' (3 m.y. B.P.) or anomaly 3 (4 m.y. B.P.) west of 45 /sup 0/E. The data does not support the two episodes of seafloor spreading recently proposed. Landward of the seafloor spreading magnetic anomalies is a magnetic quiet zone of uncorrelatable anomalies. The magnetic quiet zone boundary is also a structural boundary effectively marking the edge of Sheba Ridge, with deeper basement lacking a significant topographic gradient found on the landward side. A magnetic quiet zone is found not only where Sheba Ridge splits continental lithosphere but also on East Sheba Ridge where the ridge splits the old oceanic lithosphre of the Owen and Somali basins. There the position occupied by the continental margin within the gulf is marked by nonmagnetic ridge complexes that stretch from the continents to the Owen fracture zone. The magnetic quiet zone boundary is not an isochron in either the Gulf of Aden or the Red Sea, suggesting that significant horizontal motions can occur prior to the initiation of seafloor spreading. The offset on the Dead Sea Rift is used to estimate that from 80 to 160 km of opening, amounting to between 65% and 200% extension of the initial rift valley, occurred in the Gulf of Aden and Red Sea prior to the establishment of a mid-ocean ridge. It is suggested that the development of a new ocean basin occurs in two stages. The first involves diffuse extension over an area perhaps 10 km wide in a rift valley environment without an organized spreading center. This is followed by concentration of the extension at a single axis and the beginning of true seafloor spreading.

  5. Tectonomagmatic Evolution of the Neo - Tethyan Region in the Iranian Continental Margin

    NASA Astrophysics Data System (ADS)

    Monsef, R.; Monsef, I.; Rahgoshay, M.; Emami, M. H.; Shafaii Moghadam, H.

    2009-04-01

    The tectonic history of Neo - Tethyan realm in Iran began with the rifting of the Central Iranian Block (CIB) separated from Arabia and Gondwana during Late Permian - Early Triassic time. This realm travelled to the north to creation of the Neo-Tethyan oceanic lithosphere. The subduction of the Neo-Tethys could start to the south of the Central Iranian Block at Late Triassic to Plio-Quaternary time. The subduction of the Neo - Tethyan ocean beneath the active continental margin of the Iranian block was established by arc magmatism and back - arc spreading. These magmatic activities are marked from SW to NE by the presence of: calc-alkaline arc magmatism from Late Triassic to Late Jurassic in the Sanandaj-Sirjan Zone (SSZ), back - arc spreading with Late Cretaceous in the Esfandagheh Colour Melange Zone (ECMZ), back-arc spreading with Late Cretaceous - Palaeocene Nain-Baft Ophiolitic Belt (NBOB) and calc-alkaline arc magmatism from Eocene to Plio-Quaternary in the Urumieh-Dokhtar Magmatic Zone (UDMZ). Urumieh-Dokhtar magmatic zone has been considered as a place for the main magmatic activities in the Central Iranian continent in the Cenozoic age. This magmatic arc is situated to the North of the Mesozoic arc of the Sanandaj-Sirjan zone and the back-arc basin of the Central Iranian Block of Cretaceous age. During Oligocene-Miocene time the magmatic activity favored to alkaline magmatism. Geochemical data confirm the presence of transtensional tectonic setting along the Urumieh-Dokhtar magmatic zone, opened during Paleogene and early Neogene due to the collision of the Arabia platform and Central Iranian continent. These magmatic activities are linked to the subduction of the Neo-Tethys to the North below the CIB, followed by the Paleogene collision and continental subduction of the Gondwana (Arabia) beneath the CIB along the Main Zagros Thrust (MZT). Keywords: Neo - Tethys; Gondwana; Central Iranian Block (CIB); Sanandaj-Sirjan Zone (SSZ); Esfandagheh Colour Melange Zone (ECMZ); Nain-Baft Ophiolitic Belt (NBOB); Urumieh-Dokhtar Magmatic Zone (UDMZ)

  6. Spatial Extent of Wave-Supported Fluid Mud on the Waipaoa Continental Margin

    NASA Astrophysics Data System (ADS)

    Hale, R. P.; Ogston, A. S.; Walsh, J. P.; Orpin, A. R.

    2013-12-01

    Data from acoustic and optical sensors provide a powerful tool to connect near-bed water-column processes with the deposits they generate. Ideally, the product of water-column and seabed interactions can then be applied more broadly to understand systems as a whole, in both space and time. Recent observational research has allowed for an improved understanding of shelf sediment-transport dynamics in many coastal systems, including the dynamic Waipaoa Sedimentary System (WSS), on the east coast of the north island of New Zealand. This narrow shelf (~20 km) on an active continental margin is subject to strong environmental forcings in the form of high waves (>5 m), strong currents (>50 cm/s), and frequent floods of the Waipaoa River, which delivers an average of 15 MT of sediment to Poverty Bay and the coastal environment each year. A year-long study of the WSS during 2010-2011 combined observational data from instrumented tripods at three locations on the continental shelf, with repeat sediment cores collected in four-month intervals, to identify and assess the mechanisms of cross- and off-shelf sediment transport. Observational data identified that cross-shelf sediment transport is stochastic, typically driven by high-wave events, with 40% of the net annual cross-shelf flux for one tripod location occurring during a single wave-supported fluid mud (WSFM) in July 2010. Fortunately, this event was recorded in the instrument data, and the resulting deposit was plainly visible in x-radiograph images. This particular WSFM was observed in x-radiographs collected as deep as ~50 m, and as far as ~28 km from the mouth of the Waipaoa River, and is more prevalent on the northern portion of the shelf. A critical water depth is not the only criteria for WSFM deposition, as some shallower areas on the southern shelf, which were subject to high bed stress, show no evidence of WSFM in this event, while cores collected in deeper areas (e.g. lower bed stress) on the northern shelf did observe WSFM. Interestingly, several cores on the southern shelf do appear to preserve evidence of previous wave-reworking of the seabed. It appears that the presence of a river plume and associated sediment, as well as the direction in which it is advected, are instrumental in WSFM generation.

  7. Multiphase structural evolution of the western margin of the Girardot subbasin, Upper Magdalena Valley, Colombia

    NASA Astrophysics Data System (ADS)

    Ramon, J. C.; Rosero, A.

    2006-09-01

    More than 1400 km of two-dimensional seismic data were used to understand the geometries and structural evolution along the western margin of the Girardot Basin in the Upper Magdalena Valley. Horizons are calibrated against 50 wells and surface geological data (450 km of traverses). At the surface, low-angle dipping Miocene strata cover the central and eastern margins. The western margin is dominated by a series of en echelon synclines that expose Cretaceous-Oligocene strata. Most synclines are NNE-NE trending, whereas bounding thrusts are mainly NS oriented. Syncline margins are associated mostly with west-verging fold belts. These thrusts started deformation as early as the Eocene but were moderately to strongly reactivated during the Andean phase. The Girardot Basin fill records at least four stratigraphic sequences limited by unconformities. Several periods of structural deformation and uplifting and subsidence have affected the area. An early Tertiary deformation event is truncated by an Eocene unconformity along the western margin of the Girardot Basin. An Early Oligocene-Early Miocene folding and faulting event underlies the Miocene unconformity along the northern and eastern margin of the Girardot Basin. Finally, the Late Miocene-Pliocene Andean deformation folds and erodes the strata along the margins of the basin against the Central and Eastern Cordilleras.

  8. Sedimentary environments and gas hydrates on the Vring Plateau, mid-Norwegian continental margin

    NASA Astrophysics Data System (ADS)

    Zhlsdorff, C.; Haflidason, H.; Sejrup, H. P.; Brendryen, J.; Grasmo, K. J.

    2009-12-01

    A variety of geological settings exists globally where gas hydrates occur, however with respect to possible future exploration most of these are beyond reach with existing technologies. According to the gas hydrate resource pyramid (Boswell and Collett, 2006) the most promising resource is represented by relatively limited occurrences of Arctic sandy deposits. Besides factors unique to gas hydrate systems (i.e., temperatures, pressures, and geochemical regimes) many of the parameters that industry is using to explore for conventional resources are also relevant for gas hydrate resources. The Norwegian continental margin represents a large conventional resource. Recently, gas hydrate formation has been identified at the seafloor of the Vring Plateau, mid-Norwegian margin. Furthermore, a large number of fluid expulsion features are found in an area of the Vring Plateau called Nyegga. These features are both relict and active fluid flow locations. The sedimentary facies connected with gas hydrate occurrence along this margin is however not well known yet. The sedimentary environment of the mid-Norwegian margin was highly influenced by the Fennoscandian Ice Sheet throughout the Pleistocene. Seismic and sedimentary records assume that the ice sheet reached the shelf edge several times. A 32 m long composite sediment record, which is recovered from the southern Vring Plateau, is documenting continuous sedimentation within this area for the last ca. 300 ka. Detailed geophysical, geochemical and sedimentological results indicate different lithofacies as a result of alterations in prevailing sedimentary processes adherent to climate and ice sheet variability (e.g., IRD supply, current transport). The record indicates that various sandy layers of 10-15 % sand in average and a well-sorted layer of up to 40 % of sand are intercalated within otherwise predominantly silty deposits. As inferred from the age model, processes related to these sandy layers have often lasted for a couple of thousand years. Using seismic profiles the different sedimentary facies identified in the sediment record can be tied up to the Nyegga area and correlated to sediment cores in this area. Furthermore, extremely high sedimentation rates during the last deglaciation were recently proposed to be relevant for hydraulic fracturing and the formation of fluid escape chimneys at Nyegga (Hustoft et al., 2009). Within this context the long record documents that extremely high sedimentation rates have moreover also occurred during the previous deglaciation. References: Boswell, R. and Collett, T. (2006) The gas hydrates resource pyramid. Fire in the Ice, Methane newsletter, U.S. Depart. of Energy, Office of Fossil Energy, National Energy Techn. Lab. 5-7. Hustoft, S., Dugan, B. and Mienert, J. (2009) Effects of rapid sedimentation on developing the Nyegga pockmark field: Constraints from hydrological modeling and 3-D seismic data, offshore mid-Norway. Geochem. Geophys. Geosyst., 10.1029/2009GC002409.

  9. Estimated post-Messinian sediment supply and sedimentation rates on the Ebro continental margin, Spain

    USGS Publications Warehouse

    Nelson, C.H.

    1990-01-01

    Because of the extensive data base of seismic profiles, radiometric ages, and stratigraphic time markers such as the subaerial Messinian surface, sedimentation rates and Ebro River sediment discharge can be estimated for different periods and environments of the Ebro continental margin. New values for sediment discharge (i.e., 6.2 versus previous estimates of 2-3.5 million t/yr) for the Holocene highstand are more reliable but remain minimum estimates because a small proportion of Ebro sediment advected to the Balearic Rise and Abyssal Plain cannot be accounted for, especially during lowstands. The general highstand conditions of the Pliocene, which were similar to those of the Holocene, resulted in a low discharge of Ebro River sediment (ca. 6.5 million t/yr) and an even thickness of sediment across the margin that deposited at rates of about 24-40 cm/ky. In contrast, sediment supply increased two-three times during the Pleistocene, the margin prograded rapidly and deposition occurred at rates of 101-165 cm/ky on the outer shelf and slope, but basin floor rates remained anomalously low (21-26 cm/ky) because sediment was drained and broadly dispersed eastward in Valencia Trough. During the late Pleistocene rise of sea level, the main depocenters progressively shifted shoreward and sedimentation rates greatly decreased from 175 cm/ky on the upper slope during the early transgression to 106 cm/ky on the outer shelf and then to 63 cm/ky on the mid-shelf during the late transgression as the river sediment discharge dropped to half by Holocene time. Maximal sedimentation rates occurred in active depocenters of sediment dispersal such as the Holocene delta (370 cm/ky) or the youngest Pleistocene Oropesa channel-levee complex (705 cm/ky) where deposition rates increased by an order of magnitude or more compared to average Ebro shelf (38 cm/ky) or base-of-slope rates in the Pleistocene (21 cm/ky). The sedimentation rates verify the importance of sea-level control on the progressive change in location of depocenters and amount of sediment supply, but Pleistocene climatic change and deforestation alone can be observed to double river sediment discharge. The latter observation helps explain the anomalously high deposition rates in Pleistocene turbidite systems compared with older systems that may be controlled more by tectonic and sea-level changes alone. During the past 2000 years, in contrast, man has controlled deposition in the Ebro margin system, first by deforestation that more than doubled river sediment discharge and shelf deposition rates to equal those of Pleistocene time; and second by dam contruction that reduced sediment discharge to less than 5% of the normal Holocene discharge. Similar recent discharge reductions from the Nile and Rhone Rivers suggest that loss of the majority of the river sediment supply in the Mediterranean Sea may result in significant erosion of biologically and agriculturally important lobate delta areas. ?? 1990.

  10. H/V spectral ratios of the continental margin sediments offshore southwestern Taiwan

    NASA Astrophysics Data System (ADS)

    Lin, Jing-Yi; Cheng, Win-Bin; Chin, Shao-Jinn; Hsu, Shu-Kun

    2015-04-01

    For decades, it has been mentioned that submarine slope failures are spatially linked to the presence of gas hydrates/gas-charged sediments. When triggered by earthquakes, over steepen and instable sediments may prompt breakouts of the slopes containing gas hydrates and cause submarine landslides and tsunamis. Widely distributed BSRs have been observed in the area offshore of southwestern Taiwan where the active accretionary complex meets with the passive China continental margin. In the region, large or small scale landslides were also reported based on seismic interpretations. In order to clarify the link between earthquake, landslide and the presence of gas hydrate, we evaluate the response of seafloor sediments in regard to passive dynamic loads. Horizontal-to-vertical (H/V) spectral ratios are used to characterize the local sediment response. Ambient noise as well as distant earthquake is used as generators of the passive dynamic loads. Based on this study, we aim to characterize the site in terms of its physical properties and the local site effect produced by shallow marine sediments. Estimating H/V spectral ratios of data recorded by the short period OBSs (Ocean Bottom Seismometer) deployed in the active and paqssive margin offshore southwestern Taiwan show similar spectral characteristics and provide a general understanding of the preferential vibration modes of sediment systems. The results show that the maximal H/V ratios appeared in the range of 5-10 Hz, where the horizontal amplitudes increased by an order of magnitude relative to the vertical amplitude. The stations located in the northwestern part of study area were characterized by another relatively small peak at proximately 2 Hz, which may indicates the presence of a discontinuity of sediments. For most stations, the H/V ratios estimated based on the earthquakes (i.e. strong input signal) and noise (background, micro-seismic noise) records were characterized by different pattern. No distinct peak is observed for the H/V pattern calculated during earthquakes. This phenomenon may suggest that no clear sedimentary boundary exist when a stronger motion applies. We found that the resonance frequency for the relative rigid material, such as mud diapir, is relatively higher, about 9 Hz. Moreover, their main resonance frequency is not affected by occurrence of earthquakes. On the general sedimentary layer and marine landslide, the resonance frequency shows relatively low value, about 7~8 Hz. When the site is affected by earthquakes, the main frequency becomes unclear. Finally, when a site is characterized by very thick sedimentary layer, the frequency of about 5 Hz is the lowest observed in the experiment.

  11. Comparative geochemistry of Indian margin (Arabian Sea) sediments: Estuary to continental slope.

    NASA Astrophysics Data System (ADS)

    Cowie, Greg; Mowbray, Stephen; Kurian, Siby; Sarkar, Amit; White, Carol; Anderson, Amy; Vergnaud, Bianca; Johnstone, Gisele; Brear, Samuel; Woulds, Clare; Naqvi, Wajih; Kitazato, Hiroshi

    2014-05-01

    Factors controlling the distribution of organic matter in the Arabian Sea have been the subject of much research and debate ever since organic-rich slope deposits were associated with the mid-water oxygen minimum zone (OMZ) However, the debate remains open, and numerous interacting factors have been invoked as important controls. A limitation of most previous studies is that they have been restricted to limited portions of the margin, and have not included molecular-level tracers that allow distinction of organic matter (OM) source and degradation state as factors in OM distribution. We report results from sites across the Indian margin of the Arabian Sea, which were analysed for carbon and nitrogen compositions (elemental and isotopic), grain size and indices of OM source and degradation state. Site locations ranged from the Mandovi/Zuari estuaries to depths of ~2000m on the continental slope, thus spanning both the semi-permanent OMZ on the upper slope (~200-1300m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, but overwhelming predominance (80%+) of marine OM on the shelf and slope, even in nearshore deposits. Thus, riverine OM is heavily diluted or efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from <0.5 wt% in relict shelf sands to a maximum of >7 wt% at upper slope sites within the OMZ, then decreasing to ?1wt% at 2000m. However, major variability (~5 wt%) occured within the OMZ at sites with near-identical depths and bottom-water oxygen. A strong relationship between organic C and grain size was seen for OMZ sediments, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, results indicate that OM enrichment on the upper slope, where it occurs, can be explained by winnowing or other physical processes on the shelf combined with progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to observed OM enrichment with the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution, even within the OMZ.

  12. High-resolution and Deep Crustal Imaging Across The North Sicily Continental Margin (southern Tyrrhenian Sea)

    NASA Astrophysics Data System (ADS)

    Agate, M.; Bertotti, G.; Catalano, R.; Pepe, F.; Sulli, A.

    Three multichannel seismic reflection profiles across the North Sicily continental mar- gin have been reprocessed and interpreted. Data consist of an unpublished high pene- tration seismic profile (deep crust Italian CROP Project) and a high-resolution seismic line. These lines run in the NNE-SSW direction, from the Sicilian continental shelf to the Tyrrhenian abyssal plain (Marsili area), and are tied by a third, high penetration seismic line MS104 crossing the Sisifo High. The North Sicily continental margin represents the inner sector of the Sicilian-Maghrebian chain that is collapsed as con- sequence of extensional tectonics. The chain is formed by a tectonic wedge (12-15 km thick. It includes basinal Meso-Cenozoic carbonate units overthrusting carbonate platform rock units (Catalano et al., 2000). Presently, main culmination (e.g. Monte Solunto) and a number of tectonic depressions (e.g. Cefal basin), filled by >1000 m thick Plio-Pleistocene sedimentary wedge, are observed along the investigated tran- sect. Seismic attributes and reflector pattern depicts a complex crustal structure. Be- tween the coast and the M. Solunto high, a transparent to diffractive band (assigned to the upper crust) is recognised above low frequency reflective layers (occurring be- tween 9 and 11 s/TWT) that dips towards the North. Their bottom can be correlated to the seismological (African?) Moho discontinuity which is (26 km deep in the Sicilian shelf (Scarascia et al., 1994). Beneath the Monte Solunto ridge, strongly deformed re- flectors occurring between 8 to 9.5 s/TWT (European lower crust?) overly the African (?) lower crust. The resulting geometry suggests underplating of the African crust respect to the European crust (?). The already deformed crustal edifice is dissected by a number of N-dipping normal faults that open extensional basins and are associ- ated with crustal thinning. The Plio-Pleistocene fill of the Cefal basin can be subdi- vided into three subunits by well-developed unconformities. The stratal pattern of the lower subunit (Early Pliocene?) points out thrust-top basin. The intermediate subunit (Middle-Late Pliocene?) shows a wide sedimentary lateral accretion with syntectonic growth geometries. Upper Pliocene layers are overlain by well-stratified sediments of supposedly Pleistocene to Recent age, which drape and smooth underlying features (Pepe et al., 2000). Crustal thinning is (2 in the Cefal basin and reach (3.54 north of Sisifo volcano, where crustal separation occurs and oceanic crust emplaced (Marsili 1 basin). In this area the Moho is located at (8 s/TWT, corresponding to 10-km depth. References Catalano R., Franchino A., Merlini S. e Sulli A., 2000. Mem. Soc. Geol. It., 55, 5-16. Pepe F., Bertotti G., Cella F. Marsella E., 2000. Tectonics, 19, 241-257. Scarascia S., Lozej A. Cassinis R., 1994. Boll. Geof. Teor. Appl., 36 (141-144), 5-19. 2

  13. Buried Mesozoic rift basins of the U. S. middle Atlantic continental margin

    SciTech Connect

    Benson, R.N. )

    1991-08-01

    The Atlantic continental margin is one of the frontier areas for oil and gas exploration in the US. Most the activity has been offshore where Upper Jurassic-Lower Cretaceous siliciclastic and carbonate rocks have been the drilling objectives, with only one significant but noncommercial gas discover. Onshore, recent exploration activities have focused on early Mesozoic rift basins buried beneath the postrift sediments of the middle Atlantic coastal plain. Many of the basins are of interest because they contain fine-grained lacustrine rocks that have sufficient organic richness, if not lost through hydrocarbon generation, to be classified as source beds for oil or gas. Locations of inferred rift basins beneath the middle Atlantic coastal plain were determined by analysis of drill-hole data in combination with gravity anomaly and aeromagnetic maps. Two basins in Delaware and the Queen Anne basin of Maryland are imaged on a regional Vibroseis profile. Areas enclosing inferred rift basins in the offshore region were mapped from interpretation of seismic reflection profiles. Assuming that petroleum source beds are present in the basin (synrift) rocks, hydrocarbon-generation models (Lopatin method) indicate that for a basin just offshore Delaware that is buried by 7 km of postrift sediments, only dry gas would be present in reservoir rocks; for the Norfolk basin of the Virginia coast buried by only 3 km of postrift rocks, the upper few hundred meters of synrift rocks are still within the oil-generation window. The less deeply buried basins beneath the coastal plain likely are still within the oil window.

  14. Generation of granitic batholiths along a proposed proterozoic continental margin in east-central Minnesota

    SciTech Connect

    Spencer, K.J.; Hanson, G.N.; Horan, M.F.

    1985-01-01

    The 1800 m.y. igneous terrane of East-Central Minnesota is composed of mafic plutons and dikes, diorites (54% SiO2), and a range of granodiorites to granites (63-75% SiO2). Basalts through granite appear to be genetically related because they show similar enrichment of LILE, have similar incompatible element ratios, similar Nd isotope initial values which average -1 epsilon, and lie about the same 1800 m.y. /sup 207/Pb//sup 204/Pb vs. /sup 206/Pb//sup 204/Pb isochron. /sup 18/O isotope values for the felsic rocks lie between 8.2 and 9.6, for the mafic rocks between 6 and 9.2. The Reformatory Granite has the lowest SiO/sub 2/ (ca. 64%) of the granitic rocks, has Mgnumber's of 0.40-0.50, 557-652 ppm Sr, and 18-22 ppm Ni. Its Sr content and REE pattern are not consistent with its derivation from the exposed basic rocks, but may be by differentiation of mantle derived alkali basalt or high- Mg andesite. The major and trace element chemistry for the more siliceous granitic rocks is compatible with their being more extensively differentiated from a similar melt. These granites have apatite and zircon saturation temperatures of 800/sup 0/-940/sup 0/ C, which is higher than what might be expected for partial melting of crustal rocks. A convergent continental margin has been proposed for the tectonic setting for the terrane. The parent melts or their sources could have mixed with a component that provided the high /sup 18/O relative to mantle values and negative epsilon Nd.

  15. Multiproxy characterization and budgeting of terrigenous end-members at the NW African continental margin

    NASA Astrophysics Data System (ADS)

    Just, Janna; Heslop, David; Dobeneck, Tilo; Bickert, Torsten; Dekkers, Mark J.; Frederichs, Thomas; Meyer, Inka; Zabel, Matthias

    2012-09-01

    Grain-size, terrigenous element and rock magnetic remanence data of Quaternary marine sediments retrieved at the NW African continental margin off Gambia (gravity core GeoB 13602-1, 1332.71'N, 1750.96'W) were jointly analyzed by end-member (EM) unmixing methods to distinguish and budget past terrigenous fluxes. We compare and cross-validate the identified single-parameter EM systems and develop a numerical strategy to calculate associated multiparameter EM properties. One aeolian and two fluvial EMs were found. The aeolian EM is much coarser than the fluvial EMs and is associated with a lower goethite/hematite ratio, a higher relative concentration of magnetite and lower Al/Si and Fe/K ratios. Accumulation rates and grain sizes of the fluvial sediment appear to be primarily constrained by shore distance (i.e., sea level fluctuations) and to a lesser extent by changes in hinterland precipitation. High dust fluxes occurred during the Last Glacial Maximum (LGM) and during Heinrich Stadials (HS) while the fluvial input remained unchanged. Our approach reveals that the LGM dust fluxes were 7 times higher than today's. However, by far the highest dust accumulation occurred during HS 1 (300 g m-2 yr -1), when dust fluxes were 80 fold higher than today. Such numbers have not yet been reported for NW Africa, and emphasize strikingly different environmental conditions during HSs. They suggest that deflation rate and areal extent of HSs dust sources were much larger due to retreating vegetation covers. Beyond its regional and temporal scope, this study develops new, in principle, generally applicable strategies for multimethod end-member interpretation, validation and flux budgeting calibration.

  16. An interdisciplinary investigation of a recent submarine mass transport deposit at the continental margin off Uruguay

    NASA Astrophysics Data System (ADS)

    Henkel, Susann; Strasser, Michael; Schwenk, Tilmann; Hanebuth, Till J. J.; Hsener, Johannes; Arnold, Gail L.; Winkelmann, Daniel; Formolo, Michael; Tomasini, Juan; Krastel, Sebastian; Kasten, Sabine

    2011-08-01

    Assessing frequency and extent of mass movement at continental margins is crucial to evaluate risks for offshore constructions and coastal areas. A multidisciplinary approach including geophysical, sedimentological, geotechnical, and geochemical methods was applied to investigate multistage mass transport deposits (MTDs) off Uruguay, on top of which no surficial hemipelagic drape was detected based on echosounder data. Nonsteady state pore water conditions are evidenced by a distinct gradient change in the sulfate (SO42-) profile at 2.8 m depth. A sharp sedimentological contact at 2.43 m coincides with an abrupt downward increase in shear strength from 10 to >20 kPa. This boundary is interpreted as a paleosurface (and top of an older MTD) that has recently been covered by a sediment package during a younger landslide event. This youngest MTD supposedly originated from an upslope position and carried its initial pore water signature downward. The kink in the SO42- profile 35 cm below the sedimentological and geotechnical contact indicates that bioirrigation affected the paleosurface before deposition of the youngest MTD. Based on modeling of the diffusive re-equilibration of SO42- the age of the most recent MTD is estimated to be <30 years. The mass movement was possibly related to an earthquake in 1988 (70 km southwest of the core location). Probabilistic slope stability back analysis of general landslide structures in the study area reveals that slope failure initiation requires additional ground accelerations. Therefore, we consider the earthquake as a reasonable trigger if additional weakening processes (e.g., erosion by previous retrogressive failure events or excess pore pressures) preconditioned the slope for failure. Our study reveals the necessity of multidisciplinary approaches to accurately recognize and date recent slope failures in complex settings such as the investigated area.

  17. A statistical overview of mass movement characteristics on the North American atlantic outer continental margin

    USGS Publications Warehouse

    Booth, James S.; O'Leary, Dennis W.

    1992-01-01

    An analysis of 179 mass movements on the North American Atlantic continental slope and upper rise shows that slope failures have occurred throughout the geographic extent of the outer margin. Although the slope failures show no striking affinity for a particular depth as an origination level, there is a broad, primary mode centered at about 900 m. The resulting slides terminate at almost all depths and have a primary mode at 1100 m, but the slope/rise boundary (at 2200 m) also is an important mode. Slope failures have occurred at declivities ranging from 1° to 30° (typically, 4°); the resultant mass movement deposits vary in width from 0.2 to 50 km (typically, 1-2 km) and in length from 0.3 to 380 km (typically, 2–4 km), and they have been reported to be as thick as 650 m. On a numeric basis, mass movements are slightly more prevalent on open slopes than in other physiographic settings, and both translational and rotational failure surfaces are common. The typical mass movement is disintegrative in nature. Open slope slides tend to occur at lower slope angles and are larger than canyon slides. Further, large‐scale slides rather than small‐scale slides tend to originate on gentle slopes (≍ 3-4°). Rotational slope failures appear to have a slightly greater chance of occurring in canyons, but there is no analogous bias associated with translational failures. Similarly, disintegrative slides seem more likely to be associated with rotational slope failures than translational ones and are longer than their nondisintegrative counterparts. The occurrence of such a variety of mass movements at low declivities implies that a regional failure mechanism has prevailed. We suggest that earthquakes or, perhaps in some areas, gas hydrates are the most likely cause of the slope failures.

  18. 3D seismic analysis of sedimentary processes on deepwater continental margins

    NASA Astrophysics Data System (ADS)

    Heinio, Paivi Tuuli

    Two 3D seismic reflection datasets from the West African and Brazilian continental margins were analysed to determine their architectural elements and to further the understanding of the sedimentary processes that control their morphology. The results suggest a strong influence of local slope variations on the sedimentary processes and depositional and erosional products within these complex deep water settings. The Niger Delta dataset is characterised by large channel-levee systems and thrust-related folds. The folds degrade by channel erosion and slope failure, which creates laterally discontinuous erosional surfaces on the crests and flanks of the anticlines and chaotic deposits at their bases. The type of slope failure depends on the length and morphology of the local slope, sediment properties and the presence of anisotropics, such as faults. The location and morphology of the channel-levee systems on the Niger Delta are affected by topographical effects associated with thrust-related folding. Fold-induced local changes in gradient cause turbidity currents to deposit sediment upstream of the folds and erode the seafloor downstream of them. This results in the formation of knickpoints along the present- day thalweg of a channel-levee system. A model for the formation and evolution of the knickpoints predicts that they migrate upstream and leave internal erosion surfaces and terraces with coarse sediments in the sedimentary record. They may be an important process by which channels cut through uplifting fold belts. The Espirito Santo Basin dataset is characterised by salt diapirs, slope failures, channels and canyons. Interaction of turbidity currents with variations in topography has led to the formation of large depressions, which occur above abrupt breaks in slope and in trails that follow underlying erosional channels. They are inferred to form by Froude-supercritical currents that become unstable as they encounter topographical irregularities, such as scarps and knickpoints. This leads to the formation of erosional scours and deposits similar to sediment waves, which, when confined within channels, appear as roughly circular depressions.

  19. Evolution of the continental margin of southern Spain and the Alboran Sea

    USGS Publications Warehouse

    Dillon, William P.; Robb, James M.; Greene, H. Gary; Lucena, Juan Carlos

    1980-01-01

    Seismic reflection profiles and magnetic intensity measurements were collected across the southern continental margin of Spain and the Alboran basin between Spain and Africa. Correlation of the distinct seismic stratigraphy observed in the profiles to stratigraphic information obtained from cores at Deep Sea Drilling Project site 121 allows effective dating of tectonic events. The Alboran Sea basin occupies a zone of motion between the African and Iberian lithospheric plates that probably began to form by extension in late Miocene time (Tortonian). At the end of Miocene time (end of Messinian) profiles show that an angular unconformity was cut, and then the strata were block faulted before subsequent deposition. The erosion of the unconformity probably resulted from lowering of Mediterranean sea level by evaporation when the previous channel between the Mediterranean and Atlantic was closed. Continued extension probably caused the block faulting and, eventually the opening of the present channel to the Atlantic through the Strait of Gibraltar and the reflooding of the Mediterranean. Minor tectonic movements at the end of Calabrian time (early Pleistocene) apparently resulted in minor faulting, extensive transgression in southeastern Spain, and major changes in the sedimentary environment of the Alboran basin. Active faulting observed at five locations on seismic profiles seems to form a NNE zone of transcurrent movement across the Alboran Sea. This inferred fault trend is coincident with some bathymetric, magnetic and seismicity trends and colinear with active faults that have been mapped on-shore in Morocco and Spain. The faults were probably caused by stresses related to plate movements, and their direction was modified by inherited fractures in the lithosphere that floors the Alboran Sea.

  20. Strain partitioning along the western margin of North America

    NASA Astrophysics Data System (ADS)

    Pearson, Christopher F.; Snay, R. A.

    2014-07-01

    This paper describes an elastic block model for the interseismic horizontal crustal velocity field occurring in that part of the United States located west of longitude 100 W and between latitudes 31N and 49N. We developed the model by simultaneously inverting 6873 GPS-derived velocity vectors and 166 geological fault slip rates for the angular velocities (i.e. the Euler poles relative to the North America plate) of 46 elastic blocks, horizontal strain rate tensors for 38 of these blocks, and the spatially variable elastic coupling coefficients on faults that bound adjacent blocks. While the model covers all of the western United States located between Canada and Mexico, this paper focuses on the region residing south of Cape Mendocino where plate boundary deformation is accommodated predominantly by slip on the San Andreas fault system. Block strain rates (which account for deformation associated with distributed faults within blocks) are systematically higher in blocks located in the western part of the model and adjacent to the plate boundary. Strain rate magnitudes range from over 10-7/yr for some blocks adjacent to the San Andreas fault system to values of about 10-9/yr for blocks located in eastern Nevada and western Utah. Blocks adjacent to the San Andreas fault system are characterized by strain rate tensors that correspond to uniaxial contraction perpendicular to the local strike of the San Andreas. The highest rates of fault normal contraction are associated with the northern end of the fault (north of San Francisco) and in the southern end (south of Los Angeles). The central San Andreas (including the creeping segment of the fault) is characterized by strain rate tensors more consistent with dextral shear. Thus the northern and southern ends of the fault are consistent with a transpressional strain partitioning model with strike slip occurring on the San Andreas fault system and distributed shortening occurring within the blocks adjacent to this fault system. There is no evidence of strain partitioning in the central San Andreas.

  1. 75 FR 17156 - Gulf of Mexico, Outer Continental Shelf, Western Planning Area, Oil and Gas Lease Sale 215 (2010...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-05

    ... Minerals Management Service Gulf of Mexico, Outer Continental Shelf, Western Planning Area, Oil and Gas Lease Sale 215 (2010) Environmental Assessment AGENCY: Minerals Management Service, Interior. ACTION: Notice of availability of an environmental assessment. SUMMARY: The Minerals Management Service (MMS)...

  2. Petrology and age of volcanic-arc rocks from the continental margin of the Bering Sea: implications for Early Eocene relocation of plate boundaries

    USGS Publications Warehouse

    Davis, A.S.; Pickthorn, L.-B.G.; Vallier, T.L.; Marlow, M. S.

    1989-01-01

    Eocene volcanic flow and dike rocks from the Beringian margin have arc characteristics, implying a convergent history for this region during the early Tertiary. Chemical and mineralogical compositions are similar to those of modern Aleutian-arc lavas. They also resemble volcanic-arc compositions from western mainland Alaska, although greater chemical diversity and a stronger continental influence are observed in the Alaskan mainland rocks. Early Eocene ages of 54.4-50.2 Ma for the Beringian samples are well constrained by conventional K-Ar ages of nine plagioclase separates and by concordant 40Ar/39Ar incremental heating and total-fusion experiments. A concordant U-Pb zircon age of 53 Ma for the quartz-diorite dike is in good agreement with the K-Ar data. Plate motion studies of the North Pacific Ocean indicate more northerly directed subduction prior to the Tertiary and a continuous belt of arc-type volcanism extending from Siberia, along the Beringian margin, into mainland Alaska. Around 56 Ma (chron 25-24), subduction changed to a more westerly direction and subduction-related volcanism ceased for most of mainland Alaska. The increasingly oblique angle of convergence should have ended subduction along the Beringian margin as well. However, consistent ages of 54-50 Ma indicate a final pulse in arc-type magmatism during this period of plate adjustment. -from Authors

  3. Pleistocene deformations in the contexte of the Rharb foredeep basin (north western Atlantic Moroccan margin)

    NASA Astrophysics Data System (ADS)

    Maad, N.; Le Roy, P.; Sahabi, M.; Gutscher, M. A.; Dakki, M.; Hssain, M.; van Vliet-Lanoë, B.; Brahim, L. Ait; M'hammdi, N.; Trenteseaux, A.

    2009-04-01

    This study relates to the Cenozoic post rift deformations of Rharb foredeep basin in response to the Europe-Africa convergence. Here we are going to retail the tectonic structures of the Rharb basin, in particular the active front of the Prerifaine nappe in the area of Lalla Zahra. The method is based on the interpretations of the high resolution seismic reflection data acquired during the Protit2 (2003) and the Nomads cruises (2007). The surveys were conducted by the University of Brest in France and the Faculté des Sciences d'El Jadida in Morocco. They allowed to record more than 2000 km of seismic lines through the Rharb continental shelf. The integration of new data with industrial seismic lines provided by ONHYM and field observations collected along the coastline allows us to identify the formation and the recent evolution of the western termination of the Southern Rif Corridor. This coastal basin corresponds to the foredeep basin linked to the Rif Cordillera and extends southwards through the northern Moroccan Meseta that defines the foreland region of the Western Rif (Flinch,93). The integrated study clarifies the post-nappe evolution of the offshore Rharb basin during Neogene and quaternary times. A succession of deformations affect the Rharb basin with separating episodes of relaxation and quiescence. Their ages are based on chronostratigraphical attribution of mean unconformities. A Lower Pliocene episode is characterized by reactivation of faults affecting the Nappe. The uplift of the basin and the individualization of the Lallah Zarah ridge increases and controls the terrigenous fluxes. A Middle Pleistocene still active episode and corresponds to a new uplift of the two margins of the basin. Faulting remains more active in the North along the Lallah Zarah ridge and offshore Larache where large active listric faults are observed. The progressive segmentation of the basin determinates the sedimentary filling with cyclic sequences extending progressively Southward. Seismic analysis allows to describe successive episodes of faults reactivation with uplift of the southern forebulge and individualization of the northern topographic front. The detailed analysis of the post-nappe sedimentary evolution underlines the tectonic control of the Rharb basin with important lateral shift of the depocenter during Upper Pliocene and Quaternary.

  4. Hanging canyons of Haida Gwaii, British Columbia, Canada: Fault-control on submarine canyon geomorphology along active continental margins

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.; Barrie, J. Vaughn; Conway, Kim W.; Greene, H. Gary

    2014-06-01

    Faulting commonly influences the geomorphology of submarine canyons that occur on active continental margins. Here, we examine the geomorphology of canyons located on the continental margin off Haida Gwaii, British Columbia, that are truncated on the mid-slope (1200-1400 m water depth) by the Queen Charlotte Fault Zone (QCFZ). The QCFZ is an oblique strike-slip fault zone that has rates of lateral motion of around 50-60 mm/yr and a small convergent component equal to about 3 mm/yr. Slow subduction along the Cascadia Subduction Zone has accreted a prism of marine sediment against the lower slope (1500-3500 m water depth), forming the Queen Charlotte Terrace, which blocks the mouths of submarine canyons formed on the upper slope (200-1400 m water depth). Consequently, canyons along this margin are short (4-8 km in length), closely spaced (around 800 m), and terminate uniformly along the 1400 m isobath, coinciding with the primary fault trend of the QCFZ. Vertical displacement along the fault has resulted in hanging canyons occurring locally. The Haida Gwaii canyons are compared and contrasted with the Sur Canyon system, located to the south of Monterey Bay, California, on a transform margin, which is not blocked by any accretionary prism, and where canyons thus extend to 4000 m depth, across the full breadth of the slope.

  5. Variations in Organic Matter Burial and Composition in Sediments from the Indian Ocean Continental Margin Off SW Indonesia (Sumatra - Java - Flores) Since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Jennerjahn, T. C.; Gesierich, K.; Schefuß, E.; Mohtadi, M.

    2014-12-01

    Global climate change is a mosaic of regional changes to a large extent determined by region-specific feedbacks between climate and ecosystems. At present the ocean is forming a major sink in the global carbon cycle. Organic matter (OM) storage in sediments displays large regional variations and varied over time during the Quaternary. Upwelling regions are sites of high primary productivity and major depocenters of organic carbon (OC), the least understood of which is the Indian Ocean upwelling off Indonesia. In order to reconstruct the burial and composition of OM during the Late Quaternary, we analyzed five sediment cores from the Indian Ocean continental margin off the Indonesian islands Sumatra to Flores spanning the last 20,000 years (20 kyr). Sediments were analyzed for bulk composition, stable carbon and nitrogen isotopes of OM, amino acids and hexosamines and terrestrial plant wax n-alkanes and their stable carbon isotope composition. Sedimentation rates hardly varied over time in the western part of the transect. They were slightly lower in the East during the Last Glacial Maximum (LGM) and deglaciation, but increased strongly during the Holocene. The amount and composition of OM was similar along the transect with maximum values during the deglaciation and the late Holocene. High biogenic opal covarying with OM content indicates upwelling-induced primary productivity dominated by diatoms to be a major control of OM burial in sediments in the East during the past 20 kyr. The content of labile OM was low throughout the transect during the LGM and increased during the late Holocene. The increase was stronger and the OM less degraded in the East than in the West indicating that continental margin sediments off Java and Flores were the major depocenter of OC burial along the Indian Ocean margin off SW Indonesia. Temporal variations probably resulted from changes in upwelling intensity and terrestrial inputs driven by variations in monsoon strength.

  6. The influence of oceanic fracture zones on the segmentation of continental margins and the evolution of intra-continental rift systems: Case studies from the Atlantic

    NASA Astrophysics Data System (ADS)

    Masterton, S.; Fairhead, J. D.; Green, C. M.

    2012-12-01

    It has been a long held view that oceanic fracture zones play an important role in the segmentation of continental margins and therefore provide a major structural control on their evolution and the development of associated petroleum systems. The geometry of fracture zones reflects the spreading history of the seafloor: subtle changes in plate motion causes stress-field reorientation, which in turn results in changes in the orientation of the fracture zone. These changes can introduce strike-perpendicular compression or extension across transform faults; the latter may lead to increased ridge segmentation and the initiation of new spreading centres. We present two examples of secondary fracture zone initiation and disappearance within the Atlantic Ocean between 1) the Atlantis and Kane major fracture zones in the Central Atlantic and 2) the Ascension and Rio de Janeiro fracture zones in the South Atlantic. We investigate the discontinuous nature of these fracture zones by exploring their relationship with major plate re-organisation events and seafloor spreading geometry. Using a series of stage reconstruction poles that represent the motion of both North and South America relative to Africa since the initiation of Atlantic seafloor spreading, we have performed a quantitative analysis of spreading directions along major Atlantic fracture zones. Our results demonstrate a notable correlation between the timing of major plate reorganisation events and the initiation and disappearance of secondary fracture zones. Such events are clearly recorded in the Atlantic margin stratigraphic record as major unconformities. We are therefore able to interpret fracture zone abundance in terms of palaeo-spreading geometry and the opening history of the Atlantic Ocean. This allows us to make important inferences about the influence of fracture zones on the segmentation and structural control of continental margins. Specifically, in our South Atlantic case study, where secondary fracture zones do not extend up to the offshore Angolan and conjugate Brazilian margins, we conclude that small offset transform faulting did not influence the evolution of the continental margin as has been previously suggested. On a regional scale, the evolution of the Africa-wide Mesozoic rift system is intimately linked to global plate tectonics and to changes in plate interactions. On a basinal scale, changes in the orientation of the dominant stress field resulting from plate reorganisation have had a clear impact on the deformation history and fault geometries of rift basins. We demonstrate this relationship by correlating the timing of changes in South Atlantic fracture zone geometries and African margin unconformities with major unconformities that are observed in a unified stratigraphy chart for the West and Central African Rift System. We propose a controlling mechanism in which changes in plate stress control the effective elastic strength of a plate, resulting in a focused change in isostatic response over continental margins.

  7. Crustal rheological strength heterogeneities control the formation of continental plateau margins

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Zhu, Bojing; Yang, Xiaolin

    2015-08-01

    The margins bordering the Tibetan Plateau show two end-member morphologies in topographic gradient: steep margins and low-gradient margins. To investigate the formation mechanism of convergent intracontinental plateau margins, we conduct 2D numerical experiments to simulate crustal deformation process across plateau margins. Our numerical experiments demonstrate that heterogeneities in crustal rheological strength control significantly the formation of plateau margins when subjected to crustal convergence. A very steep margin is the result of crustal convergence between plateau with weak lower crust and foreland basin with strong lower crust. By contrast, a low-gradient margin could result from crustal convergence between plateau and foreland with less strength contrast. This finding suggests that the diversity in topographic gradient along the Tibetan Plateau borders reflects heterogeneities in crustal rheological strength across the plateau margins. Steep gradient at the margins indicate large crustal rheological strength contrasts between the weak ductile lower crust of the Tibetan Plateau and its strong surrounding foreland basins, like the Sichuan Basin, the Tarim Basin and the Qaidam Basin. Beneath these steep margins the horizontal flow of the Tibetan ductile lower crust is inhibited and forced to extrude to support escarpments. Low-gradient at the margins indicate less crustal strength variations between the plateau and outer forelands, like at the northeastern and southeastern margins, where they might be outlets for the weak ductile Tibetan lower crust to flow away from the plateau.

  8. Historical changes in terrestrially derived organic carbon inputs to Louisiana continental margin sediments over the past 150 years

    NASA Astrophysics Data System (ADS)

    Sampere, Troy P.; Bianchi, Thomas S.; Allison, Mead A.

    2011-03-01

    Major rivers (and associated deltaic environments) provide the dominant pathway for the input of terrestrial-derived organic carbon in sediments (TOCT) to the ocean. Natural watershed processes and land-use changes are important in dictating the amount and character of carbon being buried on continental margins. Seven core sites were occupied on the Louisiana continental margin aboard the R/V Pelican in July 2003 along two major sediment transport pathways south and west of the Mississippi River mouth. Lignin profiles in these age-dated cores (210Pb geochronology) indicate artificial reservoir retention as a primary control on organic carbon quantity and quality reaching the margin post-1950, whereas pre-1950 sediments may reflect soil erosion due to land clearing and farming practices. Lignin (?8) concentrations (range 0.2 to 1.7) also indicate that TOCT delivery rates/decay processes have probably remained relatively consistent from proximal to distal stations along transects. The down-core profile at the Canyon station seems to be temporally linked and connected to inner shelf deposition, suggestive of rapid cross-shelf transport. Sources of terrestrially derived organic carbon were reflective of mixed angiosperms over the last 150 years in cores west and south of the Mississippi River delta. The lignin-phenol vegetation index (LPVI) (range 130.0 to 510) proved to be a sensitive indicator of source changes in these sediments and eliminated some of the variability compared to C/V (range 0.01 to 0.4) and S/V (range 0.9 to 2.1) ratios. Stochastic events such as hurricanes and large river floods have a measurable, albeit ephemeral, effect on the shelf TOCT record. Burial of TOCT on the river-dominated Louisiana continental margin is largely driven by anthropogenic land-use alterations in the last 150 years. Land-use changes in the Mississippi River basin and river damming have likely affected carbon cycling and TOCT burial on the Louisiana continental margin over a large spatial extent as observed by similar trends in cores from across and along the margin.

  9. Influence of the Afar plume on the deep structure of Aden and Red Sea margins - Insight from teleseismic tomography in western Yemen

    NASA Astrophysics Data System (ADS)

    Korostelev, Félicie; Basuyau, Clémence; Leroy, Sylvie; Ahmed, Abdulhakim; Keir, Derek; Stuart, Graham; Rolandone, Frédérique; Ganad, Ismail Al; Khanbari, Khaled

    2013-04-01

    Continental rupture processes under mantle plume influence are still poorly known although extensively studied. The Afar plume has been largely investigated in Ethiopia to study early stages of continental break-up. Here we imaged the lithospheric structure of western continental Yemen to evaluate the role of the Afar plume on the evolution of the continental margin and its extent towards the East. A part of the YOCMAL project (YOung Conjugate MArgins Laboratory) permitted the deployment of twenty-three broadband stations in Yemen (from 2009 to 2010). Using a classical teleseismic tomography (Aki et al., 1974) on these stations together with a permanent GFZ station, we image the relative velocity variations of P-waves in the crust and lithosphere down to 300 km depth, with a maximum lateral resolution of about ~20 km. The model thus obtained shows (1) a dramatic and localized thinning of the crust in the vicinity of the Red Sea and the Gulf of Aden (2) the presence of magmatic underplating related to seaward dipping reflectors under those two volcanic margins (3) two granitic syn-rift intrusions on the border of the great escarpment (4) a low velocity anomaly in which with evidence of partial melting, just below thick Oligocene trapps series and other volcanic events (from 15 Ma to present). This low velocity anomaly could correspond to an abnormally hot mantle and could be responsible for dynamic topography and recent magmatism in western Yemen. (5) Finally, we infer the presence of hot material under the Southwestern corner of Yemen that could be related to Miocene volcanism in Jabal an Nar.

  10. Sequence stratigraphy and systems tract analysis of the Neogene-Quaternary continental margin off the Zambezi delta, Mozambique

    SciTech Connect

    Kolla, V. ); Macurda, D.B. Jr. ); Nelson, H.R. Jr. )

    1991-03-01

    During the Neogene and Quaternary, the Zambezi River built a broad delta-platform from 75 to over 100 km into the Indian Ocean. A regional seismic grid shows numerous discontinuities in the delta platform, slope, and deeper basinal areas. Based on downward shifts of reflection terminations and onlaps at or below shelf edge, more than 25 sequences have been identified. Within the gross Neogene package, the basal section is characterized by aggradation, followed by rapid and significant (oblique) progradation, which is then followed by numerous aggradational-progradation and progradation packages in the upper, younger sections. From recognition of aggradation-progradation patterns and from well information, it appears that the first, significant, and rapid progradation occurred since mid-Miocene. The earliest of the Neogene sequence appears thicker towards south and thinner towards north, opposite of the younger sequences. The number of sequences, their modes of stacking, and thickness distributions reflect relative sea-level changes and the points of sediment input as the Zambezi River shifted in position from south to north in time. The Zambezi passive continental margin, located in the Indian Ocean basin, is a stable platform as opposed to the unstable continental margins off the Mississippi, McKenzie, and Niger deltas and is far from the stable margins that were the basis of the Haq et al. cycle-chart (1987). Thus the Zambezi continental margin provides an independent test case for verification of eustatic cycles and for the evaluation of allogenic (eustatic) versus autogenic (subsidence and delta switching) effects on depositional systems and systems tracts.

  11. The Cryogenian intra-continental rifting of Rodinia: Evidence from the Laurentian margin in eastern North America

    NASA Astrophysics Data System (ADS)

    McClellan, Elizabeth; Gazel, Esteban

    2014-10-01

    The geologic history of the eastern North American (Laurentian) margin encompasses two complete Wilson cycles that brought about the assembly and subsequent disaggregation of two supercontinents, Rodinia and Pangea. In the southern and central Appalachian region, basement rocks were affected by two episodes of crustal extension separated by > 100 m.y.; a Cryogenian phase spanning the interval 765-700 Ma and an Ediacaran event at ~ 565 Ma. During the Cryogenian phase, the Mesoproterozoic continental crust was intruded by numerous A-type felsic plutons and extensional mafic dikes. At ~ 760-750 Ma a bimodal volcanic sequence erupted onto the uplifted and eroded basement. This sequence, known as the Mount Rogers Formation (MRF), comprises a bimodal basalt-rhyolite lower section and an upper section of dominantly peralkaline rhyolitic sheets. Here, we provide new geochemical evidence from the well-preserved volcanic rocks of the Cryogenian lower MRF, with the goal of elucidating the process that induced the initial stage of the break-up of Rodinia and how this affected the evolution of the eastern Laurentian margin. The geochemical compositions of the Cryogenian lavas are remarkably similar to modern continental intra-plate settings (e.g., East African Rift, Yellowstone-Snake River Plain). Geochemical, geophysical and tectonic evidence suggests that the common denominator controlling the melting processes in these settings is deep mantle plume activity. Thus, evidence from the MRF suggests that the initial phase of extension of the Laurentian margin at ~ 760-750 Ma was possibly triggered by mantle plume activity. It is possible that lithospheric weakness caused by a mantle plume that impacted Rodinia triggered the regional extension and produced the intra-continental rifting that preceded the breakup of the Laurentian margin.

  12. A time-transgressive Holocene onset from Globorotalia menardii records on Brazilian continental margin sediments

    NASA Astrophysics Data System (ADS)

    Iwai, F. S.; Costa, K. B.; Toledo, F. A. D. L.; Santarosa, A. C. A.; Chiessi, C. M.; Camillo, E., Jr.; Quadros, J. P.

    2014-12-01

    The planktic foraminifer Globorotalia menardii presents a cyclic behavior within Pleistocene glacial cycles on Atlantic; it disappears during glacial periods and returns to this ocean after deglaciations. Therefore, G. menardii has been used to identify limits between those cycles and the last limit is recognized as the Holocene onset. The Holocene onset has been reported before as being more than 4 kyrs later than expected at the equatorial Atlantic Ocean based on a G. menardii record (Broecker & Pena, 2014). In this study, we explore the time-transgressive Holocene onset of G. menardii in the Atlantic from 21 piston cores collected along the Brazilian continental margin, between 7 ˚N and 33 ˚S. Radiocarbon dating was conducted on Globigerinoides ruber on samples prior to and after G. menardii reappearance in the cores. Reservoir-age corrected 14C dates vary between 17 and 6.5 cal kyrs; the older ages are found at ~14 ˚S and younger ages at 6 ˚N and 33 ˚S. From these ages and latitudes, we hypothesize that G. menardii's population has spread at higher rates southward. From the scenario observed on Brazilian coast it is possible to conclude that although ocean circulation has an important role on dispersion of planktonic foraminifera, it may be superimposed by ecological constraints of the species. G. menardii absence during glacials is linked to the Agulhas Leakage activity, which is prevented from getting to the Atlantic due the northern position of the Subtropical Convergence Zone during glacials. On interglacials, warm and saline waters carrying G. menardii are transported into the Subtropical Gyre currents, achieving Brazil's coast through the South Equatorial Current and spreading south and northward through Brazil Current and North Brazil Current, respectively. Nonetheless, from velocity and volume registered for this currents, we would expect a higher G. menardii dispersion rate northward. A faster southward dispersal during the deglaciation suggests water column conditions along the south Brazilian coast were more suitable for this species than along the north coast. Fossil records are likely to be time-transgressive and a synchronous global record cannot be expected from them. Global time-scale boundaries based on the occurrence of fossils, such as the G. menardii biozonation, need to be revisited.

  13. Methane release from hydrate dissociation on the West Svalbard continental margin

    NASA Astrophysics Data System (ADS)

    Thatcher, Kate; Westbrook, Graham

    2010-05-01

    Sonar data from the West Svalbard continental margin in August-September 2008 have shown the presence of plumes of methane bubbles emanating from the seabed up-slope from the upper limit of the methane hydrate stability zone. In the same area, there is evidence for an increase in bottom water temperatures of 1oC over the last 30 years. Numerical modelling has been used to evaluate the effect of such warming of the seabed on the release of methane from dissociation of hydrate within the gas hydrate stability zone. The amount of methane released at the seabed, derived from dissociating hydrate, depends on a number of often poorly constrained variables. The time history of seabed temperature, the concentration of hydrate and its distribution in the sediment beneath the seabed and the effective permeability of the sediments affect the amount of gas produced and the time it takes for the gas to flow to the seabed. Using a numerical model, many different scenarios have been examined, derived from the uncertainty in the data describing the system. Over the 30-year warming period, numerical models show that gas reaches the seabed within this period if the hydrate is less than 5 metres below the seabed with a permeability of >9x10-14 m2 and an initial hydrate concentration of >10% of pore space. Deeper hydrate layers undergo less dissociation as it takes time for seabed warming to move down through the sediments. Small amounts of dissociation and less concentrated hydrate layers will produce less gas and gas flow will be slower due to reduced relative permeability. Lower absolute permeability also slows the gas flow to the seabed. The time history of temperature change at the seabed over the last 1000 years could have redistributed hydrate within the hydrate stability zone. Warming associated with the Medieval warm period would shoal the base of the hydrate stability zone (BHSZ) and increase hydrate concentration at this depth. The subsequent cooling would deepen the BHSZ leaving a layer of high hydrate concentration above the BHSZ. Such a process could be responsible for moving hydrate close enough to the seabed that it has released gas to the seabed in the last 30 years. Our results show a time lag between the seabed warming and the release of gas at the seabed caused by the time taken for the hydrate to dissociate and the time for gas to flow to the seabed. The numerical models have been run into the future and the duration of gas release due to 30 years of warming is presented.

  14. Back-arc rifting at a continental margin: A case study from the Okinawa trough

    NASA Astrophysics Data System (ADS)

    Arai, R.; Kaiho, Y.; Takahashi, T.; Nakanishi, A.; Fujie, G.; Kodaira, S.; Kaneda, Y.

    2014-12-01

    The Okinawa trough, a back-arc basin formed behind the Ryukyu arc-trench system, southwest Japan, represents an active rifting zone associated with extension of the continental lithosphere. The basin is located at the southeastern margin of the Eurasian plate and characterized by axial rift valleys with over 1.0 km depth and ~100 km width. Previous studies suggest that the early rifting phase started late Miocene and crustal extension is currently active at a full rate of 30 to 50 mm/yr. Within the basin, numerous active hydrothermal vents are observed, suggesting that the crustal rifting enhances melt/heat transfer from the deep mantle up to the seafloor. However, internal structure beneath the back-arc basin and its relation to the rifting system are little documented. Complex regional tectonic setting, such as active collision in Taiwan to the west, oblique subduction of the Philippine Sea slab, and changing spreading rate along the rift axis, may also have significant influences on the thermal structure and flow within the mantle wedge, but their relative roles in controlling the rifting mode and magmatic supply are still poorly understood. As a step toward filling this gap in knowledge, we started a new 7-year project that consists of four two-dimensional active-source seismic experiments and extensive passive-source seismic observations along the Ryukyu arc. In 2013, active-source seismic data were collected on the first line that crosses the southernmost part of the Ryukyu arc-trench and Okinawa trough at 124-125E. For refraction/wide-angle reflection analyses, a total of 60 ocean bottom seismographs were deployed with approximately 6 km spacing on a ~390-km-long profile. On the same line, multichannel seismic (MCS) reflection profiling was also carried out. Seismic velocity models obtained by first arrival tomography show that beneath the volcanic arc a thick layer (~10 km) of the middle crust with Vp = 6.0-6.8 km/s is developed, a typical feature in the major volcanic arc in the circum-Pacific region, but such thick layers are not observed beneath the Okinawa trough. Correspondingly, crustal thickness significantly varies: Crust thins from over 20 km beneath the volcanic arc to ~15 km beneath the back-arc basin.

  15. Comparative organic geochemistry of Indian margin (Arabian Sea) sediments: estuary to continental slope

    NASA Astrophysics Data System (ADS)

    Cowie, G.; Mowbray, S.; Kurian, S.; Sarkar, A.; White, C.; Anderson, A.; Vergnaud, B.; Johnstone, G.; Brear, S.; Woulds, C.; Naqvi, S. W.; Kitazato, H.

    2014-02-01

    Surface sediments from sites across the Indian margin of the Arabian Sea were analysed for their carbon and nitrogen compositions (elemental and stable isotopic), grain size distributions and biochemical indices of organic matter (OM) source and/or degradation state. Site locations ranged from the estuaries of the Mandovi and Zuari rivers to depths of ~ 2000 m on the continental slope, thus spanning nearshore muds and sands on the shelf and both the semi-permanent oxygen minimum zone (OMZ) on the upper slope (~ 200-1300 m) and the seasonal hypoxic zone that impinges on the shelf. Source indices showed mixed marine and terrigenous OM within the estuaries, and overwhelming predominance (80%+) of marine OM on the shelf and slope. Thus, riverine OM is heavily diluted by autochthonous marine OM and/or is efficiently remineralised within or immediately offshore of the estuaries. Any terrigenous OM that is exported appears to be retained in nearshore muds; lignin phenols indicate that the small terrigenous OM content of slope sediments is of different origin, potentially from rivers to the north. Organic C contents of surface shelf and slope sediments varied from < 0.5 wt % in relict shelf sands to over 7 wt % at slope sites within the OMZ, decreasing to ? 1 wt % at 2000 m. Major variability (~ 5 wt %) was found at slope sites within the OMZ of similar depth and near-identical bottom-water oxygen concentration. A strong relationship between organic C and sediment grain size was seen for sediments within the OMZ, but lower C loadings were found for sites on the shelf and below the OMZ. Diagenetic indices confirmed that lower C content below the OMZ is associated with greater extent of OM degradation, but that C-poor shelf sediments are not consistently more degraded than those within the OMZ. Together, the results indicate that OM enrichment on the upper slope can be explained by physical controls (winnowing and/or dilution) on the shelf and progressive OM degradation with increasing oxygen exposure below the OMZ. Reduced oxygen exposure may contribute to OM enrichment at some sites within the OMZ, but hydrodynamic processes are the overriding control on sediment OM distribution.

  16. Post-early cretaceous landform evolution along the western margin of the banca~nnia trough, western nsw

    USGS Publications Warehouse

    Gibson, D.L.

    2000-01-01

    Previously undated post-Devonian sediments outcropping north of Fowlers Gap station near the western margin of the Bancannia Trough are shown by plant macro- and microfossil determinations to be of Early Cretaceous (most likely Neocomian and/or Aptian) age, and thus part of the Eromanga Basin. They are assigned to the previously defined Telephone Creek Formation. Study of the structural configuration of this unit and the unconformably underlying Devonian rocks suggests that the gross landscape architecture of the area results from post-Early Cretaceous monoclinal folding along blind faults at the western margin of the trough, combined with the effects of differential erosion. This study shows that, while landscape evolution in the area has been dynamic, the major changes that have occurred are on a geological rather than human timescale.

  17. Thermal history and evolution of the Rio de Janeiro - Barbacena section of the southeastern Brazilian continental margin

    NASA Astrophysics Data System (ADS)

    Neri Gezatt, Julia; Stephenson, Randell; Macdonald, David

    2015-04-01

    The transect between the Brazilian cities of Rio de Janeiro and Barbacena (22°54'S, 43°12'W and 21°13'S, 43°46'W, respectively) runs through a segment of a complex range of N-NE/S-SW trending basement units of the Ribeira Belt and southern Sao Francisco Craton, intensely reworked during the Brasiliano-Pan-African orogenic cycle. The ortho- and paragneisses in the area have metamorphic ages between 650 and 540 Ma and are intruded by pre-, syn- and post-tectonic granitic bodies. The transect, perpendicular to the strike direction of the continental margin, crosses the Serra do Mar escarpment, where the sample density is higher in order to better constrain occasional significant age changes. For logistical reasons, the 40 samples collected were processed in two separate batches for apatite fission track (AFT) analysis. The first batch comprised 19 samples, from which 15 produced fission track ages. Analyses were carried out at University College London (UCL), following standard procedures. Preliminary results for the study show AFT ages between 85.9±6.3 and 54.1±4.2 Ma, generally with younger ages close to the coast and progressively older ages towards the continental interior. The highest area sampled, around the city of Teresopolis, ranges from 740 to 1216 m above sea level and shows ages between 85.9±6.3 and 71.3±5.3 Ma. There is no evident lithological or structural distribution control. Medium track length values range from 12.57 to 13.89 µm and distributions are unimodal. Thermal history modelling was done using software QTQt. Individual sample model cooling curves can be divided into two groups: a dominant one, showing a single, slower cooling trend, and a second one with a rapid initial cooling curve, which becomes less steep around 65 Ma. In both groups the maximum paleotemperatures are around 110 Ma. The thermal history model for the first batch of samples is compatible with a single cooling event for the area following continental rifting and formation of the Atlantic Ocean. The preliminary results add to the growing thermochronological data base for the southeastern Brazilian continental margin and to deciphering the complex evolution of the region, as well as to the knowledge about the development and evolution of divergent continental margins in general. In a regional setting, AFT ages from this study, though not broadly variant locally, are distinct from basement rock AFT ages for adjacent areas produced by other authors along the southeastern continental margin. Similar ages are found at the southern Bocaina Plateau, for example, where structural control of age distribution is evident. Such regional thermal age difference has been previously attributed to continental scale structural compartmentalization throughout the continental passive margin, related to Late Cretaceous and Cenozoic reactivation of the E-W fracture zones linked to rifting of the South Atlantic. The present AFT results are compatible with Late Cretaceous reactivation but show no relation with younger events.

  18. Dyke belt in North Western margin of Siberian platform

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor

    2015-04-01

    The Early Triassic dyke swarm belt is strengthening at about 500 km (50-60 km width) along the northern margin of Siberian platform. Its locations is limited from the north by rift structure of the Yenisei-Khatanga trough, and from the south by Kystyktah-Ayan-Ambardah uprise. From west to east dyke belt is crossing Norilsk, Kamensky and Maimecha-Kotuiskaya province. In this direction the composition of dykes changing from basic rthrough alkali-basic to alkali-ultramafic varieties. The sickness of dykes varies from 0,5-10m up to 90 m and length - from 5-15 m to 140 km. The orientation of the bulk of dykes coincides with the direction of the major structural and tectonic lineaments of the region. Dykes are often refer to the fault planes. The composition of dykes may vary along the stretches. The density of hundreds of basaltic dykes and small intrusions in the dyke swarms is not permanent and sometimes essentially uneven. They form a compact dyke swarms of dykes, stocks and sub layering bodies veins. In dyke package on Huor-Uyallah river here are 20 subparallel dykes of different chemical composition at a distance of 2 km Lack of the evidence of the dykes crossing allows to assume their formation during the same magmatic cycle. Dykes cross cut through the entire incision of basaltic plateau. They did not created the flow effusions and refer to the final stage trap magmatism. Ar/Ar age of the youngest dykes in the province Kamenska 238-247 Ma. the age of lamproite dyke in Norilsk province is 235 Ma. Dykes are represented by dolerites trachydolerites, syenites, minettes, lamprophyres (camptonite, spessartite, vosgesite), avgitites, melanephelinite, alnoites, limburgites alkaline picrites, meimechites. Their content vary widely: SiO2 - 35,7-62,6; TiO2- 0,4-7,5; Al2O3- 4,4-17,5; Fe2O3- 4,6-20,6; MnO- 0,08-0,44; MgO- 0,8-31,5; CaO- 0,7-15,4; Na2O- 0,01-6,5; K2O 0,8-5,3 wt.%; P2O5 0,1-1,2 wt.%. The h Bolsheavamskaya volcanic basin in Kamensky province is most abundant in ighly alkali-basicdykes. There are undifferentiated and layered dykes, glassy and crystalline, single and multi-phase, with symmetric and asymmetric internal structure, with uniform or contrasting composition of the individual phases. Multiphase dykes along the. Namakan river have symmetrical "dyke dyke" structure. Glassy dykes are usually composed of olivine clinopyroxenite or picritic olivine porphyres. The number of dykes phases in the same locality may reaches 5. The internal structure of dykes are symmetric. The dyke in dyke consists of the quench zone in inner contact zone with silicate glass and carbonate globules and enriched by rounded K-feldspar, potassium feldspar with kaersutite +- mica glomeroporhyric intergrowth. In crystalline dykes contact zones are composed of variolitic clinopyroxenites and central by picritic porphyries. Contact zone composed of clinopyroxenites crystallized from a supercooled melt. Having elevated CaTi- and CaAl-tschermak components. This Dyke belt was formed by scattered spreading. Multiphase dykes were formed during multiple tectonic fracturing. Wide chemical variations c are caused by fluid-magmatic melt interaction in magma feeding channels. Multistage splitting of magmatic melts to different in composition liquids took place with the participation of CO2, H2, F, Cl, CH4.

  19. Processes in the benthic boundary layer at the Iberian continental margin and their implication for carbon mineralization

    NASA Astrophysics Data System (ADS)

    Thomsen, L.; vanWeering, T.; Gust, G.

    This paper evaluates the role of biological processes in the cycling of particulate organic matter within the benthic boundary layer (BBL). It reveals that horizontal, advective fluxes of particulate matter exceed the vertically sinking fluxes through the water column. The data suggest that there is an important additional mechanism of carbon mineralization at hydrodynamically energetic continental margins, and that not the sediment surface but the near-bed fluid layer of the BBL is the major region for organic carbon mineralisation, and the amount of carbon finally buried depends on the time that aggregates are exposed to the BBL. Water and sediment samples were taken during three cruises to the North East Atlantic continental margin. The study site covered the area between 41N, 9W and 44N, 13W with transects perpendicular to and along the continental margin, resolving velocity and particle features of the benthic boundary layer [BBL] at 5-40 cm height above the sea floor. Particulate organic carbon in the BBL ranged from 29 to 102 mg m -3, total particulate matter from 1.2 to 6.2 g m -3 and Chloroplastic pigments from 0.01 to 0.26 mg m -3. Sediments on the continental margin consisted of an aggregated surface layer, which covered the underlying sediments. At all stations, surface erosion yielded BBL aggregates > 100 ?m at critical friction velocities [u ?c] of 0.4 to 1.2 cms -1. The erosion thresholds of underlying cohesive sediments typically increased from 1.1 to 1.8 cms -1 from shallow to deeper sites. Long-term flow velocity data reveal a tidally modulated flow field with repetitive cycling of particles between sea bed and suspension, representing altogether a situation of prolonged particle resuspension time, moderate residual currents and large variability of flow speed. The currents parallel and cross slope (north-south, on -and offslope) move the BBL aggregates with little net distance in one direction per tidal cycle. Within the ensuing particle transport loop alternating between bed and suspension mode, the material is redistributed. However, because of the low net downslope transport of these remoulded particles, little if any labile carbon reaches the steep lower continental slope via lateral advection within the study area.

  20. Metallogeny of the northeastern Pacific Rim: an example of the distribution of ore deposits along a growing continental margin

    USGS Publications Warehouse

    Goldfarb, R.J.; Hart, C.J.; Mortensen, J.K.

    1999-01-01

    The distribution of mineral deposits within northwestern North America (Alaska, Yukon, and northern British Columbia) allows for an in-depth examination of the metallogenic patterns of a growing continental margin. A more complete understanding of the tectonic evolution of this part of the Pacific Rim, achieved over the last 15 to 20 years, now allows for the placement of ore systems into a well-defined plate tectonic framework. Ore deposits older than about 185 Ma represent hydrothermal systems that were active in the platform/shelf environment of ancestral North America's miogeocline or hydrothermal systems developed in oceanic arcs and continental fragments more distal to the craton. These include important SEDEX, VMS, and pre-accretionary porphyry deposits. In contrast, most mineral deposits younger than about 185 Ma were formed within the growing Cordilleran orogen, as terranes were accreted to the continental margin during interactions between the North America and Pacific/Farallon/Kula plates. Such syn- to post-accretionary mineralised systems include many large lode gold and porphyry/skarn systems.

  1. Cenozoic prograding sequences of the Antarctic continental margin: a record of glacio-eustatic and tectonic events

    USGS Publications Warehouse

    Cooper, A. K.; Barrett, P.J.; Hinz, K.; Traube, V.; Letichenkov, G.; Stagg, H.M.J.

    1991-01-01

    Sedimentary sections up to 6-14 km thick lie beneath many areas of the Antarctic continental margin. The upper parts of the sections contain up to 6 km of Cenozoic glacial and possibly non-glacial sequences that have prograded the continental shelf up to 85 km. We describe the Cenozoic sequences using two general categories based on their acoustic geometries. Type IA sequences, which account for most prograding of the Antarctic continental shelf, have complex sigmoidal geometries and some acoustic characteristics atypical of low-latitude margins, such as troughs and mounds lying parallel and normal to the shelf edge and high velocities (2.0-2.6 km/s) for flat layers within 150 m of the seafloor. Type IIA sequences, which principally aggrade the paleoshelf, lie beneath type IA sequences and have mostly simple geometries and gently dipping reflections. The prograding sequences are commonly located near the seaward edges of major Mesozoic and older margin structures. Relatively rapid Cenozoic subsidence has occured due to the probable rifting in the Ross Sea, thermal subsidence in the Antarctic Peninsula, and isostatic crustal flexure in Wilkes Land. In Prydz Bay and the Weddell Sea, prograding sequences cover Mesozoic basins that have undergone little apparent Cenozoic tectonism. Grounded ice sheets are viewed by us, and others, as the principal mechanism for depositing the Antarctic prograding sequences. During the initial advance of grounded ice the continental shelf is flexurally overdeepened, the inner shelf is heavily eroded, and gently dipping glacial strata are deposited on the shelf (i.e type IIA sequences). The overdeepened shelf profile is preserved (a) during glacial times, by grounded ice sheets episodically crossing the shelf, eroding sediments from onshore and inner shelf areas, and depositing sediments at the front of the ice sheet as outer shelf topset-banks and continental slope foreset-aprons (i.e. type IA sequences), and (b) during interglacial times, like today, by little or no clastic sedimentation on the continental shelf other than beneath retreated ice shelves lying far from the continental sheld edge. Ice streams carve broad depressions across the shelf and carry abundant basal sediments directly to the continental shelf edge, thereby creating troughmouth fans and sheet-like prograding sequences (i.e. type IA sequences). Numerous acoustic unconformities and multiple overcompacted layers within the prograding sequences suggest major fluctuations of the Antarctic Ice Sheet. The available drilling and seismic interpretations provide the following history: (1) Cenozoic ice sheets have existed in places near the continental shelf since middle to late Eocene time. (2) A grounded Antarctic ice sheet first expanded to the continental shelf edge, with probable overdeepening of the outer shelf, in late Eucene to early Oligocene time in Prydz Bay, possibly in early Miocene time in the Ross Sea, and at least by middle Miocene time in the Weddell Sea. (3) The relative amounts of shelf prograding and inferred ice-volume variations (and related sea-level changes) have increased since middle to late Miocene time in the eastern Ross Sea, Prydz Bay, and possibly Weddell Sea. Our analysis is preliminary. Further acoustic surveys and scientific drilling are needed to resolve the proximal Antarctic record of glacio-eustatic, climatic, and tectonic events recorded by the prograding sequences. ?? 1991.

  2. Geology and metallogeny of the Ar Rayn terrane, eastern Arabian shield: Evolution of a Neoproterozoic continental-margin arc during assembly of Gondwana within the East African orogen

    USGS Publications Warehouse

    Doebrich, J.L.; Al-Jehani, A. M.; Siddiqui, A.A.; Hayes, T.S.; Wooden, J.L.; Johnson, P.R.

    2007-01-01

    The Neoproterozoic Ar Rayn terrane is exposed along the eastern margin of the Arabian shield. The terrane is bounded on the west by the Ad Dawadimi terrane across the Al Amar fault zone (AAF), and is nonconformably overlain on the east by Phanerozoic sedimentary rocks. The terrane is composed of a magmatic arc complex and syn- to post-orogenic intrusions. The layered rocks of the arc, the Al Amar group (>689 Ma to ???625 Ma), consist of tholeiitic to calc-alkaline basaltic to rhyolitic volcanic and volcaniclastic rocks with subordinate tuffaceous sedimentary rocks and carbonates, and are divided into an eastern and western sequence. Plutonic rocks of the terrane form three distinct lithogeochemical groups: (1) low-Al trondhjemite-tonalite-granodiorite (TTG) of arc affinity (632-616 Ma) in the western part of the terrane, (2) high-Al TTG/adakite of arc affinity (689-617 Ma) in the central and eastern part of the terrane, and (3) syn- to post-orogenic alkali granite (607-583 Ma). West-dipping subduction along a trench east of the terrane is inferred from high-Al TTG/adakite emplaced east of low-Al TTG. The Ar Rayn terrane contains significant resources in epithermal Au-Ag-Zn-Cu-barite, enigmatic stratiform volcanic-hosted Khnaiguiyah-type Zn-Cu-Fe-Mn, and orogenic Au vein deposits, and the potential for significant resources in Fe-oxide Cu-Au (IOCG), and porphyry Cu deposits. Khnaiguiyah-type deposits formed before or during early deformation of the Al Amar group eastern sequence. Epithermal and porphyry deposits formed proximal to volcanic centers in Al Amar group western sequence. IOCG deposits are largely structurally controlled and hosted by group-1 intrusions and Al Amar group volcanic rocks in the western part of the terrane. Orogenic gold veins are largely associated with north-striking faults, particularly in and near the AAF, and are presumably related to amalgamation of the Ar Rayn and Ad Dawadimi terranes. Geologic, structural, and metallogenic characteristics of the Ar Rayn terrane are analogous to the Andean continental margin of Chile, with opposite subduction polarity. The Ar Rayn terrane represents a continental margin arc that lay above a west-dipping subduction zone along a continental block represented by the Afif composite terrane. The concentration of epithermal, porphyry Cu and IOCG mineral systems, of central arc affiliation, along the AAF suggests that the AAF is not an ophiolitic suture zone, but originated as a major intra-arc fault that localized magmatism and mineralization. West-directed oblique subduction and ultimate collision with a land mass from the east (East Gondwana?) resulted in major transcurrent displacement along the AAF, bringing the eastern part of the arc terrane to its present exposed position, juxtaposed across the AAF against a back-arc basin assemblage represented by the Abt schist of the Ad Dawadimi terrane. Our findings indicate that arc formation and accretionary processes in the Arabian shield were still ongoing into the latest Neoproterozoic (Ediacaran), to about 620-600 Ma, and lead us to conclude that evolution of the Ar Rayn terrane (arc formation, accretion, syn- to postorogenic plutonism) defines a final stage of assembly of the Gondwana supercontinent along the northeastern margin of the East African orogen. ?? 2007 Elsevier B.V. All rights reserved.

  3. Circulation over the continental shelf of the western and southwestern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Dubranna, Jean; PRez-Brunius, Paula; Lpez, Manuel; Candela, Julio

    2011-08-01

    The circulation over the continental shelf break of the western and southwestern Gulf of Mexico is inferred from the analysis of drifter trajectories and 12-19 months of continuous current measurements at seven different locations. The interpretation of the data is backed up by satellite altimetry, coastal sea level from tide gauges and wind model outputs. In accordance with previous numerical results, subinertial surface currents are driven by the wind along the shelves of the states of Tamaulipas and Veracruz. Northern wind regimes would force southward currents, whereas southern wind regimes would force northward currents at the surface but southward near the bottom, through a process involving Ekman drift and geostrophic balance. Our results show, however, that alongshore current variations are not correlated with the wind over the Western Campeche Bank. In addition, we identify other sources of current forcing. The transient eddies that collapse along the continental shelf can force strong alongshore currents and overwhelm the influence of established wind regimes. Their erratic occurrence is likely to be a major factor of interannual variability of the alongshore currents. Also, we point out the existence of coastally trapped waves generated by the wind in the northern shelf of Tamaulipas and propagating down to the Western Campeche Bank. The period of these waves ranges between 6 and 10 days, with phase speeds in the 4 m/s range.

  4. Organic carbon budget at the sediment water interface on the Gulf of Lions continental margin

    NASA Astrophysics Data System (ADS)

    Accornero, Alessandra; Picon, Philippe; Bove, Francis de; Charrire, Bruno; Buscail, Roselyne

    2003-01-01

    Oxygen uptake rates were measured at the sediment-water interface along a shelf-slope transect in the western Gulf of Lions (northwestern Mediterranean Sea). Values ranged from 0.6 to 48.0 mmol O 2 m -2 d -1, and decreased from inshore to the continental slope. The overall mean was 36.811.2 mmol O 2 m -2 d -1 for the coastal zone, 11.21.4 mmol O 2 m -2 d -1 for the shelf and 2.41.8 mmol O 2 m -2 d -1 for the slope. Slope stations exhibited significantly different values according to their location in the canyon axis (average 3.72.1 mmol O 2 m -2 d -1) or open slope sites (average 1.50.9 mmol O 2 m -2 d -1). Independent on the location, sediment oxygen uptake reached maximum rates in late spring, when fluxes were up to 4 times higher than in other seasons. Rates were significantly related ( r=0.92, n=16, p<0.001) to meiofauna density and consistent with the spatial patterns of bacterial potential respiration (Tholosan, 1999). This suggests that the rates of sediment oxygen uptake recorded during our experiment at least partially resulted from spatial and seasonal variability of the biological components (micro- and meiobenthos). In this study we attempt to construct an organic carbon (OC) budget for the different investigated sites, with the "input" term represented by the arrival of particulate organic carbon (POC) in proximity to the seafloor and the "output" term represented by the sum of the OC accumulated in the sediment plus the POC remineralized at the sediment-water interface. Input and output terms are approximately balanced at the slope stations, where, according to our estimation, about 50% of the deposited POC is accumulated in the sediment, while the remaining 50% is remineralized. Conversely, on the shelf, a lower percentage of the POC input (about 31%) is able to accumulate in the surficial sediment, while a higher proportion (about 69%) is remineralized at the sediment-water interface.

  5. Eastern margin of the Ross Sea Rift in western Marie Byrd Land, Antarctica: Crustal structure and tectonic development

    NASA Astrophysics Data System (ADS)

    Luyendyk, Bruce P.; Wilson, Douglas S.; Siddoway, Christine S.

    2003-10-01

    The basement rock and structures of the Ross Sea rift are exposed in coastal western Marie Byrd Land (wMBL), West Antarctica. Thinned, extended continental crust forms wMBL and the eastern Ross Sea continental shelf, where faults control the regional basin-and range-type topography at 20 km spacing. Onshore in the Ford Ranges and Rockefeller Mountains of wMBL, basement rocks consist of Early Paleozoic metagreywacke and migmatized equivalents, intruded by Devonian-Carboniferous and Cretaceous granitoids. Marine geophysical profiles suggest that these geological formations continue offshore to the west beneath the eastern Ross Sea, and are covered by glacial and glacial marine sediments. Airborne gravity and radar soundings over wMBL indicate a thicker crust and smoother basement inland to the north and east of the northern Ford Ranges. A migmatite complex near this transition, exhumed from mid crustal depths between 100-94 Ma, suggests a profound crustal discontinuity near the inboard limit of extended crust, 300 km northeast of the eastern Ross Sea margin. Near this limit, aeromagnetic mapping reveals an extensive region of high amplitude anomalies east of the Ford ranges that can be interpreted as a sub ice volcanic province. Modeling of gravity data suggests that extended crust in the eastern Ross Sea and wMBL is 8-9 km thinner than interior MBL (? = 1.35). Gravity modeling also outlines extensive regions of low-density (2300-2500 kg m-3) buried basement rock that is lighter than rock exposed at the surface. These regions are interpreted as bounded by throughgoing east-west faults with vertical separation. These buried low-density rocks are possibly a low-density facies of Early Paleozoic metagreywacke, or the low-density epizonal facies of Cretaceous granites, or felsic volcanic rocks known from moraines. These geophysical features and structures on land in the wMBL region preserve the record of middle and Late Cretaceous development of the Ross Sea rift. Thermochronology data from basement rocks and offshore stratigraphy suggest that the wMBL rift margin formed and most extension occurred in mid- and Late Cretaceous time, before seafloor spreading initiated between wMBL and the Campbell Plateau. The Cretaceous tectonic record in wMBL contrasts with the Transantarctic Mountains that form the western rift margin, where significant rift-flank relief developed in middle Tertiary time.

  6. Advection of Sea-Ice Meltwater and Halocline Water Along the Siberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Torres-Valdes, S.; Polyakov, I.; Chernyavskaya, E.; Novikhin, A.; Dmitrenko, I.; McKay, J. L.; Mix, A. C.

    2014-12-01

    Our study is based on hydrochemical and stable oxygen isotope data at the Laptev Sea continental slope from summers 2005-2009 and reveals a general pattern in water mass distribution and potential shelf-basin exchange. Despite considerable inter-annual variations, a frontal system can be inferred between shelf, continental slope and central Eurasian Basin waters in the upper 100 m of the water column along the continental slope. Net sea-ice melt is consistently found at the continental slope. However, the sea-ice meltwater signal is independent from the local retreat of the sea-ice edge and appears to be advected from upwind locations. In addition to the along-slope frontal system at the continental shelf break, a strong gradient is identified on the Laptev Sea shelf at ~122-126E with an eastward increase of riverine and sea-ice related brine water contents. These waters cross the shelf break at ~140E and feed the Low Salinity Halocline Water (LSHW, salinity S<33) in the upper 50 m of the water column. High silicate concentrations in Laptev Sea bottom waters may lead to speculation about a link to the local silicate maximum found within the salinity range of ~33 to 34.5, typical for the Lower Halocline Water (LHW) at the continental slope. However brine signatures and nutrient ratios from the central Laptev Sea differ from those observed at the continental slope. Similar to the advection of the sea-ice melt signal along the Laptev Sea continental slope the nutrient signal at 50-70 m water depth within the LHW might also be fed by advection parallel to the slope. Thus, our analyses suggest that advective processes from upstream locations play a significant role in the meltwater distribution and halocline formation in the northern Laptev Sea. Inter-annual variations within the properties of LHW are further investigated.

  7. Continental breakup and the dynamics of rifting in back-arc basins: The Gulf of Lion margin

    NASA Astrophysics Data System (ADS)

    Jolivet, Laurent; Gorini, Christian; Smit, Jeroen; Leroy, Sylvie

    2015-04-01

    Deep seismic profiles and subsidence history of the Gulf of Lion margin reveal an intense stretching of the distal margin and strong postrift subsidence, despite weak extension of the onshore and shallow offshore portions of the margin. We revisit this evolution from the geological interpretation of an unpublished multichannel seismic profile and other published geophysical data. We show that an 80 km wide domain of thin lower continental crust, the "Gulf of Lion metamorphic core complex," is present in the ocean-continent transition zone and exhumed mantle makes the transition with oceanic crust. The exhumed lower continental crust is bounded upward and downward by shallow north dipping detachments. The presence of exhumed lower crust in the deep margin explains the discrepancy between the amount of extension deduced from normal faults in the upper crust and total extension. We discuss the mechanism responsible for exhumation and present two scenarios: the first one involving a simple coupling between mantle extension due to slab retreat and crustal extension and the second one involving extraction of the lower crust and mantle from below the margin by the southeastward flow of hot asthenosphere in the back-arc region during slab rollback. In both scenarios, the combination of Eocene crustal thickening related to the Pyrenees, the nearby volcanic arc, and a shallow lithosphere-asthenosphere boundary weakened the upper mantle and lower crust enough to make them flow southeastward. The overall hot geodynamic environment also explains the subaerial conditions during most of the rifting stage and the delayed subsidence after breakup.

  8. Stratigraphic and isotopic link between the northern Stikine terrane and an ancient continental margin assemblage, Canadian Cordillera

    SciTech Connect

    Jackson, J.L.; Gehrels, G.E.; Patchett, P.J. ); Mihalynuk, M.G. )

    1991-12-01

    Geologic and isotopic data strongly imply a Late Triassic depositional link between a juvenile volcanic arc (northern Stikine terrane) and an outboard ancient continental margin assemblage (Nisling terrane) in the Canadian Cordillera. Two sandstone samples and a schist clast from a conglomerate layer at the base of the Upper Triassic Stuhini Group (northern Stikine terrane) have Nd-depleted mantle model ages of 1400-1430 and 1600 Ma, respectively; other Stuhini Group rocks have model ages of 390,660 and 690 Ma. Three samples of Nisling terrane schist and gneiss yield Nd model ages of 910, 1770, and 2450 Ma and highly radiogenic {sup 87}Sr/{sup 86}Sr ratios. These isotopic data corroborate stratigraphic evidence that detritus at the base of northern Stikine was shed from the Nisling terrane and strengthen interpretations that these terranes became linked by Late Triassic time. Thus, Upper Triassic strata of the northern Stikine terrane may have accumulated on top of or adjacent to an exotic continental fragment, a rifted fragment of the North American margin, or the in situ North American margin.

  9. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.

  10. A seismic study to investigate the prospect of gas hydrate in Mahanadi deep water basin, northeastern continental margin of India

    NASA Astrophysics Data System (ADS)

    Prakash, Anand; Samanta, B. G.; Singh, N. P.

    2010-12-01

    The presence of gas hydrates, one of the new alternative energy resources for the future, along the Indian continental margins has been inferred mainly from bottom simulating reflectors (BSR) and the gas stability zone thickness mapping. Gas hydrate reserves in Krishna Godawari Basin have been established with the help of gas-hydrate related proxies inferred from multidisciplinary investigations. In the present study, an analysis of 3D seismic data of nearly 3,420 km2 area of Mahanadi deep water basin was performed in search of seismic proxies related with the existence of natural gas hydrate in the region. Analysis depicts the presence of BSR-like features over a large areal extent of nearly 250 km2 in the central western part of the basin, which exhibit all characteristics of a classical BSR associated with gas hydrate accumulation in a region. The observed BSR is present in a specific area restricted to a structural low at the Neogene level. The coherency inversion of pre-stack time migration (PSTM) gathers shows definite inversion of interval velocity across the BSR interface which indicates hydrate bearing sediments overlying the free gas bearing sediments. The amplitude versus offset analysis of PSTM gathers shows increase of amplitude with offset, a common trend as observed in BSR associated with gas hydrate accumulation. Results suggest the possibility of gas hydrate accumulation in the central part of the basin specifically in the area of structural low at the Neogene level. These results would serve as preliminary information for selecting prospective gas hydrate accumulation areas for further integrated or individual study from geophysical, geological, geochemical and microbiological perspectives for confirmation of gas hydrate reserves in the area. Further, on the basis of these results it is envisaged that biogenic gas might have been generated in the region which under suitable temperature and pressure conditions might have been transformed into the gas hydrates, and therefore, an integrated study comprising geophysical, geological, geochemical and microbiological data is suggested to establish the gas hydrate reserves in Mahanadi deep water basin.

  11. Constraints of mapped and unfolded slabs on Oligocene to present-day Western Mediterranean plate reconstructions: potential role of north Iberia continental delamination

    NASA Astrophysics Data System (ADS)

    Lee, Yi-Te; Wu, Jonny; Wu, Yi-Min; Suppe, John; Sibuet, Jean-Claude; Chevrot, Sebastien

    2015-04-01

    Seismic tomographic images of subducted lithospheric remnants under the western Mediterranean have provided new constraints for Oligocene to present-day plate reconstructions. In this study, we mapped slabs under the western Mediterranean and Iberia from regional seismic tomography (Chevrot et al., 2014; Bezada et al., 2013) and from MITP08 global tomography (Li et al., 2008). A newly developed method was used to unfold (ie. structurally restore) the mapped slabs to a model spherical Earth surface, minimizing area and shape distortion. Slab constraints were input into plate tectonic reconstructions using Gplates software. Our mapping confirms the existence of western Mediterranean slabs including the Betic-Alboran, Algerian, and Calabrian slabs that were previously identified by Spakman and Wortel (2004). When unfolded these mapped slabs fit together in an Oligocene plate reconstruction, within tomographic resolution limits. Slab stretching was not required. Slab segmentation supports the existence of a North Balearic transform. Here we emphasize the potential importance for western Mediterranean tectonics of antoher slab under Iberia that we call the 'mid-Iberia slab'. This slab was first identified by Sibuet et al. (2004) and interpreted to be a Neotethyan suture. We have mapped this slab in detail from recent regional tomography (Chevrot et al., 2014). Our mapped slab is sub-vertical and strikes E-W under the southern margins of the Duero and Ebro basins. We newly interpret this slab to be delaminated northern Iberian continental lithosphere. We propose that continental delamination occurred during the Oligocene and produced uplifted Iberian Meseta topography, internally-drained basins, and high mean elevations that still persist today. We show how Oligocene northern Iberian continental delamination could have initiated subduction and rollback of the western Mediterranean

  12. Crustal architecture and deep structure of the Namibian passive continental margin around Walvis Ridge from wide-angle seismic data

    NASA Astrophysics Data System (ADS)

    Behrmann, Jan H.; Planert, Lars; Jokat, Wilfried; Ryberg, Trond; Bialas, Jrg; Jegen, Marion

    2013-04-01

    The opening of the South Atlantic ocean basin was accompanied by voluminous magmatism on the conjugate continental margins of Africa and South America, including the formation of the Parana and Entendeka large igneous provinces (LIP), the build-up of up to 100 km wide volcanic wedges characterized by seaward dipping reflector sequences (SDR), as well as the formation of paired hotspot tracks on the rifted African and South American plates, the Walvis Ridge and the Rio Grande Rise. The area is considered as type example for hotspot or plume-related continental break-up. However, SDR, and LIP-related features on land are concentrated south of the hotspot tracks. The segmentation of the margins offers a prime opportunity to study the magmatic signal in space and time, and investigate the interrelation with rift-related deformation. A globally significant question we address here is whether magmatism drives continental break-up, or whether even rifting accompanied by abundant magmatism is in response to crustal and lithospheric stretching governed by large-scale plate kinematics. In 2010/11, an amphibious set of wide-angle seismic data was acquired around the landfall of Walvis Ridge at the Namibian passive continental margin. The experiments were designed to provide crustal velocity information and to investigate the structure of the upper mantle. In particular, we aimed at identifying deep fault zones and variations in Moho depth, constrain the velocity signature of SDR sequences, as well as the extent of magmatic addition to the lower crust near the continent-ocean transition. Sediment cover down to the igneous basement was additionally constrained by reflection seismic data. Here, we present tomographic analysis of the seismic data of one long NNW oriented profile parallel to the continental margin across Walvis Ridge, and a second amphibious profile from the Angola Basin across Walvis Ridge and into the continental interior, crossing the area of the Etendeka Plateau basalts. The most striking feature is the sharp transition in crustal structure and thickness across the northern boundary of Walvis Ridge. Thin oceanic crust (6.5 km) of the Angola Basin lies next to the up to 35 km thick igneous crustal root founding the highest elevated northern portions of Walvis Ridge. Both structures are separated by a very large transform fault zone. The velocity structure of Walvis Ridge lower crust is indicative of gabbro, and, in the lowest parts, of cumulate sequences. On the southern side of Walvis Ridge there is a smooth gradation into the adjacent 25-30 km thick crust underlying the ocean-continent boundary, with a velocity structure resembling that of Walvis Ridge The second profile shows a sharp transition from oceanic to rifted continental crust. The transition zone may be underlain by hydrated uppermost mantle. Below the Etendeka Plateau, an extensive high-velocity body, likely representing gabbros and their cumulates at the base of the crust, indicates magmatic underplating. We summarize by stating that rift-related lithospheric stretching and associated transform faulting play an overriding role in locating magmatism, dividing the margin in a magmatic-dominated segment to the south, and an amagmatic segment north of Walvis Ridge.

  13. Geology of the offshore Southeast Georgia Embayment, U.S. Atlantic continental margin, based on multichannel seismic reflection profiles

    USGS Publications Warehouse

    Buffler, Richard T.; Watkins, Joel S.; Dillon, William P.

    1979-01-01

    The sedimentary section is divided into three major seismic intervals. The intervals are separated by unconformities and can be mapped regionally. The oldest interval ranges in age from Early Cretaceous through middle Late Cretaceous, although it may contain Jurassic rocks where it thickens beneath the Blake Plateau. It probably consists of continental to nearshore clastic rocks where it onlaps basement and grades seaward to a restricted carbonate platform facies (dolomite-evaporite). The middle interval (Upper Cretaceous) is characterized by prograding clinoforms interpreted as open marine slope deposits. This interval represents a Late Cretaceous shift of the carbonate shelf margin from the Blake Escarpment shoreward to about its present location, probably due to a combination of co tinued subsidence, an overall Late Cretaceous rise in sea level, and strong currents across the Blake Plateau. The youngest (Cenozoic) interval represents a continued seaward progradation of the continental shelf and slope. Cenozoic sedimentation on the Blake Plateau was much abbreviated owing mainly to strong currents.

  14. HyFlux - Part I: Regional Modeling of Methane Flux From Near-Seafloor Gas Hydrate Deposits on Continental Margins

    NASA Astrophysics Data System (ADS)

    MacDonald, I. R.; Asper, V.; Garcia, O. P.; Kastner, M.; Leifer, I.; Naehr, T.; Solomon, E.; Yvon-Lewis, S.; Zimmer, B.

    2008-12-01

    HyFlux - Part I: Regional modeling of methane flux from near-seafloor gas hydrate deposits on continental margins MacDonald, I.R., Asper, V., Garcia, O., Kastner, M., Leifer, I., Naehr, T.H., Solomon, E., Yvon-Lewis, S., and Zimmer, B. The Dept. of Energy National Energy Technology Laboratory (DOE/NETL) has recently awarded a project entitled HyFlux: "Remote sensing and sea-truth measurements of methane flux to the atmosphere." The project will address this problem with a combined effort of satellite remote sensing and data collection at proven sites in the Gulf of Mexico where gas hydrate releases gas to the water column. Submarine gas hydrate is a large pool of greenhouse gas that may interact with the atmosphere over geologic time to affect climate cycles. In the near term, the magnitude of methane reaching the atmosphere from gas hydrate on continental margins is poorly known because 1) gas hydrate is exposed to metastable oceanic conditions in shallow, dispersed deposits that are poorly imaged by standard geophysical techniques and 2) the consumption of methane in marine sediments and in the water column is subject to uncertainty. The northern GOM is a prolific hydrocarbon province where rapid migration of oil, gases, and brines from deep subsurface petroleum reservoirs occurs through faults generated by salt tectonics. Focused expulsion of hydrocarbons is manifested at the seafloor by gas vents, gas hydrates, oil seeps, chemosynthetic biological communities, and mud volcanoes. Where hydrocarbon seeps occur in depths below the hydrate stability zone (~500m), rapid flux of gas will feed shallow deposits of gas hydrate that potentially interact with water column temperature changes; oil released from seeps forms sea-surface features that can be detected in remote-sensing images. The regional phase of the project will quantify verifiable sources of methane (and oil) the Gulf of Mexico continental margin and selected margins (e.g. Pakistan Margin, South China Sea, and West Africa Margin) world-wide by using the substantial archive of satellite synthetic aperture radar (SAR) images. An automated system for satellite image interpretation will make it possible to process hundreds of SAR images to increase the geographic and temporal coverage. Field programs will quantify the flux and fate of hydrate methane in sediments and the water column.

  15. Slope failures and stability analysis of shallow water prodeltas in the active margins of Western Greece, northeastern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Lykousis, V.; Roussakis, G.; Sakellariou, D.

    2009-06-01

    Sediment instabilities are common on the prodeltas of the seismically active continental margins of Western Greece. Sediment failures on the low-angle (0.5-2) prodelta slopes manifest themselves as successions of peripheral rotational block slumps restricted to the foresets of the late highstand systems tract (HST). The individual slump blocks are about 80-150 m long and are bounded by growth faults acting as curved slip planes that extend to a mean depth of 10-15 m below seafloor. Shear planes develop in the lower part of muddy and/or gas charged HST foresets. Deeper basal transparent muddy layers of the early HST bottomset, together with the late Pleistocene transgressive systems tract sequences (TST), are mostly unaffected. On the steeper (2-6) fan delta slopes of the western Gulf of Corinth debris flows and avalanches with a significant retrogressive component dominate slope destabilisation. Sediment cores taken from landslide scarps and slide planes penetrated gas bubble releasing sediments thereby indicating that failure planes are in the late HST foresets/upper part of the early HST bottomsets gas charged zone. The foresets of the HST prodelta deposits display high water content (30-80%), low bulk density (1.4-1.9 g cm-3) and relatively low values of undrained shear strength (3-20 kPa). The water content of the HST distal muddy bottomsets is relatively higher (50-110%) and bulk density relatively lower (1.3-1.7 g cm-3) with low values of shear strength (2-10 kPa). The shear strength of the gas releasing sediment layer displays lower values (2-9 kPa) relative to the overlying, post failure, muddy sediments of the late 100-300 years. Slope stability was calculated using the normalised soil parameter (NSP) method under undrained conditions for normally consolidated prodelta sediments. This analysis indicates that instabilities could be induced by critical earthquake ground accelerations of 26.6-29.6% g for the HST foresets and 12.4-14.1% g for the basal transparent layer belonging to the early HST bottomsets. Consequently the early HST bottomsets has to be considered a potentially unstable layer since the regional peak ground accelerations (PGAs) for the next 50 years are expected to range from 19 to 30% g. Moreover, our results show that new glide planes in the prodeltaic sediment bodies of the seismically active continental margins of Western Greece will likely develop from the gas charged sediments of the lower part of the HST foresets to the upper part of early HST bottomsets.

  16. Seafloor Mapping of the Southeast Iberian Continental Slope and Western Algero-Balearic Abyssal Plain

    NASA Astrophysics Data System (ADS)

    Lastras, G.; Canals, M.; León, C.; Elvira, E.; Pascual, L.; Muñoz, A.; de Cárdenas, E.; Acosta, J.

    2014-12-01

    We present the multibeam bathymetry and derived maps of the southeast Iberian margin from Cabo de Palos to Cabo de Gata, 37º35'N to 35º45'N and 2º10'W to 0º20'E, from the coastline down to the Algero-Balearic abyssal plain at depths exceeding 2,600 m. Data were obtained during different surveys in 2004, 2006 and 2007 on board R/V Vizconde de Eza with a Simrad EM300 multibeam echo-sounder, as part of the CAPESME Project, a collaboration between the Spanish Institute of Oceanography (IEO) and General Secretariat of Fisheries (SGP), aiming at creating maps of the fishing grounds of the Mediterranean continental margins of Spain. The edition of the maps has been carried out within the Complementary Action VALORPLAT (Scientific valorisation of multibeam bathymetry data from the Spanish continental shelf and slope), funded by the Spanish Ministry of Economy and Competitivity. Multibeam bathymetry data from the continental shelf obtained within the ESPACE project, also in a cooperative frame between IEO and SGP, completes the whole picture from the coastline to the deep abyssal plain. The map series is constituted by a general map at 1:400,000 scale and 14 detailed maps at 1:75,000 scale, which include inset maps on slope gradients and seafloor nature (rock or sediment type), the later obtained with rock dredges and Shipeck sediment dredges. Both the detailed maps and the general map are available in paper print, and the whole collection is also distributed in an edited USB. The geological features displayed in the different maps include the continental shelf, with abundant geomorphic features indicative of past sea-level changes, the continental slope carved by a large number of submarine canyons and gullies, including Palos, Tiñoso, Cartagena Este, Cartagena Oeste, Águilas, Almanzora, Alias, Garrucha and Gata submarine canyons, the Mazarrón, Palomares and Al-Mansour escarpments of probable tectonic origin, the Abubácer, Maimonides and Yusuf ridges, the Águilas and Al-Mansour seamounts, and the Algero-Balearic abyssal plain where prominent halokinetic deformation structures have been observed.

  17. Morphotectonic evolution of rifted continental margins: Inferences from a coupled tectonic-surface processes model and fission track thermochronology

    NASA Astrophysics Data System (ADS)

    van der Beek, Peter; Andriessen, Paul; Cloetingh, Sierd

    1995-04-01

    We use a numerical model to study the topographic evolution and erosional history of rifted continental margins. The model combines a kinematic description of lithospheric extension (``tectonic model'') with a surface processes model that includes short-range hillslope and long-range fluvial transport. The tectonic model predicts the evolution of the lithospheric temperature and strength (elastic thickness) distribution as well as the tectonic uplift through time. This is input into the surface processes model which calculates the degradation of topography and associated isostatic rebound. Modeled denudation histories across the margin are used to predict apatite fission track age and length patterns. Modeling results indicate that, depending on the adopted parameters, an uplifted rift flank should degrade by erosion within 50-100 m.y., without significant retreat of the topographic elevation maximum. The development of an escarpment system at rifted continental margins is in itself not an indication of tectonic rift flank uplift, but results from the existence of a high elevation interior plateau, erosional base-level lowering as a consequence of rifting and regional isostatic response to erosion of the margin. However, apatite fission track thermochronology reveals that the areas seaward of the escarpment at a number of rifted margins have been exhumed from several kilometers depth. Such amounts of denudation cannot be accommodated with isostatic rebound alone and require additional tectonic uplift of the rift flanks. Modeling of apatite fission track patterns suggests that fission track thermochronology dates the onset of rapid erosion which coincides with the initiation of strong relief (i.e., initiation of rifting). Fission track ages which are younger than the age of rifting thus cannot be unambiguously interpreted as excluding prerift uplift. The timing of margin uplift can be established only be careful track length analysis and integration with regional stratigraphic data. The model is applied to the Saudi Arabian Red Sea margin and the southeastern Australian highlands, where it is constrained by present-day topography and apatite fission track data, as well as seismic and gravity data. For the Saudi Arabian Red Sea margin, synrift regional plateau uplift with a magnitude of approximately 1 km is inferred, possibly as a result of asthenospheric upwelling. Flexurally induced tectonic uplift of the rift flank with a magnitude of 2 km is superimposed on this regional uplift. The relatively high elevation of the southeastern Australian highlands, their steep front and the relatively high amounts of erosion suggest that, apart from Mesozoic synrift flexural uplift, Tertiary rejuvenation of topography has occurred, possibly as a result of renewed lithospheric thinning and underplating. The low elevation of the Australian interior would inhibit the evolution of a major escarpment in the absence of such renewed uplift.

  18. Halocline water modification and along-slope advection at the Laptev Sea continental margin

    NASA Astrophysics Data System (ADS)

    Bauch, D.; Torres-Valdes, S.; Polyakov, I.; Novikhin, A.; Dmitrenko, I.; McKay, J.; Mix, A.

    2014-02-01

    A general pattern in water mass distribution and potential shelf-basin exchange is revealed at the Laptev Sea continental slope based on hydrochemical and stable oxygen isotope data from the summers 2005-2009. Despite considerable interannual variations, a frontal system can be inferred between shelf, continental slope and central Eurasian Basin waters in the upper 100 m of the water column along the continental slope. Net sea-ice melt is consistently found at the continental slope. However, the sea-ice meltwater signal is independent from the local retreat of the ice cover and appears to be advected from upwind locations. In addition to the along-slope frontal system at the continental shelf break, a strong gradient is identified on the Laptev Sea shelf between 122 E and 126 E with an eastward increase of riverine and sea-ice related brine water contents. These waters cross the shelf break at ~ 140 E and feed the low-salinity halocline water (LSHW, salinity S < 33) in the upper 50 m of the water column. High silicate concentrations in Laptev Sea bottom waters may lead to speculation about a link to the local silicate maximum found within the salinity range of ~ 33 to 34.5, typical for the Lower Halocline Water (LHW) at the continental slope. However brine signatures and nutrient ratios from the central Laptev Sea differ from those observed at the continental slope. Thus a significant contribution of Laptev Sea bottom waters to the LHW at the continental slope can be excluded. The silicate maximum within the LHW at the continental slope may be formed locally or at the outer Laptev Sea shelf. Similar to the advection of the sea-ice melt signal along the Laptev Sea continental slope, the nutrient signal at 50-70 m water depth within the LHW might also be fed by advection parallel to the slope. Thus, our analyses suggest that advective processes from upstream locations play a significant role in the halocline formation in the northern Laptev Sea.

  19. Sediment provenance and dispersal on tropical starved continental margins: Example of the Potiguar Basin margin, NE Brazil

    NASA Astrophysics Data System (ADS)

    Vital, H.; Gomes, M. P.; Dantas, E. L.; Soares, C. H.

    2013-12-01

    Mesozoic and Cenozoic rocks from the Potiguar Basin have been investigated to determine the provenance of terrigenous and carbonate sediments on the Brazilian Continental shelf offshore of the Acu River. Located in the northern coast of the Rio Grande do Norte State (NE Brazil), the Acu River is submitted to highly dynamic coastal processes, such as mesotidal regime (up to 2.6 m), waves, winds and currents. It is inserted in the geological context of Potiguar Basin and is the largest source of freshwater in this area, as the biggest hydrographic basin. Bottom sediments characterization, including heavy mineral and Nd isotopes studies, associated with an integrated shallow water geophysical investigation was carried out on this area, The integration between currents velocity, particles transported by the current of water and other physical parameters with bedforms characterization and different sedimentary textures in the study area allows a better knowledge of the active sedimentary processes, which are responsible for the formation of morphologic features of this area. The distribution patterns of the principal heavy minerals indicate the major point sources of sediment supply onto the shelf and reveal intensive mixing, sorting processes and that a westerly (E-W) longshore current plays an important role in the sediment dispersal. As a result, the mineral distribution E of the Acu River is rich in stable heavy minerals (mainly zircon and tourmaline) whilst of the Acu River is rich in unstable ones (mainly hornblende and epidote.). In addition to provenance-induced variability, mineralogical differences between E and W provinces could indicate that environmental processes have contributed to the total variability of the inner continental shelf sediments. The Sm-Nd isotopic signatures of the rocks yielded model ages (TDM) in the range of 2,19-2,88 Ga, indicating archean to paleoproterozoic sources from the basement. The terrigenous sediments yielded model ages (TDM) in the range of 2,31-2,26 Ga, from 17,5 to 0 cm depth. Limited variations of provenance ages indicates the homogenization of the sediments, probably due to the strong influence of the basement, as the main source of sediments to the shelf. The results also indicate that the shelf sediments are mainly derived from the Acu River or other small rivers from the Setentrional Sector of Rio Grande do Norte State.

  20. Denudation history and landscape evolution of the northern East-Brazilian continental margin from apatite fission-track thermochronology

    NASA Astrophysics Data System (ADS)

    Jelinek, A. R.; Chemale, F.; van der Beek, P. A.; Guadagnin, F.; Cupertino, J. A.; Viana, A.

    2014-10-01

    We reconstruct the history of denudation and landscape evolution of the northern East- Brazilian continental margin using apatite fission-track thermochronology and thermal history modeling. This part of the Brazilian Atlantic margin is morphologically characterized by inland and coastal plateaus surrounding a wide low-lying inland region, the Sertaneja Depression. The apatite fission track ages and mean track lengths vary from 39 ± 4 to 350 ± 57 Ma and from 10.0 ± 0.3 to 14.2 ± 0.2 μm, respectively, implying a protracted history of spatially variable denudation since the Permian at relatively low rates (<50 m My-1). The Sertaneja Depression and inland plateaus record Permian-Early Jurassic (300-180 Ma) denudation that precedes rifting of the margin by > 60 Myrs. In contrast, the coastal regions record up to 2.5 km of Late Jurassic-Early Cretaceous (150-120 Ma) denudation, coeval with rifting of the margin. The samples from elevated coastal regions, the Borborema Plateau and the Mantiqueira Range, record cooling from temperatures above 120 °C since the Late Cretaceous extending to the Cenozoic. We interpret this denudation as related to post-rift uplift of these parts of the margin, possibly resulting from compressional stresses transmitted from the Andes and/or magmatism at that time. Several samples from these areas also record accelerated Neogene (<30 Ma) cooling, which may record landscape response to a change from a tropical to a more erosive semi-arid climate during this time. The inferred denudation history is consistent with the offshore sedimentary record, but not with evolutionary scenarios inferred from the recognition of “planation surfaces” on the margin. The denudation history of the northeastern Brazilian margin implies a control of pre-, syn- and post-rift tectonic and climatic events on landscape evolution.

  1. Isotopic Constraints on Sources and Benthic Turnover at Mound 12, Western Costa Rican Margin

    NASA Astrophysics Data System (ADS)

    Rehder, G.; Mau, S.; Linke, P.; Stange, K.

    2004-12-01

    During several expeditions, we investigated the emission and isotopic signature of methane at several mounds of the western continental margin off Costa Rica and Nicaragua. All of the mounds investigated, either created by mud volcanism or mud diapirism, show indications of fluid venting, including authigenic carbonates, chemoautotrophic consortia, salt depleted pore waters, and methane plumes in the water column. However, the amount of methane released as well as the stable carbon isotopic ratio (del C-13) vary considerably. Here we report on results from Mound 12, a mound with a very weak morphological expression; that is only 30 m high and elongated in northeast-southwest direction with diameters of about 1 to 1.6 km. Data were gathered using standard CTD/rosette equipment, a bottom water sampler enabling to resolve the methane distribution within the lowermost meter of the water column, a benthic chamber lander (BCL), multicorer and piston corer deployments. Data show a very light biogenic methane source (del C-13 < -90 permil within the sediments), -76 permil in the lowermost water samples with concentrations up to 100 nmo/L, and a methane background of - 45 permil 20 m above the vent site. High oxygen demand immediately at a site with bacterial mats in connection to lower carbon stable isotopic ratios with increasing sediment depth is in contrast to low oxygen demand and heavier stable isotopic ratios with increasing sediment depth only one meter apart. Moreover, the relation of methane concentration vs. isotopic signature above the vent sites implies considerable oxidation and fractionation in the benthic boundary layer (BBL) above the vent site, which is supported by some biomarker investigations at the same site. Significant oxidation of methane above vent sites within the BBL has not been reported so far. An alternative explanation, which is the existence of an additional methane source with an isotopic signature similar to the background ( del C-13 =-45 permil) is unlikely, based on the investigations of numerous piston cores taken at Mound 12. However, such a heavier isotopic signature, in connection to higher amounts of higher hydrocarbons, was encountered at Mound 11, a very similar structure only a couple of hundred meters apart.

  2. Genesis of giant promontories during two-stage continental breakup and implications for post-Rodinia circum-Arctic margins (Invited)

    NASA Astrophysics Data System (ADS)

    Bradley, D. C.

    2013-12-01

    Giant promontories are a seldom-noted feature of the present-day population of passive margins. A number of them formed during the breakup of Pangea: the South Tasman Rise and Naturaliste Plateau off Australia, the Grand Banks and Florida off North America, the Falkland Plateau off South America, and the Horn of Africa. Giant promontories protrude hundreds of kms seaward from a corner of the continent and are not to be confused with the low-amplitude irregularies that occur at intervals along most passive margins. Giant promontories that might have formed during the breakup of the earlier supercontinents, Rodinia and Nuna, have not been recognized. Properties of the modern examples suggest some identifying criteria. They are cored by continental crust that was created or last reworked during the previous collisional cycle. Judging from the examples listed, the early histories of the two flanks of a promontory will differ because separate continents or microcontinents drift away in different directions at different times. For example, the eastern flank of the >500-km-long South Tasman Rise formed when the Lord Howe Rise separated from Australia at ca. 85 Ma, whereas the western flank formed when Antarctica moved past at ca. 65-33 Ma. (Age spans of various passive margins quoted herein are from Bradley, 2008, Earth Sci. Rev. 91:1-26.) During ocean closure (typically, arc-passive margin collision), a promontory may be exposed to earlier and more intense tectonism than elsewhere along the margin. Unique events are also possible. For example, the tip of Florida experienced a glancing collision with Cuba during the Paleogene, an event that was not felt elsewhere along the Gulf or Atlantic margins of the southeastern U.S. Giant promontories are unlikely to have deep lithospheric keels and may be prone to being dislodged and rotated during collision. Thus, what starts as a promontory may end up as a microcontinent in an orogen. The case for giant promontories in the circum-Arctic has not been thoroughly assessed, but the shape of Laurentia and the ages of its Paleozoic margins suggest that promontories dating from breakup of Rodinia may have jutted from its NE and (or) NW corners. The NE corner lies at the junction of an eastern (Caledonian) passive margin that existed from ca. 815 to 444 Ma and a northern (Innuitian) passive margin that existed from ca. 620 to 444 Ma. The hypothetical NE promontory would have attached to northern East Greenland where early Paleozoic passive-margin deposits are notably lacking. Nearby remnants of the NE promontory might include the Yermak plateau off North Greenland, the Morris Jessup plateau off Svalbard, or parts of Svalbard itself. A hypothetical NW Laurentian promontory would have attached somewhere between Banks Island in the Canadian Arctic, where the 620-444 Ma Innuitian margin is truncated along the present-day rifted margin, and east-central Alaska, site of the most northerly rocks that can be confidently placed along the ca. 710-385 Ma Cordilleran passive margin. Remnants of this promontory might include older rocks of the Ruby terrane and (or) the northeastern Brooks Range, both in Alaska. Either hypothetical promontory would have been involved in orogenesis associated with the postulated extrusion of terranes through the gap between Laurentia and Siberia.

  3. Modeling the conversion of hydroacoustic to seismic energy at island and continental margins: preliminary analysis of Ascension Island data

    SciTech Connect

    Harben, P.; Rodgers, A.

    1999-07-26

    Seismic stations at islands and continental margins will be an essential component of the International Monitoring System (IMS) for event location and identification in support of Comprehensive Nuclear-Test-Ban Treaty (CTBT) monitoring. Particularly important will be the detection and analysis of hydroacoustic-to-seismic converted waves (T-phases) at island or continental margins. Acoustic waves generated by sources in or near the ocean propagate for long distances very efficiently due to the ocean sound speed channel (SOFAR) and low attenuation. When ocean propagating acoustic waves strike an island or continental margin they are converted to seismic (elastic) waves. We are using a finite difference code to model the conversion of hydroacoustic T-waves at an island or continental margin. Although ray-based methods are far more efficient for modeling long-range (> 1000 km) high-frequency hydroacoustic propagation, the finite difference method has the advantage of being able to model both acoustic and elastic wave propagation for a broad range of frequencies. The method allows us to perform simulations of T-phases to relatively high frequencies ({>=}10 Hz). Of particular interest is to identify factors that affect the efficiency of T-phase conversion, such as the topographic slope and roughness at the conversion point and elastic velocity structure within the island or continent. Previous studies have shown that efficient T-phase conversion occurs when the topographic slope at the conversion point is steep (Cansi and Bethoux, 1985; Talandier and Okal, 1998). Another factor impacting T-phase conversion may be the near-shore structure of the sound channel. It is well known that the depth to the sound channel axis decreases in shallow waters. This can weaken the channeled hydroacoustic wave. Elastic velocity structure within the island or continent will impact how the converted seismic wave is refracted to recording stations at the surface and thus impact the T-phase amplitudes. For this paper we will focus on validating the finite difference method for modeling T-phases in the ocean and land environments and on modeling T-phases observed by the May 1999 Ascension Island Experiment. A network of broadband seismometers on Ascension Island recorded a large number of offshore airgun shots. The shots occurred at all azimuths around the island and at ranges from 1-45 km. Measurements of signal amplitude and duration will be made to understand the variability of T-phase behavior on Ascension Island. The sensitivity to topographic slope and island structure will also be investigated.

  4. Geochemical zonation and characteristics of cold seeps along the Makran continental margin off Pakistan

    NASA Astrophysics Data System (ADS)

    Fischer, D.; Bohrmann, G.; Zabel, M.; Kasten, S.

    2009-04-01

    Several highly dynamic and spatially extended cold seeps were found and analyzed on the Makran accretionary wedge off Pakistan during R/V Meteor cruise M74-3 in 2007. In water depths of 550m to 2870m along the continental slope nine different gas escape structures were examined some of which are situated within a stable oxygen minimum zone (OMZ) between 150m and 1100m water depth (von Rad et al., 1996, 2000). Echosounder data indicate several gas bubble streams in the water column. The gas seepage presumably originates from squeezing of massive sediment packages being compressed by subduction at the continental margin off Pakistan. Gas- and fluid venting and associated surface-near anaerobic oxidation of methane (AOM) feed several cold seepage systems in the seabed. The seep sites show strong inter- and intraspecific variability of benthic chemosynthetic microhabitats. Singular seeps are often colonized by different chemosynthetic organisms in a concentric fashion. The seep-center, where active bubble ebullition occurs, is often colonized by large hydrogen sulfide-oxidizing bacteria, which are surrounded by a rim inhabited by small chemosynthetic clams and tube worms. These different habitats and the associated sediments show distinct geochemical zonations and gradients. Geochemical analyses of pore water and sediment samples obtained via ROV (push corer) show that concentrations of hydrogen sulfide and alkalinity rapidly increase to >15 mmol/l and >35 mmol/l respectively several cm below the seafloor in the center of the cold seep. In places, sulfate is depleted to concentrations below detection limit at the same depth (ROV push core GeoB 12313-6). Ammonium concentrations in this core on the other hand show a different pattern: In the center of the cold seep, which is colonized by bacterial assemblages, ammonium concentrations fluctuate around 100 mol/l and peak with 274.4 mol/l just above the aforementioned sulfide maximum values at 5 cm followed by a rapid decrease to near zero below that depth. A feature of a number of Makran cold seeps within the OMZ is that the central orifice of gas ebullition is solely surrounded by white to rose or yellow colored chemosynthetic bacteria which colonize the seepage spots in concentric rims that are in places elongated towards one direction and hence display a comet tail-like shaped bacterial mat on the sea floor. In contrast to the cold seep centers, the outer rim around the seep sites, which is colonized by chemosynthetic clams and tubeworms, is characterized by ammonium concentrations that stay below detection limit and hydrogen sulfide and alkalinity concentrations are as well lower here than in the central part with values >8 mmol/l and >25mmol/l respectively at a depth of 13 cm (ROV push core GeoB 12313-12). Sulfate concentrations fluctuate around 15 mmol/l here and hint to lower sulfate reduction rates compared to the central part of the seep. The low contents of ammonium in the pore water of the outer seep sections may originate from processes initially proposed by Tryon et al. (2002): Gas and fluids constantly emanating from a central orifice cause the formation of a small-scale, local fluid-flow system comparable to convectional or belt-like flow dynamics. These convectional fluid-flow characteristics would cause an outflow of the actual gas/fluid composite from the central orifice and an inflow of bottom-near sea water poor in ammonium into the surrounding sediment where it would cause the very low pore water concentrations detected here. References: Tryon, M.D., Brown, K.M. and Torres, M.E. (2002). Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge, OR, II: Hydrological processes. Earth and Planetary Science Letters, 201, 541-557 von Rad, U., Rsch, H., Berner, U., Geyh, M., Marching, V. and Schulz, H. (1996) Authigenic carbonates derived from oxidized methane vented from the Makran accretionary prism off Pakistan. Marine Geology, 136, 55-77 von Rad, U., Berner, U., Delisle, G., Doose-Rolinski, H., Fech

  5. Multichannel seismic depth sections and interval velocities over outer continental shelf and upper continental slope between Cape Hatteras and Cape Cod: rifted margins

    USGS Publications Warehouse

    Grow, John A.; Mattick, Robert E.; Schlee, John S.

    1979-01-01

    Six computer-generated seismic depth sections over the outer continental shelf and upper slope reveal that subhorizontal Lower Cretaceous reflectors continue 20 to 30 km seaward of the present shelf edge. Extensive erosion on the continental slope has occurred primarily during the Tertiary, causing major unconformities and retreat of the shelf edge to its present position. The precise age and number of erosional events is not established, but at least one major erosional event is thought to be Oligocene and related to a marine regression in response to a worldwide eustatic lowering of sea level. Velocities derived from the multichannel data reveal distinctive ranges and lateral trends as functions of sediment age, depth of burial, and distance from the coastline. Seismic units beneath the shelf and slope of inferred Tertiary age range from 1.7 to 2.7 km/sec, increasing with age and depth of burial. Units interpreted as Upper Cretaceous rocks beneath the shelf range from 2.3 to 3.6 km/sec and show a distinct lateral increase across the shelf followed by a decrease beneath the present continental slope. Inferred Lower Cretaceous and Upper Jurassic rocks beneath the shelf increase from 3.7 to 4.8 km/sec from nearshore to offshore and indicate a change in facies from clastic units below the inner shelf to carbonate units beneath the outer shelf and upper continental slope. Both reflection and refraction data suggest that thin, high-velocity limestone units (5.0 km/sec) are present within the Lower Cretaceous and Upper Jurassic units beneath the outermost shelf edge, but that these change lithology or pinch out before reaching the middle shelf. Although lateral changes in velocity across the shelf and local velocity inversions appear, the interval velocities along the length of the margin show excellent continuity between Cape Hatteras and Cape Cod. The high-velocity horizons within the Lower Cretaceous and Upper Jurassic shelf-edge complex indicate the presence of a carbonate bank or reef. The continental shelf off New Jersey is underlain by a trough approximately 150 km wide with up to 12 km of sedimentary fill. The oceanic basement beneath the upper continental rise is usually at a depth of 10 to 11 km and is overlain by 6 to 8 km of sediments. The rise sediment trough is separated from the shelf trough by an acoustic basement ridge 25 to 75 km wide where penetration never exceeds 6 km beneath sea level, although faulting and carbonate bank or reef complexes frequently limit penetration to 3 to 4 km in this zone. The acoustic basement ridge coincides with the East Coast Magnetic Anomaly and is interpreted as thick oceanic crust formed during the initial phase of seafloor spreading between North America and Africa. Rapid differential subsidence occurred on opposite sides of the basement ridge during the Jurassic and Early Cretaceous. Differential subsidence beneath the shelf also occurred along the margins, with narrower and shallower shelf troughs occurring off platform areas such as Cape Cod and Cape Hatteras.

  6. Seismic evidence of continental subduction and upper mantle deformation beneath the western Alps

    NASA Astrophysics Data System (ADS)

    Zhao, L.; Paul, A.; Solarino, S.; Guillot, S.; Malusa', M. G.; Zheng, T.; Aubert, C.; Salimbeni, S.; Dumont