Science.gov

Sample records for wet industrial wastes

  1. BIOLOGICAL TREATMENT OF WASTES FROM THE CORN WET MILLING INDUSTRY

    EPA Science Inventory

    Pilot plant aerated lagoon and laboratory completely mixed activated sludge treatment studies of corn wet milling wastes showed that either process could produce a satisfactory effluent. A full scale completely mixed activated sludge treatment plant was designed from laboratory r...

  2. Low-temperature catalytic gasification of wet industrial wastes

    SciTech Connect

    Elliott, D C; Neuenschwander, G G; Baker, E G; Sealock, Jr, L J; Butner, R S

    1991-04-01

    Bench-scale reactor tests are in progress at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for treating a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. This report describes a test program which used a continuous-feed tubular reactor. This test program is an intermediate stage in the process development. The reactor is a laboratory-scale version of the commercial concept as currently envisioned by the process developers. An energy benefit and economic analysis was also completed on the process. Four conceptual commercial installations of the TEES process were evaluated for three food processing applications and one organic chemical manufacturing application. Net energy production (medium-Btu gas) was achieved in all four cases. The organic chemical application was found to be economically attractive in the present situation. Based on sensitivity studies included in the analysis, the three food processing cases will likely become attractive in the near future as waste disposal regulations tighten and disposal costs increase. 21 refs., 2 figs., 9 tabs.

  3. Assessment of an Industrial Wet Oxidation System for Burning Waste and Low-Grade Fuels 

    E-print Network

    Bettinger, J.; Koppel, P.; Margulies, A.

    1988-01-01

    an assessment of wet oxidation technologies, followed by bench-scale and pilot unit testing and by eventual demonstration of the pilot unit at an industrial host site. This paper discusses the assessment conducted under the first phase of this effort, which...

  4. Low-temperature catalytic gasification of wet industrial wastes. FY 1991--1992 interim report

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Hart, T.R.; Phelps, M.R.; Sealock, L.J. Jr.

    1993-07-01

    A catalytic gasification system operating in a pressurized water environment has been developed and refined at Pacific Northwest Laboratory (PNL) for over 12 years. Initial experiments were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. The combined use of alkali and metal catalysts was reported for gasification of biomass and its components at low temperatures (350{degrees}C to 450{degrees}C). From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous reactor system (CRS) testing were undertaken in the development of this system under sponsorship of the US Department of Energy. A wide range of biomass feedstocks were tested, and the importance of the nickel metal catalyst was identified. Specific use of this process for treating food processing wastes was also studied. The concept application was further expanded to encompass cleanup of hazardous wastewater streams, and results were reported for batch reactor tests and continuous reactor tests. Ongoing work at PNL focuses on refining the catalyst and scaling the system to long-term industrial needs. The process is licensed as the Thermochemical Environmental Energy System (TEES{reg_sign}) to Onsite*Ofsite, Inc., of Duarte, California. This report is a follow-on to the 1989--90 interim report [Elliott et al. 1991], which reviewed the results of the studies conducted with a fixed-bed, continuous-feed, tubular reactor. The discussion here provides an overview of experiments on the wide range of potential feedstock materials conducted in a batch reactor; development of new catalyst materials; and tests performed in continuous-flow reactors at three scales. The appendices contain the history and background of the process development, as well as more detailed descriptions and results of the recent studies.

  5. Low-temperature catalytic gasification of wet industrial wastes. FY 1993--1994 interim report

    SciTech Connect

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; Deverman, G.S.; Werpy, T.A.; Phelps, M.R.; Baker, E.G.; Sealock, L.J. Jr.

    1995-03-01

    Process development research is continuing on a low-temperature, catalytic gasification system that has been demonstrated to convert organics in water (dilute or concentrated) to useful and environmentally safe gases. The system, licensed under the trade name Thermochemical Environmental Energy System (TEESO), treats a wide variety of feedstocks ranging from hazardous organics in water to waste sludges from food processing. The current research program is focused on the use of continuous-feed, tubular reactors systems for testing catalysts and feedstocks in the process. A range of catalysts have been tested, including nickel and other base metals, as well as ruthenium and other precious metals. Results of extensive testing show that feedstocks, ranging from 2% para-cresol in water to potato waste and spent grain, can be processed to > 99% reduction of chemical oxygen demand (COD). The product fuel gas contains from 40% up to 75% methane, depending on the feedstock. The balance of the gas is mostly carbon dioxide with < 5% hydrogen and usually < 1% ethane and higher hydrocarbons. The byproduct water stream carries residual organics from 10 to 1,000 mg/l COD, depending on the feedstock. The level of development of TEES has progressed to the initial phases of industrial process demonstration. Testing of industrial waste streams is under way at both the bench scale and engineering scale of development.

  6. Assessment of TEES reg sign applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    SciTech Connect

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  7. Bench-scale reactor tests of low temperature, catalytic gasification of wet industrial wastes

    SciTech Connect

    Elliot, D.C.; Baker, E.G.; Butner, R.S.; Sealock, L.J. Jr. )

    1993-02-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES[reg sign]), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2 percent para-cresol or 5 percent and 10 percent lactose in water or cheese whey can be processed to [gt] 99 percent reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence lime is less than 5 min at 360C and 3,000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40 percent to 55 percent methane, 35 percent to 50 percent carbon dioxide, and 5 percent to 10 percent hydrogen with as much as 2 percent ethane, but less than 0.1 percent ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD.

  8. Bench-scale reactor tests of low-temperature, catalytic gasification of wet, industrial wastes

    SciTech Connect

    Elliott, D.C.; Neuenschwander, G.G.; Baker, E.G.; Butner, R.S.; Sealock, L.J.

    1990-04-01

    Bench-scale reactor tests are under way at Pacific Northwest Laboratory to develop a low-temperature, catalytic gasification system. The system, licensed under the trade name Thermochemical Environmental Energy System (TEES{reg sign}), is designed for to a wide variety of feedstocks ranging from dilute organics in water to waste sludges from food processing. The current research program is focused on the use of a continuous-feed, tubular reactor. The catalyst is nickel metal on an inert support. Typical results show that feedstocks such as solutions of 2% para-cresol or 5% and 10% lactose in water or cheese whey can be processed to >99% reduction of chemical oxygen demand (COD) at a rate of up to 2 L/hr. The estimated residence time is less than 5 min at 360{degree}C and 3000 psig, not including 1 to 2 min required in the preheating zone of the reactor. The liquid hourly space velocity has been varied from 1.8 to 2.9 L feedstock/L catalyst/hr depending on the feedstock. The product fuel gas contains 40% to 55% methane, 35% to 50% carbon dioxide, and 5% to 10% hydrogen with as much as 2% ethane, but less than 0.1% ethylene or carbon monoxide, and small amounts of higher hydrocarbons. The byproduct water stream carries residual organics amounting to less than 500 mg/L COD. 9 refs., 1 fig., 4 tabs.

  9. Assessment of TEES{reg_sign} applications for Wet Industrial Wastes: Energy benefit and economic analysis report

    SciTech Connect

    Elliott, D.C.; Scheer, T.H.

    1992-02-01

    Fundamental work is catalyzed biomass pyrolysis/gasification led to the Thermochemical Environmental Energy System (TEES{reg_sign}) concept, a means of converting moist biomass feedstocks to high-value fuel gases such as methane. A low-temperature (350{degrees}C), pressurized (3100 psig) reaction environment and a nickel catalyst are used to reduce volumes of very high-moisture wastes such as food processing byproducts while producing useful quantities of energy. A study was conducted to assess the economic viability of a range of potential applications of the process. Cases examined included feedstocks of cheese whey, grape pomace, spent grain, and an organic chemical waste stream. The analysis indicated that only the organic chemical waste process is economically attractive in the existing energy/economic environment. However, food processing cases will become attractive as alternative disposal practices are curtailed and energy prices rise.

  10. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  11. Catalytic Wet Gasification of Municipal and Animal Wastes

    SciTech Connect

    Ro, Kyoung S.; Cantrell, Keri; Elliott, Douglas C.; Hunt, Patrick G.

    2007-02-21

    Applicability of wet gasification technology for various animal and municipal wastes was examined. Wet gasification of swine manure and raw sewage sludge generated high number of net energies. Furthermore, the moisture content of these wastes is ideal for current wet gasification technology. Significant quantities of water must be added to dry feedstock wastes such as poultry litter, feedlot manures and MSW to make the feedstock pumpable. Because of their high ash contents, MSW and unpaved feedlot manure would not generate positive energy return from wet gasification. The costs of a conceptual wet gasification manure management system for a model swine farm were significantly higher than that of the anaerobic lagoon system. However, many environmental advantages of the wet gasification system were identified, which might reduce the costs significantly. Due to high sulfur content of the wastes, pretreatment to prevent the poisoning of catalysts is critically needed.

  12. Catalytic wet gasification of municipal and animal wastes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Currently, there is worldwide interest in deriving energy from bio-based materials via gasification. Our objective was to assess the feasibility of wet gasification for treatment/energy conversion of both animal and municipal wastes. Wet wastes such as swine manure and raw sewage sludge could be pro...

  13. Steel Industry Wastes.

    ERIC Educational Resources Information Center

    Schmidtke, N. W.; Averill, D. W.

    1978-01-01

    Presents a literature review of wastes from steel industry, covering publications of 1976-77. This review covers: (1) coke production; (2) iron and steel production; (3) rolling operations; and (4) surface treatment. A list of 133 references is also presented. (NM)

  14. Industrial waste management in Japan

    SciTech Connect

    Hirota, Y.

    1986-12-01

    Systematic management for industrial waste in Japan has been carried out based on the Waste Disposal and Public Cleansing Law which was enacted in 1970. The law and its ordinances designate 19 kinds of waste materials discharged from business activities as industrial waste and prescribe the generator's responsibility, requirements for treatment contractors, standards for consignment, specific personnel, etc. from the view of proper management. And they also prescribe disposal standards, structure, and maintenance standards for treatment facilities, including final disposal sites, from the view of proper treatment and disposal. The Standard for Verification provides criteria to categorize as hazardous or nonhazardous industrial waste which is subjected to treatment and disposal in conformity with each standard. The fundamental policies to cope with industrial waste focus on reduction of generation, promotion of recycling, establishment of a comprehensive information management system and participation of the public which can contribute well to prevent environmental pollution caused by inappropriate management of industrial waste.

  15. Catalytic wet oxidation of phenolic wastes 

    E-print Network

    Thomas, Brook James

    1995-01-01

    and pressure conditions which translate into a safe and cost effective process that does not create a new waste stream. The objective of this study was to evaluate catalyst activity and kinetic parameters for the oxidation of phenol to C02 and water with a...

  16. Fruit, vegetable, and grain processing wastes. [Industrial wastes

    SciTech Connect

    Morrell, R.A.; Schmidt, H.E. Jr.

    1982-06-01

    Waste processing methods utilized in the food-processing industry are reviewed. The industrial waste associated with fruits, vegetables, and grain are examined. The utilization of the waste products after processing is discussed.

  17. CENTURY INDUSTRIAL PRODUCTS FRP-100 WET SCRUBBER EVALUATION

    EPA Science Inventory

    The report gives results of a field test evaluation of the performance of the Century Industrial Products FRP-100 wet scrubber installed on a lightweight aggregate kiln. Inlet/outlet tests for particle size distribution with cascade impactors and extractive sampling with an elect...

  18. Steel industry wastes. [Wastewater treatment

    SciTech Connect

    Vachon, D.T.; Schmidt, J.W.; Schmidtke, N.W.

    1982-06-01

    A literature review dealing with waste processing of steel industry wastes is presented. The costs for the U.S. steel industry to comply with environmental standards are such that water reuse and recycling may be necessary. The review examines conventional coke plant wastewater treatments such as flotation, phenol extraction, ammonia stripping, and biological nitrification, and alternative treatment processes for blast furnace scrubber blowdown such as alkaline chlorination, ozonation, and reverse osmosis. A review of pickling operations and finishing processes is also included with their appropriate waste methods highlighted.

  19. Industrial Wastes as a Fuel 

    E-print Network

    Richardson, G.; Hendrix, W.

    1980-01-01

    available for coal since it was at one time a major industrial fuel and is still used extensively for electric power generation. However, combustion data for other fuels such as wood and solid materials typically generated as industrial wastes can only...

  20. Wet air oxidation of epoxy acrylate monomer industrial wastewater.

    PubMed

    Yang, Shaoxia; Liu, Zhengqian; Huang, Xiaohui; Zhang, Beiping

    2010-06-15

    Epoxy acrylate monomer industrial wastewater contained highly concentrated and toxic organic compounds. The wet air oxidation (WAO) and catalytic wet air oxidation (CWAO) were used to eliminate pollutants in order to examine the feasibility of the WAO/CWAO as a pre-treatment method for the industrial wastewater. The results showed that in the WAO 63% chemical oxygen demand (COD) and 41% total organic carbon (TOC) removals were achieved and biological oxygen demand (BOD(5))/COD ratio increased from 0.13 to 0.72 after 3h reaction at 250 degrees C, 3.5MPa and the initial concentration of 100g(COD)/L. Among homogenous catalysts (Cu(2+), Fe(2+), Fe(3+) and Mn(2+) salts), Cu(2+) salt exhibited better performance. CuO catalyst was used in the CWAO of the wastewater, COD and TOC conversion were 77 and 54%, and good biodegradability was achieved. The results proved that the CWAO was an effective pre-treatment method for the epoxy acrylate monomer industrial wastewater. PMID:20207076

  1. NEW JERSEY INDUSTRIAL WASTE STUDY (WASTE PROJECTION AND TREATMENT)

    EPA Science Inventory

    The study demonstrates a procedure for projecting the hazardous waste shipped off-site by industry. The projection system develops ratios of hazardous waste per employee by SIC code. These ratios can be used to estimate the hazardous waste shipped off-site for any industrial area...

  2. Development and testing of a wet oxidation waste processing system. [for waste treatment aboard manned spacecraft

    NASA Technical Reports Server (NTRS)

    Weitzmann, A. L.

    1977-01-01

    The wet oxidation process is considered as a potential treatment method for wastes aboard manned spacecraft for these reasons: (1) Fecal and urine wastes are processed to sterile water and CO2 gas. However, the water requires post-treatment to remove salts and odor; (2) the residual ash is negligible in quantity, sterile and easily collected; and (3) the product CO2 gas can be processed through a reduction step to aid in material balance if needed. Reaction of waste materials with oxygen at elevated temperature and pressure also produces some nitrous oxide, as well as trace amounts of a few other gases.

  3. Waste Management Trends in Texas Industrial Plants 

    E-print Network

    Smith, C. S.; Heffington, W. M.

    1995-01-01

    of this program is that recycling used oil reduces the burden to the generator of the used oil. This is because used oil that is to be recycled can be classified as a Class I waste instead of possibly being a hazardous waste. This can reduce the burden... of industrial solid wastes which During these surveys, Industrial Assessment Center be cause of its concentration, or physical personnel have become familiar with several plant or chemical composition, is toxic, waste management practices. This paper...

  4. Waste minimization in the automotive repair industry

    SciTech Connect

    Toy, W.M.

    1988-11-01

    Waste minimization in the automotive repair industry is characterized by the large numbers of small quantity generators producing solvent, alkaline and detergent hazardous wastes. On-site management of multiple processes which vary depending on the size of shop make the administration of hazardous waste policies particularly complex. This paper presents the quantities and types of hazardous materials typically produced. Guidelines are presented to allow generators to organize a waste minimization program.

  5. Wet oxidation of oil-bearing sulfide wastes

    SciTech Connect

    Miller, R.L.; Hotz, N.J.

    1991-01-01

    Oil-bearing metal sulfide sludges produced in treatment of an industrial wastewater, which includes plating wastes, have yielded to treatment by electrooxidation and hydrogen peroxide processes. The oxidation can be controlled to be mild enough to avoid decomposition of the organic phase while oxidizing the sulfides to sulfates. The pH is controlled to near neutral conditions where iron, aluminum and chromium(III) precipitate as hydrous oxides. Other metals, such as lead and barium, may be present as sulfate precipitates with limited solubility, while metals such as nickel and cadmium would be present as complexed ions in a sulfate solution. The oxidations were found to proceed smoothly, without vigorous reaction; heat liberation was minimal. 2 refs., 12 figs.

  6. INFORMATION FOR INDUSTRIAL WASTE COMBUSTERS

    EPA Science Inventory

    Resource Purpose:Developed to support effluent guidelines for the commercial hazardous Waste Combustor Subcategory of the Waste Combustors Point Source category. Data were used o develop environmental impacts, regulatory limits, and the cost of regulation and to identify t...

  7. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    PubMed

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively. PMID:25443097

  8. Anaerobic protocol for assessing industrial waste treatability

    SciTech Connect

    Young, J.C.; Khandaker, N.R.

    1996-11-01

    Recent promulgation of strict standards for industrial waste pretreatment has greatly increased the number of wastewaters that are candidates for anaerobic treatment. The challenge with industrial wastes is to determine the potential for anaerobic biodegradation prior to investing large amounts of time and expense in design and field investigation. Various methods have been used to assess the treatability of industrial wastewaters, but the methodology has varied significantly. In response to the need for a consistent procedure for determining the treatability of different industrial wastewaters by anaerobic processes, Young developed an anaerobic treatability screening protocol. The purpose of this paper is to describe the protocol and to report a number of case studies in which the test protocol was used to determine the feasibility of using anaerobic processes for treating specific industrial wastes. Specific examples include food processing wastes, chemical production wastes, petroleum wastes, and landfill leachate. Treatability was based on assessment of the rate and extent of biodegradation, identification of the presence of toxic substances, and dilution effects.

  9. Renewable energy recovery through selected industrial wastes

    NASA Astrophysics Data System (ADS)

    Zhang, Pengchong

    Typically, industrial waste treatment costs a large amount of capital, and creates environmental concerns as well. A sound alternative for treating these industrial wastes is anaerobic digestion. This technique reduces environmental pollution, and recovers renewable energy from the organic fraction of those selected industrial wastes, mostly in the form of biogas (methane). By applying anaerobic technique, selected industrial wastes could be converted from cash negative materials into economic energy feed stocks. In this study, three kinds of industrial wastes (paper mill wastes, brown grease, and corn-ethanol thin stillage) were selected, their performance in the anaerobic digestion system was studied and their applicability was investigated as well. A pilot-scale system, including anaerobic section (homogenization, pre-digestion, and anaerobic digestion) and aerobic section (activated sludge) was applied to the selected waste streams. The investigation of selected waste streams was in a gradually progressive order. For paper mill effluents, since those effluents contain a large amount of recalcitrant or toxic compounds, the anaerobic-aerobic system was used to check its treatability, including organic removal efficiency, substrate utilization rate, and methane yield. The results showed the selected effluents were anaerobically treatable. For brown grease, as it is already well known as a treatable substrate, a high rate anaerobic digester were applied to check the economic effect of this substrate, including methane yield and substrate utilization rate. These data from pilot-scale experiment have the potential to be applied to full-scale plant. For thin stillage, anaerobic digestion system has been incorporated to the traditional ethanol making process as a gate-to-gate process. The performance of anaerobic digester was applied to the gate-to-gate life-cycle analysis to estimate the energy saving and industrial cost saving in a typical ethanol plant.

  10. Proceedings of the 41st industrial waste conference

    SciTech Connect

    Not Available

    1987-01-01

    This book contains the proceedings of a conference on industrial waste processing. Topics include the following: pretreatment programs and systems; physical and biological systems; toxic and hazardous wastes; plating wastes; oilfields and gas pipeline wastes; and laws, regulations and training.

  11. Hazardous waste management in the Texas construction industry 

    E-print Network

    Sprinkle, Donald Lee

    1991-01-01

    at improving waste management in the construction industry - in particular hazardous waste; (e) initiate further research to design solutions for hazardous-waste-management problems; and (f) implement hazardous-waste minimization and recovery practices...

  12. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  13. High rate composting of herbal pharmaceutical industry solid waste.

    PubMed

    Ali, M; Duba, K S; Kalamdhad, A S; Bhatia, A; Khursheed, A; Kazmi, A A; Ahmed, N

    2012-01-01

    High rate composting studies of hard to degrade herbal wastes were conducted in a 3.5 m(3) capacity rotary drum composter. Studies were spread out in four trials: In trial 1 and 2, one and two turns per day rotation was observed, respectively, by mixing of herbal industry waste with cattle (buffalo) manure at a ratio of 3:1 on wet weight basis. In trial 3 inocula was added in raw waste to enhance the degradation and in trial 4 composting of a mixture of vegetable market waste and herbal waste was conducted at one turn per day. Results demonstrated that the operation of the rotary drum at one turn a day (trial 1) could provide the most conducive composting conditions and co-composting (trial 4) gave better quality compost in terms of temperature, moisture, nitrogen, and Solvita maturity index. In addition a FT-IR study also revealed that trial 1 and trial 4 gave quality compost in terms of stability and maturity due to the presence of more intense peaks in the aromatic region and less intense peaks were found in the aliphatic region compared with trial 2 and trial 3. PMID:22546797

  14. Development of a Catalytic Wet Air Oxidation Method to Produce Feedstock Gases from Waste Polymers

    NASA Technical Reports Server (NTRS)

    Kulis, Michael J.; Guerrero-Medina, Karen J.; Hepp, Aloysius F.

    2012-01-01

    Given the high cost of space launch, the repurposing of biological and plastic wastes to reduce the need for logistical support during long distance and long duration space missions has long been recognized as a high priority. Described in this paper are the preliminary efforts to develop a wet air oxidation system in order to produce fuels from waste polymers. Preliminary results of partial oxidation in near supercritical water conditions are presented. Inherent corrosion and salt precipitation are discussed as system design issues for a thorough assessment of a second generation wet air oxidation system. This work is currently being supported by the In-Situ Resource Utilization Project.

  15. Recycling: industry is going to waste

    SciTech Connect

    Not Available

    1981-02-01

    Various forms of recycling have existed in this country for over a century. The National Association of Recycling Industries was established back in 1913. Yet relatively few industries have given serious attention to recycling until recent years. The reason for this is simple--reclamation of reprocessing of waste often had little or no advantage. It was usually more convenient and less expensive to bury, burn, or dump waste materials than to recover them for further use. Times have changed. Companies are now searching for ways to recycle everything from ferrous slags to cheese whey. Recycling is becoming more profitable and, for some industries, absolutely necessary. In the past decade, several factors have seriously affected the production of goods and disposal of wastes in the United States.

  16. Waste Material Management: Energy and materials for industry

    SciTech Connect

    Not Available

    1993-05-01

    This booklet describes DOE`s Waste Material Management (WMM) programs, which are designed to help tap the potential of waste materials. Four programs are described in general terms: Industrial Waste Reduction, Waste Utilization and Conversion, Energy from Municipal Waste, and Solar Industrial Applications.

  17. Studies in treatment of disperse dye waste: Membrane-wet oxidation process

    SciTech Connect

    Dhale, A.D.; Mahajani, V.V.

    2000-07-01

    An integrated process, membrane-wet oxidation (MEMWO) has been demonstrated to treat the disperse dye bath waste. The dye bath waste stream containing azo class disperse dye CL 79, was studied to demonstrate the process. A nanofiltration membrane (MPT 30) showed > 99% color and 97% chemical oxygen demand (COD) rejection of dye compound. The concentrate was then treated by wet oxidation (WO) process. WO of dye was studied in the range of 160--225 C and oxygen partial pressure 0.69--1.38 MPa. A homogeneous copper sulfate was found to be a suitable catalyst to effectively destroy the dye as well as the real waste. While non catalytic WO of dye achieved 75% reduction in COD during 120 min with 99% color destruction, the catalytic WO showed about 90% reduction in COD. The performance of WO of actual waste stream was comparable with that of pure dye molecule.

  18. Injection an option for industrial waste

    SciTech Connect

    Shannon, L.B.

    1993-09-01

    Injection of industrial wastes into underground wells has been used since the 1950s, but only recently has come under fire as citizens groups question the effectiveness of the technology to safeguard undergound water supplies. As industry strives to answer those queries, EPA has approved its use-as long as a permit applicant carefully evaluates well siting, construction and monitoring techniques and works closely with regulatory agencies.

  19. Industrial Waste Landfill IV upgrade package

    SciTech Connect

    1994-10-14

    This document consists of page replacements for the Y-12 industrial waste landfill. The cover page is to replace the old page, and a new set of text pages are to replace the old ones. A replacement design drawing is also included.

  20. WASTE HEAT RECOVERY POTENTIAL IN SELECTED INDUSTRIES

    EPA Science Inventory

    The research project was initiated with the overall objective of identifying the points, qualities, and quantities, of waste heat discharged to the environment by energy intensive industries and emerging technologies for energy development. These data may then be utilized to eval...

  1. Bioremediation of industrial waste through mushroom cultivation.

    PubMed

    Kulshreshtha, Shweta; Mathur, Nupur; Bhatnagar, Pradeep; Jain, B L

    2010-07-01

    Handmade paper and cardboard industries are involved in processing of cellulosic and ligno-cellulosic substances for making paper by hand or simple machinery. In the present study solid sludge and effluent of both cardboard and handmade paper industries was collected for developing a mushroom cultivation technique to achieve zero waste discharges. Findings of present research work reveals that when 50% paper industries waste is used by mixing with 50% (w/w) wheat straw, significant increase (96.38%) in biological efficiency over control of wheat straw was observed. Further, cultivated basidiocarps showed normal morphology of stipe and pileus. Cross section of lamellae did not show any abnormality in the attachment of basidiospores, hymenal trama and basidium. No toxicity was found when fruiting bodies were tested chemically. PMID:21186717

  2. Wet air oxidation of solid waste made of polymers

    SciTech Connect

    Krisner, E.; Ambrosio, M.; Massiani, C.

    2000-03-01

    Wet air oxidation was attempted on synthetic (mixture of plastics of various compositions) and natural (cellulose substances) solid polymers. The temperature was maintained at 270 C and the oxygen pressure varied from 0 to 2 MPa (from understoichiometric conditions to oxygen excess). No valorizable compounds were found, even in runs carried out under an oxygen deficit. Suitable conditions for the total destruction of the initial polymers were temperatures above 270 C, an excess of oxygen, and a residence time of less than 1 h. Only such degradable compounds as acetic and benzoic acids are found at low concentrations. Formation of chlorine and gaseous hydrochloric acid can be limited by adding CaCO{sub 3} as a neutralizing agent.

  3. Proceedings of the 50. industrial waste conference

    SciTech Connect

    Wukasch, R.F.

    1996-11-01

    The papers in these proceedings are arranged into the following topical sections: site remediation (15 papers); physical and chemical processes (15); landfills and leachate treatment (4); solidification, foundry, and combustion residues (16); other biological processes (8); volatile organic chemicals (4); respirometry and effluent toxicity (4); industrial waste case histories (8); pollution prevention (3); and poster presentations (25 abstracts). Most papers have been processed separately for inclusion on the data base.

  4. INDUSTRIAL WASTE AND PRETREATMENT IN THE BUFFALO MUNICIPAL SYSTEM

    EPA Science Inventory

    The requirements and affects of the combined treatment of industrial and domestic wastewaters were investigated for the Buffalo Sewer Authority's sewerage system. A comprehensive industrial waste survey was performed to obtain the required background information on industrial dis...

  5. Hazardous waste minimization. Part VI. Waste minimization in the foundry industry

    SciTech Connect

    Oman, D.E.

    1988-07-01

    The foundry industry is a major consumer of waste materials (scrap). Unfortunately, the recycling of these waste materials can result in the generation of hazardous wastes that must be properly managed at a significant cost. This article focuses on two waste streams in the foundry industry; calcium carbide desulfurization slag and melt emission control residuals. The author presents an overview of how foundries have evaluated different waste management options with the ultimate goal of minimizing the generation of hazardous waste.

  6. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building. PMID:18514765

  7. Application of wet waste from shrimp ( Litopenaeus vannamei) with or without sea mud to feeding sea cucumber ( Stichopus monotuberculatus)

    NASA Astrophysics Data System (ADS)

    Chen, Yanfeng; Hu, Chaoqun; Ren, Chunhua

    2015-02-01

    In the present study, the applicability of the wet waste collected from shrimp ( Litopenaeus vannamei) to the culture of sea cucumber ( Stichopus monotuberculatus) was determined. The effects of dietary wet shrimp waste on the survival, specific growth rate (SGR), fecal production rate (FPR), ammonia- and nitrite-nitrogen productions of sea cucumber were studied. The total organic matter (TOM) level in the feces of sea cucumber was compared with that in corresponding feeds. Diet C (50% wet shrimp waste and 50% sea mud mash) made sea cucumber grow faster than other diets. Sea cucumber fed with either diet D (25% wet shrimp waste and 75% sea mud mash) or sole sea mud exhibited negative growth. The average lowest total FPR of sea cucumber occurred in diet A (wet shrimp waste), and there was no significant difference in total FPR between diet C and diet E (sea mud mash) ( P > 0.05). The average ammonia-nitrogen production of sea cucumber in different diet treatments decreased gradually with the decrease of crude protein content in different diets. The average highest nitrite-nitrogen production occurred in diet E treatment, and there was no significant difference in nitrite-nitrogen production among diet A, diet B (75% wet shrimp waste and 25% sea mud mash) and diet C treatments ( P > 0.05). In each diet treatment, the total organic matter (TOM) level in feces decreased to different extent compared with that in corresponding feeds.

  8. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-03-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  9. Bench-scale operation of the DETOX wet oxidation process for mixed waste

    SciTech Connect

    Dhooge, P.M.

    1993-01-01

    Waste matrices containing organics, radionuclides, and metals pose difficult problems in waste treatment and disposal when the organic compounds and/or metals are considered to be hazardous. A means of destroying hazardous organic components while safely containing and concentrating metals would be extremely useful in mixed waste volume reduction or conversion to a radioactive-only form. Previous studies have found the DETOX, a patented process utilizing a novel catalytic wet oxidation by iron(III) oxidant, cold have successful application to mixed wastes, and to many other waste types. This paper describes the results of bench scale studies of DETOX applied to the components of liquid mixed wastes, with the goal of establishing parameters for the design of a prototype waste treatment unit. Apparent organic reaction rate orders, and the dependence of apparent reaction rate on the contact area, were measured for vacuum pump oil, scintillation fluids, and trichloroethylene. It was found that reaction rate was proportional to contact area above about 2.% w/w loading of organic. Oxidations in a 4 liter. volume, mixed bench top reactor have given destruction efficiencies of 99.9999+% for common organics. Reaction rates achieved in the mixedbench top reactor were one to two orders of magnitude greater than had been achieved in unmixed reactions; a thoroughly mixed reactor should be capable of oxidizing 10. to 100.+ grams of organic per liter-hour,depending on the nature and concentration of the organic.

  10. ALGAE AND CRUSTACEANS AS INDICATORS OF BIOACTIVITY OF INDUSTRIAL WASTES

    EPA Science Inventory

    Freshwater (Selenastrum capricornutum) and estuarine (Skeketonema costatum) algae were exposed to liquid wastes from 10 industrial sites in laboratory bioassays. All wastes affected algal growth either by stimulation or by stimulation at low concentrations and inhibition at high ...

  11. SPONTANEOUS CATALYTIC WET AIR OXIDATION DURING PRE-TREATMENT OF HIGH-LEVEL RADIOACTIVE WASTE SLUDGE

    SciTech Connect

    Koopman, D.; Herman, C.; Pareizs, J.; Bannochie, C.; Best, D.; Bibler, N.; Fellinger, T.

    2009-10-01

    Savannah River Remediation, LLC (SRR) operates the Defense Waste Processing Facility for the U.S. Department of Energy at the Savannah River Site. This facility immobilizes high-level radioactive waste through vitrification following chemical pretreatment. Catalytic destruction of formate and oxalate ions to carbon dioxide has been observed during qualification testing of non-radioactive analog systems. Carbon dioxide production greatly exceeded hydrogen production, indicating the occurrence of a process other than the catalytic decomposition of formic acid. Statistical modeling was used to relate the new reaction chemistry to partial catalytic wet air oxidation of both formate and oxalate ions driven by the low concentrations of palladium, rhodium, and/or ruthenium in the waste. Variations in process conditions led to increases or decreases in the total oxidative destruction, as well as partially shifting the preferred species undergoing destruction from oxalate ion to formate ion.

  12. The Energy Impact of Industrial Recycling and Waste Exchange 

    E-print Network

    Phillips, W. C.

    1992-01-01

    and-wood products have proven to be a valuable waste material, whether used as a manufacturing comQonent or as an energy source~ Recycling paper, lor example, uses one third less energy than is required to manufacture paper from virgin fibers. A... OF INDUSTRIAL RECYCLING AND WASTE EXCHANGE W. CURTIS PHILLIPS, SYSTEMS ENGINEER/INDUSTRIAL PROJECT MANAGER, N.C. ENERGY DIVISION, RALEIGH, NC ABSTRACT Recycling and waste exchange, particularly in the industrial sector, has a substantial positive energy...

  13. Waste incineration industry and development policies in China.

    PubMed

    Li, Yun; Zhao, Xingang; Li, Yanbin; Li, Xiaoyu

    2015-12-01

    The growing pollution from municipal solid waste due to economic growth and urbanization has brought great challenge to China. The main method of waste disposal has gradually changed from landfill to incineration, because of the enormous land occupation by landfills. The paper presents the results of a study of the development status of the upstream and downstream of the waste incineration industry chain in China, reviews the government policies for the waste incineration power industry, and provides a forecast of the development trend of the waste incineration industry. PMID:26303653

  14. Characterization of industrial process waste heat and input heat streams

    SciTech Connect

    Wilfert, G.L.; Huber, H.B.; Dodge, R.E.; Garrett-Price, B.A.; Fassbender, L.L.; Griffin, E.A.; Brown, D.R.; Moore, N.L.

    1984-05-01

    The nature and extent of industrial waste heat associated with the manufacturing sector of the US economy are identified. Industry energy information is reviewed and the energy content in waste heat streams emanating from 108 energy-intensive industrial processes is estimated. Generic types of process equipment are identified and the energy content in gaseous, liquid, and steam waste streams emanating from this equipment is evaluated. Matchups between the energy content of waste heat streams and candidate uses are identified. The resultant matrix identifies 256 source/sink (waste heat/candidate input heat) temperature combinations. (MHR)

  15. Characteristics and management of infectious industrial waste in Taiwan

    SciTech Connect

    Huang, M.-C. Lin, Jim Juimin

    2008-11-15

    Infectious industrial waste management in Taiwan is based on the specific waste production unit. In other countries, management is based simply on whether the producer may lead to infectious disease. Thus, Taiwan has a more detailed classification of infectious waste. The advantage of this classification is that it is easy to identify the sources, while the disadvantage lies in the fact that it is not flexible and hence increases cost. This study presents an overview of current management practices for handling infectious industrial waste in Taiwan, and addresses the current waste disposal methods. The number of small clinics in Taiwan increased from 18,183 to 18,877 between 2003 and 2005. Analysis of the data between 2003 and 2005 showed that the majority of medical waste was general industrial waste, which accounted for 76.9%-79.4% of total medical waste. Infectious industrial waste accounted for 19.3%-21.9% of total medical waste. After the SARS event in Taiwan, the amount of infectious waste reached 19,350 tons in 2004, an increase over the previous year of 4000 tons. Waste minimization was a common consideration for all types of waste treatment. In this study, we summarize the percentage of plastic waste in flammable infectious industrial waste generated by medical units, which, in Taiwan was about 30%. The EPA and Taiwan Department of Health have actively promoted different recycling and waste reduction measures. However, the wide adoption of disposable materials made recycling and waste reduction difficult for some hospitals. It has been suggested that enhancing the education of and promoting communication between medical units and recycling industries must be implemented to prevent recyclable waste from entering the incinerator.

  16. Phytotoxicity of composted herbal pharmaceutical industry wastes.

    PubMed

    Suthar, Surindra; Singh, Deepika

    2011-08-01

    This work demonstrates the phytotoxicity screening of composted herbal pharmaceutical industry waste (HPIW) using seed bioassay method. The composted industrial waste should be tested at lab scale prior to recommendation for land application. HPIW was mixed with soil to produce four treatments: T(1) (1:1), T(2) (1:2), T(3) (1:3), and T(4) (1:0) for toxicity screening using Pisum sativum seeds. After 72 h relative seed germination (RSG), relative root growth (RRG) and germination index (GI) were recorded. Seedlings were observed for further plant growth and tissue biochemistry (chlorophyll, soluble sugar, starch, carotenoid, and protein) estimation. RSG, RRG, and GI values were better in T(1) and T(2) than others. GI was in the ranges of 36.62 % (T(4)) to 170.38 % (T(2)). The seedling growth and biochemical parameters were better in seedling obtained from potting media containing low proportion of HPIW (i.e., T(1) and T(2)). Results clearly suggested that composted HPIW may be utilized effectively for crop production after dilution under sustainable farming system program. PMID:22648349

  17. Analysis of a wet scrubber network in the air remediation of industrial workplaces: benefit for the city air quality

    E-print Network

    Avveduto, Alessandro; Pace, Lorenzo; Curci, Gabriele; Monaco, Alessio; De Giovanni, Marina; Giammaria, Franco; Spanto, Giuseppe; Tripodi, Paolo

    2015-01-01

    Industrial activities carried out in confined spaces are characterized by a very specific type of air pollution. The extended exposure to this kind of pollution is often highly harmful, resulting in dramatic effects both on health and safety aspects. The indoor industrial abatement systems, adopted to purify the air, are typically applied to the emission points. The processed air is subsequently emitted outside. In this study we present the experimental results of three-stage wet scrubber systems installed in the industrial workplace of a (i) fiberglass processing plant, where the highest exposure levels to volatile compounds are nowadays today monitored,and of a (ii) waste-to-energy plant, characterized by a very high particulate matter level. The adopted technology, to be used as complementing strategy,does not require special disposal procedures and the processed air is re-emitted in the same work environment for the benefit of the work operators. The operation of the scrubbers network during the working a...

  18. CAPITAL AND O AND M COST RELATIONSHIPS FOR HAZARDOUS WASTE INCINERATION: ADDENDUM NO. 1 - IONIZING WET SCRUBBER COSTS

    EPA Science Inventory

    This report addresses certain cost aspects of hazardous waste incineration; specifically capital and operating costs for ionizing wet scrubbers (IWS). It is an addendum to a more comprehensive report 'Capital and O&M Cost Relationships for Hazardous Waste Incineration,' which dev...

  19. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    Thermal energy storage systems designed for energy conservation through the recovery, storage, and reuse of industrial process waste heat are reviewed. Consideration is given to systems developed for primary aluminum, cement, the food processing industry, paper and pulp, and primary iron and steel. Projected waste-heat recovery and energy savings are listed for each category.

  20. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a)...

  1. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a)...

  2. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a)...

  3. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a)...

  4. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sources or (b) costs allocable to the treatment for control or removal of pollutants in wastewater... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Treatment of industrial wastes. 35.925... § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not include (a)...

  5. Textile industry wastes. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    Not Available

    1994-04-01

    The bibliography contains citations concerning the generation and treatment of wastes from the textile processing industry. Articles discuss treatment options such as land application, activated sludge, aeration, decoloring, recovery, and recycling. Citations examine the biodegradation of dyes, destruction of organics, treatment of finishing wastes, sludges, and solid waste products. (Contains a minimum of 222 citations and includes a subject term index and title list.)

  6. Textile industry wastes. (Latest citations from Oollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-03-01

    The bibliography contains citations concerning the generation and treatment of wastes from the textile processing industry. Articles discuss treatment options such as land application, activated sludge, aeration, decoloring, recovery, and recycling. Citations examine the biodegradation of dyes, destruction of organics, treatment of finishing wastes, sludges, and solid waste products. (Contains a minimum of 211 citations and includes a subject term index and title list.)

  7. Development potential of e-waste recycling industry in China.

    PubMed

    Li, Jinhui; Yang, Jie; Liu, Lili

    2015-06-01

    Waste electrical and electronic equipment (WEEE or e-waste) recycling industries in China have been through several phases from spontaneous informal family workshops to qualified enterprises with treatment fund. This study attempts to analyse the development potential of the e-waste recycling industry in China from the perspective of both time and scale potential. An estimation and forecast of e-waste quantities in China shows that, the total e-waste amount reached approximately 5.5 million tonnes in 2013, with 83% of air conditioners, refrigerators, washing machines, televisions sand computers. The total quantity is expected to reach ca. 11.7 million tonnes in 2020 and 20 million tonnes in 2040, which indicates a large increase potential. Moreover, the demand for recycling processing facilities, the optimal service radius of e-waste recycling enterprises and estimation of the profitability potential of the e-waste recycling industry were analysed. Results show that, based on the e-waste collection demand, e-waste recycling enterprises therefore have a huge development potential in terms of both quantity and processing capacity, with 144 and 167 e-waste recycling facilities needed, respectively, by 2020 and 2040. In the case that e-waste recycling enterprises set up their own collection points to reduce the collection cost, the optimal collection service radius is estimated to be in the range of 173?km to 239?km. With an e-waste treatment fund subsidy, the e-waste recycling industry has a small economic profit, for example ca. US$2.5/unit for television. The annual profit for the e-waste recycling industry overall was about 90 million dollars in 2013. PMID:25990983

  8. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-01-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  9. Waste minimization in the oil and gas industries

    SciTech Connect

    Smith, K.P.

    1992-09-01

    Recent legislative actions place an emphasis on waste minimization as opposed to traditional end-of-pipe waste management. This new philosophy, coupled with increasing waste disposal costs and associated liabilities, sets the stage for investigating waste minimization opportunities in all industries wastes generated by oil and gas exploration and production (E&P) and refuting activities are regulated as non-hazardous under the Resource Conservation and Recovery Act (RCRA). Potential reclassification of these wastes as hazardous would make minimization of these waste streams even more desirable. Oil and gas E&P activities generate a wide variety of wastes, although the bulk of the wastes (98%) consists of a single waste stream: produced water. Opportunities to minimize E&P wastes through point source reduction activities are limited by the extractive nature of the industry. Significant waste minimization is possible, however, through recycling. Recycling activities include underground injection of produced water, use of closed-loop drilling systems, reuse of produced water and drilling fluids in other oilfield activities, use of solid debris as construction fill, use of oily wastes as substitutes for road mix and asphalt, landspreading of produced sand for soil enhancement, and roadspreading of suitable aqueous wastes for dust suppression or deicing. Like the E&P wastes, wastes generated by oil and gas treatment and refining activities cannot be reduced substantially at the point source but can be reduced through recycling. For the most part, extensive recycling and reprocessing of many waste streams already occurs at most petroleum refineries. A variety of innovative waste treatment activities have been developed to minimize the toxicity or volume of oily wastes generated by both E&P and refining activities. These treatments include bioremediation, oxidation, biooxidation, incineration, and separation. Application of these treatment processes is still limited.

  10. Environmental management of industrial hazardous wastes in India.

    PubMed

    Dutta, Shantanu K; Upadhyay, V P; Sridharan, U

    2006-04-01

    Hazardous wastes are considered highly toxic and therefore disposal of such wastes needs proper attention so as to reduce possible environmental hazards. Industrial growth has resulted in generation of huge volume of hazardous wastes in the country. In addition to this, hazardous wastes sometimes get imported mainly from the western countries for re-processing or recycling. Inventorisation of hazardous wastes generating units in the country is not yet completed. Scientific disposal of hazardous wastes has become a major environmental issue in India. Hazardous Wastes (Management and Handling) Rules, 1989 have been framed by the Central Government and amended in 2000 and 2003 to deal with the hazardous wastes related environmental problems that may arise in the near future. This paper gives details about the hazardous wastes management in India. Health effects of the selected hazardous substances are also discussed in the paper. PMID:17913193

  11. Industrial waste treatment process engineering. Volume 2: Biological processes

    SciTech Connect

    Celenza, G.J.

    1999-11-01

    Industrial Waste Treatment Process Engineering is a step-by-step implementation manual in three volumes, detailing the selection and design of industrial liquid and solid waste treatment systems. It consolidates all the process engineering principles required to evaluate a wide range of industrial facilities, starting with pollution prevention and source control and ending with end-of-pipe treatment technologies. This three-volume set is a practical guide for environmental engineers with process implementation responsibilities; a one-stop resource for process engineering requirements--from plant planning to implementing specific treatment technologies for unit operations; a comprehensive reference for industrial waste treatment technologies; and includes calculations and worked problems based on industry cases. The contents of Volume 2 include: aeration; aerobic biological oxidation; activated sludge system; biological oxidation: lagoons; biological oxidation: fixed film processes; aerobic digesters; anaerobic waste treatment, anaerobic sludge treatment; and sedimentation.

  12. Meat-, fish-, and poultry-processing wastes. [Industrial wastes

    SciTech Connect

    Litchfield, J.H.

    1982-06-01

    A review of the literature dealing with the effectiveness of various waste processing methods for meat-, fish,-, and poultry-processing wastes is presented. Activated sludge processes, anaerobic digestion, filtration, screening, oxidation ponds, and aerobic digestion are discussed.

  13. Purdue University industrial waste conference proceedings

    SciTech Connect

    Not Available

    1988-01-01

    This book contains information about: Hazardous and Toxic Wastes; Aerobic Processes; Anaerobic Processes; and Heavy Metal Wastes. It includes applications; research; methods and techniques; required details; selected and reviewed case histories; and operating data.

  14. Olefin Recovery from Chemical Industry Waste Streams

    SciTech Connect

    A.R. Da Costa; R. Daniels; A. Jariwala; Z. He; A. Morisato; I. Pinnau; J.G. Wijmans

    2003-11-21

    The objective of this project was to develop a membrane process to separate olefins from paraffins in waste gas streams as an alternative to flaring or distillation. Flaring these streams wastes their chemical feedstock value; distillation is energy and capital cost intensive, particularly for small waste streams.

  15. Hydrometallurgically treating antimony-bearing industrial wastes

    NASA Astrophysics Data System (ADS)

    Anderson, C. G.

    2001-01-01

    In many instances, by-products or wastes containing antimony are generated during metallurgical processes. Although these materials pose environmental, recycling, and marketing challenges worldwide, the use of antimony hydrometallurgical leaching principles and technologies may provide a remedy. This paper outlines techniques for treating antimony-containing wastes and offers examples of applications for those wastes and by-products.

  16. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.

    PubMed

    Nogueira, Francisco G E; Castro, Isabela A; Bastos, Ana R R; Souza, Guilherme A; de Carvalho, Janice G; Oliveira, Luiz C A

    2011-02-28

    The leather industry produces a large quantity of solid waste (wet blue leather), which contains a high amount of chromium. After its removal from wet blue leather, a solid collagenic material is recovered, containing high nitrogen levels, which can be used as a nitrogen source in agriculture. In order to take more advantage of the collagen, it was enriched with mineral P and K in order to produce NPK formulations. The objective was also to evaluate the efficiency of such formulations as a nutrient supply for rice plants in an Oxisoil, under greenhouse conditions. The application of PK enriched-collagen formulations resulted in N contents in the vegetative parts and grains of rice plants which were equivalent or superior to those obtained with urea and commercial NPK formulations. PMID:21167640

  17. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not...

  18. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not...

  19. 40 CFR 35.925-15 - Treatment of industrial wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GRANTS AND OTHER FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act § 35.925-15 Treatment of industrial wastes. That the allowable project costs do not...

  20. Recovering Industrial Waste Heat by the Means of Thermoelectricity

    E-print Network

    Kjelstrup, Signe

    Recovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit. An experimental set up has been constructed to test the performance of a thermoelectric module operating

  1. WASTE MINIMIZATION IN THE PRINTED CIRCUIT BOARD INDUSTRY: CASE STUDIES

    EPA Science Inventory

    The report presents information on waste minimization practices currently employed in the printed circuit board (PCB) and semiconductor manufacturing industries. Case studies conducted at six facilities evaluated the technical, environmental and cost impacts associated with the i...

  2. SURVEY OF SOLIDIFICATION/STABILIZATION TECHNOLOGY FOR HAZARDOUS INDUSTRIAL WASTES

    EPA Science Inventory

    Stabilization/solidification or fixation is a process for treating industrial solid wastes (primarily sludges) that contain hazardous constituents to prevent dissolution and loss of toxic materials into the environment. Most of these treatment processes are designed to produce a ...

  3. Textile industry wastes. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning the generation and treatment of wastes from the textile processing industry. Articles discuss treatment options such as land application, activated sludge, aeration, decoloring, recovery, and recycling. Citations examine the biodegradation of dyes, destruction of organics, treatment of finishing wastes, sludges, and solid waste products. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  4. Industrial waste needs assessment. Phase 1

    SciTech Connect

    Radel, R.J.; Willis, M.P.

    1993-10-01

    In January of 1992 a team was put together to begin the process of assessing the industrial waste needs of the Tennessee Valley. The team consisted of representatives from the various TVA Resource Group organizations. This initial team recommended as a starting point in the process a two-phase market research effort. A second team was then commissioned to conduct the first phase of this market research effort. The first phase of that marketing effort is now complete. This report contains an analysis of the data obtained through interviews of more than 168 individuals representing a similar number of organizations. A total of 37 TVA Resource Group employees were involved in the contact process from various organizations. In addition, the appendices provide summaries of the data used in designing the process and the reports of the Contact Coordinators (who were responsible for a series of visits). As a result of the data analysis, the Review Team makes the following recommendations: 1. Publish this report and distribute to the new management within TVA Resource Group as well as to all those participating as contacts, visitors, and contact coordinators. 2. The Resource Group management team, or management teams within each of the respective organizations within Resource Group, appoint Phase 2 assessement teams for as many of the problem areas listed in Table III as seem appropriate. We further recommend that, where possible, cross-organizational teams be used to examine individual problem areas. 3. Make this report available within Generating and Customer Groups, especially to the Customer Service Centers. 4. Establish a process to continue follow up with each of the contacts made in this assessment.

  5. STUDY OF CODISPOSED MUNICIPAL AND TREATED/UNTREATED INDUSTRIAL WASTES

    EPA Science Inventory

    A study was undertaken to determine the long-term effects of codisposal of industrial waste (IW) and municipal solid waste (MSW) under controlled, simulated landfill conditions. Three IW's (treated or untreated by solidification) were disposed with MSW in nine specially designed ...

  6. HAZARDOUS WASTE INCINERATION IN INDUSTRIAL PROCESSES: CEMENT AND LIME KILNS

    EPA Science Inventory

    With more liquid wastes due to be banned from land disposal facilities, expanding hazardous waste incineration capacity becomes increasingly important. At the same time, industrial plants are increasingly seeking to find new sources of lower cost fuel, specifically from the dispo...

  7. Solid industrial wastes and their management in Asegra (Granada, Spain).

    PubMed

    Casares, M L; Ulierte, N; Matarán, A; Ramos, A; Zamorano, M

    2005-01-01

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both the type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping. PMID:15936934

  8. Solid industrial wastes and their management in Asegra (Granada, Spain)

    SciTech Connect

    Casares, M.L. . E-mail: zamorano@ugr.es

    2005-07-01

    ASEGRA is an industrial area in Granada (Spain) with important waste management problems. In order to properly manage and control waste production in industry, one must know the quantity, type, and composition of industrial wastes, as well as the management practices of the companies involved. In our study, questionnaires were used to collect data regarding methods of waste management used in 170 of the 230 businesses in the area of study. The majority of these companies in ASEGRA are small or medium-size, and belong to the service sector, transport, and distribution. This was naturally a conditioning factor in both the type and management of the wastes generated. It was observed that paper and cardboard, plastic, wood, and metals were the most common types of waste, mainly generated from packaging (49% of the total volume), as well as material used in containers and for wrapping products. Serious problems were observed in the management of these wastes. In most cases they were disposed of by dumping, and very rarely did businesses resort to reuse, recycling or valorization. Smaller companies encountered greater difficulties when it came to effective waste management. The most frequent solution for the disposal of wastes in the area was dumping.

  9. Exploitation of Food Industry Waste for High-Value Products.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit K

    2016-01-01

    A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. PMID:26645658

  10. QUANTIFICATION OF MUNICIPAL DISPOSAL METHODS FOR INDUSTRIALLY GENERATED HAZARDOUS WASTES

    EPA Science Inventory

    Estimations of the amounts of industrial hazardous wastes being disposed of according to various methods of disposal were generated for significant portions of the five following SIC codes: 28, Chemical and Allied Products; 29, Petroleum Refining and Related Industries; 30, Rubbe...

  11. A survey of waste minimization recommendations for three industrial sectors

    SciTech Connect

    Dunning, S.; Martin, P.

    1998-12-31

    What changes can manufacturers make to reduce waste streams and save money? A recent modification to a successful Department of Energy energy audit program has included a focus on waste minimization for small and medium-sized manufacturers. The program change was incorporated over two years ago and approximately 2,000 assessments have been completed nationwide since the change. This article will examine the results of the combined energy/waste assessments. Most of the material contained is derived from a paper published at the ASEE 1997 Annual Meeting. The paper focuses on the typical waste recommendations made for three sectors of Standard Industrial Classifications (SIC) 20-39. Recommendations vary from typical conservation measures such as recycling pallets and cardboard to direct process modifications that reduce water or chemical usage. While some recommendations are general and can be applied to any industry, others are industry-specific.

  12. Industrial wastes: meat, fish and poultry processing wastes

    SciTech Connect

    Litchfield, J.H.

    1980-06-01

    This article is a review of meat, fish and poultry processing wastes. Reviews on slaughterhouse and packinghouse wastewater treatment methods were mentioned together with processes for protein recovery from wastewater and wastewater treatment sludges.

  13. [Processing of liquid radioactive waste by RADON Industrial Research Association].

    PubMed

    Panteleev, V I; Dmitriev, S A; Sobolev, I A; Karlin, Iu V; Demkin, V I; Adamovich, D V; Slastennikov, Iu T; Il'in, V A

    2006-01-01

    The authors present experience accumulated by "RADON" Industrial Research Association in treating liquid radioactive waste. According to the presentation, activities of "R ADON" Industrial Research Association develop in three directions--evolving technical means to purify radioactive waters in "RADON" Industrial Research Association, advancing mobile plants to purify radioactive waters in other institutions, elaborating new technologies for liquid radioactive waste purifications within numerous national and international projects and agreements with various organizations (including those associated with nuclear power stations and nuclear submarines). PMID:16568842

  14. Manufacturing waste disposal practices of the chemical propulsion industry

    NASA Technical Reports Server (NTRS)

    Goldberg, Benjamin E.; Adams, Daniel E.; Schutzenhofer, Scott A.

    1995-01-01

    The waste production, mitigation and disposal practices of the United States chemical propulsion industry have been investigated, delineated, and comparatively assessed to the U.S. industrial base. Special emphasis has been placed on examination of ozone depleting chemicals (ODC's). The research examines present and anticipated future practices and problems encountered in the manufacture of solid and liquid propulsion systems. Information collected includes current environmental laws and regulations that guide the industry practices, processes in which ODC's are or have been used, quantities of waste produced, funding required to maintain environmentally compliant practices, and preventive efforts.

  15. Industrial utilization of waste derived energy

    NASA Astrophysics Data System (ADS)

    1981-06-01

    A technical and economic feasibility study of a partial oxidation unit was conducted. Major objectives of the program were: (1) disposal of both urban (municipal refuse and sewage sludge) and agricultural (dairy) wastes; and (2) the production of a medium-Btu fuel gas. The investigated wasteshed includes those portions of Western San Bernardino County, Eastern Los Angeles County, and Northwestern Riverside County. The available waste supply, transportation of these waste materials, product quantities and energy products of fuel gas steam, and electricity, markets, ferrous metals, aluminum, nonferrous metals, and slag are studied.

  16. Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration.

    PubMed

    Cárdenas-Escudero, C; Morales-Flórez, V; Pérez-López, R; Santos, A; Esquivias, L

    2011-11-30

    Industrial wet phosphoric acid production in Huelva (SW Spain) has led to the controversial stockpiling of waste phosphogypsum by-products, resulting in the release of significant quantities of toxic impurities in salt marshes in the Tinto river estuary. In the framework of the fight against global climate change and the effort to reduce carbon dioxide emissions, a simple and efficient procedure for CO(2) mineral sequestration is presented in this work, using phosphogypsum waste as a calcium source. Our results demonstrate the high efficiency of portlandite precipitation by phosphogypsum dissolution using an alkaline soda solution. Carbonation experiments performed at ambient pressure and temperature resulted in total conversion of the portlandite into carbonate. The fate of trace elements present in the phosphogypsum waste was also investigated, and trace impurities were found to be completely transferred to the final calcite. We believe that the procedure proposed here should be considered not only as a solution for reducing old stockpiles of phosphogypsum wastes, but also for future phosphoric acid and other gypsum-producing industrial processes, resulting in more sustainable production. PMID:21982535

  17. Dioxin: Impact on solid waste industry uncertain

    SciTech Connect

    McAdams, C.L.; Aquino, J.T.

    1994-11-01

    Since 1985 when US EPA published a review of the health effects of 2,3,7,8-TCDD--the most toxic of the dioxin facility of compounds--there have been numerous studies that question the severity of the risks posed by dioxin. On September 13, EPA released for public review a draft study that reaffirms that association between dioxin and cancer published in the 1985 assessment. The draft study identifies dioxin sources that are known to contribute to environmental contamination. Identified as a key (and the largest) source was waste combustion, with medical and municipal waste combustion dominating the combustion sources. On September 20, EPA published proposed rules to require the municipal solid waste incinerators sharply reduce the level of dioxin and other pollutants. Rules to similarly regulate medical waste incineration should be published before year's end.

  18. Waste heat utilization in industrial processes

    NASA Technical Reports Server (NTRS)

    Weichsel, M.; Heitmann, W.

    1978-01-01

    A survey is given of new developments in heat exchangers and heat pumps. With respect to practical applications, internal criteria for plant operation are discussed. Possibilities of government support are pointed out. Waste heat steam generators and waste heat aggregates for hot water generation or in some cases for steam superheating are used. The possibilities of utilization can be classified according to the economic improvements and according to their process applications, for example, gascooling. Examples are presented for a large variety of applications.

  19. MUTAGENISTIC TESTING OF INDUSTRIAL WASTES FROM REPRESENTATIVE ORGANIC CHEMICAL INDUSTRIES

    EPA Science Inventory

    The general applicability of the Ames test for screening wastewater samples was investigated. Application of the Ames test to raw and treated wastewaters from representative organic chemical industries involved the investigation of several problems: (1) the feasibility of using t...

  20. Food waste generation and industrial uses: A review.

    PubMed

    Girotto, Francesca; Alibardi, Luca; Cossu, Raffaello

    2015-11-01

    Food waste is made up of materials intended for human consumption that are subsequently discharged, lost, degraded or contaminated. The problem of food waste is currently on an increase, involving all sectors of waste management from collection to disposal; the identifying of sustainable solutions extends to all contributors to the food supply chains, agricultural and industrial sectors, as well as retailers and final consumers. A series of solutions may be implemented in the appropriate management of food waste, and prioritised in a similar way to waste management hierarchy. The most sought-after solutions are represented by avoidance and donation of edible fractions to social services. Food waste is also employed in industrial processes for the production of biofuels or biopolymers. Further steps foresee the recovery of nutrients and fixation of carbon by composting. Final and less desirable options are incineration and landfilling. A considerable amount of research has been carried out on food waste with a view to the recovery of energy or related products. The present review aims to provide an overview of current debate on food waste definitions, generation and reduction strategies, and conversion technologies emerging from the biorefinery concept. PMID:26130171

  1. Stakeholder analysis for industrial waste management systems.

    PubMed

    Heidrich, Oliver; Harvey, Joan; Tollin, Nicola

    2009-02-01

    Stakeholder approaches have been applied to the management of companies with a view to the improvement of all areas of performance, including economic, health and safety, waste reduction, future policies, etc. However no agreement exists regarding stakeholders, their interests and levels of importance. This paper considers stakeholder analysis with particular reference to environmental and waste management systems. It proposes a template and matrix model for identification of stakeholder roles and influences by rating the stakeholders. A case study demonstrates the use of these and their ability to be transferred to other circumstances and organizations is illustrated by using a large educational institution. PMID:18790624

  2. Radioactive and hazardous constituents screening plan for industrial waste landfill IV

    SciTech Connect

    Lankford, L.L.; Bohrman, D.E.

    1994-05-01

    Industrial Waste Landfill IV (IWLF IV) is permitted (Registration Number IDL 01 1030075) to accept nonhazardous, nonradioactive industrial waste as detailed in the {open_quotes}Design and Operating Procedures for the Y-12 Industrial Waste Landfill IV,{close_quotes} Y/TS-399 and by Tennessee Department of Environment and Conservation (TDEC) special waste approval. Both are approved by the TDEC.

  3. Industrial Low Temperature Waste Heat Utilization 

    E-print Network

    Altin, M.

    1981-01-01

    EVAPORATION WASTE HEAT 220 0 F STEAM 380?F. 35M FEED PRODUCT 8000LBS -' ~i&:: Zo "'yZ \\;a: ~= :!~ ~~ NS :1~ !:iz >OS! ~~ ~::I ... ~ -'.n Ca: ~Cl ::I!ti! Cl~ 3! !OlI 4GO 3110 ZOO ENERGY SINK (AMBIENT) 70...

  4. Industrial Waste Heat Recovery Using Heat Pipes 

    E-print Network

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  5. Prospects for using a full-scale installation for wet combustion of organic wastes in closed life support systems.

    PubMed

    Trifonov, Sergey V; Kudenko, Yurii A; Tikhomirov, Alexander A

    2015-11-01

    The issue of recycling organic wastes in closed life support systems (CLSS) includes both fundamental aspects of environmental safety of the recycled products and their effective involvement in material cycles and technical aspects related to the structure of the system and the crew's demands. This study estimates the effectiveness of wet combustion of different amounts of organic wastes in hydrogen peroxide under application of an alternating current electric field. The study also addresses the possibility of controlling the process automatically. The results show that processing of greater amounts of wastes reduces specific power consumption and shortens the duration of the process, without significantly affecting the level of oxidation of the products. An automatic control system for a semi-commercial installation has been constructed and tested experimentally. The solution of mineralized human wastes prepared in the automatically controlled process in this installation was successfully used to grow radish plants, with the main production parameters being similar to those of the control. PMID:26553633

  6. Solid waste management in the hospitality industry: a review.

    PubMed

    Pirani, Sanaa I; Arafat, Hassan A

    2014-12-15

    Solid waste management is a key aspect of the environmental management of establishments belonging to the hospitality sector. In this study, we reviewed literature in this area, examining the current status of waste management for the hospitality sector, in general, with a focus on food waste management in particular. We specifically examined the for-profit subdivision of the hospitality sector, comprising primarily of hotels and restaurants. An account is given of the causes of the different types of waste encountered in this sector and what strategies may be used to reduce them. These strategies are further highlighted in terms of initiatives and practices which are already being implemented around the world to facilitate sustainable waste management. We also recommended a general waste management procedure to be followed by properties of the hospitality sector and described how waste mapping, an innovative yet simple strategy, can significantly reduce the waste generation of a hotel. Generally, we found that not many scholarly publications are available in this area of research. More studies need to be carried out on the implementation of sustainable waste management for the hospitality industry in different parts of the world and the challenges and opportunities involved. PMID:25194519

  7. Hazardous waste reduction in the metal finishing industry

    SciTech Connect

    Not Available

    1989-01-01

    This study identifies opportunities for waste reduction available to the metal finishing industry and develops a generic audit protocol that can be used by metal finishers to assess their own waste reduction opportunities. The study emphasizes technologies available to metal finishing plants of various sizes. Typically, these shops operate a variety of physical, chemical and electrochemical processes. Chemical processes include degreasing, cleaning, pickling, etching, coating, and electroless plating. Electrochemical processes include plating and anodizing. The study identifies three categories of waste reduction technologies that are available to metal finishers: source reduction, recycling and resource recovery, and alternative treatment.

  8. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  9. Hazardous waste management in Chilean main industry: an overview.

    PubMed

    Navia, Rodrigo; Bezama, Alberto

    2008-10-01

    The new "Hazardous Waste Management Regulation" was published in the Official Newspaper of the Chilean Republic on 12 June 2003, being in force 365 days after its publication (i.e., 12 June 2004). During the next 180 days after its publication (i.e., until 12 December 2004), each industrial facility was obligated to present a "Hazardous Waste Management Plan" if the facility generates more than 12 ton/year hazardous wastes or more than 12 kg/year acute toxic wastes. Based on the Chilean industrial figures and this new regulation, hazardous waste management plans were carried out in three facilities of the most important sectors of Chilean industrial activity: a paper production plant, a Zn and Pb mine and a sawmill and wood remanufacturing facility. Hazardous wastes were identified, classified and quantified in all facilities. Used oil and oil-contaminated materials were determined to be the most important hazardous wastes generated. Minimization measures were implemented and re-use and recycling options were analyzed. The use of used oil as alternative fuel in high energy demanding facilities (i.e., cement facilities) and the re-refining of the used oil were found to be the most suitable options. In the Zn and Pb mine facility, the most important measure was the beginning of the study for using spent oils as raw material for the production of the explosives used for metals recovery from the rock. In Chile, there are three facilities producing alternative fuels from used oil, while two plants are nowadays re-refining oil to recycle it as hydraulic fluid in industry. In this sense, a proper and sustainable management of the used oil appears to be promissory. PMID:18337002

  10. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Astrophysics Data System (ADS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO 2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis, 1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project.

  11. Characterization of microbial and chemical composition of shuttle wet waste with permanent gas and volatile organic compound analyses

    NASA Technical Reports Server (NTRS)

    Peterson, B. V.; Hummerick, M.; Roberts, M. S.; Krumins, V.; Kish, A. L.; Garland, J. L.; Maxwell, S.; Mills, A.

    2004-01-01

    Solid-waste treatment in space for Advanced Life Support, ALS, applications requires that the material can be safely processed and stored in a confined environment. Many solid-wastes are not stable because they are wet (40-90% moisture) and contain levels of soluble organic compounds that can contribute to the growth of undesirable microorganisms with concomitant production of noxious odors. In the absence of integrated Advanced Life Support systems on orbit, permanent gas, trace volatile organic and microbiological analyses were performed on crew refuse returned from the volume F "wet" trash of three consecutive Shuttle missions (STS-105, 109, and 110). These analyses were designed to characterize the short-term biological stability of the material and assess potential crew risks resulting from microbial decay processes during storage. Waste samples were collected post-orbiter landing and sorted into packaging material, food waste, toilet waste, and bulk liquid fractions deposited during flight in the volume F container. Aerobic and anaerobic microbial loads were determined in each fraction by cultivation on R2A and by acridine orange direct count (AODC). Dry and ash weights were performed to determine both water and organic content of the materials. Experiments to determine the aerobic and anaerobic biostability of refuse stored for varying periods of time were performed by on-line monitoring of CO2 and laboratory analysis for production of hydrogen sulfide and methane. Volatile organic compounds and permanent gases were analyzed using EPA Method TO15 by USEPA et al. [EPA Method TO15, The Determination of Volatile Organic Compounds (VOCs) in Ambient Air using SUMMA, Passivated Canister Sampling and Gas Chromatographic Analysis,1999] with gas chromatography/mass spectrometry and by gas chromatography with selective detectors. These baseline measures of waste stream content, labile organics, and microbial load in the volume F Shuttle trash provide data for waste subsystem analysis and atmospheric management within the ALS Project. Published by Elsevier Ltd on behalf of COSPAR.

  12. DIALYSIS FOR CONCENTRATION AND REMOVAL OF INDUSTRIAL WASTES

    EPA Science Inventory

    This project evaluates dialysis for its potential for treatment/recovery of a number of organics and inorganics found in industrial wastes along the Lower Mississippi River. The feasibility of three membrane techniques was developed. (1) The use of acid and base conjugation on th...

  13. THE GENOTOXICITY OF INDUSTRIAL WASTES AND EFFLUENTS: A REVIEW

    EPA Science Inventory

    A review of the literature published on the genotoxicity of industrial wastes and effluents using short-term genetic bioassays is presented in this document. he importance of this task arises from the ubiquity of genotoxic compounds in the environment and the need to identify the...

  14. Industrial Waste Reduction Program annual report, FY 1993

    SciTech Connect

    Not Available

    1994-01-01

    The Department of Energy`s Industrial Waste Reduction Program (IWRP) sponsors the development, demonstration, and deployment of technologies that offer a significant opportunity to reduce waste generation, improve productivity, and enhance environmental performance in US industry. The program emphasizes technology-driven solutions that are economically beneficial and environmentally sound. Its goal is to improve the energy efficiency and competitiveness of private industry by cost-effectively reducing waste. Industry, universities, national laboratories and other government agencies are working cooperatively to meet this goal. The IWRP emphasizes the timely commercialization of new technologies that can produce measurable energy, environmental, and economic benefits. All projects are substantially cost-shared with private companies to foster the commercialization process. The program is proud to claim four successfully commercialized technologies that have begun generating benefits. The current IWRP portfolio boasts 32 projects in progress. Funding for the IWRP has grown from $1.7 million in 1990 to $13 million in 1994. New companies join the program each year, reaping the benefits of working cooperatively with government. New technologies are expected to reach commercial success in fiscal year (FY) 1994, further increasing the benefits already accrued. Future Annual Reports will also include projects from the Waste Utilization and Conversion Program. Descriptions of the program`s 32 active projects are organized in this report according these elements. Each project description provides a brief background and the major accomplishments during FY 1993.

  15. PHYSICAL AND ENGINEERING PROPERTIES OF HAZARDOUS INDUSTRIAL WASTES AND SLUDGES

    EPA Science Inventory

    This report presents the results of a laboratory testing program to investigate the properties of raw and chemically fixed hazardous industrial wastes and flue gas desulfurization (FGD) sludges. Specimens of raw and fixed sludges were subjected to a variety of tests commonly used...

  16. SYNTHETIC RESIN ADSORBENTS IN TREATMENT OF INDUSTRIAL WASTE STREAMS

    EPA Science Inventory

    The use of synthetic polymeric adsorbents for removal of organic pollutants from industrial waste streams is a viable alternative to more common treatment methods such as carbon adsorption. However, resin technology is not widely practiced due to the difficulty of selecting the a...

  17. Military base closures: A waste industry business opportunity

    SciTech Connect

    McAdams, C.L.

    1994-10-01

    Military bases across the country are being shut down as part of a domestic military consolidation that began five years ago. The ramifications of these base closures for the environmental industry are significant. Specifically, the closure of military bases across the country could signal the opening of new, and lucrative, opportunities for the waste management industry. These opportunities fall into two broad categories: first--the site remediation of bases slated for closure; and second--the potential use of former military sites for waste management facilities. In most cases, regulations require that, prior to the sale of federal land to local governments or private companies, hazardous wastes must be cleaned up. The result An economic boon for companies serving in the remediation process. In many cases, there are readily available, and proven, solutions of treatment, remediation, and restoration for these sites.

  18. Conversion of polyester/cotton industrial waste to higher value

    SciTech Connect

    Barnhardt, R.A.; Cowgill, W.P.; Walsh, W.K.; Cates, D.M.

    1986-01-01

    The primary textile industry in 1981 produced 1.5 billion pounds of blended polyester/cotton (PET/Cotton) yarns that are chiefly polyester. The polyester component, which is almost entirely poly(ethylene terephthalate) (PET), is polymerized from petroleum products and furnished to the textile industry as staple fiber. About 3% of the PET/Cotton production is waste. Although substantial markets exist for the separate products, the problem of economically separating the components has not been solved. The alternative is to develop an application for the unseparated waste. This project was undertaken to study the feasibility of using the waste blends as feedstock for injection molded plastic. Thermal and mechanical properties were determined on the compacts.

  19. Hazardous solid waste from metallurgical industries.

    PubMed Central

    Leonard, R P

    1978-01-01

    Types of land disposed residuals from selected metal smelting and refining industries are described, as are the origin and disposition of land disposed residuals from the primary copper industry as an example. Quantities of land-disposed or stored residuals, including slags, sludges, and dusts, are given per unit of metal production for most primary and secondary metal smelting and refining industries. Assessments of the hazard potential of residuals are given. Present treatment and disposal of residuals are discussed and assessed for health and environmental protection. Possible technologies for protection of ground and surface water contamination are presented. These include lined lagoons, chemical fixation of sludge, and ground sealing. Possibilities of resource recovery from residuals are discussed. Data are presented showing attenuation of heavy metal ions and fluorides in selected soils. The leachability and mobility of smelting and refining residuals constituents, including heavy metals and fluorides, and other potential toxicants in specific soil, geologic, and hydrologic disposal environments must be carefully considered in setting disposal requirements. PMID:738242

  20. Direction of CRT waste glass processing: Electronics recycling industry communication

    SciTech Connect

    Mueller, Julia R.; Boehm, Michael W.; Drummond, Charles

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Given a large flow rate of CRT glass {approx}10% of the panel glass stream will be leaded. Black-Right-Pointing-Pointer The supply of CRT waste glass exceeded demand in 2009. Black-Right-Pointing-Pointer Recyclers should use UV-light to detect lead oxide during the separation process. Black-Right-Pointing-Pointer Recycling market analysis techniques and results are given for CRT glass. Black-Right-Pointing-Pointer Academic initiatives and the necessary expansion of novel product markets are discussed. - Abstract: Cathode Ray Tube, CRT, waste glass recycling has plagued glass manufacturers, electronics recyclers and electronics waste policy makers for decades because the total supply of waste glass exceeds demand, and the formulations of CRT glass are ill suited for most reuse options. The solutions are to separate the undesirable components (e.g. lead oxide) in the waste and create demand for new products. Achieving this is no simple feat, however, as there are many obstacles: limited knowledge of waste glass composition; limited automation in the recycling process; transportation of recycled material; and a weak and underdeveloped market. Thus one of the main goals of this paper is to advise electronic glass recyclers on how to best manage a diverse supply of glass waste and successfully market to end users. Further, this paper offers future directions for academic and industry research. To develop the recommendations offered here, a combination of approaches were used: (1) a thorough study of historic trends in CRT glass chemistry; (2) bulk glass collection and analysis of cullet from a large-scale glass recycler; (3) conversations with industry members and a review of potential applications; and (4) evaluation of the economic viability of specific uses for recycled CRT glass. If academia and industry can solve these problems (for example by creating a database of composition organized by manufacturer and glass source) then the reuse of CRT glass can be increased.

  1. Recycled lightweight concrete made from footwear industry waste and CDW.

    PubMed

    Lima, Paulo Roberto Lopes; Leite, Mônica Batista; Santiago, Ediela Quinteiro Ribeiro

    2010-06-01

    In this paper two types of recycled aggregate, originated from construction and demolition waste (CDW) and ethylene vinyl acetate (EVA) waste, were used in the production of concrete. The EVA waste results from cutting off the EVA expanded sheets used to produce insoles and innersoles of shoes in the footwear industry. The goal of this study was to evaluate the influence of the use of these recycled aggregates as replacements of the natural coarse aggregate, upon density, compressive strength, tensile splitting strength and flexural behavior of recycled concrete. The experimental program was developed with three w/c ratios: 0.49, 0.63 and 0.82. Fifteen mixtures were produced with different aggregate substitution rates (0%, 50% EVA, 50% CDW, 25% CDW-25% EVA and 50% CDW-50% EVA), by volume. The results showed that it is possible to use the EVA waste and CDW to produce lightweight concrete having semi-structural properties. PMID:20189792

  2. Management of industrial solid wastes in Alexandria, Egypt

    SciTech Connect

    Hamza, A.; Gallup, J.D.

    1983-03-01

    This paper presents a summary of the first phase of the EPA project, which encompasses surveys of residues from industrial sources in Alexandria. Studies to date indicate that wastes from various industries can be recovered economically. Wastes such as tin cans, glass, wastepaper, and food residues from processing of fruits, starch, and beer are examples of reusable industrial wastes in Egypt. The results of experimental studies for reuse of residues from oil refining, starch and yeast processing, and steel pickling are presented. Spent clay from edible oil refining is currently discarded, causing both handling and disposal problems. This clay contains as much as 40% oil; 90% can be recovered by extraction. The recovered oil can be successfully used in soap production, and the spent clay can be reused in oil bleaching. Other examples include starch and yeast wastes, which can be used for animal feed, and spent pickling liquor, which can be used as a coagulant aid for treating paper mill wastewater. A centralized system for collecting and treating hazardous residues is proposed to permit economical recovery of valuable materials.

  3. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  4. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  5. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  6. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  7. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  8. Electrostatic separation of brass from industrial wastes

    SciTech Connect

    Iuga, A.; Morar, R.; Samuila, A.; Mihailescu, M.; Cuglesan, I.; Dascalescu, L.

    1999-05-01

    Previous studies have demonstrated that electrostatic separation can be successfully employed for the recycling of nonferrous metals from chopped electric wire and cable scrap. The aim of this paper was to investigate the possibility of using the electric field forces for the selective sorting of other granular mixtures, such as brass dross. Laboratory tests of electrostatic separation were carried out on three samples: 0.08--1 mm, 0.08--0.2 mm, and 0.2--1 mm, containing more than 66% of brass. Sample 1 was separated in a corona-electrostatic field, generated by a standard electrode arrangement: a grounded rotating roll electrode (diameter 150 mm) and two high-voltage electrodes (wire-type dual corona electrode + tubular electrode). Processing of the other two samples was carried out in a custom-designed separator comprising an extended corona field generated between a matrix-type multineedle corona electrode and a roll electrode of large diameter (250 mm). Chemical analysis of the products showed that more than 90% of the brass can be recovered with a purity higher than 95%. The extended corona field electrode arrangement proposed in this paper seems to be a promising solution for the effective recycling of other granular wastes containing copper, aluminum, and their alloys.

  9. Thermal energy storage for industrial waste heat recovery

    NASA Technical Reports Server (NTRS)

    Hoffman, H. W.; Kedl, R. J.; Duscha, R. A.

    1978-01-01

    The potential is examined for waste heat recovery and reuse through thermal energy storage in five specific industrial categories: (1) primary aluminum, (2) cement, (3) food processing, (4) paper and pulp, and (5) iron and steel. Preliminary results from Phase 1 feasibility studies suggest energy savings through fossil fuel displacement approaching 0.1 quad/yr in the 1985 period. Early implementation of recovery technologies with minimal development appears likely in the food processing and paper and pulp industries; development of the other three categories, though equally desirable, will probably require a greater investment in time and dollars.

  10. Compatibilized blends and value added products from leather industry waste

    NASA Astrophysics Data System (ADS)

    Sartore, Luciana; Di Landro, Luca

    2014-05-01

    Blends based on poly(ethylene-co-vinyl acetate) (EVA) and hydrolyzed proteins (IP), derived from waste products of the leather industry, have been obtained by reactive blending and their chemical physical properties as well as mechanical and rheological behavior were evaluated. The effect of vinyl acetate content and of transesterification agent addition to increase interaction between polymer and bio-based components were considered. These blends represent a new type of biodegradable material and resulted promising for industrial application in several fields such as packaging and agriculture as transplanting or mulching films with additional fertilizing action of IP.

  11. Management of food industry waste employing vermicomposting technology.

    PubMed

    Garg, V K; Suthar, S; Yadav, Anoop

    2012-12-01

    This paper reports the vermicomposting of food industry sludges (FIS) mixed with different organic wastes employing Eisenia fetida. A total of 10 vermicomposting units containing different wastes combinations were established. After 15 weeks significant increase in total nitrogen (N(total)) (60-214%), total available phosphorous (P(avail)) (35.8-69.6%), total sodium (Na(total)) (39-95%), and total potassium (K(total)) (43.7-74.1%), while decrease in pH (8.45-19.7%), total organic carbon (OC(total)) (28.4-36.1%) and C:N ratio (61.2-77.8%) was recorded. The results indicated that FIS may be converted into good quality manure by vermicomposting if spiked with other organic wastes in appropriate quantities. PMID:22197330

  12. Preparation of clinker from paper pulp industry wastes.

    PubMed

    Buruberri, Leire H; Seabra, M P; Labrincha, J A

    2015-04-01

    The production of paper pulp by the Kraft method generates considerable amounts of wastes. Namely, lime mud generated in the recovery circuit of chemical reagents, biological sludge from the wastewater treatment of wood digestion process and fly ash collected in the fluidized bed combustor used to generate electricity from biomass burning. The final destination of such wastes is an important concern, since environmental regulations are becoming stricter regarding their landfill. Driven by this fact, industries are looking for more sustainable solutions, such as the recycling in distinct products. This work tested these wastes as secondary raw materials to produce clinker/cement that was then experienced in mortar formulations. The first step involved the residues detailed characterization and a generated amounts survey. Then, specific but simple steps were suggested, aiming to facilitate transport and manipulation. Distinct blends were prepared and fired in order to get belitic and Portland clinkers. The Portland clinkers were processed at lower temperatures than the normally used in the industry due to the presence of mineralizing impurities in some wastes. Belite-based cements were used to produce mortars that developed satisfactory mechanical strength and did not reveal signs of deterioration or durability weaknesses. PMID:25590818

  13. Energy efficiency improvement and cost saving opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers

    SciTech Connect

    Galitsky, Christina; Worrell, Ernst; Ruth, Michael

    2003-07-01

    Corn wet milling is the most energy intensive industry within the food and kindred products group (SIC 20), using 15 percent of the energy in the entire food industry. After corn, energy is the second largest operating cost for corn wet millers in the United States. A typical corn wet milling plant in the United States spends approximately $20 to $30 million per year on energy, making energy efficiency improvement an important way to reduce costs and increase predictable earnings, especially in times of high energy-price volatility. This report shows energy efficiency opportunities available for wet corn millers. It begins with descriptions of the trends, structure and production of the corn wet milling industry and the energy used in the milling and refining process. Specific primary energy savings for each energy efficiency measure based on case studies of plants and references to technical literature are provided. If available, typical payback periods are also listed. The report draws upon the experiences of corn, wheat and other starch processing plants worldwide for energy efficiency measures. The findings suggest that given available resources and technology, there are opportunities to reduce energy consumption cost-effectively in the corn wet milling industry while maintaining the quality of the products manufactured. Further research on the economics of the measures, as well as the applicability of these to different wet milling practices, is needed to assess the feasibility of implementation of selected technologies at individual plants.

  14. Assessment of pre-competitive research and development needs for industrial waste minimization

    SciTech Connect

    Young, J.K.; Fassbender, L.L.; Sen, R.K.

    1992-02-01

    This report summarizes the findings of the first phase of a study undertaken to define a role for the Advanced Industrial Concepts (AIC) Division of the Office of Industrial Technologies (OIT) in developing waste minimization technologies for the industrial sector. The report describes the results of an industrial waste characterization based mainly on the US Environmental Protection Agency`s (EPA`s) 1989 Toxics Release Inventory (TRI) database. IN addition, it contains the results of interviews with personnel from trade associations, environmental advocacy groups, federal agencies, and industrial firms regarding pre-competitive research and development needs for industrial waste minimization. Recommendations for future AIC waste minimization activities are provided.

  15. Assessment of pre-competitive research and development needs for industrial waste minimization

    SciTech Connect

    Young, J.K.; Fassbender, L.L. ); Sen, R.K. and Associates, Washington, DC )

    1992-02-01

    This report summarizes the findings of the first phase of a study undertaken to define a role for the Advanced Industrial Concepts (AIC) Division of the Office of Industrial Technologies (OIT) in developing waste minimization technologies for the industrial sector. The report describes the results of an industrial waste characterization based mainly on the US Environmental Protection Agency's (EPA's) 1989 Toxics Release Inventory (TRI) database. IN addition, it contains the results of interviews with personnel from trade associations, environmental advocacy groups, federal agencies, and industrial firms regarding pre-competitive research and development needs for industrial waste minimization. Recommendations for future AIC waste minimization activities are provided.

  16. Ecotoxicity of waste water from industrial fires fighting

    NASA Astrophysics Data System (ADS)

    Dobes, P.; Danihelka, P.; Janickova, S.; Marek, J.; Bernatikova, S.; Suchankova, J.; Baudisova, B.; Sikorova, L.; Soldan, P.

    2012-04-01

    As shown at several case studies, waste waters from extinguishing of industrial fires involving hazardous chemicals could be serious threat primary for surrounding environmental compartments (e.g. surface water, underground water, soil) and secondary for human beings, animals and plants. The negative impacts of the fire waters on the environment attracted public attention since the chemical accident in the Sandoz (Schweizerhalle) in November 1986 and this process continues. Last October, special Seminary on this topic has been organized by UNECE in Bonn. Mode of interaction of fire waters with the environment and potential transport mechanisms are still discussed. However, in many cases waste water polluted by extinguishing foam (always with high COD values), flammable or toxic dangerous substances as heavy metals, pesticides or POPs, are released to surface water or soil without proper decontamination, which can lead to environmental accident. For better understanding of this type of hazard and better coordination of firemen brigades and other responders, the ecotoxicity of such type of waste water should be evaluated in both laboratory tests and in water samples collected during real cases of industrial fires. Case studies, theoretical analysis of problem and toxicity tests on laboratory model samples (e.g. on bacteria, mustard seeds, daphnia and fishes) will provide additional necessary information. Preliminary analysis of waters from industrial fires (polymer material storage and galvanic plating facility) in the Czech Republic has already confirmed high toxicity. In first case the toxicity may be attributed to decomposition of burned material and extinguishing foams, in the latter case it can be related to cyanides in original electroplating baths. On the beginning of the year 2012, two years R&D project focused on reduction of extinguish waste water risk for the environment, was approved by Technology Agency of the Czech Republic.

  17. Recycled Water Reuse Permit Renewal Application for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect

    No Name

    2014-10-01

    ABSTRACT This renewal application for the Industrial Wastewater Reuse Permit (IWRP) WRU-I-0160-01 at Idaho National Laboratory (INL), Materials and Fuels Complex (MFC) Industrial Waste Ditch (IWD) and Industrial Waste Pond (IWP) is being submitted to the State of Idaho, Department of Environmental Quality (DEQ). This application has been prepared in compliance with the requirements in IDAPA 58.01.17, Recycled Water Rules. Information in this application is consistent with the IDAPA 58.01.17 rules, pre-application meeting, and the Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater (September 2007). This application is being submitted using much of the same information contained in the initial permit application, submitted in 2007, and modification, in 2012. There have been no significant changes to the information and operations covered in the existing IWRP. Summary of the monitoring results and operation activity that has occurred since the issuance of the WRP has been included. MFC has operated the IWP and IWD as regulated wastewater land treatment facilities in compliance with the IDAPA 58.01.17 regulations and the IWRP. Industrial wastewater, consisting primarily of continuous discharges of nonhazardous, nonradioactive, routinely discharged noncontact cooling water and steam condensate, periodic discharges of industrial wastewater from the MFC facility process holdup tanks, and precipitation runoff, are discharged to the IWP and IWD system from various MFC facilities. Wastewater goes to the IWP and IWD with a permitted annual flow of up to 17 million gallons/year. All requirements of the IWRP are being met. The Operations and Maintenance Manual for the Industrial Wastewater System will be updated to include any new requirements.

  18. Design, fabrication and testing of a wet oxidation waste processing system. [for manned space flight

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The wet oxidation of sewage sludge during space flight was studied for water and gas recovery, and the elimination of overboard venting. The components of the system are described. Slurry and oxygen supply modules were fabricated and tested. Recommendations for redesign of the equipment are included.

  19. Digital -domain embedding method for groundwater flow at the industrial waste landfill

    E-print Network

    Sakurai, Takafumi

    (22540113). #12;2 Drilling points and distribution of wastes in the landfill site The drilling surveyDigital - domain embedding method for groundwater flow at the industrial waste landfill on Teshima a numerical method to simulate the groundwater flow at the industrial waste landfill on Teshima Island

  20. Characterization of dolochar wastes generated by the sponge iron industry

    NASA Astrophysics Data System (ADS)

    Dwari, Ranjan Kumar; Rao, Danda Srinivas; Swar, Akhila Kumar; Reddy, Palli Sita Ram; Mishra, Barada Kanta

    2012-11-01

    Solid wastes generated by the metallurgical industry contribute significantly towards the enhancement of environmental pollution. The handling, utilization, and safe disposal of these solid wastes are major concerns for the world. Dolochar is such a solid waste generated by the sponge iron industry. Investigations were carried out on the physical, mineralogical, and chemical characteristics for the efficient utilization of dolochar. The detailed studies on physico-chemical properties and petrography were carried out by optical microscopy, X-ray diffraction (XRD), and scanning electron microscopy (SEM). Characterization studies revealed that the dolochar consists of quartz (free as well as locked), free lime, Fe particles, and Ca or Mg and/or Ca+Mg+Fe oxide phases. The washability data of -300 ?m dolochar samples indicated that clean coal with 41wt% ash at 18% yield can be produced from dolochar with 78wt% ash. The studies further suggested that the liberation of the dolochar is hard to achieve for clear separation. The dolochar is observed to have high ash fusion temperature and the unburned carbon can be best utilized for power generation.

  1. Production of lightweight aggregate from industrial waste and carbon dioxide.

    PubMed

    Gunning, Peter J; Hills, Colin D; Carey, Paula J

    2009-10-01

    The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m(3) and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere. PMID:19577916

  2. Mutagenic potential of fine wastes from dimension stone industry.

    PubMed

    Aguiar, Luara Louzada; Tonon, Camila Bruschi; Nunes, Erika Takagi; Braga, Adriane Cristina Araújo; Neves, Mirna Aparecida; de Oliveira David, José Augusto

    2016-03-01

    The industrial treatment of dimension stones, such as marbles and granites, includes a stage of plate polishing, in which resins and abrasives are used, producing a fine grained waste with high moisture content. These wastes pass through decantation tanks in order to separate the solid and liquid phases. Until now, there is no knowledge about the mutagenic effects that this effluent can cause to organisms exposed to it. Thus, this study evaluated the mutagenic potential of dimension stone polishing wastes in onion root cells and fish erythrocytes. The onion seeds were germinated in Petri dishes with filter paper moistened in the liquid phase of the effluent. After germination, the onion roots were prepared for analysis of chromosomal aberrations in meristematic cells. The fishes were exposed during 72h to the solid phase of the effluent diluted in pure groundwater. Blood samples were used for counting of micronucleus and nuclear abnormalities. The onion seeds had similar germination and mitotic index in all treatments. However, it was observed in the seeds exposed to the polishing waste, numbers significantly higher of micronucleus, nuclear buds and other chromosomal aberrations when compared with the negative control. The fishes exposed to the waste showed numbers significantly higher of micronucleus when compared with the negative control. The fishes from all treatments showed significant increase in nuclear abnormalities when compared to the negative control. We concluded that the analysed wastes have mutagenic potential at the studied conditions; this effect can be related to the high content of phenolic compounds identified in the samples. PMID:26685783

  3. Hybrid composites prepared from Industrial waste: Mechanical and swelling behavior

    PubMed Central

    Ahmed, Khalil

    2013-01-01

    In this assessment, hybrid composites were prepared from the combination of industrial waste, as marble waste powder (MWP) with conventional fillers, carbon black (CB) as well as silica as reinforcing material, incorporated with natural rubber (NR). The properties studied were curing, mechanical and swelling behavior. Assimilation of CB as well as silica into MWP containing NR compound responded in decreasing the scorch time and cure time besides increasing in the torque. Additionally, increasing the CB and silica in their respective NR hybrid composite increases the tensile, tear, modulus, hardness, and cross-link density, but decreases the elongation and swelling coefficient. The degradation property e.g., thermal aging of the hybrid composite was also estimated. The overall behavior at 70 °C aging temperature signified that the replacement of MS by CB and silica improved the aging performance. PMID:25750756

  4. Evaluation of chemical exposures in the hazardous waste industry

    SciTech Connect

    Pedersen, B.A.; Higgins, G.M.

    1994-12-31

    The assessment of personnel exposure to volatile solvent vapors is an important aspect in any comprehensive health and safety program. This is particularly true at Treatment, Storage, and Disposal Facilities (TSDFs) and other industries dealing with volatile solvents. This paper presents monitoring data from seven TSDFs and exposure data from several routine small business and household activities. By examining data from a specialized business such as a TSDF along with data from more routine activities, a different perspective may be gained on the potential hazards associated with hazardous waste disposal activities.

  5. Waste Heat Recovery in the Metal Working Industry 

    E-print Network

    McMann, F. C.; Thurman, J.

    1983-01-01

    stream_source_info ESL-IE-83-04-84.pdf.txt stream_content_type text/plain stream_size 10593 Content-Encoding ISO-8859-1 stream_name ESL-IE-83-04-84.pdf.txt Content-Type text/plain; charset=ISO-8859-1 WASTE HEAT RECOVERY... IN THE METAL WORKING INDUSTRY Fred C. McMann Jimmy Thurman North American Manufacturing Co. Combustion Services Company Woodlands, Texas Houston, Texas The use of exhaust gas heat exchangers to preheat combustion air in forge and heat treat furnaces fu...

  6. CHARACTERIZING THE GENOTOXICITY OF HAZARDOUS INDUSTRIAL WASTES AND EFFLUENTS USING SHORT-TERM BIOASSAYS

    EPA Science Inventory

    This chapter demonstrates that short-term bioassays can reliably and expeditiously measure the genotoxic potential of hazardous industrial wastes and effluents. etrochemical wastes have been studied in detail, especially discharges from chemical manufacturing plants and textile a...

  7. Recycle of Wastes of Clay Brick Industry for Producing Eco-cement 

    E-print Network

    Amin, A. M

    2010-01-01

    This work aims at recycling of the solid wastes of clay brick industry (WCB) in the manufacture of blended cement. The various characteristics of collected samples of the waste were determined. WCB was ground to different surface areas. Different...

  8. Making Green Building Units By Using Some Wastes of Ceramic Industry 

    E-print Network

    Abd El-Ghafour, N.G.

    2010-01-01

    The ceramic tiles industry produces a lot of wastes such as ceramic sludge, broken under quality tiles and the ceramic dust. The accumulated wastes comprise a great pollution problem on the surrounded environment. The ceramic properties of Egyptian...

  9. Glass phase in municipal and industrial waste incineration bottom ashes

    NASA Astrophysics Data System (ADS)

    Rafa? Kowalski, Piotr; Michalik, Marek

    2015-04-01

    Waste incineration bottom ash is a material with rising significance in waste streams in numerous countries. Even if some part of them is now used as raw materials the great amount is still landfilled. High temperature of thermal processes (>1000°C) together with fast cooling results in high content of glass in bottom ash. Its chemical composition is influenced by various factors like composition of raw wastes and used incineration technique. Most of bottom ash grains are composed of glass with large amount of mineral phases and also metallic constituents embedded into it. Glass susceptibility for alteration processes together with the characteristics of glass-based grains can bring environmental risk in time of improper or long term storage on landfill site. In this study bottom ashes from thermal treatment of municipal and industrial (including hazardous and medical) wastes were studied to determine glass content, its chemical composition with emphasis on metal content (especially potentially hazardous) and its relations to metallic components of grains. Samples were collected from two thermal treatment plants in Poland. Qualitative and quantitative X-ray diffraction (XRD) analyses were used for determination of mineral composition of studied samples. Rietveld method and addition of internal standard for determination of amorphous phase content were used. Scanning electron microscopy fitted with energy dispersive spectrometry (SEM-EDS) were used for detailed analysis of glass and glass associated phases. Waste incineration bottom ash is a multi-components material rich in amorphous phase. It dominant part is represented by Si-rich glass. It is a main component of bottom ash grains but it contains minerals present in large quantities and also various forms of metallic elements. Glass within grains is often porous and cracked. In bottom ashes from thermal treatment of municipal wastes ~ 45-55 wt % of amorphous phase were present, mostly in form of glass with high Si content (~ 38.5 wt %). In bottom ash from thermal treatment of industrial wastes content of amorphous phases was higher and account for 70-75 wt % of the samples. It main form was also glass with high Si content (~ 32 wt %). Glass chemical composition in bottom ashes is influenced by presence of metallic components which result in elevated content of some metals like Fe (~ 4 wt %), Al (~ 4 wt %), Zn (~ 2.5 wt %) and Ti (~ 1.3 wt %) in municipal bottom ash and ~ 11 wt % Fe, 5.5 wt % Al, ~ 3 wt % Ti, Cu, ~ 2 wt % Cr, Zn in industrial bottom ash. Due to the fact that the glass is more susceptible for alteration processes than crystalline components it is important to estimate their content characteristics. In waste incineration bottom ashes it is especially important taking into consideration presence of metallic elements including potentially hazardous metals (Zn, Cr) which can be easily released to the environment during landfilling.

  10. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Wojnar, F.; Lunberg, W. L.

    1980-03-01

    A study to assess the potential for waste heat recovery in the food industry and to evaluate prospective waste heat recovery system concepts employing thermal energy storage was conducted. The study found that the recovery of waste heat in canning facilities can be performed in significant quantities using systems involving thermal energy storage that are both practical and economical. A demonstration project is proposed to determine actual waste heat recovery costs and benefits and to encourage system implementation by the food industry.

  11. ESEEM of industrial silica-bearing powders: reactivity of defects during wet processing in the ceramics production

    NASA Astrophysics Data System (ADS)

    Romanelli, Maurizio; Di Benedetto, Francesco; Fornaciai, Gabriele; Innocenti, Massimo; Montegrossi, Giordano; Pardi, Luca A.; Zoleo, Alfonso; Capacci, Fabio

    2015-05-01

    A study is undertaken to ascertain whether changes in the speciation of inorganic radicals are occurring during the ceramic industrial production that involves abundant silica powders as raw material. Industrial dusts were sampled in two ceramic firms, immediately after the wet mixing stage, performed with the aid of a relevant pressure. The dusts were then characterised by means of X-ray diffraction, analysis of the trace elements through chemical methods, granulometry, continuous-wave electron paramagnetic resonance (EPR) and pulsed electron spin echo envelope modulation (ESEEM) spectroscopies. The results of the characterisation point to a relevant change in the speciation of the two samples; namely, a prevailing contribution due to an inorganic radical different from that pertaining to pure quartz is pointed out. The combined interpretation of EPR and ESEEM data suggests the attribution of the main paramagnetic contribution to the A-centre in kaolinite, a constituent that is added to pure quartz at the initial stage of the ceramic production. In one of the two samples, a second weak EPR signal is attributed to the quartz's hAl species. By taking into account the relative quantities of quartz and kaolinite mixed in the two samples, and the relative abundances of the two radical species, we propose that the partial or complete suppression of the hAl species in favour of the A-centre of kaolinite has occurred. Although this change is apparently fostered by the mixture between quartz and another radical-bearing raw material, kaolinite, the suppression of the hAl centre of quartz is ascribed to the role played by the pressure and the wet environment during the industrial mixing procedure. This suppression provides a net change of radical speciation associated with quartz, when this phase is in contact with workers' respiratory system.

  12. Characterization of NORM solid waste produced from the petroleum industry.

    PubMed

    Al Attar, Lina; Doubal, Wael; Al Abdullah, Jamal; Khalily, Hussam; Abdul Ghani, Basem; Safia, Bassam

    2015-01-01

    The accumulation of scales in the production pipe lines is a common problem in the oil industry, reducing fluid flow and leading to costly remediation and disposal programmes. Thus, an accurate determination of the activity of the radionuclides in scale samples is essential for environmental protection. The present study focuses on the characterization of naturally occurring radioactive materials (NORM) in scales generated from the petroleum industry to develop a suitable NORM waste management plan. The activity concentrations of 226Ra, 228Ra and 210Pb in 32 representative samples, collected from a number of drums at the NORM Decontamination Facility storage, were determined using gamma spectrometry. It was found that the highest concentrations were 2922, 254 and 1794?Bq?g(-1) for 226Ra, 228Ra and 210Pb, respectively. A comparison to the reported worldwide values was made. Statistical approaches, namely Box plot, ANOVA and principal components analysis were applied on the total results. Maximal correlation was demonstrated by 226Ra activity concentration and count per second (cps) to density ratio. To obtain an accurate characterization of the radionuclides studied in the scale samples, method validation of gamma measurement procedure was carried out, in which minimum detectable activity, repeatability, intermediate precision and assessment of uncertainty were the parameters investigated. The work is a forefront for the proper and safe disposal of such radioactive wastes. PMID:25358443

  13. Economic analysis of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus juice industry produces about 3.5 million tons of wet peel waste per year. In current industrial practice, waste peels are dried and sold as cattle feed to offset the waste disposal cost. Profitability would be greatly improved if peel could be used to produce higher value produ...

  14. Economic analysis of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus juice industry produces about 3-4 million tons of wet peel waste per year. In current industrial practices, waste peels are dried and sold as cattle feed to offset the waste disposal cost. Profitability could be greatly improved if this amount of peel can be used to produce high...

  15. Economic analysis of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Florida citrus juice industry produces about 3.5 million tons of wet peel waste per year. In current industrial practice, waste peels are dried and sold as cattle feed to offset the waste disposal cost. Profitability would be greatly improved if peels could be used to produce higher value produ...

  16. Treatment of high-strength industrial wastewater by wet air oxidation--A case study

    SciTech Connect

    Lin, S.H.; Ho, S.J.

    1997-12-31

    Treatment of high concentration chemical wastewater obtained from a petrochemical company by wet air oxidation (WAO) is studied. Experiments were conducted to investigate the effects of the mixer speed, operating pressure, initial pH of wastewater and temperature on the pollutant (chemical oxygen demand or COD) removal. Both air and oxygen were tested to determine their respective effect on the COD removal. Results showed that over 50% of COD removal can be easily realized in an hour of WAO treatment. Also considered in the present study was the catalytic WAO treatment of the high concentration wastewater. Copper sulfate (CuSO{sub 4}), cobalt oxide (Co{sub 2}O{sub 3}) and zinc oxide (ZnO) were employed as the catalysts. The COD removal efficiency of the catalytic WAO process was found to vary significantly with the catalyst utilized with CuSO{sub 4} being the most effective.

  17. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    PubMed

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1), respectively. The study clearly showed that both dry and wet depositions varied between the sites and season, suggesting significant impact of industrial activities in modifying the atmospheric input. The nonacidic deposition suggests that there is no threat of acidification of the receiving ecosystem at present. PMID:12805745

  18. Energy efficient membrane separation processes for the corn wet milling industry. Phase I, final report

    SciTech Connect

    Gregor, H.P.

    1985-07-01

    High solubles water, the principal recycle stream in corn wet milling, is about 3.5% in total solids. Suspended solids 10 to 50 microns in diameter constitute an appreciable fraction of the total solids. Also present are dissolved solids of molecular weight above 1000, carbohydrate and denatured protein, plus a micellar complex of Mg with phytic and lactic acid. Ultrafiltration at a high rate of crossflow with a M-AL-500 membrane effectively removed all of these materials. The feed channel contained 1/16 inch conventional netted plastic separator material. The average flux at 30 psig at 40/sup 0/C was 24 gfd. The UF permeate was treated by RO at 40/sup 0/C and 900 psig using FilmTec FT-30 membranes to produce a high quality permeate water for re-use and a combined UF-RO concentrate to be fed to the evaporator. A design and economic study based on these results suggests that energy requirements for a typical milling plant can be reduced by 47% or the equivalent of 60,000 barrels of oil yearly.

  19. Waste Management, Treatment, and Disposal for the Food Processing Industry. Special Circular 113.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This publication contains information relating to waste prevention, treatment and disposal, and waste product utilization. Its primary purpose is to provide information that will help the food industry executive recognize waste problems and make wise management decisions. The discussion of the methods, techniques, and the state-of-the-art is…

  20. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  1. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-07-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  2. Sludge dewatering: Sewage and industrial wastes. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-06-01

    The bibliography contains citations concerning techniques and equipment used in dewatering waste products. Included are techniques for sewage waste as well as industrial, mining, petroleum, and municipal waste sludge. Dewatering processes, device design, and performance evaluations are considered. (Contains 250 citations and includes a subject term index and title list.)

  3. ENVIRONMENTAL ASSESSMENT OF A WOOD-WASTE-FIRED INDUSTRIAL WATERTUBE BOILER. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous m...

  4. ENVIRONMENTAL ASSESSMENT OF A WOOD-WASTE-FIRED INDUSTRIAL WATERTUBE BOILER. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The two-volume report gives results from field tests of a wood-waste-fired industrial watertube boiler. Two series of tests were performed: one firing dry (11% moisture) wood waste, and the other firing green (34% moisture) wood waste. Emission measurements included: continuous m...

  5. Low-temperature waste-heat recovery in the food and paper industries

    SciTech Connect

    Foell, W.K.; Lund, D.; Mitchell, J.W.; Ray, D.; Stevenson, R.; TenWolde, A.

    1980-11-01

    The potential of low-temperature waste-heat recovery technology is examined. An examination of barriers to impede waste-heat recovery is made and research programs are identified. Extensive information and data are presented in the following chapters: Waste Heat Recovery in the Wisconsin Food Industry; Waste Heat Recovery in the Wisconsin Pulp and Paper Industry; Industries' Economic Analysis of Energy Conservation Projects; Industrial Waste Heat Recovery (selection of heat-recovery heat exchangers for industrial applications, simplified procedure for selection of heat recovery heat exchangers for industrial applications, selection of heat pumps for industrial applications); Institutional Aspects of Industrial Energy Conservation (economic motivation for energy conservation and the industrial response, intrafirm idea channels and their sources, evaluation and approval of plant improvement projects, reported barriers to adopting waste heat recovery projects and recommendations for government involvement, and the final chapter is a summary with major conclusions given. Additional information is given in two appendices on the potential waste heat recovery in a cheese plant (calculation) and conditions for optimum exchanger size and break-even fuel cost. (MCW)

  6. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production.

    PubMed

    Nges, Ivo Achu; Escobar, Federico; Fu, Xinmei; Björnsson, Lovisa

    2012-01-01

    Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester. PMID:21975301

  7. Waste treatment: Beverage industry. (Latest citations from Food Science & Technology Abstracts (FSTA)). Published Search

    SciTech Connect

    1995-08-01

    The bibliography contains citations concerning waste treatment in the alcoholic and non-alcoholic beverage industries. Brewery effluent and wastewater management and disposal are reviewed. References cover aerobic treatment, sources of effluents, waste reduction, waste fermentation, effluent purification, and cost-effectiveness evaluation. The use of wastes for biogas production and for building material manufacture is examined. (Contains 50-250 citations and includes a subject term index and title list.)

  8. Guidelines for the classification and coding of industrial and hazardous wastes (revised)

    SciTech Connect

    1998-11-01

    The main purpose of this guidance document is to help generators of industrial and hazardous waste follow state and federal requirements on classifying and coding these wastes, on keeping proper records, and on notifying the Texas Natural Resource Conservation Commission (TNRCC) about the wastes, when required. Specifically, this document gives guidance on the regulations in Title 30 of the Texas Administrative Code (TAC), Chapter 335, Subchapter R (Waste Classification).

  9. Towards zero industrial waste: Utilisation of brick dust waste in sustainable construction.

    PubMed

    Kinuthia, J M; Nidzam, R M

    2011-08-01

    Laboratory investigations were carried out to establish the potential utilisation of brick dust (BD) in construction. The dust is a waste material from the cutting of fired clay bricks. Currently, the disposal of the dust is a problem to the brick fabrication company, and hence an environmental pollution concern. The dust was stabilised either used on its own or in combination with Pulverised Fuel Ash (PFA), a by-product material from coal combustion. The traditional stabilisers of lime and/or Portland Cement (PC) were used as controls. The main aim was to use a sustainable stabiliser material, where these stabilisers were partially replaced with Ground Granulated Blastfurnace Slag (GGBS), a by-product material from steel manufacture. Compacted cylinder test specimens were made at typical stabiliser contents and moist cured for up to 56 days prior to testing for compressive and California Bearing Ratio (CBR) strength tests, and to linear expansion during moist curing and subsequent soaking in water. The results obtained showed that partial substitution of the dust with PFA resulted in stronger material compared to using it on its own. The blended stabilisers achieved better performance. These results suggest technological, economic as well as environmental advantages of using the brick dust and similar industrial by-products to achieve sustainable infrastructure development with near zero industrial waste. PMID:21550223

  10. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect

    1995-10-01

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  11. Waste recycling in the textile industry. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-07-01

    The bibliography contains citations concerning the recycling of fiberous and other waste materials from textile production. The use of recyclable materials such as cellulosic and polymeric wastes, cloth scraps, fiber waste, glass fiber wastes, and waste dusts for use in textile products, insulation, paneling and other building supplies, yarns, roping, and pavement materials are considered. Equipment for collecting, sorting, and processing textile wastes is also discussed. Heat recovery and effluent treatment in the textile industry are referenced in related bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  12. Profiting from waste reduction in your small business: A guide to help you identify, implement and evaluate an industrial waste reduction program

    SciTech Connect

    Wigglesworth, D.

    1988-01-01

    Profiting from Waste Reduction in Your Small Business helps small business managers and their employees work together to identify and implement methods to reduce industrial wastes. Moreover, it is designed to help managers and employees see their industrial waste as a financial resource rather than unavoidable by-products of their business process. The manual shows how to: organize a business to promote waste reduction, review business plans for waste reduction potential, conduct a waste reduction audit, evaluate a waste reduction program and learn specific strategies for nine common business processes. It includes a section covering waste reduction resources for small businesses.

  13. Engineering Scoping Study of Thermoelectric Generator Systems for Industrial Waste Heat Recovery

    SciTech Connect

    Hendricks, Terry; Choate, William T.

    2006-11-01

    This report evaluates thermoelectric generator (TEG) systems with the intent to: 1) examine industrial processes in order to identify and quantify industrial waste heat sources that could potentially use TEGs; 2) describe the operating environment that a TEG would encounter in selected industrial processes and quantify the anticipated TEG system performance; 3) identify cost, design and/or engineering performance requirements that will be needed for TEGs to operate in the selected industrial processes; and 4) identify the research, development and deployment needed to overcome the limitations that discourage the development and use of TEGs for recovery of industrial waste heat.

  14. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    SciTech Connect

    Lee, V.E.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  15. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Fisher, John W.; Abraham, Martin

    1993-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  16. Development of the Monolith Froth Reactor for Catalytic Wet Oxidation of CELSS Model Wastes

    NASA Technical Reports Server (NTRS)

    Abraham, Martin; Fisher, John W.

    1995-01-01

    The aqueous phase oxidation of acetic acid, used as a model compound for the treatment of CELSS (Controlled Ecological Life Support System) waste, was carried out in the monolith froth reactor which utilizes two-phase flow in the monolith channels. The catalytic oxidation of acetic acid was carried out over a Pt/Al2O3 catalyst, prepared at The University of Tulsa, at temperatures and pressures below the critical point of water. The effect of externally controllable parameters (temperature, liquid flow rate, distributor plate orifice size, pitch, and catalyst distance from the distributor plate) on the rate of acetic acid oxidation was investigated. Results indicate reaction rate increased with increasing temperature and exhibited a maximum with respect to liquid flow rate. The apparent activation energy calculated from reaction rate data was 99.7 kJ/mol. This value is similar to values reported for the oxidation of acetic acid in other systems and is comparable to intrinsic values calculated for oxidation reactions. The kinetic data were modeled using simple power law kinetics. The effect of "froth" feed system characteristics was also investigated. Results indicate that the reaction rate exhibits a maximum with respect to distributor plate orifice size, pitch, and catalyst distance from the distributor plate. Fundamental results obtained were used to extrapolate where the complete removal of acetic acid would be obtained and for the design and operation of a full scale CELSS treatment system.

  17. Federal legislative and regulatory incentives and disincentives for industrial waste reduction

    SciTech Connect

    Cordes, R.; Nixon, J.

    1991-10-01

    The Office of Industrial Technologies (OIT) within the US DOE has recently initiated the Industrial Waste Reduction Program, which is designed to reduce industrial energy use and pollution by reducing the amount of waste materials generated. The Program's primary focus is to develop and commercialize waste reduction technologies and practices in conjunction with industrial partners. OIT recognizes that adoption of these technologies is often inhibited by an assortment of institutional barriers that are unrelated to technical or economic performance. Therefore, OIT is examining selected barriers to industrial waste reduction to help identify and remove impediments to wider technology implementation. This report examines the incentives and disincentives to industrial waste reduction that are provided in an assortment of legislation and regulations. The intent is to shed light on how our environmental laws affect industry's implementation of waste reduction, what particular problems exist with current legislation/regulations, and what general options are available for correcting any deficiencies. Our study was confined strictly to federal legislation and regulations. During the course of the study, (March and May 1991), we examined 16 pieces of existing legislation and their attendant regulations plus 22 pieces of proposed legislation. In addition, the authors consulted representatives from industry and from the government agencies administering or sponsoring the legislation. The Resource Conservation and Recovery Act (RCRA) is by far the most comprehensive and dominant piece of legislation affecting solid waste disposal. This is because RCRA, which governs, the management of both nonhazardous and hazardous waste, places the most restrictive requirements on industry. Other important pieces of legislation that exert a direct influence on waste reduction per se include the Clean Air Act and the Pollution Prevention Act. 90 refs., 12 tabs.

  18. Industrial wastes and public health: some historical notes, Part I, 1876-1932.

    PubMed Central

    Tarr, J A

    1985-01-01

    This article has focused on the relatively low priority accorded industrial wastes compared to human wastes by the public health community in the period from 1876 through 1932. The critical reason for this prioritization was the potential for acute health effects from human wastes as compared with the belief that industrial wastes had only indirect effects. State departments of health normally only responded to industrial wastes when they endangered the potable nature of water supplies or interfered with water and sewage treatment processes. Within the public health community, however, a relatively small group of interdisciplinary professionals argued for attention to the indirect health effects of industrial wastes and their impacts on the total stream environment. In conjunction with other groups interested in clean streams--such as sportsmen and manufacturers who required high quality process water--they pushed for a broader state legislative mandate in regard to pollution control. Some states created new bureaus or boards with responsibility for industrial wastes and the larger stream environment but the attack on industrial pollution remained limited in this period. The final significant development regarding industrial pollution and public health concerned the formulation by Streeter-Phelps of the Public Health Service of a theory of stream purification with a set of general quantitative indicators. This application was of particular importance in regard to the high-oxygen consuming nature of organic industrial wastes and the wide variety of effluents that existed. Industrial wastes constituted what Harvey Brooks, in his essay "Science Indicators and Science Priorities" calls a very "messy" research problem--one that does "not lend itself to elegant and widely applicable generalizations."(ABSTRACT TRUNCATED AT 250 WORDS) Images p1061-a p1061-b p1063-a p1065-a PMID:3895993

  19. Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases.

    PubMed

    Czaplicka, Marianna; Kurowski, Ryszard; Jaworek, Katarzyna; Bratek, ?ukasz

    2013-01-01

    The paper presents results of studies into advanced oxidation processes in 03 and 03/UV systems. An advanced oxidation process (AOP) was conducted to reduce the load of impurities in circulating waters from wet de-dusting of shaft furnace gases. Besides inorganic impurities, i.e. mainly arsenic compounds (16 g As L(-1) on average), lead, zinc, chlorides and sulphates, the waters also contain some organic material. The organic material is composed of a complex mixture that contains, amongst others, aliphatic compounds, phenol and its derivatives, pyridine bases, including pyridine, and its derivatives. The test results show degradation of organic and inorganic compounds during ozonation and photo-oxidation processes. Analysis of the solutions from the processes demonstrated that the complex organic material in the industrial water was oxidized in ozonation and in photo-oxidation, which resulted in formation of aldehydes and carboxylic acids. Kinetic degradation of selected pollutants is presented. Obtained results indicated that the O3/UV process is more effective in degradation of organic matter than ozonation. Depending on the process type, precipitation of the solid phase was observed. The efficiency of solid-phase formation was higher in photo-oxidation with ozone. It was found that the precipitated solid phase is composed mainly of arsenic, iron and oxygen. PMID:24191479

  20. Supercritical extraction of lycopene from tomato industrial wastes with ethane.

    PubMed

    Nobre, Beatriz P; Gouveia, Luisa; Matos, Patricia G S; Cristino, Ana F; Palavra, António F; Mendes, Rui L

    2012-01-01

    Supercritical fluid extraction of all-E-lycopene from tomato industrial wastes (mixture of skins and seeds) was carried out in a semi-continuous flow apparatus using ethane as supercritical solvent. The effect of pressure, temperature, feed particle size, solvent superficial velocity and matrix initial composition was evaluated. Moreover, the yield of the extraction was compared with that obtained with other supercritical solvents (supercritical CO? and a near critical mixture of ethane and propane). The recovery of all-E-lycopene increased with pressure, decreased with the increase of the particle size in the initial stages of the extraction and was not practically affected by the solvent superficial velocity. The effect of the temperature was more complex. When the temperature increased from 40 to 60 °C the recovery of all-E-lycopene increased from 80 to 90%. However, for a further increase to 80 °C, the recovery remained almost the same, indicating that some E-Z isomerization could have occurred, as well as some degradation of lycopene. The recovery of all-E-lycopene was almost the same for feed samples with different all-E-lycopene content. Furthermore, when a batch with a higher all-E-lycopene content was used, supercritical ethane and a near critical mixture of ethane and propane showed to be better solvents than supercritical CO? leading to a faster extraction with a higher recovery of the carotenoid. PMID:22785267

  1. EMISSIONS TESTING OF INDUSTRIAL PROCESSES BURNING HAZARDOUS WASTE MATERIALS

    EPA Science Inventory

    Hazardous waste incinerators are regulated under the Resource Conservation Recovery Act (RCRA). On the other hand processes that produce energy and only incidently burn hazardous waste materials are currently exempt from the RCRA incinerator regulations. EPA has initiated a Regul...

  2. AIR EMISSIONS FROM INDUSTRIAL BOILERS BURNING HAZARDOUS WASTE MATERIALS

    EPA Science Inventory

    Hazardous waste incinerators are tightly regulated under the Resource Conservation and Recovery Act (RCRA). On the other hand, processes for which the primary purpose is production of energy but, incidentially, burning hazardous wastes are exempt from the RCRA incineration regula...

  3. DIOXINS. VOLUME II. ANALYTICAL METHOD FOR INDUSTRIAL WASTES

    EPA Science Inventory

    The overall objective of this research project was to develop a unified analytical approach for use in quantifying ppt levels of tetrachlorodibenzo-p-dioxins (TCDD's) in various chemical wastes. Waste samples from plants manufacturing trichlorophenol, pentachlorophenol, and hexac...

  4. Trends and Opportunities in Industrial Hazardous Waste Minimization 

    E-print Network

    Atlas, M.

    1998-01-01

    hazardous waste generated. It first describes trends in facilities' investigation of opportunities for source reduction or recycling, in their new or expanded waste minimization efforts, and in the barriers that these efforts confronted. Next, it describes...

  5. Planning for integrated solid waste management at the industrial Park level: A case of Tianjin, China

    SciTech Connect

    Geng Yong . E-mail: ecoplan@dlut.edu.cn; Zhu Qinghua; Haight, Murray

    2007-07-01

    Industrial parks play a significant role in the production and use of goods and services. The proper management of solid waste is a major challenge for industrial parks due to the large quantity of wastes and the variability of waste characteristics from these types of developments. Therefore, integrated solid waste management has become very crucial to the industrial park managers. Such an approach requires industrial park managers to assess the overall use of resources, and to seek waste reduction, reuse and recycling opportunities both at the individual company level and among different tenant companies. The adoption of this method can bring both economic and environmental benefits. This paper introduces the planning efforts of a real case in China. It first presents the basic information on Tianjin Economic Development Area (TEDA), and then introduces its current practices on solid waste management. The main focus of this paper is to describe how to plan an integrated solid waste management system at TEDA. Benefits and challenges are all identified and analyzed. The experiences and methods from this case study should be applied in other industrial parks so as to improve the overall eco-efficiency of the whole industrial park.

  6. Waste minimization in the poultry processing industry. Process and water quality aspects

    SciTech Connect

    Gelman, S.R.; Scott, S.; Davis, H.

    1989-11-09

    The poultry processing industry is a large, water intensive industry. In a typical week in Alabama up to 15 million birds are processed, and Arkansas, Georgia, and North Carolina have similar processing volumes. This presentation will focus on issues surrounding waste minimization in the live processing industry as well as provide a brief look at the prepared foods segment, mainly cooked chicken products. The case study also reviews water quality issues that require us to examine waste treatment in a new light. This information will also apply to other industries facing more stringent treatment requirements as a result of stiffer water quality regulations.

  7. Valorization of rendering industry wastes and co-products for industrial chemicals, materials and energy: review.

    PubMed

    Mekonnen, Tizazu; Mussone, Paolo; Bressler, David

    2016-02-01

    Over the past decades, strong global demand for industrial chemicals, raw materials and energy has been driven by rapid industrialization and population growth across the world. In this context, long-term environmental sustainability demands the development of sustainable strategies of resource utilization. The agricultural sector is a major source of underutilized or low-value streams that accompany the production of food and other biomass commodities. Animal agriculture in particular constitutes a substantial portion of the overall agricultural sector, with wastes being generated along the supply chain of slaughtering, handling, catering and rendering. The recent emergence of bovine spongiform encephalopathy (BSE) resulted in the elimination of most of the traditional uses of rendered animal meals such as blood meal, meat and bone meal (MBM) as animal feed with significant economic losses for the entire sector. The focus of this review is on the valorization progress achieved on converting protein feedstock into bio-based plastics, flocculants, surfactants and adhesives. The utilization of other rendering streams such as fat and ash rich biomass for the production of renewable fuels, solvents, drop-in chemicals, minerals and fertilizers is also critically reviewed. PMID:25163531

  8. PHYSICAL PROPERTIES AND LEACH TESTING OF SOLIDIFIED/STABILIZED INDUSTRIAL WASTES

    EPA Science Inventory

    Physical property and leaching tests were conducted to assess the engineering characteristics and pollution potential of five industrial wastes. Four solidification/stabilization processes which are under development or commercially available and represent different containment p...

  9. The Effects of Industrial Wastes of Memphis and Shelby County on Primary Planktonic Producers

    ERIC Educational Resources Information Center

    Staub, R.; And Others

    1970-01-01

    Diversity and total numbers of plankton, particularly diatoms, were analyzed and correlated with physical factors of water. Diversity index values appear to provide an indication of pollution of water by industrial and domestic wastes. (AL)

  10. ENVIRONMENTAL ASSESSMENT OF A WOOD-WASTE-FIRED INDUSTRIAL FIRETUBE BOILER. VOLUME 2. DATA SUPPLEMENT

    EPA Science Inventory

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions; source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis ...

  11. ENVIRONMENTAL ASSESSMENT OF A WOOD-WASTE-FIRED INDUSTRIAL FIRETUBE BOILER. VOLUME 1. TECHNICAL RESULTS

    EPA Science Inventory

    The report gives emission results from field tests of a wood-waste-fired industrial firetube boiler. Emission measurements included: continuous monitoring of flue gas emissions: source assessment sampling system (SASS) sampling of the flue gas with subsequent laboratory analysis ...

  12. Process Waste Heat Recovery in the Food Industry - A System Analysis 

    E-print Network

    Lundberg, W. L.; Mutone, G. A.

    1983-01-01

    An analysis of an industrial waste heat recovery system concept is discussed. For example purposes, a food processing plant operating an ammonia refrigeration system for storage and blast freezing is considered. Heat is withdrawn from...

  13. Waste Management Recommendations in the Texas A&M University Industrial Assessment Center Program 

    E-print Network

    Eggebrecht, J. A.; Heffington, W. M.

    1996-01-01

    The Texas A&M University Industrial Assessment Center (IAC) was one of the four Energy Analysis & Diagnostic Centers (EADC) that began providing waste management, in addition to energy and demand conservation, assessments in January, 1994. Over 30...

  14. Evaluation of Industrial Energy Options for Cogeneration, Waste Heat Recovery and Alternative Fuel Utilization 

    E-print Network

    Hencey, S.; Hinkle, B.; Limaye, D. R.

    1980-01-01

    This paper describes the energy options available to Missouri industrial firms in the areas of cogeneration, waste heat recovery, and coal and alternative fuel utilization. The project, being performed by Synergic Resources Corporation...

  15. Review of thermo-physical properties, wetting and heat transfer characteristics of nanofluids and their applicability in industrial quench heat treatment

    PubMed Central

    2011-01-01

    The success of quenching process during industrial heat treatment mainly depends on the heat transfer characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are environment friendly as compared to mineral oil quench media. These potential advantages have led to the development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench media for industrial heat treatment. PMID:21711877

  16. Effect of Fluoride on Nitrification of a Concentrated Industrial Waste

    PubMed Central

    Clarkson, William W.; Collins, Anthony G.; Sheehan, Pamela L.

    1989-01-01

    The potential for biological nitrification of an industrial waste containing 4,000 mg of ammonia N (NH4+-N) and 10,000 mg of fluoride per liter was investigated. Ammonium sulfate and sodium fluoride were tested in various combinations of 100 to 2,000 mg of NH4+-N per liter and 0 to 5,000 mg of F? per liter in suspended-growth stirred-tank reactors containing enriched cultures of nitrifying bacteria from a municipal sewage treatment plant. The stirred-tank reactors were fed once per day at a constant hydraulic retention period and cell retention time of 10 days. Temperature was 23°C, and pH was 7.0 to 7.5. Clarified secondary effluent was used to make up feeds and to provide minor nutrients. Steady-state data, confirmed by mass balances, were obtained after five to six retention periods. In the absence of fluoride, nitrification efficiency was near 100% for up to 500 mg of NH4+-N per liter. The influence of fluoride was studied at a low ammonia concentration (100 mg/liter) and exerted no significant effect on nitrification at concentrations of up to 200 mg/liter. Maximum effect of fluoride was reached at 800 mg of F? per liter, and no greater inhibition was observed for up to 5,000 mg of F? per liter. At the highest concentrations studied, ion pairing of ammonium and fluoride may exert a significant effect on kinetic coefficients. Kinetic analyses showed maximum specific substrate removal rates (qmax) of NH4+-N to be about 2.3 mg of N per mg of volatile suspended solids per day in the absence of fluoride and 0.85 mg of N per mg of volatile suspended solids per day in the presence of fluoride. The form of inhibition due to the presence of fluoride was shown to be not competitive, conforming to a mixed inhibition model. PMID:16347827

  17. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively. PMID:16497498

  18. Biological industrial waste treatment. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect

    1996-04-01

    The bibliography contains citations concerning treatment of industrial waste by various biological means. Topics include biodegradation, biodeterioration, activated sludge processes, hazardous materials, microorganisms, sewage treatment, solid waste disposal, and water pollution. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. PRELIMINARY ASSESSMENT OF COSTS AND CREDITS FOR HAZARDOUS WASTE CO-FIRING IN INDUSTRIAL BOILERS

    EPA Science Inventory

    This report provides preliminary information on the costs and credits associated with hazardous waste co-firing in industrial boilers. The main objective is to identify and evaluate the costs/credits inherent in current hazardous waste co-firing practices, plus the additional cos...

  20. RISK ASSESSMENT FOR THE DYE AND PIGMENT INDUSTRY HAZARDOUS WASTE LISTING DETERMINATION

    EPA Science Inventory

    This risk assessment calculates the maximum loadings of constituents found in dyes and pigment industries waste streams which can be disposed in different types of waste management units without causing health benchmarks to be exceeded at plausible receptor locations. The assess...

  1. Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes

    SciTech Connect

    Reaven, S.J.

    1994-12-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

  2. Utilization and recycling of industrial magnesite refractory waste material for removal of certain radionuclides

    SciTech Connect

    Morcos, T.N.; Tadrous, N.A.; Borai, E.H.

    2007-07-01

    Increased industrialization over the last years in Egypt has resulted in an increased and uncontrolled generation of industrial hazardous waste. The current lack of management of the solid waste in Egypt has created a situation where large parts of the land (especially industrial areas) are covered by un-planned dumps of industrial wastes. Consequently, in the present work, industrial magnesite waste produced in large quantities after production process of magnesium sulfate in Zinc Misr factory, Egypt, was tried to be recycled. Firstly, this material has been characterized applying different analytical techniques such as infrared spectroscopy (IR), surface analyzer (BET), particle size distribution (PSD), elemental analysis by X-ray fluorescence (XRF) and X-ray diffraction (XRD). The magnesite material has been used as a source of producing aluminum, chromium, and magnesium oxides that has better chemical stability than conventional metal oxides. Secondly, utilization of magnesite material for removal of certain radionuclides was applied. Different factors affecting the removal capability such as pH, contacting time, metal concentration, particle size were systematically investigated. The overall objective was aimed at determining feasible and economic solution to the environmental problems related to re-use of the industrial solid waste for radioactive waste management. (authors)

  3. Iron and aluminium oxides containing industrial wastes as adsorbents of heavy metals: Application possibilities and limitations.

    PubMed

    Jacukowicz-Sobala, Irena; Oci?ski, Daniel; Kocio?ek-Balawejder, El?bieta

    2015-07-01

    Industrial wastes with a high iron or aluminium oxide content are produced in huge quantities as by-products of water treatment (water treatment residuals), bauxite processing (red mud) and hard and brown coal burning in power plants (fly ash). Although they vary in their composition, the wastes have one thing in common--a high content of amorphous iron and/or aluminium oxides with a large specific surface area, whereby this group of wastes shows very good adsorbability towards heavy metals, arsenates, selenates, etc. But their physical form makes their utilisation quite difficult, since it is not easy to separate the spent sorbent from the solution and high bed hydraulic resistances occur in dynamic regime processes. Nevertheless, because of the potential benefits of utilising the wastes in industrial effluent treatment, this issue attracts much attention today. This study describes in detail the waste generation processes, the chemical structure of the wastes, their physicochemical properties, and the mechanisms of fixing heavy metals and semimetals on the surface of iron and aluminium oxides. Typical compositions of wastes generated in selected industrial plants are given. A detailed survey of the literature on the adsorption applications of the wastes, including methods of their thermal and chemical activation, as well as regeneration of the spent sorbents, is presented. The existing and potential ways of modifying the physical form of the discussed group of wastes, making it possible to overcome the basic limitation on their practical use, are discussed. PMID:26060197

  4. The hydrometallurgical extraction of rhenium from copper industrial wastes

    NASA Astrophysics Data System (ADS)

    Amer, Ashraf

    2008-08-01

    An attempt has been made in this investigation to develop a wet chemical method for treating a rhenium-containing lead slime produced during copper manufacture. The effects of temperature, grain size, oxygen partial pressure, and leaching time as well as the kinetics of the leaching process were studied.

  5. Siting of a metals industry landfill on abandoned soda ash waste beds

    SciTech Connect

    Rinaldo-Lee, M.B.; Diffendorf, A.F.; Hagarman, J.A.

    1983-03-01

    A recent application by a steel-manufacturing plant to obtain a permit for an industrial landfill on abandoned soda ash waste beds near the city of Syracuse, New York, resulted in an extensive hydrogeologic and geochemical investigation. This investigation was initiated because of (1) previous disposal of waste by the metal manufacturer at this site and (2) the unique location of the landfill on top of preexisting waste beds on the shores of Onondaga Lake. The results of groundwater monitoring over a one-year period indicate no detectable chromium from the metal-waste leachate escaping through the soda ash wastes. Retention ofhexavalent chromium within the underlying highly alkaline soda ash wastes by adsorption, reduction, and precipitation suggests a viable means for in situ treatment of several metals-manufacturing waste products.

  6. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    SciTech Connect

    Bolinsky, F.T. ); Ross, J. ); Dennis, D.S. . Stearns-Roger Div.); Huston, J.S. )

    1991-01-01

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

  7. Industrial Waste Heat Recovery - Potential Applications, Available Technologies and Crosscutting R&D Opportunities

    SciTech Connect

    Thekdi, Arvind; Nimbalkar, Sachin U.

    2015-01-01

    The purpose of this report was to explore key areas and characteristics of industrial waste heat and its generation, barriers to waste heat recovery and use, and potential research and development (R&D) opportunities. The report also provides an overview of technologies and systems currently available for waste heat recovery and discusses the issues or barriers for each. Also included is information on emerging technologies under development or at various stages of demonstrations, and R&D opportunities cross-walked by various temperature ranges, technology areas, and energy-intensive process industries.

  8. Developments in ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each year, the Florida citrus juice industry produces about 3.5~5.0 million tons of wet peel waste, which are currently dried and sold as cattle feed, often at a loss, to dispose of the waste residual. Profitability would be greatly improved if the peel waste could be used to produce higher value pr...

  9. Energy Conservation and Waste Reduction in the Metal Fabrication Industry 

    E-print Network

    Kirk, M. C. Jr.; Looby, G. P.

    1996-01-01

    manager for the western region of the Industrial Assessment Center program. These case studies present results from three assessments of manufacturing plants in the metal fabrication industry. Primary processing operations include machining, painting...

  10. Biopolymers production with carbon source from the wastes of a beer brewery industry

    NASA Astrophysics Data System (ADS)

    Wong, Phoeby Ai Ling

    The main purpose of this study was to assess the potential and feasibility of malt wastes, and other food wastes, such as soy wastes, ice-cream wastes, confectionery wastes, vinegar wastes, milk waste and sesame oil, in the induction of biosynthesis of PHA, in the cellular assembly of novel PHA with improved physical and chemical properties, and in the reduction of the cost of PHA production. In the first part of the experiments, a specific culture of Alcaligenes latus DSM 1124 was selected to ferment several types of food wastes as carbon sources into biopolymers. In addition, the biopolymer production, by way of using malt waste, of microorganisms from municipal activated sludge was also investigated. In the second part, the experiments focused on the synthesis of biopolymer with a higher molecular mass via the bacterial strain, which was selected and isolated from sesame oil, identified as Staphylococcus epidermidis . Molecular weight and molecular weight distribution of PHB were studied by GPC. Molecular weight of PHB produced from various types of food wastes by Alcaligenes latus was higher than using synthetic sucrose medium as nutrient, however, it resulted in the reverse by Staphylococcus epidermidis. Thermal properties of biopolymers were studied by DSC and TG. Using malt wastes as nutrients by Alcaligenes latus gave a higher melting temperature. Using sucrose, confectionery and sesame oil as nutrients by Staphylococcus epidermidis gave higher melting temperature. Optimization was carried out for the recovery of microbial PHB from Alcaligenes latus. Results showed that molecular weight can be controlled by changing the hypochlorite concentration, the ratio of chloroform to hypochlorite solution and the extraction time. In addition, the determination of PHB content by thermogravimetric analysis method with wet cell was the first report in our study. (Abstract shortened by UMI.)

  11. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization.

    PubMed

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO?·7H?O showed significantly positive effects, whereas KH?PO? and CaCl?·2H?O had a significantly negative effect (p-value < 0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO?·7H?O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production. PMID:26501261

  12. Enhanced Bio-Ethanol Production from Industrial Potato Waste by Statistical Medium Optimization

    PubMed Central

    Izmirlioglu, Gulten; Demirci, Ali

    2015-01-01

    Industrial wastes are of great interest as a substrate in production of value-added products to reduce cost, while managing the waste economically and environmentally. Bio-ethanol production from industrial wastes has gained attention because of its abundance, availability, and rich carbon and nitrogen content. In this study, industrial potato waste was used as a carbon source and a medium was optimized for ethanol production by using statistical designs. The effect of various medium components on ethanol production was evaluated. Yeast extract, malt extract, and MgSO4·7H2O showed significantly positive effects, whereas KH2PO4 and CaCl2·2H2O had a significantly negative effect (p-value < 0.05). Using response surface methodology, a medium consisting of 40.4 g/L (dry basis) industrial waste potato, 50 g/L malt extract, and 4.84 g/L MgSO4·7H2O was found optimal and yielded 24.6 g/L ethanol at 30 °C, 150 rpm, and 48 h of fermentation. In conclusion, this study demonstrated that industrial potato waste can be used effectively to enhance bioethanol production. PMID:26501261

  13. Applications of thermal energy storage to waste heat recovery in the food processing industry

    NASA Astrophysics Data System (ADS)

    Trebilcox, G. J.; Lundberg, W. L.

    1981-03-01

    The canning segment of the food processing industry is a major energy user within that industry. Most of its energy demand is met by hot water and steam and those fluids, in addition to product cooling water, eventually flow from the processes as warm waste water. To minimize the possibility of product contamination, a large percentage of that waste water is sent directly to factory drains and sewer systems without being recycled and in many cases the thermal energy contained by the waste streams also goes unreclaimed and is lost from further use. Waste heat recovery in canning facilities can be performed economically using systems that employ thermal energy storage (TES). A project was proposed in which a demonstration waste heat recovery system, including a TES feature, would be designed, installed and operated.

  14. Waste recycling in the textile industry. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1997-11-01

    The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Waste recycling in the textile industry. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  16. Waste recycling in the textile industry. (Latest citations from World Textile Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  17. Waste recycling in the textile industry. (Latest citations from World Textile abstracts). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Waste recycling in the textile industry. (Latest citations from World Textile Abstracts). Published Search

    SciTech Connect

    1996-10-01

    The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  19. Waste recycling in the textile industry. (Latest citations from World Textile abstracts). NewSearch

    SciTech Connect

    Not Available

    1994-10-01

    The bibliography contains citations concerning the recycling of fibrous and other waste materials from textile production. Citations discuss recycled materials such as cellulosic and polymeric wastes, cloth scraps, cottons, wools, and waste dusts for use in fabric products, building materials, thermal insulation, textile-reinforced materials, and geotextiles. Equipment for collecting, sorting, and processing textile wastes is also discussed. Citations concerning heat recovery and effluent treatment in the textile industry are covered in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  20. National economic models of industrial water use and waste treatment. [technology transfer

    NASA Technical Reports Server (NTRS)

    Thompson, R. G.; Calloway, J. A.

    1974-01-01

    The effects of air emission and solid waste restrictions on production costs and resource use by industry is investigated. A linear program is developed to analyze how resource use, production cost, and waste discharges in different types of production may be affected by resource limiting policies of the government. The method is applied to modeling ethylene and ammonia plants at the design stage. Results show that the effects of increasingly restrictive wastewater effluent standards on increased energy use were small in both plants. Plant models were developed for other industries and the program estimated effects of wastewater discharge policies on production costs of industry.

  1. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    SciTech Connect

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Bjoernsson, Lovisa

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. Black-Right-Pointing-Pointer Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. Black-Right-Pointing-Pointer Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. Black-Right-Pointing-Pointer Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. Black-Right-Pointing-Pointer It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable alternative to ensure a constant/reliable supply of feedstock to the anaerobic digester.

  2. R&D Industrial internship in their area of recycling industrial chemical wastes Summary: Fielding Chemical Technologies Inc. (FCT, Mississauga, ON), Environment Canada (EC,

    E-print Network

    Prodiæ, Aleksandar

    R&D Industrial internship in their area of recycling industrial chemical wastes Summary: Fielding industrially relevant chemical production/separation methods and report on findings Education Requirement procedures in industrial chemical environment and best practices in working with hazardous materials; basic

  3. A system analysis of converting non-recyclable plastic waste into value-added products in a paper industry cluster

    E-print Network

    Desam, Padmabhushana R

    2013-01-01

    Waste plastic, both industrial and municipal sources, is posing a major environmental challenges in developing countries such as India due to improper disposal methods. Large quantities of non-recyclable plastic waste get ...

  4. Mössbauer studies of materials used to immobilise industrial wastes

    NASA Astrophysics Data System (ADS)

    Forder, S. D.; Bingham, P. A.; McGann, O. J.; Stennett, M. C.; Hyatt, N. C.

    2013-04-01

    The necessity to immobilise waste safely requires the development of stable materials. Mössbauer spectroscopy has been used to help understand and obtain desirable properties in alkali borosilicate glasses, phosphate glasses and vitrified sewage sludge ash. Phosphate glasses suitable for waste immobilisation have been microwaved and conventionally melted and differences reported. The environment of Fe in promising ceramics has also been studied. Mössbauer studies of irradiated vitrified wasteforms show their resistance to radiation damage.

  5. Northwest hazardous waste site characteristics under industrial and climatic settings

    SciTech Connect

    Steelman, B.L.; Hartz, K.E.; Woodruff, D.L.; Triplett, M.B.

    1988-05-01

    The Pacific Northwest Laboratory (PNL) has an effort under way to identify both appropriate existing technology and the need to develop new technology to assess and remediate hazardous waste management problems. This effort has been performed in support of several activities within PNL, including programmatic planning for the Northwest Hazardous Waste Research, Development, and Demonstration Center. Among other interests, we wanted to know if common problems existed across the Northwest region.

  6. Industrial waste recycling strategies optimization problem: mixed integer programming model and heuristics

    NASA Astrophysics Data System (ADS)

    Tang, Jiafu; Liu, Yang; Fung, Richard; Luo, Xinggang

    2008-12-01

    Manufacturers have a legal accountability to deal with industrial waste generated from their production processes in order to avoid pollution. Along with advances in waste recovery techniques, manufacturers may adopt various recycling strategies in dealing with industrial waste. With reuse strategies and technologies, byproducts or wastes will be returned to production processes in the iron and steel industry, and some waste can be recycled back to base material for reuse in other industries. This article focuses on a recovery strategies optimization problem for a typical class of industrial waste recycling process in order to maximize profit. There are multiple strategies for waste recycling available to generate multiple byproducts; these byproducts are then further transformed into several types of chemical products via different production patterns. A mixed integer programming model is developed to determine which recycling strategy and which production pattern should be selected with what quantity of chemical products corresponding to this strategy and pattern in order to yield maximum marginal profits. The sales profits of chemical products and the set-up costs of these strategies, patterns and operation costs of production are considered. A simulated annealing (SA) based heuristic algorithm is developed to solve the problem. Finally, an experiment is designed to verify the effectiveness and feasibility of the proposed method. By comparing a single strategy to multiple strategies in an example, it is shown that the total sales profit of chemical products can be increased by around 25% through the simultaneous use of multiple strategies. This illustrates the superiority of combinatorial multiple strategies. Furthermore, the effects of the model parameters on profit are discussed to help manufacturers organize their waste recycling network.

  7. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    PubMed

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted. PMID:15864958

  8. Management approaches to integrated solid waste in industrialized zones in Jordan: A case of Zarqa City

    SciTech Connect

    Mrayyan, Bassam; Hamdi, Moshrik R. . E-mail: moshrik@hu.edu.jo

    2006-07-01

    There is a need to recognize the difficulties experienced in managing waste and to understand the reasons for those difficulties, especially in developing countries such as Jordan. Zarqa is a Governorate located in central Jordan, which has 2874 registered industries, making up more than 52% of the total industries in the country. Zarqa Governorate suffers from serious solid waste problems. These problems arise from an absence of adequate policies, facilitating legislation, and an environmentally enthused public, which therefore have a negative impact on the environment and health. Solid waste generation in Zarqa Governorate has increased exponentially and has polluted natural resources and the environment. A significant change in municipal solid waste generation was evident between the years 1994 and 2000. The Zarqa Governorate generated 482 tons/day in 2002 with a per capita rate of 0.44 kg/cap-day [Consulting Engineers, 2002, Feasibility study for the treatment of industrial wastewater in Zarqa Governorate. A project funded by METAP and Zarqa Chamber of Industry. Unpublished report]. This manuscript assesses the current operational and management practices of solid waste in the Zarqa Governorate; and evaluates the associated issues of solid waste collection, storage, transport, disposal and recycling in developing countries. The lack of techniques, financial funds and awareness among public and private sectors form an obstacle for achieving a successful environmental program. Several options are proposed to address management goals. Although Jordan became the first country in the Middle East to adopt a national environmental strategy; waste disposal is still largely uncontrolled and large quantities of waste go uncollected. Ensuring proper management of solid wastes, enforcing regulations, and implementing proper environmental awareness programs that will enhance the public understanding and achieve greater efficiency, are the findings of this study.

  9. Exposure to Organic Dusts, Endotoxins, and Microorganisms in the Municipal Waste Industry.

    PubMed

    Van Tongeren M; Van Amelsvoort L; Heederik

    1997-01-01

    The waste-collection and -processing industry in Europe is developing rapidly due to environmental constraints in the direction of separate collection, processing, and recycling of waste. It is likely that this will lead to an increase in the number of workers involved in the handling and processing of municipal waste, and an increase in the number of workers exposed to organic dust. This paper reports the results of an occupational hygiene study of the waste-collection and -processing industry (a compost-screening facility, a resource-recovery facility, and two waste-transfer facilities) in The Netherlands. It focuses on organic dusts, endotoxins, and microorganisms (total and gram-negative bacteria and fungi). Levels of exposure to inhalable organic dusts were highest in the waste-processing facilities (compost screening and resource recovery), with average concentrations for organic dusts up to 14.3 mg/m(3) during manual separation of waste and 9.7 mg/m(3) during compost screening activities. Personal endotoxin exposure was highest in the resource-recovery facility, ranging from 32.0 ng/m(3) for the supervisor to 131.1 ng/m(3) during manual separation of waste. High concentrations of microorganisms were found in all facilities. The highest levels for both total fungi and bacteria (<> 10&sup6; cfu/m(3)) were recorded in the dumping pit at the resource-recovery plant and in the dumping pit at one of the waste-transfer plants. It is concluded that high levels of exposures to microorganisms, and to a lesser extent organic dusts and endotoxins, are likely to occur in many processes and activities in the waste-transfer and -processing industry, and that the possibility of health effects due to these exposures cannot be excluded. PMID:9891098

  10. A model to minimize joint total costs for industrial waste producers and waste management companies.

    PubMed

    Tietze-Stöckinger, Ingela; Fichtner, Wolf; Rentz, Otto

    2004-12-01

    The model LINKopt is a mixed-integer, linear programming model for mid- and long-term planning of waste management options on an inter-company level. There has been a large increase in the transportation of waste material in Germany, which has been attributed to the implementation of the European Directive 75/442/EEC on waste. Similar situations are expected to emerge in other European countries. The model LINKopt has been developed to determine a waste management system with minimal decision-relevant costs considering transportation, handling, storage and treatment of waste materials. The model can serve as a tool to evaluate various waste management strategies and to obtain the optimal combination of investment options. In addition to costs, ecological aspects are considered by determining the total mileage associated with the waste management system. The model has been applied to a German case study evaluating different investment options for a co-operation between Daimler-Chrysler AG at Rastatt, its suppliers, and the waste management company SITA P+R GmbH. The results show that the installation of waste management facilities at the premises of the waste producer would lead to significant reductions in costs and transportation. PMID:15666449

  11. Utilization of biogas produced by anaerobic digestion of agro-industrial waste: Energy, economic and environmental effects.

    PubMed

    Hublin, Andrea; Schneider, Daniel Rolph; Džodan, Janko

    2014-06-24

    Anaerobic digestion of agro-industrial waste is of significant interest in order to facilitate a sustainable development of energy supply. Using of material and energy potentials of agro-industrial waste, in the framework of technical, economic, and ecological possibilities, contributes in increasing the share of energy generated from renewable energy sources. The paper deals with the benefits arising from the utilization of biogas produced by co-digestion of whey and cow manure. The advantages of this process are the profitability of the plant and the convenience in realizing an anaerobic digestion plant to produce biogas that is enabled by the benefits from the sale of electric energy at favorable prices. Economic aspects are related to the capital cost (€ 2,250,000) of anaerobic digestion treatment in a biogas plant with a 300 kW power and 510 kW heating unit in a medium size farm (450 livestock units). Considering the optimum biogas yield of 20.7 dm(3) kg(-1) of wet substrate and methane content in the biogas obtained of 79%, the anaerobic process results in a daily methane production of 2,500 kg, with the maximum power generation of 2,160,000 kWh y(-1) and heat generation of 2,400,000 kWh y(-1). The net present value (NPV), internal rate of return (IRR) and payback period for implementation of profitable anaerobic digestion process is evaluated. Ecological aspects related to carbon dioxide (CO2) and methane (CH4) emission reduction are assessed. PMID:24963093

  12. Assessment and analysis of industrial liquid waste and sludge disposal at unlined landfill sites in arid climate

    SciTech Connect

    Al Yaqout, Anwar F

    2003-07-01

    Municipal solid waste disposal sites in arid countries such as Kuwait receive various types of waste materials like sewage sludge, chemical waste and other debris. Large amounts of leachate are expected to be generated due to the improper disposal of industrial wastewater, sewage sludge and chemical wastes with municipal solid waste at landfill sites even though the rainwater is scarce. Almost 95% of all solid waste generated in Kuwait during the last 10 years was dumped in five unlined landfills. The sites accepting liquid waste consist of old sand quarries that do not follow any specific engineering guidelines. With the current practice, contamination of the ground water table is possible due to the close location of the water table beneath the bottom of the waste disposal sites. This study determined the percentage of industrial liquid waste and sludge of the total waste dumped at the landfill sites, analyzed the chemical characteristics of liquid waste stream and contaminated water at disposal sites, and finally evaluated the possible risk posed by the continuous dumping of such wastes at the unlined landfills. Statistical analysis has been performed on the disposal and characterization of industrial wastewater and sludge at five active landfill sites. The chemical analysis shows that all the industrial wastes and sludge have high concentrations of COD, suspended solids, and heavy metals. Results show that from 1993 to 2000, 5.14{+-}1.13 million t of total wastes were disposed per year in all active landfill sites in Kuwait. The share of industrial liquid and sludge waste was 1.85{+-}0.19 million t representing 37.22{+-}6.85% of total waste disposed in all landfill sites. Such wastes contribute to landfill leachate which pollutes groundwater and may enter the food chain causing adverse health effects. Lined evaporation ponds are suggested as an economical and safe solution for industrial wastewater and sludge disposal in the arid climate of Kuwait.

  13. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  14. Waste heat recovery: Textile industry. (Latest citations from World Textile Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-08-01

    The bibliography contains citations concerning descriptions and evaluations of waste heat recovery operations used in the textile industry. Heat recovery and utilization from wastewater streams, flue gas, finishing processes, dyeing operations, and air jet systems are presented. The use of waste heat for space heating and process preheating is considered. (Contains a minimum of 162 citations and includes a subject term index and title list.)

  15. Management of solid wastes in the iron and steel industry

    SciTech Connect

    El-Gohary, F.; El-khouly, M.S.

    1983-03-01

    Wastes from a local iron and steel factory operations are agglomeration of iron ore and sintering, pig iron manufacture, steel making, rolling mill operations, and pickling. Liquid slag, produced in the blast furnace, is granulated in water and used as a concrete additive. Other wastes are directed separately to sedimentation tanks. The settleable solids are reused, and the treated effluents are pumped to a cooling tower for recycling. As a result of the new manufacturing expansion, existing waste treatment facilities are not adequate, and it was found necessary to provide additional treatment techniques. Departmental, as well as composite wastes were treated using plain sedimentation, centrifugal sedimentation, or chemical coagulation, or a combination of these methods. The results obtained showed that the use of the hydrocyclone for solid-liquid separation is much more efficient than plain sedimentation. When this process was followed by coagulation, very promising results were obtained. The use of pickling liquor as a coagulant gave comparable results with alum and ferric chloride.

  16. WASTE MINIMIZATION INSIGHTS FOR THE POLYMER-INDUSTRY

    EPA Science Inventory

    The huge volumes of polymeric materials produced in this country can also result in the production of large volumes of wastes consisting of 1 "off spec" polymers, process solvents, additives, stabilizers, and gaseous emissions. he EPA has recently instituted an effort to work wit...

  17. HAZARDOUS WASTE COMBUSTION IN INDUSTRIAL PROCESSES: CEMENT AND LIME KILNS

    EPA Science Inventory

    The report summarizes the results of several studies relating to hazardous waste combustion in cement and lime kilns. The tests included in the study are four kilns tested by the U.S. Environmental Protection Agency, four kilns tested by State agencies or the kiln operator, two C...

  18. WASTE MINIMIZATION ASSESSMENT FOR A MANUFACTURER OF INDUSTRIAL COATINGS

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) has funded a' pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. aste Minimization Assessment Centers (WMACs) were established at selected u...

  19. Binational management of hazardous waste: The maquiladora industry at the US-Mexico border

    NASA Astrophysics Data System (ADS)

    Perry, Diane M.; Sanchez, Roberto; Glaze, William H.; Mazari, Marisa

    1990-07-01

    Foreign-owned industry in the form of assembly plants, termed maquiladora, has become very important in Mexico to the extent that it represents the second largest source of foreign exchange and is a valuable source for employment and regional development. The economic prosperity gained from the rapid growth of the maquiladora industry has been accompanied by increased environmental and human health risks associated with generation of hazardous waste. Diversification of industry has resulted in the predomination of those sectors that likely use hazardous substances. The Mexicali-Calexico border region was selected to demonstrate the potential for environmental and health risks associated with the generation of hazardous waste. Estimates for the generation of hazardous waste were obtained from 34 maquiladora plants in Mexicali, represented by the electronic and electrical equipment and parts, mechanical and transportation equipment, and toys and sporting equipment sectors. Repeated detection of volatile organic compounds in the New River at the US-Mexico border suggests that hazardous waste from the printed circuit board industry in Mexicali is not being disposed of in a proper manner. Potential adverse health effects, such as carcinogenic and mutagenic responses associated with the detected volatiles, are discussed. US and Mexico national legislation and the Binational Environmental Agreement were examined for their adequacy to ensure proper management of hazardous waste generated by the maquiladora industry. Environmental policy options are presented that focus on: (1) increased environmental accountability of US parent companies for their maquiladora assembly plants in Mexico; and (2) more integration between US Customs and border states with the US Environmental Protection Agency to improve the binational management of hazardous waste generated by the maquiladora industry.

  20. WASTE TO VALUE: INCORPORATING INDUSTRIAL SYMBIOSIS FOR SUSTAINABLE INFRASTRUCTURE

    EPA Science Inventory

    Technical Challenge: Investigators will examine the role of technology innovations as well as environmental justice (EJ) obligations in initiating and implementing urban-industrial symbiosis in Commerce City (CC), CO. The sustainability challenge invol...

  1. Design and implementation of integrated solid wastes management pattern in industrial zones, case study of Shahroud, Iran

    PubMed Central

    2014-01-01

    Background The aim of the study was to design and implementation of integrated solid wastes management pattern in Shahroud industrial zone, evaluates the results and determine possible performance problems. This cross - sectional study was carried out for 4 years in Shahroud industrial zone and the implementation process included:1- Qualitative and quantitative analysis of all solid waste generated in the city, 2- determine the current state of solid waste management in the zone and to identify programs conducted, 3- Design and implementation of integrated solid wastes management pattern including design and implementation of training programs, laws, penalties and incentives and explain and implement programs for all factories and 4- The monitoring of the implementation process and determine the results. Results Annually, 1,728 tons of solid wastes generated in the town including 1603 tons of industrial wastes and 125 tons of municipal wastes. By implementing this pattern, the two separated systems of collection and recycling of domestic and industrial wastes was launched in this zone. Also consistent with the goals, the amount of solid wastes generated and disposed in 2009 was 51.5 and 28.6 kg per 100 million Rials production, respectively. Conclusion Results showed that implementation of pattern of separated collection, training programs, capacity building, providing technical services, completing chain of industries and strengthening the cooperation between industrial estate management and industrial units could greatly reduce the waste management problems. PMID:24423020

  2. Bibliography of reports, papers, and presentations on naturally occurring radioactive material (NORM) in petroleum industry wastes

    SciTech Connect

    Smith, K.P.; Wilkey, M.L.; Hames, R.D.

    1997-07-01

    This bibliography was created to support projects conducted by Argonne National Laboratory (ANL) addressing issues related to naturally occurring radioactive material (NORM) in petroleum industry wastes. The bibliography provides citations for many of the available published reports, papers, articles, and presentations on petroleum industry NORM. In the past few years, the rapid expansion of NORM treatment and disposal technologies, the efforts to characterize NORM wastes and their associated potential risks, and the promulgation of state-level NORM regulatory programs have been well-documented in project reports and in papers presented at technical conferences and symposia. There are 221 citations.

  3. Very, Very Fast Wetting

    NASA Technical Reports Server (NTRS)

    Jacqmin, David; Lee, Chi-Ming (Technical Monitor); Salzman, Jack (Technical Monitor)

    2001-01-01

    Just after formation, optical fibers are wetted stably with acrylate at capillary numbers routinely exceeding 1000. It is hypothesized that this is possible because of dissolution of air into the liquid coating. A lubrication/boundary integral analysis that includes gas diffusion and solubility is developed. It is applied using conservatively estimated solubility and diffusivity coefficients and solutions are found that are consistent with industry practice and with the hypothesis. The results also agree with the claim of Deneka, Kar & Mensah (1988) that the use of high solubility gases to bathe a wetting line allows significantly greater wetting speeds. The solutions indicate a maximum speed of wetting which increases with gas solubility and with reduction in wetting-channel diameter.

  4. Application of reutilization technology to waste from liquid crystal display (LCD) industry.

    PubMed

    Liu, Wei T; Li, Kung C

    2010-01-01

    This investigation studies the recycling utility of two major waste products from the liquid crystal display (LCD) industry, panel glass and calcium fluoride sludge, which remain after the treatment of waste water. Waste panel glass was mixed with calcium fluoride sludge in various ratios and then subject to conditioning and melting treatment in order to yield glass-ceramics. Heavy metal leaching tests indicated that reductive conditions lowered the heavy metal concentrations in the leachate to an order of magnitude below that in the waste glass and sludge. A 5:5 (wt%) mixture of glass and sludge melted at 1200 degrees C for 60 min achieves a specific gravity, water absorption, unit mass, porosity ratio, and soundness that meet the American Society for Testing and Materials (ASTM) standard for fine aggregates. Therefore, waste panel glass can indeed be efficiently recycled into a useful construction material. PMID:20390905

  5. Study of Material Used in Nanotechnology for the Recycling of Industrial Waste Water

    NASA Astrophysics Data System (ADS)

    Larbi, L.; Fertikh, N.; Toubal, A.

    The objective of our study is to recycle the industrial waste water of a industrial Complex after treatment by the bioprocess MBR (membrane bioreactor). In order to apply this bioprocess, the water quality in question was first of all studied. To characterize this industrial waste water, a series of physicochemical analysis was carried out according to standardized directives and methods. Following-up the water quality to meet the regulatory requirements with rejection of this industrial waste water, a study was done thanks to the permanently monitoring of the following relevant parameters(P): the flow, the potential of hydrogen (pH), the total suspended solids(TSS), the turbidity (Turb), the chemical oxygen demand (COD),the biochemical oxygen demand (BOD), the Kjeldahl total nitrogen (KTN) and ammonia (NH4+), the total phosphorus (Ptot), the fluorine (F), the oils (O), the fats (F) and the phenols (Ph). According to collected information, it was established the sampling rates to which the quality control was done, the selected analytical methods were validated by the control charts and the analysis test number was determined by the Cochran test. The results of the quality control show that some rejected water contents are not in the Algerian standards, but, in our case, the objective is the preoccupation for a standard setting of these industrial water parameters so as to recycle it. The process adopted by MBR for waste water treatment is being studied, first in the development of the experimental characterizing of the reactor and the selected membrane.

  6. Heat-exchanger needs for recovering waste heat in the glass-making industry. Final report

    SciTech Connect

    Webb, R.L.; Kulkarni, A.K.

    1983-02-01

    The state of the art of waste heat recovery technology in the glass-making industry is assessed. Fouling and corrosion glass furnace regenerators are reviewed. Heat recovery from the exhaust gases leaving the brick checkers regenerator of a soda lime glass furnace is addressed. Research and development needs that will advance the use of secondary heat recovery in the glass industry are identified. (LEW)

  7. Packaging waste recycling in Europe: Is the industry paying for it?

    SciTech Connect

    Ferreira da Cruz, Nuno Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-15

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the “recycling system” are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and Portugal the industry is paying local authorities more than just the incremental costs of recycling (full costs of selective collection and sorting minus the avoided costs). To provide a more definitive judgment on the fairness of the systems it will be necessary to assess the cost efficiency of waste management operators (and judge whether operators are claiming costs or eliciting “prices”)

  8. Application of poultry processing industry waste: a strategy for vegetation growth in degraded soil.

    PubMed

    do Nascimento, Carla Danielle Vasconcelos; Pontes Filho, Roberto Albuquerque; Artur, Adriana Guirado; Costa, Mirian Cristina Gomes

    2015-02-01

    The disposal of poultry processing industry waste into the environment without proper care, can cause contamination. Agricultural monitored application is an alternative for disposal, considering its high amount of organic matter and its potential as a soil fertilizer. This study aimed to evaluate the potential of poultry processing industry waste to improve the conditions of a degraded soil from a desertification hotspot, contributing to leguminous tree seedlings growth. The study was carried out under greenhouse conditions in a randomized blocks design and a 4 × 2 factorial scheme with five replicates. The treatments featured four amounts of poultry processing industry waste (D1 = control 0 kg ha(-1); D2 = 1020.41 kg ha(-1); D3 = 2040.82 kg ha(-1); D4 = 4081.63 kg ha(-1)) and two leguminous tree species (Mimosa caesalpiniaefolia Benth and Leucaena leucocephala (Lam.) de Wit). The poultry processing industry waste was composed of poultry blood, grease, excrements and substances from the digestive system. Plant height, biomass production, plant nutrient accumulation and soil organic carbon were measured forty days after waste application. Leguminous tree seedlings growth was increased by waste amounts, especially M. caesalpiniaefolia Benth, with height increment of 29.5 cm for the waste amount of 1625 kg ha(-1), and L. leucocephala (Lam.) de Wit, with maximum height increment of 20 cm for the waste amount of 3814.3 kg ha(-1). M. caesalpiniaefolia Benth had greater initial growth, as well as greater biomass and nutrient accumulation compared with L. leucocephala (Lam.) de Wit. However, belowground biomass was similar between the evaluated species, resulting in higher root/shoot ratio for L. leucocephala (Lam.) de Wit. Soil organic carbon did not show significant response to waste amounts, but it did to leguminous tree seedlings growth, especially L. leucocephala (Lam.) de Wit. Poultry processing industry waste contributes to leguminous tree seedlings growth, indicating that it can be part of a long-term strategy to increase soil organic carbon in degraded soil from a desertification hotspot. PMID:25464939

  9. Isolation and Screening of Polyhydroxyalkanoates Producing Bacteria from Pulp, Paper, and Cardboard Industry Wastes

    PubMed Central

    Bhuwal, Anish Kumari; Singh, Gulab; Aggarwal, Neeraj Kumar; Goyal, Varsha; Yadav, Anita

    2013-01-01

    Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236?g/L and 4.042?g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production. PMID:24288534

  10. Grand Rounds: An Outbreak of Toxic Hepatitis among Industrial Waste Disposal Workers

    PubMed Central

    Cheong, Hae-Kwan; Kim, Eun A; Choi, Jung-Keun; Choi, Sung-Bong; Suh, Jeong-Ill; Choi, Dae Seob; Kim, Jung Ran

    2007-01-01

    Context Industrial waste (which is composed of various toxic chemicals), changes to the disposal process, and addition of chemicals should all be monitored and controlled carefully in the industrial waste industry to reduce the health hazard to workers. Case presentation Five workers in an industrial waste plant developed acute toxic hepatitis, one of whom died after 3 months due to fulminant hepatitis. In the plant, we detected several chemicals with hepatotoxic potential, including pyridine, dimethylformamide, dimethylacetamide, and methylenedianiline. The workers had been working in the high-vapor-generating area of the plant, and the findings of pathologic examination showed typical features of acute toxic hepatitis. Discussion Infectious hepatitis and drug-induced hepatitis were excluded by laboratory findings, as well as the clinical course of hepatitis. All cases of toxic hepatitis in this plant developed after the change of the disposal process to thermochemical reaction–type treatment using unslaked lime reacted with industrial wastes. During this chemical reaction, vapor containing several toxic materials was generated. Although we could not confirm the definitive causative chemical, we suspect that these cases of hepatitis were caused by one of the hepatotoxic agents or by a synergistic interaction among several of them. Relevance to clinical or professional practice In the industrial waste treatment process, the danger of developing toxic hepatitis should be kept in mind, because any subtle change of the treatment process can generate various toxic materials and threaten the workers’ health. A mixture of hepatotoxic chemicals can induce clinical manifestations that are quite different from those predicted by the toxic property of a single agent. PMID:17366828

  11. Isolation and screening of polyhydroxyalkanoates producing bacteria from pulp, paper, and cardboard industry wastes.

    PubMed

    Bhuwal, Anish Kumari; Singh, Gulab; Aggarwal, Neeraj Kumar; Goyal, Varsha; Yadav, Anita

    2013-01-01

    Background. Polyhydroxyalkanoates (PHAs) are storage materials that accumulate by various bacteria as energy and carbon reserve materials. They are biodegradable, environmentally friendly, and also biocompatible bioplastics. Unlike petrochemical-based plastics that take several decades to fully degrade, PHAs can be completely degraded within a year by variety of microorganisms into CO2 and water. In the present study, we aim to utilize pulp, paper, and cardboard industry sludge and waste water for the isolation and screening of polyhydroxyalkanoates (PHAs) accumulating bacteria and production of cost-effective PHB using cardboard industry waste water. Results. A total of 42 isolates showed black-blue coloration when stained with Sudan black B, a preliminary screening agent for lipophilic compounds, and a total of 15 isolates showed positive result with Nile blue A staining, a more specific dye for PHA granules. The isolates NAP11 and NAC1 showed maximum PHA production 79.27% and 77.63% with polymer concentration of 5.236?g/L and 4.042?g/L with cardboard industry waste water. Both of the selected isolates, NAP11 and NAC1, were classified up to genus level by studying their morphological and biochemical characteristics and were found to be Enterococcus sp., Brevundimonas sp. and, respectively. Conclusion. The isolates Enterococcus sp. NAP11 and Brevundimonas sp. NAC1 can be considered as good candidates for industrial production of PHB from cardboard industry waste water. We are reporting for the first time the use of cardboard industry waste water as a cultivation medium for the PHB production. PMID:24288534

  12. Industrial waste in highway construction K. Aravind1

    E-print Network

    Das, Animesh

    construction materials. Traditionally soil, stone aggregates, sand, bitumen, cement etc. are used for road fill Cement kiln dust Cement industry Stabilization of base, binder in bituminous mix [5] Used engine assessment of these materials, new tests are to be devised and new acceptability criteria are to be formed

  13. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, Vish V.; Davies, Richard W.; Holbery, Jim D.

    2006-04-01

    United States industry consumed 32.5 Quads (34,300 PJ) of energy during 2003, which was 33.1% of total U.S. energy consumption (EIA 2003 Annual Energy Review). The U.S. industrial complex yields valuable goods and products. Through its manufacturing processes as well as its abundant energy consumption, it supports a multi-trillion dollar contribution to the gross domestic product and provides millions of jobs in the U.S. each year. Industry also yields waste products directly through its manufacturing processes and indirectly through its energy consumption. These waste products come in two forms, chemical and thermal. Both forms of waste have residual energy values that are not routinely recovered. Recovering and reusing these waste products may represent a significant opportunity to improve the energy efficiency of the U.S. industrial complex. This report was prepared for the U.S. Department of Energy Industrial Technologies Program (DOE-ITP). It analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities. A primary part of this analysis was to characterize the quantity and energy value of the emissions. For example, in 2001, the industrial sector emitted 19% of the U.S. greenhouse gases (GHG) through its industrial processes and emitted 11% of GHG through electricity purchased from off-site utilities. Therefore, industry (not including agriculture) was directly and indirectly responsible for emitting 30% of the U.S. GHG. These emissions were mainly comprised of carbon dioxide (CO2), but also contained a wide-variety of CH4 (methane), CO (carbon monoxide), H2 (hydrogen), NMVOC (non-methane volatile organic compound), and other chemicals. As part of this study, we conducted a survey of publicly available literature to determine the amount of energy embedded in the emissions and to identify technology opportunities to capture and reuse this energy. As shown in Table E-1, non-CO2 GHG emissions from U.S. industry were identified as having 2180 peta joules (PJ) or 2 Quads (quadrillion Btu) of residual chemical fuel value. Since landfills are not traditionally considered industrial organizations, the industry component of these emissions had a value of 1480 PJ or 1.4 Quads. This represents approximately 4.3% of the total energy used in the United States Industry.

  14. Waste disposal and treatment in the food-processing industry. (Latest citations from the Biobusiness data base). Published Search

    SciTech Connect

    Not Available

    1992-08-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. Specific areas include waste heat recovery, and food industry wastes from meat and seafood processing, dairy and beverage production, and processing of fruits and vegetables. The citations explore conversion of the treated waste to fertilizer, and uses in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste is also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  15. Health care industries: potential generators of genotoxic waste.

    PubMed

    Sharma, Pratibha; Kumar, Manish; Mathur, N; Singh, A; Bhatnagar, P; Sogani, M

    2013-08-01

    Health care waste includes all the waste generated by health care establishments, research facilities, and laboratories. This constitutes a variety of chemical substances, such as pharmaceuticals, radionuclides, solvents, and disinfectants. Recently, scientists and environmentalists have discovered that wastewater produced by hospitals possesses toxic properties due to various toxic chemicals and pharmaceuticals capable of causing environmental impacts and even lethal effects to organisms in aquatic ecosystems. Many of these compounds resist normal wastewater treatment and end up in surface waters. Besides aquatic organisms, humans can be exposed through drinking water produced from contaminated surface water. Indeed, some of the substances found in wastewaters are genotoxic and are suspected to be potential contributors to certain cancers. The aim of this study was to evaluate the genotoxic and cytotoxic potential of wastewaters from two hospitals and three clinical diagnostic centers located in Jaipur (Rajasthan State), India using the prokaryotic Salmonella mutagenicity assay (Ames assay) and the eukaryotic Saccharomyces cerevisiae respiration inhibition assay. In the Ames assay, untreated wastewaters from both of the health care sectors resulted in significantly increased numbers of revertant colonies up to 1,000-4,050 as measured by the Salmonella typhimurium TA98 and TA100 strains (with and without metabolic activation) after exposure to undiluted samples, which indicated the highly genotoxic nature of these wastewaters. Furthermore, both hospital and diagnostic samples were found to be highly cytotoxic. Effective concentrations at which 20 % (EC20) and 50 % (EC50) inhibition of the respiration rate of the cells occurred ranged between ~0.00 and 0.52 % and between 0.005 and 41.30 % (calculated with the help of the MS excel software XLSTAT 2012.1.01; Addinsoft), respectively, as determined by the S. cerevisiae assay. The results indicated that hospital wastewaters contain genotoxic and cytotoxic components. In addition, diagnostic centers also represent small but significant sources of genotoxic and cytotoxic wastes. PMID:23361179

  16. Thermodynamics -2 An industrial plant produces a waste stream of hot compressed air

    E-print Network

    Battaglia, Francine

    Thermodynamics - 2 An industrial plant produces a waste stream of hot compressed air: Pressure P is maximum work that can be produced if the air is discharged to the atmosphere at atmospheric pressure be produced if the air is discharged to the atmosphere at atmospheric pressure and temperature, using any

  17. Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-06-01

    The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

  18. Waste water treatment: Chemical industry. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1992-05-01

    The bibliography contains citations concerning wastewater treatment of industrial pollutants. The use and effectiveness of biological treatments and carbon additives are examined. References also discuss problems and recommendations for the removal of mercury and its compounds, fertilizers, and pesticides from polluted waste water. (Contains 250 citations and includes a subject term index and title list.)

  19. 76 FR 80451 - Commercial and Industrial Solid Waste Incineration Units: Reconsideration and Proposed Amendments...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ...On March 21, 2011, the EPA promulgated its final response to the 2001 voluntary remand of the December 1, 2000, new source performance standards and emission guidelines for commercial and industrial solid waste incineration units and the vacatur and remand of several definitions by the District of Columbia Circuit Court of Appeals in 2007. Following that action, the Administrator received......

  20. POLISHING INDUSTRIAL WASTE STREAM EFFLUENTS USING FLY ASH - NATURAL CLAY SORBENT COMBINATION

    EPA Science Inventory

    A laboratory evaluation of the use of acidic and basic fly ashes, bentonite, bauxite, illite, kaolinite, zeolite, vermiculite, and activated alumina is presented for polishing a 3.8 x 10 to the 6th power liters per day waste stream from the feldspar mining and processing industry...

  1. EVALUATION OF CHEMICAL STABILIZATION AND SOLIDIFICATION PROCESSES FOR ARSENIC CONTAINING INDUSTRIAL WASTES AND SOILS

    EPA Science Inventory

    Arsenic is in many industrial raw materials, products, and wastes, and is a contaminant of concern in soil and groundwater at many remediation sites. Because arsenic readily changes valence state and reacts to form species with varying toxicity and mobility, effective treatment o...

  2. FORMATION OF CHLORINATED DIOXINS AND FURANS IN A HAZARDOUS-WASTE-FIRING INDUSTRIAL BOILER

    EPA Science Inventory

    This research examined the potential for emissions of polychlorinated diebnzodioxin and dibenzofuran (PCDD/F) from industrial boilers that cofire hazardous waste. PCDD/F emissions were sampled from a 732 kW (2.5 x 106 Btu/h), 3-pass, firetube boiler using #2 fuel oil cofired wit...

  3. A MARINE ALGAL BIOASSAY METHOD: RESULTS WITH PESTICIDES AND INDUSTRIAL WASTES

    EPA Science Inventory

    A simple marine algal bioassay method is described for short- and long-term studies on pesticides and industrial wastes. It can be used for rapid screening of a variety of substances with single-species and multiple-species tests and gives relative toxicities of the pollutants te...

  4. Sludge dewatering: Sewage and industrial wastes. (Latest citations from pollution abstracts). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning sewage sludge dewatering techniques and equipment in industrial and municipal waste treatment systems. Topics include dewatering processes and control, activated sludge systems, fluidized bed systems, biological treatment, heavy metal recovery, and economic aspects. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Defusing the Toxics Threat: Controlling Pesticides and Industrial Waste. Worldwatch Paper 79.

    ERIC Educational Resources Information Center

    Postel, Sandra

    The use of pesticides in agriculture and the discarding of industrial chemical waste into the air, soil, and water constitute two major pathways of human exposure to toxic substances. It is argued that these practices release hundreds of millions of tons of potentially hazardous substances into the environment each year. Speculation continues into…

  6. CLASTOGENICITY EVALUATION OF SEVEN CHEMICALS COMMONLY FOUND AT UNCONTROLLED INDUSTRIAL WASTE SITES

    EPA Science Inventory

    Seven chemicals commonly found at industrial waste sites were tested with the Tradescantia-micronucleus (Trad-MCN) assay to evaluate their clastogenic potential. They were: Aldrin, arsenic trioxide, l,2 benz(a,h)anthracene, dieldrin, heptachlor, lead tetraacetate, and tetrachloro...

  7. ASSESSMENT OF HAZARD POTENTIAL FROM COMBUSTION OF WASTES IN INDUSTRIAL BOILERS

    EPA Science Inventory

    The report gives results of a study to determine the extent of the present onsite use of waste fuel in industrial boilers and related process equipment, the nature and quantities of the materials so disposed of, and current regulations concerning such use. The study responds to a...

  8. Industrial Safety. MAS-123. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division, is designed to prepare trainees to promote and monitor the industrial safety program at their plant. The following topics are covered in the module's individual sections:…

  9. Technical and economic assessments of ethanol production from citrus peel waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Each year, the Florida citrus juice industry produces about 3.5-5.0 million tons of wet peel waste, which are currently dried and sold as cattle feed, often at a loss, to dispose of the waste residual. Profitability would be greatly improved if the peel waste could be used to produce higher value p...

  10. Use prospect of a full-scale installation of ``wet`` oxidation of organic wastes for CLSS closure increase

    NASA Astrophysics Data System (ADS)

    Trifonov, Sergey V.; Tikhomirov, Alexander A.; Kudenko, D.. Yurii A.

    Previously in the works carried out at the Institute of Biophysics SB RAS a fundamental use feasibility of organic wastes mineralization in H _{2}O _{2} aqueous solution under effect of alternating current was shown. It was proved that the reactor products (mineralized solution and gas) could be involved into an intrasystem mass exchange in the capacity of plants mineral nutrition without their productivity decrease. Here the working volume of the experimental installation was 1L that was not enough for one-time utilization of the crew wastes. At the next stage the research was aimed at the process scaling up to investigate the efficiency the wastes mineralization process in the installation with a working volume equal to 6L corresponding to a daily norm of the 2-members’ crew. Besides the mineralization parameters of human exometabolites and plant wastes were considered to develop an automatic control of the reactor. The process scale magnification was determined to increase its efficiency by temporal and energy characteristics at the same time maintaining a sufficient level of wastes mineralization. An experimental system of the reactor automatic control was created capable to independently operate wastes mineralization according to the regime set up to the reaction termination and completing the reactor work.

  11. New source performance standards for industrial boilers. Volume 5. Analysis of solid waste impacts

    SciTech Connect

    Boldt, K.; Davis, H.; Delaney, B.; Grundahl, N.; Hyde, R.; Malloch, R.; Tusa, W.

    1980-09-01

    This study provides an analysis of the impacts of emission controls on disposal of solid wastes from coal-fired industrial boilers. Examination is made of boiler systems, coal types, emission control alternatives, waste streams, waste disposal and utilization alternatives, and pertinent Federal regulations. Twenty-four representative model case scenarios are studied in detail. Expected disposal/utilization alternatives and disposal costs are developed. Comparison of the systems studied indicates that the most cost-effective SO/sub 2/ control technologies from the perspective of waste disposal cost per unit SO/sub 2/ control are, in decreasing order: physically cleaned coal/double alkali combination; double alkali; lime/limestone; spray drying; fluidized-bed combustion; and sodium throwaway.

  12. DESTRUCTION OF TETRAPHENYLBORATE IN TANK 48H USING WET AIR OXIDATION BATCH BENCH SCALE AUTOCLAVE TESTING WITH ACTUAL RADIOACTIVE TANK 48H WASTE

    SciTech Connect

    Adu-Wusu, K; Paul Burket, P

    2009-03-31

    Wet Air Oxidation (WAO) is one of the two technologies being considered for the destruction of Tetraphenylborate (TPB) in Tank 48H. Batch bench-scale autoclave testing with radioactive (actual) Tank 48H waste is among the tests required in the WAO Technology Maturation Plan. The goal of the autoclave testing is to validate that the simulant being used for extensive WAO vendor testing adequately represents the Tank 48H waste. The test objective was to demonstrate comparable test results when running simulated waste and real waste under similar test conditions. Specifically: (1) Confirm the TPB destruction efficiency and rate (same reaction times) obtained from comparable simulant tests, (2) Determine the destruction efficiency of other organics including biphenyl, (3) Identify and quantify the reaction byproducts, and (4) Determine off-gas composition. Batch bench-scale stirred autoclave tests were conducted with simulated and actual Tank 48H wastes at SRNL. Experimental conditions were chosen based on continuous-flow pilot-scale simulant testing performed at Siemens Water Technologies Corporation (SWT) in Rothschild, Wisconsin. The following items were demonstrated as a result of this testing. (1) Tetraphenylborate was destroyed to below detection limits during the 1-hour reaction time at 280 C. Destruction efficiency of TPB was > 99.997%. (2) Other organics (TPB associated compounds), except biphenyl, were destroyed to below their respective detection limits. Biphenyl was partially destroyed in the process, mainly due to its propensity to reside in the vapor phase during the WAO reaction. Biphenyl is expected to be removed in the gas phase during the actual process, which is a continuous-flow system. (3) Reaction byproducts, remnants of MST, and the PUREX sludge, were characterized in this work. Radioactive species, such as Pu, Sr-90 and Cs-137 were quantified in the filtrate and slurry samples. Notably, Cs-137, boron and potassium were shown as soluble as a result of the WAO reaction. (4) Off-gas composition was measured in the resulting gas phase from the reaction. Benzene and hydrogen were formed during the reaction, but they were reasonably low in the off-gas at 0.096 and 0.0063 vol% respectively. Considering the consistency in replicating similar test results with simulated waste and Tank 48H waste under similar test conditions, the results confirm the validity of the simulant for other WAO test conditions.

  13. Poly ?-Hydroxybutyrate Production by Bacillus subtilis NG220 Using Sugar Industry Waste Water

    PubMed Central

    Singh, Gulab; Kumari, Anish; Mittal, Arpana; Yadav, Anita; Aggarwal, Neeraj K.

    2013-01-01

    The production of poly ?-hydroxybutyrate (PHB) by Bacillus subtilis NG220 was observed utilizing the sugar industry waste water supplemented with various carbon and nitrogen sources. At a growth rate of 0.14?g?h?1?L?1, using sugar industry waste water was supplemented with maltose (1% w/v) and ammonium sulphate (1% w/v); the isolate produced 5.297?g/L of poly ?-hydroxybutyrate accumulating 51.8% (w/w) of biomass. The chemical nature of the polymer was confirmed with nuclear magnetic resonance, Fourier transform infrared, and GC-MS spectroscopy whereas thermal properties were monitored with differential scanning calorimetry. In biodegradability study, when PHB film of the polymer (made by traditional solvent casting technique) was subjected to degradation in various natural habitats like soil, compost, and industrial sludge, it was completely degraded after 30 days in the compost having 25% (w/w) moisture. So, the present study gives insight into dual benefits of conversion of a waste material into value added product, PHB, and waste management. PMID:24027767

  14. Pilot plant for biomethanation of dairy-industry wastes

    SciTech Connect

    Ghosh, S.; Fukushi, K.; Liu, T.

    1994-12-31

    This project was undertaken to demonstrate the application of two-phase anaerobic digestion (TPAD) for simultaneous stabilization and biomethanation of high-COD cheese-waste-dairy-manure mixtures by a pilot-plant operation in Wellsville, Utah. The TPAD system exhibited a total COD (TCOD) reduction of up to 97% with feed COD concentration of 60,000 to 45,000 mg/l. The TCOD reduction decreased as the variability as well as the strength of the feed increased. A quick surge of the feed TCOD concentration to 125,000 mg/l effected a large drop in TCOD reduction, but the integrity of the methane digester, which produced 78 {approximately}87 mol% methane-content gas, was measured and TPAD system performance could be restored to normal levels by diluting the feed to obtain TCOD concentrations below 70,000 mg/l. The TPAD system exhibited a methane yield of 0.27 m{sup 3}/kg TCOD charged (0.36 m{sup 3}/kg TCOD removed).

  15. Food processing industry wastes: Waste utilization. (Latest citations from Pollution Abstracts). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the treatment (physical, chemical, and biological), disposal, and economic considerations of the use of food product wastes. Applications in irrigation, food supplements for humans and animals, and fuel sources are presented. (Contains a minimum of 241 citations and includes a subject term index and title list.)

  16. Application of electrochemical reactors for industrial waste-water treatment.

    PubMed

    Polcaro, Anna Maria; Szpyrkowicz, Lidia; Vacca, Annalisa

    2003-01-01

    The effectiveness of electrochemical reactors for industrial wastewater treatment has been improved since three-dimensional electrodes have been introduced; in fact, limitations of mass transfer can arise, due to the low concentrations of pollutants which may be involved in the process. Three-dimensional electrodes offer a very high electrode area per unit electrode volume and they can act as turbulence promoters or give rise to high linear electrolyte velocity, resulting in high values of mass transport coefficient. However, careful selection of operative parameters is needed in order to obtain high performance. This paper examines the results obtained in our laboratory on the cathodic reduction of copper at RVC electrodes; in particular the interference of dissolved oxygen is studied during the removal of copper from extremely diluted solutions (C < 10 ppm). Some results are also discussed on the removal of organic pollutants by electrochemical oxidation at three-dimensional anode consisting of a fixed bed of carbon pellets. PMID:14672372

  17. Food waste in the Swiss food service industry - Magnitude and potential for reduction.

    PubMed

    Betz, Alexandra; Buchli, Jürg; Göbel, Christine; Müller, Claudia

    2015-01-01

    Food losses occur across the whole food supply chain. They have negative effects on the economy and the environment, and they are not justifiable from an ethical point of view. The food service industry was identified by Beretta et al. (2013) as the third largest source of food waste based on food input at each stage of the value added chain. The total losses are estimated 18% of the food input, the avoidable losses 13.5%. However, these estimations are related with considerable uncertainty. To get more reliable and detailed data of food losses in this sector, the waste from two companies (in the education and business sectors) was classified into four categories (storage losses, preparation losses, serving losses, and plate waste) and seven food classes and measured for a period of five days. A questionnaire evaluated customer reaction, and a material flow analysis was used to describe the mass and monetary losses within the process chain. The study found that in company A (education sector) 10.73% and in company B (business sector) 7.69% of the mass of all food delivered was wasted during the process chain. From this, 91.98% of the waste in company A and 78.14% in company B were classified as avoidable. The highest proportion of waste occurred from serving losses with starch accompaniments and vegetables being the most frequently wasted items. The quantities of waste per meal were 91.23 g (value CHF 0.74) and 85.86 g (value CHF 0.44) for company A and company B, respectively. The annual loss averaged 10.47 tonnes (value CHF 85,047) in company A and 16.55 tonnes (value CHF 85,169) in company B. The customer survey showed that 15.79% (n=356) of the respondents in company A and 18.32% (n=382) in company B produced plate waste. The main causes of plate waste cited were 'portion served by staff too large' and 'lack of hunger'. Sustainable measures need to be implemented in the food service industry to reduce food waste and to improve efficiency. PMID:25305683

  18. The use of commercial and industrial waste in energy recovery systems - A UK preliminary study

    SciTech Connect

    Lupa, Christopher J.; Ricketts, Lois J.; Sweetman, Andy; Herbert, Ben M.J.

    2011-08-15

    Highlights: > Commercial and industrial waste samples collected. > Samples analysed for calorific value, moisture, ash and elemental composition. > Values similar to those of municipal solid waste and refuse derived fuel. > Sampled waste could be used in current energy recovery systems with minimal retrofitting. > Sampled waste could account 6.5% towards the UK's 2020 renewable electricity target if all qualifying waste is used. - Abstract: With 2020 energy targets set out by the EU fast approaching, the UK is trying to source a higher proportion of its energy from renewable resources. Coupled with this, a growing population and increasing trends in consumer demand have resulted in national waste loads increasing. A possible solution to both issues is energy-from-waste (EfW) technologies. Many studies have focused on municipal solid waste (MSW) as a potential feedstock, but appear to overlook the potential benefits of commercial and industrial waste (C and IW). In this study, samples of C and IW were collected from three North West waste management companies and Lancaster University campus. The samples were tested for their gross and net calorific value, moisture content, ash content, volatile matter, and also elemental composition to determine their suitability in EfW systems. Intra-sample analysis showed there to be little variation between samples with the exception two samples, from waste management site 3, which showed extensive variation with regards to net calorific value, ash content, and elemental analysis. Comparisons with known fuel types revealed similarities between the sampled C and IW, MSW, and refuse derived fuel (RDF) thereby justifying its potential for use in EfW systems. Mean net calorific value (NCV) was calculated as 9.47 MJ/kg and concentrations of sulphur, nitrogen, and chlorine were found to be below 2%. Potential electrical output was calculated using the NCV of the sampled C and IW coupled with four differing energy generation technologies. Using a conventional incinerator with steam cycle, total electrical output was calculated as 24.9 GWh, based on a plant operating at 100,000 tpa. This value rose to 27.0 GWh when using an integrated gasification combined cycle. A final aspect of this study was to deduce the potential total national electrical output if all suitable C and IW were to be used in EfW systems. Using incineration coupled with a steam turbine, this was determined to be 6 TWh, 1.9% of the national demand thereby contributing 6.5% towards the UK's 2020 renewable electricity target.

  19. First waste-to-energy power station put into operation in Vietnam has successfully produced electricity from household and industrial waste as a

    E-print Network

    Columbia University

    electricity from household and industrial waste as a newly-generated power supply has come online with the national electricity grid. On Wednesday, August 3, the Ho Chi Minh City Urban Environment Management the technology that produces electricity from waste. For almost a fortnight, from July 20 till now, the test run

  20. Bacterial Cellulose Production from Industrial Waste and by-Product Streams

    PubMed Central

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102–138 g·water/g·dry bacterial cellulose, viscosities of 4.7–9.3 dL/g, degree of polymerization of 1889.1–2672.8, stress at break of 72.3–139.5 MPa and Young’s modulus of 0.97–1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  1. Bacterial Cellulose Production from Industrial Waste and by-Product Streams.

    PubMed

    Tsouko, Erminda; Kourmentza, Constantina; Ladakis, Dimitrios; Kopsahelis, Nikolaos; Mandala, Ioanna; Papanikolaou, Seraphim; Paloukis, Fotis; Alves, Vitor; Koutinas, Apostolis

    2015-01-01

    The utilization of fermentation media derived from waste and by-product streams from biodiesel and confectionery industries could lead to highly efficient production of bacterial cellulose. Batch fermentations with the bacterial strain Komagataeibacter sucrofermentans DSM (Deutsche Sammlung von Mikroorganismen) 15973 were initially carried out in synthetic media using commercial sugars and crude glycerol. The highest bacterial cellulose concentration was achieved when crude glycerol (3.2 g/L) and commercial sucrose (4.9 g/L) were used. The combination of crude glycerol and sunflower meal hydrolysates as the sole fermentation media resulted in bacterial cellulose production of 13.3 g/L. Similar results (13 g/L) were obtained when flour-rich hydrolysates produced from confectionery industry waste streams were used. The properties of bacterial celluloses developed when different fermentation media were used showed water holding capacities of 102-138 g · water/g · dry bacterial cellulose, viscosities of 4.7-9.3 dL/g, degree of polymerization of 1889.1-2672.8, stress at break of 72.3-139.5 MPa and Young's modulus of 0.97-1.64 GPa. This study demonstrated that by-product streams from the biodiesel industry and waste streams from confectionery industries could be used as the sole sources of nutrients for the production of bacterial cellulose with similar properties as those produced with commercial sources of nutrients. PMID:26140376

  2. World first in high level waste vitrification - A review of French vitrification industrial achievements

    SciTech Connect

    Brueziere, J.; Chauvin, E.; Piroux, J.C.

    2013-07-01

    AREVA has more than 30 years experience in operating industrial HLW (High Level radioactive Waste) vitrification facilities (AVM - Marcoule Vitrification Facility, R7 and T7 facilities). This vitrification technology was based on borosilicate glasses and induction-heating. AVM was the world's first industrial HLW vitrification facility to operate in-line with a reprocessing plant. The glass formulation was adapted to commercial Light Water Reactor fission products solutions, including alkaline liquid waste concentrates as well as platinoid-rich clarification fines. The R7 and T7 facilities were designed on the basis of the industrial experience acquired in the AVM facility. The AVM vitrification process was implemented at a larger scale in order to operate the R7 and T7 facilities in-line with the UP2 and UP3 reprocessing plants. After more than 30 years of operation, outstanding record of operation has been established by the R7 and T7 facilities. The industrial startup of the CCIM (Cold Crucible Induction Melter) technology with enhanced glass formulation was possible thanks to the close cooperation between CEA and AREVA. CCIM is a water-cooled induction melter in which the glass frit and the waste are melted by direct high frequency induction. This technology allows the handling of highly corrosive solutions and high operating temperatures which permits new glass compositions and a higher glass production capacity. The CCIM technology has been implemented successfully at La Hague plant.

  3. Development of value-added products from alumina industry mineral wastes using low-temperature-setting phosphate ceramics

    SciTech Connect

    Wagh, A.S.; Jeong, Seung-Young; Singh, D.

    1996-01-01

    A room-temperature process for stabilizing mineral waste streams has been developed, based on acid-base reaction between MgO and H3PO4 or acid phosphate solution. The resulting waste form sets into a hard ceramic in a few hours. In this way, various alumina industry wastes, such as red mud and treated potliner waste, can be solidified into ceramics which can be used as structural materials in waste management and construction industry. Red mud ceramics made by this process were low-porosity materials ({approx}2 vol%) with a compression strength equal to portland cement concrete (4944 psi). Bonding mechanism appears to be result of reactions of boehmite, goethite, and bayerite with the acid solution, and also encapsulation of red mud particles in Mg phosphate matrix. Possible applications include liners for ponds and thickned tailings disposal, dikes for waste ponds, and grouts. Compatability problems arising at the interface of the liner and the waste are avoided.

  4. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln.

    PubMed

    Vermeulen, Isabel; Van Caneghem, Jo; Block, Chantal; Dewulf, Wim; Vandecasteele, Carlo

    2012-10-01

    Rotary kiln incinerators and cement kilns are two energy intensive processes, requiring high temperatures that can be obtained by the combustion of fossil fuel. In both processes, fossil fuel is often substituted by high or medium calorific waste to avoid resource depletion and to save costs. Two types of industrial calorific waste streams are considered: automotive shredder residue (ASR) and meat and bone meal (MBM). These waste streams are of current high interest: ASR must be diverted from landfill, while MBM can no longer be used for cattle feeding. The environmental impact of the incineration of these waste streams is assessed and compared for both a rotary kiln and a cement kiln. For this purpose, data from an extensive emission inventory is applied for assessing the environmental impact using two different modeling approaches: one focusing on the impact of the relevant flows to and from the process and its subsystems, the other describing the change of environmental impact in response to these physical flows. Both ways of assessing emphasize different aspects of the considered processes. Attention is paid to assumptions in the methodology that can influence the outcome and conclusions of the assessment. It is concluded that for the incineration of calorific wastes, rotary kilns are generally preferred. Nevertheless, cement kilns show opportunities in improving their environmental impact when substituting their currently used fuels by more clean calorific waste streams, if this improvement is not at the expense of the actual environmental impact. PMID:22739430

  5. Agro-industrial waste to solid biofuel through hydrothermal carbonization.

    PubMed

    Basso, Daniele; Patuzzi, Francesco; Castello, Daniele; Baratieri, Marco; Rada, Elena Cristina; Weiss-Hortala, Elsa; Fiori, Luca

    2016-01-01

    In this paper, the use of grape marc for energy purposes was investigated. Grape marc is a residual lignocellulosic by-product from the winery industry, which is present in every world region where vine-making is addressed. Among the others, hydrothermal carbonization was chosen as a promising alternative thermochemical process, suitable for the treatment of this high moisture substrate. Through a 50mL experimental apparatus, hydrothermal carbonization tests were performed at several temperatures (namely: 180, 220 and 250°C) and residence times (1, 3, 8h). Analyses on both the solid and the gaseous phases obtained downstream of the process were performed. In particular, solid and gas yields versus the process operational conditions were studied and the obtained hydrochar was evaluated in terms of calorific value, elemental analysis, and thermal stability. Data testify that hydrochar form grape marc presents interesting values of HHV (in the range 19.8-24.1MJ/kg) and physical-chemical characteristics which make hydrochar exploitable as a solid biofuel. In the meanwhile, the amount of gases produced is very small, if compared to other thermochemical processes. This represents an interesting result when considering environmental issues. Statistical analysis of data allows to affirm that, in the chosen range of operational conditions, the process is influenced more by temperature than residence time. These preliminary results support the option of upgrading grape marc toward its energetic valorisation through hydrothermal carbonization. PMID:26031328

  6. Green recovery of mercury from domestic and industrial waste.

    PubMed

    da Cunha, Roselaine C; Patrício, Pamela R; Vargas, Silvia J Rodriguez; da Silva, Luis Henrique Mendes; da Silva, Maria C Hespanhol

    2016-03-01

    Recovery of mercury from effluents is fundamental for environmental preservation. A new, green method was developed for separation of mercury from effluent containing different metals. The extraction/separation of Hg(II) was studied using aqueous two-phase system (ATPS) comprising by polyethylene oxide (PEO1500) or triblock copolymers (L64 or L35), electrolyte (sodium citrate or sodium sulfate) and water in the presence or absence of chloride ions. The extraction behavior of the Hg(II) for the macromolecule-rich phase is affected by the following parameters: amount of added extractant, pH, and the nature of the electrolyte and macromolecule of the ATPS. The APTS of PEO1500+sodium citrate+H2O (pH 1.00 and 0.225molkg(-1) KCl) produced the highest Hg(II) %E=(92.3±5.2)%. Under the same conditions, excellent separation factors (1.54×10(2)-3.21×10(10)) for recovery of mercury in the presence of co-existing metals were obtained. Efficient and selective extraction of Hg(II) from domestic and industrial synthetic effluents was achieved using this ATPS. PMID:26599661

  7. Research on the property improvement of PVC using red mud in industrial waste residue

    NASA Astrophysics Data System (ADS)

    Nie, Xiaopeng; Li, Xingang; Shuai, Songxian

    2015-07-01

    Red mud is a red solid power waste that is discharged in the aluminium refinery industry during production. It is a strong alkali and can be categorized as polluting industrial residue. How to make comprehensive use of red mud has become a worldwide issue. In this paper, we put red mud into PVC (polyvinyl chloride polymer), taking advantage of the complicated chemical properties of red mud derived from the Bayer process. The results are compared with silica fume, coal ash and calcium carbonate under the same experimental conditions, which shows that improvement of PVC plastication can be achieved by adding red mud.

  8. Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research

    SciTech Connect

    Bickford, D.F.

    1993-12-31

    The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

  9. Comparison of alkaline industrial wastes for aqueous mineral carbon sequestration through a parallel reactivity study.

    PubMed

    Noack, Clinton W; Dzombak, David A; Nakles, David V; Hawthorne, Steven B; Heebink, Loreal V; Dando, Neal; Gershenzon, Michael; Ghosh, Rajat S

    2014-10-01

    Thirty-one alkaline industrial wastes from a wide range of industrial processes were acquired and screened for application in an aqueous carbon sequestration process. The wastes were evaluated for their potential to leach polyvalent cations and base species. Following mixing with a simple sodium bicarbonate solution, chemistries of the aqueous and solid phases were analyzed. Experimental results indicated that the most reactive materials were capable of sequestering between 77% and 93% of the available carbon under experimental conditions in four hours. These materials - cement kiln dust, spray dryer absorber ash, and circulating dry scrubber ash - are thus good candidates for detailed, process-oriented studies. Chemical equilibrium modeling indicated that amorphous calcium carbonate is likely responsible for the observed sequestration. High variability and low reactive fractions render many other materials less attractive for further pursuit without considering preprocessing or activation techniques. PMID:24735991

  10. Economic analysis of effluent limitation guidelines and standards for the centralized waste treatment industry

    SciTech Connect

    Wheeler, W.

    1998-12-01

    This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmental justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.

  11. Standardized variant of headspace gas-chromatographic analysis of waste waters and industrial-site air

    SciTech Connect

    Stolyarov, B.V.; Nagimullina, A.G.; Grigor'eva, T.A.; Vitenberg, A.G.

    1987-07-10

    A standardized variant of gas chromatographic headspace analysis of waste waters and air from industrial sites has been developed, based on a combination of sorptive concentration, thermal desorption with steam, and headspace analysis of the aqueous condensate obtained. Under the given conditions the detection limits of the compounds investigated were much lower than the maximum permissible concentrations. The experimental errors in the analysis of the aqueous samples do not generally exceed 10%; for contaminated air the corresponding error is 15-20%.

  12. Growth and metal bioconcentration by conspecific freshwater macroalgae cultured in industrial waste water

    PubMed Central

    Ellison, Michael B.; de Nys, Rocky; Paul, Nicholas A.

    2014-01-01

    The bioremediation of industrial waste water by macroalgae is a sustainable and renewable approach to the treatment of waste water produced by multiple industries. However, few studies have tested the bioremediation of complex multi-element waste streams from coal-fired power stations by live algae. This study compares the ability of three species of green freshwater macroalgae from the genus Oedogonium, isolated from different geographic regions, to grow in waste water for the bioremediation of metals. The experiments used Ash Dam water from Tarong power station in Queensland, which is contaminated by multiple metals (Al, Cd, Ni and Zn) and metalloids (As and Se) in excess of Australian water quality guidelines. All species had consistent growth rates in Ash Dam water, despite significant differences in their growth rates in “clean” water. A species isolated from the Ash Dam water itself was not better suited to the bioremediation of that waste water. While there were differences in the temporal pattern of the bioconcentration of metals by the three species, over the course of the experiment, all three species bioconcentrated the same elements preferentially and to a similar extent. All species bioconcentrated metals (Cu, Mn, Ni, Cd and Zn) more rapidly than metalloids (As, Mo and Se). Therefore, bioremediation in situ will be most rapid and complete for metals. Overall, all three species of freshwater macroalgae had the ability to grow in waste water and bioconcentrate elements, with a consistent affinity for the key metals that are regulated by Australian and international water quality guidelines. Together, these characteristics make Oedogonium a clear target for scaled bioremediation programs across a range of geographic regions. PMID:24883258

  13. NOAA Climate Data Prepares Oahu Construction Industry for Wet Season Each year NOAA's Climate Prediction Center, a part of the

    E-print Network

    and landfill. Without the headsup, not only PVT but Oahu's entire construction industry would have been hurt, with losses in the millions of dollars. As the only construction landfill on the island, more constructed storm water retention pond at the PVT landfill in Nanakuli, Oahu, Hawai'i Road to landfill

  14. Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  15. Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  16. Waste disposal and treatment in the food processing industry. (Latest citations from the Biobusiness database). Published Search

    SciTech Connect

    Not Available

    1994-02-01

    The bibliography contains citations concerning waste treatment and disposal in the food processing industry. Methods, equipment, and technology are considered. References discuss waste heat recovery and examine treatment of wastes resulting from meat and seafood processing, dairy and beverage production, and fruit and vegetable processing. The citations explore conversion of the treated waste to fertilizer and for use in animal feeds, combustion for energy production, biogas production, and composting. The recovery and recycling of usable chemicals from the food waste are also covered. Food packaging recycling is considered in a related bibliography. (Contains 250 citations and includes a subject term index and title list.)

  17. Performance appraisal of industrial waste incineration bottom ash as controlled low-strength material.

    PubMed

    Razak, Hashim Abdul; Naganathan, Sivakumar; Hamid, Siti Nadzriah Abdul

    2009-12-30

    Controlled low-strength material (CLSM) is slurry made by mixing sand, cement, ash, and water. It is primarily used as a replacement for soil and structural fillings. This paper presents the findings of a preliminary investigation carried out on the performance of industrial waste incineration bottom ash as CLSM. CLSM mixes were designed using industrial waste incineration bottom ash, and cement. Tests for density, setting time, bleed, and compressive strength on cubes under various curing conditions, corrosivity, and leaching of heavy metals and salts were carried out on the CLSM mixtures, and the results discussed. Compressive strength for the designed CLSM mixtures ranged from 0.1 to 1.7 MPa. It is shown that the variations in curing conditions have less influence on the compressive strength of CLSM at high values of water to cement ratio (w/c), but low values of w/c influences the strength of CLSM. The CLSM produced does not exhibit corrosive characters as evidenced by pH. Leaching of heavy metals and salts is higher in bleed than in leachate collected from hardened CLSM. Cement reduces the leaching of Boron in bleed. It is concluded that there is good potential for the use of industrial waste incineration bottom ash in CLSM. PMID:19665294

  18. Wet air oxidation of resorcinol as a model treatment for refractory organics in wastewaters from the wood processing industry.

    PubMed

    Weber, Bernd; Chavez, Alma; Morales-Mejia, Julio; Eichenauer, Sabrina; Stadlbauer, Ernst A; Almanza, Rafael

    2015-09-15

    Wastewater treatment systems are important tools to enhance sustainability in terms of reducing environmental impact and complying with sanitary requirements. This work addresses the wet air oxidation (WAO) process for pre-treatment of phenolic wastewater effluents. The aim was to increase biodegradability prior to a subsequent anaerobic stage. In WAO laboratory experiments using a micro-autoclave, the model compound resorcinol was degraded under different oxygen availability regims within the temperature range 150 °C-270 °C. The activation energy was determined to be 51.5 kJ/mol. Analysis of the products revealed that after 3 h of reaction at 230 °C, 97.5% degradation of resorcinol was achieved. At 250 °C and the same reaction time complete removal of resorcinol was observed. In this case the total organic carbon content was reduced down to 29%, from 118.0 mg/L down to 34.4 mg/L. Under these process conditions, the pollutant was only partially mineralized and the ratio of the biological oxygen demand relative to the chemical oxygen demand, which is 0.07 for resorcinol, was increased to a value exceeding 0.5. The main by-product acetic acid, which is a preferred compound for methanogenic bacteria, was found to account for 33% of the total organic carbon. PMID:26164636

  19. DEVELOPMENT OF A SIMPLE INDICATOR FOR MEASURING THE PERFORMANCE OF INCINERATORS, INDUSTRIAL FURNACES, AND BOILERS BURNING HAZARDOUS WASTE

    EPA Science Inventory

    The paper discusses the development of a simple indicator-- Unsatisfied Oxygen Demand (UOD)--for measuring the performance of incinerators, industrial furnaces, and boilers burning hazardous waste. urrent RCRA regulations use destruction and removal efficiency (DRE) of the princi...

  20. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect

    Puig, Rita; Fullana-i-Palmer, Pere; Bala, Alba

    2013-12-15

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  1. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale

    PubMed Central

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-01-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g?1 volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g?1 VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH4 recovery of 189 L kg?1 VS was achieved and a biogas composition of 55% CH4 and 38% CO2 was recorded. PMID:26393620

  2. Anaerobic Digestion of Laminaria japonica Waste from Industrial Production Residues in Laboratory- and Pilot-Scale.

    PubMed

    Barbot, Yann Nicolas; Thomsen, Claudia; Thomsen, Laurenz; Benz, Roland

    2015-09-01

    The cultivation of macroalgae to supply the biofuel, pharmaceutical or food industries generates a considerable amount of organic residue, which represents a potential substrate for biomethanation. Its use optimizes the total resource exploitation by the simultaneous disposal of waste biomaterials. In this study, we explored the biochemical methane potential (BMP) and biomethane recovery of industrial Laminaria japonica waste (LJW) in batch, continuous laboratory and pilot-scale trials. Thermo-acidic pretreatment with industry-grade HCl or industrial flue gas condensate (FGC), as well as a co-digestion approach with maize silage (MS) did not improve the biomethane recovery. BMPs between 172 mL and 214 mL g(-1) volatile solids (VS) were recorded. We proved the feasibility of long-term continuous anaerobic digestion with LJW as sole feedstock showing a steady biomethane production rate of 173 mL g(-1) VS. The quality of fermentation residue was sufficient to serve as biofertilizer, with enriched amounts of potassium, sulfur and iron. We further demonstrated the upscaling feasibility of the process in a pilot-scale system where a CH? recovery of 189 L kg(-1) VS was achieved and a biogas composition of 55% CH? and 38% CO? was recorded. PMID:26393620

  3. 40 CFR Table Tt-1 to Subpart Tt of... - Default DOC and Decay Rate Values for Industrial Waste Landfills

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Industrial Solid Waste (not otherwise listed) 0.20 0.02 0.04 0.06 a The applicable climate classification is... landfill containing waste . (1) Dry climate = precipitation plus recirculated leachate less than 20 inches/year (2) Moderate climate = precipitation plus recirculated leachate from 20 to 40...

  4. Evaluation of Wet Chemical ICP-AES Elemental Analysis Methods usingSimulated Hanford Waste Samples-Phase I Interim Report

    SciTech Connect

    Coleman, Charles J.; Edwards, Thomas B.

    2005-04-30

    The wet chemistry digestion method development for providing process control elemental analyses of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Melter Feed Preparation Vessel (MFPV) samples is divided into two phases: Phase I consists of: (1) optimizing digestion methods as a precursor to elemental analyses by ICP-AES techniques; (2) selecting methods with the desired analytical reliability and speed to support the nine-hour or less turnaround time requirement of the WTP; and (3) providing baseline comparison to the laser ablation (LA) sample introduction technique for ICP-AES elemental analyses that is being developed at the Savannah River National Laboratory (SRNL). Phase II consists of: (1) Time-and-Motion study of the selected methods from Phase I with actual Hanford waste or waste simulants in shielded cell facilities to ensure that the methods can be performed remotely and maintain the desired characteristics; and (2) digestion of glass samples prepared from actual Hanford Waste tank sludge for providing comparative results to the LA Phase II study. Based on the Phase I testing discussed in this report, a tandem digestion approach consisting of sodium peroxide fusion digestions carried out in nickel crucibles and warm mixed-acid digestions carried out in plastic bottles has been selected for Time-and-Motion study in Phase II. SRNL experience with performing this analytical approach in laboratory hoods indicates that well-trained cell operator teams will be able to perform the tandem digestions in five hours or less. The selected approach will produce two sets of solutions for analysis by ICP-AES techniques. Four hours would then be allocated for performing the ICP-AES analyses and reporting results to meet the nine-hour or less turnaround time requirement. The tandem digestion approach will need to be performed in two separate shielded analytical cells by two separate cell operator teams in order to achieve the nine-hour or less turnaround time. Because of the simplicity of the warm mixed-acid method, a well-trained cell operator team may in time be able to perform both sets of digestions. However, having separate shielded cells for each of the methods is prudent to avoid overcrowding problems that would impede a minimal turnaround time.

  5. High-solids anaerobic digestion of mixed municipal and industrial waste

    SciTech Connect

    Oleszkiewicz, J.A.; Poggi-Varaldo, H.M.

    1997-11-01

    Laboratory studies on dry anaerobic digestion of mixture of paper, kitchen food waste, and sewage sludge have demonstrated the optimum performance at total solids (TS) at the range of 30--35% TS. The thermophilic process (at 55 C) was found to be superior to a mesophilic (35 C) one, both in terms of volatile solid (VS) reduction and specific gas production, but was somewhat less stable at short mass retention times (MRT). The efficiency of total volatile solids destruction and the decrease in the oxygen demand were found to be proportional to the product of the mass retention time and temperature (d {center_dot} C). Pilot studies, conducted on a mixture of sewage sludge, mixed paper, food waste, and solids from a potato processing conducted on site in Portage la Prairie, Manitoba, Canada, have demonstrated the feasibility of running the process at loads exceeding 9 kg TS/m{sup 3} {center_dot} d and producing biogas at 140 m{sup 3} of wet solids fed to the composter. The residual oxygen demand per unit mass of the dry compost was 20 mg O{sub 2}/g {center_dot} h, which indicated a need for aerobic postcuring of the anaerobically produced compost.

  6. A summary of the report on prospects for pyrolysis technologies in managing municipal, industrial, and Department of Energy cleanup wastes

    SciTech Connect

    Reaven, S.J.

    1994-08-01

    Pyrolysis converts portions of municipal solid wastes, hazardous wastes and special wastes such as tires, medical wastes and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. In the past twenty years, advances in the engineering of pyrolysis systems and in sorting and feeding technologies for solid waste industries have ensured consistent feedstocks and system performance. Some vendors now offer complete pyrolysis systems with performance warranties. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates the four most promising pyrolytic systems for their readiness, applicability to regional waste management needs and conformity with DOE environmental restoration and waste management requirements. This summary characterizes the engineering performance, environmental effects, costs, product applications and markets for these pyrolysis systems.

  7. Use of sepiolite as an adsorbent for the removal of copper (II) from industrial waste leachate

    NASA Astrophysics Data System (ADS)

    Gamze Turan, N.; Ardali, Yüksel

    2013-04-01

    Land filling is the most common method of disposal of solid waste all over the world. As well as municipal solid waste, industrial wastes, which may contain hazardous substances, are also received by landfills in many countries. Leachate is one of the problems arising from landfills. When water percolates through solid wastes, contaminants are leached into solution. The major concern with the movement of leachate into the subsurface aquifer is the fate of the constituents found in leachate. The fate of heavy metals is the greatest interest in leachate. Several treatment technologies have been developed for eliminating heavy metals recently. Adsorption is one of the most interesting methods that it has been successfully applied for the heavy metal removal. Activated carbons were widely used as adsorbent materials because of their extended surface area, microporous structure, high adsorption capacity and high degree of surface reactivity. However, it is restricted due to its relatively high price, high operation costs, and problems with generation for the industrial scale applications. Recently, more research efforts have been focused on effective sorbents material in order to minimize the processing cost and solve their disposal problems in an environmentally sustainable way. Adsorption of metal ions onto clay minerals has been studied extensively because both metal ions and clays are common components in nature. The cost of clays is relatively low as compared to other alternative adsorbents. Furthermore, the high specific surface area, chemical and mechanical stability, variety of structural and surface properties and higher values of cation exchange capacities make the clays an excellent group of adsorbents. Sepiolite (Si12O30Mg8(OH)4(H2O)4•8H2O) is a natural, fibrous clay mineral with fine microporous channels running parallel to the length of the fibers. The structure of sepiolite, in some aspects, is similar to those of other 2:1 trioctahedral silicates, such as talc, but it has discontinuities and inversion of the silica sheets, which give rise to structural tunnels and blocks. In the inner blocks, all corners of the silica tetrahedral are connected to adjacent blocks, but in the outer blocks, some of the corners are Si atoms bound to hydroxyls (Si-OH). This unique structure allows the penetration of organic and inorganic species into the structure and assigns sepiolite an industrial importance in adsorption. The objective of the present study is to investigate the feasibility of using sepiolite for the adsorptive removal of Cu (II) from the industrial waste leachate. The adsorption capacities and sorption efficiencies are determined. The pseudo first order, the pseudo-second order, Elovich and the intra particle diffusion kinetic models are used to describe the kinetic data to estimate the rate constants. The adsorption of Cu (II) from the aqueous leachate of industrial wastes onto sepiolite was performed using a batch equilibrium technique. At first stage, one-factor-at-a-time experiments were performed to see the individual effects of initial pH, adsorbent dosage and contact time. The adsorption of Cu (II) was favorably influenced by an increase in the adsorbent dosage. The maximum percent removal of Cu (II) were observed at pH>6, and significantly decreased at lower pH value. The optimum contact time is found as 10 min. for the removal of Cu (II). The increment in contact time from 10 min. to 120 min. did not show a significant effect on efficiency. The maximum Cu (II) adsorption efficiencies were obtained at 94.45%. The pseudo second order kinetic model agrees very well with the dynamical behavior for the adsorption of Cu (II) from aqueous leachate of industrial waste onto sepiolite. The results indicate that the use of sepiolite that is locally available and almost free of cost as an adsorbent could be a viable alternative to activated carbon for the removal of Cu (II) ions from aqueous solutions.

  8. Quantitative assessment of solid waste treatment systems in the industrial ecology perspective by exergy analysis.

    PubMed

    Dewulf, Jo P; Van Langenhove, Herman R

    2002-03-01

    Solid waste treatment options (recycling, incineration, and landfilling; the two latter processes both with co-generation of heat and electricity) have been studied for cardboard, newspaper, polyethylene, poly(ethylene terephthalate), polypropylene, polystyrene, and poly(vinyl chloride) waste. The conversion processes have been analyzed in terms of the second law of thermodynamics. The analysis allows calculating the exergy (useful energy) embodied in conversion products that can be obtained from the required inputs for the treatment processes. Taking into account the waste materials and the resources to convert them, it proved that recycling is the most efficient option for polyethylene with an efficiency of 62.5% versus 43.6% for incineration and 0.9% for landfilling. Next, waste treatment has been put into the broader perspective of industrial ecology. Exergetic efficiencies of industrial metabolic options have been calculated. Here resources for manufacturing and converting solid products have been considered. Furthermore, selection of one type of conversion excludes the generation of other potential conversion products. Therefore, it has to be taken into account that these latter products still have to be produced starting from virgin resources. Recycling proved to be the most efficient strategy: the ratio eta between exergy embodied in all delivered products on one hand, and all exergy withdrawn from the ecosphere or from waste materials on the other hand, is the highest. For polyethylene, eta proved to be 0.568, whereas eta is 0.503 and 0.329 for incineration and landfilling, respectively. On the other hand, if R the ratio between exergy of delivered products on one hand and exergy of virgin materials on the other hand is calculated, the differences between the industrial metabolic options are larger. Recycling polyethylene showed a ratio R of 0.936, whereas ratios of 0.772 and 0.531 were found for incineration and landfilling, respectively. It has been shown that the exergy concept allows a quantitative comparison of different industrial metabolic options, contributing to a better assessment of sustainability of technology with respect to resource management. PMID:11918001

  9. Aerobic treatability of waste effluent from the leather finishing industry. Master's thesis

    SciTech Connect

    Vinger, J.A.

    1993-12-01

    The Seton Company supplies finished leather products exclusively for the automotive industry. In the process of finishing leather, two types of wastewaters are generated. The majority of the wastewater is composed of water-based paint residuals while the remainder is composed of solvent-based coating residuals. Aerobic treatability studies were conducted using water-based and solvent-based waste recirculatory waters from the Seton Company's Saxton, Pennsylvania processing plant. The specific objective was to determine the potential for using aerobic biological processes to biodegrade the industry's wastes and determine the potential for joint treatment at the local publicly owned treatment works (POTW). This study was accomplished in two phases. Phase I was conducted during the Spring Semester 1993 and consisted of aerobic respirometer tests of the raw wastes and mass balance analysis. The results of Phase I were published in a report to the Seton Company as Environmental Resources Research Institute project number 92C.II40R-1. Phase II was conducted during the Summer Semester 1993 and consisted of bench-scale reactor tests and additional aerobic respirometer tests. The aerobic respirometer batch tests and bench-scale reactor tests were used to assess the treatability of solvent-based and water-based wastewaters and determine the degree of biodegradability of the wastewaters. Mass balance calculations were made using measured characteristics.

  10. The use of sugar and alcohol industry waste in the adsorption of potentially toxic metals.

    PubMed

    Santos, Oseas Silva; Mendonça, André Gustavo Ribeiro; Santos, Josué Carinhanha Caldas; Silva, Amanda Paulina Bezerra; Costa, Silvanio Silverio Lopes; Oliveira, Luciana Camargo; Carmo, Janaina Braga; Botero, Wander Gustavo

    2016-01-01

    One of the waste products of the industrial process of the sugar and alcohol agribusiness is filter cake (FC). This waste product has high levels of organic matter, mainly proteins and lipids, and is rich in calcium, nitrogen, potassium and phosphorous. In this work we characterized samples of FC from sugar and alcohol industries located in sugarcane-producing regions in Brazil and assessed the adsorption of potentially toxic metals (Cu(II), Cd(II), Pb(II), Ni(II) and Cr(III)) by this waste in mono- and multi-elemental systems, seeking to use FC as an adsorbent in contaminated environments. The characterization of FCs showed significant differences between the samples and the adsorption studies showed retention of over 90% of potentially toxic metals. In a competitive environment (multi-metallic solution), the FC was effective in adsorbing all metals except lead, but less effective compared to the mono-metallic solution. These results show the potential for use of this residue as an adsorbent in contaminated environments. PMID:26230635

  11. Towards industrially feasible treatment of potato starch processing waste by mixed cultures.

    PubMed

    Liu, Bingnan; Song, Jinzhu; Li, Ying; Niu, Jia; Wang, Zhenyu; Yang, Qian

    2013-10-01

    The present study aimed at reducing the pollution of the waste generated by the potato starch industry to the environment and transform the potato pulp and wastewater into single-cell protein (SCP) to be used as animal feed. The chemical oxygen demand of the wastewater was reduced from 26,700 to 9,100 mg/L by batch fermentation with mixed cultures in an aerated 10-L fermenter. The SCP products, with a crude protein content of 46.09 % (higher than soybean meal), were found palatable and safe for mice. During the treatment process, the microbial community was analyzed using the terminal restriction fragment length polymorphism for bacterial 16S rRNA genes. The results of the analysis suggested that Curacaobacter/Pseudoalteromonas and Paenibacillus/Bacillus were the main microorganisms in treating potato starch processing wastes. The 150-m(3)-scale fermentation demonstrated a potential for treatment in industrial applications. Fermentation of potato pulp and wastewater without adding an extra nitrogen source was a novel approach in treating the potato starch processing waste. PMID:23921431

  12. Characterization of industrial onion wastes (Allium cepa L.): dietary fibre and bioactive compounds.

    PubMed

    Benítez, Vanesa; Mollá, Esperanza; Martín-Cabrejas, María A; Aguilera, Yolanda; López-Andréu, Francisco J; Cools, Katherine; Terry, Leon A; Esteban, Rosa M

    2011-03-01

    The food industry produces a large amount of onion wastes, making it necessary to search for possible ways for their utilization. One way could be to use these onion wastes as a natural source of high-value functional ingredients, since onion are rich in several groups of compounds, which have perceived benefits to human health. The objective of this work is to gain knowledge of any differences between the different onion wastes obtained from industry and non-commercial bulbs to use them as food ingredients rich in specific compounds. The results showed that brown skin and top-bottom could be potentially used as functional ingredient rich in dietary fibre, mainly in insoluble fraction, and in total phenolics and flavonoids, with high antioxidant activity. Moreover, brown skin showed a high concentration of quercetin aglycone and calcium, and top-bottom showed high concentration of minerals. Outer scales could be used as source of flavonols, with good antioxidant activity and content of dietary fibre. However, inner scales could be an interesting source of fructans and alk(en)yl cystein sulphoxides. In addition, discarded onions (cvs Recas and Figueres) could be used as a good source of dietary fibre, and cv Recas also as a source of phenolics compounds. PMID:21318305

  13. Petroleum industry effluents and other oxygen-demanding wastes in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Uwakwe, Augustine A

    2006-07-01

    In this article, we review the fundamental phenomenon of oxygenation within the overriding context of petroleum-industry effluents and the other oxygen demanding wastes in Niger Delta, Nigeria. Drill cuttings, drilling mud (fluids used to stimulate the production processes), and accidental discharges of crude petroleum constitute serious land and water pollution in the oil-bearing province. Effluents from other industrial establishments such as distilleries, pulp and paper mills, fertilizer plants, and breweries, as well as thermal effluents, plant nutrients (such as nitrates and phosphates), and eroded sediments have also contributed to the pollution of their surrounding environment. Since these wastes are oxygen-demanding in nature, their impact on the recipient environment can be reversed by the direct application of simple chemistry. The wastes can be reduced, particularly in natural bodies of water, by direct oxidation-reduction processes or simple chemical combinations, acid-base reactions, and solubility equilibria; these are pH- and temperature-dependent. A shift in pH and alkalinity affects the solubility equilibria of Na+, Cl-, SO(2-), NO3(-), HCO3(-), and PO4(3-), and other ions and compounds. PMID:17193303

  14. Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation — a review

    NASA Astrophysics Data System (ADS)

    Bodor, Marius; Santos, Rafael; Gerven, Tom; Vlad, Maria

    2013-12-01

    Besides producing a substantial portion of anthropogenic CO2 emissions, the industrial sector also generates significant quantities of solid residues. Mineral carbonation of alkaline wastes enables the combination of these two by-products, increasing the sustainability of industrial activities. On top of sequestering CO2 in geochemically stable form, mineral carbonation of waste materials also brings benefits such as stabilization of leaching, basicity and structural integrity, enabling further valorization of the residues, either via reduced waste treatment or landfilling costs, or via the production of marketable products. This paper reviews the current state-of-the-art of this technology and the latest developments in this field. Focus is given to the beneficial effects of mineral carbonation when applied to metallurgical slags, incineration ashes, mining tailings, asbestos containing materials, red mud, and oil shale processing residues. Efforts to intensify the carbonation reaction rate and improve the mineral conversion via process intensification routes, such as the application of ultrasound, hot-stage processing and integrated reactor technologies, are described. Valorization opportunities closest to making the transition from laboratory research to commercial reality, particularly in the form of shaped construction materials and precipitated calcium carbonate, are highlighted. Lastly, the context of mineral carbonation among the range of CCS options is discussed.

  15. 26 CFR 17.1 - Industrial development bonds used to provide solid waste disposal facilities; temporary rules.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 2010-04-01 false Industrial development bonds used to...C. 103(c) § 17.1 Industrial development bonds used to...waste disposal merely because material or heat which has utility...the disposal process. Where materials or heat are recovered,...

  16. Characterization of the carbonaceous materials obtained from different agro-industrial wastes.

    PubMed

    Ensuncho-Muñoz, A E; Carriazo, J G

    2015-01-01

    This paper reports the preparation and characterization of carbonaceous materials obtained from three types of vegetable wastes provided by agricultural industries. Soft carbonization (280°C) and H3PO4-activation procedures were used to convert the agricultural wastes to carbon powders with high adsorbent capacities. This process is excellent for eliminating and exploiting the huge masses (many tons) of vegetable residues remaining after each harvest every year in several Colombian agro-industries. The powders were characterized by X-ray diffraction (XRD), IR spectroscopy, scanning electron microscopy (SEM), and N2-adsorption isotherms. XRD and IR verified the formation of carbons, and SEM showed small particles (20-500?µm) with characteristic morphology for each type of residue used and abundant cavities of different sizes. The N2-adsorption analyses showed that the carbons had high adsorption capacities with important surface area values and large pore volumes. The use of the activated carbonaceous materials as adsorbent of azo dyes (allura red and sunset yellow) from aqueous solutions was evaluated. The results showed a good adsorption capacity indicating the potentiality of these materials as pollutant adsorbents in food industry wastewaters. These results indicate that these powders can be used as potential adsorbents for different gaseous or liquid pollutants. PMID:25189634

  17. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: May 1, 2010-October 31, 2010

    SciTech Connect

    David B. Frederick

    2011-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (#LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  18. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2011-October 31, 2012

    SciTech Connect

    Mike lewis

    2013-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  19. Radiological Monitoring Results For Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2010-October 31, 2011

    SciTech Connect

    David Frederick

    2012-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond (No.LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  20. Radiological Monitoring Results for Groundwater Samples Associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Pond: November 1, 2012-October 31, 2013

    SciTech Connect

    Mike Lewis

    2014-02-01

    This report summarizes radiological monitoring performed on samples from specific groundwater monitoring wells associated with the Industrial Wastewater Reuse Permit for the Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond WRU-I-0160-01, Modification 1 (formerly LA-000160-01). The radiological monitoring was performed to fulfill Department of Energy requirements under the Atomic Energy Act.

  1. Potential of thermal treatment for decontamination of mercury containing wastes from chlor-alkali industry.

    PubMed

    Busto, Y; Cabrera, X; Tack, F M G; Verloo, M G

    2011-02-15

    Old dumps of mercury waste sludges from chlor-alkaline industry are an environmental threat if not properly secured. Thermal retortion can be used to remove mercury from such wastes. This treatment reduces the total mercury content, and also may reduce the leachability of the residual mercury. The effects of treatment temperature and treatment time on both residual mercury levels and mercury leachability according to the US EPA TCLP leaching procedure, were investigated. Treatment for 1h at 800°C allowed to quantitatively remove the mercury. Treatment at 400°C and above allowed to decrease the leachable Hg contents to below the US EPA regulations. The ultimate choice of treatment conditions will depend on requirements of further handling options and cost considerations. PMID:21093149

  2. Value Addition to Sulfate Waste Pickle Liquor of Steel Industry Using Hydrometallurgical Processes

    NASA Astrophysics Data System (ADS)

    Agrawal, Archana; Sahu, K. K.

    2009-12-01

    The solvent extraction of concentrated acid was investigated from sulfate waste pickle liquors using Cyanex 923 (trialkylphosphine oxide (TRPO); manufactured by Cytec Industries Inc., Woodland Park, NJ; provided by Cyanamid Canada Inc. (Markham, Canada)) as an extractant. The effect of various parameters was studied such as extractant concentration, organic-to-aqueous phase ratio, temperature. and retention time on acid extraction from the waste pickle liquor to the organic phase, After the saturation of the organic phase with sulfuric acid, stripping studies were performed to back-extract the pure acid into the aqueous phase. The raffinate of the solvent extraction process that contains both ferrous and ferric iron as well as trace impurities was subjected to oxidation and hydrothermal treatment to precipitate iron with a well-defined pseudo-cubic morphology and a high coercivity value that renders it suitable for high-grade ferrite production.

  3. Fundamentals of gas flow in shale; What the unconventional reservoir industry can learn from the radioactive waste industry

    NASA Astrophysics Data System (ADS)

    Cuss, Robert; Harrington, Jon; Graham, Caroline

    2013-04-01

    Tight formations, such as shale, have a wide range of potential usage; this includes shale gas exploitation, hydrocarbon sealing, carbon capture & storage and radioactive waste disposal. Considerable research effort has been conducted over the last 20 years on the fundamental controls on gas flow in a range of clay-rich materials at the British Geological Survey (BGS) mainly focused on radioactive waste disposal; including French Callovo-Oxfordian claystone, Belgian Boom Clay, Swiss Opalinus Clay, British Oxford Clay, as well as engineered barrier material such as bentonite and concrete. Recent work has concentrated on the underlying physics governing fluid flow, with evidence of dilatancy controlled advective flow demonstrated in Callovo-Oxfordian claystone. This has resulted in a review of how advective gas flow is dealt with in Performance Assessment and the applicability of numerical codes. Dilatancy flow has been shown in Boom clay using nano-particles and is seen in bentonite by the strong hydro-mechanical coupling displayed at the onset of gas flow. As well as observations made at BGS, dilatancy flow has been shown by other workers on shale (Cuss et al., 2012; Angeli et al. 2009). As well as experimental studies using cores of intact material, fractured material has been investigated in bespoke shear apparatus. Experimental results have shown that the transmission of gas by fractures is highly localised, dependent on normal stress, varies with shear, is strongly linked with stress history, is highly temporal in nature, and shows a clear correlation with fracture angle. Several orders of magnitude variation in fracture transmissivity is seen during individual tests. Flow experiments have been conducted using gas and water, showing remarkably different behaviour. The radioactive waste industry has also noted a number of important features related to sample preservation. Differences in gas entry pressure have been shown across many laboratories and these may be attributed to different core preparation techniques. Careful re-stressing of core barrels and sealing techniques also ensure that experiments are conducted on near in situ condition. The construction of tunnels within shale clearly aids our understanding of the interaction of engineered operations (borehole drilling or tunnelling) on the behaviour of the rock. References: Angeli, M., Soldal, M., Skurtveit, E. and Aker, E., (2009) Experimental percolation of supercritical CO2 through a caprock. Energy Procedia 1, 3351-3358 Cuss, R.J., Harrington, J.F., Giot, R., and Auvray, C. (2012) Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian Claystone. Poster Presentation 5th International Meeting Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, Montpellier, France October 22nd - 25th 2012.

  4. Use of alkaline aluminum-containing waste products of industrial plants for waste-water treatment

    SciTech Connect

    Shut'ko, A.P.; Butchenko, L.I.

    1987-10-20

    The aim of this work was to investigate the coagulating power of sodium aluminate, and to determine the optimum dose of the reagent and pH range of the water being purified. A solution of sodium aluminate, 0.5 M as Al/sub 2/O/sub 3/, was used, prepared by dissolving aluminum metal in concentrated alkali solution. The pH of the solution obtained was 13.80 at 20/sub 0/, and the alkalinity, determined by titration of the sodium aluminate with 0.1 M hydrochloric acid solution with the use of bromophenol blue as indicator, was 3.75 g-eq/liter. The industrial coagulant used was spent solution from processes of chemical scouring of aluminum and its alloys, containing 40 g/liter of aluminum, with a pH of 13.86 and an alkalinity of 7.5 g-eq/liter. It was determined that the optimum doses were 60-90 mg/liter as Al/sub 2/O/sub 3/. The criteria of good coagulation were a formation, during 1 min, of coarse rapidly setting flakes of aluminum hydroxide, and a low residual aluminum content not exceeding 0.5 mg/liter.

  5. The physicochemical characteristics and anaerobic degradability of desiccated coconut industry waste water.

    PubMed

    Chanakya, H N; Khuntia, Himanshu Kumar; Mukherjee, Niranjan; Aniruddha, R; Mudakavi, J R; Thimmaraju, Preeti

    2015-12-01

    Desiccated coconut industries (DCI) create various intermediates from fresh coconut kernel for cosmetic, pharmaceutical and food industries. The mechanized and non-mechanized DCI process between 10,000 and 100,000 nuts/day to discharge 6-150 m(3) of malodorous waste water leading to a discharge of 264-6642 kg chemical oxygen demand (COD) daily. In these units, three main types of waste water streams are coconut kernel water, kernel wash water and virgin oil waste water. The effluent streams contain lipids (1-55 g/l), suspended solids (6-80 g/l) and volatile fatty acids (VFA) at concentrations that are inhibitory to anaerobic bacteria. Coconut water contributes to 20-50 % of the total volume and 50-60 % of the total organic loads and causes higher inhibition of anaerobic bacteria with an initial lag phase of 30 days. The lagooning method of treatment widely adopted failed to appreciably treat the waste water and often led to the accumulation of volatile fatty acids (propionic acid) along with long-chain unsaturated free fatty acids. Biogas generation during biological methane potential (BMP) assay required a 15-day adaptation time, and gas production occurred at low concentrations of coconut water while the other two streams did not appear to be inhibitory. The anaerobic bacteria can mineralize coconut lipids at concentrations of 175 mg/l; however; they are severely inhibited at a lipid level of ?350 mg/g bacterial inoculum. The modified Gompertz model showed a good fit with the BMP data with a simple sigmoid pattern. However, it failed to fit experimental BMP data either possessing a longer lag phase and/or diauxic biogas production suggesting inhibition of anaerobic bacteria. PMID:26612563

  6. Industrial halide wastes cause acute mortality of snow geese in Oklahoma

    USGS Publications Warehouse

    Andreasen, J.K.; Stroud, Richard K.

    1987-01-01

    An examination of 97 dead migratory waterfowl collected at an industrial facility showed that the birds had had severe gastric and intestinal hemorrhaging. Water samples taken at on-site waste lagoons contained 6,750 mg/L fluoride, 4,500 mg/L bromine and 1,500 mg/L boron. Brain and liver tissues contained high levels of fluoride, as compared with tissues of birds collected at a control site. From the necropsy results, the high concentration of fluoride in the water samples and the elevated tissue residues, we conclude that the birds died from acute fluoride poisoning.

  7. Intensifying of the processes of mechanical separation of oil products from industrial waste water

    SciTech Connect

    Kostova, I.

    1995-11-01

    The raised requirements for discharge of industrial effluents in the Black Sea and in the rivers lead to the development of more efficient technologies for additional treatment and improving the existing facilities. Pollutants with concentrations which are several times higher than the admissible rates according to the Bulgarian Standards, are found at many places along the Black Sea Coast. This is due to the imperfect construction of the water treatment facilities and their improper maintenance. Oil products are one of the main pollutants in water basins. The negative influence which they have on the ecological balance comes from the fact that they are among the most difficulty and slowly dissociating organic substances. They have negative impact on the physical and chemical qualities of water and obstruct the self-purification process disrupting its biological life. In this paper the opportunity to intensify the processes of mechanical separation of oil products from industrial waste water is discussed.

  8. Waste disposal and treatment in the food-processing industry. March 1985-October 1989 (Citations from the Biobusiness data base). Report for March 1985-October 1989

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning waste treatment and disposal in the food-processing industry. Methods, equipment, and technology are considered. Specific areas include waste-heat recovery, meat processing, seafood processing, dairy wastes, beverage industry, fruits and vegetables, and other food-industry wastes. Waste utilization includes animal feeds, combustion for energy production, biogas production, conversion to fertilizer, composting, and recovery and recycling of usable chemicals. Food-packaging recycling is considered in a related bibliography. (Contains 169 citations fully indexed and including a title list.)

  9. Risk of boron and heavy metal pollution from agro-industrial wastes applied for plant nutrition.

    PubMed

    Seçer, Müzeyyen; Ceylan, Safak; Elmaci, Omer Lütfü; Akdemir, Hüseyin

    2010-09-01

    In this study, the effects of various agro-industrial wastes were investigated when applied to soil alone or in combination with chemical fertilizers, regarding the risks of boron and heavy metal pollution of soils and plants. Nine combinations of production residues from various agro-industries, urban wastes, and mineral fertilizers were applied to potatoes in a field experiment. The content of available boron in the soil differed significantly (p < 0.05) among the applications. Generally, B values were found to be slightly higher when soapstock, prina, and blood were used alone or in combination. Although total Co, Cd, and Pb contents of soils showed no significant differences between the applications, Cr content differed significantly (p < 0.05). No pollution risk was observed in soil in respect to total Co, Cd, Pb, and Cr contents. The amount of boron and heavy metals in leaves showed no significant differences among the applications. Cobalt, Cd, and Pb in leaves were at normal levels whereas Cr was slightly above normal but well under the critical level. Boron was low in tubers and varied significantly between applications such as Co and Cd. The Co content of tubers was high, Cd and Cr contents were below average, and Pb content was between the given values. Some significant correlations were found between soil characteristics and the boron and heavy metal content of soil, leaves, and tubers. PMID:19680756

  10. Chemical and physical characterization of western low-rank-coal waste materials. Part 3. Sludges from wet scrubbers using fly ash as a scrubbing reagent. Final report

    SciTech Connect

    Not Available

    1982-12-01

    The Department of Energy Grand Forks Energy Technology Center has supported development of wet scrubbers that use western fly ashes to supply all or part of the alkalinity requirements of the FGD system. Investigations described in this report address waste characteristics affecting disposal requirements for sludges from these systems. This program has two objectives. One is to determine disposal-related characteristics of sludges from FGD systems using fly ash as a major source of alkalinity. The second objective is to evaluate material-related disposal requirements for these sludges. In this study, two of the sludges were treated to increase physical stability and reduce permeability. Treatment involved application of three commercial fixation processes. And, in addition, fly ash scrubber sludge was treated by adding fly ash from an electrostatic precipitator. Treated and untreated sludges were subjected to a variety of chemical and physical tests. Elemental concentrations were measured in sludge solids and leachates obtained from column studies and sequential batch extractions. The EP extraction was carried out to classify sludges as nonhazardous or hazardous. Other measurements included: moisure content, bulk densities, densities of solids, surface areas, particle size distributions, strengths, and permeabilities. Element concentrations in sludge solids were generally within the expected limits. Calcium concentrations were generally lower in sludges from systems employing fly ash as reagent than would be expected for sludges from systems using limestone or lime. Sodium concentrations were higher in sludges from systems using fly ash from lignite than in sludges from other systems. All materials tested would be classified as nontoxic according to the characteristic of EP toxicity as currently defined.

  11. Biological denitrification of high-nitrates wastes generated in the nuclear industry

    SciTech Connect

    Francis, C.W.

    1980-01-01

    Biological denitrification appears to be one of the most effective methods to remove nitrates from wastewater streams (Christenson and Harremoes, 1975). However, most of the research and development work has been centered on removal of nitrates from sewage or agricultural drainage waters, nitrate nitrogen concentration usually less than 50 g/m/sup 3/. Work was initiated at Oak Ridge National Laboratory (ORNL) in 1974 to test the use of biological nitrification in the removal of high concentrations of nitrate (in excess of 1.0 kg NO/sub 3/-N/m/sup 3/) from uranium purification waste streams. Since then, a full-scale treatment facility, a stirred reactor, has been installed at the Y-12 plant; and a pilot-plant, using a fluidized bed, has been proposed at Portsmouth Gaseous Diffusion Plant. The objective of this manuscript is to present some applied microbiological research relating to possible constraints in biologically denitrifying certain waste streams in the nuclear industry and comparing the effectiveness of denitrification of these waste streams in three bench scale reactors, (1) a continuous flow-stirred reactor, (2) stirred bed rector, and (3) a fluidized bed reactor.

  12. Biodiesel production using fatty acids from food industry waste using corona discharge plasma technology.

    PubMed

    Cubas, A L V; Machado, M M; Pinto, C R S C; Moecke, E H S; Dutra, A R A

    2016-01-01

    This article aims to describe an alternative and innovative methodology to transform waste, frying oil in a potential energy source, the biodiesel. The biodiesel was produced from fatty acids, using a waste product of the food industry as the raw material. The methodology to be described is the corona discharge plasma technology, which offers advantages such as acceleration of the esterification reaction, easy separation of the biodiesel and the elimination of waste generation. The best conditions were found to be an oil/methanol molar ratio of 6:1, ambient temperature (25°C) and reaction time of 110min and 30mL of sample. The acid value indicates the content of free fatty acids in the biodiesel and the value obtained in this study was 0.43mgKOH/g. Peaks corresponding to octadecadienoic acid methyl ester, octadecanoic acid methyl ester and octadecenoic acid methyl ester, from the biodiesel composition, were identified using GC-MS. A major advantage of this process is that the methyl ester can be obtained in the absence of chemical catalysts and without the formation of the co-product (glycerin). PMID:26159043

  13. Laboratory measurements of radiance and reflectance spectra of a dilute biosolid industrial waste product

    NASA Technical Reports Server (NTRS)

    Usry, J. W.; Witte, W. G.; Whitlock, C. H.; Gurganus, E. A.

    1979-01-01

    Experimental measurements were made of upwelled spectral signatures of various concentrations of industrial waste products mixed with water in a large water tank. Radiance and reflectance spectra for a biosolid waste product (sludge) mixed with conditioned tap water and natural river water are reported. Results of these experiments indicate that reflectance increases with increasing concentration of the sludge at practically all wavelengths for concentration of total suspended solids up to 117 ppm in conditioned tap water and 171 ppm in natural river water. Significant variations in the spectra were observed and may be useful in defining spectral characteristics for this waste product. No significant spectral differences were apparent in the reflectance spectra of the two experiments, especially for wavelengths greater than 540 nm. Reflectance values, however, were generally greater in natural river water for wavelengths greater than 540 nm. Reflectance may be considered to increase linearly with concentration of total suspended solids from 5 to 171 ppm at all wavelengths without introducing errors larger than 10 percent.

  14. Usability of food industry waste oils as fuel for diesel engines.

    PubMed

    Winfried, Russ; Roland, Meyer-Pittroff; Alexander, Dobiasch; Jürgen, Lachenmaier-Kölch

    2008-02-01

    Two cogeneration units were each fitted with a prechamber (IDI) diesel engine in order to test the feasibility of using waste oils from the food industry as a fuel source, and additionally to test emissions generated by the combustion of these fuels. Esterified waste oils and animal fats as well as mustard oil were tested and compared to the more or less "common" fuels: diesel, rapeseed oil and rapeseed methyl ester. The results show that, in principle, each of these fuels is suitable for use in a prechamber diesel engine. Engine performance can be maintained at a constant level. Without catalytic conversion, the nitrogen oxides emissions were comparable. A significant reduction in NO(x) was achieved through the injection of urea. Combining a urea injection with the SCR catalytic converter reduced NO(x) emissions between 53% and 67%. The carbon monoxide emissions from waste oils are not significantly different from those of "common" fuels and can be reduced the same way as of hydrocarbon emissions, through utilization of a catalytic converter. The rate of carbon monoxide reduction by catalytic conversion was 84-86%. A lower hydrocarbon concentration was associated with fuels of agricultural origin. With the catalytic converter a reduction of 29-42% achieved. Each prechamber diesel engine exhibited its own characteristic exhaust, which was independent of fuel type. The selective catalytic reduction of the exhaust emissions can be realized without restriction using fuels of agricultural origin. PMID:17303316

  15. Establishing and Implementing a Waste Minimization Program in the Chemical and Oil Industries 

    E-print Network

    Hollod, G. J.; Marton, R. J.

    1989-01-01

    chemicals and chemical processes, and are the best equipped to manage and reduce waste. It is the responsibility of all companies that manufacture a product or generate a waste to understand the meaning of proper waste management hierarchy, waste...

  16. LAND CULTIVATION OF INDUSTRIAL WASTES AND MUNICIPAL SOLID WASTES. STATE-OF-THE-ART STUDY. VOLUME I. TECHNICAL SUMMARY AND LITERATURE REVIEW

    EPA Science Inventory

    A review of the available literature on land cultivation of industrial wastewater and sludge, and municipal solid waste was conducted. This review was supplemented by field investigations at 10 operating sites, including soil and vegetation analyses. Soil is a natural environment...

  17. Industry

    SciTech Connect

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  18. Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat

    NASA Astrophysics Data System (ADS)

    Sasaki, Keiichi; Horikawa, Daisuke; Goto, Koichi

    2015-01-01

    Today, we face some significant environmental and energy problems such as global warming, urban heat island, and the precarious balance of world oil supply and demand. However, we have not yet found a satisfactory solution to these problems. Waste heat recovery is considered to be one of the best solutions because it can improve energy efficiency by converting heat exhausted from plants and machinery to electric power. This technology would also prevent atmospheric temperature increases caused by waste heat, and decrease fossil fuel consumption by recovering heat energy, thus also reducing CO2 emissions. The system proposed in this research generates electric power by providing waste heat or unharnessed thermal energy to built-in thermoelectric modules that can convert heat into electric power. Waste heat can be recovered from many places, including machinery in industrial plants, piping in electric power plants, waste incineration plants, and so on. Some natural heat sources such as hot springs and solar heat can also be used for this thermoelectric generation system. The generated power is expected to be supplied to auxiliary machinery around the heat source, stored as an emergency power supply, and so on. The attributes of this system are (1) direct power generation using hot springs or waste heat; (2) 24-h stable power generation; (3) stand-alone power system with no noise and no vibration; and (4) easy maintenance attributed to its simple structure with no moving parts. In order to maximize energy use efficiency, the temperature difference between both sides of the thermoelectric (TE) modules built into the system need to be kept as large as possible. This means it is important to reduce thermal resistance between TE modules and heat source. Moreover, the system's efficiency greatly depends on the base temperature of the heat sources and the material of the system's TE modules. Therefore, in order to make this system practical and efficient, it is necessary to choose the heat source first and then design the most appropriate structure for the source by applying analytical methods. This report describes how to design a prototype of a thermoelectric power generator using the analytical approach and the results of performance evaluation tests carried out in the field.

  19. The use of commercial and industrial waste in energy recovery systems - A UK preliminary study.

    PubMed

    Lupa, Christopher J; Ricketts, Lois J; Sweetman, Andy; Herbert, Ben M J

    2011-08-01

    With 2020 energy targets set out by the EU fast approaching, the UK is trying to source a higher proportion of its energy from renewable resources. Coupled with this, a growing population and increasing trends in consumer demand have resulted in national waste loads increasing. A possible solution to both issues is energy-from-waste (EfW) technologies. Many studies have focused on municipal solid waste (MSW) as a potential feedstock, but appear to overlook the potential benefits of commercial and industrial waste (C&IW). In this study, samples of C&IW were collected from three North West waste management companies and Lancaster University campus. The samples were tested for their gross and net calorific value, moisture content, ash content, volatile matter, and also elemental composition to determine their suitability in EfW systems. Intra-sample analysis showed there to be little variation between samples with the exception two samples, from waste management site 3, which showed extensive variation with regards to net calorific value, ash content, and elemental analysis. Comparisons with known fuel types revealed similarities between the sampled C&IW, MSW, and refuse derived fuel (RDF) thereby justifying its potential for use in EfW systems. Mean net calorific value (NCV) was calculated as 9.47MJ/kg and concentrations of sulphur, nitrogen, and chlorine were found to be below 2%. Potential electrical output was calculated using the NCV of the sampled C&IW coupled with four differing energy generation technologies. Using a conventional incinerator with steam cycle, total electrical output was calculated as 24.9GWh, based on a plant operating at 100,000tpa. This value rose to 27.0GWh when using an integrated gasification combined cycle. A final aspect of this study was to deduce the potential total national electrical output if all suitable C&IW were to be used in EfW systems. Using incineration coupled with a steam turbine, this was determined to be 6TWh, 1.9% of the national demand thereby contributing 6.5% towards the UK's 2020 renewable electricity target. PMID:21530223

  20. “Smoking Wet

    PubMed Central

    Gilbert, Christopher R.; Baram, Michael; Cavarocchi, Nicholas C.

    2013-01-01

    Reports have suggested that the use of a dangerously tainted form of marijuana, referred to in the vernacular as “wet” or “fry,” has increased. Marijuana cigarettes are dipped into or laced with other substances, typically formaldehyde, phencyclidine, or both. Inhaling smoke from these cigarettes can cause lung injuries. We report the cases of 2 young adults who presented at our hospital with respiratory failure soon after they had smoked “wet” marijuana cigarettes. In both patients, progressive hypoxemic respiratory failure necessitated rescue therapy with extracorporeal membrane oxygenation. After lengthy hospitalizations, both patients recovered with only mild pulmonary function abnormalities. To our knowledge, this is the first 2-patient report of severe respiratory failure and rescue therapy with extracorporeal oxygenation after the smoking of marijuana cigarettes thus tainted. We believe that, in young adults with an unexplained presentation of severe respiratory failure, the possibility of exposure to tainted marijuana cigarettes should be considered. PMID:23466531

  1. Anaerobic digestion of municipal, industrial, and livestock wastes for energy recovery and disposal

    SciTech Connect

    Sax, R.I.; Lusk, P.D.

    1995-11-01

    The degradation of carbonaceous organic material by anaerobic bacteria leads to the production of methane gas (biogas) at the theoretical stoichiometric conversion rate of 0.35-cubic meters of methane per kilogram of Chemical Oxygen Demand (COD) reasonably close proximity to the site of this digestion process. The untreated biogas generated from anaerobic digestion typically contains from 55% to 75% methane content, with the balance consisting mainly of carbon dioxide and a small, but important, amount of hydrogen sulfide. The untreated biogas is normally saturated with water vapor at the temperature of the digestion process which typically is in the mesophilic range 25 to 38 degrees Celsius. This overview paper describes the types of anaerobic technologies which are presently used for the digestion of various type of municipal, industrial and livestock manure wastes, summarizes the principal developments which have taken place in the field during the past several years, and discusses the energy recovery economics for each of the three usage applications. The paper stratifies the use of anaerobic digestion technology for the treatment of wastewaters from industry (an application which has increased dramatically during the past decade) by geographical region, by industry type, very various categories of food processing, and by technology type, in all cases taking account of system size to emphasize the economics of energy production.

  2. Iron Cycling in Low pH Environments - Potential Application for the Recovery of Precious Metals from Industrial Waste

    NASA Astrophysics Data System (ADS)

    Muehe, E. M.; Helle, T.; Kappler, A.

    2014-12-01

    The use of many different precious metals (gold, platinum…) and Rare Earth Elements (lanthanum, neodymium…) in the production of electronic products is drastically increasing. To meet this demand, not only mining activities but recently also the recovery of these elements from industrial waste is in the focus of research. It has been shown that the application of extracting solutions with pH values lower than 4 lead to an economically feasible recovery of industrially precious metals. This abiotic extraction efficiency can potentially be increased by using microorganisms capable of dissolving more stable minerals at low pH. In collaboration with industry, a waste incineration plant, and governmental authorities, we investigate the extraction and recovery of strategically important metals and Rare Earth Elements from industrial waste. We optimize the (bio)-geochemical conditions for the extraction of these elements. To this end, a variety of microorganisms are evaluated for efficient metal extraction. We focus on known laboratory cultures capable of oxidizing and reducing Fe minerals and S compounds. Additionally, unknown microbial communities able to increase the efficiency of precious metal extraction from the industrial waste are enriched from environments with comparable geochemical conditions found in the extraction solutions.

  3. Comprehensive Planning for Classification and Disposal of Solid Waste at the Industrial Parks regarding Health and Environmental Impacts

    PubMed Central

    Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without observing environmental regulations leads to short-term pollution and nuisance in the acceptor environment. Also some parts of case study waste were recyclable which is considerable from viewpoint of economical and environmental pollution. Long-term impacts will appear due to improper site selection of disposal from the spatial standpoint. In this way, an approach for site selection using several socioeconomic, physical, and environmental criteria based on multicriteria decision making model (MCDM) is introduced. Health risks and environment pollution such as soil and surface water may be done. It is essential to revise the studied industries layout, particularly those units which produce special waste which should be more cautious. Also stricter enforcement is required as an effective step in reducing the harmful impacts of it. PMID:24688552

  4. Are reductions in industrial organic contaminants emissions in rich countries achieved partly by export of toxic wastes?

    PubMed

    Breivik, Knut; Gioia, Rosalinda; Chakraborty, Paromita; Zhang, Gan; Jones, Kevin C

    2011-11-01

    Recent studies show that PCB (polychlorinated biphenyl) air concentrations remain surprisingly high in parts of Africa and Asia. These are regions where PCBs were never extensively used, but which are implicated as recipients of obsolete products and wastes containing PCBs and other industrial organic contaminants, such as halogenated flame retardants (HFRs). We hypothesize that there may be different trends in emissions across the globe, whereby emissions of some industrial organic contaminants may be decreasing faster in former use regions (due to emission reductions combined with uncontrolled export), at the expense of regions receiving these substances as obsolete products and wastes. We conclude that the potential for detrimental effects on the environment and human health due to long-range transport by air, water, or wastes should be of equal concern when managing and regulating industrial organic contaminants. This calls for a better integration of life-cycle approaches in the management and regulation of industrial organic contaminants in order to protect environmental and human health on a global scale. Yet, little remains known about the amounts of industrial organic contaminants exported outside former use regions as different types of wastes because of the often illicit nature of these operations. PMID:21958155

  5. Comprehensive planning for classification and disposal of solid waste at the industrial parks regarding health and environmental impacts.

    PubMed

    Hashemi, Hassan; Pourzamani, Hamidreza; Rahmani Samani, Bahareh

    2014-01-01

    The aim of this study is the comprehensive planning for integrated management of solid waste at the industrial parks. The share of each industrial group including food, metal, chemical, non-metallic minerals, textile, electrical and electronical, and cellulose industries were 48.2, 14.9, 6.7, 22, 0.9, 0.6, and 6.5 percent, respectively. The results showed that nearly half of total industrial waste produced from the range of biological materials are biodegradable and discharging them without observing environmental regulations leads to short-term pollution and nuisance in the acceptor environment. Also some parts of case study waste were recyclable which is considerable from viewpoint of economical and environmental pollution. Long-term impacts will appear due to improper site selection of disposal from the spatial standpoint. In this way, an approach for site selection using several socioeconomic, physical, and environmental criteria based on multicriteria decision making model (MCDM) is introduced. Health risks and environment pollution such as soil and surface water may be done. It is essential to revise the studied industries layout, particularly those units which produce special waste which should be more cautious. Also stricter enforcement is required as an effective step in reducing the harmful impacts of it. PMID:24688552

  6. Effect of acid hydrolysis and fungal biotreatment on agro-industrial wastes for obtainment of free sugars for bioethanol production

    PubMed Central

    El-Tayeb, T.S.; Abdelhafez, A.A.; Ali, S.H.; Ramadan, E.M.

    2012-01-01

    This study was designed to evaluate selected chemical and microbiological treatments for the conversion of certain local agro-industrial wastes (rice straw, corn stalks, sawdust, sugar beet waste and sugarcane bagasse) to ethanol. The chemical composition of these feedstocks was determined. Conversion of wastes to free sugars by acid hydrolysis varied from one treatment to another. In single-stage dilute acid hydrolysis, increasing acid concentration from 1 % (v/v) to 5 % (v/v) decreased the conversion percentage of almost all treated agro-industrial wastes. Lower conversion percentages for some treatments were obtained when increasing the residence time from 90 to 120 min. The two-stage dilute acid hydrolysis by phosphoric acid (1.0 % v/v) followed by sulphuric acid (1.0 % v/v) resulted in the highest conversion percentage (41.3 % w/w) on treated sugar beet waste. This treatment when neutralized, amended with some nutrients and inoculated with baker’s yeast, achieved the highest ethanol concentration (1.0 % v/v). Formation of furfural and hydroxymethylfurfural (HMF) were functions of type of acid hydrolysis, acid concentration, residence time and feedstock type. The highest bioconversion of 5 % wastes (37.8 % w/w) was recorded on sugar beet waste by Trichoderma viride EMCC 107. This treatment when followed by baker’s yeast fermentation, 0.41 % (v/v) ethanol and 8.2 % (v/w) conversion coefficient were obtained. PMID:24031984

  7. Mercury removal in utility wet scrubber using a chelating agent

    DOEpatents

    Amrhein, Gerald T. (Louisville, OH)

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  8. Restructuring, Tight Budgets and Executive Order 13123 Create New Incentives to Reduce Waste in Federal Industrial Facilities 

    E-print Network

    Verdict, M. E.

    2000-01-01

    BUDGETS AND EXECUTIVE ORDER 13123 CREATE NEW INCENTIVES TO REDUCE WASTE IN FEDERAL INDUSTRIAL FACILITIES MALCOLM E. VERDICT, C.E.M. FEDERAL ENERGY PRODUCTIVITY PROGRAM MANAGER ALLlANCETO SAVE ENERGY WASHINGTON, D.C. ABSTRACT This paper... include: ? Electric utility industry restructuring which lead to intense competition for energy services at Federal installations by non-regulated, utility spin-offs; ? Mandatory spending limits on the Federal budgets set by the Congress in 1994...

  9. Amylase production by solid-state fermentation of agro-industrial wastes using Bacillus sp.

    PubMed

    Saxena, Rajshree; Singh, Rajni

    2011-10-01

    Solid state fermentation was carried out using various agro- industrial wastes with the best amylase producing strain isolated from soil. Different physicochemical conditions were varied for maximum enzyme production. The strain produced about 5400 units/g of amylase at 1:3 moisture content, 20% inoculum, after 72 h of incubation with Mustard Oil seed cake as the substrate. The optimum temperature and pH of the enzyme activity were found to be 50°C and 6 respectively. The enzyme was found to be thermostable at 70°C for about 2 h without any salt. It showed stability at pH range 5-7. The metal ions as Na(+), Ca(++), Mg(++) and Co(++) enhanced the enzyme activity. PMID:24031761

  10. Column leaching test to evaluate the use of alkaline industrial wastes to neutralize acid mine tailings

    SciTech Connect

    Doye, I.; Duchesne, J.

    2005-08-01

    Acid mine drainage is a serious environmental problem caused by the oxidation of sulfide minerals that releases highly acidic, sulfate, and metals-rich drainage. In this study, alkaline industrial wastes were mixed with acid mine tailings in order to obtain neutral conditions. A series of column leaching tests were performed to evaluate the behavior of reactive mine tailings amended with alkaline-additions under dynamic conditions. Column tests were conducted of oxidized mine tailings combined with cement kiln dust, red mud bauxite, and mixtures of cement kiln dust with red mud bauxite. The pH results show the addition of 10% of alkaline materials permits the maintenance of near neutral conditions. In the presence of 10% alkaline material, the concentration of toxic metals such as Al, Cu, Fe, Zn are significantly reduced as well as the number of viable cells (Thiobacillus ferrooxidans) compared to control samples.

  11. WORKSHOP ON IN-PLANT WASTE REDUCTION IN THE MEAT INDUSTRY, HELD AT UNIVERSITY OF WISCONSIN, MADISON, DECEMBER 13-14, 1973

    EPA Science Inventory

    Presented are the proceedings of a workshop on in-plant waste reduction in the meat industry. Forty-five participants from industry, government, and private firms exchanged ideas and experiences on waste reduction during the two-day session. Topics covered were: pens, blood conse...

  12. Separation of heavy metals from industrial waste streams by membrane separation technology

    SciTech Connect

    Yichu Huang; Koseoglu, S.S. . Engineering Biosciences Research Center)

    1993-01-01

    Industrial membrane technology is becoming increasingly attractive as a low-cost generic separation technique for volume reduction, recovery, and/or purification of the liquid phase and concentration and/or recovery of the contaminant or solute. It offers outstanding future potential in the reduction and/or recycling of hazardous pollutants from waste streams. Membrane separation technology may include: (1) commercial processes such as electrodialysis, reverse osmosis, nanofiltration, and ultrafiltration and (2) the development of hybrid processes such as liquid membranes, Donnan dialysis, and membrane bioreactor technology. Membrane separation technology as applied to waste treatment/reduction and environmental engineering problems has several advantages over conventional treatment processes. In contrast to distillation and solvent extraction membrane separation is achieved without a phase change and use of expensive solvents. The advantages of this technology are (1) low energy requirements; (2) small volumes of retentate that need to be handled; (3) selective removal of pollutants with the use of complexing agents and biocatalysts or by membrane surface modification; (4) the possibility for achieving zero discharge'' with reuse of product water, binding media and target, compounds; (5) continuous operation; (6) modular design without significant size limitations; (7) discrete membrane barrier to ensure physical separation of contaminants; and (8) minimal labor requirement.

  13. Preparation and characterization of masonry units, lightweight concrete based and agro-industrial wastes: a review

    NASA Astrophysics Data System (ADS)

    Díaz-Fuentes, C. X.

    2013-11-01

    Discussion about the new composite materials that integrate agro industrial residues for the masonry unit's production, which are directed towards its implementation in projects of affordable housing, is a subject of interest to the public and productive sector of the country. For this reason, it presents a descriptive review of primary and secondary sources, which support the project under study. The methodology consisted in finding research articles in databases supported by the scientific community, which are ordered, integrated and prioritized, creating a matrix synthesis, which condensed the objectives, type of material, studied properties and main results found. It was found that the composite materials for masonry use mainly clay or cement as matrix and as reinforcement, agro waste like paper fibers, bamboo, rice husks, among others are used. Moreover, the properties that determine its potential use are low density, stress resistance and low thermal conductivity. Comparing the results with traditional specimens as the block of clay, concrete, adobe vs. experimental models made of the compounds analyzed, favorable results were obtained in the case of integrating waste materials into its composition, optimized their properties. Thus, science and architecture converge through recognition of the properties of materials that expand the alternatives of building spaces, economic and environmentally sustainable.

  14. Evaluation of toxic and genotoxic potential of stabilized industrial waste and contaminated soils.

    PubMed

    Békaert, C; Ferrier, V; Marty, J; Pfohl-Leszkowicz, A; Bispo, A; Jourdain, M J; Jauzein, M; Lambolez-Michel, L; Billard, H

    2002-01-01

    Artificial aqueous samples (eluates, percolates, immersion waters) were obtained from contaminated soils and stabilized industrial wastes. The toxicity and genotoxicity of these aqueous fractions have been evaluated in vivo in the aquatic larvae of the amphibian Xenopus laevis. Four biotests have been applied: a test of subchronic toxicity and three biomakers: (1) measurement of the activity of ethoxyresorufine-o-dealkylase in the liver, (2) detection of DNA adducts in the liver and the blood, and (3) measurement of the rate of micronuclei in the erythrocytes. Biological datas were completed through a chemical analysis. The main conclusions of this study are: The importance of integrating different toxicity criterias into a biological battery (phenotypic and genotypic criterias). Some aqueous extracts did not seem to be very toxic, whereas their genotoxic effects were rather significant [e.g. the stabilized Municipal Solid Waste (MSW) ashes]. The importance of coupling together chemical and biological approaches to refine the impact. Actually, some eluates (lixiviation or percolation) coming from polluted soils appeared to be very poorly loaded with pollutants, whereas the toxic and genotoxic impact of these complex matrices were rather noticeable. In addition, when applying the leaching standardized procedure, the hazardous potential of the two analysed soils may be underestimated if the results on percolates and on eluates have been compared. This study highligths the importance of coupling the tools of characterization and preparation of samples to be analysed according to the objectives to be reached. PMID:12003154

  15. Sporosarcina pasteurii use in extreme alkaline conditions for recycling solid industrial wastes.

    PubMed

    Cuzman, Oana A; Rescic, Silvia; Richter, Katharina; Wittig, Linda; Tiano, Piero

    2015-11-20

    The ureolytic bacteria are one of the most efficient organisms able to produce high amounts of carbonate that easily react with the free calcium ions from the environment. Sporosarcina pasteurii, a robust microbe in alkaline environments, was tested in this work for its potential use in an eco-cementation process that involves the biomediated calcite precipitation (BCP). Bacterial behavior in extreme alkaline environment (pH values of 9-13) was tested in controlled laboratory conditions and in the presence of solid industry wastes, such as Cement Kiln Dust (CKD) and Lime Kiln Dust (LKD), by evaluating the enzymatic activity and the calcite precipitation capacity. Grain consolidation potential of S. pasteurii was tested for one type of CKD mixed with ground granulated blast-furnace slag (GGBS), with possible bioclogging and biocementation applications. The results revealed the formation of stable biocalcite in the presence of CKD, with a performance depending on the pH-value and free calcium ion content. The BCP induced by S. pasteurii and the recycling of solid wastes, such as CKD with high lime content, is a promising way for different bioclogging and biocementation applications, with benefits in construction costs and reduction of environmental pollution. PMID:26376469

  16. Assessment of Food Processing and Pharmaceutical Industrial Wastes as Potential Biosorbents: A Review

    PubMed Central

    El-Sayed, Hanan E. M.; El-Sayed, Mayyada M. H.

    2014-01-01

    There is a growing need for the use of low-cost and ecofriendly adsorbents in water/wastewater treatment applications. Conventional adsorbents as well as biosorbents from different natural and agricultural sources have been extensively studied and reviewed. However, there is a lack of reviews on biosorption utilizing industrial wastes, particularly those of food processing and pharmaceuticals. The current review evaluates the potential of these wastes as biosorbents for the removal of some hazardous contaminants. Sources and applications of these biosorbents are presented, while factors affecting biosorption are discussed. Equilibrium, kinetics, and mechanisms of biosorption are also reviewed. In spite of the wide spread application of these biosorbents in the treatment of heavy metals and dyes, more research is required on other classes of pollutants. In addition, further work should be dedicated to studying scaling up of the process and its economic feasibility. More attention should also be given to enhancing mechanical strength, stability, life time, and reproducibility of the biosorbent. Environmental concerns regarding disposal of consumed biosorbents should be addressed by offering feasible biosorbent regeneration or pollutant immobilization options. PMID:25110656

  17. On the thermal stability of vitrified industrial wastes using microscale synchrotron radiation based techniques

    SciTech Connect

    Pinakidou, F.; Katsikini, M.; Paloura, E. C.

    2007-12-01

    The effect of annealing on the local coordination of Fe in a series of vitrified industrial wastes is studied by means of x-ray fluorescence mapping, and micro- and conventional x-ray absorption fine structure (XAFS) spectroscopies. It is demonstrated that annealing causes the formation of Fe- and Pb-rich microcrystallites which are embedded in the glass matrix. The local coordination of the Fe ion depends on the local variations of its concentration, i.e., Fe occupies octahedral sites in the Fe-rich crystalline regions and tetrahedral sites into the vitreous network. The percentage of the Fe atoms that belong to the crystalline inclusions depends on the waste content and the annealing temperature, and the stability of the vitrified product is discussed in relation to the nature of the formed microcrystallites. More specifically, when the microcrystallites are mixed Pb and Fe oxides, the material is safe since Pb is trapped both in the crystalline and vitreous regions. Finally, the effect of the different types of crystalline phases and crystalline ratio on the characteristics of the preedge peak in the near edge XAFS spectra is also discussed.

  18. Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    Not Available

    1993-11-01

    The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

  19. Activated carbon: Utilization in sewage and industrial waste treatment. (Latest citations from the NTIS database). Published Search

    SciTech Connect

    Not Available

    1992-12-01

    The bibliography contains citations concerning the use of activated carbon in treating sewage and industrial wastes. The citations include engineering studies, site evaluations, and regeneration techniques. References to air pollution are excluded. (Contains 250 citations and includes a subject term index and title list.)

  20. Vugraph presentations of the fourth DOE Industry/University/Lab Forum on Robotics for Environmental Restoration and Waste Management

    SciTech Connect

    Not Available

    1993-10-01

    This document is a compilation of various presentations from the Fourth DOE Industry/University/Lab Forum on Robotics for Environmental Restoration and Waste Management held in Albuquerque, New Mexico July 19--21, 1993. Separate abstracts were prepared for each presentation of this report.

  1. EVALUATION OF THE RCRA (RESOURCE CONSERVATION AND RECOVERY ACT) EXTRACTION PROCEDURE - LYSIMETER STUDIES WITH MUNICIPAL/INDUSTRIAL WASTES

    EPA Science Inventory

    A study was initiated to determine the accuracy with which the Extraction Procedures (EP), employed in the regulations promulgated under Section 3001 of the Resource Conservation and Recovery Act (40 CFR 26.124), simulates the leaching an industrial waste would undergo when codis...

  2. USEPA'S RESEARCH PROGRAM ON REMEDIATION AND CONTAINMENT OF ARSENIC AND MERCURY IN SOILS, INDUSTRIAL WASTES, AND GROUNDWATER

    EPA Science Inventory

    In the U.S. and around the world, mercury and arsenic contaminated soils, industrial wastes, and groundwater are difficult to effectively and cheaply remediate and contain. Mercury is a serious health concern and has been identified as a contaminant in the air, soil, sediment, su...

  3. Physical and mechanical properties of composites based on polypropylene and timber industry waste

    NASA Astrophysics Data System (ADS)

    Kajaks, Janis; Kalnins, Karlis; Uzulis, Sandris; Matvejs, Juris

    2014-12-01

    Wood polymer composites (WPC) are widely used materials in different industries because of many application, processing and recycling advantages compared to traditional thermoplastic polymer composites containing mineral fillers [1]. However, the commercial success of these materials primarily depends on improvements in moisture performance, and ability to use recycled and waste material as a wood filler. The research regarding WPC is focused on the chemical interaction between dissimilar material components with an aim to provide strong adhesion to the surface of wood filler-polymer matrix [2]. The goal of this paper was to present results of investigations of exploitation properties of composites containing different plywood production industry byproducts and polypropylene. It was shown that modification of all composites with coupling agent maleated polypropylene (MAPP) considerably improve physical mechanical properties (tensile, flexural, impact strength) of WPC. MAPP (5 wt.%) additions also significantly improve water resistance of WPC. SEM investigations confirmed positive action of interfacial modifiers on strengthening of adhesion interaction between components wood and PP matrix that give considerable increase of exploitation properties of the WPC.

  4. FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries

    NASA Astrophysics Data System (ADS)

    Nirmala, G.; Viruthagiri, G.

    The 30 ceramic test samples with the kaolinitic clay and ceramic rejects (in the as-received state and sintered at temperatures 900-1200 °C) were investigated through spectral studies in order to elucidate the possibility of recycling the wastes from the government ceramic industry of Vriddhachalam, Tamilnadu state, South India. A detailed attribution of all the spectroscopic frequencies in the spectra recorded in the 4000-400 cm-1 region was attempted and their assignment to different minerals was accomplished. X-ray diffraction analysis was performed to demonstrate the reliability of IR attributions. The indication of well-ordered kaolinite is by the band at 1115 cm-1 in the raw samples which tends to shift towards 1095 cm-1 in all the fired samples. The peaks at 563 cm-1 and 795 cm-1 can be assigned to anorthite and dickite respectively. The presence of quartz and anorthite is confirmed both by XRD and FTIR. The microstructural observations were done through the SEM images which visualized the vitrification of the fired bricks at higher temperatures. The refractory properties of the samples found through the XRF analysis are also appreciable. The present work suggests that the incorporation of the rejects into the clay mixture will be a valid route for the ceramic industries to reduce the costs of the ceramic process.

  5. Natural radioactivity of Australian building materials, industrial wastes and by-products.

    PubMed

    Beretka, J; Matthew, P J

    1985-01-01

    The natural radioactivity due to the presence of 226Ra, 232Th and 40K in conventional raw materials and some solid industrial wastes and by-products which are being used or have a potential for use in the building and ceramic industries in Australia has been measured by gamma-ray spectrometry. The majority of materials examined in this work showed fairly low levels of radioactivity. Some samples of red mud, phosphogypsum, zircon products and fly ash did show higher levels of radioactivity than would be acceptable on the basis of a criterion formula for gamma-ray activity suggested for use in some OECD countries. But this higher level of radioactivity should not pose an environmental health problem when these materials constitute a relatively small portion of the materials used in a normal building. The present work has also shown that the radioactivity levels of some of the materials can be reduced through the removal of fines by sieving, as the fines seem to contain a higher concentration of radioactive nuclides. PMID:3967976

  6. Waste recycling in the textile industry. July 1983-September 1989 (Citations from World Textile abstracts). Report for July 1983-September 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations on the recycling of waste-fibrous materials for textile production, and the recycling of textile-waste materials. Topics include use of wastes as raw materials for textile and fabric manufacturing; reuse of waste cloth, scraps, fibers, and polymeric materials from textile manufacturing; and the equipment used to collect, sort, and process textile wastes. Materials considered include cellulosic wastes, polymeric wastes, cloth scraps, fiber waste, glass-fiber wastes, and waste dusts. Applications discussed include textile products, insulation, paneling and other building supplies, yarns, roping, and pavement materials. Heat recovery and effluent treatment in the textile industry are referenced in related published bibliographies. (Contains 242 citations fully indexed and including a title list.)

  7. A Review and Analysis of European Industrial Experience in Handling LWR Spent Fuel and Vitrified High-Level Waste

    SciTech Connect

    Blomeke, J.O.

    2001-07-10

    The industrial facilities that have been built or are under construction in France, the United Kingdom, Sweden, and West Germany to handle light-water reactor (LWR) spent fuel and canisters of vitrified high-level waste before ultimate disposal are described and illustrated with drawings and photographs. Published information on the operating performance of these facilities is also given. This information was assembled for consideration in planning and design of similar equipment and facilities needed for the Federal Waste Management System in the United States.

  8. Definitional-mission report: Domestic and industrial waste-sludge management project, Istanbul, Turkey. Export trade information

    SciTech Connect

    Not Available

    1988-11-01

    The Istanbul Water and Sewerage Administration (ISKI) was formed in 1982, and since that time a phased program of sewage collection and treatment has been implemented. Fifteen waste treatment plants, ranging from full scale biological treatment to pre-treatment, are in the design or planning stage, and over 2,000 km of collection lines have been installed. Concurrent with the program is an increasing emphasis on industrial waste treatment, which results in the production of both non-hazardous and hazardous sludges.

  9. Chlorine Disinfection of Wet Weather Managed Flows

    EPA Science Inventory

    Blending is a practice used in the wastewater industry to deal with wet weather events when the hydraulic capacity of the treatment facility could be compromised. Blending consists of primary wastewater treatment plant effluent, partially bypassing secondary treatment, and then ...

  10. Behavior of cement mortars containing an industrial waste from aluminium refining: Stability in Ca(OH){sub 2} solutions

    SciTech Connect

    Puertas, F.; Blanco-Varela, M.T.; Vazquez, T.

    1999-10-01

    The physical and chemical interaction between a solid industrial waste from aluminium refining and saturated Ca(OH){sub 2} solution, as well as the effects of substituting siliceous sand for the waste on the physical and mechanical properties of mortars were studied. The waste is a solid that contains reactive alumina capable of combining with the calcium hydroxide. These reactions result in stable and insoluble compounds. This alumina, together with the halite (also present in the waste composition), chemically react with a saturated solution of Ca(OH){sub 2}, giving as a main reaction product the so-called Friedel's salt (Ca{sub 4}Al{sub 2}Cl{sub 2}O{sub 6} {center{underscore}dot} 10 H{sub 2}O). Straetlingite and Si-hydrogarnets were among other products detected. The waste has a high specific surface area. The cement/waste mixtures therefore require a higher quantity of mixing water than cement/sand mixtures. The result is a decrease of the mechanical strengths and an increase of the total porosity. However, a decrease of the average size of the pores occurs, which can have a positive effect on the durability of the final material.

  11. Recycle as an alternative to algal TSS and BOD removal from an industrial waste stabilization pond system

    SciTech Connect

    Davis, E.M.; Downs, T.D.; Shi, Y.; Ajgaonkar, A.A.

    1996-11-01

    Reuse of wastewater is acquiring a more important role in the overall concept of water conservation management. Information on industrial waste stabilization pond (WSP) effluent recycling or reuse for cooling water purposes is virtually nonexistent. This paper presents data from investigations that were conducted to determine the feasibility of recycling a WSP series effluent back within the system for BOD and total suspended solids (TSS) reduction, which were algal in origin, and separately, to evaluate whether recycling the final WSP effluent to the industry`s cooling water ponds would show corrosion compatibility. The second part of this paper contains data developed form analyses of the settling characteristics of the algal standing crop in the industrial WSPs in question to determine the extent to which autosedimentation could occur.

  12. Investigation of the effect of culture type on biological hydrogen production from sugar industry wastes

    SciTech Connect

    Ozkan, Leyla; Erguder, Tuba H.; Demirer, Goksel N.

    2010-05-15

    The bio-hydrogen generation potential of sugar industry wastes was investigated. In the first part of the study, acidogenic anaerobic culture was enriched from the mixed anaerobic culture (MAC) through acidification of glucose. In the second part of the study, glucose acclimated acidogenic seed was used, along with the indigenous microorganisms, MAC, 2-bromoethanesulfonate treated MAC and heat treated MAC. Two different COD levels (4.5 and 30 g/L COD) were investigated for each culture type. Reactors with initial COD concentration of 4.5 g/L had higher H{sub 2} yields (20.3-87.7 mL H{sub 2}/g COD) than the reactors with initial COD concentration of 30 g/L (0.9-16.6 mL H{sub 2}/g COD). The 2-bromoethanesulfonate and heat treatment of MAC inhibited the methanogenic activity, but did not increase the H{sub 2} production yield. The maximum H{sub 2} production (87.7 mL H{sub 2}/g COD) and minimum methanogenic activity were observed in the unseeded reactor with 4.5 g/L of initial COD.

  13. Co-digestion of manure and industrial waste - The effects of trace element addition.

    PubMed

    Nordell, Erik; Nilsson, Britt; Nilsson Påledal, Sören; Karisalmi, Kaisa; Moestedt, Jan

    2016-01-01

    Manure is one of the most common substrates for biogas production. Manure from dairy- and swine animals are often considered to stabilize the biogas process by contributing nutrients and trace elements needed for the biogas process. In this study two lab-scale reactors were used to evaluate the effects of trace element addition during co-digestion of manure from swine- and dairy animals with industrial waste. The substrate used contained high background concentrations of both cobalt and nickel, which are considered to be the most important trace elements. In the reactor receiving additional trace elements, the volatile fatty acids (VFA) concentration was 89% lower than in the control reactor. The lower VFA concentration contributed to a more digested digestate, and thus lower methane emissions in the subsequent storage. Also, the biogas production rate increased with 24% and the biogas production yield with 10%, both as a result of the additional trace elements at high organic loading rates. All in all, even though 50% of the feedstock consisted of manure, trace element addition resulted in multiple positive effects and a more reliable process with stable and high yield. PMID:25812806

  14. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste: Challenges and opportunities.

    PubMed

    Ravindran, Rajeev; Jaiswal, Amit Kumar

    2016-01-01

    Lignocellulose is a generic term used to describe plant biomass. It is the most abundant renewable carbon resource in the world and is mainly composed of lignin, cellulose and hemicelluloses. Most of the food and food processing industry waste are lignocellulosic in nature with a global estimate of up to 1.3billion tons/year. Lignocellulose, on hydrolysis, releases reducing sugars which is used for the production of bioethanol, biogas, organic acids, enzymes and biosorbents. However, structural conformation, high lignin content and crystalline cellulose hinder its use for value addition. Pre-treatment strategies facilitate the exposure of more cellulose and hemicelluloses for enzymatic hydrolysis. The present article confers about the structure of lignocellulose and how it influences enzymatic degradation emphasising the need for pre-treatments along with a comprehensive analysis and categorisation of the same. Finally, this article concludes with a detailed discussion on microbial/enzymatic inhibitors that arise post pre-treatment and strategies to eliminate them. PMID:26277268

  15. Timber industry waste-teak (Tectona grandis Linn.) leaf extract mediated synthesis of antibacterial silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Devadiga, Aishwarya; Shetty, K. Vidya; Saidutta, M. B.

    2015-08-01

    The current research article emphasizes efficacious use of teak leaves, an agro -biowaste from world's premier hardwood timber industry, for "green" synthesis of silver nanoparticles (AgNPs). Bioactive compounds of the leaves act as prolific reducing and stabilizing agents in AgNP synthesis. The characterization of the AgNPs synthesized using teak leaves revealed that the particles are spherical with an average size of 28 nm and the presence of bioactive compounds present in teak leaf extract as capping agents on the nanoparticles. A prominent decrease in the content of bioactive compounds such as polyphenols, antioxidants and flavonoids after the biosynthesis of AgNPs signifies that these class of compounds act as reductants and stabilizers during biosynthesis. The biosynthesized silver nanoparticles were also successfully evaluated for their antibacterial characteristics against waterborne pathogens, E. coli and S. aureus, with minimum inhibitory concentration of 25.6 ?g/mL. Exploitation of agrowaste resources for synthesis of AgNPs curtails indiscriminate usage of food and commercial plant materials, rather contributing a sustainable way for effective plant waste biomass utilization and management. The biosynthesized AgNps have potential application in water purifiers, antibacterial fabrics, sports wear and in cosmetics as antibacterial agent and the process used for its synthesis being greener is highly beneficial from environmental, energy consumption and economic perspectives.

  16. Biorecovered precious metals from industrial wastes: single-step conversion of a mixed metal liquid waste to a bioinorganic catalyst with environmental application.

    PubMed

    Mabbett, Amanda N; Sanyahumbi, Douglas; Yong, Ping; Macaskie, Lynne E

    2006-02-01

    The complete and continuous reduction of 1 mM Cr(VI) to Cr(III) was achieved in a flow-through reactor using a novel bioinorganic catalyst ("MM-bio-Pd(0)"), which was produced by single-step reduction of platinum group metals (PGM) from industrial waste solution onto biomass of Desulfovibrio desulfuricans ATCC 29577. Two flow-through reactor systems were compared using both "MM-bioPd(0)" and chemically reduced Pd(0). Reactors containing the latter removed Cr(VI) for 1 week only at the expense of formate as the electron donor, whereas the former gave complete Cr(VI) removal for 3 months of continuous operation. Mass balance analysis showed 100% reduction of Cr(VI) to soluble Cr(III) in the bioreactor exit solution. With the use of electron paramagnetic resonance (EPR) no intermediate Cr(V) species could be detected. Pd(0) was biodeposited similarly using Escherichia coliMC4100 and "bio-Pd(0)". The latter was used to recover Pd(II) from two acidic industrial waste leachates to generate two types of "MM-bio-Pd(0)": "SI-bio-Pd(0)" and "SII-bio-Pd(0)", respectively. The biomaterial composition was comparable in both cases, and the catalytic activity was related inversely to the amount of chloride in the waste leachate from which it was derived. PMID:16509351

  17. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI compendex*plus database). Published Search

    SciTech Connect

    1995-09-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the Compendex database). Published Search

    SciTech Connect

    Not Available

    1993-05-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  19. Waste treatment by reverse osmosis and membrane processes: Industrial. (Latest citations from the EI Compendex*Plus database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning the use of membranes in the treatment of industrial wastewaters. Reverse osmosis, ion exchange, electrodialysis, liquid membranes, and ultrafiltration techniques are described. Wastewater treatments for removal of metals, ammonia, sodium compounds, nitrates, fluorides, dyes, biologicals, and radioactive waste using membrane technology are discussed. Applications of this technology to the chemical, petrochemical, pulp, textile, steel, ore treatment, electro-plating, and other wastewater and groundwater-remediation industries are included. (Contains 250 citations and includes a subject term index and title list.)

  20. Hazardous waste reduction checklist and assessment manual for the metal finishing industry

    SciTech Connect

    Garza, D.Q.

    1995-08-01

    This publication is a checklist and assessment manual to assist metal finishing shops in evaluating waste reduction opportunities. The first section of the report provides a checklist along with tables to summarize the potential of waste reduction options. Section 2 provides the methods for evaluating the implementations potential of the options and Section 3 contains an economics worksheet for estimating costs, savings and payback periods. A waste reduction opportunities table is contained in the Appendix to prioritize waste reduction options.

  1. Waste Heat Recovery. Technology and Opportunities in U.S. Industry

    SciTech Connect

    Johnson, Ilona; Choate, William T.; Davidson, Amber

    2008-03-01

    This study was initiated in order to evaluate RD&D needs for improving waste heat recovery technologies. A bottomup approach is used to evaluate waste heat quantity, quality, recovery practices, and technology barriers in some of the largest energyconsuming units in U.S. manufacturing. The results from this investigation serve as a basis for understanding the state of waste heat recovery and providing recommendations for RD&D to advance waste heat recovery technologies.

  2. How to Put the Dollar Value on Waste Heat Recovery in the Process Industry 

    E-print Network

    Campagne, W. V. L.

    1982-01-01

    Waste heat recovery projects should be evaluated on their actual fuel savings and not on Btu recovery. By equating waste heat recovery with potential steam savings, the fuel (or dollar) values of the waste heat as function of its temperature can...

  3. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings.

    PubMed

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2009-09-15

    In this study, the potential use of the industrial waste products including waste glass (WG), fly ash (FA), granulated blast furnace slag (GBFS) and silica fume (SF) as pozzolanic additive for the partial replacement of ordinary Portland cement (OPC) in cemented paste backfill (CPB) of sulphide-rich mill tailings was investigated. The influence of these industrial waste products on the short- and long-term mechanical performance of CPB was demonstrated. The rate of development of strength of CPB samples tended to slow down when the pozzolanic wastes were incorporated or increased in dosage in the binder phase. Severe losses (by 26%) in the strength of CPB samples produced from exclusively OPC occurred after an initial curing period of 56 days. The addition of WG (10-30 wt%) as a partial replacement of OPC was observed to aggravate further the strength losses of CPB samples. GBFS, FA and SF appeared to improve the long-term performance of CPB samples; albeit, only GBFS and SF could be incorporated into the binder phase only at certain levels i.e. up to 20 wt% GBFS and 15wt% SF in order to maintain a threshold strength level of 0.7MPa over 360 days. SEM studies have provided further insight into the microstucture of CPB and confirmed the formation of deleterious gypsum as the expansive phase. These findings have demonstrated that the industrial waste products including GBFS and SF can be suitably used as mineral additives to improve the long-term mechanical performance of CPB produced from sulphide-rich tailings as well as to reduce the binder costs in a CPB plant. PMID:19299080

  4. Production of nano bacterial cellulose from waste water of candied jujube-processing industry using Acetobacter xylinum.

    PubMed

    Li, Zheng; Wang, Lifen; Hua, Jiachuan; Jia, Shiru; Zhang, Jianfei; Liu, Hao

    2015-04-20

    The work is aimed to investigate the suitability of waste water of candied jujube-processing industry for the production of bacterial cellulose (BC) by Gluconacetobacter xylinum CGMCC No.2955 and to study the structure properties of bacterial cellulose membranes. After acid pretreatment, the glucose of hydrolysate was higher than that of waste water of candied jujube. The volumetric yield of bacterial cellulose in hydrolysate was 2.25 g/L, which was 1.5-folds of that in waste water of candied jujube. The structures indicated that the fiber size distribution was 3-14 nm in those media with an average diameter being around 5.9 nm. The crystallinity index of BC from pretreatment medium was lower than that of without pretreatment medium and BCs from various media had similar chemical binding. Ammonium citrate was a key factor for improving production yield and the crystallinity index of BC. PMID:25662694

  5. Distribution and fractionation of heavy metals in solid waste from selected sites in the industrial belt of Delhi, India.

    PubMed

    Moturi, M C Z; Rawat, M; Subramanian, V

    2004-07-01

    Solid waste samples were collected from five small-scale industrial sites in the National Capital Territory (NCT) of Delhi. These industrial sites represent the regional spread of the industrial belt in the NCT of Delhi. Solid waste samples were digested using aqua-regia and HF in air tight teflon bombs for the quantitative analysis of heavy metals (Hg, Pb, Cd, Mn, Fe, Ni, Cu and Zn) by GBC model 902 atomic absorption spectrophotometer. Hg was analysed using hydrid generator attachment. Beside this sequential extraction was used to fractionate five heavy metals (Pb, Ni, Cd, Cu and Zn) into six operationally defined phases, viz. water soluble, exchangeable, carbonate-bound, Fe-Mn oxides, organic-bound and residual fractions to ascertain the relative mobility of these metals. The result obtained showed metal concentration to be in the range of Hg 0.42-2.3; Pb 23-530; Cd 014-224; Mn 494-19 964; Fe 35 684-233 119; Ni 192-1534; Cu 3065-10 144 and Zn 116-23 321 (all units in mg kg(-1)) in all the industrial areas studied. The fractionated toxic metals like Pb, Ni and Cd were observed to be in the range of 25-35, 15-50 and 40-50%, respectively, in mobile or bio-available fractions of solid waste. As this waste is often disposed-off by the roadsides, low lying areas, abandoned quarries or in landfill sites which are often not properly planned, thus posing potential risk to ground and surface water quality to millions of people living downstream. PMID:15195826

  6. In-line measurements of chlorine containing polymers in an industrial waste sorting plant by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Huber, N.; Eschlböck-Fuchs, S.; Scherndl, H.; Freimund, A.; Heitz, J.; Pedarnig, J. D.

    2014-05-01

    We report on laser-induced breakdown spectroscopy (LIBS) of chlorine containing waste polymers in-line of an industrial materials sorting plant. Material from municipal waste plastic collection containing different types of plastic pieces and impurities is measured without pre-treatment directly on the conveyor belt (conveyor speed 2 m/s). The encapsulated LIBS system mounted to the conveyor comprises a fast Nd:YAG laser and spectrometer with charge-coupled device (CCD) detector, a distance sensor, and a software for quasi real-time evaluation of measured LIBS spectra. Approximately 800,000 spectra are collected during the in-line measurement series using one laser pulse per spectrum. The optical plasma emission of Cl I at 837.6 nm is detected to identify waste polymers with high Cl content such as polyvinylchloride (PVC). The LIBS spectra are evaluated employing a fast linear correlation algorithm. The correlation histogram for more than 20,000 spectra shows three distinct peaks that are associated to different materials containing high amount of Chlorine (>20 wt %), Titanium, and low amount of Cl (<20 wt%). Signals of the LIBS sensor and a commercial near-infrared (NIR) optical reflection sensor were found to deviate for some samples. Such deviations might be caused by dark PVC samples that are detected by LIBS but missed by NIR reflection. Our results show that fast in-line identification of Cl containing waste polymer by LIBS is feasible under industrial conditions.

  7. Importance of biological systems in industrial waste treatment potential application to the space station

    NASA Technical Reports Server (NTRS)

    Revis, Nathaniel; Holdsworth, George

    1990-01-01

    In addition to having applications for waste management issues on planet Earth, microbial systems have application in reducing waste volumes aboard spacecraft. A candidate for such an application is the space station. Many of the planned experiments generate aqueous waste. To recycle air and water the contaminants from previous experiments must be removed before the air and water can be used for other experiments. This can be achieved using microorganisms in a bioreactor. Potential bioreactors (inorganics, organics, and etchants) are discussed. Current technologies that may be applied to waste treatment are described. Examples of how biological systems may be used in treating waste on the space station.

  8. WASTE/SOIL TREATABILITY STUDIES FOR FOUR COMPLEX INDUSTRIAL WASTES: METHODOLOGIES AND RESULTS. VOLUME 2. WASTE LOADING IMPACTS ON SOIL DEGRADATION, TRANSFORMATION, AND IMMOBILIZATION

    EPA Science Inventory

    The two-volume report presents information pertaining to quantitative evaluation of the soil treatment potential resulting from waste-soil interaction studies for four specific wastes listed under Section 3001 of the Resource Conservation and Recovery Act. Volume 2 contains resul...

  9. Implication of Industrial Waste for Biomass and Lipid Production in Chlorella minutissima Under Autotrophic, Heterotrophic, and Mixotrophic Grown Conditions.

    PubMed

    Dubey, Kashyap Kumar; Kumar, Sudhir; Dixit, Deepak; Kumar, Punit; Kumar, Dhirendra; Jawed, Arshad; Haque, Shafiul

    2015-07-01

    Following the diminishing hopes from the first and second generation biofuels, mainly due to the limitations of land availability, feed stock requirements, and complicated pre-treatments, third generation biofuels from microalgae are becoming a priority in the current scenario. The present study focuses on comparison and optimization of lipid accumulation efficiency in algal strain Chlorella minutissima grown under autotrophic, heterotrophic, and mixotrophic modes of nutrition, employing various carbon sources obtained from cheap industrial wastes such as glucose, acetate, and glycerol. Other pertinent factors such as the effect of various nitrogen sources, effect of salinity on the cell growth, and lipid accumulations in the algal cells were also studied. The results suggested that C. minutissima can grow efficiently under autotrophic, heterotrophic, and mixotrophic modes of nutrition. C. minutissima cells were capable of utilizing other non-popular carbon sources such as glycerol and acetate collected as waste products from different industries along with commonly used glucose. The maximum biomass concentration (8.9 g/L) and lipid content (36.19 %) were found in heterotrophic mode of nutrition. Our findings indicated that C. minutissima can efficiently utilize these cheaper carbon sources from industrial waste products for its growth and the production cost of various bioenergy sources can be reduced significantly. PMID:25971804

  10. Functional and environmental assessment of the urboecosystems designed in the biologically reclamated landfill with industrial wastes (in Ryazan city)

    NASA Astrophysics Data System (ADS)

    Karyakin, Alexey; Vasenev, Ivan; Karyakina, Svetlana

    2015-04-01

    Regional environmental bodies' ability to understand, model and predict their soil cover environmental functions are especially important in case of landfill reclamation. The special attention has to be done to landfills with industrial wastes created earlier in frame of big city - comparatively closed to their residential areas. Dominated in Ryazan region sandy loam gray forest soils with not so high soil organic matter content and soil exchange capacity determine additional problems with landfill biological reclamation and continuous sustainable vegetation cover development. The modern environmental monitoring system has been developed in the big landfill with tanning industrial wastes from the biggest in Europe tannery to develop recommendation on the environmentally friendly reclamation technologies adapted to concrete landscape conditions and functional features of 2 m fresh soil-ground coating the landfill surface. More detailed monitoring system has to be developed to assess the regulatory environmental functions of the regenerated soil cover to minimize the reclamated landfill' negative impacts on the urban ecosystem air, surface and ground water quality. Obtained result will be useful for similar landfills with tanning industrial wastes environmental impact assessment and smart design.

  11. An Industrial Ecology Approach to Municipal Solid Waste Management: II. Case Studies for Recovering Energy from the Organic Fraction of MSW

    EPA Science Inventory

    The organic fraction of municipal solid waste provides abundant opportunities for industrial ecology-based symbiotic use. Energy production, economics, and environmental aspects are analyzed for four alternatives based on different technologies: incineration with energy recovery...

  12. Physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry.

    PubMed

    Morgunov, Igor G; Kamzolova, Svetlana V

    2015-08-01

    In this study, physiologo-biochemical characteristics of citrate-producing yeast Yarrowia lipolytica grown on glycerol-containing waste of biodiesel industry were studied by an investigation of growth dynamics, the consumption of glycerol, and the fatty acid fractions from waste as well as by measuring the activities of enzymes involved in the metabolism of waste. It was shown that Y. lipolytica realizes concurrent uptake of glycerol and the fatty acid fractions during conversion of glycerol-containing waste, although glycerol was utilized at a higher rate than fatty acids. Under optimal feeding of glycerol-containing waste by portions of 20 g l(-1), the citric acid production and the ratio between citric acid and isocitric acid depended on the strain used. It was revealed that wild strain Y. lipolytica VKM Y-2373 produced citrate and isocitrate with a ratio of 1.7:1, while the mutant strain Y. lipolytica NG40/UV7 synthesized presumably citric acid (122.2 g l(-1)) with a citrate-to-isocitrate ratio of 53:1 and the yield of 0.95 g g(-1). PMID:25846335

  13. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  14. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  15. Evaluation of agro-industrial wastes, their state, and mixing ratio for maximum polygalacturonase and biomass production in submerged fermentation.

    PubMed

    Gö?ü?, Nihan; Evcan, Ezgi; Tar?, Canan; Cavalitto, Sebastián F

    2015-10-01

    The potential of important agro-industrial wastes, apple pomace (AP) and orange peel (OP) as C sources, was investigated in the maximization of polygalacturonase (PG), an industrially significant enzyme, using an industrially important microorganism Aspergillus sojae. Factors such as various hydrolysis forms of the C sources (hydrolysed-AP, non-hydrolysed-AP, hydrolysed-AP?+?OP, non-hydrolysed-AP?+?OP) and N sources (ammonium sulphate and urea), and incubation time (4, 6, and 8 days) were screened. It was observed that maximum PG activity was achieved at a combination of non-hydrolysed-AP?+?OP and ammonium sulphate with eight days of incubation. For the pre-optimization study, ammonium sulphate concentration and the mixing ratios of AP?+?OP at different total C concentrations (9, 15, 21?g?l(-1)) were evaluated. The optimum conditions for the maximum PG production (144.96?U?ml(-1)) was found as 21?g?l(-1) total carbohydrate concentration totally coming from OP at 15?g?l(-1) ammonium sulphate concentration. On the other hand, 3:1 mixing ratio of OP?+?AP at 11.50?g?l(-1) ammonium sulphate concentration also resulted in a considerable PG activity (115.73?U?ml(-1)). These results demonstrated that AP can be evaluated as an additional C source to OP for PG production, which in turn both can be alternative solutions for the elimination of the waste accumulation in the food industry with economical returns. PMID:25946481

  16. Waste treatment: Beverage industry. January 1984-October 1989 (Citations from the Food Science and Technology Abstracts data base). Report for January 1984-October 1989

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 223 citations, all of which are new entries to the previous edition.)

  17. Waste treatment: Beverage industry. January 1972-December 1983 (Citations from the Food Science and Technology Abstracts data base). Report for January 1972-December 1983

    SciTech Connect

    Not Available

    1989-11-01

    This bibliography contains citations concerning the treatment of effluents from beverage-industry processes. Particular emphasis is on brewery and winery effluent treatment. Characteristics of the waste products and pre-treatment and treatment methods are discussed. Regulations governing waste disposal are also considered along with the economics of waste disposal. Both alcoholic and soft drink beverages are considered. (This updated bibliography contains 312 citations, none of which are new entries to the previous edition.)

  18. Waste treatment by reverse osmosis and membrane processes: Industrial. November 1976-October 1989 (Citations from the COMPENDEX data base). Report for November 1976-October 1989

    SciTech Connect

    Not Available

    1989-12-01

    This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Waste-water treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 294 citations, 13 of which are new entries to the previous edition.)

  19. Waste treatment by reverse osmosis and membrane processes: industrial. January 1976-June 1989 (Citations from the COMPENDEX data base). Report for January 1976-June 1989

    SciTech Connect

    Not Available

    1989-06-01

    This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Waste-water treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 281 citations, 35 of which are new entries to the previous edition.)

  20. Immunotoxic effects of an industrial waste incineration site on groundwater in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Benchalgo, Nadjet; Gagné, François; Fournier, Michel

    2014-05-01

    The discharge of organic waste from the petrochemical industry into the Mercier lagoons caused major groundwater contamination. The objective of this study was to determine the immunotoxic potential of three groundwater wells at increasing distance from the incinerator dumping site (1.17, 2.74 and 5.40 km). Rainbow Trout were exposed to increasing concentrations of water from three groundwater wells for 14 days. Immunocompetence was characterized by phagocytosis, mitogen-stimulated proliferation of lymphocytes, cell cycle analysis and apoptosis. A significant increase in innate (phagocytosis) and specific immune response (B lymphocyte proliferation) was observed in trout exposed to water collected from the well at 2.74 km. However, phagocytosis activity was suppressed in groups at 1.17 and 5.40 km. The proportion of lymphocytes in S phase was significantly increased in groups at 2.74 and 5.40 km, while lymphocytes in G0/G1 phase were decreased in all three exposure groups. Additionally, dexamethasone (DEX)-induced apoptosis of lymphocytes was significantly reduced in the group at 2.74 km, which suggests decreased lymphocyte turnover. Furthermore, the ratio of DEX-induced apoptosis/apoptosis was lower in the groups at 2.74 and 5.40 km. In summary, our experiments have shown that exposure to the mixture of organic compounds present in Mercier groundwater modulates phagocytosis and cell proliferation, disrupts the cell cycle and reduces the ratio of DEX-induced apoptosis/apoptosis. It is concluded that groundwater collected in the vicinity of an incinerator containment field could impact immunocompetence in fish. PMID:25079628

  1. Organoclay nanocomposites of post-industrial waste poly(butylene terephthalate) from automotive parts.

    PubMed

    Quispe, Noe B; Fernandes, Elizabeth G; Zanata, Fernanda; Bartoli, Julio R; Souza, Diego H S; Ito, Edson N

    2015-10-01

    Polymeric nanocomposites are novel materials of huge interest owing to their favourable cost/performance ratio with low amount of nanofillers, improved thermal resistance, flame retardancy and mechanical properties in relation to their matrices. In this work, composites based on post-industrial waste or primary recycled poly(butylene terephthalate) and 5?wt.% of organic modified montmorillonite clays were melt compounded using a twin-screw extruder. A 2(2) factorial experimental design was used to study the compounding and processing variables: Organic modified montmorillonite with one or two hydrogenated tallow (initial basal spacing) and screw speed of the extruder. X-ray diffraction and transmission electron microscopy suggest that a partial exfoliation of the organoclay in the recycled poly(butylene terephthalate) matrix was achieved for organic modified montmorillonite with lower initial basal spacing. On the other hand, formulations containing organic modified montmorillonite with higher initial basal spacing showed only intercalated structure. The recycled poly(butylene terephthalate)-organic modified montmorillonite nanocomposites did not drip flaming material during burning tests. Storage of dynamic-mechanical, tensile and flexural moduli of the recycled poly(butylene terephthalate)-organic modified montmorillonite were improved when compared with both virgin and recycled poly(butylene terephthalate)s, mainly for nanocomposites formulated at a lower initial basal spacing organoclay. This could be related to a better diffusion of polymer into organic modified montmorillonite layers compared with the higher initial basal spacing organoclay. The improvements on the physical properties of recycled poly(butylene terephthalate) showed the feasibility to add value to primary recycled engineering thermoplastics with a very small amount of organic modified montmorillonite. PMID:26341637

  2. RCRA's solid-waste regulation and its impact on resource recovery in the minerals industry. An analytical series

    SciTech Connect

    Peterson, S.D.

    1990-09-01

    In the U.S. Bureau of Mines report, the application and impact of the Resource Conservation and Recovery Act's (RCRA) regulations on the minerals industry's efforts at resource recovery were analyzed; some major regulatory conflicts that hinder these efforts are discussed. One major conflict was the ambiguity in determining materials considered to be solid wastes under the Environmental Protection Agency's (EPA) jurisdiction. In addition, it was found that some rules have combined effectively to discourage reuse efforts and that EPA has provided only a few limited exclusions for recyclable materials. As a case study, aluminum industry spent potliner was examined to demonstrate these adverse impacts. Prior to regulation, this material was being recycled for legitimate economic and resource recovery purposes to extract its energy and fluoride values through environmentally sound processes. However, virtually all efforts to reuse the material ceased after regulation, which has resulted in increased land disposal of mineral resources and increased costs to industry.

  3. Solid waste management and reduction in the restaurant industry. Case study

    SciTech Connect

    1991-12-31

    The restaurant`s recycling and waste reduction program began by separating out recyclable materials from the dumpster. This included cardboard, glass, and aluminum tin cans. A cardboard baler and containers for the glass and cans were placed next to the dumpster making it easier for employees to remember to recycle rather than discard recyclable materials. Recyclable materials are picked up by independent haulers at a cost that is substantially less than disposal costs. Therefore, reducing the amount of waste placed into the dumpster generates cost savings. The next step in the waste reduction program was to reduce the amount of food waste discarded in the dumpster. The head chef uses a computerized system for monitoring food inventory, amount of food used per meal, and the percent waste per meal. This helped to minimize food waste generated in food preparation.

  4. EVALUATION OF THE FEASIBILITY OF INCINERATING HAZARDOUS WASTE IN HIGH-TEMPERATURE INDUSTRIAL PROCESSES

    EPA Science Inventory

    In the search for disposal alternatives, the U.S. Environmental Protection Agency is evaluating the potential use of high-temperature processes for the incineration of hazardous wastes. Many kinds of waste have already been disposed of in boilers and cement kilns; this report con...

  5. Solid Waste Management in Vietnam An Industrial Ecology Study by Thao Nguyen

    E-print Network

    Columbia University

    . Nowhere is this truer than in the developing world, where unprecedented urban growth has resulted% ­ of this increase will take place in the developing world (Medina 2000). Not only will these city dwellers produce more waste, the composition of their waste will change as well. Within the developing world, Asia

  6. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...the physical form of the feed stream; (2) An analysis...identification of any hazardous organic constituents listed in...that are present in the feed stream, except that...in the hazardous waste feed, and, for hazardous...the hazardous waste organic constituent(s)...

  7. INNOVATIVE DESTRUCTION OF COMPLEX INDUSTRIAL WASTES - AUTO OXIDATION OF TANNERY BEAMHOUSE WASTEWATER

    EPA Science Inventory

    This report documents a study of the effectiveness of an auto-oxidation technique for treating potentially toxic pollutants from a manufacturing source. The particular waste used for evaluation was a tannery unhairing effluent. Tannery unhairing waste was treated in a pilot plant...

  8. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 2014-07-01 false Permits for boilers and industrial furnaces burning hazardous...of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or...

  9. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 2012-07-01 false Permits for boilers and industrial furnaces burning hazardous...of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or...

  10. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 2011-07-01 false Permits for boilers and industrial furnaces burning hazardous...of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or...

  11. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 2013-07-01 false Permits for boilers and industrial furnaces burning hazardous...of Permits § 270.66 Permits for boilers and industrial furnaces burning hazardous...lightweight aggregate kiln, solid fuel boiler, liquid fuel boiler, or...

  12. State-of-the-art report on low-level radioactive waste treatment

    SciTech Connect

    Kibbey, A.H.; Godbee, H.W.

    1980-09-01

    An attempt is made to identify the main sources of low-level radioactive wastes that are generated in the United States. To place the waste problem in perspective, rough estimates are given of the annual amounts of each generic type of waste that is generated. Most of the wet solid wastes arise from the cleanup of gaseous and liquid radioactive streams prior to discharge or recycle. The treatment of the process streams and the secondary wet solid wastes thus generated is described for each type of government or fuel cycle installation. Similarly, the institutional wet wastes are also described. The dry wastes from all sources have smilar physical and chemical characteristics in that they can be classified as compactible, noncompactible, combustible, noncombustible, or combinations thereof. The various treatment options for concentrated or solid wet wastes and for dry wastes are discussed. Among the dry-waste treatment methods are compaction, baling, and incineration, as well as chopping, cutting, and shredding. Organic materials can usually be incinerated or, in some cases, biodegraded. The filter sludges, spent resins, incinerator ashes, and concentrated liquids are usually solidified in cement, urea-formaldehyde, or unsaturated polyester resins prior to burial. Asphalt has not yet been used as a solidificaton agent in the United States, but it probably will be used in the near future. The treatment of radioactive medical and bioresearch wastes is described, but the waste from radiochenmical, pharmaceutical, and other industries is not well defined at the present time. Recovery of waste metals and treatment of hazardous contaminated wastes are discussed briefly. Some areas appearing to need more research, development, and demonstration are specifically pointed out.

  13. The utilization of uranium industry technology and relevant chemistry to leach uranium from mixed-waste solids

    SciTech Connect

    Mattus, A.J.; Farr, L.L.

    1991-01-01

    Methods for the chemical extraction of uranium from a number of refractory uranium-containing minerals found in nature have been in place and employed by the uranium mining and milling industry for nearly half a century. These same methods, in conjunction with the principles of relevant uranium chemistry, have been employed at the Oak Ridge National Laboratory (ORNL) to chemically leach depleted uranium from mixed-waste sludge and soil. The removal of uranium from what is now classified as mixed waste may result in the reclassification of the waste as hazardous, which may then be delisted. The delisted waste might eventually be disposed of in commercial landfill sites. This paper generally discusses the application of chemical extractive methods to remove depleted uranium from a biodenitrification sludge and a storm sewer soil sediment from the Y-12 weapons plant in Oak Ridge. Some select data obtained from scoping leach tests on these materials are presented along with associated limitations and observations which might be useful to others performing such test work. 6 refs., 2 tabs.

  14. Governor`s award of excellence for outstanding achievement in waste management. Cape Industries, Wilmington, North Carolina

    SciTech Connect

    1990-12-31

    Cape Industries produces Dimethyl Terephthalate (DMT) and Terephthalic Acid (TA) which are used as raw materials in the production of polyester fibers and films. In this process para-cymene is used as a heat transfer fluid for the process equipment. As the para-cymene is circulated through the process and repeatedly reheated to operating temperatures, some thermal degradation of the cymene and minor contamination due to infiltration of the process material occurs. Prior to August 1988 this spent material was purged from the system and shipped off site for reclamation. The spent material was classified as a hazardous waste due to the characteristic of ignitability. In early 1988 existing equipment was retrofitted allowing for on site distillation of the spent para-cymene in a closed-loop system. Reclaimed para-cymene is returned to the system for reuse while the still bottoms are used as a feedstock in the production of DMT. No waste material is generated.

  15. RAPID MIGRATION OF RADIONUCLIDES LEAKED FROM HIGH-LEVEL WASTE TANKS: A STUDY OF SALINITY GRADIENTS, WETTED PATH GEOMETRY AND WATER VAPOR TRANSPORT

    EPA Science Inventory

    Of the 54 million gallons of radioactive and hazardous waste stored in mostly single-shelled, underground tanks (SST) at the Hanford Site, an estimated 1 million gallons have leaked into the vadose zone. It has long been assumed that leaked radionuclides did not travel far from ...

  16. Industrial wastes from the boat-building sector in the Marche Region (Italy): a parametric and chemical-physical characterization.

    PubMed

    Carchesio, M; Tatàno, F; Tosi, G; Trivellone, C H

    2013-01-01

    Using the renowned leisure boat-building sector in the Marche Region (Italy) as a case-study, this paper addresses the characterization of (1) the industrial waste generation from the building of composite material-based boats and (2) some chemical-physical properties of representative types of boat-building residues (plastic foam, hardened resin, fibre-reinforced composite residues, and sanding dust). A parametric evaluation based on the number of employees gave a representative unit generation rate per employee (UGRpE) of 1.47 tons(waste) employee(-1) year(-1) for the entire Marche regional boatbuilding district, whereas evaluations carried out separately for three case-study companies provided values of 1.56, 3.07, and 1.12 tons(waste) employee(-1) year(-1) as representative for a mass-produced motor boat builder (case-study company '1'), a customized sailing boat builder (case-study company '2'), and a mould and structural component builder (case-study company '3'), respectively. The original proposal and evaluation of two additional generation rates based on physical characteristics intrinsic to the manufactured product, i.e. the unit generation rate per boat area (UGRpA) and per boat weight (UGRpW), confirmed the higher waste generation for the sailing boat builder(representative UGRpA and UGRpW values of 0.35 tons(waste) m(-2)(boat) year(-1) and 2. 71 tons(waste) tons(-1)(boat) year(-1), respectively) compared with the motor boat builder (representative UGRpA and UGRpW values of 0.06 tons(waste) m(-2)(boat) year(-1) and 0.49 tons(waste) tons(-1)(boat) year(-1), respectively). The chemical-physical property characterization of the selected residues revealed the following aspects: a general condition of low moisture contents; significant ash contents in the glass- and carbon-fibre composite residues and the correlated sanding dust; and relatively high energy content values in the overall range 14,144-32,479 kJ kg(-1), expressed as the lower heating value. PMID:24617063

  17. Effect of kaolin addition on the performance of controlled low-strength material using industrial waste incineration bottom ash.

    PubMed

    Naganathan, Sivakumar; Razak, Hashim Abdul; Hamid, Siti Nadzriah Abdul

    2010-09-01

    Incineration of industrial waste produces large quantities of bottom ash which are normally sent to secured landfill, but is not a sustainable solution. Use of bottom ash in engineering applications will contribute to sustainability and generate revenue. One way of using the industrial waste incineration bottom ash is in controlled low-strength material (CLSM). Use of bottom ash in CLSM has problems related to bleeding and excessive strength development and so an additive has to be used to control bleeding and strength development. The main objective of this research is to study the effect of kaolin addition on the performance of CLSM made using industrial waste incineration bottom ash. CLSM mixes were made with bottom ash, cement, and refined kaolin. Various tests were performed on the CLSM in fresh and hardened states including compressive strength, water absorption, California bearing ratio (CBR) and the tests for concentration of leachable substances on the bleed and leachate. The compressive strength of CLSM tested ranged from 0.11 to 9.86 MPa. CBR values ranged from 6 to 46, and water absorption values from 12 to 36%. It was shown that the addition of kaolin delayed the initial setting time of CLSM mixtures, reduced bleeding, lowered the compressive strength, and increased the values of water absorption, sorption, and initial surface absorption. The CLSM tested did not have corrosivity. It was shown that the hardened CLSM was non hazardous, and the addition of kaolin increased the concentration of heavy metals and salts in the bleed and leachate. PMID:20852000

  18. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model

    SciTech Connect

    Liang Sai; Zhang, Tianzhu; Xu Yijian

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Using crop straws and wood wastes for paper production should be promoted. Black-Right-Pointing-Pointer Bagasse and textile waste recycling should be properly limited. Black-Right-Pointing-Pointer Imports of scrap paper should be encouraged. Black-Right-Pointing-Pointer Sensitivity analysis, uncertainties and policy implications are discussed. - Abstract: Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment.

  19. PILOT-SCALE STUDIES ON THE INCINERATION OF ELECTRONICS INDUSTRY WASTE

    EPA Science Inventory

    The paper describes experiments performed on a pilot-scale rotary kiln incinerator to investigate the emissions and operational behavior during the incineration of consumer electronics waste. These experiments were targeted at destroying the organic components of printed circuit ...

  20. Final report for the Iowa Livestock Industry Waste Characterization and Methane Recovery Information Dissemination Project

    SciTech Connect

    Garrison, M.V.; Richard, Thomas L

    2001-11-13

    This report summarizes analytical methods, characterizes Iowa livestock wastes, determines fossil fuel displacement by methane use, assesses the market potential, and offers recommendations for the implementation of methane recovery technologies.

  1. Enuresis (Bed-Wetting)

    MedlinePLUS

    ... their development. Bed-wetting is more common among boys than girls. What causes bed-wetting? A number of things ... valves in boys or in the ureter in girls or boys Abnormalities in the spinal cord A small bladder ...

  2. Textile Wastes.

    ERIC Educational Resources Information Center

    Talbot, R. S.

    1978-01-01

    Presents a literature review of wastes from textile industry, covering publications of 1977. This review covers studies such as removing heavy metals in textile wastes, and the biodegradability of six dyes. A list of references is also presented. (HM)

  3. Environmental impact of rejected materials generated in organic fraction of municipal solid waste anaerobic digestion plants: Comparison of wet and dry process layout.

    PubMed

    Colazo, Ana-Belén; Sánchez, Antoni; Font, Xavier; Colón, Joan

    2015-09-01

    Anaerobic digestion of source separated organic fraction of municipal solid waste is an increasing waste valorization alternative instead of incineration or landfilling of untreated biodegradable wastes. Nevertheless, a significant portion of biodegradable wastes entering the plant is lost in pre-treatments and post-treatments of anaerobic digestion facilities together with other improper materials such as plastics, paper, textile materials and metals. The rejected materials lost in these stages have two main implications: (i) less organic material enters to digesters and, as a consequence, there is a loss of biogas production and (ii) the rejected materials end up in landfills or incinerators contributing to environmental impacts such as global warming or eutrophication. The main goals of this study are (i) to estimate potential losses of biogas in the rejected solid materials generated during the pre- and post-treatments of two full-scale anaerobic digestion facilities and (ii) to evaluate the environmental burdens associated to the final disposal (landfill or incineration) of these rejected materials by means of Life Cycle Assessment. This study shows that there is a lost of potential biogas production, ranging from 8% to 15%, due to the loss of organic matter during pre-treatment stages in anaerobic digestion facilities. From an environmental point of view, the Life Cycle Assessment shows that the incineration scenario is the most favorable alternative for eight out of nine impact categories compared with the landfill scenario. The studied impact categories are Climate Change, Fossil depletion, Freshwater eutrophication, Marine eutrophication, Ozone depletion, Particulate matter formation, Photochemical oxidant formation, Terrestrial acidification and Water depletion. PMID:26123979

  4. Monitoring needs in the U.S. southeast: Impact of dioxins and other industrial wastes and wildlife

    SciTech Connect

    Glooschenko, V.; Brim, M.; Augspurger, T.

    1994-12-31

    The US southeast is a center for forest industry activities and over 180 pulp and paper mills have been reported from Tennessee, North and South Carolina, Georgia, Florida, Alabama, Mississippi, Arkansas and Louisiana. Many of these facilities emit bleached kraft mill effluents (BKMEs) into receiving waters. Contaminants present in these mill effluents and in other industrial activities known to adversely affect wildlife and fisheries resources include chlorinated phenolics, dioxins, furans and resin acids. Tennessee and North Carolina have issued fish consumption advisories for specific areas and a fishery has been closed in Arkansas. The extent of injury to wildlife resources from dioxins and other effluents from mill and industrial waste is not presently known. However, preliminary studies indicate effects on biota at several localities. Bioaccumulation of dioxins from mill effluents has been documented in channel catfish (Ictalurus punctatus) (1--2 ppt) and soft-shelled turtles (Trionyx ferox) (17--31 ppt) from pulp/paper mill effluent in St. Joseph`s and Perdido Bays, Florida; reproductive abnormalities were noted in female Gambusia (sp.) exposed to mill effluent. In Jacksonville, Arkansas abnormalities > 10% were noted in fish and reproduction of wood duck (Aix sponsa) was impaired downstream from a chemical plant. Further work is needed to define mill and industrial facilities in the southeast and to monitor adverse effects on fish and wildlife resources.

  5. The Disposal of Hazardous Wastes.

    ERIC Educational Resources Information Center

    Barnhart, Benjamin J.

    1978-01-01

    The highlights of a symposium held in October, 1977 spotlight some problems and solutions. Topics include wastes from coal technologies, radioactive wastes, and industrial and agricultural wastes. (BB)

  6. Hydrodynamics of a Multistage Wet Scrubber Incineration Conditions

    ERIC Educational Resources Information Center

    Said, M. M.; Manyele, S. V.; Raphael, M. L.

    2012-01-01

    The objective of the study was to determine the hydrodynamics of the two stage counter-current cascade wet scrubbers used during incineration of medical waste. The dependence of the hydrodynamics on two main variables was studied: Inlet air flow rate and inlet liquid flow rate. This study introduces a new wet scrubber operating features, which are…

  7. Removing antinutrients from rapeseed press-cake and their benevolent role in waste cooking oil-derived biodiesel: conjoining the valorization of two disparate industrial wastes.

    PubMed

    Das Purkayastha, Manashi; Das, Subrata; Manhar, Ajay Kumar; Deka, Dhanapati; Mandal, Manabendra; Mahanta, Charu Lata

    2013-11-13

    Valorization of oilseed processing wastes is thwarted due to the presence of several antinutritional factors such as phenolics, tannins, glucosinolates, allyl isothiocyanates, and phytates; moreover, literature reporting on their simultaneous extraction and subsequent practical application is scanty. Different solvent mixtures containing acetone or methanol pure or combined with water or an acid (hydrochloric, acetic, perchloric, trichloroacetic, phosphoric) were tested for their efficiency for extraction of these antinutritive compounds from rapeseed press-cake. Acidified extraction mixtures (nonaqueous) were found to be superior to the nonacidified ones. The characteristic differences in the efficacy of these wide varieties of solvents were studied by principal component analysis, on the basis of which the mixture 0.2% perchloric acid in methanol/acetone (1:1 v/v) was deemed as "the best" for detoxification of rapeseed meal. Despite its high reductive potential, hemolytic activity of the extract from this solvent mixture clearly indicated the toxicity of the above-mentioned compounds on mammalian erythrocytes. Because of the presence of a high amount of antinutritive antioxidants, the study was further extended to examine the influence of this solvent extract on the stability of waste cooking oil-derived biodiesel. Treatment with the extract harbored significant improvement (p < 0.05) in the induction periods and pronounced reduction in microbial load of stored biodiesel investigated herein. Thus, a suitable solvent system was devised for removing the major antinutrients from rapeseed press-cake, and the solvent extract can, thereafter, be used as an effective exogenous antioxidant for biodiesel. In other words, integrated valorization of two different industrial wastes was successfully achieved. PMID:24134775

  8. Silver Management for Wet Chemistry Photo Processing

    E-print Network

    Jia, Songtao

    Silver Management for Wet Chemistry Photo Processing Procedure: 8.44 Created: 9/25/2013 Version: 1 silver recovery units in processing the wastewater effluent generated in the processing of films and use "scrap film" collection containers for capturing silver-containing solid waste. All dark rooms and image

  9. Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: Study of the reaction

    SciTech Connect

    Hernandez, J.F.M.; Middendorf, B.; Gehrke, M.; Budelmann, H.

    1998-11-01

    Mineralogical studies of different wastes of the sugar industry, mainly sugar cane bagasse ash and sugar cane straw ash, have shown that such by-products are likely to be pozzolanic. Their use in lime-pozzolana binders could become an interesting alternative for developing countries. This paper presents a study that was aimed at monitoring the reaction between lime and wastes of the sugar industry having pozzolanic properties by evaluating (1) content of calcium hydroxide, dependent on time; (2) development of the pore structure, dependent on time; (3) study on the reaction products at different stages; and (4) mechanical properties of hardened pastes. The presence of calcium hydroxide was confirmed by x-ray diffraction analysis and thermogravimetric analysis of powder from samples of hydrated lime-pozzolana pastes. The reaction products in hydrated pastes were observed in a scanning electron microscope, and the pore structure was assessed using a mercury intrusion porosimeter. The results of the study show that sugar cane bagasse ash does not act like a reactive pozzolana, mainly due to the presence of unburned material and carbon, whereas sugar cane straw ash shows good pozzolanic activity comparable to that of rice husk ash.

  10. Biotechnological Potential of Agro-Industrial Wastes as a Carbon Source to Thermostable Polygalacturonase Production in Aspergillus niveus

    PubMed Central

    Maller, Alexandre; Damásio, André Ricardo Lima; da Silva, Tony Marcio; Jorge, João Atílio; Terenzi, Héctor Francisco; Polizeli, Maria de Lourdes Teixeira de Moraes

    2011-01-01

    Agro-industrial wastes are mainly composed of complex polysaccharides that might serve as nutrients for microbial growth and production of enzymes. The aim of this work was to study polygalacturonase (PG) production by Aspergillus niveus cultured on liquid or solid media supplemented with agro-industrial wastes. Submerged fermentation (SbmF) was tested using Czapeck media supplemented with 28 different carbon sources. Among these, orange peel was the best PG inducer. On the other hand, for solid state fermentation (SSF), lemon peel was the best inducer. By comparing SbmF with SSF, both supplemented with lemon peel, it was observed that PG levels were 4.4-fold higher under SSF. Maximum PG activity was observed at 55°C and pH 4.0. The enzyme was stable at 60°C for 90?min and at pH 3.0–5.0. The properties of this enzyme, produced on inexpensive fermentation substrates, were interesting and suggested several biotechnological applications. PMID:21837272

  11. Use of farming and agro-industrial wastes as versatile barriers in reducing pesticide leaching through soil columns.

    PubMed

    Fenoll, J; Ruiz, E; Flores, P; Vela, N; Hellín, P; Navarro, S

    2011-03-15

    Increased interest has been recently focused on assessing the influence of the addition of organic wastes related to movement of pesticides in soils of low organic matter (OM) content. This study reports the effect of two different amendments, animal manure (composted sheep manure) and agro-industrial waste (spent coffee grounds) on the mobility of 10 pesticides commonly used for pepper protection on a clay-loam soil (OM = 0.22%). The tested compounds were azoxystrobin, cyprodinil, fludioxonil, hexaconazole, kresoxim-methyl, pyrimethanil, tebuconazole, and triadimenol (fungicides), pirimicarb (insecticide), and propyzamide (herbicide). Breakthrough curves were obtained from disturbed soil columns. Cumulative curves obtained from unamended soil show a leaching of all pesticides although in different proportions (12-65% of the total mass of compound applied), showing triadimenol and pirimicarb the higher leachability. Significant correlation (r = 0.93, p<0.01) was found between the observed and bibliographical values of GUS index. The addition of the amendments used drastically reduced the movement of the studied pesticides. Only two pesticides were found in leachates from amended soils, pyrimethanil (<1%) for both, and pirimicarb (44%) in the soil amended with spent coffee grounds. A decrease in pesticide leaching was observed with the increase in dissolved organic matter (DOM) of leachates. The results obtained point to the interest in the use of organic wastes in reducing the pollution of groundwater by pesticide drainage. PMID:21282003

  12. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes

    NASA Astrophysics Data System (ADS)

    Cao, Zhao; Cao, Yong-dan; Zhang, Jin-shan; Sun, Chun-bao; Li, Xian-long

    2015-08-01

    To realize the comprehensive utilization of coal-fired industrial solid wastes, a novel high-strength board was prepared from calcium silicate slag, fly ash, and flue gas desulfurization (FGD) gypsum. The changes in mineral phases, chemical structure, and morphology during hydration were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). A traditional board made from quartz and lime was prepared as a reference. The novel board not only consumes a lot of solid wastes, but also meets the strength requirement of the class-five calcium silicate board according to the Chinese Standard JC/T 564.2—2008. Microanalysis showed that hydrated calcium silicate gel (C-S-H(I)), ettringite, tobermorite, and xonotlite were successively generated in the novel board by synergistic hydration of the mixed solid wastes. The board strength was improved by the formation of tobermorite and xonotlite but decreased by unhydrated quartz. It was demonstrated that quartz was not completely hydrated in the traditional board. As a result, the flexural strength of the traditional board was much lower than that of the novel board.

  13. Energy-environmental benefits and economic feasibility of anaerobic codigestion of Iberian pig slaughterhouse and tomato industry wastes in Extremadura (Spain).

    PubMed

    González-González, A; Cuadros, F; Ruiz-Celma, A; López-Rodríguez, F

    2013-05-01

    Anaerobic digestion of Iberian pig slaughterhouse and tomato industry wastes, as well as codigestion operations from such residues, are reported to achieve 54-80% reduction in Chemical Oxygen Demand and 6-19 N m(3)/m(3) substrate methane production. Furthermore, 0.79-0.88 m(3)water/m(3) substrate is seen to be recovered after the above mentioned operations, which might be used as irrigation water, and 0.12-0.21 m(3)agricultural amendment/m(3) substrate with 91-98% moisture content. The present paper also reports on the economic feasibility of both an anaerobic codigestion plant operating with 60% slaughterhouse wastes/40% tomato industry wastes (optimal ratio obtained in previous laboratory-scaled experiments), and an anaerobic digestion plant for Iberian pig slaughterhouse waste. Payback times are reported as 14.86 and 3.73 years, respectively. PMID:23567670

  14. Thermal degradation of paper industry wastes from a recovered paper mill using TGA. Characterization and gasification test.

    PubMed

    Arenales Rivera, Jorge; Pérez López, Virginia; Ramos Casado, Raquel; Sánchez Hervás, José-María

    2016-01-01

    In this survey, a refuse derived fuel (RDF) was produced from paper industry wastes through a mechanical treatment (MT). The two main wastes generated from a recovered paper mill were rejects and de-inking sludge, which were produced principally in the pulping and de-inking processes, respectively. This work presents raw wastes characterization, fuel preparation and gasification tests performed in a circulating fluidized bed (CFB) gasifier pilot plant. The characterization was carried out by proximate and ultimate analysis. Several blends of pre-conditioned rejects and de-inking sludge were densified by means of pelletizing, studying the energy consumption and its quality properties. Besides, thermal degradation of blends was studied under thermogravimetric analysis (TGA). The experimental runs were made from 30 to 900°C in nitrogen atmosphere at three heating ranges, ?=5, 10 and 20°C/min. Two thermal stages were identified during the thermal degradation, which are linked to cellulose and plastic degradation. In addition, kinetics parameters were estimated by the application of non-isothermal methods: Kissinger-Akahira-Sunose (KAS), Flynn-Ozawa-Wall (FOW) and Coats and Redfern. The activation energy values were about 140-160kJ/mol and 60-80kJ/mol for plastic and cellulosic materials, respectively. Regarding waste valorisation, a blend composed of 95% of rejects and 5% of de-inking sludge was selected for gasification tests. The energy consumption during the preparation was recorded and a gasification tests were done to prove the usability of these pellets in a CFB gasifier. The main results were a net calorific value (NCV) of 5MJ/Nm(3) and a total tar content of 11.44g/Nm(3) at an equivalence ratio (ER) of 0.3. PMID:26013694

  15. Waste treatment by reverse osmosis and membrane processes: industrial. January 1976-June 1988 (citations from the Engineering Index data base). Report for January 1976-June 1988

    SciTech Connect

    Not Available

    1988-06-01

    This bibliography contains citations concerning the use of membranes to treat industrial waste water. Reverse osmosis, ion exchange, electrodialysis, and ultrafiltration processes are described. Removal of metals, sodium compounds, nitrates, flourides, dyes, and radioactive waste using membranes is examined. Wastewater treatment for chemical, pulp, textile, and steel mills using this technology is included. (This updated bibliography contains 246 citations, 26 of which are new entries to the previous edition.)

  16. Development of an internally circulating fluidized bed combustor for treatment of industrial solid wastes

    SciTech Connect

    Mukadi, L.; Lavallee, R.J.; Legros, R.; Guy, C.

    1997-12-31

    A novel thermal treatment technology for low heating value wastes has been tested at the pilot scale level. The first application deals with reclamation of foundry sand. This waste is produced after several cycles of mold making and the resulting spent foundry sand particles is covered with an organic resin. Because of this resin, the waste is classified special waste and this leads to high landfilling costs, not taking into account the replacement cost of this sand for the foundries. The internally circulating fluidized bed (ICFB) unit showed excellent performances for treating spent foundry sand. The high temperature contact between the solids and the flame region of a natural gas burner provided high combustion efficiency while, maintaining high overall energy efficiency. Indeed only a small region of the reactor that is the base of the river is kept at high temperature. The remainder of the unit can be kept at lower temperature, which is not possible in conventional fluidized beds normally used for foundry sand thermal reclamation where the entire bed is maintained at the treatment temperature. The specific energy consumption is therefore very competitive for the ICFB and emission levels were low in CO and NOx. A brief economical assessment of using an ICFB for thermal reclamation of spent foundry sand shows relatively short payback times for a typical foundry.

  17. Recovery of ammonia nitrogen in livestock and industrial wastes using gas permeable membranes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New waste management methods are needed that can protect the environment and allow manure management to switch back to a recycling view of manure handling. We investigated the use of gas-permeable membranes as components of new processes to capture and recover the ammonia in the liquid manures or in...

  18. DESTRUCTION OF HAZARDOUS WASTES COFIRED IN INDUSTRIAL BOILERS: PILOT-SCALE PARAMETRICS TESTING

    EPA Science Inventory

    Thermal destruction of wastes by direct incineration or by cofiring with conventional fuels in boilers, furnaces, or kilns is one of the most effective methods currently available for disposal of hazardous organic material. However, more information is needed on the potential for...

  19. Flexible Distributed Energy and Water from Waste for the Food and Beverage Industry

    SciTech Connect

    2009-02-01

    This factsheet describes a research project whose goal is to develop a systematic model-based predictive monitoring and supervisory control solution for the early detection of abnormal process variations and potential upsets in a waste-to-value wastewater processing system.

  20. LITERATURE-REVIEW SCREENING TECHNIQUES FOR THE EVALUATION OF LAND TREATMENT OF INDUSTRIAL WASTES

    EPA Science Inventory

    This report describes a four-stage screening process for identifying waste streams that are listed as hazardous in the Federal Register (Vol. 45, pp. 74890-74892, November 12, 1980) and that are promising candidates for land treatment research. The first stage used an inorganic s...

  1. MANAGING ARSENIC CONTAMINATED SOIL, SEDIMENT, AND INDUSTRIAL WASTE WITH SOLIDIFICATION/STABILIZATION TREATMENT

    EPA Science Inventory

    Arsenic contamination of soil, sediment and groundwater is a widespread problem in certain areas and has caused great public concern due to increased awareness of the health risks. Often the contamination is naturally occurring, but it can also be a result of waste generated from...

  2. Thermal Energy Storage/Waste Heat Recovery Applications in the Cement Industry 

    E-print Network

    Beshore, D. G.; Jaeger, F. A.; Gartner, E. M.

    1979-01-01

    , and the Portland Cement Association have studied the potential benefits of using waste heat recovery methods and thermal energy storage systems in the cement manufacturing process. This work was performed under DOE Contract No. EC-77-C-01-50S4. The study has been...

  3. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid... October 12, 2005 or when an owner or operator of an existing cement kiln, lightweight aggregate kiln... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40...

  4. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid... October 12, 2005 or when an owner or operator of an existing cement kiln, lightweight aggregate kiln... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40...

  5. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste. When an owner or operator of a cement kiln, lightweight aggregate kiln, solid fuel boiler, liquid... October 12, 2005 or when an owner or operator of an existing cement kiln, lightweight aggregate kiln... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40...

  6. Industrial Technology of Decontamination of Liquid Radioactive Waste in SUE MosSIA 'Radon' - 12371

    SciTech Connect

    Adamovich, Dmitry V.; Neveykin, Petr P.; Karlin, Yuri V.; Savkin, Alexander E.

    2012-07-01

    SUE MosSIA 'RADON' - this enterprise was created more than 50 years ago, which deals with the recycling of radioactive waste and conditioning of spent sources of radiation in stationary and mobile systems in the own factory and operating organizations. Here is represented the experience SUE MosSIA 'Radon' in the field of the management with liquid radioactive waste. It's shown, that the activity of SUE MosSIA 'RADON' is developing in three directions - improvement of technical facilities for treatment of radioactive waters into SUE MosSIA 'RADON' development of mobile equipment for the decontamination of radioactive waters in other organizations, development of new technologies for decontamination of liquid radioactive wastes as part of various domestic Russian and international projects including those related to the operation of nuclear power and nuclear submarines. SUE MosSIA 'RADON' has processed more than 270 thousand m{sup 3} of radioactive water, at that more than 7000 m{sup 3} in other organizations for more than 50 years. It is shown that a number of directions, particularly, the development of mobile modular units for decontamination of liquid radioactive waste, SUE MosSIA 'RADON' is a leader in the world. (authors)

  7. A novel approach to realize SANI process in freshwater sewage treatment--Use of wet flue gas desulfurization waste streams as sulfur source.

    PubMed

    Jiang, Feng; Zhang, Liang; Peng, Guo-Liang; Liang, Si-Yun; Qian, Jin; Wei, Li; Chen, Guang-Hao

    2013-10-01

    SANI (Sulfate reduction, Autotrophic denitrification and Nitrification Integrated) process has been approved to be a sludge-minimized sewage treatment process in warm and coastal cities with seawater supply. In order to apply this sulfur-based process in inland cold areas, wet flue gas desulfurization (FGD) can be simplified and integrated with SANI process, to provide sulfite as electron carrier for sulfur cycle in sewage treatment. In this study, a lab-scale system of the proposed novel process was developed and run for over 200 days while temperature varied between 30 and 5 °C, fed with synthetic FGD wastewaters and sewage. The sulfite-reducing upflow anaerobic sludge bed (SrUASB) reactor, as the major bioreactor of the system, removed 86.9% of organics while the whole system removed 94% of organics even when water temperature decreased to around 10 °C. The bactericidal effect of sulfite was not observed in the SrUASB reactor, while thiosulfate was found accumulated under psychrophilic conditions. The sludge yield of the SrUASB reactor was determined to be 0.095 kg VSS/kg COD, higher than of sulfate reduction process but still much lower than of conventional activated sludge processes. The dominant microbes in the SrUASB reactor were determined as Lactococcus spp. rather than sulfate-reducing bacteria, but sulfite reduction still contributed 85.5% to the organic carbon mineralization in this reactor. Ammonia and nitrate were effectively removed in the aerobic and anoxic filters, respectively. This study confirms the proposed process was promising to achieve sludge-minimized sewage treatment integrating with flue gas desulfurization in inland and cold areas. PMID:23886546

  8. Opportunity Analysis for Recovering Energy from Industrial Waste Heat and Emissions

    SciTech Connect

    Viswanathan, V. V.; Davies, R. W.; Holbery, J.

    2006-04-01

    This report analyzes the opportunity to recover chemical emissions and thermal emissions from U.S. industry. It also analyzes the barriers and pathways to more effectively capitalize on these opportunities.

  9. Comparisons of four categories of waste recycling in China's paper industry based on physical input-output life-cycle assessment model.

    PubMed

    Liang, Sai; Zhang, Tianzhu; Xu, Yijian

    2012-03-01

    Waste recycling for paper production is an important component of waste management. This study constructs a physical input-output life-cycle assessment (PIO-LCA) model. The PIO-LCA model is used to investigate environmental impacts of four categories of waste recycling in China's paper industry: crop straws, bagasse, textile wastes and scrap paper. Crop straw recycling and wood utilization for paper production have small total intensity of environmental impacts. Moreover, environmental impacts reduction of crop straw recycling and wood utilization benefits the most from technology development. Thus, using crop straws and wood (including wood wastes) for paper production should be promoted. Technology development has small effects on environmental impacts reduction of bagasse recycling, textile waste recycling and scrap paper recycling. In addition, bagasse recycling and textile waste recycling have big total intensity of environmental impacts. Thus, the development of bagasse recycling and textile waste recycling should be properly limited. Other pathways for reusing bagasse and textile wastes should be explored and evaluated. Moreover, imports of scrap paper should be encouraged to reduce large indirect impacts of scrap paper recycling on domestic environment. PMID:22100716

  10. Applications of thermal energy storage to process heat and waste heat recovery in the iron and steel industry

    NASA Technical Reports Server (NTRS)

    Katter, L. B.; Peterson, D. J.

    1978-01-01

    The system identified operates from the primary arc furnace evacuation system as a heat source. Energy from the fume stream is stored as sensible energy in a solid medium (packed bed). A steam-driven turbine is arranged to generate power for peak shaving. A parametric design approach is presented since the overall system design, at optimum payback is strongly dependent upon the nature of the electric pricing structure. The scope of the project was limited to consideration of available technology so that industry-wide application could be achieved by 1985. A search of the literature, coupled with interviews with representatives of major steel producers, served as the means whereby the techniques and technologies indicated for the specific site are extrapolated to the industry as a whole and to the 1985 time frame. The conclusion of the study is that by 1985, a national yearly savings of 1.9 million barrels of oil could be realized through recovery of waste heat from primary arc furnace fume gases on an industry-wide basis. Economic studies indicate that the proposed system has a plant payback time of approximately 5 years.

  11. State Waste Discharge Permit application for industrial discharge to land: 200 East Area W-252 streams

    SciTech Connect

    Not Available

    1993-12-01

    This document constitutes the WAC 173-216 State Waste Discharge Permit application for six W-252 liquid effluent streams at the Hanford Site. Appendices B through H correspond to Section B through H in the permit application form. Within each appendix, sections correspond directly to the respective questions on the application form. The appendices include: Product or service information; Plant operational characteristics; Water consumption and waterloss; Wastewater information; Stormwater; Other information; and Site assessment.

  12. Mercury leaching from hazardous industrial wastes stabilized by sulfur polymer encapsulation.

    PubMed

    López, Félix A; Alguacil, Francisco J; Rodríguez, Olga; Sierra, María José; Millán, Rocío

    2015-01-01

    European Directive 2013/39/EU records mercury as a priority hazardous substance. Regulation n° 2008/1102/EC banned the exportation of mercury and required the safe storage of any remaining mercury compounds. The present work describes the encapsulation of three wastes containing combinations of HgS, HgSe, HgCl2, HgO2, Hg3Se2Cl2, HgO and Hg(0), according to patent of Spanish National Research Council WO2011/029970A2. The materials obtained were subjected to leaching tests according to standards UNE-EN-12457 and CEN/TS 14405:2004. The results are compared with the criteria established in the Council Decision 2003/33/EC for the acceptance of waste at landfills. The Hg concentrations of all leachates were <0.01mgHg/kg for a liquid/solid ratio of 10l/kg. All three encapsulated materials therefore meet the requirements for storage in inert waste landfills. PMID:25458763

  13. IFAT `96 mirrors solid waste management`s growth into an industry

    SciTech Connect

    O`Kane, S.A.

    1996-07-01

    Billed as the largest event of its kind anywhere in the world, the 1996 International Trade Fair for Waste Water and Waste Disposal: Sewage, Refuse, Recycling, Public Cleansing, and Winter Road Services (IFAT `96) was held in Munich, Germany, May 7-11, 1996, and attracted about 110,000 visitors. Approximately 1,800 companies from 36 countries exhibited, and there was a complementary range of conferences and seminars hosted by municipal, trade, and government associations. IFAT is held every three years, and the 1996 event was the 11th IFAT exhibition. It is interesting to note the origins of the event over 30 years ago, when a relatively modest regional fair showcased technology designed primarily for municipal solid waste collection and snow-clearing vehicles. IFAT has indeed snowballed, reflecting the dramatically increased levels of investment in products and services in response to the formulation of both national and European Union environmental legislation, often to the point where trade associations have complained of legislative overkill.

  14. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste.

    PubMed

    Ebner, Jacqueline H; Labatut, Rodrigo A; Rankin, Matthew J; Pronto, Jennifer L; Gooch, Curt A; Williamson, Anahita A; Trabold, Thomas A

    2015-09-15

    Anaerobic codigestion (AcoD) can address food waste disposal and manure management issues while delivering clean, renewable energy. Quantifying greenhouse gas (GHG) emissions due to implementation of AcoD is important to achieve this goal. A lifecycle analysis was performed on the basis of data from an on-farm AcoD in New York, resulting in a 71% reduction in GHG, or net reduction of 37.5 kg CO2e/t influent relative to conventional treatment of manure and food waste. Displacement of grid electricity provided the largest reduction, followed by avoidance of alternative food waste disposal options and reduced impacts associated with storage of digestate vs undigested manure. These reductions offset digester emissions and the net increase in emissions associated with land application in the AcoD case relative to the reference case. Sensitivity analysis showed that using feedstock diverted from high impact disposal pathways, control of digester emissions, and managing digestate storage emissions were opportunities to improve the AcoD GHG benefits. Regional and parametrized emissions factors for the storage emissions and land application phases would reduce uncertainty. PMID:26241377

  15. Discovery and Biogeochemical Investigation of Chlorinated Industrial Waste in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Lemkau, K. L.; Kivenson, V. B.; Carmichael, C. A.; Aeppli, C.; Bagby, S. C.; Wentz, K.; Baxter, A.; Paul, B. G.; Pizarro, O.; Yoerger, D.; Reddy, C. M.; Valentine, D. L.

    2014-12-01

    Prior to the 1972 US ban on DDT use, dumping of solid waste from DDT manufacturing was permitted at two locations off the coast of Southern California. Between 1947 and 1961, 37-53 million liters of DDT waste (containing an estimated 350-700 metric tons of DDT) were disposed of at these deep-ocean dumpsites. In 2011 and 2013 we explored these sites with ROV Jason and AUV Sentry, discovering the remains of ~60 barrels scattered across dumpsite 2. Strikingly, many of these barrels were surrounded by distinctive white rings suggestive of microbial activity. We describe our identification and exploration of these sites and present results from chemical analysis of sediment cores collected around waste barrels. DDT and its degradation products (DDE, DDD and DDMU) were detectable at ng to ?g per gram concentrations and showed spatial trends with both distance and depth around barrels. Analysis of microbial community DNA provides a first look at the role of microbiological processes in shaping these trends.

  16. Application of the biological granular activated carbon fluidized bed reactor process for gas industry waste treatment. Topical report, January 1991-December 1992

    SciTech Connect

    Wagner, D.; Sunday, A.; Hickey, R.F.

    1993-06-01

    The research and development work is focused on evaluating the applicability of using the biological granular activated carbon-fluidized bed reactor (GAC-FBR) for helping to solve gas industry waste treatment needs. The specific goals are to use and modify the GAC-FBR process, as needed, for (1) remediation of groundwater contaminated by gas industry operations, and (2) treatment of gas production and exploration waters.

  17. Wetting behavior of alternative solder alloys

    SciTech Connect

    Hosking, F.M.; Vianco, P.T.; Hernandez, C.L.; Rejent, J.A.

    1993-07-01

    Recent economic and environmental issues have stimulated interest in solder alloys other than the traditional Sn-Pb eutectic or near eutectic composition. Preliminary evaluations suggest that several of these alloys approach the baseline properties (wetting, mechanical, thermal, and electrical) of the Sn-Pb solders. Final alloy acceptance will require major revisions to existing industrial and military soldering specifications. Bulk alloy and solder joint properties are consequently being investigated to validate their producibility and reliability. The work reported in this paper examines the wetting behavior of several of the more promising commercial alloys on copper substrates. Solder wettability was determined by the meniscometer and wetting balance techniques. The wetting results suggest that several of the alternative solders would satisfy pretinning and surface mount soldering applications. Their use on plated through hole technology might be more difficult since the alloys generally did not spread or flow as well as the 60Sn-40Pb solder.

  18. Conventional and microwave pyrolysis of a macroalgae waste from the Agar-Agar industry. Prospects for bio-fuel production.

    PubMed

    Ferrera-Lorenzo, N; Fuente, E; Bermúdez, J M; Suárez-Ruiz, I; Ruiz, B

    2014-01-01

    A comparative study of the pyrolysis of a macroalgae industrial solid waste (algae meal) in an electrical conventional furnace and in a microwave furnace has been carried out. It was found that the chars obtained from both pyrolyses are similar and show good properties for performing as a solid bio-fuel and as a precursor of activated carbon. Bio-oils from conventional pyrolysis have a greater number of phenolic, pyrrole and alkane compounds whereas benzene and pyridine compounds are more predominant in microwave pyrolysis with a major presence of light compounds. The bio-gas fraction from microwave pyrolysis presents a much higher syngas content (H2+CO), and a lower CO2 and CH4 proportion than that obtained by conventional pyrolysis. Yields are similar for both treatments with a slightly higher gas yield in the case of microwave pyrolysis due to the fact that microwave heating favors heterogeneous reactions between the gases and the char. PMID:24240147

  19. Removal of nickel(II) from aqueous solution and nickel plating industry wastewater using an agricultural waste: Peanut hulls

    SciTech Connect

    Periasamy, K.; Namasivayam, C.

    1995-07-01

    Activated carbon prepared from peanut hulls (PHC), an agricultural waste by-product, has been used for the adsorption of Ni(II) from aqueous solution. The process of uptake obeys both Freundlich and Langmuir adsorption isotherms. The applicability of Lagergren kinetic model has also been investigated. Quantitative removal of Ni(II) from 100 mL aqueous solution containing 20 mg/L Ni(II) by 85 mg PHC was observed over a pH range of 4.0 to 10.0. The suitability of PHC for treating nickel plating industry wastewater was also tested. A comparative study with a commercial granular activated carbon (GAC) showed that PHC is 36 times more efficient compared to GAC based on Langmuir adsorption capacity (Q{sub O}).

  20. PREFACE: Dynamics of wetting Dynamics of wetting

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting dynamics and the broader field of fluid dynamics [7-9]. Such an active field requires an occasional collective examination of current research to highlight both recent successes and remaining challenges. Herein, we have collected a range of articles to illustrate the broad nature of research associated with understanding dynamics of moving condensed matter three phase contact lines. Despite the breadth of topics examined, certain unifying themes emerge. The role of the substrate surface is critical in determining kinetics of wetting; this is evidenced by the attention given to this in articles herein. McHale et al investigate the role of surface topography on wetting kinetics and how its effect can be incorporated in existing theories describing contact line dynamics. Moosavi et al examine surface topography effects via a mesoscopic hydrodynamics approach. The capillary driven motion of fluid through structures on a surface bears tremendous importance for microfluidics studies and the emerging field of nanofluidics. Blow et al examine this phenomena for liquid imbibition into a geometric array of structures on a solid surface, while Shen et al analyze the effects of surface temperature during boiling and non-boiling conditionson droplet impingement dynamics. Finally, Pesika et al discover a wonderful world of smart surfaces, like gecko adhesion pads. A number of papers utilize computational modeling to explore phenomena underlying wetting dynamics and to consider relevant mechanisms in terms of existing theory for contact line dynamics. Winter et al utilize Monte Carlo simulation techniques and thermodynamic integration methods to test classical theory describing heterogeneous nucleation at a wall near a wetting transition. Qian et al briefly review the Onsager principle of minimum energy dissipation underlying many descriptions of dissipative systems; they then provide a variational approach description of hydrodynamics of moving contact lines and demonstrate the validity of their continuum model via comparison with molecular dynamics simulations.Bertrand et al

  1. COMBINED TREATMENT OF LIQUID WASTES FROM INDUSTRIAL SWINE FARMS USING BLWRS (BARRIERED LANDSCAPE WATER RENOVATION)

    EPA Science Inventory

    The efficiency of Barriered Landscape Water Renovation (BLWRS), 1500 m2 in size, to renovate flushed slurry from the industrial pig farm was studied during two years of exploitation. A water budget for BLWRS was prepared, transformations of volatile solids, COD, TN, TKN, organic ...

  2. FINDING SOLVENT REPLACEMENTS TO REDUCE THE POTENTIAL ENVIRONMENTAL IMPACT OF INDUSTRIAL WASTES

    EPA Science Inventory

    The United States Environmental Protection Agency has developed a solvent substitution software tool PARIS II (Program for Assisting the Replacement of Industrial Solvents, version 2.0). The purpose of this tool is to find less toxic solvents or solvent mixtures which may functi...

  3. The development and implementation of industrial hydrometallurgical gallium recovery of the Clarksville Refinery waste residue

    NASA Astrophysics Data System (ADS)

    Fayram, Todd S.

    Todd Fayram, the Gordonsville Operation of Pasminco US Inc., and the Center for Advanced Mineral and Metallurgical Processing (CAMP) at Montana Tech studied, developed and implemented a pilot scale hydrometallurgical facility for the industrial recovery of gallium. This thesis describes the testing and engineering program that culminated in this successful recovery of gallium through process described herein.

  4. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40 CFR... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Permits for boilers and...

  5. 40 CFR 270.66 - Permits for boilers and industrial furnaces burning hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... blended, and blending ratios. (3) A detailed engineering description of the boiler or industrial furnace... CFR 124.10(c)(1)(ix) and to the appropriate units of State and local government as set forth in 40 CFR... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Permits for boilers and...

  6. The Effect of CO2 on Algal Growth in Industrial Waste Water for Bioenergy and Bioremediation Applications

    PubMed Central

    Roberts, David A.; de Nys, Rocky; Paul, Nicholas A.

    2013-01-01

    The energy, mining and mineral processing industries are point sources of metal-contaminated waste water and carbon dioxide (CO2). Freshwater macroalgae from the genus Oedogonium can be grown in metal-contaminated waste water to generate biomass for bioenergy applications and concomitantly bioremediate metals. However, interactions between CO2 addition and algal growth, which can affect bioremediation, remain untested. The addition of CO2 to algal cultures in the Ash Dam Water (ADW) from a coal-fired power station increased the biomass productivity of Oedogonium sp. from 6.8 g dry weight (DW) m-2 d-1 to a maximum of 22.5 g DW m-2 d-1. The greater productivity increased the rate of bioremediation of most elements. However, over time carbon-amended cultures experienced a decline in productivity. Possible explanations include metal toxicity at low pH or essential trace element limitation as a result of competition between toxic and essential trace elements for uptake into algae. Higher productivity increased bioremediation rate and yielded more biomass for bioenergy applications, making maintenance of maximum productivity the central aim of the integrated culture model. To do so it will be necessary to resolve the mechanisms responsible for declining yields over time in carbon-amended cultures. Regardless, our data demonstrate that freshwater macroalgae are ideal candidates for bioremediation of metal-contaminated waste streams. Algal culture delivered significant improvement in ADW quality, reducing 5 elements that were initially in excess of water quality criteria (Al, As, Cd, Ni and Zn) to meet guidelines within two to four weeks. PMID:24278451

  7. Assessment of workers' exposure to aflatoxin B1 in a Portuguese waste industry.

    PubMed

    Viegas, Susana; Veiga, Luisa; Figueiredo, Paula; Almeida, Ana; Carolino, Elisabete; Viegas, Carla

    2015-03-01

    Aflatoxin B1 (AFB1) is considered by different International Agencies as a genotoxic and potent hepatocarcinogen. However, despite the fact that the fungi producing this compound are detected in some work environments, AFB1 is rarely monitored in occupational settings. The aim of the present investigation was to assess exposure to AFB1 of workers from one Portuguese waste company located in the outskirt of Lisbon. Occupational exposure assessment to AFB1 was done with a biomarker of internal dose that measures AFB1 in the serum by enzyme-linked immunosorbent assay. Forty-one workers from the waste company were enrolled in this study (26 from sorting; 9 from composting; 6 from incineration). A control group (n = 30) was also considered in order to know the AFB1 background levels for the Portuguese population. All the workers showed detectable levels of AFB1 with values ranging from 2.5ng ml(-1) to 25.9ng ml(-1) with a median value of 9.9±5.4ng ml(-1). All of the controls showed values below the method's detection limit. Results obtained showed much higher (8-fold higher) values when compared with other Portuguese settings already studied, such as poultry and swine production. Besides this mycotoxin, other mycotoxins are probably present in this occupational setting and this aspect should be taken into consideration for the risk assessment process due to possible synergistic reactions. The data obtained suggests that exposure to AFB1 occurs in a waste management setting and claims attention for the need of appliance of preventive and protective safety measures. PMID:25324565

  8. Radiation resistant concrete for applications in nuclear power and radioactive waste industries

    NASA Astrophysics Data System (ADS)

    Burnham, Steven Robert

    Elemental components of ordinary concrete contain a variety of metals and rare earth elements that are susceptible to neutron activation. This activation occurs by means of radiative capture, a neutron interaction that results in formation of radioisotopes such as Co-60, Eu-152, and Eu-154. Studies have shown that these three radioisotopes are responsible for the residual radioactivity found in nuclear power plant concrete reactor dome and shielding walls. Such concrete is classified as Low Level Radioactive Waste (LLRW) and Very Low Level Waste (VLLW) by International Atomic Energy Agency (IAEA) standards and requires disposal at appropriate disposal sites. There are only three such sites in the USA, and every nuclear power plant will produce at the time of decommissioning approximately 1,500 tonnes of activated concrete classified as LLRW and VLLW. NAVA ALIGA (ancient word for a new stone) is a new concrete mixture developed mainly by research as presented in this thesis. The purpose of NAVA ALIGA is to satisfy IAEA clearance levels if used as a material for reactor dome, spent fuel pool, or radioactive waste canisters. NAVA ALIGA will never be activated above the IAEA clearance level after long-term exposure to neutron radiation when used as a material for reactor dome, spent fuel pool, and radioactive waste canisters. Components of NAVA ALIGA were identified using Instrumental Neutron Activation Analysis (INAA) and Inductively Coupled Plasma Mass Spectrometry (ISP-MS) to determine trace element composition. In addition, it was tested for compressive strength and permeability, important for nuclear infrastructure. The studied mixture had a high water to cement ratio of 0.56, which likely resulted in the high measured permeability, yet the mixture also showed a compressive strength greater than 6 000 psi after 28 days. In addition to this experimental analysis, which goal was to develop a standard approach to define the concrete mixtures in satisfying the IAEA radiation clearance levels, the NAVA ALIGA concrete was analyzed as to potentially be used together with depleted uranium. This study was purely computational (based on MCNP6 models) and was twofold: to find if this new concrete mix would enhance the radiation shielding properties when combined with depleted uranium and to find if this will be an effective and useful way of using the existing large quantities of disposed depleted uranium.

  9. Sludge dewatering: Sewage and industrial wastes. January 1978-December 1989 (A Bibliography from Pollution Abstracts). Report for January 1978-December 1989

    SciTech Connect

    Not Available

    1990-03-01

    This bibliography contains citations concerning techniques and equipment used in sewage, as well as industrial, mining, petroleum, and municipal-waste sludge dewatering. Dewatering processes, device design, and performance evaluations are considered. (This updated bibliography contains 266 citations, 12 of which are new entries to the previous edition.)

  10. The Establishment of a National Industrial Wastes Inventory. Hearing Before a Subcommittee of the Committee on Government Operations, H.R. 91st Congress, September 17, 1970.

    ERIC Educational Resources Information Center

    Congress of the U. S., Washington, DC. House Committee on Government Operations.

    Presented in this bulletin is the test of the hearing before the Conservation and Natural Resources Subcommittee of the Committee on Government Operations, United States House of Representatives, ninety-first Congress, concerning a national inventory of industrial wastes. The hearing was held September 17, 1970, to examine the long delay of the…

  11. Rheological profile of diets produced using agro-industrial wastes for rearing codling moth larvae for baculovirus biopesticides.

    PubMed

    Gnepe, J R; Tyagi, R D; Brar, S K; Valero, J R

    2011-01-01

    A rheological study of diets using the agro-industrial wastes (brewery wastewater and pomace waste) was carried out in order to obtain a diet most adapted to supply nutrients for growth of codling moth (CM) larvae. Nutritive capacity (g/L) of brewery wastewater (BWW) (25.5 ± 5.5 carbohydrates; 16.9 ± 2.1 proteins; 6 ± 1.6 lipids) and pomace waste (POM) (22.0 ± 0.03 carbohydrates; 11.3 ± 1.3 proteins; 2 ± 0.2 lipids) were essential and important as replacement or in association with other ingredients [soya flour (SF), wheat germ (WG), yeast extract (YE)] of the standard diet for the breeding of codling moth larvae. These diet additives also contributed to the preservation of texture and nutritive content of larvae diet. The eggs and CM larvae were grown on alternate diets under industrial conditions (16:8 h photoperiod; 25 ± 1 °C and 50 ± 0.5 % of humidity). The higher assimilation of nutrients of the diets in BWW and control diet was observed by calculating the rate of hatching of eggs (0.48 to 0.71); larvae growth (0.23 to 0.4) and fertility (1.33 to 3 for control diet). The excellent growth and fertility rates of codling moth larvae were attributed to variations in viscosity (varying from 50 to 266 mPa.s?¹), particle size (varying 24.3 ?m in 88.05 ?m with regard to 110 ?m the control diet) and total solids (145.88 g/L POM + YE; 162.08 g/L BWW + YE; 162.2 g/L POM + WG; 173 g/L control; 174.3 g/L BWW + WG) diets. Lower viscosity favored improved diet due to ease of assimilation of nutrients. Thus, rheology is an important parameter during preparation of diets for growth of codling moth larvae as it will dictate the nutrient assimilation which is an important parameter of larvae growth. PMID:21442538

  12. Flexible Distributed Energy & Water from Waste for Food and Beverage Industry

    SciTech Connect

    Shi, Ruijie

    2013-12-30

    Food and beverage plants inherently consume a large quantity of water and generate a high volume of wastewater rich in organic content. On one hand, water discharge regulations are getting more stringent over the time, necessitating the use of different technologies to reduce the amount of wastewater and improve the effluent water quality. On the other hand, growing energy and water costs are driving the plants to extract and reuse valuable energy and water from the wastewater stream. An integrated waste-tovalue system uses a combination of anaerobic digester (AD), reciprocating gas engine/boiler, membrane bioreactor (MBR), and reverse osmosis (RO) to recover valuable energy as heat and/or electricity as well as purify the water for reuse. While individual anaerobic digestion and membrane bioreactors are being used in increasing numbers, there is a growing need to integrate them together in a waste-to-value system for enhanced energy and water recovery. However, currently operation of these systems relies heavily on the plant operator to perform periodic sampling and off-line lab analysis to monitor the system performance, detect any abnormal condition due to variations in the wastewater and decide on appropriate remedial action needed. This leads to a conservative design and operation of these systems to avoid any potential upsets that can destabilize the system.

  13. Methane generation from high-strength industrial wastes with the anaerobic biological fluidized bed

    SciTech Connect

    Hickey, R.F.; Owens, R.W.

    1981-01-01

    The anaerobic biological fluidized-bed process has been shown to be effective for the simultaneous generation of methane gas and stabilization of high-strength wastewaters. Presented is a compendium of pilot-scale testing on a variety of wastes including dairy, chemical, food processing, soft drink bottling, and heat treatment liquors. Results demonstrate that, in most cases, greater than 80% biological oxygen demand (BOD/sub 5/) reduction can be attained at organic loading rates of 16 kg chemical oxygen demand (COD)/m/sup 3//day or higher. The effect of organic loading for each class of waste is presented. The excellent compatibility of the biological fluidized-bed reactor concept with anaerobic treatment is due to many factors, the foremost being that fluidization of small-grained media results in extremely large surface areas for biological colonization (on the order of 300 m/sup 2//m/sup 3/) and consequently high biomass concentrations (8000 to 40,000 mg volatile suspended solids (VSS)/L). Because of this, long sludge retention times may be maintained at relatively short hydraulic residence times. The system is a net energy producer in most cases and normally shows a payback on the initial capital expenditure in less than five years.

  14. Experience of using municipal solid waste in the energy industry (An Overview)

    NASA Astrophysics Data System (ADS)

    Tugov, A. N.

    2015-12-01

    The status of municipal solid waste (MSW) utilization for energy purposes in Europe, the United States, and China is revealed, showing that MSW has long been among alternative fuels abroad and is widely used as a renewable energy source. Energy utilities often deal with the construction and operation of thermal waste-to-energy facilities. Currently, thanks to the use of the best available technologies (BAT), among which are incineration in mechanical grate stokers and in vertex fluidized-bed furnaces, and multistage gas treatment, the problems of environmentally safe operation of facilities for MSW-to-energy utilization have been fully resolved. The main research is aimed at improving the energy efficiency of these facilities, primarily, by increasing steam parameters and organizing its intermediate superheating. It is shown that a high efficiency of converting the MSW energy potential into electricity can also be reached by integrating MSW incinerators into the heat flow scheme of thermal power plants, whose main fuel is coal or gas. Examples are given of active foreign MSW-to-energy facilities improved to increase electricity efficiency to 30% and more.

  15. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    SciTech Connect

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr.

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  16. Blending mining and nuclear industries at the Waste Isolation Pilot Plant

    SciTech Connect

    Walls, J.R.

    1990-01-01

    At the Waste Isolation Pilot Plant (WIPP) traditional procedures for underground mining activities have been significantly altered in order to assure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for WIPP underground procedures, mining equipment, and operating environments. The mining emphasis at WIPP is upon the quality of the excavation, not (as in conventional mines) on the production of ore. The WIPP is a United States Department of Energy (DOE) project that is located 30 miles southeast of Carlsbad, New Mexico, where the nation's first underground engineered nuclear repository is being constructed. The WIPP site was selected because of its location amidst a 607 meter thick salt bed, which provides a remarkably stable rock formation for the permanent storage of nuclear waste. The underground facility is located 655 meters below the earth's surface, in the Salado formation, which comprises two-hundred million year old halites with minor amounts of clay and anhydrites. When completed, the WIPP underground facility will consist of two components: approximately 81 square kilometers of experimental areas, and approximately 405 square kilometers of repository. 3 figs.

  17. ENZYMATIC CORN WET MILLING: RESULTS FROM A COMMERCIAL PLANT TRIAL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn is converted into valuable food, fuel and industrial products by the corn wet milling process. Conventional corn wet milling requires a considerable amount of sulfur dioxide addition to disrupt the protein matrix surrounding the starch particles and to aid the separation of starch and protein ...

  18. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis

    E-print Network

    Smyth, Katherine M.

    We study the wetting energetics and wetting hysteresis of sessile and impacting water droplets on superhydrophobic surfaces as a function of surface texture and surface energy. For sessile drops, we find three wetting ...

  19. Wet/dry film thickness measurement of paint by absorption spectroscopy with acousto-optic tunable filter spectrometer

    NASA Astrophysics Data System (ADS)

    Sinha, Pranay G.; Xiong, Xiangchun; Jin, Feng; Trivedi, Sudhir; Prasad, Narashima S.

    2005-08-01

    Controlling/monitoring the thickness of applied paint in real time is important to many situations including painting ship and submarine hulls in dry docks for maintaining health of ships and submarines against the harshness of the sea, in automobile and aerospace industries, and in a variety of other industries as a control sensor that plays significant role in product quality, process control, and cost control. Insufficient thickness results to inadequate protection while overspray leads to waste and pollution of the environment. A rugged instrumentation for the real time non-contact accurate measurement of wet and dry paint film thickness measurement will be immensely valuable. As paint is applied with several layers of the same or different type, thickness of each newly sprayed wet layer is of most interest, but measurement on dry paint is also useful. In this study, we use acousto-optic tunable filter-based near infrared spectrometer to obtain the absorption spectrum of layers of paint sprayed on sand blasted steel surface and thus measure the thickness of coating under both wet and dry situations. NIR spectra are obtained from 1100 to 2300 nm on four sample of different thickness of paint up to 127 micron. Partial least squares model built with the spectra shows good correlation with standard error of prediction within ~ 0.7 micron. Results indicate that the spectra also respond to the amount of organic solvent in the wet paint and can be used to monitor the degree of dryness of the paint in real time.

  20. Industrial waste treatment: Lagoons (ponds). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-01-01

    The bibliography contains citations concerning the treatment and storage of wastewaters in lagoons. Lagoon design, operation, associated equipment, and pretreatment processes are discussed. Included in the references are treatment of wastewaters from breweries, tanneries, paper mills, agricultural operations, and other industrial operations. Descriptions and evaluations of specific facilities are provided. Municipal water and sewage treatment lagoons are referenced in a related bibliography. (Contains a minimum of 118 citations and includes a subject term index and title list.)

  1. Effect of microwave- and microwave-convection drying conditions on the total soluble phenolic content of 2-phase olive mill waste

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California olive oil industry produces tons of 2-phase olive mill waste (2POMW) every year as a byproduct of the olive oil milling process. 2POMW is rich in health-promoting phenolic compounds, but it is greater than 60% moisture (wet basis) in its native form and thus expensive to store and tr...

  2. Removal of atrazine from water by low cost adsorbents derived from agricultural and industrial wastes.

    PubMed

    Sharma, Rajendra Kumar; Kumar, Anoop; Joseph, P E

    2008-05-01

    In the present study six adsorbents viz. wood charcoal, fly ash, coconut charcoal, saw dust, coconut fiber and baggasse charcoal were studied for their capacity to remove atrazine from water. The removal efficiency of different adsorbents varied from 76.5% to 97.7% at 0.05 ppm concentration and 78.5% to 95.5% at 0.1 ppm concentration of atrazine solution, which was less than removal efficiency of activated charcoal reported as 98% for atrazine (Adams and Watson, J Environ Eng ASCE 39:327-330, 1996). Wood charcoal was a cheap (Rs 15 kg(-1)) and easily available material in house holds. Since wood charcoal was granular in nature, it could be used for the removal of atrazine from water to the extent of 95.5%-97.7%. Fly ash is a waste product of thermal plant containing 40%-50% silica, 20%-35% alumina, 12%-30% carbon and unburnt minerals having a high pH of 9-10. It is very cheap and abundant material and has comparatively good adsorption capacity. It was found that fly ash effectively removed about 84.1%-88.5% atrazine from water at 0.05 and 0.1 ppm levels. Coconut shell is also waste product. Therefore, both are inexpensive. The removal efficiency of atrazine from water was 92.4%-95.2% by coconut shell charcoal and 85.9%-86.3% by coconut fiber. Sawdust is generally used as domestic fuel and found everywhere. It is also very cheap (Re. 1 kg(-1)). Baggasse charcoal is a waste product of sugar mill and abundant material. Its cost is due to transport expense, which depends upon distance from the sugar mill. The removal efficiency of sawdust and baggasse charcoal was found 78.5-80.5 and 76.5-84.6, respectively. The efficacy of chemically treated adsorbents for the removal of atrazine from water is in the order: wood charcoal > coconut shell charcoal > fly ash > coconut fiber charcoal > baggasse charcoal > sawdust. PMID:18357400

  3. Combined treatment of chemical, pharmaceutical and cosmetic industrial effluents by waste stabilization ponds.

    PubMed

    Veeresh, Mangala; Veeresh, A V; Hosetti, B B

    2002-10-01

    Influent and final effluent was collected from the CMM Ltd., Bethora, Ponda, Goa and were analysed for pH, DO, BOD, enzyme activity and chlorophyll content of the waste stabilization pond for over a period of two years of which the data for one year (pre monsoon, monsoon and post monsoon periods) is given. The study revealed that the DO was maximum during the pre-monsoon months and least during the monsoon. Maximum removal of BOD and phosphate was observed during the pre-monsoon periods. Enzymatic activity was at its peak during the monsoons than during the other months. Chlorophyll content was maximum during the pre-monsoon months due to increased growth of phytoplankton as the conditions were favourable for their growth. Also depending on the concentration of different chlorophyll pigments, one can come to know the different groups of algae inhabiting the stabilization ponds. PMID:12674388

  4. Waste-to-energy plant for paper industry sludges disposal: technical-economic study.

    PubMed

    Caputo, A C; Pelagagge, P M

    2001-02-16

    In this work, a detailed technical-economic analysis of a fluidized bed based waste-to-energy system for disposal of paper manufacturing sludges has been carried out. Specific reference is made to a case study represented by the largest plant in Italy producing recycled paper, with a daily sludge output of about 52t. The adopted plant has been sized for a nominal capacity of 140t per day also allowing the progressive elimination of sludges accumulated in a previously utilized landfill, giving a nominal electrical power output of 3.5MW. The main plant sections have been described and the adopted technical solutions have been outlined. A detailed process and equipment characterization has been carried out leading to a thorough evaluation of capital investment, operating costs and revenues. A differential analysis has been performed with respect to the alternative solution represented by the disposal of untreated sludges in an external landfill in order to highlight the savings obtainable. The economic profitability of the investment has been evaluated regarding several performance indices. The economic evaluation has been completed by a sensitivity and risk analysis in order to assess the effects of uncertainties in the economically significant parameters. Adopting most probable values, the savings obtained with the considered waste-to-energy system are evaluated in the 15--20 million Euro range during the estimated plant life of 15 years with a foreseen pay back time of 4 years. Moreover, many environmental benefits result such as the remediation of existing landfill, the avoidance of new landfills opening and very low air pollutants emissions. PMID:11163691

  5. Wet powder seal for gas containment

    DOEpatents

    Stang, Louis G. (Sayville, NY)

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  6. Chlorine Disinfection of Wet Weather Managed Flows (Poster)

    EPA Science Inventory

    Blending is a practice used in the wastewater industry to deal with wet weather events when the hydraulic capacity of the treatment facility could be compromised. Blending consists of primary wastewater treatment plant effluent, partially bypassing secondary treatment, and then ...

  7. Chlorinated and parent polycyclic aromatic hydrocarbons in environmental samples from an electronic waste recycling facility and a chemical industrial complex in China.

    PubMed

    Ma, Jing; Horii, Yuichi; Cheng, Jinping; Wang, Wenhua; Wu, Qian; Ohura, Takeshi; Kannan, Kurunthachalam

    2009-02-01

    Chlorinated polycyclic aromatic hydrocarbons (CIPAHs) are a class of halogenated contaminants found in the urban atmosphere; they have toxic potential similar to that of dioxins. Information on the sources of CIPAHs is limited. In this study, concentrations of 20 CIPAHs and 16 parent PAHs were measured in electronic wastes, workshop-floor dust, vegetation, and surface soil collected from the vicinity of an electronic waste (e-waste) recycling facility and in surface soil from a chemical industrial complex (comprising a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant), and agricultural areas in central and eastern China. High concentrations of SigmaCIPAHs were found in floor dust (mean, 103 ng/g dry wt), followed in order of decreasing concentration by leaves (87.5 ng/g drywt), electronic shredder waste (59.1 ng/g dry wt), and soil (26.8 ng/g dry wt) from an e-waste recycling facility in Taizhou. The mean concentration of SigmaCIPAHs in soil from the chemical industrial complex (88 ng/g dry wt) was approximately 3-fold higher than the concentration in soil from e-waste recycling facilities. The soils from e-waste sites and industrial areas contained mean concentrations of SigmaCIPAHs 2 to 3 orders of magnitude higher than the concentrations in agricultural soils (ND-0.76 ng/g), suggesting that e-waste recycling and chlorine-chemical industries are potential emission sources of CIPAHs. The profiles of CIPAHs in soil and dust were similar to a profile that has been reported previously for fly ash from municipal solid waste incinerators (6-CIBaP was the predominant compound), but the profiles in vegetation and electronic shredder waste were different from those found in fly ash. Concentrations of 16 parent PAHs were high (150-49,700 ng/g) in samples collected from the e-waste recycling facility. Significant correlation between SigmaCIPAH and SigmaPAH concentrations suggests that direct chlorination of parent PAHs is the major pathway of formation of CIPAHs during e-waste recycling operations. Dioxin-like toxic equivalency quotients (TEQs) for CIPAHs and PAHs in samples were calculated on the basis of relative potencies reported for CIPAHs and PAHs. The highest mean TEQ concentrations of CIPAHs (518 pg-TEQ/g) were found for workshop-floor dust, followed by leaves (361 pg-TEQ/g), electronic shredder waste (308 pg-TEQ/g), soil from the chemical industrial complex (146 pg-TEQ/g), and soil from the sites of the e-waste recycling facility (92.3 pg-TEQ/g). With one exception, the floor dust samples, the TEQ concentrations of CIPAHs found in multiple environmental matrices in this study were higher than the TEQ concentrations of PCDD/Fs in the same samples reported in our earlier study. PMID:19244996

  8. Industrial waste-water management practices in Air Force Logistics Command. Master's thesis

    SciTech Connect

    Smith, P.J.

    1991-09-01

    The selection of a model plant was based upon criteria established by a review of current literature. The criteria were permit compliance, plant performance, and the adoption of pollution prevention as a corporate environmental philosophy. In this study, private sector firms were examined to identify the best industrial wastewater management practices using a Total Quality Management (TQM) tool called benchmarking. The data gathering process consisted of a survey of water pollution control organizations, and a survey of benchmark candidates. The purpose of surveying water pollution control organizations was to objectively identify possible benchmark candidates. A questionnaire was then used to gather technical data on each benchmark candidate's performance.

  9. Catalytic Hydrothermal Gasification of Wet Biomass Feedstock

    SciTech Connect

    2006-04-01

    Industries and municipalities generate substantial amounts of biomass as high-moisture waste streams, such as animal manure, food processing sludge, stillage from ethanol production, and municipal wastewater sludge.

  10. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    SciTech Connect

    Ma, J.; Kannan, K.; Cheng, J.; Horii, Y.; Wu, Q.; Wang, W.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.

  11. Comparison of raw and modified activated carbon and rice industry wastes for methylene blue sorption

    NASA Astrophysics Data System (ADS)

    Befani, Maria; Manariotis, Ioannis D.; Karapanagioti, Hrissi K.; Quintero, César E.

    2015-04-01

    In Argentina the average paddy rice production was 1.3x106 tn/year in the last decade. Entre Ríos province (E.R.) accounts for 60% of national milling, resulting in a significant accumulation of waste in the local environment; husk and ashes are used as fuel in drying grain plants. The use of rice wastes, as low-cost sorbents for the removal of synthetic dyes and other contaminants may be a sustainable option. The aim of this work is the investigation of the removal capacity of methylene blue (MB) from aqueous solutions using: (a) rice husk from a rice mill located in E.R. of size between 0.15 to 1.18 mm (RH2), (b) ash from rice husk burned at 800°C in oven for the grain drying unit of the rice mill (RHA800), and (c) biochar obtained from pyrolysis of RH2 material at 850°C (RHA4). Commercial activated carbon (AC), which is a porous material of high sorption capacity, was also used to compare its sorption capacity with the rice husk products. Furthermore, the incorporation of iron in the AC was studied using two different AC/Fe weight-by-weight ratios (AC-Fe and AC-0.5 Fe). The solution pH effect was studied in a range from 2 to 6.9. The maximal MB removal was achieved at pH of 6.8 to 6.9 for all materials studied, and at pH of 6.4 for AC. Kinetic experiments were conducted for a period of 48 h at pH 7 and C0 = 50 mg MB/L. Equilibrium was reached after 24 h and the adsorption capacity was 156, 104, 90, 79, 26, and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. The pseudo-second-order model expressed better the sorption kinetics of MB for all adsorbent materials. The AC-based materials presented better performance. The experimental data were fitted with the Freundlich and Langmuir isotherm models. The Langmuir model fits the data better in all cases. The maximum adsorption capacity was 238, 125, 92, 91, 46 and 9 mg/g for AC, AC-Fe, AC-0.5 Fe, RHA4, RH2 and RHA800, respectively. Agricultural wastes can be considered low-cost sorbents, but their capacity for MB, compared to AC, was quite lower. Biochar (RHA4) exhibited better sorption capacity, compared to other rice husk materials. The addition of iron on AC resulted in lower surface area, and this was reflected with lower sorption efficiency of MB.

  12. Experimental and theoretical investigation of the interfacial phenomenon associated with wetting of trisiloxane surfactant solutions 

    E-print Network

    Radulovic, Jovana

    2010-01-01

    Surface active agents have been successfully employed in numerous industrial, agricultural and biomedical applications for decades. Trisiloxane surfactants in particular have proved to be exceptionally effective as wetting ...

  13. Examination of Babcock and Wilcox tubes after exposure in an industrial waste incinerator

    SciTech Connect

    Keiser, J.R.; Ferber, M.K.; Longmire, H.F.; Walker, L.R.; Hindman, D.L.

    1996-06-01

    Seven ceramic tubes provided by, and in most cases manufactured by, Babcock and Wilcox were exposed in E. I. DuPont`s Wilmington, Delaware, hazardous waste incinerator. These tubes were subsequently examined at Oak Ridge National Laboratory to determine the effect of exposure on the strength and microstructural integrity of the tube materials. An unexposed tube section of one of the materials was also examined. Evaluation methods included c-ring compression tests, light microscopy, and electron microprobe spectroscopy. The c-ring compression tests revealed a very wide range in the strengths of the materials tested; the strongest was DuPont Lanxide Composites (DLC) silicon carbide particulate-strengthened alumina, and the weakest was the DLC Type B mixed-oxide material. The only material for which data on unexposed samples were available showed lower strength than the exposed material. Microstructural examination of the samples yielded minimal evidence of interaction of most of the tube materials with the components of the environment. Microprobe examination showed some segregation of yttrium in the matrix and along the surface of one of the PRD166/zirconia tubes and limited interaction of the fibers in the same tube with the components of the environment.

  14. Coal combustion by wet oxidation

    SciTech Connect

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  15. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-print Network

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum pro- duction wastes. Some aluminum-bearing waste materials, particularly aluminum production wastes

  16. Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source.

    PubMed

    Abreu, Ana P; Fernandes, Bruno; Vicente, António A; Teixeira, José; Dragone, Giuliano

    2012-08-01

    Growth parameters and biochemical composition of the green microalga Chlorella vulgaris cultivated under different mixotrophic conditions were determined and compared to those obtained from a photoautotrophic control culture. Mixotrophic microalgae showed higher specific growth rate, final biomass concentration and productivities of lipids, starch and proteins than microalgae cultivated under photoautotrophic conditions. Moreover, supplementation of the inorganic culture medium with hydrolyzed cheese whey powder solution led to a significant improvement in microalgal biomass production and carbohydrate utilization when compared with the culture enriched with a mixture of pure glucose and galactose, due to the presence of growth promoting nutrients in cheese whey. Mixotrophic cultivation of C. vulgaris using the main dairy industry by-product could be considered a feasible alternative to reduce the costs of microalgal biomass production, since it does not require the addition of expensive carbohydrates to the culture medium. PMID:22705507

  17. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    SciTech Connect

    Karve, M.; Rajgor, R.V.

    2008-07-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  18. Kinetic studies of overlapping pyrolysis reactions in industrial waste activated sludge.

    PubMed

    Yang, Xiaoyi; Jiang, Zhenpeng

    2009-07-01

    A sludge pyrolytic kinetics model was established in this study. Two types of sewage sludge from different industrial wastewater treatment plant produced different DTG (Derivative Thermogravimetry) shapes with an overlapping pattern. The multi-heating rate method was conducted to evaluate the kinetics for obtaining reasonable pyrolysis mechanisms and DTG curves were divided into several peaks using the Lorentz fitting method based on the composition of the sludge and the desire for precision. The peaks formed corresponded to the pyrolysis reactions of volatile matter, microbe cells, proteins, inorganic substances and char respectively, which can be reasonably explained based on the results from the flue gas analyzer and the chemical analysis. Two types of sewage sludge were found to have similar pyrolysis mechanisms. Reasonable reasons were also given to explain the distortion and lag observed in the DTG curves and pyrolysis mechanism. PMID:19342231

  19. Wetting failure of hydrophilic surfaces promoted by surface roughness

    PubMed Central

    Zhao, Meng-Hua; Chen, Xiao-Peng; Wang, Qing

    2014-01-01

    Wetting failure is of vital importance to many physical phenomena, such as industrial coating and drop emission. Here we show when and how the surface roughness promotes the destabilization of a moving contact line on a hydrophilic surface. Beyond the balance of the driving force and viscous resistance where a stable wetting interface is sustained, wetting failure occurs and is modified by the roughness of the surface. The promoting effect arises only when the wetting velocity is high enough to create a gas-liquid-solid composite interface in the vicinity of the moving contact line, and it is a function of the intrinsic contact angle and proportion of solid tops. We propose a model to explain splashes of rough solid spheres impacting into liquids. It reveals a novel concept that dynamic wetting on hydrophilic rough surfaces can be similar to that on hydrophobic surfaces, and brings a new way to design surfaces with specific wetting properties. PMID:24948390

  20. Next generation enhancement of cements by the addition of industrial wastes and subsequent treatment with supercritical CO{sub 2}

    SciTech Connect

    Taylor, C.M.V.; Rubin, J.B.; Carey, J.W.; Jones, R.; Baglin, F.G.

    1997-09-01

    The natural curing reactions which occur in a standard portland cement involve the formation of portlandite, Ca(OH){sub 2}, and calcium silicate hydrates, CSH. Over time, the cured cement abstracts carbon dioxide, CO{sub 2}, from the air, converting the portlandite and CSH to calcium carbonate, CaCO{sub 3}. It turns out, however, that this secondary conversion results in the blockage and/or closure of pores, drastically slowing the reaction rate with time. By exposing a portland cement to supercritical CO{sub 2} (SCCO{sub 2}), it is found that the carbonation reaction can be greatly accelerated. This acceleration is due to (1) the ability of the supercritical fluid to penetrate into the pores of the cement, providing continuous availability of fresh reactant, in hyper-stoichiometric concentrations; and (2) the solubility of the reaction product in the supercritical fluid, facilitating its removal. By accelerating the natural aging reactions, a chemically stable product is formed having reduced porosity, permeability and pH, while at the same time significantly enhancing the mechanical strength. The supercritical CO{sub 2} treatment process also removes a majority of the hydrogenous material from the cement, and sequesters large amounts of carbon dioxide, permanently removing it from the environment. The authors describe the general features of supercritical fluids, as well as the application of these fluids to the treatment of cements containing industrial waste. Some of the issues concerning the economic feasibility of industrial scale-up will be addressed. Finally, some initial results of physical property measurements made on portland cements before and after supercritical fluid CO{sub 2} treatment will be presented.