Sample records for wetland vegetation establishment

  1. Wetland vegetation establishment in L-Lake

    SciTech Connect

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  2. Establishment of vegetation in constructed wetlands using biosolids and quarry fines

    SciTech Connect

    Danehy, T.P.; Zick, R.; Brenner, F.; Chmielewski, J.; Dunn, M.H.; Cooper, D.C.

    1999-07-01

    A common problem with constructing wetlands on abandoned mine sties is the lack of adequate soil needed to establish vegetation. One component of a full-scale passive treatment system built at Jennings Environmental Education Center in Brady Township, Butler County, PA addressed this issue through the development of a field trial to find an inexpensive alternative substrate for wetland plants. A simple soil recipe was followed which called for the mixing of an inorganic material with a nutrient-rich organic material. The inorganic constituent used was silt-size pond cleanings from a sand and gravel operation. The organic material used was a composted product made from exceptional-quality biosolids. Both soil components were obtained from local sources (less than 16 kilometers (12 miles) from the site) and mixed on site with a Caterpillar 963 track loader. The soil was used to construct a channel wetland 3 meters (10 feet) wide by 61 meters (200 feet) long. A seed mixture which contained 24 different wetland plant species native to western Pennsylvania was added to the substrate prior to releasing the water from the vertical flow system into the wetland. After one year, the vegetation was studied to determine the percent cover and species composition in order to document the effectiveness of this method of wetland construction. The preliminary results of this study indicate that this is an effective means to establish and sustain wetland vegetation. The addition of a fabricated substrate consisting of composted biosolids and silt can be a very effective method to establish dense and diverse vegetation in a constructed wetland.

  3. Upland and wetland vegetation establishment on coal slurry in northern Missouri

    SciTech Connect

    Skeel, V.A.; Nawrot, J.R. [Southern Illinois Univ., Carbondale, IL (United States). Cooperative Wildlife Research Lab.

    1998-12-31

    Since the Cooperative Wildlife Research Laboratory`s (CWRL) Mined Land Reclamation Program`s first establishment of a wetland on slurry in 1976, industry, state, and federal agency interest in reclamation alternatives for inactive slurry has increased. CWRL has been involved in pre-reclamation site characterization and monitoring for inactive slurry impoundments throughout Illinois, Indiana, Kansas, Kentucky, Missouri, and Washington. Geochemical site characterization of three slurry impoundments at the AECI Bee Veer Mine located near Macon, Missouri began in April 1990. A substrate sampling grid was established for all slurry impoundments with a centerline orientated parallel to the discharge to decant flow pattern. Surface (0--6 in.) and subsurface (30--36 in.) slurry samples were collected annually and analyzed for acid-base balance, immediate acidity macro- and micro-nutrients, potential phytotoxic metallic ions and salts, and texture. Water table elevations and water quality were monitored quarterly from shallow ({le}12 ft.) piezometers. General reclamation plans included annual (3 years) incremental limestone amendments (35--50 tons/acre) and direct vegetation establishment. Cool and warm season grasses dominate vegetation cover in upland habitats (slurry cell RDA1) while wetland habitats (palustrine emergent seasonally-permanently inundated) have been established in slurry cells (RDA2 and RDA3). Isolated hot spots continue to be amended with limestone and supplemental vegetation establishment is scheduled.

  4. Seed bank and established vegetation in the last remnants of the Mexican Central Plateau wetlands: the Lerma marshes.

    PubMed

    Zepeda, Carmen; Lot, Antonio; Nemiga, Xanat Antonio; Manjarrez, Javier

    2014-06-01

    Seed banks play a central role in vegetation dynamics of many wetlands. Therefore, knowledge of seed reservoirs in the soils of aquatic communities should provide useful tools for conservation and restoration efforts. This study was conducted in the Lerma marshes, one of the last remnants of the vast wetlands that were once in the Mexican Central Plateau. The main objective was to determine the composition and abundance of seed bank and its relationship with established vegetation of the three Lerma marshes. In each marsh, we systematically selected 18 to 40 sampling sites. In each site, the composition of vascular plant vegetation was evaluated in two 10m lines perpendicular to the shore. Every 0.5m, we determined the coverage of species by measuring the intercepted length for each plant or group of plants. At each sampling site where we had evaluated the established vegetation, we collected a sample of the top 10cm of sediment; the soil cores were divided into an upper layer (0-5cm) and a lower layer (5-10cm). These samples were used to evaluate the seed bank by the seedling emergence method. All samples were placed in a greenhouse at 20-25 degrees C and remained flooded for 15 weeks. Forty-nine species were recorded in the vegetation. Chiconahuapan had the richest and most diverse flora and the greatest number of perennial species. A life-forms analysis showed that perennial herbs, especially rooted-emergent hydrophytes, dominated in the three wetlands. Sixty-one species were identified in the total seed bank; Chimaliapan had the most diverse total seed bank, whereas the mean seedling density was higher in Chignahuapan. Only two species of the total seed bank of each marsh had a density greater than 10% of the total, and more than half were uncommon. The upper layer of sediment (0-5cm) contained two times more seeds/m2 and species per sample than the lower layer (5-10cm), and there was a significant decrease of seed density with depth. The detrended correspondence analysis produced a clear separation between the composition of the seed banks and established vegetation. In general, in each marsh there was less species diversity in the established vegetation than in the seed bank. Dominance by a few species in the seed bank, the presence of opportunistic species, and the low representation of established species in the seed bank suggest wetland degradation and a low probability of regenerating the natural communities from the seed bank. To ensure the permanence of these marshes, their biodiversity, and therefore the environmental services they provide, up to date planning is a must, and efforts to control and monitor hydrology, water quality, and the influence of human activities are suggested. PMID:25102631

  5. Vegetation establishment and evolution in four ponds that received sewage and wastewater in a portion of the Olezoa wetland complex, Yaounde, Cameroon, central Africa

    SciTech Connect

    Atekwana, E.A. (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology); Agendia, P.L. (Univ. of Yaounde (Cameroon). Dept. of Plant Biology)

    1994-04-01

    A study of the spatial and temporal changes in the pattern and distribution of tropical wetland vegetation in four ponds that received sewage and wastewater discharge, was undertaken for a small wetland ecosystem in the Olezoa drainage basin in Yaounde, Cameroon. More than 25 years of nutrient loading has led to the eutrophication and subsequent establishment of wetland vegetation in these ponds. Estimated free water surface areas of the ponds in 1964, 1976, and 1986 and 1992 determined from digitized aerial photographs and field measurements suggests a decline of 70 to 100% in the pond surface areas due to invasion and colonization by plants. The rate of pond surface decline and vegetation development is correlated with the construction of sewage plants and the discharge of untreated sewage and wastewater into the ponds. The main wetland plants that are established in the ponds consist of aquatic species Nymphae lotus, Enhydra fluctuants, Pistia stratiotes, Commelina sp., Ipomea aquatica and terrestrial species Echinochloa sp., Thalia welwitschii, Polygonum senegalense, Leersia haxandra and Cyperus papyrus. The pattern of wetland plant succession that resulted within each pond is correlated to the timing, duration and magnitude of sewage and wastewater discharge into the wetland complex.

  6. The effect of intertidal sediment fences on wetland surface elevation, wave energy and vegetation establishment in two Louisiana coastal marshes

    Microsoft Academic Search

    Roelof M. J Boumans; John W Day; G. Paul Kemp; Kurt Kilgen

    1997-01-01

    Intertidal sediment fences, made from recycled Christmas trees, were built in Louisiana USA, to increase sediment trapping and promote revegetation of submerged vegetation on mudflats. We consider here the effects of Christmas tree fences on wave characteristics, sediment aggradation and vegetation response. Wave energy at the bed decreased 50% across the monitored fences, while elevation increased in the shadow area

  7. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  8. Placing a Fyke Net in Wetland Vegetation

    USGS Multimedia Gallery

    Glen Black of GLSC and Angela Wahlquist of Northland College places fyke net in wetland vegetation in Fish Creek Slough of Lake Superior near Ashland, Wisconsin, as part of a study of bioindicators of wetland degradation in the Great Lakes. This study is funded by the U.S. EPA Environmental Research...

  9. FLUVIAL DISTURBANCE AND WETLAND VEGETATION DEVELOPMENT, UPPER MAIN STEM, WILLAMETTE RIVER, OREGON, USA

    EPA Science Inventory

    Hydrogeomorphic processes drive vegetation establishment, and promote development of diverse wetland and riparian types associated with lotic ecosystems. The main objective of this study was to estimate the rate and pattern of vegetation development on bars tracked since 1936, a...

  10. Development of vegetation in small created wetlands in southeastern Wisconsin

    Microsoft Academic Search

    James A. Reinartz; elizabeth L. Warne

    1993-01-01

    We examined the natural colonization by vascular plants of 11 created wetlands in southeastern Wisconsin. The wetlands studied\\u000a were small depressional wetlands that were isolated from other wetland sites. Wetlands were sampled over a two-year period,\\u000a providing samples of wetlands aged one to three years. The development of wetland vegetation in these 11 naturally colonized\\u000a sites was compared to that

  11. Evaluating Vegetation in the National Wetland Condition Assessment

    EPA Science Inventory

    Vegetation is a key biotic indicator of wetland ecological condition and forms a critical element of the USEPA 2011 National Wetland Condition Assessment. Data describing plant species composition and abundance, vegetation structure, and ground surface characteristics were colle...

  12. Does Prescribed Fire Benefit Wetland Vegetation?

    Microsoft Academic Search

    Dixie L. Bounds; Douglas E. Ruby

    2011-01-01

    The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical\\u000a use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land\\u000a managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce

  13. ESTUARINE WETLANDS (CHAPTER: TERRESTRIAL VEGETATION OF CALIFORNIA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter on estuarine wetlands is a peer-reviewed contribution to the 3rd edition of Terrestrial Vegetation of California (editors: M.G. Barbour, T. Keeler-Wolf, and A. Schoenherr, University of California Press). The objective of the chapter is to describe the distribution, floristic compositi...

  14. Vegetative Nutrient Pools in a Constructed Wetland in Southeastern Idaho

    Microsoft Academic Search

    Andrew M. Ray; Richard S. Inouye

    2006-01-01

    We examined the vegetative pools of carbon (C), nitrogen (N), and phosphorus (P) in constructed wetlands receiving irrigation return flows in southeastern Idaho. Seven native wetland plant species were introduced into the wetlands in 1999. Carex nebrascensis, Eleocharis palustris, Juncus balticus, and Scheonoplectus maritimus were planted in replicate wetland meadows (primary filters), and Scheonoplectus acutus, Scheonoplectus pungens, and Typha latifolia

  15. Effects of scale-dependent factors on herbaceous vegetation patterns in a wetland, northern Japan

    Microsoft Academic Search

    Shiro TSUYUZAKI; Akira HARAGUCHI; Fusayuki KANDA

    2004-01-01

    Herbaceous vegetation was examined in an Otanoshike wetland in northern Japan to clarify the relationships between vegetation patterns and environmental factors with different scales. Alders ( Alnus japonica) have recently invaded and might modify the herbaceous vegetation. In total, 150 50?×?50?cm plots were established on the transitional areas between alder thickets and grassy marshland. Cover was measured for the vascular

  16. Vegetation of Upper Coastal Plain depression wetlands: Environmental templates and wetland dynamics within a landscape framework.

    SciTech Connect

    De Steven, Diane; Toner, Maureen, M.

    2004-03-01

    Reference wetlands play an important role in efforts to protect wetlands and assess wetland condition. Because wetland vegetation integrates the influence of many ecological factors, a useful reference system would identify natural vegetation types and include models relating vegetation to important regional geomorphic, hydrologic, and geochemical properties. Across the U.S. Atlantic Coastal Plain, depression wetlands are a major hydrogeomorphic class with diverse characteristics. For 57 functional depression wetlands in the Upper Coastal Plain of South Carolina, we characterized the principal vegetation types and used a landscape framework to assess how local (wetland-level) factors and regional landscape settings potentially influence vegetation composition and dynamics. Wetland sites were stratified across three Upper Coastal Plain landscape settings that differ in soils, surface geology, topography, and land use. We sampled plant composition, measured relevant local variables, and analyzed historical transitions in vegetative cover types. Cluster analysis identified six vegetation types, ranging from open-water ponds and emergent marshes to closed forests. Significant vegetation-environment relationships suggested environmental ''templates'' for plant community development. Of all local factors examined, wetland hydrologic regime was most strongly correlated with vegetation type, but depression size, soil textural type, and disturbance history were also significant. Because hydrogeologic settings influence wetland features, local factors important to vegetation were partly predictable from landscape setting, and thus wetland types were distributed non-randomly across landscape settings. Analysis of long-term vegetation change indicated relative stability in some wetlands and succession in others. We developed a landscape-contingent model for vegetation dynamics, with hydroperiod and fire as major driving variables. The wetland classification, environmental templates, and dynamics model provide a reference framework to guide conservation priorities and suggest possible outcomes of restoration or management.

  17. Effects of dominant species on vegetation change in Carolina bay wetlands following a multi-year drought.

    SciTech Connect

    Mulhouse, John, M.; De Steven, Diane; Lide, Robert, F.; Sharitz, Rebecca, R.

    2005-05-01

    Wetland vegetation is strongly dependent upon climate-influenced hydrologic conditions, and plant composition responds in generally consistent ways to droughts. However, the extent of species composition change during drought may be influenced by the pre-existing structure of wetland vegetation. We characterized the vegetation of ten herbaceous Carolina bay wetlands on the South Carolina Upper Coastal Plain during a period of average rainfall and again near the end of a four-year drought. We hypothesized that, as a group, bays dominated by less robust plant species (characteristic of open-water pond and depression meadow vegetation types) would show greater compositional change than bays dominated by dense, robust-form clonal graminoids (characteristic of grass and sedge marsh vegetation types). Aquatic species decreased during the drought in all wetlands, regardless of vegetation group. Compared to grass/sedge marshes, pond/meadow wetlands acquired more species, particularly non-wetland species, during the drought. Pond/meadow wetlands also had greater increases in the abundances of species that require unflooded conditions to establish. Prior to the drought, all wetlands were ponded almost continuously, but during drought the pond/meadow wetlands had shorter and more variable hydroperiods than the grass/sedge marshes. Thus, vegetation change may be partly confounded with hydrologic conditions that provide greater opportunities for species recruitment in pond/meadow bays. The results suggest that Carolina bay vegetation dynamics may differ as a function of dominant vegetation and climate driven variation in wetland hydrologic condition.

  18. Vegetation survey of PEN Branch wetlands

    SciTech Connect

    Not Available

    1991-01-01

    A survey was conducted of vegetation along Pen Branch Creek at Savannah River Site (SRS) in support of K-Reactor restart. Plants were identified to species by overstory, understory, shrub, and groundcover strata. Abundance was also characterized and richness and diversity calculated. Based on woody species basal area, the Pen Branch delta was the most impacted, followed by the sections between the reactor and the delta. Species richness for shrub and groundcover strata were also lowest in the delta. No endangered plant species were found. Three upland pine areas were also sampled. In support of K Reactor restart, this report summarizes a study of the wetland vegetation along Pen Branch. Reactor effluent enters Indian Grove Branch and then flows into Pen Branch and the Pen Branch Delta.

  19. Trends and interrelationships in boreal wetland vegetation N. C. KENKEL'

    E-print Network

    Kenkel, Norm

    Trends and interrelationships in boreal wetland vegetation N. C. KENKEL' Department of Planr Sciences, University of Western Onrario, London, Ont., Canada N6A 5B7 Received February 7, 1986 KENKEL,N. C stands. KENKEL,N. C. 1987. Trends and interrelationships in boreal wetland vegetation. Can. J. Bot. 65

  20. CHARACTERIZATION OF MICROTOPOGRAPHY AND ITS INFLUENCE ON VEGETATION PATTERNS IN CREATED WETLANDS

    E-print Network

    CHARACTERIZATION OF MICROTOPOGRAPHY AND ITS INFLUENCE ON VEGETATION PATTERNS IN CREATED WETLANDS, Virginia, USA 20192 Abstract: Created wetlands are increasingly used to mitigate wetland loss. Thus, identifying wetland creation methods that enhance ecosystem development might increase the likelihood

  1. ORIGINAL PAPER Mapping changes in tidal wetland vegetation composition

    E-print Network

    Parker, V. Thomas

    services, habitat for endangered species, flood-control benefits, and, under the right conditions, can classification accuracies were above 80%, demonstrating the potential to map emergent wetland vegetation overall habitat quality for numerous species and other important processes like sedimentation. Wetland

  2. Metric Similarity in Vegetation-Based Wetland Assessment Methods

    EPA Science Inventory

    Wetland vegetation is a recognized indicator group for wetland assessments, but until recently few published protocols used plant-based indicators. To examine the proliferation of such protocols since 1999, this report reviewed 20 published index of biotic integrity (IBI) type p...

  3. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    SciTech Connect

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  4. A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter

    1993-01-01

    The objective of this study was to construct a spatial simulation model of the vegetation dynamics in semi-permanent prairie wetlands. A hydrologic submodel estimated water levels based on precipitation, runoff, and potential evapotranspiration. A vegetation submodel calculated the amount and distribution of emergent cover and open water using a geographic information system. The response of vegetation to water-level changes was based on seed bank composition, seedling recruitment and establishment, and plant survivorship. The model was developed and tested using data from the Cottonwood Lake study site in North Dakota. Data from semi-permanent wetland P1 were used to calibrate the model. Data from a second wetland, P4, were used to evaluate model performance. Simulation results were compared with actual water data from 1797 through 1989. Test results showed that differences between calculated and observed water levels were within 10 cm 75% of the time. Open water over the past decade ranged from 0 to 7% in wetland P4 and from 0 to 8% in submodel simulations. Several model parameters including evapotranspiration and timing of seedling germination could be improved with more complex techniques or relatively minor adjustments. Despite these differences the model adequately represented vegetation dynamics of prairie wetlands and can be used to examine wetland response to natural or human-induced climate change.

  5. ORIGINAL PAPER Mapping changes in tidal wetland vegetation composition

    E-print Network

    Kelly, Maggi

    for endangered species, flood-control benefits, and, under the right conditions, can sequester carbon at high in vegetation class mapping accuracies ranging from 70 to 92%; 10 out of 12 classification accuracies were above habitat quality for numerous species and other important processes like sedimentation. Wetland vegetation

  6. Coevolution of hydraulic, soil and vegetation processes in estuarine wetlands

    NASA Astrophysics Data System (ADS)

    Trivisonno, Franco; Rodriguez, Jose F.; Riccardi, Gerardo; Saco, Patricia; Stenta, Hernan

    2014-05-01

    Estuarine wetlands of south eastern Australia, typically display a vegetation zonation with a sequence mudflats - mangrove forest - saltmarsh plains from the seaward margin and up the topographic gradient. Estuarine wetlands are among the most productive ecosystems in the world, providing unique habitats for fish and many terrestrial species. They also have a carbon sequestration capacity that surpasess terrestrial forest. Estuarine wetlands respond to sea-level rise by vertical accretion and horizontal landward migration, in order to maintain their position in the tidal frame. In situations in which buffer areas for landward migration are not available, saltmarsh can be lost due to mangrove encroachment. As a result of mangrove invasion associated in part with raising estuary water levels and urbanisation, coastal saltmarsh in parts of south-eastern Australia has been declared an endangered ecological community. Predicting estuarine wetlands response to sea-level rise requires modelling the coevolving dynamics of water flow, soil and vegetation. This paper presents preliminary results of our recently developed numerical model for wetland dynamics in wetlands of the Hunter estuary of NSW. The model simulates continuous tidal inflow into the wetland, and accounts for the effect of varying vegetation types on flow resistance. Coevolution effects appear as vegetation types are updated based on their preference to prevailing hydrodynamic conditions. The model also considers that accretion values vary with vegetation type. Simulations are driven using local information collected over several years, which includes estuary water levels, accretion rates, soil carbon content, flow resistance and vegetation preference to hydraulic conditions. Model results predict further saltmarsh loss under current conditions of moderate increase of estuary water levels.

  7. Integration of vegetation inventory data and ALOS image for vegetation classification in Yancheng coastal wetlands

    NASA Astrophysics Data System (ADS)

    Li, Yunmei; Wu, Lan; Yang, Yu; Xia, Rui; Wang, Yanfei; Jin, Xing

    2009-10-01

    Systematic mapping and monitoring of wetland landscape are of fundamental importance for wetland development and management. To accurately classify wetland in Yancheng coastal wetland, ground investigation was conducted in 2006. Integrated with ground investigation, the wetland was classified into 8 categories such as Spartina alterniflora Loisel, Farm land, Phragmites Australis, Artemisia halodendron Turcz, Bare beach, Salt field, Fish & shrimp pond, and Sea water. A total of three decision trees were successfully produced. The first represented broad divisions of vegetation (in fact, at this stage, it just can be called vegetated cover like) and non-vegetation, and the second two represented more detailed vegetation classes and non-vegetation classes. To construct the decision trees, NDVI and principal component analysis were used as the evaluation factors. The thresholds were built combining with ground investigation and spectral property. Firstly, almost all kinds of vegetable were divided out of non-vegetation by NDVI. Secondly, the different species of vegetation were distinguished and some vegetated cover like was eliminated out of vegetation. Phragmites Australis belt, Artemisia halodendron Turcz belt, Spartina alterniflora Loisel belt and bare beach belt were distributed regularly from land to sea.

  8. Vegetation Changes and Partitioning of Selenium in 4YearOld Constructed Wetlands Treating Agricultural Drainage

    Microsoft Academic Search

    Z.-Q. Lin; N. Terry; S. Gao; S. Mohamed; Z. H. Ye

    2010-01-01

    The knowledge of selenium (Se) partitioning in treatment wetlands and wetland vegetation management are essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage in central California. In this field study, samples from different compartments of treatment wetlands were collected and the vegetation change in each wetland cell was examined four years after the wetland's inception. The results

  9. Multispectral and hyperspectral remote sensing for identification and mapping of wetland vegetation: a review

    Microsoft Academic Search

    Elhadi Adam; Onisimo Mutanga; Denis Rugege

    2010-01-01

    Wetland vegetation plays a key role in the ecological functions of wetland environments. Remote sensing techniques offer timely,\\u000a up-to-date, and relatively accurate information for sustainable and effective management of wetland vegetation. This article\\u000a provides an overview on the status of remote sensing applications in discriminating and mapping wetland vegetation, and estimating\\u000a some of the biochemical and biophysical parameters of wetland

  10. Reestablishment of wetland vegetation on gas pipeline rights-of-way in six different wetland ecosystems

    SciTech Connect

    Zimmerman, R.E. Shem, L.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Van Dyke, G.D. (Trinity Christian Coll. Palos Heights, IL (United States)); Hackney, C. (North Carolina Univ., Wilmington, NC (United States)); Gowdy, M. (Institute of Technology, Chicago, IL (United States))

    1992-05-01

    Vegetational surveys were carried out to compare reestablished vegetation on pipeline rights-of-way (ROWS) with that in adjacent natural ecosystems undisturbed by pipeline installation. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the ROW approximated or exceeded those in the adjacent natural area. In four ecosystems, the vegetation on the ROW was limited to a herbaceous layer by ROW maintenance; thus, the ROWs often involved a complex of species quite different from that found in the adjacent ecosystems.

  11. Modeling Hydrologic and Vegetation Responses in Freshwater Wetlands

    NASA Astrophysics Data System (ADS)

    Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui

    2010-05-01

    Wetlands constitute 6 - 7 % of the Earth's land surface and provide various critical ecosystem services such as purifying the air and water, mitigating floods and droughts, and supporting wildlife habitats. Despite the importance of wetlands, they are under threat of degradation by human-induced land use changes and climate change. Even if the value of wetlands is recognized, they are often not managed properly or restored successfully due to an inadequate understanding of the ecosystems and their responses to management scenarios. A better understanding of the main components of wetlands, namely the interdependent hydrologic and vegetation systems, and the sensitivity of their responses to engineering works and climate change, is crucial for the preservation of wetlands. To assess these potential impacts, a model is developed in this study for characterizing the coupled dynamics between soil moisture and plant biomass in wetland habitats. The hydrology component of the model is based on the Richards' equation and simulates spatially-varying groundwater movement and provides information on soil moisture at different depths. The plant growth component of the model is described through an equation of the Lotka-Volterra type modified for plant growth dynamics and is adapted from published literature. The two components are coupled via transpiration and ecosystem carrying capacity for plants. Transpiration is modeled for both unsaturated and saturated zones, while the carrying capacity describes limiting oxygen and subsequent nutrient availability in the soil column as a function of water table depth. Vegetation is represented by two species characteristic of mudflat herbaceous plants ranging from facultative wetland to upland plants. The model is first evaluated using a simplified domain and the hydrological information available in the RG2 site of the Everglades wetlands region. The modeled water table fluctuations in general are comparable to field data collected on-site, indicating the potential of the model in capturing soil moisture dynamics. Further application of the model for impact assessments demonstrates that drainage of wetlands resulting in groundwater drawdown is expected to produce appreciable effects on vegetation biomass response. The model developed in this study simulates the coupled and spatially-varying groundwater movement and plant growth dynamics, which allows researchers to better understand and protect the integrated hydrologic and vegetation systems of wetlands worldwide.

  12. Mercury concentrations in oligohaline wetland vegetation and associated soil biogeochemistry.

    PubMed

    Willis, Jonathan M; Gambrell, Robert P; Hester, Mark W

    2011-10-01

    Concentrations of mercury were determined in above- and below-ground tissues of dominant plant species, as well as soils, in the wetlands of Lake Maurepas, Louisiana. Indicators of wetland soil biogeochemical status, such as soil redox potential, pore-water nutrient concentrations, and pore-water total sulfides, were also determined. Total mercury concentrations in plant tissues were within the typical range for vegetation not exposed to mercury contamination. Similarly, total mercury concentrations in soils were typical of uncontaminated wetlands within this geographic region. Soil methyl mercury levels in this study are slightly lower than those reported in other studies of nearby wetlands. This may reflect the less extensive geographic sampling in this study, or the low water levels in the Lake Maurepas system immediately prior to and during this study, which would have altered soil biogeochemical status. This is corroborated by measurements of soil redox potential and soil pore-water nitrogen and sulfur constituents conducted during this study that suggest minimal sulfate reduction was occurring in surficial soils. This study indicates that the wetlands surrounding Lake Maurepas are typical of many uncontaminated oligohaline wetlands in the southeastern U.S. in regard to mercury concentrations. PMID:21188507

  13. Classification of wetlands vegetation using small scale color infrared imagery

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1975-01-01

    A classification system for Chesapeake Bay wetlands was derived from the correlation of film density classes and actual vegetation classes. The data processing programs used were developed by the Laboratory for the Applications of Remote Sensing. These programs were tested for their value in classifying natural vegetation, using digitized data from small scale aerial photography. Existing imagery and the vegetation map of Farm Creek Marsh were used to determine the optimal number of classes, and to aid in determining if the computer maps were a believable product.

  14. AIS-2 spectra of California wetland vegetation

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1987-01-01

    Spectral data gathered by Airborne Imaging Spectrometers-2 from wetlands were analyzed. Spectra representing stands of green Salicornia virginica, green Sesuvium verrucosum, senescing Distichlis spicata, a mixture of senescing Scirpus acutus and Scirpus californicus, senescing Scirpus paludosus, senescent S. paludosus, mowed senescent S. paludosus, and soil were isolated. No difference among narrowband spectral reflectance of the cover types was apparent between 0.8 to 1.6 micron. There were, however, broadband differences in brightness. These differences were sufficient to permit a fairly accurate decomposition of the image into its major cover type components using a procedure that assumes an additive linear mixture of surface spectra.

  15. Laboratory and numerical studies of wave damping by emergent and near-emergent wetland vegetation

    Microsoft Academic Search

    Lauren N. Augustin; Jennifer L. Irish; Patrick Lynett

    2009-01-01

    Wetlands protect mainland areas from erosion and damage by damping waves. Yet, this critical role of wetland is not fully understood at present, and a means for reliably determining wave damping by vegetation in engineering practice is not yet available. Laboratory experiments were conducted to measure wave attenuation resulting from synthetic emergent and nearly emergent wetland vegetation under a range

  16. Diurnal Cycles of Trace Gas Transfer through Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Ho, D. T.; Jaffe, P. R.

    2010-12-01

    Natural and constructed wetlands are major sources of biogeochemical trace gases, and have recently gained attention as tools for passive remediation of discharging groundwater contaminated with volatile organic compounds (VOCs). Wetland plants act as conduits for the volatilization of dissolved compounds from the interstitial pore waters of aquatic sediments to the atmosphere, so clarifying the mechanisms of this vegetation-mediated gas transport is essential to understanding the emissions of compounds including methane and VOCs. The conservative gas tracer sulfur hexafluoride (SF6) was used to examine mechanisms of gas transport through the wetland macrophytes Scirpus acutus and Typha latifolia in greenhouse mesocosm experiments. The results provide novel experimental evidence for the enhancement by light of plant-mediated gas fluxes through S. acutus, a species with no previously documented light-activated gas transport mechanism. A nonlinear saturation model was fit to the tracer flux data using least-squares regression. The mechanism for this light-enhanced flux was investigated in additional experiments in which atmospheric humidity was deliberately manipulated. These results will be discussed with respect to the role of transpiration in enhancing plant-mediated gas transport. The SF6 flux data also quantify inter-species and seasonal variability in gas transfer rates, and capture the dynamics of pressurized gas flows in T. latifolia. A numerical model of gas transport mechanisms in the root and rhizosphere system was calibrated with experimental data and used to further examine mechanisms of gas exchange between saturated wetland sediments, vegetation, and the atmosphere.

  17. Vegetation analysis of Burullus Wetland: a RAMSAR site in Egypt

    Microsoft Academic Search

    Kamal H. Shaltout; Yassin M. Al-Sodany

    2008-01-01

    We analyzed the vegetation of Lake Burullus at the deltaic Mediterranean coast of Egypt, the sand bar between its northern\\u000a shore and Mediterranean Sea, the water courses that drain into the lake and the wetland around it. Our ultimate aim was to\\u000a identify threatened species and communities and the environmental factors that affect their distribution in order to formulate\\u000a a

  18. Discrimination of wetland vegetation using close-range remote sensing

    NASA Astrophysics Data System (ADS)

    Demarey, Deborah Marie

    The protection and conservation of sensitive environmental habitats has, in recent years, focused public attention on wetland ecosystems. Traditional methods of wetland assessment have been augmented through the use of remote sensing technologies. Remote sensing offers acquisition of copious amounts of data in short periods of time over land areas that might otherwise be inaccessible. The problem, however, from a remote sensing standpoint is that verification of wetland composition relies on accurate ground truth inventories. The establishment of a library containing unique spectral responses for obligates and facultative wetland plant species would provide baseline reference data for accurate assessment of wetland condition. This research focused on the spectral discrimination of five species of wetland plants that commonly coexist in temperate North American non-tidal wetlands. A specially designed wetland was constructed to closely approximate natural conditions, and was planted with monospecific stands of Typha angustifolia L., Nymphaea tuberosa Paine, Sparganium eurycarpum Engelm., Scirpus acutus Muhl., and Sagittaria latifolia Willd. Spectral data from multiple quadrats were collected through the use of a hyperspectral spectroradiometer operating at close range. The degree of similarity and difference within each monospecific stand was evaluated as was the difference and similarity among the species on each of nine dates throughout a single growing season. If identification of a unique spectral response ("signature") was possible, the degree of variation within the stand must not exceed variation among the stands. A temporal investigation compared plant life cycles and physiology to spectral responses. Patterns of spectral variation clearly reflect seasonal lifecycle changes from juvenility through senescence, but do not exhibit spectral integrity that would consistently permit discrimination. Chlorophyll assays were compared to hyperspectral response to discern patterns of light absorption and reflectivity that might aid in the discrimination of species based on periods of increased or decreased chlorophyll production. Correlation between chlorophyll production and growth stages was observed but discrimination of the species based on those observations was not supported.

  19. Environmental dispersion in a tidal wetland with sorption by vegetation

    NASA Astrophysics Data System (ADS)

    Wang, Ping; Chen, G. Q.

    2015-05-01

    Understanding of the solute transport mechanism under the effect of sorption by vegetation in tidal wetland gains its significance for environmental and ecological management. Presented in this paper is a theoretical analysis of effective environmental dispersion in a depth-dominated tidal wetland. Based on the transport in porous media, a linear sorption isotherm model is adopted to account for the sorption by vegetation, and two models for momentum and concentration transport in wetlands are given, respectively. The velocity of flow forced by oscillating pressure is derived, and the effect of dimensionless parameters on velocity pulsation is analyzed. The velocity direction may reverse in the case of pulsation amplitude larger than the mean velocity. Using Aris's method of concentration moments, we investigate the effective environmental dispersivity and concentration distribution. The effective environmental dispersivity increases over time at the initial stage to attain a steady oscillating status, the growth rate of which depends on the distribution coefficient KD . The variations of concentration distribution with typical dimensionless parameters are determined, which turn out to be consistent with those of dispersivity. The sorption by vegetation leads to lowered concentration and delayed contaminant cloud, contributing to the dispersion.

  20. Changes in vegetative coverage of the Hongze Lake national wetland nature

    E-print Network

    Meyers, Steven D.

    Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade://remotesensing.spiedigitallibrary.org/ on 03/14/2013 Terms of Use: http://spiedl.org/terms #12;Changes in vegetative coverage of the Hongze of temporal changes in vegetative coverage, as a measure of the wetland health, is critical to help implement

  1. Vegetation Changes and Partitioning of Selenium in 4-Year-Old Constructed Wetlands Treating Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The knowledge of vegetation management and the partitioning of selenium (Se) in treatment wetlands is essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage water in the San Joaquin Valley, California. Vegetation changes in six vegetated wetl...

  2. Texture classification of vegetation cover in high altitude wetlands zone

    NASA Astrophysics Data System (ADS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-03-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data.

  3. Carbon gas fluxes in re-established wetlands on organic soils differ relative to plant community and hydrology

    USGS Publications Warehouse

    Miller, Robin L.

    2011-01-01

    We measured CO2 and CH4 fluxes for 6 years following permanent flooding of an agriculturally managed organic soil at two water depths (~25 and ~55 cm standing water) in the Sacramento–San Joaquin Delta, California, as part of research studying C dynamics in re-established wetlands. Flooding rapidly reduced gaseous C losses, and radiocarbon data showed that this, in part, was due to reduced oxidation of "old" C preserved in the organic soils. Both CO2 and CH4 emissions from the water surface increased during the first few growing seasons, concomitant with emergent marsh establishment, and thereafter appeared to stabilize according to plant communities. Areas of emergent marsh vegetation in the shallower wetland had greater net CO2 influx (-485 mg Cm-1 h-1), and lower CH4 emissions (11.5 mg Cm-2 h-1), than in the deeper wetland (-381 and 14.1 mg Cm-2 h-1, respectively). Areas with submerged and floating vegetation in the deeper wetland had CH4 emissions similar to emergent vegetation (11.9 and 12.6 mg Cm-2 h-1, respectively), despite lower net CO2 influx (-102 gC m-2 h-1). Measurements of plant moderated net CO2 influx and CH4 efflux indicated greatest potential reduction of greenhouse gases in the more shallowly flooded wetland.

  4. Vegetation establishment success in restored carolina bay depressions on the Savannah River Site, South Carolina - phase one.

    SciTech Connect

    Sharitz, Rebecca, A.; Mulhouse, John, M.

    2004-05-01

    Successful wetlands restoration must re-establish or enhance three parameters: wetland hydrology, hydric soils, and hydrophytic vegetation (Mitsch and Gosselink 2000). On the Savannah River Site, South Carolina, restoration of small Carolina bay depression-wetlands was initiated in FY 2001 to provide wetland acreage for mitigation banking (US DOE 1997). Sixteen small depressions that had historically been drained for agricultural purposes were selected for restoration, and an additional four were initially chosen to serve as non-restored controls. Restoration treatments included plugging the existing ditches to increase water volume retention and wetland hydroperiod and clear-cutting removal of woody vegetation in the interiors. Planned endpoints of the restoration were herbaceous meadow and forested savanna bay interiors, and pine savanna and pine/hardwood forested bay margins (Barton and Singer 2001). To promote forested savanna interiors, saplings of bald cypress and swamp tupelo were planted following removal of the woody species.

  5. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.

    PubMed

    Lin, Z Q; Terry, N; Gao, S; Mohamed, S; Ye, Z H

    2010-03-01

    The knowledge of selenium (Se) partitioning in treatment wetlands and wetland vegetation management are essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage in central California. In this field study, samples from different compartments of treatment wetlands were collected and the vegetation change in each wetland cell was examined four years after the wetland's inception. The results showed that saltgrass (Distichlis spicata) and rabbitfoot grass (Polypogon monspeliensis) were less competitive than cattail (Typha latifolia) and saltmarsh bulrush (Scirpus robustus). Over 90% of the wetland cell originally vegetated with saltgrass or rabbitfoot grass was occupied by invasive plants--i.e., when invasive species were not controlled in the wetlands. More Se was likely found in sediments from vegetated regions, compared to the unvegetated areas of the wetland cell. Particularly, rhizosphere sediments accumulated about 4-fold more Se than non-rhizosphere sediments. Among the total Se retained in the wetland 90% of the total Se was partitioned in the top 10-cm layer of sediment. The Se accumulation in plant materials accounted for about 2% of the total Se mass retained in each wetland cell. This field study demonstrated that wetland plants play significant roles in the treatment of Se-laden agricultural drainage. PMID:20734620

  6. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-print Network

    Wang, Yang

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence in soils and plants were made along a chronovegetation sequence stretching from high marsh to low marsh in a coastal wetland in northwest Florida. The wetland is dominated by Juncus roemerianus , which is a C3 plant

  7. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    Microsoft Academic Search

    P. J. A. Rahilly; D. Li; Q. Guo; J. Zhu; R. Ortega; N. W. T. Quinn; T. C. Harmon

    2010-01-01

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated

  8. A comparison of vascular vegetation and protozoan communities in some freshwater wetlands of Northern Lower Michigan

    Microsoft Academic Search

    M. S. Henebry; J. Cairns; C. R. Schwintzer; W. H. Yongue

    1981-01-01

    Vascular vegetation and protozoan communities were sampled in seven wetland sites — two bogs, two fens, two marshes, and one ‘swamp’ — in summer 1977. Two similarity indices were used to compare vascular vegetation and Protozoa from each site with all the other sites. Bog sites were the most distinct from other wetland types with respect to chemical and physical

  9. Effectiveness of wetland-riparian vegetation in remediation of a disturbed seleniferous environment

    SciTech Connect

    Skinner, C.P.; Vance, G.F.

    1999-07-01

    land disturbances can contribute dramatically to soil erosion processes. When seleniferous geologic materials are eroded, atmospheric oxidation and exposure to water have the potential to increase biological uptake of selenium (Se). Though Se is necessary in small amounts for adequate animal nutrition, at concentrations greater than established critical management levels (>5 mg/kg in plants, >0.5 mg/kg in soils, >5 {micro}g/L in waters) biological uptake can become an environmental concern. Terrestrial and wetland-riparian plants, soils, sediments and water samples from erosion control ponds were collected at the Fort Carson Military Installation in southeastern Colorado. Plant Se was determined using a perchloric nitric acid method followed with a hot-water digest using hydrogen peroxide and hydrochloric acid. Soil Se was extracted using di-basic potassium phosphate followed by a hot-water digest with hydrogen peroxide and hydrochloric acid. Water samples were filtered using Gelman membrane filter papers (0.45 {micro}m), then digested using one treatment with the addition of hydrogen peroxide plus hydrochloric acid, and one treatment with no additions. Se concentration was analyzed using hydride generation/atomic absorption spectrometry. Results provide information for addressing three important aspects of Se distribution in the environment: (1) Comparisons between Se concentrations in terrestrial and wetland soils, sediments and plants; (2) Relationships between Se concentrations in wetland plants, sediments and waters; (3) Effectiveness of various wetland-riparian vegetation species in Se uptake compared to plants traditionally studied for this purpose.

  10. Influence of hydrologic regime and vegetation on phosphorus retention in Everglades stormwater treatment area wetlands

    NASA Astrophysics Data System (ADS)

    White, John R.; Reddy, K. Ramesh; Moustafa, M. Z.

    2004-02-01

    The Florida (USA) Everglades ecosystem has been impacted due to increased loading of nutrients, in particular phosphorus (P), primarily from adjacent agricultural areas. Consequently, restoration measures involve the establishment of stormwater treatment areas (STAs) comprising a series of constructed wetlands. A series of mesocosms were established at the inflow of the Everglades Nutrient Removal Project wetland, the first such STA constructed. These mesocosms were designed to mimic STAs, as they operated as flow-through systems and were packed with native soil. The objective of the study was to determine the effects of vegetation and hydrologic fluctuations on P retention/release by the wetland soil and on effluent water quality. Four treatment combinations consisted of continuously flooded with emergents (Typha), intermittently flooded with emergents, continuously flooded with no emergents, and intermittently flooded with no emergents. Intermittently flooded treatments underwent two 1 month drawdown events during the year. Soils were collected to determine the various pools of P and surface water samples were collected twice weekly to determine mass P flux in and out of the mesocosms. Results showed that the majority of the P was stored in the calcium- and magnesium-bound fraction, as well as the refractory pool in the soil. Approximately 91% of the inflow soluble reactive P (SRP) mass was retained within the mesocosms for the continuously flooded treatment, and 80% was retained in the treatments subjected to periodic drawdown events, regardless of vegetation type. There was a net annual flux of dissolved organic P (DOP) out of the mesocosms for the drawdown treatments, whereas the net reduction in the DOP concentrations for the continuously flooded treatments was just 17%. These results demonstrate that, although these wetland systems perform well in reducing surface water SRP, additional research may need to focus on improving the reduction of DOP in order to reduce further the P loads to the nutrient-sensitive Everglades system.

  11. Development of Vegetation Models to Predict the Potential Effect of Groundwater Withdrawals on Forested Wetlands

    Microsoft Academic Search

    Kim J. Laidig; Robert A. Zampella; Allison M. Brown; Nicholas A. Procopio

    2010-01-01

    We developed vegetation models that, when linked to groundwater-hydrology models and landscape-level applications, can be\\u000a used to predict the potential effect of groundwater-level declines on the distribution of wetland-forest communities, individual\\u000a wetland species, and wetland-indicator groups. An upland-to-wetland vegetation gradient, comprising 201 forest plots located\\u000a in five different study basins and classified as either upland pine-oak, pitch pine lowland, pine-hardwood

  12. Hot spots of wetland vegetation reduction in relation to human accessibility: differentiating human impacts on natural ecosystems at multiple scales

    Microsoft Academic Search

    Sheng ShengChi; Chi Xu; Shaowei Zhang; Shuqing An; Maosong Liu; Xuejiao Yang

    Human activities have profoundly influenced natural ecosystems, especially wetlands. This study attempted to differentiate\\u000a the impact of human activities on reductions in wetland vegetation in the Lixiahe wetlands, China, at multiple spatial scales.\\u000a The reduction in wetland vegetation from 1988 to 2006 was quantified using Landsat data, and moving window analysis was used\\u000a to detect hot spots of vegetation reduction

  13. Global warming and prairie wetlands

    SciTech Connect

    Poiani, K.A. (Fish and Wildlife Service, Fort Collins, CO (United States)); Johnson, W.C. (South Dakota State Univ., Brookings (United States))

    1991-10-01

    In this article, the authors discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns and waterfowl habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model.

  14. Establishing a tracer-based sediment budget to preserve wetlands in Mediterranean mountain agroecosystems (NE Spain).

    PubMed

    Navas, Ana; López-Vicente, Manuel; Gaspar, Leticia; Palazón, Leticia; Quijano, Laura

    2014-10-15

    Mountain wetlands in Mediterranean regions are particularly threatened in agricultural environments due to anthropogenic activity. An integrated study of source-to-sink sediment fluxes was carried out in an agricultural catchment that holds a small permanent lake included in the European NATURA 2000 Network. More than 1000 yrs of human intervention and the variety of land uses pose a substantial challenge when attempting to estimate sediment fluxes which is the first requirement to protect fragile wetlands. To date, there have been few similar studies and those that have been carried out have not addressed such complex terrain. Geostatistical interpolation and GIS tools were used to derive the soil spatial redistribution from point (137)Cs inventories, and to establish the sediment budget in a catchment located in the Southern Pyrenees. The soil redistribution was intense and soil erosion predominated over soil deposition. On the areas that maintained natural vegetation the median soil erosion and deposition rates were moderate, ranging from 2.6 to 6 Mg ha yr(-1) and 1.5 to 2.1 Mg ha yr(-1), respectively. However, in cultivated fields both erosion and deposition were significantly higher (ca. 20 Mg ha yr(-1)), and the maximum rates were always associated with tillage practices. Farming activities in the last part of the 20th century intensified soil erosion, as evidenced by the 1963 (137)Cs peaks in the lake cores and estimates from the sediment budget indicated a net deposition of 671 Mg yr(-1). Results confirm a siltation risk for the lake and provide a foundation for designing management plans to preserve this threatened wetland. This comprehensive approach provides information useful for understanding processes that influence the patterns and rates of soil transfer and deposition within fragile Mediterranean mountain wetlands subjected to climate and anthropogenic stresses. PMID:25064720

  15. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin

    Microsoft Academic Search

    Laura L. Hess; John M. Melack; Evlyn M. l. m. Novo; Claudio C. f. Barbosa; Mary Gastil

    2003-01-01

    Wetland extent was mapped for the central Amazon region, using mosaicked L-band synthetic aperture radar (SAR) imagery acquired by the Japanese Earth Resources Satellite-1. For the wetland portion of the 18×8° study area, dual-season radar mosaics were used to map inundation extent and vegetation under both low-water and high-water conditions at 100-m resolution, producing the first high-resolution wetlands map for

  16. Establishment, persistence, and management implications of experimental wetland plant communities

    Microsoft Academic Search

    Evan Weiher; Irene C. Wisheu; Paul A. Keddy; Dwayne R. J. Moore

    1996-01-01

    We inoculated 120 wetland microcosms representing 24 different environmental treatments with seeds from a carefully chosen\\u000a pool of 20 wetland plant species. The treatments were chosen to represent a variety of riverine and lacustrine wetlands, including\\u000a those with slow-growing, rare species. In the first season, an annual (Bidens cernua) was most abundant in all the microcosms. Both flooding and high

  17. An assessment of the aquatic and wetland vegetation of the Upper Mississippi River

    Microsoft Academic Search

    James H. Peck; Miles M. Smart

    1986-01-01

    Illinois, Iowa, Minnesota, Missouri, and Wisconsin have strong botanical traditions that have resulted in a macrophyte literature which documents the identity, taxonomy, floristics, and ecology of aquatic macrophytes and wetland vegetation of the Upper Mississippi River and its floodplain. These findings are reviewed with respect to floristics, vegetation dynamics (patterns, history, production and management), and environmental changes that impact vegetation.

  18. Effects of Woody Vegetation on Prairie Wetland Birds DAVID E. NAUGLE1

    E-print Network

    . agriCUltural land'icape that is less conducive to wet- land bird production. Population declines as the extent of woody vegetation encompassing wttland perimeters increa.o;ed. Logistic analyses indicated nongame wetland bird production is the management goal. Key Words: Edge species. prairie wetland birds

  19. DEVELOPING A WETLAND MONITORING AND ASSESSMENT PROGRAM: LAND USE, INVASIVE SPECIES AND BIOASSESSMENT CRITERIA FOR VEGETATION

    EPA Science Inventory

    This project is one of a suite of interdependent projects developed by members of the Montana Interagency Wetland Monitoring and Assessment Work Group to develop a comprehensive wetland monitoring and assessment program. This project will develop vegetation metrics related to we...

  20. Tidal wetland vegetation and ecotone profiles: The Rush Ranch Open Space Preserve

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Rush Ranch Open Space Preserve (Rush Ranch) is a component site of the San Francisco Bay National Estuarine Research Reserve (SF Bay NERR) that includes one of the largest undiked tidal wetlands in the San Francisco Estuary. The brackish tidal wetlands grade into transitional vegetation and unde...

  1. Controls on vegetative flow resistance in wetlands and low-gradient floodplains

    Microsoft Academic Search

    K. Skalak; J. W. Harvey; L. G. Larsen; G. B. Noe; N. Rybick; J. Jones

    2010-01-01

    In low-gradient floodplains and wetlands, vegetation provides the primary resisting force for flow and hence can exert strong influence on flow velocities, water depth, and redistribution of sediments that affect the geomorphic evolution and ecological function of wetland landscapes. Critical research needs that remain for predicting flow in these environments include integration of data over multiple temporal and spatial scales

  2. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    Microsoft Academic Search

    Steffanie H. Keefe; Robert L. Runkel; Roland D. Wass; Eric A. Stiles; Larry B. Barber

    2010-01-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow

  3. Using MODIS Normalized Difference Vegetation Index to monitor seasonal and inter-annual dynamics of wetland vegetation in the Great Artesian Basin: a baseline for assessment of future changes in a unique ecosystem

    NASA Astrophysics Data System (ADS)

    Petus, C.; Lewis, M.; White, D.

    2012-07-01

    The Great Artesian Basin mound springs (Australia) are unique wetland ecosystems of great significance. However, these unique ecosystems are endangered by anthropogenic water extraction. Relationships have been established between the vegetated wetland area and the discharge associated with individual springs, providing a potential means of monitoring groundwater flow using measurements of wetland area. Previous studies using this relationship to monitor Great Artesian Basin springs have used aerial photography or high resolution satellite images, giving sporadic temporal information. These "snapshot " studies need to be placed within a longer and more regular context to better assess changes in response to aquifer draw-downs. In this study, the potential of medium resolution MODIS Normalized Difference Vegetation Index data for studying the long-term and high frequency temporal dynamics of wetland vegetation at the Dalhousie Spring Complex of the GAB is tested. Photosynthetic activity within Dalhousie wetlands could be differentiated from surrounding land responses. The study showed good correlation between wetland vegetated area and groundwater flow, but also the important influence of natural species phenologies, rainfall, and human activity on the observed seasonal and inter-annual vegetation dynamic. Declining trends in the extent of wetland areas were observed over the 2000- 2009 period followed by a return of wetland vegetation since 2010. This study underlined the need to continue long-term medium resolution satellite studies of the Great Artesian Basin as these data provide a good understanding of variability within the wetlands, give temporal context for less frequent studies and a strong baseline for assessment of future changes.

  4. Vegetation changes and land-use legacies of depression wetlands of the western coastal plain of South Carolina: 1951–1992

    Microsoft Academic Search

    L. Katherine Kirkman; Robert F. Lide; Gary Wein; Rebecca R. Sharitz

    1996-01-01

    We examined historical patterns of land use of depression wetlands (Carolina bay and bay-like wetlands) to determine if a\\u000a relationship between vegetative successional changes over a 41-year period and previous human disturbances (primarily agricultural)\\u000a could be established. Land cover was interpreted from 1951 (black and white) and 1992 (false color infrared) aerial photography\\u000a of the Savannah River Site (a 780

  5. Functioning and dynamics of wetland vegetation of Lake Victoria: an overview

    Microsoft Academic Search

    Frank Kansiime; M. J. Saunders; S. A. Loiselle

    2007-01-01

    The aquatic macrophytic vegetation constituting the wetlands situated along the coast of Lake Victoria provides valuable services\\u000a to both local and regional communities as well as an important ecological function through the transition between terrestrial\\u000a and aquatic ecosystems. The wetland vegetation is typically rooted in the substrate on the landward side of the lake, but\\u000a forms a floating mat towards

  6. RESPONSES OF WETLAND VEGETATION TO WATER LEVEL VARIATIONS IN LAKE ONTARIO

    Microsoft Academic Search

    Wolf-Dieter N. Busch; Lynn M. Lewis

    1984-01-01

    Water level fluctuations, a naturally occurring phenomena in the Great Lakes, cause a continuing rejuvenation of lake-influenced wetlands. Two Lake Ontario wetlands (Campbell and Sage Creek Marshes) were mapped for 1 ft. contour intervals and habitat-vegetation type. Historical habitat\\/vegetation conditions were evaluated through interpretation of aerial photography. The photography was selected to represent water levels different from the current. Habitat

  7. Impact of Multiple Environmental Stresses on Wetland Vegetation Dynamics

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, C. P.; Tamea, S.; Muneepeerakul, R.; Miralles-Wilhelm, F. R.; Rinaldo, A.; Rodriguez-Iturbe, I.

    2009-12-01

    This research quantifies the impacts of climate change on the dynamics of wetland vegetation under the effect of multiple stresses, such as drought, water-logging, shade and nutrients. The effects of these stresses are investigated through a mechanistic model that captures the co-evolving nature between marsh emergent plant species and their resources (water, nitrogen, light, and oxygen). The model explicitly considers the feedback mechanisms between vegetation, light and nitrogen dynamics as well as the specific dynamics of plant leaves, rhizomes, and roots. Each plant species is characterized by three independent traits, namely leaf nitrogen (N) content, specific leaf area, and allometric carbon (C) allocation to rhizome storage, which govern the ability to gain and maintain resources as well as to survive in a particular multi-stressed environment. The modeling of plant growth incorporates C and N into the construction of leaves and roots, whose amount of new biomass is determined by the dynamic plant allocation scheme. Nitrogen is internally recycled between pools of plants, litter, humus, microbes, and mineral N. The N dynamics are modeled using a parallel scheme, with the major modifications being the calculation of the aerobic and anoxic periods and the incorporation of the anaerobic processes. A simple hydrologic model with stochastic rainfall is used to describe the water level dynamics and the soil moisture profile. Soil water balance is evaluated at the daily time scale and includes rainfall, evapotranspiration and lateral flow to/from an external water body, with evapotranspiration loss equal to the potential value, governed by the daily average condition of atmospheric water demand. The resulting feedback dynamics arising from the coupled system of plant-soil-microbe are studied in details and species’ fitnesses in the 3-D trait space are compared across various rainfall patterns with different mean and fluctuations. The model results are then compared with those from experiments and field studies reported in the literature, providing insights about the physiological features that enable plants to thrive in different wetland environments and climate regimes.

  8. The flood pulse as the underlying driver of vegetation in the largest wetland and fishery of the Mekong Basin.

    PubMed

    Arias, Mauricio E; Cochrane, Thomas A; Norton, David; Killeen, Timothy J; Khon, Puthea

    2013-11-01

    The Tonle Sap is the largest wetland in Southeast Asia and one of the world's most productive inland fisheries. The Mekong River inundates the Tonle Sap every year, shaping a mosaic of natural and agricultural habitats. Ongoing hydropower development, however, will dampen the flood pulse that maintains the Tonle Sap. This study established the current underlying relationship among hydrology, vegetation, and human use. We found that vegetation is strongly influenced by flood duration; however, this relationship was heavily distorted by fire, grazing, and rice cultivation. The expected flood pulse alteration will result in higher water levels during the dry season, permanently inundating existing forests. The reduction of the maximum flood extent will facilitate agricultural expansion into natural habitats. This study is the most comprehensive field survey of the Tonle Sap to date, and it provides fundamental knowledge needed to understand the underlying processes that maintain this important wetland. PMID:23877417

  9. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    USGS Publications Warehouse

    Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-01-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  10. Mapping Floating and Emergent Aquatic Vegetation in Coastal Wetlands of Eastern Georgian Bay,

    E-print Network

    McMaster University

    ARTICLE Mapping Floating and Emergent Aquatic Vegetation in Coastal Wetlands of Eastern Georgian Expansion and contraction of floating and emer- gent vegetation due to fluctuating water levels has a direct to delineate most of the coastal marshes of Ontario to create an inventory, but due to incomplete coverage

  11. ASSESSING THE IMPACTS OF AN INCREASE IN WATER LEVEL ON WETLAND VEGETATION

    EPA Science Inventory

    Three different approaches for assessing the impact of a permanent increase in water level on wetland vegetation were studied using a long-term, controlled, and replicated experiment. hese approaches were (1) digitized vegetation maps derived from aerial photographs; (2) vegetati...

  12. Effects of vegetation management in constructed wetland treatment cells on water quality and mosquito production

    USGS Publications Warehouse

    Thullen, J.S.; Sartoris, J.J.; Walton, W.E.

    2002-01-01

    The impact of three vegetation management strategies on wetland treatment function and mosquito production was assessed in eight free water surface wetland test cells in southern California during 1998-1999. The effectiveness of the strategies to limit bulrush Schoenoplectus californicus culm density within the cells was also investigated. Removing accumulated emergent biomass and physically limiting the area in which vegetation could reestablish, significantly improved the ammonia - nitrogen removal efficiency of the wetland cells, which received an ammonia-dominated municipal wastewater effluent (average loading rate = 9.88 kg/ha per day NH4-N). We determined that interspersing open water with emergent vegetation is critical for maintaining the wetland's treatment capability, particularly for systems high in NH4-N. Burning aboveground plant parts and thinning rhizomes only temporarily curtailed vegetation proliferation in shallow zones, whereas creating hummocks surrounded by deeper water successfully restricted the emergent vegetation to the shallower hummock areas. Since the hummock configuration kept open water areas interspersed throughout the stands of emergent vegetation, the strategy was also effective in reducing mosquito production. Decreasing vegetation biomass reduced mosquito refuge areas while increasing mosquito predator habitat. Therefore, the combined goals of water quality improvement and mosquito management were achieved by managing the spatial pattern of emergent vegetation to mimic an early successional growth stage, i.e. actively growing plants interspersed with open water. ?? 2002 Elsevier Science B.V. All rights reserved.

  13. Effects of vegetation in mitigating the toxicity of pesticide mixtures in sediments of a wetland mesocosm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study assessed effects of a mixture of two pesticides, diazinon and permethrin, on 48-h sediment toxicity to Hyalella azteca in a constructed wetland mesocosm containing non-vegetated and vegetated sections. Sediment samples were collected at inflow, middle, and back points within each sectio...

  14. Role of vegetation in a constructed wetland on nutrient-pesticide mixture toxicity of Hyalella azteca

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The toxicity of a nutrient-pesticide mixture in non-vegetated and vegetated sections of a constructed wetland (60 X 30 X 0.3 m) was assessed using Hyalella azteca 48 h aqueous whole effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple super phosphate, dia...

  15. Mapping swamp timothy (Crypsis schoenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    Microsoft Academic Search

    Patrick Rahilly; Donghai Li; Qinghua Guo; Jinxia Zhu; Ricardo Ortega; Nigel W. T. Quinn; Thomas C. Harmon

    2012-01-01

    This work examines the potential to predict the annual seed productivity of swamp timothy (Crypsis schoenoides) in two Central California managed wetlands by correlating spectral reflectance values and associated spectral vegetation indices (SVIs) calculated from two sets of high-resolution aerial images (May and June 2006) to collected vegetation data. An object-based segmentation approach incorporating image textural properties was also investigated.

  16. Discrimination of wetland vegetation using close-range remote sensing

    Microsoft Academic Search

    Deborah Marie Demarey

    2002-01-01

    The protection and conservation of sensitive environmental habitats has, in recent years, focused public attention on wetland ecosystems. Traditional methods of wetland assessment have been augmented through the use of remote sensing technologies. Remote sensing offers acquisition of copious amounts of data in short periods of time over land areas that might otherwise be inaccessible. The problem, however, from a

  17. Aircraft MSS data registration and vegetation classification of wetland change detection

    USGS Publications Warehouse

    Christensen, E.J.; Jensen, J.R.; Ramsey, Elijah W., III; Mackey, H.E., Jr.

    1988-01-01

    Portions of the Savannah River floodplain swamp were evaluated for vegetation change using high resolution (5a??6 m) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (200-250 ha), a first-order linear transformation provided registration accuracies of less than or equal to one pixel. A larger area was registered using a piecewise linear method. Five major wetland classes were identified and evaluated for change. Phenological differences and the variable distribution of vegetation limited wetland type discrimination. Using unsupervised methods and ground-collected vegetation data, overall classification accuracies ranged from 84 per cent to 87 per cent for each scene. Results suggest that high-resolution aircraft MSS data can be precisely registered, if small areas are used, and that wetland vegetation change can be accurately detected and monitored.

  18. Information extraction of wetland vegetation based on remote sensing images and their dynamic changes in yellow

    NASA Astrophysics Data System (ADS)

    Fu, Xin; Xu, Zhenghe

    2013-07-01

    The paper researched the wetland vegetation dynamics in the Yellow River Delta by the remote sensing and geographic information system technology. The study results showed that the land area of the closed regions with sea dykes was basically stable since 1995, and which of the open regions showed the diminishing trend from 1984 to 2006. The change trend of the area of the saline vegetation had increased from 1984 to 2006 and the change rate was 7.18. The change analysis of dynamic degree of wetland vegetation landscape revealed that the succession and conversion within the wetland vegetation landscapes was also one main process. The conversion rate of farmland was more than 12% in the two periods of 1984-1995 and 1995-2006, the human farmland reclamation activities in the coastal region had been on the rise.

  19. Transfer of tracers and pesticides in lab scale wetland systems: the role of vegetation

    NASA Astrophysics Data System (ADS)

    Durst, R.; Imfeld, G.; Lange, J.

    2012-04-01

    Surface wetlands can collect contaminated runoff from urban or agricultural catchments and have intrinsic physical, chemical and biological retention and removal processes useful for mitigating contaminants, including pesticides, and thus limiting the contamination of aquatic ecosystems. Yet little is known about the transfer of pesticides between wetlands collecting pesticides runoff and groundwater, and the subsequent threat of groundwater contamination. In particular, the influence of wetland vegetation and related processes during pesticide transfer is largely unknown. Here we evaluate the transfer of the widely used herbicide Isoproturon (IPU) and the fungicide Metalaxyl (MTX) with that of Uranine (UR) and Sulphorhodamine (SRB) in a vegetated and a non-vegetated lab-scale wetland. UR and SRB had successfully served as a reference for pesticides in surface wetlands. We filled two 65 cm long and 15 cm diameter borosilicate columns with sediment cores from a wetland, one without and one with vegetation (Phragmites australis, Cav.). When a constant flow-through rate of 0.33 ml min-1 was reached, tracers and pesticides were injected simultaneously and continuously. The hydrological mass balance and tracer concentrations were measured daily at the outlet of the lab-scale wetland. Samples for pesticides and hydrochemical analyses were collected biweekly. The lab-scale wetlands were covered to limit evaporation and light decay of injected compounds. The reactive transfer of compounds in the vegetated and non-vegetated lab-scale wetland was compared based on breakthrough curves (BTC's) and model parameters of the lumped parameter model CXTFIT. The hydrologic balance revealed that the intensity of transpiration and hence plant activity in the lab-scale wetlands progressively decreased and then apparently ceased after about eight days following continuous pesticide injection. In this first phase, no significant difference in the hydrologic balances could be observed between the vegetated and the non-vegetated column. In a second phase, vegetation transpiration progressively increased, as inferred from lower volumes of effluent water in the vegetated system. Overall, the behavior of pesticides and tracers, as inferred from the BTC's, were similar. This suggests that fluorescent tracers may be used as a reference for pesticides when studying the surface-groundwater interface. Both pesticides and tracers showed larger recovery rates (UR: 81.7 to 78.6%; SRB: 65.6 to 55.9%; IPU: 76.6 to 79.7%; MTX: 39.5 to 37.5%) and lower retention in the vegetated system. We attribute this finding to preferential flow paths along plant roots. Overall, our study suggests that wetland vegetation and rhizosheric processes may have a dual role in wetland pollutant transfer: while wetland vegetation may enhance retention and bio-degradation of contaminants in surface water, it may also generate preferential flow paths and hence facilitate pollutant transfer to groundwater. Acknowledgment: This study has been funded by the European Union (INTERREG) in the framework of the PhytoRet Project.

  20. Development of vegetation in a constructed wetland receiving irrigation return flows

    Microsoft Academic Search

    Andrew M. Ray; Richard S. Inouye

    2007-01-01

    The Fairview Constructed Wetland, a complex of replicated wet meadow (primary filter) and shallow marsh (shallow wetland) cells, was built in southeast Idaho in 1999 and planted with seven native plant species. The development of aboveground biomass and root mass and the accumulation of litter for each cell and for each species are described here. Establishment patterns varied among species

  1. Hydrogeomorphology, environment, and vegetation associations across a latitudinal gradient in highland wetlands of the northeastern USA

    Microsoft Academic Search

    Jessica Peterson-Smith; Denice Heller Wardrop; Charles Andrew Cole; Christopher P. Cirmo; Robert P. Brooks

    2009-01-01

    Undisturbed, highland wetlands in the northeastern USA are unique habitats which maintain ecological integrity in this region.\\u000a These ecosystems may be threatened by a changing environment. To protect, restore, and create these wetlands, an understanding\\u000a of the relationship between vegetation composition, environmental regime, and the underlying hydrogeomorphology is needed.\\u000a Using a hydrogeomorphic (HGM) classification scheme, we analyzed the environmental regime

  2. A Great Lakes Coastal Wetland Invertebrate Community Gradient: Relative Influence of Flooding Regime and Vegetation Zonation

    Microsoft Academic Search

    Joseph P. Gathman; Thomas M. Burton

    2011-01-01

    Wetland invertebrate community composition is affected by habitat conditions associated with flooding regimes and vegetation\\u000a characteristics, yet distinguishing among these influential factors is difficult because they tend to co-vary spatially. We\\u000a studied a Great Lakes coastal wetland invertebrate community along an elevation gradient as Lake Huron water level rose and\\u000a fell over a three-year period. This hydrologic variation caused changes

  3. Establishment of wetland vegetation on East Texas mine spoil

    E-print Network

    McKnight, Steven Keith

    1991-01-01

    , and percent cover under SD for the 6 planting treatments at Big Brown Mine, Fairfield, Texas, 1989. ECC = E. crusgalli var. crusgalli, ECF = E. crusgalli var. frumentaceae, PP = P. punctatum, CE = C. esculentus, CO = control, SL = S. latifolia. Means.... crusgalli var. crusgalli, ECF = E. crusgalli var. frumentaceae, PP = P. punctatum, CE = C. esculentus, CO = control, SL = S. latifolia. Means with different letters differ (P & 0. 05) as determined by Duncan's multiple range test. 20 Figure Page Mean...

  4. Efficiency of Constructed Wetland Vegetated with Cyperus alternifolius Applied for Municipal Wastewater Treatment

    PubMed Central

    Ebrahimi, Asghar; Taheri, Ensiyeh; Ehrampoush, Mohammad Hassan; Nasiri, Sara; Jalali, Fatemeh; Soltani, Rahele; Fatehizadeh, Ali

    2013-01-01

    The treatment of municipal wastewater from Yazd city (center of Iran) by constructed wetland vegetated with Cyperus alternifolius was assessed. Two identical wetlands with a total working volume of 60?L and 10?cm sandy layer at the bottom were used. First wetland (W1) was control and had no Cyperus alternifolius plant. Second wetland (W2) had 100 Cyperus alternifolius shrubs with 40?cm height. Influent wastewater was provided from Yazd's septic tanks effluents and after a 4-day retention time in wetlands, reactors effluent was sampled for parameters analysis. Results show that chemical oxygen demand (COD), NO3?–N, NH4+–N, and PO4?3–P in W1 were reduced to 72%, 88%, 32%, and 0.8%, and in W2, these parameters were removed in values of 83%, 81%, 47%, and 10%, respectively. In both wetlands, the highest and lowest removal efficiencies were related to COD and phosphorus, respectively. Also, the removed phosphorus can be released to stream when the soil saturated or influent phosphorus decreased and when the plant died. After a 4-day-retention time, the W2 wetland showed a statistically significantly lower COD and NH4+–N in comparison with W2 wetland. PMID:24027589

  5. Impacts of Land Use on Wetland Vegetation in the Eastern United States: Timing and Scale

    NASA Astrophysics Data System (ADS)

    Bernhardt, C. E.; Willard, D. A.; Townsend, P.; Brown, R.

    2004-12-01

    The timing and scale of vegetation change are dependent on the resilience of the ecosystem to land use change that alters hydrologic response and sediment transport. Using palynological methods, we examine the impacts of land use change in 2 distinct ecosystems (the subtropical Florida Everglades and the temperate Roanoke River floodplain) in the Eastern United States. Twentieth century water management strategies have modified the hydrology within the Florida Everglades resulting in varying degrees of vegetation changes depending on community type and location within the greater Everglades ecosystem. Analysis of pollen assemblages from herbaceous wetland communities such as sawgrass ridges, open water sloughs, and marl prairies, show rapid vegetation change in response to both increases and decreases in hydrology. However, evaluations of these wetland environments over longer time periods (centuries to millennia) and through natural alterations to hydroperiod (like Medieval Warm Period) demonstrated the ability of the vegetation to recover within a few decades. Tree-island communities, composed of flood-intolerant, woody vegetation, are largely resistant to decreases in hydroperiod. They are, however, less tolerant to sustained increases (greater than 5 years) in water levels, with no seasonal drying, resulting in long-term degradation. Tree-island pollen assemblages indicate rapid changes in vegetation composition when subjected to prolonged hydroperiod (essentially drowning the tree islands). Pollen assemblages from the Roanoke River floodplain provide a perspective on the impacts of colonial land clearance, altered sedimentation, and changes in flooding regimes on forested wetland vegetation. After land clearance, organic to mineral sediments covered organic floodplain soils. Palynological evidence suggests a change towards less flood tolerant communities in areas of greatest sedimentation. These results demonstrate the rapid response of wetland plant communities to alterations in hydrology and sedimentation as a result of land use changes. Comparisons of modern records with paleoecological records provide a tool to evaluate the scale and timing of wetland vegetation response to land use change.

  6. Wetlands

    NSDL National Science Digital Library

    The National Wildlife Federation (NWF) offers this collection of online resources on wetlands and their protection. The site is organized into sections, including Types of Wetlands (featuring four major wetland types), Benefits of Wetlands (to humans and to wildlife), Threats to Wetlands (and to streams, rivers, and coasts), Wetlands Media Archives (current and past press releases and feature stories related to wetlands), Wetland Protections (coming soon), and Wetlands Policy Archives (coming soon). In each section, text and photographs offer a concise overview of the topic. For further information, including actions to preserve specific wetlands, floodplain restoration, or educational materials, see NWF's main Wetlands page.

  7. Applying remote sensing techniques to monitor shifting wetland vegetation: A case study of Danshui River estuary mangrove communities, Taiwan

    Microsoft Academic Search

    Tsai-Ming Lee; Hui-Chung Yeh

    2009-01-01

    The purpose of this study is to apply different remote sensing techniques to monitor shifting mangrove vegetation in the Danshui River estuary in Taipei, Taiwan, in order to evaluate a long-term wetland conservation strategy compromising between comprehensive wetland ecosystem management and urban development. In the Danshui estuary, mangrove dominated by Kandelia candel is the major vegetation, and a large area

  8. Promoting Species Establishment in a Phragmites-dominated Great Lakes Coastal Wetland

    Microsoft Academic Search

    Martha L. Carlson; Kurt P. Kowalski; Douglas A. Wilcox

    2009-01-01

    This study examined efforts to promote species establishment and maintain diversity in a Phragmites-dominated wetland where primary control measures were underway. A treatment experiment was performed at Crane Creek, a drowned-river-mouth wetland in Ottawa National Wildlife Refuge along the shore of western Lake Erie. Following initial aerial spraying of Phragmites with glyphosate, this study tested combinations of cutting, raking, and

  9. Analysis on vegetation changes of Maqu alpine wetlands in the Yellow River source region

    NASA Astrophysics Data System (ADS)

    Chu, Lin; Huang, Chong; Liu, Gaohuan; Liu, Qingsheng; Zhao, Jun

    2014-11-01

    The Maqu alpine wetlands have irreplaceable function in maintaining ecological balance and conserving biodiversity to the upriver regions of the Yellow River. In last 30 years, Global warming causes significant changes in vegetation. However, the Maqu alpine wetland is undergoing a degradation caused by warming and drying climate. Aim of this study is to investigate the vegetation changes for a better understanding the consequence of climate variations to the wetland degradation. Based on the Landsat TM images of 2000 and 2010, the landscape pattern changes were analyzed by classification statistics, dynamic transfer matrix and landscape pattern indices. Based on the MOD11A2 and MOD13A2 data from 2000 to 2010, NDVI and land surface temperature (LST) dataset were extracted. NDVI time-series data processed with S-G filtering method was used to find temporal and spatial variation characteristics, and linear trend was analyzed by ordinary least squares regression method. NDVI and LST were used to construct Ts-NDVI feature space, and then TVDI was obtained to explore changes of soil moisture. Relationship between climate variations and wetland degradation were found by ordinary least squares regression method. Results indicated that both wetland area and landscape heterogeneity decreased. Annual NDVI presented fluctuated decreasing trend and there was strong spatial heterogeneity in patterns of NDVI change. Annual TVDI proved to have an increasing trend which showed the drought gradually intensified. "Warming and drought" climate appear to be critical factors contributing to wetland degradation. Precipitation has a stronger correlation rather than temperature.

  10. The Virginia General Assembly established the Commonwealth's tidal wetlands management program in 1972. They acted on information

    E-print Network

    The Virginia General Assembly established the Commonwealth's tidal wetlands management program in 1972. They acted on information from scientists that indicated tidal wetlands were critical components coastal states enacting science-based management of its coastal wetlands. In doing so, the Commonwealth

  11. Diazinon mitigation in constructed wetlands: influence of vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In intensively cultivated areas, agriculture is a significant source of pesticides associated with storm runoff. When these pollutants enter aquatic receiving waters, they have potential to damage nearby aquatic ecosystems. Constructed wetlands are a best management practice (BMP) designed to help...

  12. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    SciTech Connect

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal wetlands.

  13. Long and short-term eVects of reindeer grazing on tundra wetland vegetation

    Microsoft Academic Search

    Heidi Kitti; Bruce C. Forbes; Jari Oksanen

    We studied long-term (50 years) and short-term (4 years) eVects of summer grazing of reindeer on subarctic tundra wetland vegetation. The long-term eVects of summer grazing were studied by comparing vegetation on Finnish and Norwegian sides of the fence line separating reindeer grazing regimes. The Finnish side was intensively grazed and trampled throughout the year, whereas the Norwegian side was

  14. Long and short-term effects of reindeer grazing on tundra wetland vegetation

    Microsoft Academic Search

    Heidi Kitti; Bruce C. Forbes; Jari Oksanen

    2009-01-01

    We studied long-term (50 years) and short-term (4 years) effects of summer grazing of reindeer on subarctic tundra wetland\\u000a vegetation. The long-term effects of summer grazing were studied by comparing vegetation on Finnish and Norwegian sides of\\u000a the fence line separating reindeer grazing regimes. The Finnish side was intensively grazed and trampled throughout the year,\\u000a whereas the Norwegian side was grazed in

  15. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4–8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  16. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    USGS Publications Warehouse

    Windham-Myers, L.; Marvin-DiPasquale, M.; Krabbenhoft, D.P.; Agee, J.L.; Cox, M.H.; Heredia-Middleton, P.; Coates, C.; Kakouros, E.

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  17. Vegetation study to assess the nutrient uptake potential of emergent macrophytes in semi-arid wetlands

    NASA Astrophysics Data System (ADS)

    Adhikari, A. R.; Acharya, K.; Yu, Z.

    2011-12-01

    Arc GIS software and ground verification was used to map vegetation of a downstream riparian wetland in the Las Vegas Wash. Monogeneric stands of Phragmites australis dominated the spatial distribution of emergent macrophytes. This paper aims to evaluate the aboveground biomass production and nutrients (total nitrogen and total phosphorus) content to determine the maximum nutrient removal efficiency by harvesting Typha domingensis and P. australis during their highest growth rate, in a semi arid wetlands. The average aboveground biomass of T. domingensis (5.61to11.07 kg m-2) was significantly higher than P. australis (2.49-6.35 kg m-2) in the month of July 2010. Despite the high nutrient concentration measured in P. australis aboveground tissue, the net standing stock accumulation potential was still higher in T. domingensis. The net aboveground standing stock of nutrients in the Las Vegas Wash wetlands was measured (approximately 26418.7 kg N and 1264.1 kg P) for P. australis and (approximately 5183.8 kg N and 272.83 kg P) for T. domingensis. Harvesting aboveground biomass from both species would remove total nitrogen significantly from the system but not total phosphorus. Furthermore, harvesting P. australis during the peak growth period might positively impact the semi arid wetlands because it will provide more ground for T. domingensis extension. The comparative analysis of the emergent vegetation potential for biomass accumulation, nutrient concentration and standing stock was not significantly different among humid and semi arid wetlands. The humid and semi arid wetlands are characterized by a better understanding of the long term function and processes associated with the nutrient uptake potential of wetlands vegetation.

  18. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    NASA Astrophysics Data System (ADS)

    Windham-Myers, Lisamarie; Marvin-Dipasquale, Mark; Krabbenhoft, David P.; Agee, Jennifer L.; Cox, Marisa H.; Heredia-Middleton, Pilar; Coates, Carolyn; Kakouros, Evangelos

    2009-06-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes. Vegetated control plots were paired with neighboring devegetated plots in which photosynthetic input was terminated 4-8 months prior to measurements, through clipping aboveground biomass, severing belowground connections, and shading the sediment surface to prevent regrowth. Across all wetlands, devegetation decreased the activity of the Hg(II)-methylating microbial community (kmeth) by 38%, calculated MeHg production potential (MP) rates by 36%, and pore water acetate concentration by 78%. Decreases in MP were associated with decreases in microbial sulfate reduction in salt marsh settings. In freshwater agricultural wetlands, decreases in MP were related to indices of microbial iron reduction. Sediment MeHg concentrations were also significantly lower in devegetated than in vegetated plots in most wetland settings studied. Devegetation effects were correlated with live root density (percent volume) and were most profound in vegetated sites with higher initial pore water acetate concentrations. Densely rooted wetlands had the highest rates of microbial Hg(II)-methylation activity but often the lowest concentrations of bioavailable reactive Hg(II). We conclude that the exudation of labile organic carbon (e.g., acetate) by plants leads to enhanced microbial sulfate and iron reduction activity in the rhizosphere, which results in high rates of microbial Hg(II)-methyation and high MeHg concentrations in wetland sediment.

  19. Towards a Characterization of Wetland Invasive Vegetation Using a Combination of Field and Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Dutcher, Nicole M.

    Creation of compensatory wetlands has been required in the U.S. since the late 1980s in an attempt to offset the massive decline in freshwater wetlands. To meet permitting requirements, vegetation composition in mitigation wetlands must be monitored for a minimum of five years following creation. Unfortunately, mitigated wetlands often lack the functionality of natural wetlands and may form hotspots for invasive plant species. However, wetland assessment is a time-consuming process that may also disturb fragile nascent plant communities. Thus there is a need for approaches that minimize disturbance, but still enable the collection of data over large portions of the landscape. Remote sensing, using hyperspectral imagery augmented by field data collection is a potential tool for rapid ecosystem assessment. In July 2010, vegetation community composition, spectral signatures of individual plant species, and plant canopies, and an aerial hyperspectral imagery dataset were obtained from two natural and two mitigation wetlands on the Rochester Institute of Technology (RIT) campus, Rochester, NY. We were able to locate specific wavelengths for four invasive plant species spectra that can be used to classify and map these species on the RIT campus with an overall accuracy of 94.34%. Reed canarygrass had a higher reflectance than the other three species and differences along the red-edge and near-infrared regions also enabled differentiation between broadleaf cattail and narrowleaf cattail. Values within the blue, red, red-edge, and near-infrared regions are needed to create a multi-spectral sensor with a larger emphasis on the red-edge and near-infrared regions. Such a sensor would be more readily available for land managers for classification and analysis of large plots of land, limiting the amount of time, personnel and funding needed to process the imagery and allowing managers to more rapidly identify patches of invasive plant species with minimal intrusion on sensitive wetland environments.

  20. Bathymetry and vegetation in isolated marsh and cypress wetlands in the northern Tampa Bay Area, 2000-2004

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.; Herndon, Donald C.

    2005-01-01

    Wetland bathymetry and vegetation mapping are two commonly used lines of evidence for assessing the hydrologic and ecologic status of expansive coastal and riverine wetlands. For small isolated freshwater wetlands, however, bathymetric data coupled with vegetation assessments are generally scarce, despite the prevalence of isolated wetlands in many regions of the United States and the recognized importance of topography as a control on inundation patterns and vegetation distribution. In the northern Tampa Bay area of west-central Florida, bathymetry was mapped and vegetation was assessed in five marsh and five cypress wetlands. These 10 isolated wetlands were grouped into three categories based on the effects of ground-water withdrawals from regional municipal well fields: natural (no effect), impaired (drier than natural), and augmented (wetlands with artificially augmented water levels). Delineation of the wetland perimeter was a critical component for estimating wetland-surface area and stored water volume. The wetland perimeter was delineated by the presence of Serenoa repens (the 'palmetto fringe') at 9 of the 10 sites. At the 10th site, where the palmetto fringe was absent, hydric-soils indicators were used to delineate the perimeter. Bathymetric data were collected using one or more techniques, depending on the physical characteristics of each wetland. Wetland stage was measured hourly using continuous stage recorders. Wetland vegetation was assessed semiannually for 2 1/2 years in fixed plots located at three distinct elevations. Vegetation assessments were used to determine the community composition and the relative abundance of obligate, facultative wet, and facultative species at each elevation. Bathymetry maps were generated, and stage-area and stage-volume relations were developed for all 10 wetlands. Bathymetric data sets containing a high density of data points collected at frequent and regular spatial intervals provided the most useful stage-area and stage-volume relations. Bathymetric maps of several wetlands also were generated using a low density of data points collected along transect lines or contour lines. In a comparative analysis of the three mapping approaches, stage-area and stage-volume relations based on transect data alone underestimated (by 50-100 percent over certain ranges of stage) the wetland area and volume compared to results using a high density of data points. Adding data points collected along one elevation contour below the wetland perimeter to the transect data set greatly improved the agreement of the resulting stage-area and stage-volume relations to the high-density mapping approach. Stage-area relations and routinely monitored stage data were used to compare and contrast the average flooded area in a natural marsh and an impaired marsh over a 2-year period. Vegetation assessments used together with flooded-area information provided the potential for extrapolating vegetation results from points or transects to wetlands as a whole. A comparison of the frequency of flooding of different areas of the wetland and the species composition in vegetation plots at different elevations indicated the dependence of vegetation on inundation frequency. Because of the broad tolerances of many wetlands plants to a range of inundation conditions, however, vegetation assessments alone provided less definitive evidence of the hydrologic differences between the two sites, and hydrologic changes occurring during the 2 years, than the flooded-area frequencies. Combining flooded-area frequencies with vegetation assessments could provide a more versatile and insightful approach for determining the ecological status of wetlands than using vegetation and stage data alone. Flooded-area frequencies may further provide a useful approach for assessing the ecological status of wetlands where historical vegetation surveys and stage data are lacking. Comparing the contemporary flooded-area frequencies a

  1. HYDROLOGIC CONSTRAINTS TO THE EFFECTIVENESS OF VEGETATED RIPARIAN BUFFERS AND CONSTRUCTED WETLANDS FOR POLLUTION CONTROL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetated riparian buffers and constructed wetlands are among the stream-corridor management systems that can reduce the amount of sediments, nutrients, and biocides entering streams. Hydrologic factors can constrain water-quality benefits of these practices because riparian buffers can only affect...

  2. Association between phosphorus and suspended solids in an Everglades treatment wetland dominated by submersed aquatic vegetation

    Microsoft Academic Search

    M. Farve; W. Harris; F. Dierberg; K. Portier

    2004-01-01

    Restoration of the Everglades requires reduction of total phosphorus (TP) in the influent run-off from the Everglades agricultural area (EAA). The Everglades nutrient removal project tested phosphorus (P) - removal efficiencies of several treatment wetland cells. The best TP reduction has occurred within the submersed aquatic vegetation (SAV) - dominated treatment Cell 4. A significant proportion of the P reduction

  3. Bioavailability of Organic Phosphorus in a Submerged Aquatic Vegetation–Dominated Treatment Wetland

    Microsoft Academic Search

    H. K. Pant; K. R. Reddy; F. E. Dierberg

    2002-01-01

    sine triphosphate (ATP). Thus, determining different phosphatase-induced hydrolyses would provide poten- Enzymatic hydrolysis and mineralization of organic phosphorus tial bioavailability of P compounds in the water column (P) were determined in surface water samples collected from inflow and outflow of a submerged aquatic vegetation (SAV)-dominated of stormwater treatment areas (STAs). treatment wetland of the Florida Everglades. Water samples were The

  4. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.

  5. Effect of climate fluctuations on long-term vegetation dynamics in Carolina bay wetlands

    USGS Publications Warehouse

    Stroh, C.L.; De Steven, D.; Guntenspergen, G.R.

    2008-01-01

    Carolina bays and similar depression wetlands of the U.S. Southeastern Coastal Plain have hydrologic regimes that are driven primarily by rainfall. Therefore, climate fluctuations such as drought cycles have the potential to shape long-term vegetation dynamics. Models suggest two potential long-term responses to hydrologic fluctuations, either cyclic change maintaining open emergent vegetation, or directional succession toward forest vegetation. In seven Carolina bay wetlands on the Savannah River Site, South Carolina, we assessed hydrologic variation and vegetation response over a 15-year period spanning two drought and reinundation cycles. Changes in pond stage (water depth) were monitored bi-weekly to monthly each year from 1989?2003. Vegetation composition was sampled in three years (1989, 1993, and 2003) and analyzed in relation to changes in hydrologic conditions. Multi-year droughts occurred prior to the 1989 and 2003 sampling years, whereas 1993 coincided with a wet period. Wetland plant species generally maintained dominance after both wet and dry conditions, but the abundances of different plant growth forms and species indicator categories shifted over the 15-year period. Decreased hydroperiods and water depths during droughts led to increased cover of grass, upland, and woody species, particularly at the shallower wetland margins. Conversely, reinundation and longer hydroperiods resulted in expansion of aquatic and emergent species and reduced the cover of flood-intolerant woody and upland species. These semi-permanent Upper Coastal Plain bays generally exhibited cyclic vegetation dynamics in response to climate fluctuation, with wet periods favoring dominance by herbaceous species. Large basin morphology and deep ponding, paired with surrounding upland forest dominated by flood-intolerant pines, were features contributing to persistence of herbaceous vegetation. Drought cycles may promote directional succession to forest in bays that are smaller, shallower, or colonized by flood-tolerant hardwoods.

  6. Effects of vegetation manipulation on breeding waterfowl in prairie wetlands--a literature review

    USGS Publications Warehouse

    Kantrud, H.A.

    1986-01-01

    Literature on the effects of fire and grazing on the wetlands used by breeding prairie waterfowl is reviewed. Both dabbling and diving ducks and their broods prefer wetlands with openings in the marsh canopy. Decreased use is commonly associated with decreased habitat heterogeneity caused by tall, robust hydrophytes such as Typha spp. and other species adapted to form monotypes in the absence of disturbance. Nearly all previous studies indicate that reductions in height and density of tall, emergent hydrophytes by fire and grazing (unless very intensive) generally benefit breeding waterfowl. Such benefits are an increase in pair density, probably related to increased interspersion of cover and open water which decreases visibility among conspecific pairs, and improvements in their invertebrate food resources that result from increased habitat heterogeneity. Research needs are great because of the drastic changes that have accrued to prairie wetlands through fire suppression, cultivation, and other factors. The physical and biological environments preferred by species of breeding waterfowl during their seasonal and daily activities should be ascertained from future studies in wetland complexes that exist in the highest state of natural preservation. Long-term burning and grazing experiments should follow on specific vegetatively-degraded wetlands judged to be potentially important breeding areas. Seasonality, frequency, and intensity of treatments should be varied and combined and, in addition to measuring the response of the biotic community, the changes in the physical and chemical environment of the wetlands should be monitored to increase our knowledge of causative factors and possible predictive values.

  7. Interactions between vegetation and hydrology: 1) Forest structure and throughfall 2) Spruce expansion following wetland drying

    NASA Astrophysics Data System (ADS)

    Stehle, Richard Craig

    Chapter 1: We developed a non-linear regression model from first principals to predict the percent of precipitation interception from forest canopies using lidar as a measure of forest structure. To find the best parameters for the model, we measured thoroughfall of rain (n = 21), fresh snow (n = 21), and old snow (n = 26) on plots in the boreal forest of the upper Eklutna Valley, Alaska. We calculated a set of twelve lidar metrics for each plot, and found the combined metric of mean height * cover to be the lidar metric most highly correlated to ln(throughfall) for rain (r = -0.81), fresh snow (r = -0.79), and old snow (r = -0.73). Using mean height * cover in the interception model, we predicted mean interception for rainfall (20% +/- 3%), fresh snow (29% +/- 4%), and old snow (20% +/- 3%) across the vegetated portion of the upper Eklutna Valley. Chapter 2: Climate changes and subsequent landscape-level responses have been documented throughout Alaska. We investigated the expansion of black (Picea mariana) and white spruce (Picea glauca) into open, herbaceous palustrine wetlands on Joint Base Elemendorf-Richardson (JBER) in south-central Alaska. We classified random points in wetlands across JBER using imagery from 1950, 1981, and 2012 to identify the extent and rate of spruce expansion. Additionally, we sampled 75 field plots in wetlands to age spruce trees and survey understory vegetation. We found tree cover in wetlands to have increased substantially from 1950-2012 (44% to 87%) with expansion over time fitting a logistic growth model well. Aged tree cores showed a recruitment pulse beginning the in 1930's and had a cumulative age distribution matching the logistic growth model of tree cover over time. The logistic growth model suggest spruce expansion began slowly in the early 1800's, coincident with the start of the current warming trend in Alaska. Using one representative wetland, we classified points on a 10 m spaced regular grid in 1950, 1981, and 2012 to show spruce expansion moving down the elevational gradient within the wetland -- a pattern observed throughout closed basin wetlands on JBER. Additionally, we found spruce expansion related to understory vegetation and wetland drainage shape (open basin, closed basin, or mixed). Finally, we propose a mechanism for the expansion of spruce into palustrine wetlands based on the timing and extent of vernal pooling.

  8. Aquatic invertebrate responses to fish presence and vegetation complexity in Western Boreal wetlands, with implications for Waterbird productivity

    Microsoft Academic Search

    Jonathan P. Hornung; A. Lee Foote

    2006-01-01

    Aquatic invertebrates are essential to wetland function, serving as the key trophic link between primary producers, fish,\\u000a and waterfowl in boreal wetlands. We studied how both aquatic vegetation complexity and prevalence, and fish presence, could\\u000a be used to predict the distribution of invertebrate biomass in 24 wetlands of the Western Boreal Forest (WBF). The percent\\u000a volume occupied by aquatic plants

  9. Vegetation survey of Four Mile Creek wetlands. [Savannah River Plant

    SciTech Connect

    Loehle, C.

    1990-11-01

    A survey of forested wetlands along upper Four Mile Creek was conducted. The region from Road 3 to the creek headwaters was sampled to evaluate the composition of woody and herbaceons plant communities. All sites were found to fall into either the Nyssa sylvatica (Black Gum) -- Persea borbonia (Red Bay) or Nyssa sylvatica -- Acer rubrum (Red Maple) types. These community types are generally species-rich and diverse. Previous studies (Greenwood et al., 1990; Mackey, 1988) demonstrated contaminant stress in areas downslope from the F- and H-Area seepage basins. In the present study there were some indications of contaminant stress. In the wetland near H-Area, shrub basal area, ground cover stratum species richness, and diversity were low. In the area surrounding the F-Area tree kill zone, ground cover stratum cover and shrub basal area were low and ground cover stratum species richness was low. The moderately stressed site at F-Area also showed reduced overstory richness and diversity and reduced ground cover stratum richness. These results could, however, be due to the very high basal area of overstory trees in both stressed F-Area sites that would reduce light availability to understory plants. No threatened or endangered plant species were found in the areas sampled. 40 refs., 4 figs., 8 tabs.

  10. Multitemporal classification of TerraSAR-X data for wetland vegetation mapping

    NASA Astrophysics Data System (ADS)

    Betbeder, Julie; Rapinel, Sébastien; Corpetti, Thomas; Pottier, Eric; Corgne, Samuel; Hubert-Moy, Laurence

    2014-01-01

    This paper is concerned with wetland vegetation mapping using multitemporal synthetic aperture radar imagery. Although wetlands play a key role in controlling flooding and nonpoint source pollution, sequestering carbon and providing an abundance of ecological services, knowledge of the flora and fauna of these environments is patchy, and understanding of their ecological functioning is still insufficient for a reliable functional assessment on areas larger than a few hectares. The aim of this paper is to evaluate multitemporal TerraSAR-X imagery to precisely map the distribution of vegetation formations considering flood duration. A series of six dual-polarization TerraSAR-X images (HH-VV) was acquired in 2012 during dry and wet seasons. One polarimetric parameter, the Shannon entropy (SE), and two intensity parameters (?° HH and ?° VV), which vary with wetland flooding status and vegetation roughness, were first extracted. These parameters were then classified using support vector machine techniques based on a specific kernel adapted to the comparison of time-series data, K-nearest neighbors, and decision tree (DT) algorithms. The results show that the vegetation formations can be identified very accurately (kappa index=0.85) from the classification of SE temporal profiles derived from the TerraSAR-X images. They also reveal the importance of the use of polarimetric parameters instead of backscattering coefficients alone (HH or VV) or combined (HH and VV).

  11. Surface elevation change and vegetation distribution dynamics in a subtropical coastal wetland: Implications for coastal wetland response to climate change

    NASA Astrophysics Data System (ADS)

    Rogers, Kerrylee; Saintilan, Neil; Woodroffe, Colin D.

    2014-08-01

    The response of coastal wetlands to sea-level rise is receiving global attention and observed changes in the distribution of mangrove and salt marsh are increasingly associated with global climate change, particularly sea-level and temperature rise, and potentially elevated carbon dioxide. Processes operating over smaller-spatial scales, such as rainfall variability and nutrient enrichment are also proposed as possible short-term drivers of changes in the distribution of mangrove and salt marsh. We consider the response of mangrove and salt marsh in a subtropical estuary to changes in environmental variables over a 12 year period by comparing rates of surface elevation change and vegetation distribution dynamics to hydrological and climatic variables, specifically water level and rainfall. This period of analysis captured inter-annual variability in sea level and rainfall associated with different phases of the El Niño Southern Oscillation (ENSO). We found that the mangrove and salt marsh trend of increasing elevation was primarily controlled by position within the tidal prism, in this case defined by inundation depth and distance to the tidal channel. Rainfall was not a primary driver of elevation trends in mangrove and salt marsh, but rainfall and water level variability did influence variability in elevation over the study period, though cross-correlation of these factors confounds identification of a single process driving this variability. These results highlight the scale-dependence of coastal wetland vegetation distribution dynamics; the longer-term trend of surface elevation increase and mangrove encroachment of salt marsh correlated with global sea-level trends, while short-term variability in surface elevation was related to local variability in water level and rainfall. Rates of surface elevation increase were found to lag behind rates of water level change within the Tweed River, which may facilitate further expansion of mangrove into salt marsh. This study advocates integration of ecological and geomorphic techniques to understand the response of coastal wetlands to sea-level rise and climatic perturbations.

  12. Drivers and feedbacks in spatial and temporal patterning of hydrology and vegetation in the Everglades wetlands

    NASA Astrophysics Data System (ADS)

    Miralles-Wilhelm, F.; Foti, R.; Rinaldo, A.; Rodriguez-Iturbe, I.; Del Jesus, M.

    2013-05-01

    Hosting a large variety of vegetal and animal species, many of which rare or endangered, wetlands are among the most rich and vulnerable ecosystems in the world. Throughout the past century, the growing climatic impact and the increasing anthropogenic pressure have seriously threatened their natural equilibrium and substantially deteriorated their ecosystems. For fragility, biodiversity and extension, the Everglades is probably one of the most iconic wetlands in the world. After decades of land seizing and exploitation following the southward march of development in Florida, awareness of the importance of the Everglades wetlands has recently risen, bringing it to the center of one of the largest and most ambitious restoration projects ever attempted. Wetlands equilibrium and biodiversity are crucially linked to the hydrologic regime. In the Everglades, hydroperiods (i.e. percent of time a site is inundated) exert a critical control in the creation of habitat niches for different plant species. However, the feedbacks between the hydrologic signature and the plant dynamics that ultimately yield the observed spatial vegetation patterns are unknown. We identify both the main hydrologic and local drivers of the vegetation species spatial configuration and use them within a robust modeling framework able to reproduce the vegetation structures currently observed in the Everglades. By including both exogenous (i.e. hydrologic) and endogenous (i.e. local interactions) forcings, we are able to describe the mechanisms yielding to the observed power law behavior of the cluster size distribution of vegetation species. Since power law clustering is often associated with self-organization and systems near critical transitions, these findings can be successfully used to quantitatively assess the impact of potential climatic shifts and the effect of habitat loss or deterioration due to human activity, and can assist policy makers in identifying case-specific ecosystems restoration and preservation measures.

  13. [Changes in vegetation and soil characteristics under tourism disturbance in lakeside wetland of northwest Yunnan Plateau, Southwest China].

    PubMed

    Tang, Ming-Yan; Yang, Yong-Xing

    2014-05-01

    The characteristics of vegetation and soil were investigated in Bita Lake and Shudu Lake wetlands in northwest Yunnan Plateau under tourism disturbance. The 22 typical plots in the wetlands were classified into 4 types by TWINSPAN, including primary wetland, light degradation, moderate degradation, and severe degradation. Along the degradation gradient, the plant community density, coverage, species number and Shannon diversity index increased and the plant height decreased in Bita Lake and Shudu Lake wetlands, and Whittaker diversity index increased in Bita Lake wetland. Plant species number, soil organic matter, total nitrogen, porosity, available nitrogen, available phosphorus and available potassium contents were higher in Shudu Lake wetland than in Bita Lake wetland, but the plant density, height, soil total potassium and pH were opposite. Canonical correspondence analysis (CCA) by importance values of 42 plants and 11 soil variables showed that soil organic matter, total nitrogen and total potassium were the key factors on plant species distribution in Bita Lake and Shudu Lake wetlands under tourism disturbance. TWINSPAN classification and analysis of vegetation-soil characteristics indicated the effects of tourism disturbance in Bita Lake wetland were larger than in Shudu Lake wetland. PMID:25129926

  14. The effect of vegetation on porewater composition in a natural wetland receiving acid mine drainage

    Microsoft Academic Search

    Lesley C. Batty; Alan J. M. Baker; Bryan D. Wheeler

    2006-01-01

    The effect of plant growth on surface and porewater concentrations of Fe, Mn, Cu, and S within a natural wetland receiving\\u000a acidic spoil heap drainage was determined over a period of one year. Comparisons were made between unvegetated sites and those\\u000a colonized by either Phragmites australis or Eriophorum angustifolium. The presence of vegetation increased surface and porewater concentrations of Fe

  15. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  16. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  17. Wetlands

    NSDL National Science Digital Library

    New Jersey

    2006-01-01

    Learners create a model of a wetland to observe how it absorbs and filters water from the environment. In part 1, learners make it "rain" on their wetland model and compare their predictions of where the water will go to where it actually goes. In part 2, learners consider and discuss the characteristics of wetland plants and animals and match pictures of different organisms to different types of wetlands. An addendum to the lesson provides extensive information, including photos, about wetland plants and animals, plus a section on "Types of Wetlands Found in New Jersey."

  18. Effects of different vegetation zones on CH4 and N2O emissions in coastal wetlands: a model case study.

    PubMed

    Liu, Yuhong; Wang, Lixin; Bao, Shumei; Liu, Huamin; Yu, Junbao; Wang, Yu; Shao, Hongbo; Ouyang, Yan; An, Shuqing

    2014-01-01

    The coastal wetland ecosystems are important in the global carbon and nitrogen cycle and global climate change. For higher fragility of coastal wetlands induced by human activities, the roles of coastal wetland ecosystems in CH4 and N2O emissions are becoming more important. This study used a DNDC model to simulate current and future CH4 and N2O emissions of coastal wetlands in four sites along the latitude in China. The simulation results showed that different vegetation zones, including bare beach, Spartina beach, and Phragmites beach, produced different emissions of CH4 and N2O in the same latitude region. Correlation analysis indicated that vegetation types, water level, temperature, and soil organic carbon content are the main factors affecting emissions of CH4 and N2O in coastal wetlands. PMID:24892044

  19. The development of vegetative zonation patterns in restored prairie pothole wetlands

    Microsoft Academic Search

    Eric W. Seabloom; Arnold G. Van Der Valk

    2003-01-01

    Summary 1. The spatial structure of plant communities can have strong impacts on ecosystem functions and on associated animal communities. None the less, spatial structure is rarely used as a measure of restoration success. 2. The restoration of hundreds of wetlands in the prairie pothole region in the mid-western USA provided an excellent opportunity to determine whether the re- establishment

  20. Establishment of vegetation on mined sites by management of mycorrhizae

    SciTech Connect

    Marrs, L.F.; Marx, D.H.; Cordell, C.E.

    1999-07-01

    Plant ecosystems, including those in the tropical, temperate, boreal, and desert zones, began evolving more than 400 million years ago. Trees and other land plants in these environments were faced with many natural stresses including extreme temperature changes, fluctuating levels of available water, soil infertility, catastrophic fires and storms, poor soil physical conditions and competition. Basically, these plants evolved by genetic selection and developed many physical, chemical, and biological requirements necessary to survive these periodically stressed environments. Survivors were those that could form extensive lateral root systems to occupy soil volumes sufficiently large for them to obtain enough essential mineral elements and water to support their above and below ground growth needs. The most competitive plants in these stressed ecosystems were those with the largest root systems. One major biological requirement that evolved was the association of plants with mycorrhizal fungi. This is still true today for land that has been disturbed by mining, construction, and other activities. Successful vegetation establishment on these lands has been achieved by using the biological tools; native tree seedlings, shrubs, forbs, and grasses inoculated with specific, beneficial mycorrhizal fungi. Trees and shrubs are custom grown in nurseries with selected mycorrhizal fungi, such as Pisolithus tinctorius (Pt) and other fungi, provide significant benefits to the plants through increased water and mineral adsorption, decreased toxin absorption and overall reduction of plant stress. This has resulted in significant increases in plant growth and survival rates, density and sustainable vegetation.

  1. Microbial Transformations of Nitrogen, Sulfur, and Iron Dictate Vegetation Composition in Wetlands: A Review

    PubMed Central

    Lamers, Leon P. M.; van Diggelen, Josepha M. H.; Op den Camp, Huub J. M.; Visser, Eric J. W.; Lucassen, Esther C. H. E. T.; Vile, Melanie A.; Jetten, Mike S. M.; Smolders, Alfons J. P.; Roelofs, Jan G. M.

    2012-01-01

    The majority of studies on rhizospheric interactions focus on pathogens, mycorrhizal symbiosis, or carbon transformations. Although the biogeochemical transformations of N, S, and Fe have profound effects on vegetation, these effects have received far less attention. This review, meant for microbiologists, biogeochemists, and plant scientists includes a call for interdisciplinary research by providing a number of challenging topics for future ecosystem research. Firstly, all three elements are plant nutrients, and microbial activity significantly changes their availability. Secondly, microbial oxidation with oxygen supplied by radial oxygen loss from roots in wetlands causes acidification, while reduction using alternative electron acceptors leads to generation of alkalinity, affecting pH in the rhizosphere, and hence plant composition. Thirdly, reduced species of all three elements may become phytotoxic. In addition, Fe cycling is tightly linked to that of S and P. As water level fluctuations are very common in wetlands, rapid changes in the availability of oxygen and alternative terminal electron acceptors will result in strong changes in the prevalent microbial redox reactions, with significant effects on plant growth. Depending on geological and hydrological settings, these interacting microbial transformations change the conditions and resource availability for plants, which are both strong drivers of vegetation development and composition by changing relative competitive strengths. Conversely, microbial composition is strongly driven by vegetation composition. Therefore, the combination of microbiological and plant ecological knowledge is essential to understand the biogeochemical and biological key factors driving heterogeneity and total (i.e., microorganisms and vegetation) community composition at different spatial and temporal scales. PMID:22539932

  2. Development of vegetation in created wetlands in western Norway

    Microsoft Academic Search

    Arvid Odland

    1997-01-01

    The Myrkdalen lake, western Norway was subjected to a permanent 1.4 m drawdown in June 1987. After the drawdown, channels and artificial islands were constructed within the exposed floodplain system. Two permanent transects were established within this man-made environment, and these have been analyzed annually until 1995. The quadrats lie all on the same type of substrate, are at different

  3. Coping with vegetation dynamics in low-land wetlands - Integration of RS derived interception into the rainfall-runoff model WetSpa

    NASA Astrophysics Data System (ADS)

    Jaros?aw, J.; Szporak, S.; Verbeiren, B.; Batelaan, O.

    2012-04-01

    The effective protection of wetlands demands knowledge of hydrological processes, which can be appropriately analysed using distributed models. It is eminent that the calibration and verification of distributed models of catchments with significant wetland coverage have to focus on wetland-specific issues such as the hydrological response of natural vegetation, i.e. parameterisation and dynamics of vegetation. An important and useful parameter describing vegetation canopy structure in terrestrial ecosystems is the Leaf Area Index (LAI), which is closely related to photosynthesis, net primary productivity, evapotranspiration and interception storage capacity. LAI can be estimated with remote sensing data, its suitability to derive the actual state of vegetation is high. This study focuses on improving the interception capacity calculation in the distributed hydrological model WetSpa. The main objective is to integrate seasonal LAI data. Not only field measurements, but also remote sensing derived LAI data is integrated into a WetSpa model for the Upper Biebrza catchment (northeast Poland). Biebrza National Park is characterized by a significant coverage of wetland and large variation in vegetation types. The use of remote sensing derived LAI values considerably improves the assessment of the actual status of vegetation and its seasonal dynamics. Landsat Thematic Mapper images are used to represent the different vegetation stages during the growing season (near LAI minimum and LAI maximum). They are analysed and processed to estimate the interception storage capacity of plant communities typical for Biebrza River valley. LAI of different plant communities has been measured using LAI-2000, and empirical relationships between these measurements and several spectral vegetation indices were established using linear and non-linear regression analysis. The vegetation indices with the highest correlation and the strongest linear relationship regarding LAI are NDVI (R2 = 0.72), SAVI (R2 = 0.72), MSI (R2 = 0.70) and MSR (R2 = 0.70). The minimum/maximum LAI maps are combined with the established equations to calculate spatially distributed hydrological parameter maps, i.e. minimum and maximum interception storage capacity. The model application yields considerable spatio-temporal differences in interception estimates for scenarios using interception maps calculated based on (1) LAI measurements and remote sensing data, compared to (2) the standard Corine Land Cover 2006 based data.

  4. Plant community, primary productivity, and environmental conditions following wetland re-establishment in the Sacramento-San Joaquin Delta, California

    Microsoft Academic Search

    Robin L. Miller; Roger Fujii

    2010-01-01

    Wetland restoration can mitigate aerobic decomposition of subsided organic soils, as well as re-establish conditions favorable\\u000a for carbon storage. Rates of carbon storage result from the balance of inputs and losses, both of which are affected by wetland\\u000a hydrology. We followed the effect of water depth (25 and 55 cm) on the plant community, primary production, and changes in\\u000a two re-established

  5. Vegetation influences on groundwater salinity and chemical heterogeneity in a freshwater, recharge floodplain wetland, South Africa

    NASA Astrophysics Data System (ADS)

    Humphries, Marc S.; Kindness, Andrew; Ellery, William N.; Hughes, Jeffrey C.; Bond, Jonathan K.; Barnes, Kirsten B.

    2011-12-01

    SummaryKnowledge of wetland systems from sub-humid and semi-arid regions remains poor, particularly with regards to surface water-groundwater interactions. As a result of variable inflow and high evapotranspiration rates, such systems are often associated with the development of groundwater salinity. By focusing on the riparian species, Acacia xanthophloea, this study investigates the interaction between vegetation, groundwater, and occurrence of salinity on the Mkuze River floodplain, a seasonally dry, freshwater wetland. The relationship between groundwater chemistry and water table elevation suggests that these deep-rooted trees act as evapotranspirational pumps, selectively removing water and causing the subsurface concentration of solutes. Extensive root systems that reach the water table, coupled with high transpiration rates, result in local groundwater reaching electrical conductivities in excess of 20 mS/cm, approximately 15-20 times higher than those commonly found elsewhere on the floodplain. In this environment, these trees appear tolerant of salinities that would be toxic to most other plants. Plant tissue ion concentrations indicate that solute exclusion is the dominant means for avoidance of salt toxicity, with root turnover a possible regulatory mechanism. Data presented support our hypothesis that these trees exert feedback interactions on groundwater and sediment chemistry. Transpiration results not only in the development of saline groundwater, which is likely to influence vegetation distribution, but also initiates the precipitation of less soluble minerals, such as CaCO 3 and SiO 2, which have the potential to modify sediment pH, hydraulic conductivity, and landscape topography. Spatial variation in chemical processing is thus likely to play a role in creating and maintaining habitat diversity on the floodplain. Wetlands in semi-arid and sub-humid regions are often susceptible to shallow groundwater chemical transformations due to seasonal or episodic inflows and higher evapotranspiration demand. The documentation of solute concentration and retention in wetland systems from a variety of semi-arid and sub-humid areas suggests that evapotranspiration-driven processes may be more widespread than is currently understood. In environments where evapotranspiration plays an important role in the overall water budget of a wetland, similar vegetation-groundwater interactions and chemical processes are likely to occur. Recognition of broad differences between such systems and those of their better studied counterparts in tropical and temperate regions makes it necessary to develop a greater understanding of these processes.

  6. Comparative treatment of dye-rich wastewater in engineered wetland systems (EWSs) vegetated with different plants.

    PubMed

    Mbuligwe, Stephen E

    2005-01-01

    In Dar es Salaam City there are more than a thousand tie-and-dye (TAD) small-scale industries (SSIs) that discharge dye-rich wastewater indiscriminately with resultant water pollution. Due to the decentralised nature of the TAD SSIs, coupled with financial constraints facing their operators, control of their pollution needs a simple cost-effective waste treatment technology. Engineered wetland systems (EWSs) constitute such a technology. A pilot scale EWS was evaluated with respect to its effectiveness in treating dye-rich wastewater. The role of wetland plants was assessed through comparing treatment performance efficiencies between an unplanted and vegetated EWS beds. On the whole, it has been demonstrated that the EWS has the potential to effectively treat dye-rich wastewater. Colour, which is the most apparent problem issue with textile wastewater, was reduced by 72-77%. COD was reduced by 68-73%, while sulphate was reduced by 53-59%. The proportionately high COD removal suggests the reduction in colour was accompanied by almost complete degradation of dyes and daughter products. The overall treatment efficiency of the vegetated units was more than twice as high as that of the unplanted bed. On average, the bed vegetated with coco yam plants performed better (7.6%) than the one planted with cattail plants. PMID:15644235

  7. Wetlands

    NSDL National Science Digital Library

    2010-01-01

    This video segment explains why Native people regard wetlands not only for their important ecological function, but for their spiritual value as well. For many tribes, wetlands represent life. They consider wetlands to be sacred places that must be protected from external sources of pollution, such as runoff from landscaping businesses and municipal discharges. Included is a background essay that gives a history of wetlands and the destruction they are now facing from human development. The many benefits of wetlands, like their ability to protect property from flooding. There are four discussion questions about the importance of wetlands and their functions. There is a helpful section that shows you the standards for your state ranging from grades K-12, as well as links to related resources.

  8. Effects of hydraulic resistance by vegetation on stage dynamics of a stormwater treatment wetland

    NASA Astrophysics Data System (ADS)

    Paudel, Rajendra; Grace, Kevin A.; Galloway, Stacey; Zamorano, Manuel; Jawitz, James W.

    2013-03-01

    SummaryThis work examined the potential effects of large-scale thinning of emergent vegetation on the stage dynamics in a very large (33.3 km2) constructed treatment wetland in South Florida. Dense vegetative biomass in treatment wetlands may restrict water flow and increase water levels, which may in turn have adverse effects on vegetative community structure. Here, we developed a physically-based, spatially-distributed hydrodynamic model of Stormwater Treatment Area 2, Cell 2 (STA2C2) to investigate the spatio-temporal variability of water level (stage) in response to management for thinning of emergent macrophytes (e.g., burning and/or herbicide treatments). The model was calibrated against stage measured at six monitoring stations for 1 year, and subsequently validated against 2 years of stage data from eight stations. Finally, the validated model was extended to simulate various vegetation management scenarios. The model provided an excellent fit to observed stage data in both calibration and validation periods (median model efficiency indices of 0.82 and 0.83, respectively). Higher stages in the treatment cell were dominantly associated with peak inflow magnitude and the timing of event intervals. Prolonged periods of sustained deep water conditions were observed when one flow peak was followed by consecutive peaks. A gradual stage gradient from the inlet to outlet was observed during peak flow periods, with a shift to a sharp gradient at approximately two-thirds distance from the inlet. Stages in the wetland were found to be controlled less by the hydraulic resistance, as indicated by a low sensitivity of simulated water levels for a ±50% perturbation in flow resistance parameter. Water depths were reduced by a maximum of 12 cm at the inlet region by thoroughly thinning the remaining emergent vegetation in STA2C2. Similarly, a maximum of only 2% of the total STA2C2 area was prevented from exceeding a water depth believed to be detrimental to Typha sp. (1.22 m) after the highest peak inflow. Collectively, our findings suggested that vegetation thinning may not be effective for minimizing deep water conditions in STA2C2.

  9. Thirteen years of wetland vegetation succession following a permanent drawdown, Myrkdalen Lake, Norway

    Microsoft Academic Search

    Arvid Odland; Roger del Moral

    2002-01-01

    Myrkdalen Lake in Western Norway was subjected to a 1.4 mdrawdown in June 1987. Plant establishment and vegetation succession on theexposed sediments of a fluvial delta plain was monitored through 2000. Theinvestigated area extended from the original Equisetumfluviatile zone to the new lake edge. The substrate was homogeneousand consisted mainly of minerogenous fluvial sediments. Vegetation data weresampled within continuous quadrats

  10. Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands

    PubMed Central

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.

    2013-01-01

    Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738

  11. Vegetation of plowed and unplowed playa lake wetlands in southwestern Kansas

    SciTech Connect

    Wilson, S.L.; Buckley, J.E. [SCS Engineers, Kansas City, MO (United States)

    1995-12-01

    Playa lakes are shallow, circular basins within the High Plains that were formed by wind during the Pleistocene Era. These basins are often referred to as {open_quotes}buffalo wallows{close_quotes} by local residents. When rainfall occurs, playas pond water, allowing formation of hydric soils and wetland vegetation. Playa provide excellent waterfowl habitat and are second only to the Gulf Coast in importance as winter habitat for birds in the Central Flyway. Highly variable climatic conditions along with extensive changes in surrounding hydrology on agricultural lands contribute to alternating wet and dry cycles within the playas. As a result, the vegetative mixture of the playas can change drastically from one season to another.

  12. Development and testing the hydrological dynamics of vegetated wetland for CLM

    NASA Astrophysics Data System (ADS)

    Shi, X.; Thornton, P. E.; Ricciuto, D. M.; Hanson, P. J.; Mao, J.

    2013-12-01

    Northern peatlands store ~ 30% of the global soil carbon, though only representing ~ 3% of the Earth's land surface. Community Land Model (CLM) component of the Community Earth System Model (CESM) doesn't currently represent vegetated wetlands. To address this limitation, we incorporate key structural and process changes in the CLM. The model with new modifications will be informed and tested by Spruce and Peatland Responses Under Climatic and Environmental Change Experiment (SPRUCE). Our initial efforts have focused on model modifications needed to represent the isolated hydrologic cycle of the bog environment, as well as the observed patterning of the bog interior into raised hummocks and sunken hollows having distinct hydrologic dynamics and vegetation communities. The preliminary results of the hydrologic efforts show that the simulated water table heights for hummocks and hollows are consistent with observations, and the projected seasonal water table heights for the hummock/hollow topography are reasonable. Next steps for CLM-wetlands modeling are to calibrate the new hydrology treatment with vertically structured soil and CH4 sub-model, and to introduce Sphagnum hydrology and carbon cycle physiology. The comparison of CLM simulated and observed water table heights for year 2011 and 2012

  13. Evaluating the effect of rainfall variability on vegetation establishment in a semidesert grassland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the operations required for reclamation in arid and semi-arid regions, establishing vegetation entails the most uncertainty due to reliance on unpredictable rainfall for seed germination and seedling establishment. The frequency of successful vegetation establishment was estimated based on a land...

  14. Recent Trends in Satellite Vegetation Index Observations Indicate Decreasing Vegetation Biomass in the Southeastern Saline Everglades Wetlands

    NASA Astrophysics Data System (ADS)

    Fuller, D. O.

    2013-12-01

    We analyzed trends in time series of the normalized difference vegetation index (NDVI) from multitemporal satellite imagery for 2001-2010 over the southeastern Everglades where major changes in vegetation structure and type have been associated with sea-level rise and reduced freshwater flow since the 1940s. Non-parametric trend analysis using the Theil-Sen slope revealed that 84.4% of statistically significant trends in NDVI were negative, mainly concentrated in scrub mangrove, sawgrass (Cladium jamaicense) and spike rush (Eleocharis cellulosa) communities within 5 km of the shoreline. Observed trends were consistent with trends in sawgrass biomass measurements made from 1999-2010 in three Long-term Ecological Research (LTER) sites within our study area. A map of significant trends overlaid on a RapidEye high-resolution satellite image showed large patches of negative trends parallel to the shoreline in and around the 'white zone,' which corresponds to a low-productivity band that has moved inland over the past 70 years. Significantly positive trends were observed mainly in the halophytic prairie community where highly salt tolerant species are typically found. Taken as a whole, the results suggest that increased saline intrusion associated with sea-level rise continues to reduce the photosynthetic biomass within freshwater and oligohaline marsh communities of the southeastern Everglades. Trends in 2001-2010 NDVI in southern saline Everglades wetlands of South Florida. a) slope values; b) areas of significant slope; c) location of the study area.

  15. Accounting for non-photosynthetic vegetation in remote-sensing-based estimates of carbon flux in wetlands

    USGS Publications Warehouse

    Schile, Lisa M.; Byrd, Kristin B.; Windham-Myers, Lisamarie; Kelly, Maggi

    2013-01-01

    Monitoring productivity in coastal wetlands is important due to their high carbon sequestration rates and potential role in climate change mitigation. We tested agricultural- and forest-based methods for estimating the fraction of absorbed photosynthetically active radiation (f APAR), a key parameter for modelling gross primary productivity (GPP), in a restored, managed wetland with a dense litter layer of non-photosynthetic vegetation, and we compared the difference in canopy light transmission between a tidally influenced wetland and the managed wetland. The presence of litter reduced correlations between spectral vegetation indices and f APAR. In the managed wetland, a two-band vegetation index incorporating simulated World View-2 or Hyperion green and near-infrared bands, collected with a field spectroradiometer, significantly correlated with f APAR only when measured above the litter layer, not at the ground where measurements typically occur. Measures of GPP in these systems are difficult to capture via remote sensing, and require an investment of sampling effort, practical methods for measuring green leaf area and accounting for background effects of litter and water.

  16. Effects of sediment removal on vegetation communities in Rainwater Basin playa wetlands.

    PubMed

    Beas, Benjamin J; Smith, Loren M; LaGrange, Theodore G; Stutheit, Randy

    2013-10-15

    Sedimentation from cultivated agricultural land use has altered the natural hydrologic regimes of depressional wetlands in the Great Plains. These alterations can negatively affect native wetland plant communities. Our objective was to determine if restored wetlands are developing plant communities similar to reference wetland conditions following hydrologic restoration. For this study, hydrology was restored via sediment removal. Thirty-four playa wetlands in reference, restored, and agricultural condition within the Rainwater Basin Region of Nebraska were sampled in 2008 and 2009. In 2008, reference and restored wetlands had higher species richness and more native, annual, and perennial species than agricultural wetlands. Restored wetlands had similar exotic species richness compared to reference and agricultural wetlands; however, reference wetlands contained more than agricultural wetlands. Restored wetlands proportion of exotics was 3.5 and 2 times less than agricultural wetlands and reference wetlands respectively. In 2009, reference and restored wetlands had higher species richness, more perennial species, and more native species than agricultural wetlands. Restored wetlands contained a greater number and proportion of annuals than reference and agricultural wetlands. Canonical Correspondence Analysis showed that reference, restored, and agricultural wetlands are dominated by different plant species and guilds. Restored wetland plant communities do not appear to be acting as intermediates between reference and agricultural wetland conditions or on a trajectory to reach reference conditions. This may be attributed to differing seed bank communities between reference and restored wetlands, dispersal limitations of perennial plant guilds associated with reference wetland conditions, and/or management activities may be preventing restored wetlands from reaching reference status. PMID:23786876

  17. A test of vegetation-related indicators of wetland quality in the prairie pothole region

    USGS Publications Warehouse

    Kantrud, H.A.; Newton, W.E.

    1996-01-01

    This study was part of an effort by the U.S. Environmental Protection Agency to quantitatively assess the environmental quality or 'health' of wetland resources on regional and national scales. During a two-year pilot study, we tested selected indicators of wetland quality in the U.S. portion of the prairie pothole region (PPR). We assumed that the amount of cropland versus non-cropland (mostly grassland) in the plots containing these basins was a proxy for their quality. We then tested indicators by their ability to discriminate between wetlands at the extremes of that proxy. Amounts of standing dead vegetation were greater in zones of greater water permanence. Depth of litter was greater in zones of greater water permanence and in zones of basins in poor-quality watersheds. Amounts of unvegetated bottom were greater in basins in poor-quality watersheds; lesser amounts occurred in all wetlands during a wetter year. Greater amounts of open water occurred during a wetter year and in zones of greater water permanence. When unadjusted for areas (ha) of communities, plant taxon richness was higher in wet-meadow and shallow-marsh zones in good-quality watersheds than in similar zones in poor-quality watersheds. Wet-meadow zones in good-quality watersheds had greater numbers of native perennials than those in poor-quality watersheds. This relation held when we eliminated all communities in good-quality watersheds larger than the largest communities in poor-quality watersheds from the data set. We conclude that although amounts of unvegetated bottom and plant taxon richness in wet-meadow zones were useful indicators of wetland quality during our study, the search for additional such indicators should continue. The value of these indicators may change with the notoriously unstable hydrological conditions in the PPR. Most valuable would be indicators that could be photographed or otherwise remotely sensed and would remain relatively stable under various hydrological conditions. An ideal set of indicators could detect the absence of stressors, as well as the presence of structures or functions, of known value to major groups of organisms.

  18. Catastrophic Shifts in Wetland Geomorphology and Ecology in Response to Hydrology-Vegetation-Sediment Transport Feedbacks (Invited)

    Microsoft Academic Search

    L. G. Larsen; J. W. Harvey

    2010-01-01

    Coastal marshes and long-hydroperiod floodplain wetlands exhibit strong bi-directional feedback between hydrology, vegetation, and sediment that impacts landscape dynamics and ecosystem services. In these ecosystems, vegetation responds to and also influences the distribution of topography, with effects on habitat provision, biological diversity, landscape connectivity, surface-subsurface exchange, and microbial and redox reactions. Topography evolves both autogenically and allogenically. Autogenically, peat accretes

  19. Wetland vegetation and nutrient retention in Nakivubo and Kirinya wetlands in the Lake Victoria basin of Uganda

    Microsoft Academic Search

    P. Mugisha; F. Kansiime; P. Mucunguzi; E. Kateyo

    2007-01-01

    Wetlands form an important part of the catchment area of the African Great Lakes and protect water resources therein. One of the most important functions is the retention of nutrients from the inflowing water from the catchment, by wetland plants which store them in their phytomass. An assessment of the capacity in storing nutrients by dominant plants (Cyeprus papyrus, Miscanthus

  20. Influence of varying nutrient and pesticide mixtures on abatement efficiency using a vegetated free water surface constructed wetland mesocosm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The efficiency of a vegetated free water surface constructed wetland in abating agrichemicals was examined using varying types of pollutant mixtures. Three different mixture conditions were assessed: nutrients only (N and P); pesticides only (2 herbicides and 1 insecticide); and a mixture of nutrie...

  1. Flora and ecological profile of native and exotic estuarine wetland vegetation by hydrogeomorphic setting at Rush Ranch, Suisun Marsh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The manuscript includes a profile of the ecology and distribution of estuarine wetland vegetation at the Rush Ranch reserve site in the brackish Suisun Marsh reach of San Francisco Estuary The data and analyses will serve as a baseline for future scientific research and conservation management. A ...

  2. CHANGES IN THE VEGETATION COVER IN A CONSTRUCTED WETLAND AT ARGONNE NATIONAL LABORATORY, ILLINOIS

    Microsoft Academic Search

    COURTNEY LYNN BERGMAN; KIRK LAGORY

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is respon- sible for regulating wetland disturbances. In 1991, the USACE determined

  3. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    Microsoft Academic Search

    Futoshi Nakamura; Tadashi Sudo; Satoshi Kameyama; Mieko Jitsu

    1997-01-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined

  4. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    USGS Publications Warehouse

    Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.

    1996-01-01

    In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.

  5. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    USGS Publications Warehouse

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh-dominated coasts. Such datasets can be instrumental in effective coastal-resource management.

  6. Regeneration of vegetation on wetland crossings for gas pipeline rights-of-way one year after construction

    SciTech Connect

    Shem, L.M.; Zimmerman, R.E.; Zellmer, S.D. [Argonne National Lab., IL (United States); Van Dyke, G.D. [Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology; Rastorfer, J.R. [Chicago State Univ., IL (United States). Dept. of Biological Sciences

    1993-10-01

    Four wetland crossings of gas pipeline rights-of-way (ROWs), located in Florida, Michigan, New Jersey, and New York, were surveyed for generation of vegetation roughly one year after pipeline construction was completed. Conventional trench-and-fill construction techniques were employed for all four sites. Estimated areal coverage of each species by vegetative strata within transect plots was recorded for plots on the ROW and in immediately adjacent wetlands undisturbed by construction activities. Relative success of regeneration was measured by percent exposed soil, species diversity, presence of native and introduced species, and hydric characteristics of the vegetation. Variable site factors included separation and replacement of topsoil, final grading of the soil, application of seed and fertilizer, and human disturbance unrelated to construction. Successful regeneration exhibited greater dependency on the first three factors listed.

  7. Wetland vegetation and nutrient retention in Nakivubo and Kirinya wetlands in the Lake Victoria basin of Uganda

    NASA Astrophysics Data System (ADS)

    Mugisha, P.; Kansiime, F.; Mucunguzi, P.; Kateyo, E.

    Wetlands form an important part of the catchment area of the African Great Lakes and protect water resources therein. One of the most important functions is the retention of nutrients from the inflowing water from the catchment, by wetland plants which store them in their phytomass. An assessment of the capacity in storing nutrients by dominant plants ( Cyeprus papyrus, Miscanthus violaceus, Phragmites mauritianus and Colocasia C. esculenta), of Nakivubo and Kirinya wetlands at the shores of Lake Victoria in Uganda, was studied through the determination of phytomass production and nutrient concentration in the plant parts at different stages of growth. The above ground phytomass production increased rapidly during the exponential growth for C. papyrus and P. mauritianus. In all the dominant plants, nitrogen concentration was highest in juvenile plants and decreased with increasing age. The most pronounced nitrogen level occurred in the young umbels of C. papyrus during the first month of growth with total nitrogen content of 1.95% DW which dropped to 0.62% DW after the fifth month in Nakivubo wetland. Corms (tubers) of yams had the highest nitrogen content in Kirinya and Nakivubo wetlands exhibiting respective values of 4.8% DW and 3.7% DW. There is a close relationship between nutrient content and increase in phytomass. In Nakivubo and Kirinya wetlands, the rapid increase in phytomass during the third and fourth month corresponded with high nutrient levels. Since plants store significant amounts of nitrogen during their growth, periodic harvesting of above ground plant parts can remove significant amounts of nutrients (during the first five months of growth) from the wastewater flowing into the two wetlands. Wetland plant species with high phytomass productivity and well developed root systems and ability to withstand flooding are the best in nutrient removal.

  8. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    NASA Astrophysics Data System (ADS)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of computational models to simulate storm surge flow over wetlands specifically designed to represent Virginia's aquatic vegetation and to improve our fundamental knowledge of tide and storm surge hydrodynamics in estuarine wetlands. This poster will present the results of the field measurements for events during the 2013 Hurricane Season, tidal flows within the study areas, and surge attenuation rates according to vegetation characteristics.

  9. A demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Butera, M. K. (principal investigator)

    1978-01-01

    The author has identified the following significant results. Major vegetative classes identified by the remote sensing technique were cypress swamp, pine, wetland grasses, salt grass, mixed mangrove, black mangrove, Brazilian pepper. Australian pine and melaleuca were not satisfactorily classified from LANDSAT. Aircraft scanners provided better resolution resulting in a classification of finer surface detail. An edge effect, created by the integration of diverse spectral responses within boundary elements of digital data, affected the wetlands classification. Accuracy classification for aircraft was 68% and for LANDSAT was 74%.

  10. Revising vegetation scattering theories: Adding a rotated dihedral double bounce scattering to explain cross-polarimetric SAR observations over wetlands

    NASA Astrophysics Data System (ADS)

    Hong, S.; Wdowinski, S.

    2010-12-01

    Common vegetation scattering theories indicate that short wavelength Synthetic Aperture Radar (SAR) observations (X- and C-band) measure mainly vegetation canopies as the short-wavelength radar signal interacts mainly with upper sections of the vegetation. Furthermore, these theories also suggest that SAR cross-polarization (cross-pol) observations reflect only volume scattering. Consequently most SAR decomposition techniques assume that the cross-pol signal represent solely volume scattering. However, short-wavelength and cross-pol observations from the Everglades wetlands, south Florida, suggest that a significant portion of the SAR signal scatters from the surface and not only from the upper sections of the vegetation. The indication for surface scattering in wetland environment is derived from phase observable processed using interferometric techniques. The interferometric SAR (InSAR) observations reveal coherent phase signal in all polarizations and all wavelengths, reflecting water level changes beneath the vegetation. This coherent phase signal cannot be explained by neither volume scattering nor radar signal interaction with the upper sections of the vegetations, because canopies and branches are frequently move by wind. The only way that such coherent signal can be maintained and represents surface water level changes is when a multiple bounce from the vegetation and surface occurs. The simplest multi-bounce scattering mechanism that generate cross-pol signal occurs by rotated dihedrals. Thus, we use the rotated dihedral mechanism to explain the InSAR wetland observations and to revise the current vegetation scattering theories to accounts also for double bounce component in cross-pol observations.

  11. Performance Variations of COD and Nitrogen Removal by Vegetated Submerged Bed Wetlands

    NASA Astrophysics Data System (ADS)

    He, Qiang; Mankin, Kyle R.

    2002-12-01

    Vegetated submerged bed wetlands can supplement treatment of onsite wastewater systems. This study evaluated vegetation, media, and seasonal impacts on system performance in six meso scale rock plant filters with and without narrow leaf cattails (Typha augustifolia). Daily chemical oxygen demand (COD) reductions in planted cells averaged 85 percent and weekly total nitrogen (TN) reductions averaged 50 percent. Planted cells had 17 percent greater COD reduction and 76 percent greater TN reduction than unplanted cells, both significant differences. Media type affected COD reduction, particularly in unplanted cells. COD treatment in planted cells was highest for fine crushed limestone (87±13 percent) and least variable for coarse river gravel (85±11 percent). No significant difference in TN reduction was observed for different media types (48 to 51 percent range). Seasonal influences on treatment included a significant decrease during late fall and early spring and a significant increase with temperature. After a step increase in organic loading, treatment efficiency decreased sharply but returned to prior levels after an adaptation period of about one month. Planted cells not only exhibited higher treatment efficiency but also had a retarded organic matter breakthrough, appearing after three to seven times the period for a bromide tracer. This supports a hypothesis that retardation of contaminant movement through the treatment cells results in enhanced removal. These results support the use of rock plant filters, but demonstrate the need to account for performance variations in system design.

  12. Patch-Scale Effects of Equine Disturbance on Arthropod Assemblages and Vegetation Structure in Subalpine Wetlands

    NASA Astrophysics Data System (ADS)

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Ballenger, Elizabeth A.

    2014-06-01

    Assessments of vertebrate disturbance to plant and animal assemblages often contrast grazed versus ungrazed meadows or other larger areas of usage, and this approach can be powerful. Random sampling of such habitats carries the potential, however, for smaller, more intensely affected patches to be missed and for other responses that are only revealed at smaller scales to also escape detection. We instead sampled arthropod assemblages and vegetation structure at the patch scale (400-900 m2 patches) within subalpine wet meadows of Yosemite National Park (USA), with the goal of determining if there were fine-scale differences in magnitude and directionality of response at three levels of grazing intensity. Effects were both stronger and more nuanced than effects evidenced by previous random sampling of paired grazed and ungrazed meadows: (a) greater negative effects on vegetation structure and fauna in heavily used patches, but (b) some positive effects on fauna in lightly grazed patches, suggested by trends for mean richness and total and population abundances. Although assessment of disturbance at either patch or landscape scales should be appropriate, depending on the management question at hand, our patch-scale work demonstrated that there can be strong local effects on the ecology of these wetlands that may not be detected by comparing larger scale habitats.

  13. A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary

    USGS Publications Warehouse

    Kelin, Hu; Qin, Chen; Wang, Hongqing

    2014-01-01

    Coastal wetlands play a unique role in extreme hurricane events. The impact of wetlands on storm surge depends on multiple factors including vegetation, landscape, and storm characteristics. The Delft3D model, in which vegetation effects on flow and turbulence are explicitly incorporated, was applied to the semi-enclosed Breton Sound (BS) estuary in coastal Louisiana to investigate the wetland impact. Guided by extensive field observations, a series of numerical experiments were conducted based on variations of actual vegetation properties and storm parameters from Hurricane Isaac in 2012. Both the vegetation-induced maximum surge reduction (MSR) and maximum surge reduction rate (MSRR) increased with stem height and stem density, and were more sensitive to stem height. The MSR and MSRR decreased significantly with increasing wind intensity. The MSRR was the highest with a fast-moving weak storm. It was also found that the MSRR varied proportionally to the expression involving the maximum bulk velocity and surge over the area of interest, and was more dependent on the maximum bulk surge. Both MSR and MSRR appeared to increase when the area of interest decreased from the whole BS estuary to the upper estuary. Within the range of the numerical experiments, the maximum simulated MSR and MSRR over the upper estuary were 0.7 m and 37%, respectively.

  14. Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data

    NASA Astrophysics Data System (ADS)

    Yu, Kun; Hu, Chuanmin

    2013-01-01

    Wetlands are important ecosystems on Earth. However, global wetland coverage is being reduced due to both anthropogenic and natural effects. Thus, assessment of temporal changes in vegetative coverage, as a measure of the wetland health, is critical to help implement effective management plans and provide inputs for climate-related research. In this work, 596 moderate-resolution imaging spectroradiometer (MODIS) 250-m resolution images of the Hongze Lake national wetland nature reserve from 2000 to 2009 were used to study the vegetative coverage (above the water surface) of the reserve. Three vegetation indices [normalized difference vegetation index (NDVI), enhanced VI (EVI), and floating algae index (FAI)] were compared to evaluate their effectiveness in assessing relative changes. FAI was less sensitive than NDVI and EVI to aerosol effects and showed less statistical error than NDVI and EVI. Long-term FAI data revealed clear seasonal cycles in vegetative coverage in the 113-km2 core area of the reserve, with annual maximal coverage relatively stable after 2004. This suggests that the national wetland nature reserve was well protected through the study period. However, vegetative coverage decreased due to the flooding event in 2003. Moreover, correlation analysis showed that annual sunshine duration collectively played a significant role in affecting the wetland vegetative coverage.

  15. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.

    PubMed

    Wang, Chih-Yu; Sample, David J; Bell, Cameron

    2014-11-15

    Floating treatment wetlands (FTWs) consist of emergent macrophytes that are placed on a floating mat in a pond for water treatment and aesthetic purposes. FTWs may have unique advantages with respect to treating urban runoff within existing retention ponds for excess nutrients. However, research is lacking in providing guidance on performance of specific species for treating urban runoff, and on timing of harvest. Harvesting is needed to remove nutrients permanently from the retention pond. We investigated vegetation effects on FTWs on nitrogen (N) and phosphorus (P) removal performance and storage in above-ground FTW macrophyte tissues. The study evaluated pickerelweed (PW, Pontederia cordata L.) and softstem bulrush (SB, Schoenoplectus tabernaemontani) over time in microcosms flushed with water obtained from a nearby urban retention pond in northern Virginia near Washington, DC. While the literature exhibits a wide range of experimental sizes, using the term mesocosm, we have chosen the term microcosm to reflect the small size of our vessel; and do not include effects of sediment. The experiment demonstrated PW outperformed SB for P and N removal. Based upon analysis of the accumulated nutrient removal over time, a harvest of the whole PW and SB plants in September or October is recommended. However, when harvesting only the aerial parts, we recommend harvesting above-ground PW tissues in July or August to maximize nutrient removal. This is because PW translocates most of its nutrients to below-ground storage organs in the fall, resulting in less nutrient mass in the above-ground tissue compared to the case in the summer (vegetative stage). Further research is suggested to investigate whether vegetation can be overly damaged from multiple harvests on an annual basis in temperate regions. PMID:25214393

  16. Prototype Application of NASA Missions to Identify Patterns of Wetland Vegetation Development within the South San Francisco Bay Salt Ponds

    NASA Astrophysics Data System (ADS)

    Hsu, W.; Newcomer, M. E.; Justice, E.; Guild, L. S.; Skiles, J. W.

    2010-12-01

    The South Bay Salt Pond Restoration Project is the largest tidal wetland restoration on the west coast of the United States. Monitoring vegetation development in these emergent habitats with remote sensing can provide restoration managers with an indication of ecological health and progress of development. Remotely sensed imagery was used to monitor vegetation development and to map vegetation patterns and biota changes historically, during, and after salt pond construction for ponds A19, A20, and A21. Percent vegetative cover was mapped using the Normalized Difference Vegetation Index (NDVI) from MODIS, Tasseled Cap Greenness (TCG) and NDVI from Landsat TM, and the Ratio Vegetation Index (RVI) from ASTER. Field parameters included in-situ measurements and geographic locations for percent vegetative cover, and site specific species information. Field data were incorporated into GIS, and vegetation was analyzed using spatial statistics methods and a qualitative post-classification comparison technique. NDVI values obtained from the Landsat scenes indicated a net gain of 3.35 acres of vegetation cover from February 2006 (before pond breaching) to August 2009 for pond A21 and 1.33 acres and 3.14 acres for ponds A20 and A19, respectively. Increases in vegetation indicate the marsh has built up to a steady-state condition to provide appropriate habitat for endangered plant and animal species and also indicates the success of restoration practices.

  17. Comparison of carbon balance in Mediterranean pilot constructed wetlands vegetated with different C4 plant species.

    PubMed

    Barbera, Antonio C; Borin, Maurizio; Cirelli, Giuseppe L; Toscano, Attilio; Maucieri, Carmelo

    2015-02-01

    This study investigates carbon dioxide (CO2) and methane (CH4) emissions and carbon (C) budgets in a horizontal subsurface flow pilot-plant constructed wetland (CW) with beds vegetated with Cyperus papyrus L., Chrysopogon zizanioides (L.) Roberty, and Mischantus × giganteus Greef et Deu in the Mediterranean basin (Sicily) during the 1st year of plant growing season. At the end of the vegetative season, M. giganteus showed the higher biomass accumulation (7.4 kg m(-2)) followed by C. zizanioides (5.3 kg m(-2)) and C. papyrus (1.8 kg m(-2)). Significantly higher emissions of CO2 were detected in the summer, while CH4 emissions were maximum during spring. Cumulative CO2 emissions by C. papyrus and C. zizanioides during the monitoring period showed similar trends with final values of about 775 and 1,074 g m(-2), respectively, whereas M. giganteus emitted 3,395 g m(-2). Cumulative CH4 bed emission showed different trends for the three C4 plant species in which total gas release during the study period was for C. papyrus 12.0 g m(-2) and ten times higher for M. giganteus, while C. zizanioides bed showed the greatest CH4 cumulative emission with 240.3 g m(-2). The wastewater organic carbon abatement determined different C flux in the atmosphere. Gas fluxes were influenced both by plant species and monitored months with an average C-emitted-to-C-removed ratio for C. zizanioides, C. papyrus, and M. giganteus of 0.3, 0.5, and 0.9, respectively. The growing season C balances were positive for all vegetated beds with the highest C sequestered in the bed with M. giganteus (4.26 kg m(-2)) followed by C. zizanioides (3.78 kg m(-2)) and C. papyrus (1.89 kg m(-2)). To our knowledge, this is the first paper that presents preliminary results on CO2 and CH4 emissions from CWs vegetated with C4 plant species in Mediterranean basin during vegetative growth. PMID:24743957

  18. Early development of vascular vegetation of constructed wetlands in northwest Ohio receiving agricultural waters

    Microsoft Academic Search

    Lee M Luckeydoo; N. R Fausey; L. C Brown; C. B Davis

    2002-01-01

    Constructed wetlands are currently being explored for use in reducing non-point source (NPS) pollution. The Wetland Reservoir Subirrigation System (WRSIS) project links water management in agricultural fields, constructed wetlands and water storage reservoirs to enhance crop production and reduce delivery of agrichemicals and sediments to local waterways. Three WRSIS demonstration sites have been developed on prior converted cropland in the

  19. The soil seed bank and its relationship to the established vegetation in urban wastelands

    Microsoft Academic Search

    Harald Albrecht; Elisabeth Eder; Thomas Langbehn; Clara Tschiersch

    2011-01-01

    Industrial and traffic areas are particularly characteristic of the urban environment. Due to frequent soil transport and vegetation disturbance, soil seed banks and seed production play an essential role for vegetation establishment in these sites. Since researchers have scarcely focussed on these traits, it was analysed in three railway and loading areas in Munich. Seed numbers in soil ranged from

  20. Responses of wetland invertebrates and plants important in waterfowl diets to burning and mowing of emergent vegetation

    Microsoft Academic Search

    Ferenc A. de Szalay; Vincent H. Resh

    1997-01-01

    We examined the responses of invertebrates and plants important in waterfowl diets to two management methods (prescribed burning\\u000a and mowing) commonly used in seasonal wetlands. Experimental plots were constructed in summer 1992 in stands of saltgrass\\u000a (Distichlis spicata); 50% of the vegetation was removed in treatment areas (10 m × 10 m) by either burning or mowing. After the plots

  1. Establishment, growth and survival of natural regeneration after clearcutting and drainage on forested wetlands

    Microsoft Academic Search

    Vincent Roy; Jean-Claude Ruel; André P Plamondon

    2000-01-01

    Natural regeneration may be disrupted by the rise of the water table in surface layers after clearcutting forested wetlands. A study was initiated on eight forested wetlands that were successively clearcut and drained 3 years later. The objectives were (1) to assess conifer and deciduous regeneration on waterlogged clearcut sites, (2) to determine the effect of water table level changes

  2. Investigation of uncertainties of establishment schemes in dynamic global vegetation models

    NASA Astrophysics Data System (ADS)

    Song, Xiang; Zeng, Xiaodong

    2014-01-01

    In Dynamic Global Vegetation Models (DGVMs), the establishment of woody vegetation refers to flowering, fertilization, seed production, germination, and the growth of tree seedlings. It determines not only the population densities but also other important ecosystem structural variables. In current DGVMs, establishments of woody plant functional types (PFTs) are assumed to be either the same in the same grid cell, or largely stochastic. We investigated the uncertainties in the competition of establishment among coexisting woody PFTs from three aspects: the dependence of PFT establishments on vegetation states; background establishment; and relative establishment potentials of different PFTs. Sensitivity experiments showed that the dependence of establishment rate on the fractional coverage of a PFT favored the dominant PFT by increasing its share in establishment. While a small background establishment rate had little impact on equilibrium states of the ecosystem, it did change the timescale required for the establishment of alien species in pre-existing forest due to their disadvantage in seed competition during the early stage of invasion. Meanwhile, establishment purely from background (the scheme commonly used in current DGVMs) led to inconsistent behavior in response to the change in PFT specification (e.g., number of PFTs and their specification). Furthermore, the results also indicated that trade-off between individual growth and reproduction/colonization has significant influences on the competition of establishment. Hence, further development of establishment parameterization in DGVMs is essential in reducing the uncertainties in simulations of both ecosystem structures and successions.

  3. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  4. Synergy between LIDAR and RADARSAT-2 images for the recognition of vegetation structures in the coastal wetlands of the Danube Delta

    NASA Astrophysics Data System (ADS)

    Niculescu, Simona; Lardeux, Cédric; Grigoras, Ion; Hanganu, Jenica; David, Laurence

    2014-05-01

    Wetlands are among the most productive environments in the world and are characterized by exceptional biological diversity. Despite their indisputable importance, these environments remain among the most endangered ecosystems in the world due to drainage, drying out, pollution or overexploitation of resources. The Danube Delta, a coastal wetland of the Black Sea, cannot escape these dangers and, to preserve its resources, it has been declared a Biosphere Reserve (in 1993). The biodiversity of this area is remarkable and it possesses one of the largest reed in the world (a continuous 2,700 km² reed cover). The main goal of this project is to determine, characterize and derive functional descriptors of the vegetation structures, Phragmites australis species of the Danube Delta being the most prevalent. For this purpose, this project aims, on the one hand, at interpreting LIDAR measurements (acquired in May 2011) in conjunction with RADARSAT-2 satellite observations (acquired in early June 2011) and, on the other hand, at validating the results obtained by the introduction of the spectral measurements of the main vegetation classes into a Spectral Angle Mapper algorithm applied to a SPOT-5 image (May 2011). The LIDAR data allow the assessment of vegetation height with an accuracy of a few centimeters. Hence, the various vegetation layers can be accurately mapped. However, the differentiation of the various vegetation formations within a same layer requires the contribution of complementary data sources such as RADARSAT-2 data. The radar measurements are derived using the C band (? wavelength = 5.3 cm) providing additional information on the vegetation cover structure with regard to roughness, moisture and biomass. The simultaneous acquisition of HH, HV and VV polarizations allows the differentiation of the areas according to their response to different polarizations by establishing their polarimetric signatures. Based on these raw data, we were able to derive other indices such as, for instance, the intensity of the four polarizations, the span and the polarimetric entropy. Entropy is very sensitive to vegetation density; the thicker the vegetation, the higher the entropy becomes. The approach allowed us to obtain valuable information regarding different types of exploitation of the reed (cut or burned reed). Moreover, the exploitation of the SPOT 5 spectral information was made possible due to the calibration carried out using spectrometers to perform spectral measurements in the areas previously identified on the images.

  5. Vegetation Types Alter Soil Respiration and Its Temperature Sensitivity at the Field Scale in an Estuary Wetland

    PubMed Central

    Han, Guangxuan; Xing, Qinghui; Luo, Yiqi; Rafique, Rashad; Yu, Junbao; Mikle, Nate

    2014-01-01

    Vegetation type plays an important role in regulating the temporal and spatial variation of soil respiration. Therefore, vegetation patchiness may cause high uncertainties in the estimates of soil respiration for scaling field measurements to ecosystem level. Few studies provide insights regarding the influence of vegetation types on soil respiration and its temperature sensitivity in an estuary wetland. In order to enhance the understanding of this issue, we focused on the growing season and investigated how the soil respiration and its temperature sensitivity are affected by the different vegetation (Phragmites australis, Suaeda salsa and bare soil) in the Yellow River Estuary. During the growing season, there were significant linear relationships between soil respiration rates and shoot and root biomass, respectively. On the diurnal timescale, daytime soil respiration was more dependent on net photosynthesis. A positive correlation between soil respiration and net photosynthesis at the Phragmites australis site was found. There were exponential correlations between soil respiration and soil temperature, and the fitted Q10 values varied among different vegetation types (1.81, 2.15 and 3.43 for Phragmites australis, Suaeda salsa and bare soil sites, respectively). During the growing season, the mean soil respiration was consistently higher at the Phragmites australis site (1.11 µmol CO2 m?2 s?1), followed by the Suaeda salsa site (0.77 µmol CO2 m?2 s?1) and the bare soil site (0.41 µmol CO2 m?2 s?1). The mean monthly soil respiration was positively correlated with shoot and root biomass, total C, and total N among the three vegetation patches. Our results suggest that vegetation patchiness at a field scale might have a large impact on ecosystem-scale soil respiration. Therefore, it is necessary to consider the differences in vegetation types when using models to evaluate soil respiration in an estuary wetland. PMID:24608636

  6. Wetland vegetation in Manzala lagoon, Nile Delta coast, Egypt: Rapid responses of pollen to altered nile hydrology and land use

    USGS Publications Warehouse

    Bernhardt, C.E.; Stanley, J.-D.; Horton, B.P.

    2011-01-01

    The pollen record in a sediment core from Manzala lagoon on the Nile delta coastal margin of Egypt, deposited from ca. AD 1860 to 1990, indicates rapid coastal wetland vegetation responses to two primary periods of human activity. These are associated with artificially altered Nile hydrologic regimes in proximal areas and distal sectors located to ???1200 km south of Manzala. Freshwater wetland plants that were dominant, such as Typha and Phragmites, decreased rapidly, whereas in the early 1900s, brackish water wetland species (e.g., Amaranthaceae) increased. This change occurred after closure of the Aswan Low Dam in 1902. The second major modification in the pollen record occurred in the early 1970s, after Aswan High Dam closure from 1965 to 1970, when Typha pollen abundance increased rapidly. Massive population growth occurred along the Nile during the 130 years represented by the core section. During this time, the total volume of lagoon water decreased because of conversion of wetland areas to agricultural land, and input of organic-rich sediment, sewage (municipal, agricultural, industrial), and fertilizer in Manzala lagoon increased markedly. Although the wetland plant community has continued to respond to increasingly intensified and varied human-induced pressures in proximal sectors, the two most marked changes in Manzala pollen best correlate with distal events (i.e., closure of the two dams at Aswan). The study also shows that the two major vegetation changes in Manzala lagoon each occurred less than 10 years after closure upriver of the Low and High dams that markedly altered the Nile regime from Upper Egypt to the coast. ?? 2011, the Coastal Education & Research Foundation (CERF).

  7. -Establishment of Norway spruce seedlings -681 Journal of Vegetation Science 7: 681-684, 1996

    E-print Network

    Leps, Jan "Suspa"

    - Establishment of Norway spruce seedlings - 681 Journal of Vegetation Science 7: 681-684, 1996 abandoned for half a century and are sur- rounded by Picea abies (Norway spruce) forests. The causes of inhibition of establishment of Norway spruce seedlings in the meadows were tested experimentally

  8. Isolated Spring Wetlands in the Great Basin and Mojave Deserts, USA: Potential Response of Vegetation to Groundwater Withdrawal

    NASA Astrophysics Data System (ADS)

    Patten, Duncan T.; Rouse, Leigh; Stromberg, Juliet C.

    2008-03-01

    Desert springs, often the sole sources of water for wildlife and cattle, support wetland and wetland/upland transition ecosystems including rare and endemic species. In the basin and range province in Nevada, USA, springs in the Great Basin and Mojave deserts are sustained by interconnected deep carbonate and shallow basin-fill aquifers which are threatened by proposed groundwater withdrawal to sustain rapidly expanding urban areas, a common problem in arid regions worldwide. This paper draws on historic groundwater data, groundwater modeling, and studies of environmental controls of spring ecosystems to speculate on the potential effects of groundwater withdrawal and water table decline on spring-supported vegetation. The focus is on springs in the Great Basin and Mojave deserts representative of those that may be affected by future, planned groundwater withdrawal. Groundwater withdrawal is expected to reduce spring discharge directly through reduced flows from the shallow basin-fill aquifer or through reduction of the hydraulic head of the deep carbonate aquifer. This flow reduction will truncate the outflow stream, reducing the areal cover of wetland and wetland/upland transition vegetation. Lowering the local water table may also reduce the amount of upland phreatophytic vegetation by causing water levels to drop below plant rooting depths. Percolation of salts to surface soils may be reduced, eventually altering desert shrub cover from halophytes to nonhalophytes. The extent of these effects will vary among springs, based on their distance from extraction sites and location relative to regional groundwater flow paths. On-site monitoring of biotic variables (including cover of selected hygrophytes and phreatophytes) should be a necessary complement to the planned monitoring of local hydrologic conditions.

  9. Isolated spring wetlands in the Great Basin and Mojave deserts, USA: potential response of vegetation to groundwater withdrawal.

    PubMed

    Patten, Duncan T; Rouse, Leigh; Stromberg, Juliet C

    2008-03-01

    Desert springs, often the sole sources of water for wildlife and cattle, support wetland and wetland/upland transition ecosystems including rare and endemic species. In the basin and range province in Nevada, USA, springs in the Great Basin and Mojave deserts are sustained by interconnected deep carbonate and shallow basin-fill aquifers which are threatened by proposed groundwater withdrawal to sustain rapidly expanding urban areas, a common problem in arid regions worldwide. This paper draws on historic groundwater data, groundwater modeling, and studies of environmental controls of spring ecosystems to speculate on the potential effects of groundwater withdrawal and water table decline on spring-supported vegetation. The focus is on springs in the Great Basin and Mojave deserts representative of those that may be affected by future, planned groundwater withdrawal. Groundwater withdrawal is expected to reduce spring discharge directly through reduced flows from the shallow basin-fill aquifer or through reduction of the hydraulic head of the deep carbonate aquifer. This flow reduction will truncate the outflow stream, reducing the areal cover of wetland and wetland/upland transition vegetation. Lowering the local water table may also reduce the amount of upland phreatophytic vegetation by causing water levels to drop below plant rooting depths. Percolation of salts to surface soils may be reduced, eventually altering desert shrub cover from halophytes to nonhalophytes. The extent of these effects will vary among springs, based on their distance from extraction sites and location relative to regional groundwater flow paths. On-site monitoring of biotic variables (including cover of selected hygrophytes and phreatophytes) should be a necessary complement to the planned monitoring of local hydrologic conditions. PMID:18060450

  10. Relationships among vegetation, geomorphology and hydrology in the Bananal Island tropical wetlands, Araguaia River basin, Central Brazil

    NASA Astrophysics Data System (ADS)

    Valente, C. R.; Latrubesse, E. M.; Ferreira, L. G.

    2013-10-01

    The Bananal Plain spreading on the Middle Araguaia River basin in Central Brazil at the Cerrado-Amazonia ecotone is a unique system that sustains the largest seasonal wetlands of the Cerrado biome. The huge Bananal Plain is an intracratonic sedimentary basin filled with Pleistocene sediments of the Araguaia formation. Covering approximately two million hectares, the Bananal Island is a major geomorphologic feature of the Bananal plain. Fieldwork and the analysis of a temporal series of MODIS-VI and Landsat ETM images allowed us to discriminate Cerrado phyto-physiognomies on the Bananal Island. Maps of vegetation and geomorphologic units were created, and from the correlation between landforms and vegetation types we identified morpho-vegetation units. Our approach allowed us to postulate that Pleistocene landforms strongly influence, if not dominate, the distribution of vegetation units. For example, the distribution of current gallery forest is not only controlled by active floodplains, but also by alluvial belts abandoned by avulsion. Additionally, arboreal Cerrado vegetation is supported by laterite developed on the sediments of the Araguaia Formation. Some of these inactive landforms are in part modified by the present day geomorphologic processes and colonized by successional vegetation that varies from alluvial forest to Cerrado. Characterized by a very flat landscape with a hindered drainage, the muddy sediments of the Araguaia Formation and the high seasonal rainfall favor the development of regional seasonal wetlands. The Bananal plain is a key area for understanding the Quaternary climatic and biogeographic changes in tropical South America. The control exerted by relict Quaternary landforms on the current vegetation units demonstrates the strong links between geomorphologic aspects of the landscape and ecological patterns. This multidisciplinary approach provides a better understanding of the biogeographic patterns in the Cerrado-Amazon ecotone, which is useful for identifying and designing areas for conservation.

  11. Carbon Gas Fluxes in Re-Established Wetlands on Organic Soils Differ Relative to Plant Community and Hydrology

    Microsoft Academic Search

    Robin L. Miller

    We measured CO2 and CH4 fluxes for 6 years following permanent flooding of an agriculturally managed organic soil at two water depths (~25 and ~55 cm\\u000a standing water) in the Sacramento–San Joaquin Delta, California, as part of research studying C dynamics in re-established\\u000a wetlands. Flooding rapidly reduced gaseous C losses, and radiocarbon data showed that this, in part, was due to reduced

  12. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind shear. Because of the diurnal pattern in water column heat flux that follows the diurnal pattern in incoming solar radiation, this difference means gas transfer velocities are expected to vary diurnally during calm or average wind conditions, peaking late at night and early in the morning. Conversely for very windy conditions, alone may determine the gas transfer velocity even when high heat fluxes out of the water column are relatively high. For the calculation of k600 from , we developed an enhancement factor to account for the very high wind speed variance observed in the Schoenoplectus-Typha emergent canopy and likely seen in other emergent canopies as well. These wetland targeted gas transfer velocities will improve the accuracy of wetland gas flux measurements and models and enable the partitioning of net gas fluxes from wetlands into plant-mediated fluxes, ebullitive fluxes and fluxes due to the hydrodynamic transport of dissolved gases through the water column.

  13. Soil Trace Gas Flux for Wetland Vegetation Zones in North Dakota Prairie Pothole Basins

    Microsoft Academic Search

    R. L. Phillips; O. Beeri; E. S. Dekaiser

    2003-01-01

    Wetland ecosystems are considered a source for radiatively trace gases [methane (CH4), carbon dioxide (CO2), nitrous oxide (N2O)] but flux data for these greenhouse gases are lacking for depressional wetlands that comprise the Prairie Pothole Region. This region is characterized by thousands of small, closed basins that extend along the Missouri Coteau from north central Iowa to central Alberta. Surrounding

  14. Demonstration Wetland at Henderson, Nevada

    USGS Multimedia Gallery

    Demonstration wetland at Henderson, Nevada, where vegetated hummocks were built into the wastewater treatment wetland to improve its effectiveness and sustainability, as well as provide quality wildlife habitat....

  15. Wetland chronosequence as a model of peatland development: Vegetation succession, peat and carbon accumulation

    NASA Astrophysics Data System (ADS)

    Juutinen, S.; Tuittila, E.; Frolking, S.; Väliranta, M.; Laine, A. M.; Miettinen, A.; Seväkivi, M.; Quillet, A.; Merilä, P.

    2011-12-01

    Peatlands form currently a major terrestrial pool of organic matter (OM) and carbon (C). Dynamics of peat accumulation processes can be approached via models, which, however, need to be evaluated against real data. Land uplift coast with ongoing primary peatland formation is a unique setting to study the patterns and controls of peatland vegetation succession, development from fen to bog, and consequent changes in peat, carbon (C) and nitrogen (N) accumulation. Here we compared a chronosequence of peatlands with a vertical peat sequence and ran Holocene Peatland Model (HPM) simulations, and evaluated the simulation against the field observations. The modern vegetation from the emergent sea shore to a bog with age of about 3000 years formed a continuum from minerotrophic to ombrotrophic plant communities. Similar sequence of plant communities was found in historical vegetation data. Along the chronosequence the fen-bog transition stage was most diverse regarding to plant community types, but also to spatial variability in peat height and water table depth (WTD). The transition from meadow to fen communities was associated with the establishment of Sphagnum moss patches. Palaeobotanical evidence from the bog site showed a rapid and quite recent fen-bog transition indicated by coinciding decrease in minerotrophic plant functional types (sedge) and increase in ombrotrophic plant functional types (lawn or hummock Sphagna). Concurrent vegetation transition also in the cores from younger, a 700 year old, fen site suggests different pace of succession in these age cohorts, possibly due to external forcing. Evaluation of the HPM simulations indicated that the model is adjustable and it produced reasonable predictions despite temperature not being included directly in the model.

  16. Control of reed canarygrass promotes wetland herb and tree seedling establishment in an upper Mississippi River Floodplain forest

    USGS Publications Warehouse

    Thomsen, Meredith; Brownell, Kurt; Groshek, Matthew; Kirsch, Eileen

    2012-01-01

    Phalaris arundinacea (reed canarygrass) is recognized as a problematic invader of North American marshes, decreasing biodiversity and persisting in the face of control efforts. Less is known about its ecology or management in forested wetlands, providing an opportunity to apply information about factors critical to an invader's control in one wetland type to another. In a potted plant experiment and in the field, we documented strong competitive effects of reed canarygrass on the establishment and early growth of tree seedlings. In the field, we demonstrated the effectiveness of a novel restoration strategy, combining site scarification with late fall applications of pre-emergent herbicides. Treatments delayed reed canarygrass emergence the following spring, creating a window of opportunity for the early growth of native plants in the absence of competition from the grass. They also allowed for follow-up herbicide treatments during the growing season. We documented greater establishment of wetland herbs and tree seedlings in treated areas. Data from small exclosures suggest, however, that deer browsing can limit tree seedling height growth in floodplain restorations. Slower tree growth will delay canopy closure, potentially allowing reed canarygrass re-invasion. Thus, it may be necessary to protect tree seedlings from herbivory to assure forest regeneration.

  17. Physical and vegetative characteristics of a relocated stream reach, constructed wetland, and riparian buffer, Upper Saucon Township, Lehigh County, Pennsylvania, 2000-04

    USGS Publications Warehouse

    Chaplin, Jeffrey J.; White, Kirk E.; Loper, Connie A.

    2006-01-01

    The U.S. Geological Survey, in cooperation with the Pennsylvania Department of Transportation, Engineering District 5-0, investigated physical and vegetative changes within a relocated stream reach, constructed wetland, and riparian buffer from September 2000 to October 2004. This report presents an evaluation of data collected using methods from multiple sources that have been adapted into a consistent approach. This approach is intended to satisfy a need for consistent collection of different types of data with the goal of transferring technology and findings to similar projects. Survey data indicate that adjustment of the upstream part of the relocated stream reach slowed over the monitoring period, but the downstream channel remains unstable as evidenced by excessive deposition. Upstream migration of a nick point has slowed or stopped altogether as of the 2003 assessment when this feature came in contact with the upstream-most part of the channel that is lined with riprap. Documented streambed erosion in the upstream cross sections, along with deposition downstream, has resulted in an overall decrease in slope of the stream channel over the monitoring period. Most streambed erosion took place prior to the 2002 assessment when annual mean streamflows were less than those in the final 2 years of monitoring. An abundance of fine sediment dominates the substrate of the relocated channel. Annual fluctuations of large particles within each cross section demonstrates the capacity of the relocated channel to transport the entire range of sediment. The substrate within the 0.28-acre constructed wetland (a mixture of soil from an off-site naturally occurring wetland and woodchips) supported a hydrophytic-vegetation community throughout the investigation. Eleocharis obtusa (spike rush), an obligate-wetland herb, was the most prevalent species, having a maximum areal cover of 90 percent in fall 2001 and a minimum of 23 percent in fall 2004. Drought-like conditions in water year 2002 (cumulative precipitation was 28.11 inches) allowed species like Panicum dichotomiflorum (witch grass), Salix sp. (willow), Leersia oryzoides (rice cutgrass), and Echinocloa crusgalli (barnyard grass) to become established by fall 2002. Above-average precipitation in water years 2003 and 2004 (58.55 and 53.17 inches, respectively) coincided with increased areal cover by E. obtusa in fall 2003 (56 percent) and decreased areal cover in fall 2004 (23 percent). Pond-like conditions that probably persisted throughout the 2004 growing season favored aquatic species like Alisma subcordatum (water plantain) to the detriment of many emergent species, including E. obtusa. Despite the pond-like conditions, L. oryzoides, an obligate-wetland grass, increased in areal cover (from 12 to 34 percent) between the 2003 and 2004 growing seasons because it was established in the higher elevations and the peripheral areas of the constructed wetland that were less prone to persistent inundation. Canopy development by trees and shrubs in the riparian buffer was initially (fall 2000) poor (39.7 percent), resulting in more available sunlight for the herbaceous understory than in any other growing season. As a result, areal cover of herbaceous species and trees and shrubs less than 1-meter tall was 108 percent in fall 2000 with Lolium perenne (perennial rye), Polygonum persicaria (lady's thumb), and Setaria faberi (foxtail) collectively contributing nearly half the cover (59.2 percent). Because of increases in canopy cover by trees and shrubs (39.7 percent in fall 2000 to 127 percent in fall 2004), herbaceous cover decreased to 76 percent by the fall of 2001 and varied between 72 and 77 percent for the rest of the study period. Tree density in the riparian buffer ranged from 3,078 and 4,130 plants per acre (fall 2000 and 2003, respectively) over the study period but essentially remained constant after fall 2001; computations reported each fall between fall 2001 and fall

  18. Use of individualistic streamflow-vegetation relations along the Fremont River, Utah, USA to assess impacts of flow alteration on wetland and riparian areas

    Microsoft Academic Search

    Gregor T. Auble; Michael L. Scott; Jonathan M. Friedman

    2005-01-01

    We analyzed the transverse pattern of vegetation along a reach of the Fremont River in Capitol Reef National Park, Utah, USA\\u000a using models that support both delineation of wetland extent and projection of the changes in wetland area resulting from\\u000a upstream hydrologic alteration. We linked stage-discharge relations developed by a hydraulic model to a flow-duration curve\\u000a derived from the flow

  19. Mercury cycling in agricultural and managed wetlands of California: seasonal influences of vegetation on mercury methylation, storage, and transport

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Kakouros, Evangelos; Agee, Jennifer L.; Kieu, Le H.; Stricker, Craig A.; Fleck, Jacob A.; Ackerman, Joshua T.

    2013-01-01

    Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~ 3 months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio = 27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2 ng gdw- 1, respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r = 0.90, p < 0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through increased hydrologic and biotic export.

  20. Mercury cycling in agricultural and managed wetlands of California, USA: seasonal influences of vegetation on mercury methylation, storage, and transport.

    PubMed

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Kakouros, Evangelos; Agee, Jennifer L; Kieu, Le H; Stricker, Craig A; Fleck, Jacob A; Ackerman, Josh T

    2014-06-15

    Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~3months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio=27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2ng gdw(-1), respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r=0.90, p<0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through increased hydrologic and biotic export. PMID:23809880

  1. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm

    Microsoft Academic Search

    Keryn B. Gedan; Matthew L. Kirwan; Eric Wolanski; Edward B. Barbier; Brian R. Silliman

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal\\u000a communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we\\u000a conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support\\u000a of established theory. Our review suggests

  2. Experimental removal of wetland emergent vegetation leads to decreased methylmercury production in surface sediment

    Microsoft Academic Search

    Lisamarie Windham-Myers; Mark Marvin-Dipasquale; David P. Krabbenhoft; Jennifer L. Agee; Marisa H. Cox; Pilar Heredia-Middleton; Carolyn Coates; Evangelos Kakouros

    2009-01-01

    We performed plant removal (devegetation) experiments across a suite of ecologically diverse wetland settings (tidal salt marshes, river floodplain, rotational rice fields, and freshwater wetlands with permanent or seasonal flooding) to determine the extent to which the presence (or absence) of actively growing plants influences the activity of the Hg(II)-methylating microbial community and the availability of Hg(II) to those microbes.

  3. Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity?

    PubMed

    Brose, U

    2003-05-01

    Two hypotheses of bottom-up control that predict that the species richness of Carabidae will depend either on the taxonomic diversity of plants ("taxonomic diversity hypothesis") or on the structural heterogeneity of the vegetation ("structural heterogeneity hypothesis") were tested. Plant species were classified into nine plant structural groups through cluster analysis of morphological traits (e.g. total height) at 30 early successional temporary wetlands in the east-German agricultural landscape. In a linear regression analysis, the heterogeneity of vegetation structures explained 55% of the variation in carabid beetle diversity. According to a partial correlation analysis, plant taxonomic diversity did not have a significant effect, consistent with the "structural heterogeneity hypothesis," and contradicting previous studies which concluded that plant taxonomic diversity would be the most important factor in early successional habitats. An experimental study was used to test hypotheses on the processes underlying this bottom-up control by vegetation structure: the "hunting efficiency hypothesis," the "enemy-free space hypothesis," and the "microhabitat specialization hypothesis." The composition of plant structural groups in 15 vegetation plots (1 m(2)) was manipulated, creating a gradient from dense vegetation to open plots. Subsequent pitfall catches revealed significant differences in the activity-abundances of the carabid species. Large species preferred dense vegetation plots, consistent with the enemy-free space hypothesis that large species are more vulnerable to predation on the open plots and prefer dense vegetation to escape from natural enemies. The results indicate that bottom-up control is not mediated only by plant taxonomic or functional group diversity and that vegetation structures may be more important than previously suggested. PMID:12721831

  4. Landscape object-based analysis of wetland plant functional types: the effects of spatial scale, vegetation classes and classifier methods

    NASA Astrophysics Data System (ADS)

    Dronova, I.; Gong, P.; Wang, L.; Clinton, N.; Fu, W.; Qi, S.

    2011-12-01

    Remote sensing-based vegetation classifications representing plant function such as photosynthesis and productivity are challenging in wetlands with complex cover and difficult field access. Recent advances in object-based image analysis (OBIA) and machine-learning algorithms offer new classification tools; however, few comparisons of different algorithms and spatial scales have been discussed to date. We applied OBIA to delineate wetland plant functional types (PFTs) for Poyang Lake, the largest freshwater lake in China and Ramsar wetland conservation site, from 30-m Landsat TM scene at the peak of spring growing season. We targeted major PFTs (C3 grasses, C3 forbs and different types of C4 grasses and aquatic vegetation) that are both key players in system's biogeochemical cycles and critical providers of waterbird habitat. Classification results were compared among: a) several object segmentation scales (with average object sizes 900-9000 m2); b) several families of statistical classifiers (including Bayesian, Logistic, Neural Network, Decision Trees and Support Vector Machines) and c) two hierarchical levels of vegetation classification, a generalized 3-class set and more detailed 6-class set. We found that classification benefited from object-based approach which allowed including object shape, texture and context descriptors in classification. While a number of classifiers achieved high accuracy at the finest pixel-equivalent segmentation scale, the highest accuracies and best agreement among algorithms occurred at coarser object scales. No single classifier was consistently superior across all scales, although selected algorithms of Neural Network, Logistic and K-Nearest Neighbors families frequently provided the best discrimination of classes at different scales. The choice of vegetation categories also affected classification accuracy. The 6-class set allowed for higher individual class accuracies but lower overall accuracies than the 3-class set because individual classes differed in scales at which they were best discriminated from others. Main classification challenges included a) presence of C3 grasses in C4-grass areas, particularly following harvesting of C4 reeds and b) mixtures of emergent, floating and submerged aquatic plants at sub-object and sub-pixel scales. We conclude that OBIA with advanced statistical classifiers offers useful instruments for landscape vegetation analyses, and that spatial scale considerations are critical in mapping PFTs, while multi-scale comparisons can be used to guide class selection. Future work will further apply fuzzy classification and field-collected spectral data for PFT analysis and compare results with MODIS PFT products.

  5. Evaluating the effect of rainfall variability on vegetation establishment in a semidesert grassland.

    PubMed

    Fehmi, Jeffrey S; Niu, Guo-Yue; Scott, Russell L; Mathias, Andrea

    2014-01-01

    Of the operations required for reclamation in arid and semi-arid regions, establishing vegetation entails the most uncertainty due to reliance on unpredictable rainfall for seed germination and seedling establishment. The frequency of successful vegetation establishment was estimated based on a land surface model driven by hourly atmospheric forcing data, 7 years of eddy-flux data, and 31 years of rainfall data at two adjacent sites in southern Arizona, USA. Two scenarios differing in the required imbibition time for successful germination were evaluated-2 or 3 days availability of sufficient surface moisture. Establishment success was assumed to occur if plants could germinate and if the drying front in the soil did not overtake the growth of seminal roots. Based on our results, vegetation establishment could be expected to fail in 32 % of years. In the worst 10-year span, six of ten plantings would have failed. In the best 10-year span, only one of ten was projected to fail. Across all assessments, at most 3 years in a row failed and 6 years in a row were successful. Funding for reclamation seeding must be available to allow reseeding the following year if sufficient amount and timing of rainfall does not occur. PMID:23974536

  6. Vegetation mapping from medium-density discrete echo Airborne Laser Scanning data: a case study of the Lake Balaton wetlands

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Mücke, W.; Lehner, H.; Briese, C.; Pfeifer, N.

    2012-04-01

    Airborne Laser Scanning (ALS) is mainly used for collecting information on geomorphology, but the high spatial resolution and accuracy and especially the sensitivity to vertical structure are also proven to be valuable in vegetation mapping. Point cloud datasets acquired for regional or country-wide ALS surveys have strong potential as an easily accessible basis for consistent automatic vegetation mapping across large areas. However, automatized classification on the basis of multivariate analysis algorithms is not widely applied to moderate resolution discrete echo point clouds that these surveys typically produce. The number of relevant independent variables that can be derived from these datasets is often considered insufficient for multivariate classification-based detection of species or vegetation health, but in some cases it can be enhanced to a level sufficient for vegetation mapping. Although in conventional (single-wavelength) ALS the radiometric information produced is restricted to a single band, the differences of the radiometric parameters of the surveyed vegetation can considerably aid discrimination. In most cases, the horizontal distribution of the scanned points holds no information as this is governed by the sensor scan pattern. However, the horizontal distribution of points with specific radiometric intensity can add to the number of independent variables. In our case study of a lake shore and wetland area (ca. 100 km2 of wetlands distributed in a surveyed area of 1000 km2) a raster-based approach was used to average vertical structural parameters across cells occupied by several points. The information present in the position of the points relative to each other was thus exploited. Radiometric calibration of the echo amplitude also provided valuable information on vegetation type. Given a sufficient amount of pre-surveyed ground truth areas, a straightforward decision tree classification of LIDAR data mapped not only land cover categories, but also the main vegetation genera and the health of the dominant species. The decision tree algorithm was set up on the basis of a signature analysis comparing the histograms of each ALS-derived variable within the ground truth areas, and separating the classes based on histogram differences. This has proven robust enough to work across the full study area, and artefacts were relatively easy to recognize and understand. Classification accuracies produced by this study are between 60% and 92%, with an overall accuracy of 83% for all categories. While this is clearly below the maximum accuracy achievable by hyperspectral surveys of small areas, it is comparable to many passive multispectral or fused passive multispectral and ALS vegetation surveys and also the accuracies of ALS-based forest monitoring. Since the method itself is not specific for wetlands, it is believed that such an approach could provide valid vegetation classification results in other areas. As shown by this case study, medium-density discrete echo ALS datasets similar to those collected during European region-wide surveys can successfully be used to map vegetation classes relevant for ecology and conservation.

  7. Camera derived vegetation greenness index as proxy for gross primary production in a low Arctic wetland area

    NASA Astrophysics Data System (ADS)

    Westergaard-Nielsen, Andreas; Lund, Magnus; Hansen, Birger Ulf; Tamstorf, Mikkel Peter

    2013-12-01

    The Arctic is experiencing disproportionate warming relative to the global average, and the Arctic ecosystems are as a result undergoing considerable changes. Continued monitoring of ecosystem productivity and phenology across temporal and spatial scales is a central part of assessing the magnitude of these changes. This study investigates the ability to use automatic digital camera images (DCIs) as proxy data for gross primary production (GPP) in a complex low Arctic wetland site. Vegetation greenness computed from DCIs was found to correlate significantly (R2 = 0.62, p < 0.001) with a normalized difference vegetation index (NDVI) product derived from the WorldView-2 satellite. An object-based classification based on a bi-temporal image composite was used to classify the study area into heath, copse, fen, and bedrock. Temporal evolution of vegetation greenness was evaluated and modeled with double sigmoid functions for each plant community. GPP at light saturation modeled from eddy covariance (EC) flux measurements were found to correlate significantly with vegetation greenness for all plant communities in the studied year (i.e., 2010), and the highest correlation was found between modeled fen greenness and GPP (R2 = 0.85, p < 0.001). Finally, greenness computed within modeled EC footprints were used to evaluate the influence of individual plant communities on the flux measurements. The study concludes that digital cameras may be used as a cost-effective proxy for potential GPP in remote Arctic regions.

  8. Mercury cycling in agricultural and managed wetlands of California: experimental evidence of vegetation-driven changes in sediment biogeochemistry and methylmercury production

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark; Stricker, Craig A.; Agee, Jennifer L.; Kieu, Le H.; Kakouros, Evangelos

    2014-01-01

    The role of live vegetation in sediment methylmercury (MeHg) production and associated biogeochemistry was examined in three types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields) and adjacent managed natural wetlands (cattail- and bulrush or tule-dominated) in the Yolo Bypass region of California's Central Valley, USA. During the active growing season for each wetland, a vegetated:de-vegetated paired plot experiment demonstrated that the presence of live plants enhanced microbial rates of mercury methylation by 20 to 669% (median = 280%) compared to de-vegetated plots. Labile carbon exudation by roots appeared to be the primary mechanism by which microbial methylation was enhanced in the presence of vegetation. Pore-water acetate (pw[Ac]) decreased significantly with de-vegetation (63 to 99%) among all wetland types, and within cropped fields, pw[Ac] was correlated with both root density (r = 0.92) and microbial Hg(II) methylation (kmeth. r = 0.65). Sediment biogeochemical responses to de-vegetation were inconsistent between treatments for “reactive Hg” (Hg(II)R), as were reduced sulfur and sulfate reduction rates. Sediment MeHg concentrations in vegetated plots were double those of de-vegetated plots (median = 205%), due in part to enhanced microbial MeHg production in the rhizosphere, and in part to rhizoconcentration via transpiration-driven pore-water transport. Pore-water concentrations of chloride, a conservative tracer, were elevated (median = 22%) in vegetated plots, suggesting that the higher concentrations of other constituents around roots may also be a function of rhizoconcentration rather than microbial activity alone. Elevated pools of amorphous iron (Fe) in vegetated plots indicate that downward redistribution of oxic surface waters through transpiration acts as a stimulant to Fe(III)-reduction through oxidation of Fe(II)pools. These data suggest that vegetation significantly affected rhizosphere biogeochemistry through organic exudation and transpiration-driven concentration of pore-water constituents and oxidation of reduced compounds. While the relative role of vegetation varied among wetland types, macrophyte activity enhanced MeHg production.

  9. Temperature sensitivity of greenhouse gas production in wetland soils of different vegetation

    E-print Network

    Florida, University of

    and vegeta- tion type on both aerobic and anaerobic decomposi- tion of organic matter in subtropical wetland soils. As in many other studies, increased temperature resulted in higher rates of respiration and methanogenesis under both aerobic and anaerobic conditions, and the positive effect of temperature depended

  10. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition

    Microsoft Academic Search

    A. A Carbonell; M. A Aarabi; R. D DeLaune; R. P Gambrell; W. H Patrick Jr

    1998-01-01

    In wetland surface sediments of Louisiana, arsenic (As) concentrations are elevated because of a wide use of inorganic arsenicals as cotton desiccants and of organic arsenicals as herbicides in rice-producing areas. Beside this, As levels are even higher in the region of produced water discharge associated with petroleum hydrocarbon recovery operations. The uptake, potential bioavailability and phytotoxicity of As to

  11. Effects of Agricultural Runoff on Vegetation Composition of a Priority Conservation Wetland, Vermont, USA

    E-print Network

    Vermont, University of

    and within the Lake Champlain watershed. Three suggesting nutrient induced plant growth. Of the nine and introductions. Concentrations of nitrogen and phosphorus were mea- soil chemistry alterations affect plant of the basin. In pollution in the watershed of Franklin Bog. Protection of wetlands addition to Sphagnum, many

  12. The Role of Hydropedologic Vegetation Zones in Greenhouse Gas Emissions for Agricultural Wetland Landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Net greenhouse gas (GHG) source strength for agricultural wetland ecosystems in the Prairie Pothole Region (PPR) and spatial constraints associated with CH4, CO2, and N2O fluxes are currently unknown. Greenhouse gas fluxes typically vary with edaphic, hydrologic, biologic, and climatic factors. In...

  13. Development and testing of an index of biotic integrity based on submersed and floating vegetation and its application to assess reclamation wetlands in Alberta's oil sands area, Canada.

    PubMed

    Rooney, Rebecca C; Bayley, Suzanne E

    2012-01-01

    We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta's oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F(2,59) = 34.7, p = 0.000000000107). PMID:21484300

  14. Establishment of submergent vegetation and invertebrates in a wetland constructed on mine soil

    E-print Network

    Thomas, James Alan

    1994-01-01

    treatments and shelves, and exhibited highest frequencies in COON plots (0. 58) and on shelf III (0. 98). The spike-rushes, E. macrostachya and E. obtusa showed relatively high abundances (0. 65 and 0. 21, respectively) within all plots on shelf III.... Further, E. macrostachya was prevalent in COON (0. 19), NAIAD (0. 13), SAGO (0. 19), and SEED (0. 33) plots, while E. obtusa was generally limited to the SEED (0. 25) treatment. Additional emergent macrophytes with relatively high frequencies...

  15. Multisite comparison of drivers of methane emissions from wetlands in the European Arctic: influence of vegetation community and water table.

    NASA Astrophysics Data System (ADS)

    Dinsmore, Kerry; Drewer, Julia; Leeson, Sarah; Skiba, Ute; Levy, Pete; George, Charles

    2014-05-01

    Arctic and sub arctic wetlands are a major source of atmospheric CH4 and therefore have the potential to be important in controlling global radiative forcing. Furthermore, the strong links between wetland CH4 emissions and vegetation community, hydrology and temperature suggest potentially large feedbacks between climate change and future emissions. Quantifying current emissions over large spatial scales and predicting future climatic feedbacks requires a fundamental understanding of the ground based drivers of plot scale emissions. The MAMM project (Methane in the Arctic: Measurements and Modelling) aims to understand and quantify current CH4 emissions and future climatic impacts by combining both ground and aircraft measurements across the European Arctic with regional computer modelling. Here we present results from the ground-based MAMM measurement campaigns, analysing chamber-measured CH4 emissions from two sites in the European Arctic/Sub-Arctic region (Sodankylä, Finland; Stordalen Mire, Sweden) from growing seasons in 2012 and 2013. A total of 85 wetland static chambers were deployed across the two field sites; 39 at Sodankylä (67° 22'01' N, 26° 3'06' E) in 2012 and 46 at Stordalen Mire (68° 21'20' N, 19° 02'56' E) in 2013. Chamber design, protocol and deployment were the same across both sites. Chambers were located at sites chosen strategically to cover the local range of water table depths and vegetation communities. A total of 18 and 15 repeated measurements were made at each chamber in Sodankylä and Stordalen Mire, respectively, over the snow-free season. Preliminary results show a large range of CH4 fluxes across both sites ranging from a CH4 uptake of up to 0.07 and 0.06 mg CH4-C m-2 hr-1 to emissions of 17.3 and 44.2 mg CH4-C m-2 hr-1 in Sodankylä and Stordalen Mire, respectively. Empirical models based on vegetation community, water table depth, temperature and soil nutrient availability (Plant Root Simulator Probes, PRSTM) have been constructed with the aim of understanding the drivers of chamber scale fluxes. By combining measurements made at two different sites, >300km apart, using the same experimental setup, we are uniquely able to investigate whether CH4 emissions are driven by common parameters. Furthermore we are able to determine if plot scale empirical models and parameterisations can be used effectively to upscale emissions to landscape and whole Arctic scale.

  16. Responses of Hyalella azteca to a Pesticide-Nutrient Mixture in Vegetated and Non-vegetated Wetland Mesocosms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic vegetation has been shown to improve water quality by trapping and processing contaminants such as pesticides, nutrients and sediments. Currently there is little information regarding effects of pesticide and nutrient mixtures on aquatic biota in these systems and the influence aquatic vege...

  17. Establishment of woody riparian vegetation in relation to annual patterns of streamflow, Bill Williams River, Arizona

    USGS Publications Warehouse

    Shafroth, P.B.; Auble, G.T.; Stromberg, J.C.; Patten, D.T.

    1998-01-01

    Previous studies have revealed the close coupling of components of annual streamflow hydrographs and the germination and establishment of Populus species. Key hydrograph components include the timing and magnitude of flood peaks, the rate of decline of the recession limb, and the magnitude of base flows. In this paper, we retrospectively examine establishment of four woody riparian species along the Bill Williams River, Arizona, USA, in the context of annual patterns of streamflow for the years 1993-1995. The four species examined were the native Populus fremontii, Salix gooddingii, and Baccharis salicifolia and the exotic Tamarix ramosissima. We modeled locations suitable for germination of each species along eight study transects by combining historic discharge data, calculated stage-discharge relationships, and seed-dispersal timing observations. This germination model was a highly significant predictor of seedling establishment. Where germination was predicted to occur, we compared values of several environmental variables in quadrats where we observed successful establishment with quadrats where establishment was unsuccessful. The basal area of mature woody vegetation, the maximum annual depth to ground water, and the maximum rate of water-table decline were the variables that best discriminated between quadrats with and without seedlings. The results of this study suggest that the basic components of models that relate establishment of Populus spp. to annual patterns of streamflow may also be applicable to other woody riparian species. Reach-to-reach variation in stage-discharge relationships can influence model parameters, however, and should be considered if results such as ours are to be used in efforts to prescribe reservoir releases to promote establishment of native riparian vegetation.

  18. A Comparison of Vegetation in Artificially Isolated Wetlands on West Galveston Island

    E-print Network

    Wilson, Ashley

    2012-07-16

    as well as aquatic stages of damselflies and dragonflies (Odonata) may be present depending on flooding. Backswimmers and water boatman (Hemiptera) may also be present. Some common land mammals include the Sylvilagus aquaticus, Rattus rattus and Sciurus... carolinensis. Myocaster coypus has also been identified as a management problem for some of the island?s wetlands. 9 Figure 1. Location of Galveston Island, TX. (Source: GBNEP 2006) Figure 2. Location of the sample sites on Galveston Island...

  19. Analysis of LANDSAT ETM and TM multi-temporal data for IPCI-based wetland vegetation condition classes in the prairie pothole region of North Dakota

    NASA Astrophysics Data System (ADS)

    Mita, Dath Kakole

    In this study, geographic information systems (GIS), FRAGSTATS (landscape pattern analysis program), and satellite classification land cover data were used to (1) explore, quantify, and compare the spatial pattern of landscapes surrounding seasonal and temporary wetlands in the Prairie Pothole Region (PPR) of North Dakota; (2) determine the relationship of landscape metrics to the Index of Plant Community Integrity (IPCI); and (3) develop a landscape-level wetland condition prediction model. Patch-based statistics, derived from multi-temporal (LANDSAT TM and ETM+) land cover data, were summarized at the class and landscape-level and used to characterize landscape spatial pattern. Non-Metric Multidimensional Scaling ordination was used to evaluate the dissimilarity in landscape metric space of wetlands of differing IPCI values. Statistical analysis confirmed differences in spatial patterns surrounding wetlands. Strong associations were also discovered between the IPCI condition of wetlands and 13 landscape metrics, largely among seasonal wetlands (landscapes with relatively minimal human disturbance). The associations were relatively weaker among temporary wetlands (landscapes subjected to repeated and considerable agricultural management). A data-driven model, the Landscape Wetland Analysis Model (LWAM), was developed and validated for rapid quantitative assessment of landscape structure, and prediction of potential wetland plant community condition. The modeling approach was based on (1) identification of metrics that displayed reasonable relationship(s) with wetland condition classes, (2) establishment of threshold levels that significantly and consistently separated the IPCI wetland conditions, and (3) the development of decision rules for obtaining wetland modeled condition class membership. Three landscape metrics were retained for model development: (1) grassland percent core area of landscape (C%LAND), (2) grassland largest patch index (LPI), and (3) the number of patches per unit area (NPA). The model provides two decision-making options for landscape-level assessment, understanding, and ultimately managing PPR wetlands: (1) three-level condition classification approach (i.e., poor, intermediate, and good: derived when two decision rules are applied), and (2) two-level classification approach (i.e., poor and good: derived when all decision rules are applied). Two aspects of the PPR landscape were discovered as important in this study contributing to the structure and plant community condition of wetland ecosystems: (1) grasslands, and (2) landscape fragmentation.

  20. Evaluating the influence of wetland vegetation on chemical residence time in Mississippi Delta drainage ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of emergent vegetation within channelized aquatic environments has the capacity to provide a number of biological functions as well as alter the hydrology of the system. Vegetation within the channel exerts roughness, drag and friction on flowing water, reducing flow rates, increasing w...

  1. Gradient Analysis and Classification of Carolina Bay Vegetation: A Framework for Bay Wetlands Conservation and Restoration

    SciTech Connect

    Diane De Steven,Ph.D.; Maureen Tone,PhD.

    1997-10-01

    This report address four project objectives: (1) Gradient model of Carolina bay vegetation on the SRS--The authors use ordination analyses to identify environmental and landscape factors that are correlated with vegetation composition. Significant factors can provide a framework for site-based conservation of existing diversity, and they may also be useful site predictors for potential vegetation in bay restorations. (2) Regional analysis of Carolina bay vegetation diversity--They expand the ordination analyses to assess the degree to which SRS bays encompass the range of vegetation diversity found in the regional landscape of South Carolina's western Upper Coastal Plain. Such comparisons can indicate floristic status relative to regional potentials and identify missing species or community elements that might be re-introduced or restored. (3) Classification of vegetation communities in Upper Coastal Plain bays--They use cluster analysis to identify plant community-types at the regional scale, and explore how this classification may be functional with respect to significant environmental and landscape factors. An environmentally-based classification at the whole-bay level can provide a system of templates for managing bays as individual units and for restoring bays to desired plant communities. (4) Qualitative model for bay vegetation dynamics--They analyze present-day vegetation in relation to historic land uses and disturbances. The distinctive history of SRS bays provides the possibility of assessing pathways of post-disturbance succession. They attempt to develop a coarse-scale model of vegetation shifts in response to changing site factors; such qualitative models can provide a basis for suggesting management interventions that may be needed to maintain desired vegetation in protected or restored bays.

  2. Least Bittern distribution among structurally different vegetation types in managed wetlands of northwest Tennessee, USA

    Microsoft Academic Search

    Nicholas A. Winstead; Sammy L. King

    2006-01-01

    We conducted Least Bittern (Ixobrychus exilis) surveys on Reelfoot Lake and nearby Black Bayou Waterfowl Refuge, in northwest Tennessee, USA during May–June 2003 to determine\\u000a the distribution of Least Bitterns among structurally different vegetation types, including giant cutgrass (Zizaniopsis miliacea), swamp loosestrife (Decodon verticillatus), and woody vegetation. Least Bitterns were historically abundant on Reelfoot Lake when giant cutgrass once occupied

  3. The influence of topography and vegetation self-organization over resource fluxes in wetland ecosystems

    NASA Astrophysics Data System (ADS)

    Stieglitz, Marc; Cheng, Yiwei; Truk, Greg; Engel, Victor; Ross, Joshua

    2014-05-01

    While it is recognized that topography and vegetation self-organization (SO) are both first order controls over ecosystem dynamics, the discrete contributions that these two controls have over ecosystem functioning have not been studied in any rigorous way. This work is focused on systematically isolating the separate and combined impacts of topography and SO over vegetation dynamics. We simulate the steady state and transient dynamics of nitrogen-limited patterned peat vegetation observed in the bogs of northern Siberia. We do so across a realistic range of land slopes, nutrient limitation values, and rainfall amounts. Simulation results show that on relatively shallow slopes, vegetation SO is a primary control over the spatial arrangement of vegetation, and that such self-organized arrangements yield the most efficient capture of ecosystem resources. However, as slope increases, and or resource limitation is low, topography begins to exert its control over the temporal and spatial dynamics. As will be discussed, these results suggest a simple continuum framework, valid across biomes, for understanding the interplay between these two first order controls. Specifically, as resources (e.g., water, nutrients) increase, ecosystem dynamics shift towards topographic control, while when resources are reduced, ecosystem dynamics shift towards vegetation SO control.

  4. [Diurnal dynamics of microclimate at different succession stages of vegetation communities in inner-river wetland of Zhenjiang City].

    PubMed

    Fu, Weiguo; Li, Pingping; Wu, Yanyou; Bian, Xinmin

    2006-09-01

    To study the diurnal dynamics of microclimate at different succession stages of vegetation communities in the inner-river wetland of Zhenjiang City, three typical communities were chosen, and the light intensity, air temperature, soil temperature, and air relative humidity were measured. The results showed that with the succession of barren land --> Phalaris arundinacea --> Phragmites communis, the diurnal mean values of light intensity, air temperature, and soil temperature decreased from 1204.7 micromol x m(-2) x s(-1) to 141.28 micro.mol x m(-2) x s(-1), 32.2 degrees C to 24.9 degrees C, and 21.83 degrees C to 19.47 degrees C, and their daily variations decreased from 1126 micromol x m(-2) x s(-1) to 265 miromol x m(-2) x s(-1), 12.75 degrees C to 4.8 degrees C, and 4.5 degrees C to 2.1 degrees C, respectively. The air relative humidity increased from 58.95% to 87.3%, while its variation decreased from 29.75% to 5.15%. Habitats were open at early succession stage but more closed at late succession stage, microclimatic conditions developed towards much more cloudy, cold, and moist, and microclimate had a less fluctuation. There were definite correlations among the light intensity, air temperature, soil temperature, and air relative humidity in the vegetation communities, but the correlation coefficients among the test factors were differed at different succession stages. PMID:17147184

  5. Greenhouse gas emissions from constructed wetlands treating dairy wastewater

    NASA Astrophysics Data System (ADS)

    Glass, Vimy M.

    In Nova Scotia, constructed wetland systems are widely considered as effective treatment systems for agricultural wastewater. Although research has examined the water quality treatment attributes, there has been limited focus on the air quality effects of these systems. Six operational pilot-scale constructed wetlands were built with flow-through chambers for quantifying greenhouse gas (GHG) emissions in Truro, NS. Utilized within this facility were three gas analyzers to monitor GHG emissions (CO2, N 2O, CH4) and the gaseous fluxes could then be determined using the mass balance micrometeorological technique. Prior to data collection, the site underwent testing to ensure valid conclusions and replicated responses from the wetland systems. Those wetlands receiving wastewater at a typical HLR (10.6 mm d-1) and with ample vegetation displayed the best concentration reductions. During the growing season (GS), average CO 2 consumption was large (approximately -44 g CO2m -2 d-1) for wetlands with dense vegetation (approximately 100% cover) at the typical loading rate. For those wetlands at higher loading rates, CO2 emissions were observed to be as high as +9.2 g CO 2m-2 d-1. Wetlands with typical loading rates and healthy aquatic vegetation produced average CH4 fluxes of approximately 43 g CO2 eq. m-2d-1, while higher loaded systems with little vegetation approached 90 g CO 2 eq. m-2d-1. During the non-growing season (NGS), all vegetated wetlands exhibited higher CH4 emissions than the non-vegetated systems (˜15 to 20% higher). Vegetation maturity played a strong role in the GHG balance. The average CO2consumption for wetlands with established vegetation was ˜ -36 g CO2 m -2 d-1 during the GS. Wetland 4, which had been newly transplanted in 2004, had the highest single day CO2 consumption of -152 g CO2m-2 d-1 . Methane emissions from wetlands with two-year-old vegetation followed the same pattern but were approximately half of the emissions recorded from 2003. The determination of the source and sink potential of each wetland within the GS and NGS, emphasized the importance of HLR and vegetation. Nitrous oxide emissions were generally negligible for all the wetlands throughout the study, except during a dry down period where a burst of N2O was observed.

  6. Effects of river hydrology and fluvial processes on riparian vegetation establishment, growth, and survival

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; Merritt, D. M.; Wilcox, A. C.

    2012-12-01

    Stream hydrology, sediment, and geology interact to determine the spatial and temporal availability of river bottomland substrates on which plants establish and grow. Collectively, these surfaces comprise a mosaic of landscape patches with associated plant communities that fall along key gradients of physical disturbance and water availability. Aspects of flow such as magnitude, frequency, timing, and rate of change of floods and magnitude and duration of low flows, interact with sediment flux and plant traits to determine plant distribution and fitness in different parts of the bottomland. Flow and sediment dynamics can influence different aspects of the plant life cycle such as germination, establishment, growth, and survival. Feedbacks between plants and fluvial processes, such as increased surface roughness and associated reductions in flow velocity and potential for aggradation, can determine differential survival of plant species depending on their tolerance of high velocity flow and associated shear stress, dislodgement, or burial by sediment. We present an overview of some key relationships between flow, sediment, plant traits, and riparian vegetation responses, and provide specific examples from our research on rivers in the semi-arid western U.S., including unaltered systems, dam-altered systems, and in the context of development of environmental flows to restore native riparian vegetation communities. Further, we describe the riparian response guilds framework and demonstrate how it can facilitate both an understanding of vegetation response to changing flow, sediment, and disturbance regimes and the development of priorities for flow management. Through understanding how guilds of species respond to variations in flow and sediment regimes, we are be better able to anticipate and predict biotic change in response to human-caused and climate-driven flow alteration.

  7. VEGETATIVE DELINEATION OF COASTAL SALT MARSH BOUNDARIES: EVALUATION OF METHODOLOGY

    EPA Science Inventory

    Legislation mandating the protection of wetlands and current pressures to convert them to other uses emphasize the need to accurately determine a wetland-upland boundary. The authors investigated six methods designed to establish such a boundary based on vegetation. Each method w...

  8. Plant and soil responses to salvaged marsh surface and organic matter amendments at a created wetland in central Pennsylvania

    Microsoft Academic Search

    Aura L. Stauffer; Robert P. Brooks

    1997-01-01

    To evaluate the efficiency of different methods of wetland plant establishment and different soil amendments, 16 experimental\\u000a plots in 4 treatment groups were established at a 6-ha created palustrine wetland in Tipton, PA. Response of vegetation, soil,\\u000a and hydrology were evaluated. The first objective of the study was to determine if salvaged marsh surface (SMS) from a donor\\u000a wetland can

  9. The influence of light availability on competition between Phalaris arundinacea and a native wetland sedge

    Microsoft Academic Search

    Laura G. Perry; Susan M. Galatowitsch

    2004-01-01

    Invasions by Phalaris arundinacea (reed canarygrass) preclude establishment of sedge meadow vegetation in restored wetlands in the midwest USA. To evaluate cover crops as a potential method of P. arundinacea control, we examined the effects of lowering light availability (from 600 to 200 and 10 µmol m-2 s-1) on competition between P. arundinacea and a common wetland sedge, Carex hystericina

  10. Impacts of Land Use on Wetland Vegetation in the Eastern United States: Timing and Scale

    Microsoft Academic Search

    C. E. Bernhardt; D. A. Willard; P. Townsend; R. Brown

    2004-01-01

    The timing and scale of vegetation change are dependent on the resilience of the ecosystem to land use change that alters hydrologic response and sediment transport. Using palynological methods, we examine the impacts of land use change in 2 distinct ecosystems (the subtropical Florida Everglades and the temperate Roanoke River floodplain) in the Eastern United States. Twentieth century water management

  11. Assessment of acreage and vegetation change in Florida's Big Bend tidal wetlands using satellite imagery

    USGS Publications Warehouse

    Raabe, Ellen A.; Stumpf, Richard P.

    1997-01-01

    Fluctuations in sea level and impending development on the west coast of Florida have aroused concern for the relatively pristine tidal marshes of the Big Bend. Landsat Thematic Mapper (TM) images for 1986 and 1995 are processed and evaluated for signs of change. The images cover 250 km of Florida's Big Bend Gulf Coast, encompassing 160,000 acres of tidal marshes. Change is detected using the normalized difference vegetation index (NDVI) and land cover classification. The imagery shows negligible net loss or gain in the marsh over the 9-year period. However, regional changes in biomass are apparent and are due to natural disturbances such as low winter temperatures, fire, storm surge, and the conversion of forest to march. Within the marsh, the most prominent changes in NDVI and in land cover result from the recovery of mangroves from freezes, a decline of transitional upland vegetation, and susceptibility of the marsh edge and interior to variations in tidal flooding.

  12. Wetlands International

    NSDL National Science Digital Library

    Established as a non-governmental organization, Wetlands International is concerned with promoting the conservation and wise use of wetlands on the global, regional, and national levels. Much of the information on the site is contained within a dozen or so sections along the left-hand side of the homepage. First-time visitors may want to read through the "About Us" area before proceeding to the "Introduction to Wetlands" area. Scholars and policy analysts will want to also look through the "Publications" area. Here they will find information sheets on peatland loss, user handbooks on various wetland regions, and related fact sheets for general use. Visitors may also want to peruse the "Biodiversity Programmes" area to learn more about the species and habitats that Wetlands International works to preserve through their advocacy work. The site is rounded out by a collection of recent news stories and press releases.

  13. Effects of vegetative propagule pressure on the establishment of an introduced clonal plant, Hydrocotyle vulgaris

    PubMed Central

    Liu, Ruihua; Chen, Qiuwen; Dong, Bicheng; Yu, Feihai

    2014-01-01

    Some introduced clonal plants spread mainly by vegetative (clonal) propagules due to the absence of sexual reproduction in the introduced range. Propagule pressure (i.e. total number of propagules) may affect the establishment and thus invasion success of introduced clonal plants, and such effects may also depend on habitat conditions. A greenhouse experiment with an introduced plant, Hydrocotyle vulgaris was conducted to investigate the role of propagule pressure on its invasion process. High (five ramets) or low (one ramet) propagule pressure was established either in bare soil or in an experimental plant community consisting of four grassland species. H. vulgaris produced more total biomass under high than under low propagule pressure in both habitat conditions. Interestingly, the size of the H. vulgaris individuals was smaller under high than under low propagule pressure in bare soil, whereas it did not differ between the two propagule pressure treatments in the grassland community. The results indicated that high propagule pressure can ensure the successful invasion in either the grass community or bare soil, and the shift in the intraspecific interaction of H. vulgaris from competition in the bare soil to facilitation in the grassland community may be a potential mechanism. PMID:24981102

  14. Mapping the Wetland Vegetation Communities of the Australian Great Artesian Basin Springs Using SAM, Mtmf and Spectrally Segmented PCA Hyperspectral Analyses

    NASA Astrophysics Data System (ADS)

    White, D. C.; Lewis, M. M.

    2012-07-01

    The Australian Great Artesian Basin (GAB) supports a unique and diverse range of groundwater dependent wetland ecosystems termed GAB springs. In recent decades the ecological sustainability of the springs has become uncertain as demands on this iconic groundwater resource increase. The impacts of existing water extractions for mining and pastoral activities are unknown. This situation is compounded by the likelihood of future increasing demand for extractions. Hyperspectral remote sensing provides the necessary spectral and spatial detail to discriminate wetland vegetation communities. Therefore the objectives of this paper are to discriminate the spatial extent and distribution of key spring wetland vegetation communities associated with the GAB springs evaluating three hyperspectral techniques: Spectral Angle Mapper (SAM), Mixture Tuned Matched Filtering (MTMF) and Spectrally Segmented PCA. In addition, to determine if the hyperspectral techniques developed can be applied at a number of sites representative of the range of spring formations and geomorphic settings and at two temporal intervals. Two epochs of HyMap airborne hyperspectral imagery were captured for this research in March 2009 and April 2011 at a number of sites representative of the floristic and geomorphic diversity of GAB spring groups/complexes within South Australia. Colour digital aerial photography at 30 cm GSD was acquired concurrently with the HyMap imagery. The image acquisition coincided with a field campaign of spectroradiometry measurements and a botanical survey. To identify key wavebands which have the greatest capability to discriminate vegetation communities of the GAB springs and surrounding area three hyperspectral data reduction techniques were employed: (i) Spectrally Segmented PCA (SSPCA); (ii) the Minimum Noise Transform (MNF); and (iii) the Pixel Purity Index (PPI). SSPCA was applied to NDVI-masked vegetation portions of the HyMap imagery with wavelength regions spectrally segmented for the VIS-NIR (450-1,350 nm), SWIR 1 (1,400-1,800 nm) and SWIR 2 (1,950-2,480 nm). The resulting pure endmember image pixels of the vegetation communities identified were used as target spectra for input into the SAM and MTMF algorithms. Spring wetland vegetation communities successfully discriminated include low lying reeds and sedges along spring tails (Baumea spp. and Cyperus spp.), dense homogenous stands of Phragmites australis reeds, and sporadic patches of salt couch grass (Sparabolus spp.). Our results indicate that a combination of hyperspectral remote sensing techniques which reduce superfluous wavebands providing a targeted spectral matching approach are capable of discriminating and mapping key vegetation communities of the GAB springs. This approach provides reliable baseline mapping of the GAB spring wetland vegetation communities, with repeatability over space and time. In addition it has the capability to determine the sensitivity of spring wetland vegetation extent, distribution and diversity, to associated changes in spring flow rates due to water extractions. This approach will ultimately inform water allocation plan management policies.

  15. VEGETATION AND ALGAL COMMUNITY COMPOSITION AND DEVELOPMENT OF THREE CONSTRUCTED WETLANDS RECEIVING AGRICULTURAL RUNOFF AND SUBSURFACE DRAINAGE, 1998 TO 2001

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) aim to reduce non-point source pollution from agricultural fields while maintaining crop yield and creating wetland wildlife habitat. The WRSIS system directs drainage water from agricultural fields to flow into a passively revegetated constructed wetl...

  16. Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in florida

    SciTech Connect

    Lindberg, Steven Eric [ORNL; Dong, Weijin [ORNL; Meyers, Tilden [NOAA, Oak Ridge, TN

    2002-07-01

    Four seasonal sampling campaigns were carried out in the Florida Everglades to measure elemental Hg vapor (Hg{sup o}) fluxes over emergent macrophytes using a modified Bowen ratio gradient approach. The predominant flux of Hg{sup o} over both invasive cattail and native sawgrass stands was emission; mean day time fluxes over cattail ranged from {approx}20 (winter) to {approx}40 (summer) ng m{sup -2} h{sup -1}. Sawgrass fluxes were about half those over cattail during comparable periods. Emission from vegetation significantly exceeded evasion of Hg{sup o} from the underlying water surface ({approx}1-2 ng m{sup -2} h{sup -1}) measured simultaneously using floating chambers. Among several environmental factors (e.g. CO{sub 2} flux, water vapor flux, wind speed, water, air and leaf temperature, and solar radiation), water vapor exhibited the strongest correlation with Hg{sup o} flux, and transpiration is suggested as an appropriate term to describe this phenomenon. The lack of significant Hg{sup o} emissions from a live, but uprooted (floating) cattail stand suggests that a likely source of the transpired Hg{sup o} is the underlying sediments. The pattern of Hg{sup o} fluxes typically measured indicated a diel cycle with two peaks, possibly related to different gas exchange dynamics: one in early morning related to lacunal gas release, and a second at midday related to transpiration; nighttime fluxes approached zero.

  17. A Wetland Field Study

    NSDL National Science Digital Library

    The field projects at this site give students an opportunity to investigate a number of wetland characteristics firsthand: surveying wetland vegetation, soils, water quality and wildlife; documenting the wetland from an artist's perspective; investigating land uses along its periphery; and refining a base map upon which all collected information can be recorded. This resource explains how to organize the field study, thereby securing the interest of the students. It is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. For educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  18. Application of remote sensing techniques at different scales of observation on wetland evapotranspiration

    NASA Astrophysics Data System (ADS)

    Juan, Chung-Hsin

    The establishment and maintenance of the structure and functions in wetland ecosystems is greatly influenced by hydrologic conditions. Evapotranspiration (ET) is the major output component in the hydrologic water budget. Therefore, in order to provide efficient information for water resources management and the conservation of wetland ecosystems, research on ET is urgently needed. Moreover, to overcome the variable spatial vegetation distribution and the temporal change of wetlands, appropriate remote sensing techniques are also greatly needed. The goal of this research was to study fundamental wetland ET and then with the aid of remote sensing techniques from the micro scale to the macro scale to develop useful wetland ET estimation methods. The study site was located in the Ft. Drum Marsh, Upper St. John's River Basin in Indian River County, Florida. The site is a freshwater marsh with southern cattail ( Typha domingensis Pers.) and sawgrass (Cladium jamaicense Crantz) as the dominant vegetation species. There were four stages of the study: (1) a fundamental ET study with a lysimeter system, (2) ground measurements and analyses of spectral responses of wetland vegetation using a field spectroradiometer, (3) wetland vegetation mapping using aerial hyperspectral images, and (4) application of satellite images to delineate wetland vegetation and estimate marsh-wide ET. The results of the fundamental ET study showed the various important vegetation parameters of sawgrass and cattail. A more appropriate estimation method of canopy resistance for sawgrass and cattail was proposed. Among the various ET estimation methods, the Priestley-Taylor method was found to be most applicable. The ground spectral response measurements of sawgrass and cattail demonstrated a distinguishable difference in red wavebands and normalized difference vegetation index (NDVI), which indicated the spectral separability of the two wetland species. Leaf area index and stomatal resistance displayed a high correlation to spectral reflectance. Aerial hyperspectral imaging proved very successful in the identification of wetland vegetation species. Among all 64 wavebands, the separability tests revealed that the wavebands in the blue-green, red edge, and near-infrared spectral regions are the most important contributors for the identification of wetland vegetation species. The satellite image was applied to map wetland vegetation using the knowledge based classification method. Integrating the results from the four stages of study, the marsh-wide ET was estimated. The results of this research can have extensive application to wetland ET, wetland delineation, and remote sensing techniques.

  19. Transplanting native dominant plants to facilitate community development in restored coastal plain wetlands.

    SciTech Connect

    De Steven, Diane; Sharitz, Rebecca R.

    2007-12-01

    Abstract: Drained depressional wetlands are typically restored by plugging ditches or breaking drainage tiles to allow recovery of natural ponding regimes, while relying on passive recolonization from seed banks and dispersal to establish emergent vegetation. However, in restored depressions of the southeastern United States Coastal Plain, certain characteristic rhizomatous graminoid species may not recolonize because they are dispersal-limited and uncommon or absent in the seed banks of disturbed sites. We tested whether selectively planting such wetland dominants could facilitate restoration by accelerating vegetative cover development and suppressing non-wetland species. In an operational-scale project in a South Carolina forested landscape, drained depressional wetlands were restored in early 2001 by completely removing woody vegetation and plugging surface ditches. After forest removal, tillers of two rhizomatous wetland grasses (Panicum hemitomon, Leersia hexandra) were transplanted into singlespecies blocks in 12 restored depressions that otherwise were revegetating passively. Presence and cover of all plant species appearing in planted plots and unplanted control plots were recorded annually. We analyzed vegetation composition after two and four years, during a severe drought (2002) and after hydrologic recovery (2004). Most grass plantings established successfully, attaining 15%–85% cover in two years. Planted plots had fewer total species and fewer wetland species compared to control plots, but differences were small. Planted plots achieved greater total vegetative cover during the drought and greater combined cover of wetland species in both years. By 2004, planted grasses appeared to reduce cover of non-wetland species in some cases, but wetter hydrologic conditions contributed more strongly to suppression of non-wetland species. Because these two grasses typically form a dominant cover matrix in herbaceous depressions, our results indicated that planting selected species could supplement passive restoration by promoting a vegetative structure closer to that of natural wetlands.

  20. Pipeline Corridors through wetlands -- Impacts on plant communities: Mill Creek Tributary Crossing, Jefferson County, New York, 1992 Survey

    SciTech Connect

    Van Dyke, G.D. [Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology; Shem, L.M.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to identify representative impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of the survey July 1992, at the Mills Creek tributary crossing, Jefferson County, New York. Data were collected from three wetland communities along the 1991 pipeline and compared with predisturbance data obtained in a June 1991 survey. Within one year after pipeline installation, 50% of the soil surface of the ROW in the scrub-shrub community was covered by emergent vegetation. Average wetland values for the ROW in 1992 were lower than in 1991, indicating that the removal of woody plants resulted in a community composed of species with greater fidelity to wetlands. In the emergent marsh community after one year, the average percentage of surface covered by standing water was greater in the ROW than in the adjacent natural areas. The ROW in the forested wetland community also contained standing water, although none was found in the natural forest areas. The entire study site remains a wetland, with the majority of plant species in all sites being either obligate or facultative wetland species. Weighted and unweighted average wetland indices for each community, using all species, indicated wetland vegetation within the newly established ROW.

  1. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods ( Solidago spp.)

    Microsoft Academic Search

    Deborah E. Goldberg; Patricia A. Werner

    1983-01-01

    We investigated the effects of size of opening in the vegetation and litter cover on seedling establishment of two species of goldenrods (Solidago spp.) in an abandoned field in southwestern Michigan, U.S.A. Seeds of S. canadensis and S. juncea were sown into clipped plots, ranging from 0 cm (control, unclipped) to 100 cm in diameter, with and without litter. Seedling

  2. Mile High Wetland Bank

    NSDL National Science Digital Library

    The site listed here is provided by an environmental consulting firm that works with commercial and private landowners to establish Wetland Banks. An innovative concept (and growing reality) that has received mixed reviews from scientists, Wetland Banking attempts to combine the goals of developers (i.e., to develop a certain area) and wetland conservationists (i.e., to maintain/ restore areas of intact wetlands). If misused, this approach could work against wetland conservation; if properly instated, however, Wetland Banking might offer an alternative to the currently poor success rate of wetland mitigation projects. This resource by Mile High Wetlands Group, LLC, offers background information on Wetland banking, with an emphasis on the Group's local area (Colorado).

  3. Assessment of compost application to coal ash disposal sites to promote the rapid vegetation establishment

    NASA Astrophysics Data System (ADS)

    Repmann, F.; Slazak, A.; Babic, M.; Schneider, B. U.; Schaaf, W.; Hüttl, R. F.

    2009-04-01

    In the city of Tuzla, located in Bosnia and Herzegovina, a coal fired thermo electric power plant is operated by the company JP ELEKTROPRIVERDA BIH TERMOELEKTRANA "TUZLA". High amounts of ash are produced by the power plant, which are currently disposed into settlement ponds bordered by dams in natural valleys. A total of four ash disposal sites covering an area of approx. 170 ha have been established during the last decades. Due to the fact that residual ash from coal combustion was found to contain a variety of trace elements (Ni, Cr, As, B), it must be assumed that ash disposal of that magnitude constitutes an environmental problem which is investigated within the EU-FP6 / STREP project "Reintegration of Coal Ash Disposal Sites and Mitigation of Pollution in the West Balkan Area" RECOAL. The main hazards relate to soil and groundwater contamination due to leaching toxins, dust dispersion, and toxins entering the food chain as these disposal sites are used for agricultural purposes. In order to rapidly establish a vegetation cover on barren ash dumps that particularly would prevent dust erosion we assessed the applicability of compost, produced from locally available municipal and industrial organic residues as an amendment to ash to improve substrate fertility. The envisaged remediation technology was considered to be a low cost, easy applicable and rapid method capable of substantially enhancing living conditions of residents in the vicinity of the abandoned disposal sites. Various compost application rates were evaluated in the field on experimental site Divkovici I in Tuzla and additionally in the greenhouse environment at Brandenburg Technical University Cottbus. Field and laboratory tests revealed that plant growth and cover rate can substantially be improved by mixing compost into the upper ash layer to a maximum depth of approx. 20 cm. Besides direct growth observations in the field analysis of soil parameters gave evidence that the fertility of ashy substrates amended with compost produced from locally available sewage sludge and saw dust can be improved. The metal content of grass grown in the various treatments was considered to be elevated compared to normal contents. However, metal uptake in compost treatments was lower than in untreated plots. A preliminary cost assessment, comparing the remediation technology tested on site Divkovici with a standard soil covering technique revealed financial benefits for the compost method due to significant lower application rates.

  4. Hydrologic gradient and vegetation controls on CH 4 and CO 2 fluxes in a spring-fed forested wetland

    Microsoft Academic Search

    Hong-Suk Koh; Clifford A. Ochs; Kewei Yu

    2009-01-01

    Four different habitats in a spring-fed forested wetland (Clear Springs Wetland, Panola County, Mississippi, USA) varying\\u000a in hydrologic regime were examined for methane and carbon dioxide fluxes from soils over 15 and 9 months, respectively. There\\u000a was an increasing gradient of CH4 flux rates from an unflooded upper-elevation forest site to an occasionally flooded bottomland forest site to a shallow permanently

  5. Isolated Spring Wetlands in the Great Basin and Mojave Deserts, USA: Potential Response of Vegetation to Groundwater Withdrawal

    Microsoft Academic Search

    Duncan T. Patten; Leigh Rouse; Juliet C. Stromberg

    2008-01-01

    Desert springs, often the sole sources of water for wildlife and cattle, support wetland and wetland\\/upland transition ecosystems\\u000a including rare and endemic species. In the basin and range province in Nevada, USA, springs in the Great Basin and Mojave\\u000a deserts are sustained by interconnected deep carbonate and shallow basin-fill aquifers which are threatened by proposed groundwater\\u000a withdrawal to sustain rapidly

  6. The Role of Vegetation in Phosphorus Removal by Cold Climate Constructed Wetland: The Effects of Aeration and Growing Season

    Microsoft Academic Search

    Aleksandra Drizo; Eric Seitz; Eamon Twohig; David Weber; Simon Bird; Donald Ross

    The objective of this study was to evaluate the effectiveness and contribution of Schoenoplectus fluviatilis (Torr.) (river bulrush) to phosphorus (P) removal from dairy-farm effluent in a cold climate constructed wetland. After 3\\u000a years of operation (1,073 days), both nonaerated wetland cell 3 (C3) and aerated cell 4 (C4) exhibited a sharp decline in\\u000a dissolved reactive phosphorus (DRP) storage, indicating

  7. Establishment of animal–vegetal polarity during maturation in ascidian oocytes

    Microsoft Academic Search

    François Prodon; Janet Chenevert; Christian Sardet

    2006-01-01

    Mature ascidian oocytes are arrested in metaphase of meiosis I (Met I) and display a pronounced animal–vegetal polarity: a small meiotic spindle lies beneath the animal pole, and two adjacent cortical and subcortical domains respectively rich in cortical endoplasmic reticulum and postplasmic\\/PEM RNAs (cER\\/mRNA domain) and mitochondria (myoplasm domain) line the equatorial and vegetal regions. Symmetry-breaking events triggered by the

  8. Reducing sedimentation of depressional wetlands in agricultural landscapes

    USGS Publications Warehouse

    Skagen, S.K.; Melcher, C.P.; Haukos, D.A.

    2008-01-01

    Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants that threaten wetlands and the current knowledge of design and usefulness of grass buffers for protecting isolated wetlands. Buffer effectiveness is dependent on several factors, including vegetation structure, buffer width, attributes of the surrounding watershed (i.e., area, vegetative cover, slope and topography, soil type and structure, soil moisture, amount of herbicides and pesticides applied), and intensity and duration of rain events. To reduce dissolved contaminants from runoff, the water must infiltrate the soil where microbes or other processes can break down or sequester contaminants. But increasing infiltration also diminishes total water volume entering a wetland, which presents threats to wetland hydrology in semi-arid regions. Buffer effectiveness may be enhanced significantly by implementing other best management practices (e.g., conservation tillage, balancing input with nutrient requirements for livestock and crops, precision application of chemicals) in the surrounding watershed to diminish soil erosion and associated contaminant runoff. Buffers require regular maintenance to remove sediment build-up and replace damaged or over-mature vegetation. Further research is needed to establish guidelines for effective buffer width and structure, and such efforts should entail a coordinated, regional, multi-scale, multidisciplinary approach to evaluate buffer effectiveness and impacts. Direct measures in "real-world" systems and field validations of buffer-effectiveness models are crucial next steps in evaluating how grass buffers will impact the abiotic and biotic variables attributes that characterize small, isolated wetlands. ?? 2008 The Society of Wetland Scientists.

  9. White Ranch Wetlands Biological Survey

    E-print Network

    White Ranch Wetlands Biological Survey and Permanent Vegetation Monitoring Plots Prepared for: U Services Building Colorado State University Fort Collins, CO 80523 March 1998 #12;WHITE RANCH WETLANDS assessment of the White Ranch wetlands. In addition we set up permanent plots along transects to collect

  10. Restoring biodiversity in the Gwydir Wetlands through environmental flows

    Microsoft Academic Search

    W. A. Mawhinney

    2003-01-01

    As part of the Water Reforms process, environmental flow rules have been progressively implemented in New South Wales rivers. The Integrated Monitoring of Environmental Flows (IMEF) is a major project established to b etter understand how rivers and associated wetlands respond to environmental water allocations. The results presented here represent the vegetation data collected for the testing of the hypothesis

  11. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands.

    PubMed

    Li, Jianbo; Wen, Yue; Zhou, Qi; Xingjie, Zhao; Li, Xie; Yang, Silu; Lin, Tao

    2008-07-01

    The fate of dissolved organic matter (DOM) during horizontal subsurface-flow constructed wetlands (HSSF CWs) was examined. In several studies it had been demonstrated that factors such as vegetation and substrates type affected the treatment efficiency of DOM, while very few studies discerned their influence on the transformations of DOM. Thus three pilot-scale HSSF CWs, i.e. reed (Phragmites australis)/gravel bed (W1), hybrid vegetation{cattail (Typha latifolia), bulrush (Scirpus validus), reed}/gravel bed (W2) and reed/hybrid substrates bed (gravel, zeolite, slag) (W3), were designed, and were operated continuously to investigate soluble COD (SCOD) removal and DOM transformations affected by vegetation and substrate type, and to explore the correlation between SCOD and biodiversity. The results showed that cattail and bulrush contributed to higher SCOD removal than common reed, and that gravel, zeolite and slag did not show significant influence on SCOD removal. The composition of the dissolved organic carbon (DOC) could undergo a considerable shift in composition due to metabolism and senescence from plant and microorganism. Nonlabile aromatic hydrocarbons and alkyl hydrocarbons in the effluent were a significant portion compared with labile alcoholic and alkene in the influent. It was also observed that the type of vegetation and substrate had great influence on the structure of bacteria, and the Shannon-Wiener Index increased linearly with the decrease of SCOD concentration along water flow in W2 and W3 (R2=0.96). PMID:17964141

  12. Effects of irrigation on seed production and vegetative characteristics of four moist-soil plants on impounded wetlands in California

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H., Jr.; Harris, S.W.

    1992-01-01

    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response to irrigation. Without irrigation, swamp timothy and pricklegrass assumed a typical prostrate growth form, but with irrigation, they assumed a vertical growth form. Irrigation did not significantly affect plant density. Because of rising water costs, wetland managers should consider wildlife management objectives and plant responses before implementing irrigation practices.

  13. Mechanisms involved in the re-establishment of Sphagnum dominated vegetation in rewetted bog remnants

    Microsoft Academic Search

    A. J. P. Smolders; H. B. M. Tomassen; M. van Mullekom; L. P. M. Lamers; J. G. M. Roelofs

    2003-01-01

    Restoration of peat bog vegetation inhighly degraded peatlands is generallyattempted by improving the hydrology ofthese areas. The present paper discussesand explains various restoration strategiesrelating to peat quality, water chemistryand hydrology. In some cases, (shallow)inundation of bog remnants leads to a rapidredevelopment of (floating) Sphagnumvegetation, usually when poorly humifiedSphagnum peat is still present. Afterinundation, the peat either swells up tothe newly

  14. Managing Alamo Dam to Establish Woody Riparian Vegetation on the Bill Williams River, Arizona

    E-print Network

    Lund, Jay R.

    it becomes dominant (Sher et al. 2002). The stems and leaves of mature Tamarix plants secrete salt inundated by the exotic species Tamarix Ramosissima (Salt Cedar). This study presents a method for reservoirMap, and Applied Imagery's Quick Terrain Modeler. Vegetation recruitment of cottonwood, willow, and salt cedar

  15. Operational actual wetland evapotranspiration estimation for the Everglades using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa; Cereon, Cristobal

    2014-05-01

    Wetlands are one of the most important ecosystems with varied functions and structures. Humans have drained wetlands and altered the structure and functions of wetlands for various uses. Wetland restoration efforts require assessment of the level of ecohydrological restoration for the intended functions. Among the various indicators of success in wetland restoration, achieving the desired water level (hydrology) is the most important, faster to achieve and easier to monitor than the establishment of the hydric soils and wetland vegetation. Monitoring wetland hydrology using remote sensing based evapotranspiration (ET) is a useful tool and approach since point measurements for understanding the temporal (before and after restoration) and spatial (impacted and restored) parts of the wetland are not effective for large areas. Evapotranspiration accounts over 80% of the water budget of the wetlands necessitating the need for spatiotemporal monitoring of ET flux. A study employing remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and modeling tools was conducted for a weekly spatial estimation of Everglades ET. Weekly surface temperature data were generated from the MODIS thermal band and evaporative fraction was estimated using the simplified surface energy balance (SSEB) approach. Based on the Simple Method, potential ET (PET) was estimated. Actual weekly wetland ET was computed as the (product of the PET and evaporative fraction). The ET product will be useful information for environmental restoration and wetland hydrology managers. The on-going restoration and monitoring work in the Everglades will benefit from this product and assist in evaluating progress and success in the restoration.

  16. Effects of a Long-Term Disturbance on Arthropods and Vegetation in Subalpine Wetlands: Manifestations of Pack Stock Grazing in Early versus Mid-Season

    PubMed Central

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-01-01

    Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response. PMID:23308297

  17. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernández, Pedro E.; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E.; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2013-04-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature (T ss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  18. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernández, Pedro E.; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E.; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature ( T ss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  19. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions.

    PubMed

    Mendoza-Hernández, Pedro E; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature (Tss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth. PMID:23605562

  20. The Carolina Bay Restoration Project: Implementation and Management of a Wetland Mitigation Bank.

    SciTech Connect

    Barton, Christopher; DeSteven, Diane; Sharitz, Rebecca; Kilgo, John; Imm, Donald; Kolka, Randy; Blake, John, I.

    2003-01-01

    A wetlands Mitigation Bank was established at the Savannah River Site (SRS) in 1997 as a compensatory alternative for unavoidable wetland losses associated with future authorized construction and environmental restoration projects in SRS wetlands. The Bank was intended not only to hasten mitigation efforts with respect to regulatory requirements and implementation, but also to provide onsite and fully functional compensation of impacted wetland acreage prior to any impact. Restoration and enhancement of small isolated wetlands, as well as major bottomland wetland systems scattered throughout the nonindustrialized area of SRS were designated for inclusion in the Bank. Based on information and techniques gained from previous research efforts involving Carolina bay wetlands (DOE 1997), a project to restore degraded Carolina bays on SRS has been undertaken to serve as the initial ''deposit'' in The Bank. There are over 300 Carolina bays or bay-like depression wetlands on the SRS, of which an estimated two-thirds were ditched or disturbed prior to federal occupation of the Site (Kirkman et al., 1996). These isolated wetlands range from small ephemeral depressions to large permanent ponds of 10-50 hectares in size. They provide habitat to support a wide range of rare plant species, and many vertebrates (birds, amphibians, bats). Historical impacts to the Carolina bays at SRS were primarily associated with agricultural activities. Bays were often drained tilled and planted to crops. The consequence was a loss in the wetland hydrologic cycle, the native wetland vegetation, and associated wildlife. The purpose of this mitigation and research project is to restore the functions and vegetation typical of intact depression wetlands and, in doing so, to enhance habitat for wetland dependent wildlife on SRS.

  1. Microbial Community Structure and Denitrification in a Wetland Mitigation Bank?

    PubMed Central

    Peralta, Ariane L.; Matthews, Jeffrey W.; Kent, Angela D.

    2010-01-01

    Wetland mitigation is implemented to replace ecosystem functions provided by wetlands; however, restoration efforts frequently fail to establish equivalent levels of ecosystem services. Delivery of microbially mediated ecosystem functions, such as denitrification, is influenced by both the structure and activity of the microbial community. The objective of this study was to compare the relationship between soil and vegetation factors and microbial community structure and function in restored and reference wetlands within a mitigation bank. Microbial community composition was assessed using terminal restriction fragment length polymorphism targeting the 16S rRNA gene (total bacteria) and the nosZ gene (denitrifiers). Comparisons of microbial function were based on potential denitrification rates. Bacterial community structures differed significantly between restored and reference wetlands; denitrifier community assemblages were similar among reference sites but highly variable among restored sites throughout the mitigation bank. Potential denitrification was highest in the reference wetland sites. These data demonstrate that wetland restoration efforts in this mitigation bank have not successfully restored denitrification and that differences in potential denitrification rates may be due to distinct microbial assemblages observed in restored and reference (natural) wetlands. Further, we have identified gradients in soil moisture and soil fertility that were associated with differences in microbial community structure. Microbial function was influenced by bacterial community composition and soil fertility. Identifying soil factors that are primary ecological drivers of soil bacterial communities, especially denitrifying populations, can potentially aid the development of predictive models for restoration of biogeochemical transformations and enhance the success of wetland restoration efforts. PMID:20453124

  2. Establishment of woody riparian vegetation in relation to annual patterns of streamflow, Bill Williams River, Arizona

    Microsoft Academic Search

    Patrick B. Shafroth; Gregor T. Auble; Juliet C. Stromberg; Duncan T. Patten

    1998-01-01

    Previous studies have revealed the close coupling of components of annual streamflow hydrographs and the germination and establishment\\u000a ofPopulus species. Key hydrograph components include the timing and magnitude of flood peaks, the rate of decline of the recession\\u000a limb, and the magnitude of base flows. In this paper, we retrospectively examine establishment of four woody riparian species\\u000a along the Bill

  3. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  4. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  5. An integrated approach to assess broad-scale condition of coastal wetlands - The Gulf of Mexico Coastal Wetlands pilot survey

    USGS Publications Warehouse

    Nestlerode, J.A.; Engle, V.D.; Bourgeois, P.; Heitmuller, P.T.; Macauley, J.M.; Allen, Y.C.

    2009-01-01

    The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA's Office of Water in 2011. ?? Springer Science+Business Media B.V. 2008.

  6. Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary environment

    Microsoft Academic Search

    A. Miola; A. Bondesan; L. Corain; S. Favaretto; P. Mozzi; S. Piovan; I. Sostizzo

    2006-01-01

    In the low Venetian plain (northeastern Italy) thick sequences of silt and sand layers alternate with common, thin layers of peat and organic silt; the organic layers in the topmost 30 m of the Late Pleistocene alluvial series span between 23,000 and 14,000 yr BP (radiocarbon dating), in an area measuring 100 km by 30 km. They indicate broad areas where wetlands developed. We

  7. Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas

    PubMed Central

    Banach, Katarzyna; Banach, Artur M.; Lamers, Leon P. M.; De Kroon, Hans; Bennicelli, Riccardo P.; Smits, Antoine J. M.; Visser, Eric J. W.

    2009-01-01

    Background and Aims Plants need different survival strategies in habitats differing in hydrological regimes. This probably has consequences for vegetation development when former floodplain areas that are currently confronted with soil flooding only, will be reconnected to the highly dynamical river bed. Such changes in river management are increasingly important, especially at locations where increased water retention can prevent flooding events in developed areas. It is therefore crucial to determine the responses of plant species from relatively low-dynamic wetlands to complete submergence, and to compare these with those of species from river forelands, in order to find out what the effects of such landscape-scale changes on vegetation would be. Methods To compare the species' tolerance to complete submergence and their acclimation patterns, a greenhouse experiment was designed with a selection of 19 species from two contrasting sites: permanently wet meadows in a former river foreland, and frequently submerged grasslands in a current river foreland. The plants were treated with short (3 weeks) and long (6 weeks) periods of complete submergence, to evaluate if survival, morphological responses, and changes in biomass differed between species of the two habitats. Key Results All tested species inhabiting river forelands were classified as tolerant to complete submergence, whereas species from wet meadows showed either relatively intolerant, intermediate or tolerant responses. Species from floodplains showed in all treatments stronger shoot elongation, as well as higher production of biomass of leaves, stems, fine roots and taproots, compared with meadow species. Conclusions There is a strong need for the creation of temporary water retention basins during high levels of river discharge. However, based on the data presented, it is concluded that such reconnection of former wetlands (currently serving as meadows) to the main river bed will strongly influence plant species composition and abundance. PMID:18836190

  8. Patterns in the secondary succession of a Carex vesicaria L. wetland following a permanent drawdown

    Microsoft Academic Search

    Arvid Odland

    2002-01-01

    The Myrkdalen Lake, western Norway, was subjected to a ca. 1.4m permanent drawdown in June 1987. This left the original wetland vegetation belts “hanging” over the new water level. One year after the drawdown, a permanent transect with contiguous 1.0m×0.5m quadrats was established through a Carex vesicaria wetland belt, and was analysed annually through 2001. The transect was 17m long

  9. The potential use of storm water and effluent from a constructed wetland for re-vegetating a degraded pyrite trail in Queen Elizabeth National Park, Uganda

    NASA Astrophysics Data System (ADS)

    Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.

    During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite trail and the unpolluted zone. The concentration of lead in the regeneration zone and bare pyrite trail were similar but significantly higher in the unpolluted zone. Concentrations of TP and TN were significantly higher in unpolluted zone, followed by regeneration zone and bare pyrite trail. Storm water and effluent from a constructed wetland enhanced the revegetation process by modifying soil pH, making plant growth nutrients available and by providing a steady supply of moisture necessary for plant growth. T. latifolia and C. dactylon which seem to have tolerance of high concentrations of metals were the dominant species in the regeneration zone. If storm water and effluent supply continues, the aforementioned vegetation will colonize the pyrite trail and will eventually protect QENP and Lake George from metal contamination.

  10. Wetland 101

    NSDL National Science Digital Library

    This online course provides an introduction to wetland ecology, types of wetlands, wetland functions and values, and wetlands management. Topics include how a wetland is defined, wetland hydrology, seasonal and other fluctuations in water levels, and wetland soils and plants. The course consists of a series of slide presentations with self-quizzes and an online final quiz. Registration and log-in are required.

  11. Testing wetland features to increase amphibian reproductive success and species richness for mitigation and restoration.

    PubMed

    Shulse, Christopher D; Semlitsch, Raymond D; Trauth, Kathleen M; Gardner, James E

    2012-07-01

    Aquatic habitat features can directly influence the abundance, species richness, and quality of juvenile amphibians recruited into adult populations. We examined the influences of within-wetland slope, vegetation, and stocked mosquito fish (Gambusia affinis) on amphibian metamorph production and species richness during the first two years post-construction at 18 experimental wetlands in northeast Missouri (U.S.A.) grasslands. We used an information theoretic approach (AICc) to rank regression models representing total amphibian metamorph production, individual amphibian species metamorph production, and larval amphibian species richness. Total amphibian metamorph production was greatest at shallow-sloped, fish-free wetlands during the first year, but shallow-sloped wetlands with high vegetation cover were best the second year. Species richness was negatively associated with fish and positively associated with vegetation in both survey years. Leopard frog (Rana blairi/sphenocephala complex) metamorph quality, based on average metamorph size, was influenced by slope and the number of cohorts in the wetland. However, the tested variables had little influence on the size of American toads (Bufo americanus) or boreal chorus frogs (Pseudacris maculata). Our results indicate that wetlands designed to act as functional reproductive habitat for amphibians should incorporate shallows, high amounts of planted or naturally established vegetation cover, and should be fish-free. PMID:22908722

  12. Classification of vegetable oils according to their botanical origin using n-alkane profiles established by GC-MS.

    PubMed

    Troya, F; Lerma-García, M J; Herrero-Martínez, J M; Simó-Alfonso, E F

    2015-01-15

    n-Alkane profiles established by gas chromatography-mass spectrometry (GC-MS) were used to classify vegetable oils according to their botanical origin. The n-alkanes present in corn, grapeseed, hazelnut, olive, peanut and sunflower oils were isolated by means of alkaline hydrolysis followed by silica gel column chromatography of the unsaponifiable fractions. The n-alkane fraction was constituted mainly of n-alkanes in the range C8-C35, although only those most abundant (15 n-alkanes, from 21 to 35 carbon No.) were used as original variables to construct linear discriminant analysis (LDA) models. Ratios of the peak areas selected by pairs were used as predictors. All the oils were correctly classified according to their botanical origin, with assignment probabilities higher than 95%, using an LDA model. PMID:25148956

  13. Avian utilization of subsidence wetlands

    SciTech Connect

    Nawrot, J.R.; Conley, P.S.; Smout, C.L. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avian utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.

  14. Controls on wetland loss during large magnitude storms: a case study in Breton Sound, LA

    NASA Astrophysics Data System (ADS)

    Howes, N. C.; Hughes, Z. J.; Fitzgerald, D.; Georgiou, I. Y.; Kulp, M. A.; Miner, M. D.; Smith, J. M.; Barras, J. A.

    2010-12-01

    In 2005, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km^2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained largely intact and unchanged. Field studies were undertaken in Breton Sound, Louisiana, where both the low and high salinity wetlands experienced very similar hydrodynamic conditions during Hurricane Katrina. This site provides a natural case to study the causes of the observed land loss patterns. We observe geotechnical differences between soil profiles in high and low salinity wetlands, as controlled by vegetation, and which result in differential erosion. Low salinity wetlands contain a weak zone at a depth of ~30 cm below the marsh surface; this coincides with the base of rooting and has shear strengths as low as 500-1450 Pa. High salinity wetlands display deeper rooting, have no identifiable weak zone, and shear strengths exceed 4500 Pa throughout the upper soil profile. Results from a model (STWAVE-ADCIRC) are used to establish the hydrodynamic conditions during Hurricane Katrina (storm surge, wave height, and wave period). We calculate the potential shear stresses exerted by waves, accounting for the interaction between the oscillatory flow and the vegetation. Calculated shear stresses were in the range 425-3600 Pa, values sufficient to cause widespread erosion of the low salinity wetlands, but not the high salinity wetlands, corresponding with the observed patterns of land loss. A conceptual model is developed to illustrate the influence of rooting type and depth on the strength profile of wetlands soils and their susceptibility to erosion during large magnitude storms. These findings have implications for wetland restoration schemes involving freshwater diversions.

  15. Measuring Above Ground Biomass and Vegetation Structure in the South Florida Everglades Wetland Ecosystem with X-, C-, and L-band SAR data and Ground-based LiDAR

    Microsoft Academic Search

    E. A. Feliciano; S. Wdowinski; M. Potts; S. Chin; D. A. Phillips

    2010-01-01

    Worldwide, anthropogenic activities are disturbing and disrupting nutrient rich bio-diverse wetland ecosystems. Disturbance of the South Florida Everglades has been particularly acute, but difficult to quantify given its limited accessibility. Successful ecosystem monitoring requires the use of remote sensing. We used space-based Synthetic Aperture Radar (SAR) observations to estimate vegetation structure and above-ground biomass and track their changes over time.

  16. Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods.

    PubMed

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas. PMID:23811774

  17. The biogeochemistry of nitrogen in freshwater wetlands

    Microsoft Academic Search

    William B. Bowden

    1987-01-01

    The biogeochemistry of N in freshwater wetlands is complicated by vegetation characteristics that range from annual herbs to perennial woodlands; by hydrologic characteristics that range from closed, precipitation-driven to tidal, riverine wetlands; and by the diversity of the nitrogen cycle itself. It is clear that sediments are the single largest pool of nitrogen in wetland ecosystems (100's to 1000's g

  18. Reference: RGL 82-02 Subject: WETLANDS

    E-print Network

    US Army Corps of Engineers

    Reference: RGL 82-02 Subject: WETLANDS Title: CLARIFICATION OF "NORMAL CIRCUMSTANCES" IN THE WETLAND DEFINITION Issued: 02/11/82 Expires: 12/31/84 Originator: DAEN-CWO-N Description: DEFINES NORMAL CIRCUMSTANCES, CONVERTED WETLANDS, AND ABNORMAL PRESENCE OF AQUATIC VEGETATION 1. This letter will serve

  19. USE OF WETLANDS BY UPLAND WILDUFE

    Microsoft Academic Search

    Frank Schiloskey. Jr

    Seasonal use of wetlands by upland wildlife is common; when uplands are dis­ turbed. wildlife may use we I lands year·round. The structure and form of vegetation in wetlands is more important than species composition 10 upland wildlife. Wetlands may provide upland wildlife with food. escape cover. protection from inclement weather. and reproductive habitat. There has been little documentation of

  20. Assessment of acreage and vegetation change in Florida`s Big Bend tidal wetlands using satellite imagery

    SciTech Connect

    Raabe, E.A.; Stumpf, R.P. [Geological Survey, St. Petersburg, FL (United States)

    1997-06-01

    Fluctuations in sea level and impending development on the west coast of Florida have aroused concern for the relatively pristine tidal marshes of the Big Bend. Landsat Thematic Mapper (TM) images for 1986 and 1995 are processed and evaluated for signs of change. The images cover 250 km of Florida`s Big Bend Gulf Coast, encompassing 160,000 acres of tidal marshes. Change is detected using the normalized difference vegetation index (NDVI) and land cover classification. The imagery shows negligible net loss or gain in the marsh over the 9-year period. However, regional changes in biomass are apparent and are due to natural disturbances such as low winter temperatures, fire, storm surge, and the conversion of forest to marsh. Within the marsh, the most prominent changes in NDVI and in land cover result from the recovery of mangroves from freezes, a decline of transitional upland vegetation, and susceptibility of the marsh edge and interior to variations in tidal flooding.

  1. Plant-water regime management in a wetland: consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias hybridus

    Microsoft Academic Search

    Jean-Marc Paillisson; Sebastien Reeber; Alexandre Carpentier; Loic Marion

    In this study we investigated the interplay between water level management, floating macrophytic vegetation and nesting whiskered\\u000a tern (Chlidonias hybridus) during 8 years (1995–2002) at a shallow macrophyte-dominated lake in western France. The specific question was to see if\\u000a slight increases in the water regime of the lake (three scenarios), as part of a restoration programme, affect the timing\\u000a of

  2. Plant-water regime management in a wetland: consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias hybridus

    Microsoft Academic Search

    Jean-Marc Paillisson; Sebastien Reeber; Alexandre Carpentier; Loic Marion

    2006-01-01

    In this study we investigated the interplay between water level management, floating macrophytic vegetation and nesting whiskered\\u000a tern (Chlidonias hybridus) during 8 years (1995–2002) at a shallow macrophyte-dominated lake in western France. The specific question was to see if\\u000a slight increases in the water regime of the lake (three scenarios), as part of a restoration programme, affect the timing\\u000a of

  3. Wetland Visualizations

    NSDL National Science Digital Library

    Compiled by Suzanne Savanick at SERC. Find wetland images and visualizations that illustrate wetland loss or wetland function. Browse the complete set of Visualization Collections. National Estuary Program Habitat ...

  4. Spatio-Temporal Variation in Contrasting Effects of Resident Vegetation on Establishment, Growth and Reproduction of Dry Grassland Plants: Implications for Seed Addition Experiments

    PubMed Central

    Knappová, Jana; Knapp, Michal; Münzbergová, Zuzana

    2013-01-01

    Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle. PMID:23755288

  5. Spatio-temporal variation in contrasting effects of resident vegetation on establishment, growth and reproduction of dry grassland plants: implications for seed addition experiments.

    PubMed

    Knappová, Jana; Knapp, Michal; Münzbergová, Zuzana

    2013-01-01

    Successful establishment of plants is limited by both biotic and abiotic conditions and their interactions. Seedling establishment is also used as a direct measure of habitat suitability, but transient changes in vegetation might provide windows of opportunity allowing plant species to colonize sites which otherwise appear unsuitable. We aimed to study spatio-temporal variability in the effects of resident vegetation on establishment, growth and reproduction of dry grassland species in abandoned arable fields representing potentially suitable habitats. Seeds were sown in disturbed (bare of vegetation and roots) and undisturbed plots in three fields abandoned in the last 20 years. To assess the effects of temporal variation on plant establishment, we initiated our experiments in two years (2007 and 2008). Seventeen out of the 35 sown species flowered within two years after sowing, while three species completely failed to become established. The vegetation in the undisturbed plots facilitated seedling establishment only in the year with low spring precipitation, and the effect did not hold for all species. In contrast, growth and flowering rate were consistently much greater in the disturbed plots, but the effect size differed between the fields and years of sowing. We show that colonization is more successful when site opening by disturbance coincide with other suitable conditions such as weather or soil characteristics. Seasonal variability involved in our study emphasizes the necessity of temporal replication of sowing experiments. Studies assessing habitat suitability by seed sowing should either involve both vegetation removal treatments and untreated plots or follow the gradient of vegetation cover. We strongly recommend following the numbers of established individuals, their sizes and reproductive success when assessing habitat suitability by seed sowing since one can gain completely different results in different phases of plant life cycle. PMID:23755288

  6. NUTRIENT AND HABITAT INDICATORS FOR CRITERIA DEVELOPMENT IN GREAT LAKES COASTAL WETLANDS

    EPA Science Inventory

    EPA's Mid-Continent Ecology Division is testing indicators and establishing stressor - response relationships to support development of nutrient and habitat criteria for Great Lakes coastal wetlands. Our focus is on water quality changes, food web shifts, and vegetation loss as ...

  7. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    SciTech Connect

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    2004-12-31

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increased attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for wetland-dependent wildlife. We present a brief summary of this project and the research studies now underway.

  8. Assessing coastal plain wetland composition using advanced spaceborne thermal emission and reflection radiometer imagery

    NASA Astrophysics Data System (ADS)

    Pantaleoni, Eva

    Establishing wetland gains and losses, delineating wetland boundaries, and determining their vegetative composition are major challenges that can be improved through remote sensing studies. We used the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) to separate wetlands from uplands in a study of 870 locations on the Virginia Coastal Plain. We used the first five bands from each of two ASTER scenes (6 March 2005 and 16 October 2005), covering the visible to the short-wave infrared region (0.52-2.185mum). We included GIS data layers for soil survey, topography, and presence or absence of water in a logistic regression model that predicted the location of over 78% of the wetlands. While this was slightly less accurate (78% vs. 86%) than current National Wetland Inventory (NWI) aerial photo interpretation procedures of locating wetlands, satellite imagery analysis holds great promise for speeding wetland mapping, lowering costs, and improving update frequency. To estimate wetland vegetation composition classes, we generated a classification and regression tree (CART) model and a multinomial logistic regression (logit) model, and compared their accuracy in separating woody wetlands, emergent wetlands and open water. The overall accuracy of the CART model was 73.3%, while for the logit model was 76.7%. The CART producer's accuracy of the emergent wetlands was higher than the accuracy from the multinomial logit (57.1% vs. 40.7%). However, we obtained the opposite result for the woody wetland category (68.7% vs. 52.6%). A McNemar test between the two models and NWI maps showed that their accuracies were not statistically different. We conducted a subpixel analysis of the ASTER images to estimate canopy cover of forested wetlands. We used top-of-atmosphere reflectance from the visible and near infrared bands, Delta Normalized Difference Vegetation Index, and a tasseled cap brightness, greenness, and wetness in linear regression model with canopy cover as the dependent variable. The model achieved an adjusted-R 2 of 0.69 (RMSE = 2.7%) for canopy cover less than 16%, and an adjusted-R 2 of 0.04 (RMSE = 19.8%) for higher canopy cover values. Taken together, these findings suggest that satellite remote sensing, in concert with other spatial data, has strong potential for mapping both wetland presence and type.

  9. Wetland Types

    NSDL National Science Digital Library

    This resource will help students to distinguish between wetland types. They will discover that coastal wetlands include salt marshes and tidal brackish marshes while inland wetlands consist of freshwater marshes, wet meadows, forested swamps, shrub swamps, bogs, fens, and vernal pools. A Guide to Wetland Wildlife in New England Regional Wetland "Celebrities" is included. This site is part of a guide that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. Even though the site is about wetlands in New England for educators and their middle school students it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland. An associated set of activities is also available.

  10. Testing a passive revegetation approach for restoring Coastal Plain depression wetlands

    SciTech Connect

    De Steven, Diane; Sharitz, Rebecca R.; Singer, Julian H.; Barton, Christopher D.

    2006-09-01

    Abstract Restoration of coastal plain depressions, a biologically significant and threatened wetland type of the southeastern United States, has received little systematic research. Within the context of an experimental project designed to evaluate several restoration approaches, we tested whether successful revegetation can be achieved by passive methods (recruitment from seed banks or seed dispersal) that allow for wetland ‘‘self-design’’ in response to hydrologic recovery. For 16 forested depressions that historically had been drained and altered, drainage ditches were plugged to reestablish natural ponding regimes, and the successional forest was harvested to open the sites and promote establishment of emergent wetland vegetation. We sampled seed bank and vegetation composition 1 year before restoration and monitored vegetation response for 3 years after. Following forest removal and ditch plugging, the restored wetlands quickly developed a dense cover of herbaceous plant species, of which roughly half were wetland species. Seed banks were a major source of wetland species for early revegetation. However, hydrologic recovery was slowed by a prolonged drought, which allowed nonwetland plant species to establish from seed banks and dispersal or to regrow after site harvest. Some nonwetland species were later suppressed by ponded conditions in the third year, but resprouting woody plants persisted and could alter the future trajectory of revegetation. Some characteristic wetland species were largely absent in the restored sites, indicating that passive methods may not fully replicate the composition of reference systems. Passive revegetation was partially successful, but regional droughts present inherent challenges to restoring depressional wetlands whose hydrologic regimes are strongly controlled by rainfall variability.

  11. Establishing quantitative relations between mammalian communities, climate regimes, and vegetation density - A diversity-based reference model and case study

    NASA Astrophysics Data System (ADS)

    Hertler, Christine; Wolf, Dominik; Bruch, Angela; Märker, Michael

    2013-04-01

    A considerable diversity of hominin taxa is described from the Pleistocene of sub-Saharan Africa. Inner-African range expansions of these taxa are primarily addressed by morphological comparisons of the hominin specimens and systematic interpretation of the results. Considering hominin expansion patterns as being at least co-determined by ecology and environment requires an assessment of respective features of paleo-communities as well as features of the environments with which they are associated. Challenges in validation and integration of reconstructions of hominin environments and ecologies can be met with well-organized recent reference models. Modelling the present day situation permits to assess relevant variables and to establish interactions among them on a quantitative basis. In a next step such a model can be applied to classify hominin paleoenvironments, for which not all data sources are available. An example for this approach is introduced here. In order to characterize hominin environments in sub-Saharan Africa, we assessed sets of variables for composition, structure and diversity of the large mammal communities, climate (temperature and precipitation), and vegetation in African national parks. These data are applied to analyse correlations between faunal communities and their environments on a quantitative basis. While information on large mammal communities is frequently available for hominin localities and regional climate features are addressed on the basis of abiotic proxies, information on paleoflora and vegetation is mostly lacking for the Plio-Pleistocene in sub-Saharan Africa. A quantitative reference model therefore offers new options for reconstructions. A recent reference model moreover permits to quantify descriptive terms like 'savanna'. We will introduce a reference model for sub-Saharan Africa and demonstrate its application in the reconstruction of hominin paleoenvironments. The corresponding quantitative characterization of Pleistocene specialized herbivore communities permits to infer habitat features. The hominin locality Makuyuni permits to study two successive fossil communities and changes occurring. Both fossil horizons are associated with either hominin specimens and/or artifacts. Therefore, hominins persist in the habitats in view of a changing environment.

  12. Wetland Science

    NSDL National Science Digital Library

    This is the first section of a module about wetlands in New England for educators and their middle school students. Although designed for students in New England, it applies to and gives examples of wetlands across the country. It suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland. This guide aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. This first section explains what wetlands are and explains that the water cycle is the connection between wetlands and watersheds. In addition, it explains in detail the characteristics of wetland water, soil and plants. An associated set of activities is also available.

  13. Integration of multi-temporal spectral and structural information to map wetland vegetation in a brackish Connecticut marsh

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Wilson, E. H.; Barrett, N.; Civco, D. L.; Prisloe, S.; Hurd, J. D.; Chadwick, C.

    2008-12-01

    This study utilizes multitemporal QuickBird and single date LiDar canopy height data to classify the common plant communities of a tidal marsh at the mouth of the Connecticut River. A specific goal was to map the expanding distribution of non-native Phragmites australis (Cav.) Trin ex Steud (common reed), which has been outcompeting native species, particularly in disturbed marshes. P. australis spreads vigorously, forming dense monocultures that result in reduced biodiversity of plant, avian and macroinvertebrate species. We collected visible to near-infrared (VNIR) reflectance spectra of the dominant plant species S. patens (salt meadow grass), Typha spp. (cattail), and P. australis over two growing seasons to develop metrics that maximize phenological spectral and canopy height variability to distinguish these plants within a complex marsh community containing >100 plant species. Relative to other species, P. australis is best distinguished by its high NIR response and height late in the growing season. Typha spp. was well distinguished from other species by its high red/green ratio and S. patens by a unique green/blue ratio and low heights throughout the growing season. The field spectra and LiDar-derived heights were used to guide an object-oriented classification methodology using multitemporal QuickBird data collected over the same time interval as the field spectra. The classification was validated using a field inventory of marsh vegetation. Overall maximum fuzzy accuracy for the classification was 97% for Phragmites, 63% for Typha spp. and 80% for S. patens meadows; this improved to 97%, 76%, and 92%, respectively, using a fuzzy acceptable match measure. Image acquisition timing was critical for the identification of targeted plant species in this heterogeneous marsh. These datasets and protocols may provide coastal resource managers, municipal officials and researchers a set of recommended guidelines for remote sensing data collection for marsh inventory and monitoring.

  14. Restoring biodiversity in the Gwydir Wetlands through environmental flows.

    PubMed

    Mawhinney, W A

    2003-01-01

    As part of the Water Reforms process, environmental flow rules have been progressively implemented in New South Wales rivers. The Integrated Monitoring of Environmental Flows (IMEF) is a major project established to better understand how rivers and associated wetlands respond to environmental water allocations. The results presented here represent the vegetation data collected for the testing of the hypothesis that "protecting or restoring a portion of freshes and high flows and otherwise maintaining natural flow variability will replenish anabranches and riverine wetlands, restoring their biodiversity". The study site is the Ramsar listed Gwydir Wetlands, located on the Gingham and Gwydir (Big Leather) Watercourses in the Lower Gwydir Valley, 100 km west of Moree. The expansion of irrigated agriculture in the lower Gwydir valley has severely altered flow regimes in the wetlands. The spread of the weed Phyla canescens (Lippia) is of major concern to landholders in the Gwydir Wetlands. Results indicate that Paspalum distichum (Water couch) and Eleocharis plana (Ribbed spike-rush) can maintain dominance over Phyla canescens if flooding occurs on a semi-regular basis. Conversely, Eichhornia crassipes (Water hyacinth) is a rampant noxious weed of open water in the Gwydir Wetlands, and has quickly spread in areas that are inundated for long periods. Management of this weed requires periodic drying of the wetlands to cause desiccation and death of the plants. The flooding requirement of individual species and plant associations in the Gwydir Wetlands are currently not fully understood. By providing better information on the consequence of different flows, the IMEF project will help to develop better management strategies to shift the dominance from introduced species such as P. canescens and E. crassipes to more desirable native plant species. PMID:14653636

  15. A Study of Natural and Restored Wetland Hydrology

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Sidle, William C.; Pavlovic, Noel B.

    1999-01-01

    The U.S. Geological Survey and the U.S. Environmental Protection Agency are jointly studying the hydrology of a long-existing natural wetland and a recently restored wetland in the Kankakee River Valley in northwestern Indiana. In characterizing the two wetlands, project investigators are testing innovative methods to identify the analytical tools best suited for evaluating the success of wetland restoration. Investigators also are examining and comparing the relations between hydrology and restored wetland vegetation.

  16. Wetlands stewardship

    SciTech Connect

    Whelan, J.M.

    1992-04-01

    Wetlands have important ecological values and functions. It is estimated that 80 percent of the Nation's coastal fisheries are dependent on wetlands for spawning, nursery areas, and food sources. Both coastal and inland wetlands provide essential breeding, nesting, feeding, and predator escape habitats for millions of waterfowl, other birds, mammals, and reptiles. Well over one-third of the 564 plant and animal species listed as threatened or endangered in the United States utilize wetland habitats during some portion of their life cycle. Wetlands Stewardship is intended as a resource for everyone interested in wetlands protection.

  17. 78 FR 13643 - Intent To Prepare a Draft Environmental Impact Statement for the Proposed Delta Wetlands Project...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ...on the proposed Delta Wetlands Project through the...United States (including wetlands), and impacts related...fish, vegetation and wetlands, wildlife, land use...resources, air quality, climate change, and...

  18. Wetland Classification as per Cowardin et al. 1979

    E-print Network

    Gray, Matthew

    System All freshwater wetlands dominated (>30% coverage) by trees, shrubs, persistent emergents, or emergent mosses and lichens ·Non-tidal or tidal Also, all wetlands lacking above vegetation (or dominated the dominant vegetation or substrate composition If Horizontal Vegetative Cover (HVC) is >30%: If Horizontal

  19. Wetland Functions

    NSDL National Science Digital Library

    This resource explains a number of critical functions performed by wetlands. Students will discover that wetlands moderate impacts from flooding, control erosion, purify water, and provide habitat for fish and wildlife. They also provide a unique natural environment for people to enjoy outdoor recreation activities. It is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. Although it is about wetlands in New England for educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  20. Detached Wetlands

    NSDL National Science Digital Library

    KET

    2011-01-11

    This video depicts a detached wetland, a small pool that forms beside a shallow meandering stream when it overflows its banks. These wetlands are important breeding grounds for the invertebrates that live in and beside streams

  1. Influence of wetland type, hydrology, and wetland destruction on aquatic communities within wetland reservoir subirrigation systems in northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of two different types of wetlands adjacent to agricultural fields. Each WRSIS consists of one treatment wetland designed to process agricultural contaminants (...

  2. Spatial organization and ecohydrological interactions in oxygen-limited vegetation ecosystems

    NASA Astrophysics Data System (ADS)

    Marani, Marco; Silvestri, Sonia; Belluco, Enrica; Ursino, Nadia; Comerlati, Andrea; Tosatto, Omar; Putti, Mario

    2006-06-01

    Wetlands are characterized by extremely high biodiversity and primary productivity (comparable to tropical rain forests), provide critical habitats for rare and endangered vegetation and animal species, and mediate the effects of floods and the action of the sea on the coast. A deep understanding of wetland system functioning cannot be acquired by simply reducing its dynamics to a collection of parts but requires the explicit description of wetland physical and ecological processes as fully interacting components. In fact, the complex spatial ecohydrological patterns characterizing wetland areas arise as a result of the coupled evolution of their ecological, hydrological, and morphological features. Here we examine observations of prominent spatial patterns in wetland vegetation and link them to the relevant hydrological and ecological processes. We describe the limitations to vegetation development due to scarce soil oxygen availability and implement a mathematical model, based on Richards' equation, coupling subsurface water flow and plant water uptake in a tidal salt marsh. The soil aeration patterns arising from such interactions highlight the central role of vegetation in increasing soil aeration, possibly inducing the establishment of a permanently aerated soil layer (in spite of tidal flooding), and the influence of different soil characteristics on soil oxygen availability. Finally, we discuss how ecohydrological interactions can contribute to explain patterns of vegetation colonization and spatial heterogeneity.

  3. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    SciTech Connect

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States)] [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Bien, Stephanie; Decker, Ashlee; Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)] [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States); Wulker, Brian [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)] [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  4. Tidal Wetlands Impacts Data Homepage

    NSDL National Science Digital Library

    A cooperative effort between the Virginia Institute of Marine Science (VIMS) and the US Environmental Protection Agency (EPA), this site was designed "to assist resource managers, academicians, students, politicians, and the general public in the areas of research, education, environmental management, and policy ... about human impacts on tidal wetlands in Virginia." Non-interactive sections include the Overview of the VIMS Program, describing data collection methods; Overview of Management, describing the history and current status of tidal wetlands management; Nontidal wetlands impacts information, summarizing impacts to nontidal wetlands; and General Data Summaries, offering display tables and graphs. Two searchable sections provide for select examination of the data: Design a query for 1993-1997 and Design a query for 1988-1992 enable viewers to examine data by year, activity category, and watershed. Results are presented in tabular form and "display impacts to vegetated and nonvegetated wetlands by square footage." Photographs accompany the summary data.

  5. Ecohydraulics and Estuarine Wetland Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow conditions. We present a preliminary analysis of the data aimed at the hydrodynamic and geomorphologic characterization of the different vegetation zones and the resulting habitat properties.

  6. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  7. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  8. Control of hardwood regeneration in restored carolina bay depression wetlands.

    SciTech Connect

    Moser, Lee, J.; Barton, Christopher, D.; Blake, John, I.

    2012-06-01

    Carolina bays are depression wetlands located in the coastal plain region of the eastern United States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches. Restoration of bays is of interest because they are important habitats for rare flora and fauna. Previous bay restoration projects have identified flood-tolerant woody competitors in the seedbank and re-sprouting as impediments to the establishment of desired herbaceous wetland vegetation communities. We restored 3 bays on the Savannah River Site, South Carolina, by plugging drainage ditches, harvesting residual pine/hardwood stands within the bays, and monitoring the vegetative response of the seedbank to the hydrologic change. We applied a foliar herbicide on one-half of each bay to control red maple (Acerrubrum), sweetgum (Liquidambar styraciflua), and water oak (Quercus nigra) sprouting, and we tested its effectiveness across a hydrologic gradient in each bay. Hardwood regeneration was partially controlled by flooding in bays that exhibited long growing season hydroperiods. The findings also indicated that herbicide application was an effective means for managing hardwood regeneration and re-sprouting in areas where hydrologic control was ineffective. Herbicide use had no effect on species richness in the emerging vegetation community. In late-season drawdown periods, or in bays where hydroperiods are short, more than one herbicide application may be necessary.

  9. Maine Department of Conservation: Wetlands Activity

    NSDL National Science Digital Library

    2011-07-18

    This four-week unit contains activities in which students investigate the natural history of a wetland, identify its boundaries, and study how it functions in the environment. They will investigate the formation of wetlands in Maine; prepare a series of map overlays researching wetland conditions for a site they have chosen in the community; learn how to recognize a wetland by hydrology, vegetation, and soil type; inventory the functions of the wetland site; and write an evaluation for it. To conclude the unit, the students will hold a mock town meeting in which they discuss the views of the various interested parties in preserving or destroying the wetland and debate the merits of the proposed changes to federal wetlands regulations.

  10. Hydrologic changes and processes underlying recent wetland loss in Yellowstone National Park

    NASA Astrophysics Data System (ADS)

    Schook, D. M.; Cooper, D. J.

    2011-12-01

    Wetlands are some of the most biologically productive yet vulnerable ecosystems on Earth. They provide essential habitat for various biota and act as landscape indicators by reflecting the status of catchment-scale processes. The drying and shrinking of wetlands during the past four decades in Yellowstone National Park's Northern Range has recently incited concern among National Park managers and the public at large. Investigation of wetland hydrologic regime is a critical step in building an understanding of these changing ecosystems. Our research has the following objectives: (1) Classify wetlands according to their particular hydrologic function, including climatic and geomorphic processes supporting them, (2) Determine the patterns and magnitude of water level declines that occurred during the late 20th and early 21st centuries and assess whether these fall within the natural range of variation, (3) More closely examine a focal site that has experienced dramatically reduced water levels to gain a more refined understanding of wetland processes. In 2009 we established a monitoring network of 24 wetlands within the Northern Range. Each wetland was instrumented with 4 to 6 shallow groundwater well and piezometer nests. Well data was manually collected from each site at one to two week intervals in summers 2009 and 2010. Data analyses indicate that the study sites represent locations of ground water discharge, recharge, and flow-through, as well as sites perched above the regional water table. We classified wetlands into 7 groups using a hydrograph shape-magnitude framework previously used in stream systems. Climatic data reveal that hydrologic conditions occurring in the recent past are within the range of historic variation, but that we are in a drier than average period. Aerial photographs and wetland soil delineation both reveal greater wetland extent in the past 50 years, and these conditions are linked to the environmental setting of each wetland. Wetland vegetation is shown to inhabit zones of specific water table fluctuation patterns, and thus can be used to infer subsurface hydrology in the absence of hydrologic data. In continuing analyses we will synthesize these wetland variables into a comprehensive view of wetland prevalence in Yellowstone's Northern Range, and consider this phenomenon in the context of global climate change.

  11. TECHNICAL ARTICLES PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR

    E-print Network

    Brix, Hans

    TECHNICAL ARTICLES #12;2 PLANTS USED IN CONSTRUCTED WETLANDS AND THEIR FUNCTIONS Hans Brix Risskov, Denmark ABSTRACT Vegetation plays an important role in wastewater treatment wetlands. Plants treatment systems aesthetically pleasing. Wetland species of all growth forms have been used in treatment

  12. H-02 CONSTRUCTED WETLAND STUDIES AMPHIBIANS AND PLANTS

    E-print Network

    Georgia, University of

    H-02 CONSTRUCTED WETLAND STUDIES AMPHIBIANS AND PLANTS FY-2009 ANNUAL REPORT Savannah River Ecology ................................................................................................. 4 Chapter II Amphibian and Reptile Use of the H-02 Wetland .................................... 5 ............................................................................................... 27 Chapter III Vegetation Community of the H-02 Wetlands: Importance to Amphibians

  13. H-02 CONSTRUCTED WETLAND STUDIES AMPHIBIANS AND PLANTS

    E-print Network

    Georgia, University of

    H-02 CONSTRUCTED WETLAND STUDIES AMPHIBIANS AND PLANTS FY-2008 ANNUAL REPORT Savannah River Ecology ................................................................................................. 4 CHAPTER II -- AMPHIBIAN AND REPTILE USE OF THE H-02 WETLAND .................................... 5 ............................................................................................... 17 CHAPTER III: VEGETATION COMMUNITY OF THE H-02 WETLANDS -- IMPORTANCE TO AMPHIBIANS

  14. National Wetlands Inventory Wetlands of the

    E-print Network

    National Wetlands Inventory MARCH 1984 Wetlands of the United States: Current Status and Recent, Childers, Tiner, USFWS #12;WETLANDS OF THE UNITED STATES : CURRENT STATUS AND RECENT TRENDS by Ralph W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 What Is A Wetland

  15. Uptake of /sup 226/Ra by established vegetation and black cutworm larvae, Agrotis ipsilon (class Insecta: order Lepidoptera), on U mill tailings at Elliot Lake, Canada

    SciTech Connect

    Clulow, F.V.; Dave, N.K.; Lim, T.P.; Cloutier, N.R.

    1988-07-01

    Radium-226 levels in samples from an inactive U tailings site at Elliot Lake, Ontario, Canada, were: 9140 +/- 500 mBq g-1 dry weight in the substrate; 62 +/- 1 mBq g-1 dry weight in rye, Secale cereale, and less than 3.7 mBq g-1 dry weight in oats, Avena sativa, the dominant species established by revegetation of the tailings; and 117 +/- 7 mBq g-1 dry weight in washed and unwashed black cutworm larvae. Concentration ratios were: vegetation to tailings 0.001-0.007; black cutworms to vegetation 3.6 and black cutworms to tailings 0.01. The values are considered too low to be considered a hazard to herring gulls, Larus argentatus, which occasionally feed on cutworms.

  16. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify GHG emissions from subtropical wetlands while demonstrating the differences in these fluxes based on the surrounding ecosystem.

  17. Integration of Biosynthesis and Long-Distance Transport Establish Organ-Specific Glucosinolate Profiles in Vegetative Arabidopsis[W

    PubMed Central

    Andersen, Tonni Grube; Nour-Eldin, Hussam Hassan; Fuller, Victoria Louise; Olsen, Carl Erik; Burow, Meike; Halkier, Barbara Ann

    2013-01-01

    Although it is essential for plant survival to synthesize and transport defense compounds, little is known about the coordination of these processes. Here, we investigate the above- and belowground source-sink relationship of the defense compounds glucosinolates in vegetative Arabidopsis thaliana. In vivo feeding experiments demonstrate that the glucosinolate transporters1 and 2 (GTR1 and GTR2), which are essential for accumulation of glucosinolates in seeds, are likely to also be involved in bidirectional distribution of glucosinolates between the roots and rosettes, indicating phloem and xylem as their transport pathways. Grafting of wild-type, biosynthetic, and transport mutants show that both the rosette and roots are able to synthesize aliphatic and indole glucosinolates. While rosettes constitute the major source and storage site for short-chained aliphatic glucosinolates, long-chained aliphatic glucosinolates are synthesized both in roots and rosettes with roots as the major storage site. Our grafting experiments thus indicate that in vegetative Arabidopsis, GTR1 and GTR2 are involved in bidirectional long-distance transport of aliphatic but not indole glucosinolates. Our data further suggest that the distinct rosette and root glucosinolate profiles in Arabidopsis are shaped by long-distance transport and spatially separated biosynthesis, suggesting that integration of these processes is critical for plant fitness in complex natural environments. PMID:23995084

  18. Differences in Aquatic Communities Between Wetlands Created by an Agricultural Water Recycling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to s...

  19. Identification and characterization of wetlands in the Bear Creek watershed

    SciTech Connect

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  20. Productivity of wet soils: Biomass of cultivated and natural vegetation

    SciTech Connect

    Johnston, C.A.

    1988-12-01

    Wet soils, soils which have agronomic limitations because of excess water, comprise 105 million acres of non-federal land in the conterminous United States. Wet soils which support hydrophytic plants are ''wetlands'', and are some of the most productive natural ecosystems in the world. When both above- and belowground productivity are considered, cattail (Typha latifolia) is the most productive temperate wetland species (26.4 Mg/ha/year). Both cattail and reed (Phragmites australis) have aboveground productivities of about 13 Mg/ha/year. Although average aboveground yields of reed canarygrass (Phalaris arundinacea) are lower (9.5 Mg/ha/year), techniques for its establishment and cultivation are well-developed. Other herbaceous wetland species which show promise as biomass crops include sedge (Carex spp.), river bulrush (Scirpus fluviatilis) and prairie cordgrass (Spartina pectinata). About 40% of wet soils in the conterminous US are currently cultivated, and they produce one-quarter of the major US crops. Most of this land is artificially drained for crops such as corn, soybeans, and vegetables. US wetlands are drained for agriculture at the rate of 223,000 ha/yr. Paddies flooded with water are used to grow rice, cranberries, and wild rice. Forage and live sphagnum moss are products of undrained wetlands. A number of federal and state regulations apply to the draining or irrigation of wetlands, but most do not seriously restrict their use for agriculture. 320 refs., 36 tabs.

  1. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments

    Microsoft Academic Search

    Eric E. Roden; Robert G. Wetzel

    1996-01-01

    High concentrations (20-75 pmol cm-3) of amorphous Fe(III) oxide were observed in unvegetated surface and Juncus eflusus rhizosphere sediments of a freshwater wetland in the southeastern United States. Incu- bation experiments demonstrated that microbial Fe(III) oxide reduction suppressed sulfate reduction and methanogenesis in surface scdimcnts and mediated 240% of depth-integrated (O-10 cm) unvegetated sedi- ment carbon metabolism, compared to I

  2. Hydrologic, vegetation, and substrate characteristics of floating marshes in sediment-rich wetlands of the Mississippi river delta plain, Louisiana, USA

    Microsoft Academic Search

    Charles E. Sasser; James G. Gosselink; Erick M. Swenson; D. Elaine Evers

    1995-01-01

    Floating marshes occur over 70% of the western Terrebonne Basin, Louisiana, USA, freshwater coastal wetlands. They are of several types: A free-floating thick-mat (45–60 cm) marsh dominated by Panicum hemitomon and Sagittaria lancifolia; a thick mat marsh dominated by Panicum hemitomon and Sagittaria lancifolia that floats part of the year, but whose vertical floating range is damped compared to adjacent

  3. Exploring Wetlands.

    ERIC Educational Resources Information Center

    Kerr, Elizabeth; Harrison, Gordon

    1996-01-01

    Presents a wetlands education model for secondary education students. Students monitor a wetland, participate in decision-making, and take actions to protect it. In a series of six steps, the model guides students through the process of defining a problem; envisioning solutions; evaluating appropriate solutions based on environmental, economic and…

  4. Wetland Loss.

    ERIC Educational Resources Information Center

    Barrett, Marilyn

    1994-01-01

    Examines what wetland conservation means to different groups of Louisiana's coastal residents. Describes coastal resources, reasons for their deterioration, conservation efforts, and the impact of a public perception that conservation of wetlands is closely tied to conservation of the existing lifestyle. (LZ)

  5. Wetland change detection in Nile swamps of southern Sudan using multitemporal satellite imagery

    NASA Astrophysics Data System (ADS)

    Soliman, Ghada; Soussa, Hoda

    2011-01-01

    In this study, the maximum likelihood supervised classification and the post-classification comparison change detection are applied in order to monitor the wetlands by assessing and quantifying the wetland cover changes in the Nile swamps of southern Sudan, called the Sudd, by using the ERDAS IMAGINE software. Three multispectral satellite imageries, acquired in the wet season from 1986 to 2006 by Landsat TM and Landsat ETM+ images, are classified into five main land cover classes namely water, vegetation, urban, wetland-vegetation, and wetland-no vegetation, by using the maximum likelihood supervised classification. A pixel-by-pixel comparison was then performed over the classified thematic map images. The post-classification change detection results show a 3.69% decrease in the wetland-vegetation areas and a 2.68% decrease in the wetland-no vegetation areas within the period 1986 to 1999. In addition, a noticeable increase is observed in the wetland-vegetation areas within the period 1999 to 2006 in the Sudd area as 14.95% of the land cover classes' areas, excluding the wetland-vegetation areas are changed into wetland-vegetation areas while there was a decrease of 5.18% in the wetland-no vegetation areas within the period 1999 to 2006. The objective of this paper is to introduce precedence in studying the wetland cover changes over the Sudd area which can help the output planners develop water resources management projects leading to enhance the life conditions in the Sudd region.

  6. WICHMANN, BRENDA LYNN. Vegetation of geographically isolated montane non-alluvial wetlands of the southern Blue Ridge of North Carolina. (Under the direction of

    E-print Network

    Peet, Robert K.

    classification is presented for 12 community types within 2 broad vegetation classes based on 136 vegetation analysis was used to delimit community types, and non-metric multidimensional scaling was subsequently used of these community types fit well within currently recognized community concepts, others fit poorly within existing

  7. ERTS-1 investigation of wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (principal investigator); Carter, V.; Mcginness, J.

    1975-01-01

    The author has identified the following significant results. Data from aircraft can be used for large scale mapping where detailed information is necessary, whereas Landsat-1 data are useful for rapid mapping of gross wetland boundaries and vegetative composition and assessment of seasonal change plant community composition such as high and low growth forms of Spartina alterniflora, Juncus roemarianus, and Spartina cynosuroides. Spoil disposal and wetland ditching activities may also be defined. Wetland interpretation is affected by tidal stage; drainage patterns are more easily detected at periods of low water. Species discrimination is easier at periods of high water during the growing season; upper wetland boundaries in fresh water tidal marshes are more easily delineated during the winter months when marsh vegetation is largely dead or dormant. Fresh water discharges from coastal streams may be inferred from the species composition of contiguous wetlands.

  8. Interaction between neighboring vegetation patches: Impact on flow and deposition

    E-print Network

    Meire, Dieter W. S. A.

    Flow and sedimentation around patches of vegetation are important to landscape evolution, and a better understanding of these processes would facilitate more effective river restoration and wetlands engineering. In wetlands ...

  9. Results of preliminary reconnaissance trip to determine the presence of wetlands in wet forest habitats on the Island of Hawaii as part of the Hawaii Geothermal Project, October 1993

    SciTech Connect

    Wakeley, J.S.; Sprecher, S.W.; Lichvar, R.

    1994-02-25

    In October 1993, the authors sampled soils, vegetation, and hydrology at eight sites representing a range of substrates, elevations, soil types, and plant community types within rainforest habitats on the Island of Hawaii. Their purpose was to determine whether any of these habitats were wetlands according to the 1987 Corps of Engineers Wetlands Delineation Manual. None of the rainforest habitats they sampled was wetland in its entirety. However, communities established on pahoehoe lava flows contained scattered wetlands in depressions and folds in the lava, where water could accumulate. Therefore, large construction projects, such as that associated with proposed geothermal energy development in the area, have the potential to impact a significant number and/or area of wetlands. To estimate those impacts more accurately, they present a supplementary scope of work and cost estimate for additional sampling in the proposed geothermal project area.

  10. Longitudinal dispersion in vegetated flow

    E-print Network

    Murphy, Enda

    2006-01-01

    Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

  11. WETLANDS INVENTORY, ASSESSMENT, AND MONITORING

    EPA Science Inventory

    The duration of the work described in this proposal will be approximately 24 months. There will essentially be two cycles. During the first year the wildlife and vegetation inventories and the wetland assessments will be done for the area of the Warwick and Tokio Aquifers. The...

  12. High and Mid-Latitude Wetlands, Climate Change, and Carbon Storage

    NASA Technical Reports Server (NTRS)

    Peteet, Dorothy

    2000-01-01

    Pollen and macrofossil stratigraphy from wetlands associated with AMS chronology provides a vegetational and climatic history over thousands of years. From these records we establish a record of climate change which can be compared with independent records of carbon accumulation rates in these same wetlands. In this way, inferences can be made concerning carbon storage during different climatic regimes. One focus of our research has been high-latitude regions such as Alaskan and Siberian tundra, from which we have paleorecords which span the last 10,000 years. We will present records from the Malaspina Glacier region, Alaska and the Pur-Taz region of Western Siberia. A second focus of our research is in mid-latitude eastern North America. We will present paleorecords from wetlands in Vermont, New York, and Virginia showing the relationship between carbon accumulation rates and climatic changes since the late Pleistocene.

  13. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  14. Spectral estimation of wetland carbon dioxide exchange

    NASA Astrophysics Data System (ADS)

    Chojnicki, B. H.

    2013-01-01

    The simultaneous measurements of broadband normalized difference vegetation index and net ecosystem production were carried out at Rzecin wetland in 2009. Additionally, carbon fluxes, ecosystem respiration and gross ecosystem production were estimated on the basis of measured net ecosystem production values. The maximum broadband normalized difference vegetation index value (0.73) was measured on the 6th of July. The minimum broadband normalized difference vegetation index value measured before and after the vegetation period was 0.40. The annual dynamics of carbon fluxes and broadband normalized difference vegetation index runs were different from each other. During the second half of vegetation period greenness of plants decreases more slowly than plants carbon dioxide uptake capacity. These differences are likely to be determined by plants aging. The results presented in this paper show potential applicability of broadband normalized difference vegetation index for the estimation of carbon dioxide exchange in wetlands.

  15. Vegetation dynamics

    USGS Publications Warehouse

    King, S.L.; Burke, M.K.; Antrobus, T.J.; Billups, S.

    2000-01-01

    Intro paragraph: A disturbance can be defined as 'any relatively discrete event in time that disrupts ecosystem, community, or population structure and changes resources, substrate availability, or the physical environment' (Pickett and White 1985). Vegetation dynamics are a function of the temporal and spatial patterns of the disturbance regime. Natural disturbance regimes support the highest biological diversity; therefore, forest management practices that most closely mimic natural disturbances are expected to sustain the highest biological diversity within a given area (Denslow 1980). In southern forested wetlands, flooding is the dominant disturbance factor, thus plant species are usually distributed along a gowing-season flood gradient (Franz and Bassas 1977).

  16. What Makes a Wetland a Wetland?

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions of and activities about various kinds of wetlands. Contains seven learning activities ranging from creating wetland scenes with picture cutouts to actually exploring a wetland. Includes reproducible handouts and worksheets for several of the activities. (TW)

  17. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Winter/Spring 2000 Vol. 15, No. 1 Virginia Debates Nontidal Wetlands Regulation Carl Hershner Wetland regulation is once again- trolling impacts on existing wetlands, as well as creating new wetlands. There is general agreement

  18. Potential for using native plant species in stormwater wetlands.

    PubMed

    Bonilla-Warford, Cristina M; Zedler, Joy B

    2002-03-01

    Spartina pectinata (prairie cordgrass) was grown under five hydroperiods (wet-dry cycles) to determine its potential for use in stormwater wetlands, particularly as an alternative to the highly invasive Phalaris arundinacea (an exotic grass). Rhizomes planted in outdoor microcosms grew vigorously in all treatments, namely, weekly flooding in early summer, weekly flooding in late summer, flooding every three weeks throughout the summer, weekly flooding throughout the summer, and no flooding. Neither the timing nor frequency of 24-hour floods (10-20 cm deep) affected total stem length (grand mean 1003 +/- 188.8 cm per pot, n = 140) or above-ground biomass (46.5 +/- 8.3 g per pot, equivalent to approximately 360 g/m2). However, by late summer, fewer new tillers were found in unflooded microcosms, indicating that vegetative expansion is drought-sensitive. The growth of Spartina plants was further assessed with and without Glyceria striata (a native grass) and Phalaris arundinacea. Glyceria growth was not affected by hydrologic treatment. Glyceria reduced Spartina growth by approximately 11%, suggesting potential as a cover crop that might reduce establishment and growth of Phalaris seedlings. Seeds of Phalaris did not germinate, but branch fragments established where soil was moist from flooding, regardless of the presence of Glyceria. The ability of Spartina to establish vegetatively and grow well under variable water levels leads us to recommend further testing in stormwater wetlands, along with early planting of Glyceria to reduce weed invasions. PMID:11830768

  19. Late Holocene to present climatic and anthropogenic drivers affecting wetland plant communities, Florida Everglades, USA

    NASA Astrophysics Data System (ADS)

    Bernhardt, C. E.; Willard, D. A.

    2011-12-01

    We synthesize the paleoecological results of dozens of sediment cores to evaluate the complex interactions of regional climate variability and anthropogenic modifications during the late Holocene affecting the development, stability, and resilience of the Florida Everglades wetlands. The Everglades is a mosaic of wetland types whose distributions are controlled by water depth, hydroperiod, fire, and substrate. External stressors could trigger shifts in the vegetation composition and change the community structure. Episodic severe periods of aridity during the late Holocene caused regional shifts in vegetation including the initiation and development of tree islands and sawgrass ridges, which became established during abrupt drought events. While the timing varies site to site, most droughts occurred during well-documented global climate events like the Medieval Climate Anomaly and the Little Ice Age. However, slough vegetation is more resilient to climate variability and quickly returns to its original composition after droughts. Twentieth century modification to the natural Everglades hydrology saw the distribution wetlands severely altered. The response was not homogeneous. Some communities were drowned by prolonged hydroperiods whereas other communities, such as marl prairies became drier. However, slough vegetation in the ridge and slough landscape did not respond to 20th century land use but instead has been sensitive to changes in precipitation associated with the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation.

  20. Effects of sedge and cottongrass tussocks on plant establishment patterns in a post-mined peatland, northern Japan

    Microsoft Academic Search

    Asuka Koyama; Shiro Tsuyuzaki

    2010-01-01

    Facilitation (positive inter-specific interaction) plays an important role in promoting succession in harsh environments.\\u000a To examine whether tussocks facilitate the establishment of other species, after peat mining, investigations were carried\\u000a out in a formerly Sphagnum-dominated wetland (Sarobetsu mire, northern Japan). Two tussock-forming species, Carex middendorffii and Eriophorum vaginatum, have established in sparsely vegetated areas, with a dry ground surface, since

  1. 7 CFR 1467.6 - Establishing priority for enrollment of properties in WRP.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.6 Establishing...regions of the State where restoration of wetlands may better achieve State and regional...to the successful restoration of the wetlands and those adjacent landowners are...

  2. 7 CFR 1467.6 - Establishing priority for enrollment of properties in WRP.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.6 Establishing...regions of the State where restoration of wetlands may better achieve State and regional...to the successful restoration of the wetlands and those adjacent landowners are...

  3. 7 CFR 1467.6 - Establishing priority for enrollment of properties in WRP.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.6 Establishing...regions of the State where restoration of wetlands may better achieve State and regional...to the successful restoration of the wetlands and those adjacent landowners are...

  4. 7 CFR 1467.6 - Establishing priority for enrollment of properties in WRP.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.6 Establishing...regions of the State where restoration of wetlands may better achieve State and regional...to the successful restoration of the wetlands and those adjacent landowners are...

  5. ACUTE TOXICITY OF METHYL-PARATHION IN WETLAND MESOCOSMS: INFLUENCE OF AQUATIC PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acute toxicity of methyl-parathion (MeP) introduced into constructed wetlands for the purpose of assessing the importance of emergent vegetation was tested using Hyalella azecta (Crustacea: Amphipoda). A vegetated (90% cover, mainly Juncus effuses) and a non-vegetated wetland (each with a water...

  6. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  7. Application of EPA wetland research program approach to a floodplain wetland restoration assessment.

    SciTech Connect

    Kolka, R., K.; Trettin, C., C.; Nelson, E., A.; Barton, C., D.; Fletcher, D., E.

    2002-01-01

    Kolka, R.K., C.C. Trettin, E.A. Nelson, C.D. Barton, and D.E. Fletcher. 2002. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment. J. Env. Monitoring & Restoration 1(1):37-51. Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early changes in community development and are predictive of future conditions. In this study we apply the EPS's Wetland Research Program's (WRP) approach to assess the recovery of two thermally altered riparian wetland systems in South Carolina. In one of the altered wetland systems, approximately 75% of the wetland was planted with bottomland tree seedlings in an effort to hasten recovery. Individual studies addressing hydrology, soils, vegetation, and faunal communities indicate variable recovery responses.

  8. Remote Sensing and Wetland Ecology: a South African Case Study

    PubMed Central

    De Roeck, Els R.; Verhoest, Niko E.C.; Miya, Mtemi H.; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc

    2008-01-01

    Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 – 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery. For the characterisation of very small wetlands, high spatial resolution optical or radar images are needed. This study exemplifies the benefits of integrating remote sensing and ecology and hence stimulates interdisciplinary research of isolated wetlands.

  9. Mitigation of micropollutants inside wetland systems: Impacts of season and flow conditions

    NASA Astrophysics Data System (ADS)

    Lange, Jens; Herbstritt, Barbara; Schuetz, Tobias

    2014-05-01

    The important role of wetlands for retention and mitigation of micropollutants has been documented by numerous studies. Natural wetlands in stream eco-systems comprise different elements, e.g. open water bodies, densely vegetated areas and riparian zones with fluctuating water tables, where different biogeochemical conditions prevail. However, our main knowledge on the mitigation potential of these wetlands stems from input-output balances established for constructed systems and from controlled lab-scale experiments. Less is known about internal processes occurring in natural wetlands. The ability of hydrological tracers to serve as a reference for the transport of aquatic pollutants has been shown for a variety of micropollutants. In this study we used a set of hydrological tracers with different physico-chemical properties to assess the retention potential of a recently restored wetland that comprises a variety of internal flowpaths and wetland elements. We conducted our experiments during summer and winter to document the impacts of different seasons and flow conditions. As such we aimed to shed light on real-world retention capabilities of different wetland elements as a guideline for wetland (re-) construction. On a clear winter day (0°C, runoff 21 l/s) we injected 1kg of sodium bromide (NaBr), 1g of uranine (UR) and 1g of sulphorhodamine (SRB). Tracers were measured continuously by field fluorometers and conductivity meters complemented by manual and automatic sampling for laboratory analysis. In accordance with the constructional setup the Multi-Flow Dispersion Model (MDM) enabled us to numerically separate the existing three main flowpaths (FPs). Approximately 25% of the injected tracers traveled through FP1, which only comprised straight channel sections and narrow riparian zones. Approximately 65% of the tracers followed FP2, which contained one small open water body. The remaining tracers (approximately 10%) made their way through a large water body with a diffuse outlet through a densely vegetated zone. A comparison between conservative (NaBr) and non-conservative tracers (UR, SRB) yielded different retention capabilities for the three different FPs and hence wetland elements. During summer (20°C, runoff 0.8 l/s) we repeated the tracer injections using the same protocol. Then the entire wetland was densely vegetated and we expected higher tracer retention due to enhanced biological activity and longer residence times at low flow conditions. However, we observed the opposite, since only one flowpath (FP1) was active and all open water bodies were disconnected due to wetland succession. Regarding retention of micropollutants in our restored wetland we conclude that (a) retention in deep water bodies is decisive, (b) straight sections show relative small retention capabilities, (c) vegetation activity (summer/winter) seems less important for treatment than for flow path development, and (d) in our case photolysis is overall more effective than sorption. These findings highlight the importance of open water bodies for wetland restoration. This study was financed by the PhytoRet-Project (C.21) of the European INTERREG IV program Upper Rhine.

  10. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendleton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low ( 5.51. All years combined use of wetlands by broods was greater on wetlands with pH 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores.

  11. Development of an Indicator to Monitor Mediterranean Wetlands

    PubMed Central

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered. PMID:25826210

  12. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely occurs (cores segmented into 5cm increments up to 45 cm, composited and analyzed for carbon pools using mass equivalent and carbon sequestration rates samples were taken at centre of wetland (open-water) (cores segmented into 1 cm increments up to 30 cm, composited and analyzed for Pb-210 and Cs-137 isotopes). The magnitude of wetland loss (?10 ha) is estimated to be over 1.5 million ha in southern Ontario since the time of European settlement. About 75% of converted wetlands (1.1 million ha) are now classified as 'undifferentiated agricultural lands.' We use our measured carbon sequestration rate Mg CO2 equivalents ha/yr under different scenarios of landowner uptake (5-50%) and prices for carbon offsets (2-50/MgCO2 equivalents) to estimate carbon sequestration and the value of this sequestration in restored wetlands. The project provides empirical evidence that restoring wetlands for carbon sequence could improve the livelihood of farmers and that policies should be established to incentivize farmers to adopt wetland restoration practices on marginal areas in order to improve the economic performance and environmental sustainability of agriculture in Ontario.

  13. Regional Management Philosophy Variations within Virginia's Local Wetlands Management Program

    Microsoft Academic Search

    C. Hershner; N. Theberge

    1986-01-01

    In Virginia, local governments may establish wetlands boards to manage wetlands within their jurisdictions in accordance with general statewide standards. A survey of Virginia's local wetlands boards was conducted to assess the variation in management philosophies among boards. Both individual member philosophies and composite board philosophies indicate significant differences among some boards. The potential this creates for inconsistent decisions within

  14. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  15. Vegetation and soils

    USGS Publications Warehouse

    Burke, M.K.; King, S.L.; Eisenbies, M.H.; Gartner, D.

    2000-01-01

    Intro paragraph: Characterization of bottomland hardwood vegetation in relatively undisturbed forests can provide critical information for developing effective wetland creation and restoration techniques and for assessing the impacts of management and development. Classification is a useful technique in characterizing vegetation because it summarizes complex data sets, assists in hypothesis generation about factors influencing community variation, and helps refine models of community structure. Hierarchical classification of communities is particularly useful for showing relationships among samples (Gauche 1982).

  16. Wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (principal investigator); Carter, V. L.; Mcginness, J. W., Jr.

    1972-01-01

    The author has identified the following significant results. The ERTS imagery analyzed provides approximately 2/3 coverage of the test site. Analysis was made using visual methods, density slicing, and multispectral analysis. Preliminary conclusions reached are that most, if not all, of the investigation objectives can be met. Saline and near-saline wetlands can be delineated from ERTS-1 images as the wetland-upland boundaries and land-water interface are clearly defined. Major plant species or communities such as Spartina alterniflora (high and low vigor forms), Spartina patens/Distichlis spicata, and Juncus roemarianus can be discriminated and spoil disposal areas identified.

  17. Is wetland mitigation successful in Southern California?

    NASA Astrophysics Data System (ADS)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  18. Differences in Aquatic Communities Within Wetland Reservoir Subirrigation Systems in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Specifically, each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and on...

  19. Organic Vegetable Organic Vegetable

    E-print Network

    Organic Vegetable Production Organic Vegetable Production Organic Vegetable Production ID-316 #12. #12;Organic Vegetable Production TABLE OF CONTENTS: Introduction ..........................................11 Organic Insect Management (Table 3) ............13 Organic Disease Management (Table 4

  20. Effects of wetlands on quality of runoff entering lakes in the Twin Cities Metropolitan Area, Minnesota

    USGS Publications Warehouse

    Brown, R.G.

    1985-01-01

    Four wetlands were compared with respect to their effectiveness in decreasing suspended solids and nutrient concentrations in runoff to lakes immediately downstream from the wetlands. An artificial impoundment in one of the wetlands increased settling of suspended solids. A decrease of nutrients in this wetland was probably the result of high assimilation rates associated with a dense stand of cattails. Two of the other three wetlands consist of open water and land areas, both of which contain abundant vegetation. Drainage from land areas within the wetlands may have lowered the overall effectiveness of the wetlands in decreasing sediment and nutrient concentrations. The third wetland was a constructed wetland that was ineffective in decreasing sediment or nutrient concentrations because its storage capacity was too small to prevent frequent flushing of accumulated sediment. Sediment concentrations in discharge from this wetland were as much as 22 times greater than the already high sediment concentrations in the inflow. (Author 's abstract)

  1. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Spring 2005 Vol. 20, No. 1 Annual Summary of Permitted Tidal Wetland Impacts - 2004 By Karen Duhring The Wetlands Program has main impact areas based on a site visit and information provided in the permit documents. The Wetlands Program

  2. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Summer 1997 Vol. 12, No. 2The Virginia Wetlands Report Wetlands mitigation banking is a relatively new tool for wetlands managers. It is finding increasing application in the struggle to achieve a "no net loss" goal for our remaining wetland resources. The concept of creating

  3. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Fall 2005 Vol. 20, No. 2 VMRC Adopts Wetland Mitigation/ Compensation Policy Changes By Tom Barnard When the Virginia Wetlands Act went into effect on July 1, thirty- three years ago, no one had ever heard of compensatory mitigation, wetland

  4. Long-term phosphorus removal in Florida aquatic systems dominated by submerged aquatic vegetation

    Microsoft Academic Search

    Robert L. Knight; Binhe Gu; Ronald A. Clarke; Jana M. Newman

    2003-01-01

    Anthropogenic phosphorus (P) loads have been implicated in eutrophication of lakes and wetlands throughout Florida. One technology that holds considerable promise for controlling these loads in a cost-effective manner is the use of treatment wetlands. Preliminary research in south Florida on the use of submerged aquatic vegetation (SAV) as the dominant vegetation in these treatment wetlands is reporting higher P

  5. Coastal Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the materials. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The unit materials emphasize the structure,…

  6. Wetland Delineation

    NSDL National Science Digital Library

    Carl Van Faasen

    2009-04-01

    Learning how to delineate a wetland using official criteria can be an enlightening experience for students and teachers. The objective of this investigation is for students to delineate the boundaries of an area in a watershed and categorize it as a wetla

  7. Saltwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides information about saltwater wetlands. Contains seven learning activities which deal with "making" a mud snail, plants and animals of mangroves, and the effects of tides on salt marshes. Included are reproducible handouts and worksheets for several of the activities. (TW)

  8. Wetland Classification as per Cowardin et al. 1979

    E-print Network

    Gray, Matthew

    depression or dammed river channel 2) Lacks >30% coverage of persistent emergent vegetation (non at the mouths of estuaries. 1) Extreme high water limit of spring tides 2) Wetland emergent vegetation 3 Vegetation If, goes beyond #2 Subsystems: Subtidal: Intertidal: Substrate is continuously submerged

  9. Aquifers and Wetlands SUMMARY: This chapter begins with an overview of the hydrological cycle and

    E-print Network

    Cushman-Roisin, Benoit

    Chapter 14 Aquifers and Wetlands SUMMARY: This chapter begins with an overview of the hydrological cycle and considers the flow of water in wetlands and undergraound. Special attention is paid to flow through vegetated wetlands. 14.1 The Hydrological Cycle Rivers and streams are but a link in the global

  10. Constructed Farm Wetlands (CFWs) designed for remediation of farmyard runoff: an

    E-print Network

    Constructed Farm Wetlands (CFWs) designed for remediation of farmyard runoff: an evaluation and help achieve compliance with the Water Framework Directive, Constructed Farm Wetlands (CFWs), i.e. shallow surface flow wetlands comprising several vegetated cells in series, are being recommended

  11. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources

    Microsoft Academic Search

    Elaine Matthews; Inez Fung

    1987-01-01

    A global data base of wetlands at 1 degree resolution was developed from the integration of three independent global, digital sources: (1) vegetation, (2) soil properties and (3) fractional inundation in each 1 degree cell. The integration yielded a global distribution of wetland sites identified with in situ ecological and environmental characteristics. The wetland sites were classified into five major

  12. 77 FR 27210 - Publication of the Final National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ...0710-ZA06] Publication of the Final National Wetland Plant List AGENCY: U.S. Army Corps...availability of the final 2012 National Wetland Plant List (NWPL). The NWPL is used...vegetation parameter is met when conducting wetland determinations under the Clean Water...

  13. Avian use of two experimental wetland basins in central Ohio in 1999 and 2001

    Microsoft Academic Search

    William I. Jones; William J. Mitsch

    Two experimental wetland basins, created under essentially identical conditions except for vegetative structure, are examined to compare the differences in their use by three populations of birds. The two wetlands are located in the Olentangy River Wetland Research Park on the campus of The Ohio State University, Columbus, Ohio USA. A census of birds was taken for each of the

  14. Differential assessment of designations of wetland status using two delineation methods.

    PubMed

    Wu, Meiyin; Kalma, Dennis; Treadwell-Steitz, Carol

    2014-07-01

    Two different methods are commonly used to delineate and characterize wetlands. The U.S. Army Corps of Engineers (ACOE) delineation method uses field observation of hydrology, soils, and vegetation. The U.S. Fish and Wildlife Service's National Wetland Inventory Program (NWI) relies on remote sensing and photointerpretation. This study compared designations of wetland status at selected study sites using both methods. Twenty wetlands from the Wetland Boundaries Map of the Ausable-Boquet River Basin (created using the revised NWI method) in the Ausable River watershed in Essex and Clinton Counties, NY, were selected for this study. Sampling sites within and beyond the NWI wetland boundaries were selected. During the summers of 2008 and 2009, wetland hydrology, soils, and vegetation were examined for wetland indicators following the methods described in the ACOE delineation manual. The study shows that the two methods agree at 78 % of the sampling sites and disagree at 22 % of the sites. Ninety percent of the sampling locations within the wetland boundaries on the NWI maps were categorized as ACOE wetlands with all three ACOE wetland indicators present. A binary linear logistic regression model analyzed the relationship between the designations of the two methods. The outcome of the model indicates that 83 % of the time, the two wetland designation methods agree. When discrepancies are found, it is the presence or absence of wetland hydrology and vegetation that causes the differences in delineation. PMID:24748237

  15. Differential Assessment of Designations of Wetland Status Using Two Delineation Methods

    NASA Astrophysics Data System (ADS)

    Wu, Meiyin; Kalma, Dennis; Treadwell-Steitz, Carol

    2014-07-01

    Two different methods are commonly used to delineate and characterize wetlands. The U.S. Army Corps of Engineers (ACOE) delineation method uses field observation of hydrology, soils, and vegetation. The U.S. Fish and Wildlife Service's National Wetland Inventory Program (NWI) relies on remote sensing and photointerpretation. This study compared designations of wetland status at selected study sites using both methods. Twenty wetlands from the Wetland Boundaries Map of the Ausable-Boquet River Basin (created using the revised NWI method) in the Ausable River watershed in Essex and Clinton Counties, NY, were selected for this study. Sampling sites within and beyond the NWI wetland boundaries were selected. During the summers of 2008 and 2009, wetland hydrology, soils, and vegetation were examined for wetland indicators following the methods described in the ACOE delineation manual. The study shows that the two methods agree at 78 % of the sampling sites and disagree at 22 % of the sites. Ninety percent of the sampling locations within the wetland boundaries on the NWI maps were categorized as ACOE wetlands with all three ACOE wetland indicators present. A binary linear logistic regression model analyzed the relationship between the designations of the two methods. The outcome of the model indicates that 83 % of the time, the two wetland designation methods agree. When discrepancies are found, it is the presence or absence of wetland hydrology and vegetation that causes the differences in delineation.

  16. Responses of wetland plants to ammonia and water level

    Microsoft Academic Search

    Ernest Clarke; Andrew H. Baldwin

    2002-01-01

    Constructed wetland systems receiving animal wastewater may enhance water quality when designed, operated, and maintained properly. In the case of wetlands designed to treat animal waste, system effectiveness may be limited by high ammonia concentrations and inundation, conditions that can adversely affect macrophytic vegetation. We conducted a 4-month greenhouse experiment to assess the impact of ammonia concentration and water level

  17. PREDICTABILITY OF PRIMARY SUCCESSIONAL WETLANDS ON PUMICE, MOUNT ST. HELENS

    Microsoft Academic Search

    ROGER DEL MORAL

    This study describes wetland vegetation developing on young volcanic surfaces at Mount St. Helens. Canonical correspondence analysis (CCA) revealed that habitat types reflecting moisture regimes were the best predictors of species composition and that elevation and geographical position were also significant predictors. Explained variation was significant and had increased from 19% to 31% in the five years since these wetlands

  18. Invasive Plant Species in Diked vs. Undiked Great Lakes Wetlands

    Microsoft Academic Search

    Bradley M. Herrick; Amy T. Wolf

    2005-01-01

    We compared the standing vegetation, seed banks, and substrate conditions in seven pairs of diked and undiked wetlands near the shores of Lake Michigan and Lake Huron, North America. Our analysis tested the null hypothesis that construction of artificial dikes has no effect on the vulnerability of Great Lakes coastal wetlands to non-native and native invasive species. Both the standing

  19. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  20. WETLAND DETECTION METHODS INVESTIGATION

    EPA Science Inventory

    The purpose of this investigation was to research and document the application of remote sensing technology for wetlands detection. arious sensors and platforms are evaluated for: suitability to monitor specific wetland systems; effectiveness of detailing wetland extent and capab...

  1. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  2. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  3. A Classification of Riparian Wetland Plant Associations of Colorado

    E-print Network

    A Classification of Riparian Wetland Plant Associations of Colorado A Users Guide angustifolia-Picea pungens/Alnus incana Riparian Woodland Flattop Wilderness, Garfield County, Carex aquatilis Riparian Herbaceous Vegetation South Platte River, Logan County, Populus deltoides/Carex lanuginosa

  4. Application of Systems Model and Remote Sensing Images to Improve Wetland Management

    NASA Astrophysics Data System (ADS)

    Alminagorta, O.; Torres-Rua, A. F.

    2013-05-01

    Wetlands are complex ecosystem that involves interaction among hydrological, ecological and spatial-temporal considerations. Also, water shortages and invasive vegetation are common problems in wetlands. The present paper has the purpose to contribute with the solution of these problems: (i) Providing a tool to wetland managers to monitor changes in vegetation cover and wetland hydrology over time; (ii) Finding a relationship between vegetation response and key hydrological attributes in wetlands and (iii) Incorporating these relationship in an optimization model to recommend water allocation and invasive vegetation control to improve wetland management. This research is applied at the Bear River Migratory Bird Refuge (the Refuge), located on the northeast side of Great Salt Lake, Utah. The Refuge constitutes one of the most important habitats for migratory birds for the Pacific Flyway of North America. Water measures and coverage vegetation collected in-situ at the Refuge has been used to calibrate and evaluate the effects on wetland plant communities to the process of flooding and drought in wetland units during different years. A MATLAB-based algorithm has been developed to process LandSat images to estimate the interaction between flooded areas and invasive vegetation cover. These interactions are embedded in a system optimization model to recommend water allocations and vegetation control actions among diked wetland units that improve wetland habitat for wildlife species. This modeling effort identify the interaction between invasive vegetation and flood wetland areas and embed those interactions in a systems model that wetland managers can use to make informed decisions about allocation of water and manage vegetation cover.

  5. Wetland Boundary Determination in the Great Dismal Swamp Using Weighted Averages

    USGS Publications Warehouse

    Carter, Virginia; Garrett, Mary Keith; Gammon, Patricia T.

    1988-01-01

    A weighted average method was used to analyze transition zone vegetation in the Great Dismal Swamp to determine if a more uniform determination of wetland boundaries can be made nationwide. The method was applied to vegetation data collected on four transects and three vertical layers across the wetland-to-upland transition zone of the swamp. Ecological index values based on water tolerance were either taken from the literature or derived from local species tolerances. Wetland index values were calculated for 25-m increments using species cover and rankings based on the ecological indices. Wetland index values were used to designate increments as either wetland, transitional, or upland, and to examine the usefulness of a provisional wetland-upland break-point. The weighted average method did not provide for an objective placement of an absolute wetland boundary, but did serve to focus attention on the transitional boundary zone where supplementary information is necessary to select a wetland-upland breakpoint.

  6. Hydrologic considerations in defining isolated wetlands

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  7. Geomorphic and hydrogeologic controls on wetland distribution in the New South Wales Southern Highlands, south east Australia: prioritising natural resource management investment.

    NASA Astrophysics Data System (ADS)

    Cowood, Alie; Moore, Leah

    2014-05-01

    Strategic investment of public funds in wetland conservation on the New South Wales (NSW) Southern Tablelands, in south east Australia, is impeded by poor understanding of the distribution of wetlands and their geomorphic and hydrogeologic setting. Appropriate investment and management is also unclear in the face of climate change. This research detailed: the spatial configuration, the hydrogeological setting, and intrinsic ecological value of the wetlands. Using this modelling, potential impact of climate change on wetlands was examined. Previous work developed a draft typology for Southern Tablelands wetlands, expanded techniques for representing spatial variability in wetland biodiversity (using generalised dissimilarity models) and explored methods of modelling wetland location through integration of hydrology, terrain and geological features. This new work integrated the mapping of the spatial distribution of a range of wetland types with a hydrogeological landscape (HGL) framework in order to better understand the movement of water through wetland landscapes. The process of HGL determination relies on the integration of a number of factors including: geology, soils, slope, regolith thickness, vegetation and climate. If the distribution of regolith materials, fractured rock and barriers to flow are characterised, an understanding of surface and sub-surface fluid pathways can be established. Contextualising a study of wetlands in an HGL framework is useful because it provides information about the biophysical controls that influence why wetlands occur in some parts of the landscape and not others. Each HGL unit spatially defines areas with similar controls on movement of water and hence similar patterns of surface and groundwater connectivity. The NSW Southern Highland landscape was divided into 34 HGL units, based on derived spatial information and field observations. Each HGL unit had an associated conceptual model, identifying potential surface water and groundwater pathways. These models were then field tested by collating and interpreting the widest possible range of biophysical parameters, in order to enhance the rigour of the models. In parallel, wetland mapping identified 4 main wetland types: upland hanging swamps, upland bogs or fens, upland freshwater lakes and riverine wetlands. The wetland types were linked with their contemporary geomorphic setting and then integrated with the HGL framework enabling identification of the wetland 'plumbing' context. These integrated wetland HGL units were evaluated with respect to the NSW Climate Impact Profile for the south east NSW region (min. T increase 1-3°C; max T. increase 2-3°C; rainfall 20-50% summer increase, 20-50% winter decrease; 10-20% evaporation increase). This scenario-based modelling provides an accurate measure of sensitivity of the wetlands to change and allows evaluation of the capacity for a wetland to adapt to change. If landscape variation, the biophysical character of wetlands, the hydrogeological context, and hence the influences of surface and groundwater systems are understood, then we can identify NRM hazards and prioritise wetland management. The premise is that if we understand the natural processes that result in particular outcomes in a landscape, then strategic decisions about whether to intervene, how to intervene, or whether it is worth doing so, can be made.

  8. Feedbacks between flow, vegetation, deposition, and the implications for landscape development

    E-print Network

    Kondziolka, John M. (John Michael)

    2014-01-01

    Flow and sedimentation around patches of vegetation are important to landscape evolution, and a better understanding of these processes would facilitate more effective river restoration and wetlands engineering. In wetlands ...

  9. Artificial Wetlands

    NSDL National Science Digital Library

    American Association for the Advancement of Science (; )

    2005-04-11

    Golf courses are known as places of recreation. But some of them could someday double as water treatment facilities. Water hazards on golf courses can be used to control environmental hazards. That's according to Purdue University soil microbiologist Ron Turco. He says the artificial wetlands can also control flooding in surrounding communities, by collecting excess water. This Science Update looks at the research, which leads to these findings and offers links to other resources for further inquiry.

  10. Restoration of a constructed stormwater wetland to improve its ecological and hydrological performance.

    PubMed

    Jenkins, Graham A; Greenway, Margaret

    2007-01-01

    Although the vegetation within constructed stormwater wetlands plays an important role in the treatment processes taking place, its density and distribution depends on the wetland bathymetry and the imposed hydrologic regime. This paper describes an ecological and hydrological assessment of a constructed stormwater treatment wetland over a 5 year period. This assessment included the use of a continuous simulation hydrologic model combined with a Digital Elevation Model of the wetland bathymetry, plus a time series of vegetation maps. The combined spatial and temporal analysis indicates that both the frequency and duration of inundation has affected the fate of vegetation throughout the wetland. Restoration strategies have also been investigated to improve the survival of vegetation within the wetland. PMID:18057648

  11. Soil and Hydrological Drivers of Typha latifolia Encroachment in a Marl Wetland

    Microsoft Academic Search

    P. J. Drohan; C. N. Ross; J. T. Anderson; R. F. Fortney; J. S. Rentch

    2006-01-01

    Aggressive species competition by Typha latifolia in wetland systems on marl-derived soils may threaten the unique vegetation in these areas. We examined historic water and\\u000a land use, soil chemistry, soil genesis, and topography in a wetland (Harewood Marsh) that is under encroachment by T. latifolia. An earthen road that bisects the wetland and active pastures in and around the wetland

  12. Nonlinear Characteristics of Wave Propagation over Vegetation

    E-print Network

    Venkattaramanan, Aravinda

    2014-04-28

    The attenuation of wave energy by submerged or near-emergent coastal vegetation is one of the prominent methods of energy dissipation in areas with significant presence of wetlands. In this thesis, the nature of this dissipation in nearshore random...

  13. Organic phosphorus sequestration in subtropical treatment wetlands.

    PubMed

    Turner, Benjamin L; Newman, Susan; Newman, Jana M

    2006-02-01

    Diffuse phosphorus pollution is commonly remediated by diverting runoff through treatment wetlands to sequester phosphorus into soil layers. Much of the sequestered phosphorus occurs in organic forms, yet our understanding of its chemical nature is limited. We used NaOH-EDTA extraction and solution 31P NMR spectroscopy to speciate organic phosphorus sequestered in a large treatment wetland (STA-1W) in Florida, USA. The wetland was constructed on previously farmed peat and was designed to remove phosphorus from agricultural runoff prior to discharge into the Everglades. Unconsolidated benthic floc that had accumulated during the 9-year operation of the wetland was sampled along transects through two connected cells dominated by cattail (Typha dominigensis Pers.) and an additional cell colonized by submerged aquatic vegetation, including southern water nymph (Najas guadalupensis(Spreng.) Magnus) and coontail (Ceratophyllum demersum L.). Organic phosphorus was a greater proportion of the sequestered phosphorus in the cattail marsh compared to the submerged aquatic vegetation wetland, but occurred almost exclusively as phosphate diesters and their alkaline hydrolysis products. Itwas therefore markedly different from the organic phosphorus in mineral soils, which is dominated typically by inositol phosphates. Phosphate diesters are readily degradable in most soils, raising concern about the long-term fate of organic phosphorus in treatment wetlands. Further studies are now necessaryto assess the stability of the sequestered organic phosphorus in response to biogeochemical and hydrological perturbation. PMID:16509310

  14. Primary production control of methane emission from wetlands

    NASA Technical Reports Server (NTRS)

    Whiting, G. J.; Chanton, J. P.

    1993-01-01

    Based on simultaneous measurements of CO2 and CH4 exchange in wetlands extending from subarctic peatlands to subtropical marshes, a positive correlation between CH4 emission and net ecosystem production is reported. It is suggested that net ecosystem production is a master variable integrating many factors which control CH4 emission in vegetated wetlands. It is found that about 3 percent of the daily net ecosystem production is emitted back to the atmosphere as CH4. With projected stimulation of primary production and soil microbial activity in wetlands associated with elevated atmospheric CO2 concentration, the potential for increasing CH4 emission from inundated wetlands, further enhancing the greenhouse effect, is examined.

  15. Emissions of sulfur gases from wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.

    1992-01-01

    Data on the emissions of sulfur gases from marine and freshwater wetlands are summarized with respect to wetland vegetation type and possible formation mechanisms. The current data base is largest for salt marshes inhabited by Spartina alterniflora. Both dimethyl sulfide (DMS) and hydrogen sulfide (H2S) dominate emissions from salt marshes, with lesser quantities of methyl mercaptan (MeSH), carbonyl sulfide (COS), carbon disulfide (CS2) and dimethyl disulfide (DMDS) being emitted. High emission rates of DMS are associated with vegetation that produces the DMS precursor dimethylsulfonionpropionate (DMSP). Although large quantities of H2S are produced in marshes, only a small percentage escapes to the atmosphere. High latitude marshes emit less sulfur gases than temperate ones, but DMS still dominates. Mangrove-inhabited wetlands also emit less sulfur than temperate S. alterniflora marshes. Few data are available on sulfur gas emissions from freshwater wetlands. In most instances, sulfur emissions from temperate freshwater sites are low. However, some temperate and subtropical freshwater sites are similar in magnitude to those from marine wetlands which do not contain vegetation that produces DMSP. Emissions are low in Alaskan tundra but may be considerably higher in some bogs and fens.

  16. Riparian Vegetation Response to the March 2008 Short-Duration, High-Flow Experiment-Implications of Timing and Frequency of Flood Disturbance on Nonnative Plant Establishment Along the Colorado River Below Glen Canyon Dam

    USGS Publications Warehouse

    Ralston, Barbara E.

    2010-01-01

    Riparian plant communities exhibit various levels of diversity and richness. These communities are affected by flooding and are vulnerable to colonization by nonnative species. Since 1996, a series of three high-flow experiments (HFE), or water releases designed to mimic natural seasonal flooding, have been conducted at Glen Canyon Dam, Ariz., primarily to determine the effectiveness of using high flows to conserve sediment, a limited resource. These experiments also provide opportunities to examine the susceptibility of riparian plant communities to nonnative species invasions. The third and most recent HFE was conducted from March 5 to 9, 2008, and scientists with the U.S. Geological Survey's Grand Canyon Monitoring and Research Center examined the effects of high flows on riparian vegetation as part of the overall experiment. Total plant species richness, nonnative species richness, percent plant cover, percent organic matter, and total carbon measured from sediment samples were compared for Grand Canyon riparian vegetation zones immediately following the HFE and 6 months later. These comparisons were used to determine if susceptibility to nonnative species establishment varied among riparian vegetation zones and if the timing of the HFE affected nonnative plant establishment success. The 2008 HFE primarily buried vegetation rather than scouring it. Percent nonnative cover did not differ among riparian vegetation zones; however, in the river corridor affected by Glen Canyon Dam operations, nonnative species richness showed significant variation. For example, species richness was significantly greater immediately after and 6 months following the HFE in the hydrologic zone farthest away from the shoreline, the area that represents the oldest riparian zone within the post-dam riparian area. In areas closer to the river channel, tamarisk (Tamarix ramosissima X chinensis) seedling establishment occurred (<2 percent cover) in 2008 but not to the extent reported in either 2000, a year when experimental summer flows coincided with tamarisk seed production, or in 1986, a year following several years of sustained flooding. The results from the 2008 HFE suggest that riparian vegetation zones subject to intermittent disturbance and near the river under normal dam operations are more susceptible to nonnative species introductions following a disturbance. This study also finds that the timing of an HFE affects the types of species that can become established. For example, HFEs conducted in March are associated with reduced tamarisk seedling establishment compared to disturbances later in the season. Additionally, early season, short-duration flooding that results in vegetation burial may favor clonal species. Along the Colorado River many of these clonal species are native; these species include arrowweed (Pluchea sericea), coyote willow (Salix exigua), and rivercane (Phragmites australis).

  17. A study of the role of wetlands in defining spatial patterns of near-surface (top 1 m) soil carbon in the Northern Latitudes

    NASA Astrophysics Data System (ADS)

    Blyth, E. M.; Oliver, R.; Gedney, N.

    2014-12-01

    A study of two observation-based maps (the Harmonised World Soil Database, HWSD and the Northern Circumpolar Soil Carbon Database, NCSCD) of the surface (1 m) soil carbon in the Northern Latitudes (containing the Arctic and Boreal regions) reveal that, although the amounts of carbon estimated to be present in this region are very uncertain, the patterns are robust: both maps have soil carbon maxima that coincide with the major wetlands in the region, as described in the Global Lakes and Wetlands Database, GLWD. In fact, the relationship between near-surface soil carbon and the presence of wetlands is stronger than the relationship with soil temperature and vegetation productivity. These relationships are explored using the land surface model of the UK Hadley Centre GCM: JULES (Joint UK Land Environment Simulator). The model is run to represent conditions at the end of the 20th century. Observed vegetation and phenology are used to define the vegetation, the physical properties of organic soils are represented, the fine-scale topography of the region is included in the parameterisation of the hydrology and as a result the GPP and location of the wetlands of the region are reasonably well simulated using JULES. Despite this, the soil carbon simulated by the model does not reveal the same patterns or the correlation with the wetland regions that are present in the data. This suggests that the model does not represent sufficiently strongly the suppression of heterotrophic respiration in saturated conditions. A simple adjustment to the JULES model was made whereby the heterotrophic respiration was reduced by the fraction of the grid that is modelled to be saturated. In effect, for the saturated areas the respiration was zero. This adjustment represents a simple experiment to establish the role of wetlands in defining the spatial patterns of near-surface soil carbon. The results were an improved predicted spatial pattern of soil carbon, with an increase in the correlation between soil carbon and wetlands although not as strong as suggested by the analysis of the data. This may be because the size of the wetlands was underestimated by the model. The study suggests that land surface models in general, and JULES in particular, need to establish a stronger moderation of soil respiration in saturated conditions in order that future climate controls on wetlands in the Northern Latitudes will result in the correct changes in soil carbon and carbon emissions.

  18. In situ biodegradation of perchloroethylene in constructed wetland mesocosms

    SciTech Connect

    Hoylman, A.M.; Rosensteel, B.A.; Trettin, C.C. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1994-12-31

    Anaerobic reductive dehalogenation initiates degradation of highly chlorinated organic compounds. Subsequent intermediate chlorinated compounds are in turn more readily degraded in aerobic environments. Thus, complete degradation of chlorinated compounds to nontoxic end products requires both anaerobic and aerobic environments. These environments are provided by constructed wetland bioremediation systems, which through the interaction of vegetation, microbial, chemical, and physical processes, result in waste water renovation. The authors integrated the ecological engineering technology of constructed wetland systems with developments in plant-rhizosphere degradation of organic contaminants to examine the effectiveness of constructed wetland systems for in situ bioremediation of waste water contaminated with a chlorinated hydrocarbon, perchloroethylene (PCE) and an aromatic hydrocarbon, toluene. A mesocosm was designed to provide sequential anaerobic and vegetated-aerobic cells with complete control of water and gas flux and to emulate wetland properties such as hydric soil composition, physicochemical parameters, and the presence of wetland vegetation (Eleocharis acicularis). Treatments included contaminated and non-contaminated wetland cells and sterile controls. The fate and transport of PCE, toluene, and metabolic by-products were determined in effluent and chamber headspace, and extracts of soil and plant tissue. These analyses provide the basis for evaluating contaminant fate in wetland systems. Manipulation of aeration and hydrologic regimes in the wetland cells will facilitate testing conditions that affect degradation processes. The experimental apparatus is a innovative design for experimentation on the degradation of volatile organic compounds in plant-soil systems.

  19. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Spring 2002 Vol. 17, No. 1 Update On Virginia's New and Improved Nontidal Wetlands Program By Ellen Gilinsky, Ph.D. PWS Virginia wetlands program. Key changes included the provi- sion of additional jurisdic- tion over: excavation in all

  20. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Winter/Spring 2003 Vol. 18, No. 1 I n a recently published final report entitled, Assessing the Decision- making Process in Wetlands Richards report the results of their preliminary examination of how wet- lands boards balance wetlands

  1. The Virginia Wetlands Report

    E-print Network

    VWR 1 The Virginia Wetlands Report The Virginia Wetlands Report Summer 1999 Vol. 14, No. 2 Historic Wetland Loss in the Elizabeth River Walter I. Priest, III Introduction Since earliest colonial consumed many of the natural resources of the river basin, including its wetlands, forests, water quality

  2. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Continued on page 2 Spring 1996 Vol. 11, No. 2The Virginia Wetlands Report Completely Updated The Wetlands Program of the Vir- ginia Institute of Marine Science has completed its update of the Vir- ginia Wetlands Management Hand- book, and with the aid of the Marine

  3. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Summer 2000 Vol. 15, No. 2 Department of Environmental Quality (DEQ) Implementing Nontidal Wetlands Protection Mandate Ellen Gilinsky wetland resources, but which occur outside of federal regulation. The General Assembly was motivated

  4. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Fall 1997 Vol. 12, No. 3The Virginia Wetlands Report Almost everyone their actions. It is this com- mon sense notion which is motivating a new Wetlands Initiative under the auspices of the Chesapeake Bay Program Wetlands Workgroup. State and federal wet- lands program man- agers are working

  5. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Fall 2001 Vol. 16, No. 3 A GIS Approach for Targeting Potential Wetlands Mitigation or Restoration Sites By Marcia Berman and Tamia vegeta- tion, islands, and wetlands. Most activi- ties enhance habitat for living resources, but also

  6. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Winter/Spring 2001 Vol. 16, No. 1 The VIMS Teaching Marsh: A Tidal Wetland Restoration and Education Project Karen Duhring Purpose wetlands education opportunities, including field lessons. Due to the vari- ety and geographic distribution

  7. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Winter/Spring 1998 Vol. 13, No. 1The Virginia Wetlands Report N o net loss of wetland resources is a goal frequently announced by policy makers and resource manag- ers. Most the challenge of measuring progress toward achieving the goals. Knowledge about how many wetlands

  8. Wetlands of Central America

    Microsoft Academic Search

    Aaron M. Ellison

    2004-01-01

    The wetlands of seven Central American countries – Belize, Guatemala, Honduras, El Salvador, Nicaragua, Costa Rica, and Panamá – are reviewed. The region's wetlands are classified into five systems: marine, estuarine, riverine, lacustrine, and palustrine. At a minimum, wetlands cover ˜40,000 km2 (˜8%) of the land area of Central America. These wetlands support high levels of biological diversity, especially of

  9. Aerobic methanotroph diversity in sanjiang wetland, northeast china.

    PubMed

    Yun, Juanli; Zhang, Hongxun; Deng, Yongcui; Wang, Yanfen

    2015-04-01

    Aerobic methanotrophs present in wetlands can serve as a methane filter and thereby significantly reduce methane emissions. Sanjiang wetland is a major methane source and the second largest wetland in China, yet little is known about the characteristics of aerobic methanotrophs in this region. In the present study, we investigated the diversity and abundance of methanotrophs in marsh soils from Sanjiang wetland with three different types of vegetation by 16S ribosomal RNA (rRNA) and pmoA gene analysis. Quantitative polymerase chain reaction analysis revealed the highest number of pmoA gene copies in marsh soils vegetated with Carex lasiocarpa (10(9) g(-1) dry soil), followed by Carex meyeriana, and the least with Deyeuxia angustifolia (10(8) g(-1) dry soil). Consistent results were obtained using Sanger sequencing and pyrosequencing techniques, both indicating the codominance of Methylobacter and Methylocystis species in Sanjiang wetland. Other less abundant methanotrophy, including cultivated Methylomonas and Methylosinus genus, and uncultured clusters such as LP20 and JR-1, were also detected in the wetland. Methanotroph diversity was almost the same in three different vegetation covered soils, suggesting that vegetation types had very little influence on the methanotroph diversity. Our study gives an in-depth insight into the community composition of aerobic methanotrophs in the Sanjiang wetland. PMID:25351140

  10. Exploring Microbial Iron Oxidation in Wetland Soils

    NASA Astrophysics Data System (ADS)

    Wang, J.; Muyzer, G.; Bodelier, P. L. E.; den Oudsten, F.; Laanbroek, H. J.

    2009-04-01

    Iron is one of the most abundant elements on earth and is essential for life. Because of its importance, iron cycling and its interaction with other chemical and microbial processes has been the focus of many studies. Iron-oxidizing bacteria (FeOB) have been detected in a wide variety of environments. Among those is the rhizosphere of wetland plants roots which release oxygen into the soil creating suboxic conditions required by these organisms. It has been reported that in these rhizosphere microbial iron oxidation proceeds up to four orders of magnitude faster than strictly abiotic oxidation. On the roots of these wetland plants iron plaques are formed by microbial iron oxidation which are involved in the sequestering of heavy metals as well organic pollutants, which of great environmental significance.Despite their important role being catalysts of iron-cycling in wetland environments, little is known about the diversity and distribution of iron-oxidizing bacteria in various environments. This study aimed at developing a PCR-DGGE assay enabling the detection of iron oxidizers in wetland habitats. Gradient tubes were used to enrich iron-oxidizing bacteria. From these enrichments, a clone library was established based on the almost complete 16s rRNA gene using the universal bacterial primers 27f and 1492r. This clone library consisted of mainly ?- and β-Proteobacteria, among which two major clusters were closely related to Gallionella spp. Specific probes and primers were developed on the basis of this 16S rRNA gene clone library. The newly designed Gallionella-specific 16S rRNA gene primer set 122f/998r was applied to community DNA obtained from three contrasting wetland environments, and the PCR products were used in denaturing gradient gel electrophoresis (DGGE) analysis. A second 16S rRNA gene clone library was constructed using the PCR products from one of our sampling sites amplified with the newly developed primer set 122f/998r. The cloned 16S rRNA gene sequences all represented novel culturable iron oxidizers most closely related to Gallionella spp. Based on their nucleotide sequences four groups could be identified, which were comparable to the DGGE banding pattern obtained before with the gradient tubes enrichments. The above mentioned nested PCR-DGGE method was used to study the distribution and community composition of Gallionella-like iron-oxidizing bacteria under the influence of plants species, soil depth, as well as season. Soil samples from Appels, Belgium, an intertidal, freshwater marsh known to hold intensive iron cycling, were taken from 5 different vegetation types in April, July and October 2007. Soil cores were sliced at 1-cm intervals and subjected to chemical and molecular analyses. The DGGE patterns showed that the community of iron-oxidizing bacteria differed with vegetation type, and sediment depth. Samples taken in autumn held lower diversity in Gallionella-related iron oxidizers than those sampled in spring and summer.

  11. Effect of earthworm Eisenia fetida and wetland plants on nitrification and denitrification potentials in vertical flow constructed wetland.

    PubMed

    Xu, Defu; Li, Yingxue; Howard, Alan; Guan, Yidong

    2013-06-01

    The response of nitrification potentials, denitrification potentials, and N removal efficiency to the introduction of earthworms and wetland plants in a vertical flow constructed wetland system was investigated. Addition of earthworms increased nitrification and denitrification potentials of substrate in non-vegetated constructed wetland by 236% and 8%, respectively; it increased nitrification and denitrification potentials in rhizosphere in vegetated constructed wetland (Phragmites austrail, Typha augustifolia and Canna indica), 105% and 5%, 187% and 12%, and 268% and 15% respectively. Denitrification potentials in rhizosphere of three wetland plants were not significantly different, but nitrification potentials in rhizosphere followed the order of C. indica>T. augustifolia>P. australis when addition of earthworms into constructed wetland. Addition of earthworms to the vegetated constructed significantly increased the total number of bacteria and fungi of substrates (P<0.05). The total number of bacteria was significantly correlated with nitrification potentials (r=913, P<0.01) and denitrification potentials (r=840, P<0.01), respectively. The N concentration of stems and leaves of C. indica were significantly higher in the constructed wetland with earthworms (P<0.05). Earthworms had greater impact on nitrification potentials than denitrification potentials. The removal efficiency of N was improved via stimulated nitrification potentials by earthworms and higher N uptake by wetland plants. PMID:23591133

  12. Understanding wetlands

    NSDL National Science Digital Library

    Solomon Isiorho

    Students collect soil cores (~12 inches) from one or more wetlands, describe the color and other physical features they can observe. Section each core according to grain size or color, weigh each section, dry in oven for 24 hours (can use microwave if the soil is fairly sandy). Use sieve machine to sieve each section and weigh each size fraction (sand...coarse, medium, fine, very fine, silt/clay). The activity gives students practice in making good observation, measuring, interpreting and analyzing data, and to propose a probable source region for the soil materials. Have students plo Has minimal/no quantitative component

  13. Pipeline corridors through wetlands -- Impacts on plant communities: Norris Brook Crossing Peabody, Massachusetts

    SciTech Connect

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted August 17--19, 1992, at the Norris Brook crossing in the town of Peabody, Essex County, Massachusetts. The pipeline at this site was installed during September and October 1990. A backhoe was used to install the pipeline. The pipe was assembled on the adjacent upland and slid into the trench, after which the backhoe was used again to fill the trench and cover the pipeline. Within two years after pipeline construction, a dense vegetative community, composed predominantly of native perennial species, had become established on the ROW. Compared with adjacent natural areas undisturbed by pipeline installation, there was an increase in purple loosestrife and cattail within the ROW, while large woody species were excluded from the ROW. As a result of the ROW`s presence, habitat diversity, edge-type habitat, and species diversity increased within the site. Crooked-stem aster, Aster prenanthoides (a species on the Massasschusetts list of plants of special concern), occurred in low numbers in the adjacent natural areas and had reinvaded the ROW in low numbers.

  14. Muskrats ( Ondatra zibethicus) in treatment wetlands

    Microsoft Academic Search

    Robert H. Kadlec; John Pries; Heather Mustard

    2007-01-01

    Muskrat grazing can change treatment wetlands from being densely vegetated to a patchwork of open and emergent areas. Muskrats consume a portion of the annual net primary productivity, primarily rhizomes, but their mounds represent a greater share of this production. Densities of 20 or more animals per ha have been found, which can destroy the majority of the macrophyte standing

  15. Maintenance of Stormwater Wetlands and Wet Ponds

    E-print Network

    Hunt, William F.

    . · Remove vegetation along the dam face. · Remove invasive plant species. · Mow the perimeter of wet ponds that includes many plant and animal species. It will also do an excellent job of removing pollution from, such as an aquatic shelf (or wetland bench) and a forebay. An aquatic shelf is a shallow-water zone of a pond

  16. PREDICTABILITY OF PRIMARY SUCCESSIONAL WETLANDS ON PUMICE

    Microsoft Academic Search

    Del Moral; Primary Successional Wetland; Mount St. Helens; Roger Del Moral

    ABSTRACT This study describes wetland vegetation developing on young volcanic surfaces at Mount St. Helens. Canonical correspondence analysis (CCA) revealed that habitat types reflecting moisture regimes were the best predictors of species ,composition ,and that elevation and geographical position were also significant predictors. Explained variation was significant and had increased from 19% to 31% in the five years since these

  17. Springs as Ecosystems: Clarifying Groundwater Dependence and Wetland Status (Invited)

    NASA Astrophysics Data System (ADS)

    Stevens, L.; Springer, A. E.; Ledbetter, J. D.

    2013-12-01

    Springs ecosystems are among the most productive, biologically diverse and culturally important ecosystems on Earth. Net annual productivity of some springs exceeds 5 kg/m^2/yr. Springs support an estimated 19% of the endangered species and numerous rare taxa in the United States. Springs serve as keystone ecosystems in arid regions, and as cornerstones of indigenous cultural well-being, history, economics, and aesthetics. Despite their significance, the ecosystem ecology and stewardship of springs have received scant scientific and public attention, resulting in loss or impairment of 50-90% of the springs in many regions, both arid and temperate. Six reasons contribute to the lack of attention to springs. Springs are poorly mapped because: 1) their generally small size is less than the pixel area of most remote sensing analyses and they are overlooked; and 2) springs detection is often limited by emergence on cliff faces, beneath heavy vegetation cover, or under water. In addition, 3) high levels of ecosystem complexity at springs require multidisciplinary team approaches for inventory, assessment, and research, but collaboration between the fields of hydrogeology and ecology has been limited. 4) Protectionism by land owners and organizations that manage springs limits the availability information, preventing regional assessment of status. 5) Prior to recent efforts, the absence of a descriptive lexicon of springs types has limited discussion about variation in ecological characteristics and processes. 6) Neither regarded entirely as groundwater or as surface water, springs fall 'between jurisdictional cracks' and are not subject to clear legal and regulatory oversight. With regards to the latter point, two jurisdictional phrases have reduced scientific understanding and stewardship of springs ecosystems: 'jurisdictional wetlands' and 'groundwater-dependent ecosystems' (GDEs). Most springs have insufficient monitoring data to establish perenniality or the range of natural variation in flow, and many of the 12 springs types do not develop hydric soils or wetland vegetation. These factors and their normally small size preclude springs as jurisdictional wetlands by U.S. Environmental Protection Agency and Army Corps of Engineers criteria. Helocrenes (springfed wet meadows, cienegas, and some fens) are considered as wetlands, but the other 11 types of terrestrial springs often are not. The use of the phrase 'GDE' applies to any aquatic ecosystem supported by groundwater, and the utility of this phrase as a descriptor of springs is diluted by its application to all subterranean and surface aquatic habitats. The failure to recognize the importance of springs ecosystems has become a quiet but global crisis, in part due to inappropriate conceptual understanding and poor jurisdictional terminology. We clarify relationships between these concepts and terms to establish effective, consistent monitoring, assessment, restoration, management, and monitoring goals and protocols for improving springs stewardship.

  18. Wetland Importance Matthew J. Gray

    E-print Network

    Gray, Matthew

    of Wetlands 3.5% of Land in United States NOTE: 50% of Listed Animals Occur in Wetlands Species Richness & NPP million /year Deforestation Channelization Levees 10 m ½ energy dissipated 1 ac wetland 1 ac. Wetland 4

  19. FORT BELKNAP WETLANDS MANAGEMENT PROGRAM

    EPA Science Inventory

    The product activities include: 1) Conducting wetland inventories and wetland assessments in the Milk River Watershed. This will include wetland delineations, and the collection of vascular plants and plant identification. Currently there is no baseline data of wetland activite...

  20. The Amenity Value of Wetlands

    E-print Network

    Gao, Shan

    2010-07-14

    and sufficient. Wetland amenities have negative impacts on the sales price of nearby single family homes. Forested wetlands, the size of the nearest wetland, and wetland proximity negatively impact the sales price of the properties. In an urban setting where...

  1. Farm Level Economics and Capital Costs Analysis of Three Wetland-Reservoir Subirrigation System Sites in Northwestern Ohio1

    Microsoft Academic Search

    ST Richards; MT Batte; LC Brown; BJ Czartoski; NR Fausey; HW Belcher

    Three Wetland-Reservoir-Subirrigation Systems (WRSIS) have been designed and constructed in Northwestern Ohio. These systems have the potential to improve downstream water quality by reducing discharge to streams, to provide wildlife habitat, to increase wetland acres and vegetation, and to provide a reliable supply of subirrigation water for sustained crop production. In a WRSIS, a wetland is constructed to receive subsurface

  2. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  3. Wetlands and Fish: A Vital Connection 2 What is a Wetland? 3

    E-print Network

    #12;Wetlands and Fish: A Vital Connection 2 What is a Wetland? 3 Are Wetlands Important? 4 Wetlands and their Surroundings 5 Wetlands in the U.S. Caribbean Region 6 Distribution 6 Common Wetland Types 7 Saltwater wetlands 7 Freshwater wetlands 7 Wetland Loss and Consequences 9 Fish Need Wetlands 10 Wetlands as Habitat 10

  4. Protect Your Wetlands

    NSDL National Science Digital Library

    This resource explains how to create a wetlands awareness program and how to protect wetlands through the regulatory process. In addition, it explains the federal programs designed to protect wetlands and how to procure state and local protection for wetlands. It is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. For educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  5. A compound method for automatically extracting plateau wetlands from satellite imagery

    NASA Astrophysics Data System (ADS)

    Li, Huan; Gao, Jay

    2012-10-01

    Timely information on wetland distribution can be effectively acquired by means of remote sensing. A Landsat TM image recorded on 17 July 2009 (row: 36; column: 134) at a spatial resolution of 30 m was used to map wetlands in Maduo County of northwestern Qinghai Province with a combined method of thresholding, tassled cap transformation and vegetation indexing. The wetlands found in the study area fall into two broad types, I and II. Type I wetlands are characterized by a close proximity to water bodies. Type II wetlands are characterized by a higher vegetative component that obscures their morphology. Thresholding was used to map type I wetlands from TM5. Tasseled Cap transformation was used to map type II wetlands. With the assistance of NDVI, snow was then removed, leaving only grassland and type II wetland to be separate. Type 1 wetland was mapped at 832 km2. The second type of wetland was mapped at 422.97 km2. A total of 1254.97 km2 wetlands were mapped. Comparison with the raw color composite of the same image reveals that the mapping has been accomplished quite accuracy. More research will be undertaken to compare the classified results with those obtained with supervised and unsupervised results. Both thresholding and Tassled cap transformation are found to be effective at detecting different types of wetlands in the plateau environment

  6. Forms of organic phosphorus in wetland soils

    NASA Astrophysics Data System (ADS)

    Cheesman, A. W.; Turner, B. L.; Reddy, K. R.

    2014-12-01

    Phosphorus (P) cycling in freshwater wetlands is dominated by biological mechanisms, yet there has been no comprehensive examination of the forms of biogenic P (i.e., forms derived from biological activity) in wetland soils. We used solution 31P NMR spectroscopy to identify and quantify P forms in surface soils of 28 palustrine wetlands spanning a range of climatic, hydrogeomorphic, and vegetation types. Total P concentrations ranged between 51 and 3516 ?g P g-1, of which an average of 58% was extracted in a single-step NaOH-EDTA procedure. The extracts contained a broad range of P forms, including phosphomonoesters (averaging 24% of the total soil P), phosphodiesters (averaging 10% of total P), phosphonates (up to 4% of total P), and both pyrophosphate and long-chain polyphosphates (together averaging 6% of total P). Soil P composition was found to be dependant upon two key biogeochemical properties: organic matter content and pH. For example, stereoisomers of inositol hexakisphosphate were detected exclusively in acidic soils with high mineral content, while phosphonates were detected in soils from a broad range of vegetation and hydrogeomorphic types but only under acidic conditions. Conversely inorganic polyphosphates occurred in a broad range of wetland soils, and their abundance appears to reflect more broadly that of a "substantial" and presumably active microbial community with a significant relationship between total inorganic polyphosphates and microbial biomass P. We conclude that soil P composition varies markedly among freshwater wetlands but can be predicted by fundamental soil properties.

  7. Canada's Wetland Habitats

    NSDL National Science Digital Library

    This detailed information on the wetlands of Canada begins with an introduction defining wetlands and their locations along with details about their value and human and biological threats. The second chapter provides a summary of the Canadian wetland classification system with descriptions on the five classes of wetlands which are bogs, fens, swamps, marshes, and shallow open water. Chapter three gives an opportunity to explore the seven major wetland regions in Canada, which are classified as arctic, subarctic, boreal, prairie, temperate, oceanic, and mountain. The Ramsar internatioinal convention on wetlands and Canadian Ramsar sites are outlined in the last chapter.

  8. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan. Topical report, October 1990--August 1992

    SciTech Connect

    Rastorfer, J.R. [Chicago State Univ., IL (United States). Dept. of Biological Sciences; Van Dyke, G.D.; Zellmer, S.D.; Wilkey, P.L. [Argonne National Lab., IL (United States)

    1995-04-01

    This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth wetland sites mapped Lenawee soils were selected in Midland County, Michigan: Site 1, a younger stand subjected to recent selective logging, and Site 2, a more mature stand. The collection of ecological data to analyze plant succession on the right-of-way (ROW) and the effects of the developing ROW plant communities on adjacent forest communities was initiated in 1989. Cover class estimates were made for understory and ROW plant species on the basis of 1 {times} 1{minus}m quadrats. Individual stem diameters and species counts were recorded for overstory plants in 10{minus}m quadrats. Although long-term studies have not been completed, firm baseline data were established for comparative analyses with future sampling. Current data indicate that vegetation became well-established on the ROW within one year and subsequently increased in coverage. About 65% of the species were wetland indicators, and the dominants included seeded and natural invading species; nevertheless, some elements of the original flora regenerated and persist. The plants of the ecotone understories of both sites changed from their original composition as a result of the installation of the gas pipeline. Although some forest species persist at both sites, the ecotone of Site I was influenced more by the seeded species, whereas the natural invaders were more important at Site 2.

  9. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of wetland

  10. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  11. Constructing a Baseline Model of Alpine Wetlands of the Uinta Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Matyjasik, M.; Ford, R. L.; Bartholomew, L. M.; Welsh, S. B.; Hernandez, M.; Koerner, D.; Muir, M.

    2008-12-01

    Alpine wetlands of the Uinta Mountains, northeastern Utah, contain a variety of groundwater-dependent ecosystems. Unlike their counterparts in other areas of the Rocky Mountains, these systems have been relatively unstudied. The Reader Lakes area on the southern slope of the range was selected for detailed study because of its variety of wetland plant communities, homogenous bedrock geology, and minimal human impact. The primary goal of this interdisciplinary study is to establish the functional links between the geomorphology and hydrogeology of these high mountain wetlands and their constituent plant communities. In addition to traditional field studies and water chemistry, geospatial technologies are being used to organize and analyze both field data (water chemistry and wetland vegetation) and archived multispectral imagery (2006 NAIP images). The hydrology of these wetlands is dominated by groundwater discharge and their surface is dominated by string-and-flark morphology of various spatial scales, making these montane wetlands classic patterned fens. The drainage basin is organized into a series of large-scale stair-stepping wetlands, bounded by glacial moraines at their lower end. Wetlands are compartmentalized by a series of large strings (roughly perpendicular to the axial stream) and flarks. This pattern may be related to small ridges on the underlying ground moraine and possibly modified by beaver activity along the axial stream. Small-scale patterning occurs along the margins of the wetlands and in sloping-fen settings. The smaller-scale strings and flarks form a complex; self-regulating system in which water retention is enhanced and surface flow is minimized. Major plant communities have been identified within the wetlands for example: a Salix planifolia community associated with the peaty strings; Carex aquatilis, Carex limosa, and Eriophorum angustifolium communities associated with flarks; as well as a Sphagnum sp.- rich hummocky transition zone between wetland and non-wetland areas. On-going analyses of water-chemistry data will be used to identify discrete water sources and to characterize the degree of horizontal and vertical water mixing within the system, as well as to help identify the biochemical requirements of the different plant communities. Results indicate that the chemical composition of the main creek reflects the accumulative effect that the peaty flarks have on the creek as it passes through the wetland system, with pH overall decreasing from 7.3 to 7.0, dissolved oxygen decreasing from 9400 to 8400 micrograms per liter and total dissolved solids increasing from 9 mg/L to 13 mg/L. String ground water is characterized by relatively high pH (ranging from 6.0 to 7.1), high oxidizing-reducing potential (ORP) (ranging from 50 mV to 180 mV), high dissolved oxygen (from 2500 ?g/L to 9600 ?g /L) while flark ground water has relatively lower pH (5.6 to 6.8), low oxidizing reducing potential (ORP) (ranging from -66 mV to 150 mV), low dissolved oxygen (from 900 ?g /L to 9000 ?g /L).

  12. Winery wastewater treatment in a hybrid constructed wetland

    Microsoft Academic Search

    L. Serrano; D. de la Varga; I. Ruiz; M. Soto

    2011-01-01

    A full-scale hybrid constructed wetland (CW) was built to treat mixed effluent derived from a winery and tourist establishment. The treatment system consisted of a hydrolytic upflow sludge bed (HUSB) digester for suspended-solids removal, a vertical-flow (VF) constructed wetland and three parallel subsurface horizontal-flow (HF) constructed wetlands. The HUSB reduced TSS loads to 72–172mgL?1, helping to prevent clogging, while organic

  13. How the Energy and Water Development Appropriations Act of 1993 has impacted the constitutional dynamics of federal wetlands delineation and regulation

    SciTech Connect

    Johnson, J.J.S.; Logan, W.L.

    1995-12-31

    A reliable source of specific criteria for recognizing a wetland, as defined for regulatory purposes would be valuable. In 1987 the Army Corps of Engineers developed a technical manual for identifying wetlands (1987 Wetlands Manual). An interagency manual (1989 Wetlands Manual) was later developed. This manual has been used to identify wetlands according to three evidentiary factors: vegetation, hydrology, and soil. This paper addresses the development of criteria to delineate wetlands, and describes some of the logic used by federal courts to uphold the limited constitutional use of the 1989 Wetlands Manual.

  14. Modeling Wetland Vegetation using Polarimetric SAR

    NASA Technical Reports Server (NTRS)

    Slatton, K. Clint; Crawford, Melba M.; Gibeaut, James C.; Gutierrez, Roberto O.

    1996-01-01

    A three-year project to study small-scale topographic changes and relict geomorphic features on barrier islands using synthetic aperture radar (SAR) is described. A study area on the Texas coast consisting of Galveston Island and Bolivar Peninsula was overflown by the NASA/JPL DC 8 AIRSAR in April 1995. Data was acquired in the fully polarimetric mode using C-, L-, and P-bands and in the TOPSAR configuration with C- and L-bands in interferometric mode. The study area will be overflown again in late spring 1996. The data will be registered to global positioning system (GPS) surveyed points to form high resolution digital elevation models (DEM) and then analyzed to investigate possible topographic changes.

  15. Investigating Neighborhood Wetlands

    NSDL National Science Digital Library

    Tim Shulstad, Lincoln Elementary School, Alexandria, MN, based on The Nature of Science and Engineering, an original activity created by Molly Stoddard, Prairie Wetlands Learning Center, Fergus Falls, MN.

    This activity is field investigation where students map a neighborhood wetland and generate various watershed questions. Students identify engineered structures in or around this wetland and consider how flood water can be controlled.

  16. Threats to Wetlands

    NSDL National Science Digital Library

    This resource presents a history of wetland loss and describes how wetlands are lost. It also stresses the consequences of wetland loss including flooding, loss of wildlife habitat, and declining water quality. The site is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. For educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  17. Relating groundwater to seasonal wetlands in southeastern Wisconsin, USA

    NASA Astrophysics Data System (ADS)

    Skalbeck, John D.; Reed, Donald M.; Hunt, Randall J.; Lambert, Jamie D.

    2009-02-01

    Historically, drier types of wetlands have been difficult to characterize and are not well researched. Nonetheless, they are considered to reflect the precipitation history with little, if any, regard for possible relation to groundwater. Two seasonal coastal wetland types (wet prairie, sedge meadow) were investigated during three growing seasons at three sites in the Lake Michigan Basin, Wisconsin, USA. The six seasonal wetlands were characterized using standard soil and vegetation techniques and groundwater measurements from the shallow and deep systems. They all met wetland hydrology criteria (e.g., water within 30 cm of land surface for 5% of the growing season) during the early portion of the growing season despite the lack of appreciable regional groundwater discharge into the wetland root zones. Although root-zone duration analyses did not fit a lognormal distribution previously noted in groundwater-dominated wetlands, they were able to discriminate between the plant communities and showed that wet prairie communities had shorter durations of continuous soil saturation than sedge meadow communities. These results demonstrate that the relative rates of groundwater outflows can be important for wetland hydrology and resulting wetland type. Thus, regional stresses to the shallow groundwater system such as pumping or low Great Lake levels can be expected to affect even drier wetland types.

  18. Copper stable isotopes to trace copper behavior in wetland systems.

    PubMed

    Babcsányi, Izabella; Imfeld, Gwenaël; Granet, Mathieu; Chabaux, François

    2014-05-20

    Wetlands are reactive zones of the landscape that can sequester metals released by industrial and agricultural activities. Copper (Cu) stable isotope ratios (?(65)Cu) have recently been used as tracers of transport and transformation processes in polluted environments. Here, we used Cu stable isotopes to trace the behavior of Cu in a stormwater wetland receiving runoff from a vineyard catchment (Alsace, France). The Cu loads and stable isotope ratios were determined in the dissolved phase, suspended particulate matter (SPM), wetland sediments, and vegetation. The wetland retained >68% of the dissolved Cu and >92% of the SPM-bound Cu, which represented 84.4% of the total Cu in the runoff. The dissolved Cu became depleted in (65)Cu when passing through the wetland (?(65)Cuinlet-outlet from 0.03‰ to 0.77‰), which reflects Cu adsorption to aluminum minerals and organic matter. The ?(65)Cu values varied little in the wetland sediments (0.04 ± 0.10‰), which stored >96% of the total Cu mass within the wetland. During high-flow conditions, the Cu flowing out of the wetland became isotopically lighter, indicating the mobilization of reduced Cu(I) species from the sediments and Cu reduction within the sediments. Our results demonstrate that the Cu stable isotope ratios may help trace Cu behavior in redox-dynamic environments such as wetlands. PMID:24787375

  19. California Wetlands Information System

    NSDL National Science Digital Library

    Comprehensive wetlands information to the general public, the educational community, and government agencies. Though much of the information is California-specific, there is an abundance of location-independent information available. Topics covered include restoration and mitigation, wetlands policy, vernal pools, and the role the state agencies play in wetlands conservation. Site features many links to external resources. The "What's new" section features all the latest California wetlands news and research.

  20. Education and training of future wetland scientists and managers

    USGS Publications Warehouse

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or updates related to new management discoveries, policies, and regulations. ?? 2008 The Society of Wetland Scientists.

  1. Create a Wetland Scene

    NSDL National Science Digital Library

    In this lesson plan students will learn about the importance of wetlands. They will learn about the different types of freshwater wetlands and the things that threaten their health. Finally, they will study specific examples of wetland areas of the U.S. and what is being done to protect them.

  2. Santa Rosa Wetlands .. .................................1

    E-print Network

    Johnson, Eric E.

    · Santa Rosa Wetlands .. .................................1 · Botrychium................6 · What cognitiorem tradit. -- Linnaeus January 5, 2004Number 29 VASCULAR PLANTS OF SOME SANTA ROSA WETLANDS, EAST wetland habitat in New Mexico is less well known. Relatively large expanses of municipal and private

  3. EPA Wetlands Education

    NSDL National Science Digital Library

    The Wetlands Education site contains everything teachers need to help students understand wetlands and how they fit into the water cycle and the environment. The site offers links to activities, curricula and instructor guides, education programs, resources and teaching tools to assist teachers in wetlands and habitat education.

  4. Ecologically Significant Wetlands

    E-print Network

    Ecologically Significant Wetlands in the Flathead, Stillwater, and Swan River Valleys FINAL REPORT Also: Ecologically Significant Wetlands in the North Fork of the Flathead River Valley Appendix 29b #12;Ecologically Significant Wetlands in the Flathead, Stillwater, and Swan River Valleys JUNE 1, 1999 DEQ

  5. Wetlands, Wildlife, and People.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Discusses the problems created when wetlands are drained or altered by humans. Provides a brief case study of the Everglades as an example of the effects of human intervention. Presents four learning activities (along with reproducible worksheets) that deal with the benefits of wetlands, and some debated issues over wetlands. (TW)

  6. Wetlands: An Interdisciplinary Exploration

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.

    2004-01-01

    The topic of wetlands provides a rich context for curriculum integration. This unit contains seven activities that integrate environmental science with math, technology, social studies, language arts, and other disciplines. In this series, students will identify plants and animals found in wetlands, understand the function of wetlands through the…

  7. Gulf Coast Wetlands

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wetlands of the Gulf Coast     ... web of estuarine channels and extensive coastal wetlands that provide important habitat for fisheries. The city of New Orleans ... or below sea level. The city is protected by levees, but the wetlands which also function as a buffer from storm surges have been ...

  8. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Winter 1997 Vol. 12, No. 1The Virginia Wetlands Report Playing Wetland Board is Excellent Learning Tool for Virginia Beach Students by Karla L. Schillinger The apple School's eighth grade class. Designed by Catherine Kashanski of the Vermont Agency of Natural Resources

  9. forreading. WETLAND SCIENCE

    E-print Network

    Pasternack, Gregory B.

    'sMessage 9 The Environmental Protection of Wetlands Under International Law 27 ColoradoFloodingO nly forreading. D o notD ow nload. WETLAND SCIENCE AND PRACTICE VOL. 30, NO. 4 December, 2013- WETLAND SCIENCE AND PRACTICE Vol. 30, No. 4 December 2013 Officers PRESIDENT Stephen Faulkner: faulkners

  10. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  11. Exploring Policy Options to Stop the Loss of Wetlands on Prairie Landscapes

    NASA Astrophysics Data System (ADS)

    Serran, J.; Creed, I. F.

    2013-12-01

    Wetlands from the prairie pothole region of North America have been disappearing at rapid rates over the past century. Within Canada, the issue of wetland loss is compounded by the lack of high resolution wetland inventories, the lack of information on rates of wetland loss, and the absence of wetland policies to further protect against loss. In Alberta, the situation is particularly problematic as increasing development pressures continue to place wetlands at risk. The 'no net loss' of wetlands policy established in 1993 has been ineffective, as wetland loss has continued, leaving Albertans searching for alternative policy options. An alternative policy option is to shift focus from wetland area to wetland function. We present a wetland function assessment system founded on ecological and hydrological processes for estimating wetland functions, including biodiversity, flood control, and pollution reduction, for a regional watershed in Alberta. First, we establish wetland loss rates using inventory time series from 1960 to present; wetland loss estimates can be derived from a break in slope in the area-frequency relationship. Second, we create a high-resolution wetland inventory using a novel approach that fuses LiDAR data (probability of wetland) with aerial photographs (to distinguish open water and the surrounding wet meadow zone). Third, using this wetland inventory, we identify indicators of wetland function using GIS and remote sensing data and technologies for application at regional watershed scales. Biodiversity indicators include a wetland's condition, ability to provide habitat, and potential for high ecological diversity. Flood control indicators include a wetland's ability to store water, connect to surface drainage network, and desynchronize flood waves throughout the landscape. Pollution control indicators include a wetland's contributing source area of nutrients, mechanisms that transport nutrients to the wetland, and mechanisms that retain nutrients once in the wetland. Finally, the function indicators are aggregated to provide an overall function score for each wetland. This overall value estimates a wetland's potential to provide ecosystem services compared to other wetlands on the landscape. The function indicators in combination with 'scarcity' as indicated by the historical wetland loss rates allows policy makers to adjust thresholds between wetland function scores and policy and management objectives. The wetland function assessment system offers a scientific foundation upon which wetland policy can be built. To exemplify its policy potential, we conduct quantitative ';future' scenarios to determine priority wetlands for protection under different development scenarios - this scenario analysis reveals the necessity of making tradeoffs among wetland functions, as wetlands with high ecological function may not be the same wetlands with high hydrological function. The project's resulting wetland function assessment system will improve conservation and restoration/remediation efforts by identifying high functioning wetlands, by revealing the necessity of tradeoffs, and by directing conservation towards preserving wetlands that provide important ecosystem services while allowing other wetlands to be developed.

  12. Ecological outcomes and evaluation of success in passively restored southeastern depressional wetlands.

    SciTech Connect

    De Steven, Diane; Sharitz, Rebecca R.; Barton, Christopher, D.

    2010-11-01

    Abstract: Depressional wetlands may be restored passively by disrupting prior drainage to recover original hydrology and relying on natural revegetation. Restored hydrology selects for wetland vegetation; however, depression geomorphology constrains the achievable hydroperiod, and plant communities are influenced by hydroperiod and available species pools. Such constraints can complicate assessments of restoration success. Sixteen drained depressions in South Carolina, USA, were restored experimentally by forest clearing and ditch plugging for potential crediting to a mitigation bank. Depressions were assigned to alternate revegetation methods representing desired targets of herbaceous and wet-forest communities. After five years, restoration progress and revegetation methods were evaluated. Restored hydroperiods differed among wetlands, but all sites developed diverse vegetation of native wetland species. Vegetation traits were influenced by hydroperiod and the effects of early drought, rather than by revegetation method. For mitigation banking, individual wetlands were assessed for improvement from pre-restoration condition and similarity to assigned reference type. Most wetlands met goals to increase hydroperiod, herb-species dominance, and wetland-plant composition. Fewer wetlands achieved equivalence to reference types because some vegetation targets were incompatible with depression hydroperiods and improbable without intensive management. The results illustrated a paradox in judging success when vegetation goals may be unsuited to system constraints.

  13. Nature and transformation of dissolved organic matter in treatment wetlands

    USGS Publications Warehouse

    Barber, L.B.; Leenheer, J.A.; Noyes, T.I.; Stiles, E.A.

    2001-01-01

    This investigation into the occurrence, character, and transformation of dissolved organic matter (DOM) in treatment wetlands in the western United States shows that (i) the nature of DOM in the source water has a major influence on transformations that occur during treatment, (ii) the climate factors have a secondary effect on transformations, (iii) the wetlands receiving treated wastewater can produce a net increase in DOM, and (iv) the hierarchical analytical approach used in this study can measure the subtle DOM transformations that occur. As wastewater treatment plant effluent passes through treatment wetlands, the DOM undergoes transformation to become more aromatic and oxygenated. Autochthonous sources are contributed to the DOM, the nature of which is governed by the developmental stage of the wetland system as well as vegetation patterns. Concentrations of specific wastewaterderived organic contaminants such as linear alkylbenzene sulfonate, caffeine, and ethylenediaminetetraacetic acid were significantly attenuated by wetland treatment and were not contributed by internal loading.

  14. Creating Wildlife Habitat with Native Florida Freshwater Wetland Plants1

    E-print Network

    Watson, Craig A.

    CIR 912 Creating Wildlife Habitat with Native Florida Freshwater Wetland Plants1 Martin B. Main by establishing and managing desirable native plants. Native wetland plants play important ecological roles many more species than non-native plants because native wildlife evolved with native plant communities

  15. Anacostia River fringe wetlands restoration project: final report for the five-year monitoring program (2003 through 2007)

    USGS Publications Warehouse

    Krafft, Cairn C.; Hammerschlag, Richard S.; Guntenspergen, Glenn R.

    2009-01-01

    The 6-hectare (ha) freshwater tidal Anacostia River Fringe Wetlands (Fringe Wetlands) were reconstructed along the mainstem of the Anacostia River in Washington, DC (Photograph 1, Figure 1) during the summer of 2003. The Fringe Wetlands consist of two separate planting cells. Fringe A, located adjacent to Lower Kingman Island, on the west bank of the Anacostia River, occupies 1.6 ha; Fringe B, located on the east bank of the Anacostia River, occupies 4.4 ha. This project is the third in a series of freshwater tidal wetland reconstructions on the Anacostia River designed and implemented by the US Army Corps of Engineers (USACE) Baltimore District and District Department of the Environment (DDOE) on lands managed by the National Park Service (NPS). The first was Kenilworth Marsh, reconstructed in 1993 (Syphax and Hammerschlag 2005); the second was Kingman Marsh, reconstructed in 2000 (Hammerschlag et al. 2006). Kenilworth and Kingman were both constructed in low-energy backwaters of the Anacostia. However, the Fringe Wetlands, which were constructed on two pre-existing benches along the high-energy mainstem, required sheet piling to provide protection from erosive impacts of increased flow and volume of water associated with storm events during the establishment phase (Photograph 2). All three projects required the placement of dredged sediment materials to increase elevations enough to support emergent vegetation (Photograph 3). The purpose of all three wetland reconstruction projects was to restore pieces of the once extensive tidal freshwater marsh habitat that bordered the Anacostia River historically, prior to the dredge and fill operations and sea wall installation that took place there in the early to mid-1900's (Photograph 4).

  16. Wetlands Reserve Program

    NSDL National Science Digital Library

    Recognizing that the health of the nation's wetlands depends on the fate of private (as well as public-owned) wetlands, the Wetlands Reserve Program is an important, voluntary initiative led by the USDA Natural Resources Conservation Service (NRCS) to provide "technical and financial support" to help private landowners restore their wetlands. This straightforward site describes the Wetlands Reserve Program (WRP), including a map showing national WRP acreage, several question/ answer fact sheets, state programs and contacts, and a slide show (PowerPoint) entitled Producing Wildlife Habitat Results. Although the site targets the general public, students and educators will find it useful and instructive.

  17. The establishment and management of emergent vegetation in sewage-fed artificial marshes and the effects of these marshes on water quality

    Microsoft Academic Search

    Karl E. Ulrich; Thomas M. Burton

    1984-01-01

    Experiments on the establishment and harvest ofPhragmites\\u000a australis,Zizania\\u000a aquatica,Typha\\u000a latifolia,Typha\\u000a angustifolia,Sparganium\\u000a eurycarpum andSpartina\\u000a pectinata were conducted in three 0.4 ha clay-bottomed man-made marshes in the central portion of the lower peninsula of Michigan.\\u000a Propagules consisted of seeds for the annualZ. aquatica and root and rhizome clumps for the other species.S. eurycarpum showed rapid establishment but was subject to invasion by

  18. Amphibian occurrence and wetland characteristics in the Puget Sound Basin

    Microsoft Academic Search

    Klaus O. Richter; Amanda L. Azous

    1995-01-01

    We studied the pattern of amphibian distributions within 19 wetlands of the Puget Sound Basin in King County, Washington State\\u000a from 1988 through 1991. Amphibian richness was compared to wetland size, vegetation classes, presence of bullfrog and fish\\u000a predators, hydrologic characteristics of water flow, fluctuation, and permanence, and land use. Low velocity flow and low\\u000a fluctuation were correlated with high

  19. Avian communities in forested riparian wetlands of southern Michigan, USA

    Microsoft Academic Search

    Rainy L. Inman; Harold H. Prince; Daniel B. Hayes

    2002-01-01

    Descriptive studies are an important first step in developing assessment models for regional wetland subclasses. Objectives\\u000a of this study were to gather benchmark information on the composition and structure of vegetation from minimally impacted\\u000a riparian forested wetland sites in Michigan, USA, and to determine if species composition of the breeding bird community and\\u000a relative densities of individual species varied among

  20. Effects of wetland excavation on avian communities in eastern Washington

    Microsoft Academic Search

    Janean H. Creighton; Rodney D. Sayler; James E. Tabor; Matthew J. Monda

    1997-01-01

    Despite having an arid climate, the Columbia River Basin of eastern Washington is one of the most important areas for breeding,\\u000a migrating, and wintering wetland birds in the Pacific Northwest. Extensive farmland irrigation near the O’Sullivan Reservoir\\u000a and other areas has raised water tables, resulting in closed canopies of emergent vegetation in what are now permanent, shallow\\u000a wetlands. During 1994–95,

  1. Factors affecting waterfowl use of constructed wetlands in northwestern Minnesota

    Microsoft Academic Search

    Douglas A. Leschisin; Gary L. Williams; Milton W. Weller

    1992-01-01

    Waterfowl pair and brood use of constructed wetlands was evaluated during 1980–81 on 4 Wildlife Management Areas in northwestern\\u000a Minnesota. Weekly ground counts of waterfowl were made at each of 109 wetlands during the April to mid-July nesting season\\u000a and correlated with physical, vegetative, and limnological characteristics. The number of pairs of the 10 most common waterfowl\\u000a species using the

  2. Seed Rain of Restored and Natural Prairie Wetlands

    Microsoft Academic Search

    Karin M. Kettenring; Susan M. Galatowitsch

    2011-01-01

    In prairie wetland restorations, seeds may be limiting plant recolonization but this has never been quantified in the field.\\u000a We evaluated the seed rain in restored and natural wetlands to determine if seed limitation constrains plant recolonization.\\u000a We were particularly interested in determining whether Carex species, dominant vegetation of seasonally flooded zones, are seed limited in restorations. We quantified seed

  3. AN INVESTIGATION ON THE PARK AND PEOPLE PROBLEMS: SPECIAL EMPHASIS ON THE IMPACT ON WETLAND SURROUNDING VEGETATION DUE TO OVERGRAZING OF LIVESTOCK IN KOSHI TAPPU WILDLIFE RESERVE, NEPAL. (A Case Study of Kusaha VDC)

    Microsoft Academic Search

    Anu Shrestha; Rana Bahadur Chhetri; Sanjay Nath

    Koshi Tappu Wildlife Reserve (KTWR) is an important wetland area in the floodplain of Sapta Koshi River in the east terai of Nepal. It covers about 150 km2 area. It is decorated by a total of 515 species of plants consisting submerged, floating species as well as grassland\\/subannah and riverine forest. The study was carried out to investigate the impact

  4. 1997 Monitoring report for the Gunnison, Colorado Wetlands Mitigation Plan

    SciTech Connect

    NONE

    1997-11-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) cleaned up uranium mill tailings and other surface contamination near the town of Gunnison, Colorado. Remedial action resulted in the elimination of 4.3 acres (ac) (1.7 hectares [ha]) of wetlands. This loss is mitigated by the enhancement of six spring-fed areas on Bureau of Land Management (BLM) land (mitigation sites). Approximately 254 ac (1 03.3 ha) were fenced at the six sites to exclude grazing livestock. Of the 254 ac (103.3 ha), 17.8 ac (7.2 ha) are riparian plant communities; the rest are sagebrush communities. Baseline grazed conditions of the riparian plant communities at the mitigation sites were measured prior to fencing. This report discusses results of the fourth year of a monitoring program implemented to document the response of vegetation and wildlife to the exclusion of livestock. Three criteria for determining success of the mitigation were established: plant height, vegetation density (bare ground), and vegetation diversity. By 1996, Prospector Spring, Upper Long`s Gulch, and Camp Kettle met the criteria. The DOE requested transfer of these sites to BLM for long-term oversight. The 1997 evaluation of the three remaining sites, discussed in this report, showed two sites (Houston Gulch and Lower Long`s Gulch) meet the criteria. The DOE will request the transfer of these two sites to the BLM for long-term oversight. The last remaining site, Sage Hen Spring, has met only two of the criteria (percent bare ground and plant height). The third criterion, vegetation diversity, was not met. The vegetation appears to be changing from predominantly wet species to drier upland species, although the reason for this change is uncertain. It may be due to below-normal precipitation in recent years, diversion of water from the spring to the stock tank, or manipulation of the hydrology farther up gradient.

  5. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    SciTech Connect

    Wade, M.C.; Socolof, M.L. [Oak Ridge National Lab., TN (United States). Energy Div.; Rosensteel, B.; Awl, D. [JAYCOR, Vienna, VA (United States)

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy`s (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action.

  6. Assessing avian richness in remnant wetlands: Towards an improved methodology

    USGS Publications Warehouse

    Krzys, Greg; Waite, Thomas A.; Stapanian, Martin; Vucetich, John A.

    2002-01-01

    Because the North American Breeding Bird Survey provides inadequate coverage of wetland habitat, the Wetland Breeding Bird Survey was recently established in Ohio, USA. This program relies on volunteers to conduct 3 counts at each monitored wetland. Currently, all counts are conducted during the morning. Under the premise that volunteer participation could be increased by allowing evening counts, we evaluated the potential for modifying the methodology. We evaluated the sampling efficiency of all 3-count combinations of morning and evening counts using data collected at 14 wetlands. Estimates of overall species richness decreased with increasing numbers of evening counts. However, this pattern did not hold when analyses were restricted to wetland-dependent species or those of conservation concern. Our findings suggest that it would be reasonable to permit evening counts, particularly if the data are to be used to monitor wetland dependent species and those of concern.

  7. A comparison of sampling techniques to estimate number of wetlands

    USGS Publications Warehouse

    Johnson, R.R.; Higgins, K.F.; Naugle, D.E.; Jenks, J.A.

    1999-01-01

    Service use annual estimates of the number of ponded wetlands to estimate duck production and establish duck hunting regulations. Sampling techniques that minimize bias may provide more reliable estimates of annual duck production. Using a wetland geographic information system (GIS), we estimated number of wetlands using standard counting protocol with belt transects and samples of square plots. Estimates were compared to the known number of wetlands in the GIS to determine bias. Bias in transect-derived estimates ranged from +67-87% of the known number of wetlands, compared to bias of +3-6% in estimates from samples of 10.24-km2 plots. We recommend using samples of 10.24-km2 plots stratified by wetland density to decrease bias.

  8. H. R. 2594: This Act may be cited as the Wetlands Stewardship Trusts Act of 1991, introduced in the US House of Representatives, One Hundred Second Congress, First Session, June 7, 1991

    SciTech Connect

    Not Available

    1991-01-01

    This bill was introduced into the US House of Representatives on June 7, 1991 to provide for the designation of Wetlands Stewardship Trusts. This legislation amended the Internal Revenue Code of 1986 to establish special rules for contributions of wetlands and riparian lands to Wetlands Stewardship Trusts. Key features of the bill address the following: tax treatment of donations of wetlands and riparian lands to Wetlands Stewardship Trusts; amortization of expenditures to restore wetlands and riparian lands; expenditures for restoring wetlands and riparian lands; exclusion from gross income for amounts received from compatible uses of wetlands or riparian lands; and income from compatible uses of wetlands or riparian lands.

  9. Evaluation of surface water dynamics for water-food security in seasonal wetlands, north-central Namibia

    NASA Astrophysics Data System (ADS)

    Hiyama, T.; Suzuki, T.; Hanamura, M.; Mizuochi, H.; Kambatuku, J. R.; Niipele, J. N.; Fujioka, Y.; Ohta, T.; Iijima, M.

    2014-09-01

    Agricultural use of wetlands is important for food security in various regions. However, land-use changes in wetland areas could alter the water cycle and the ecosystem. To conserve the water environments of wetlands, care is needed when introducing new cropping systems. This study is the first attempt to evaluate the water dynamics in the case of the introduction of rice-millet mixed-cropping systems to the Cuvelai system seasonal wetlands (CSSWs) in north-central Namibia. We first investigated seasonal changes in surface water coverage by using satellite remote sensing data. We also assessed the effect of the introduction of rice-millet mixed-cropping systems on evapotranspiration in the CSSWs region. For the former investigation, we used MODIS and AMSR-E satellite remote sensing data. These data showed that at the beginning of the wet season, surface water appears from the southern (lower) part and then expands to the northern (higher) part of the CSSWs. For the latter investigation, we used data obtained by the classical Bowen ratio-energy balance (BREB) method at an experimental field site established in September 2012 on the Ogongo campus, University of Namibia. This analysis showed the importance of water and vegetation conditions when introducing mixed-cropping to the region.

  10. Annual monitoring report for the Gunnison, Colorado, wetlands mitigation plan

    SciTech Connect

    NONE

    1995-10-01

    The US Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project to clean up uranium mill tailings and other surface contamination at 24 abandoned uranium mill sites in 10 states. One of these abandoned mill sites is near the town of Gunnison, Colorado; surface remediation and the environmental impacts of remedial action are described in the Gunnison environmental assessment (EA) (DOE, 1992). Remedial action resulted in the elimination of 4.3 acres (ac) 1.7 hectares (ha) of wetlands and mitigation of this loss of wetlands is being accomplished through the enhance of 18.4 ac (7.5 ha) of riparian plant communities in six spring feed areas on Bureau of Land Management (BLM) land. The description of the impacted and mitigation wetlands is provided in the Mitigation and Monitoring Plan for Impacted Wetlands at the Gunnison UMTRA Project Site, Gunnison, Colorado (DOE, 1994), which is attached to the US Army corps of Engineers (USACE) Section 404 Permit. As part of the wetlands mitigation plan, the six mitigation wetlands were fenced in the fall of 1993 to exclude livestock grazing. Baseline of grazed conditions of the wetlands vegetation was determined during the summer of 1993 (DOE, 1994). A 5-year monitoring program of these six sites has been implemented to document the response of vegetation and wildlife to the exclusion of livestock. This annual monitoring report provides the results of the first year of the 5-year monitoring period.

  11. Hurricane-induced failure of low salinity wetlands

    PubMed Central

    Howes, Nick C.; FitzGerald, Duncan M.; Hughes, Zoe J.; Georgiou, Ioannis Y.; Kulp, Mark A.; Miner, Michael D.; Smith, Jane M.; Barras, John A.

    2010-01-01

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500–1450 Pa) was observed ?30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425–3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  12. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ?2 to ?5.5%), relative to that explained by purely spatio-temporal factors (range: ?35.5 to ?43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (?100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  13. Recognizing Wetlands An Informational Pamphlet

    E-print Network

    US Army Corps of Engineers

    Recognizing Wetlands An Informational Pamphlet What is a Wetland? The US Army Corps of Engineers(Corps) and the US Environmental Protection Agency define wetlands as follows: Those areas that are inundated conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands are areas

  14. Wetland Loss and Biodiversity Conservation

    Microsoft Academic Search

    James P. Gibbs

    2000-01-01

    Most species of wetland-dependent organisms live in multiple local populations sustained through occasional migration. Retention of minimum wetland densities in human-dominated landscapes is funda- mental to conserving these organisms. An analysis of wetland mosaics was performed for two regions of the northeastern United States to assess the degree to which historical wetland loss alters the metrics of wetland mosaics and

  15. Wetland Losses and Human Impacts

    E-print Network

    Gray, Matthew

    Everglades Sacramento Valley Great Lakes Wetlands Hudson and James Bay Wetlands 30% of World's Wetlands 89. ·Illinois = 2.8 mil ha. Midwest "Breadbasket" Region! Mississippi Alluvial Valley Wetland Losses 77 Restoration? Human Influences on Wetlands Deforestation Agricultural Use Especially in SE Cotton, rice

  16. Wetland Losses and Human Impacts

    E-print Network

    Gray, Matthew

    Everglades Sacramento Valley Great Lakes Wetlands Hudson and James Bay Wetlands 30% of World's Wetlands 89" Region! Mississippi Alluvial Valley Wetland Losses 77% of Hardwood Bottomland Forests 8.5 Million ha 2, 1997 #12;5 Human Influences on Wetlands Deforestation Agricultural Use Especially in SE Cotton, rice

  17. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment

    Microsoft Academic Search

    H. R. Hadad; M. A. Maine; C. A. Bonetto

    2006-01-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal.The wetland was 6×3×0.4m. Water discharge was 1000ld?1

  18. Tools for Carex revegetation in freshwater wetlands: understanding dormancy loss and germination temperature requirements

    Microsoft Academic Search

    Karin M. Kettenring; Susan M. Galatowitsch

    2007-01-01

    Carex is a globally distributed genus with more than 2000 species worldwide and Carex species are the characteristic vegetation of sedge meadow wetlands. In the mid-continental United States, Carex species are dominant in natural freshwater wetlands yet are slow to recolonize hydrologically restored wetlands. To aid in\\u000a Carex revegetation efforts, we determined the dormancy breaking and temperature germination requirements of

  19. Response of ducks to glyphosate-induced habitat alterations in wetlands

    Microsoft Academic Search

    George M. Linz; Dage C. Blixt; David L. Bergman; William J. Bleier

    1996-01-01

    The effects of glyphosate herbicide-induced changes in wetland emergent vegetation (largely cattails,Typha spp.) on densities of ducks (Anatinae) were assessed in northeastern North Dakota. In 1990 and 1991, 17 cattail-dominated\\u000a wetlands were randomly assigned to 0% (reference wetlands), 50%, 70%, or 90% areal spray coverages with glyphosate herbicide.\\u000a Densities of green-winged teal (Anas crecca), bluewinged teal (Anas discors), gadwalls (Anas

  20. Experimental investigation of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation are not fully understood. K...

  1. Laboratory measurements of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surge and waves generated by hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation a...

  2. Ecohydrological interactions in oxygen-limited vegetation ecosystems

    Microsoft Academic Search

    M. Marani; S. Silvestri; E. Belluco; N. Ursino; A. Comerlati; O. Tosatto; M. Putti

    2005-01-01

    Wetlands are characterized by extremely high biodiversity and primary productivity (comparable to tropical rain forests), provide critical habitats for rare and endangered vegetation and animal species and mediate the effects of floods and the action of the sea on the coast. A deep understanding of wetland system functioning cannot be acquired by simply reducing its dynamics to a collection of

  3. Measurements of Wave Attenuation Through Model and Live Vegetation in a Wave Tank

    Microsoft Academic Search

    Y. Ozeren; D. G. Wren

    2010-01-01

    It is well accepted that wetlands have an important role in shoreline protection against wave damage. However, there is still a lack of knowledge on primary mechanisms of wave attenuation though wetland vegetation. The purpose of this study was to understand these mechanisms and quantify the impact of vegetation on the waves through a series of laboratory experiments. Experiments were

  4. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  5. Vulnerability of Northern Prairie Wetlands to Climate Change

    NSDL National Science Digital Library

    W. CARTER JOHNSON, BRUCE V. MILLETT, TAGIR GILMANOV, RICHARD A. VOLDSETH, GLENN R. GUNTENSPERGEN, and DAVID E. NAUGLE (; )

    2005-11-01

    This peer reviewed article from Bioscience journal is on the effect of climate change on northern prairie wetlands. The prairie pothole region (PPR) lies in the heart of North America and contains millions of glacially formed, depressional wetlands embedded in a landscape matrix of natural grassland and agriculture. These wetlands provide valuable ecosystem services and produce 50% to 80% of the continent's ducks. We explored the broad spatial and temporal patterns across the PPR between climate and wetland water levels and vegetation by applying a wetland simulation model (WETSIM) to 18 stations with 95-year weather records. Simulations suggest that the most productive habitat for breeding waterfowl would shift under a drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes, areas currently less productive or where most wetlands have been drained. Unless these wetlands are protected and restored, there is little insurance for waterfowl against future climate warming. WETSIM can assist wetland managers in allocating restoration dollars in an uncertain climate future

  6. Classifying and mapping wetlands and peat resources using digital cartography

    USGS Publications Warehouse

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  7. Feasibility of using oil shale wastewater for waterfowl wetlands

    SciTech Connect

    Snyder, B.D.; Snyder, J.L.

    1984-01-01

    This ecological, engineering, and institutional research study evaluated the use of selected wastewaters from oil shale development to establish wetland habitats for waterfowl. It also evaluated the capability of the wetlands as an innovative wastewater treatment system. The first phase of this two-phase study included inventorying the physical and chemical properties of the potential wastewater sources, evaluating the wastewater capacity of wetlands, and determining the availability of each wastewater source. Critical waterfowl habitat requirements and effects of wastewater on wetlands were used, along with wastewater chemical characterizations, to establish minimum environmental standards for water quality and quantity. The second phase involved selecting candidate sites suitable for possible demonstration projects, including comparing the cost and effectiveness of wetland wastewater treatment with conventional treatment technologies.

  8. Refinement of microwave vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous investigations have established the basis for a new type of vegetation index based on passive microwave satellite observations. These microwave vegetation indices (MVIs) have been qualitatively evaluated by examining global spatial and seasonal temporal features. Limited quantitative studie...

  9. Estimation model of soil freeze-thaw erosion in Silingco watershed wetland of Northern Tibet.

    PubMed

    Kong, Bo; Yu, Huan

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions. PMID:23935427

  10. Restoration of a forested wetland ecosystem in a thermally impacted stream corridor

    SciTech Connect

    Nelson, E.A. [Westinghouse Savannah River Corp., Aiken, SC (United States). Savannah River Technology Center; McKee, W.H. Jr.; Dulohery, C.J. [Forest Service, Charleston, SC (United States). Center for Forested Wetlands Research

    1995-09-01

    The Savannah River Swamp is a 3,020 Ha forested wetland on the floodplain of the Savannah River and is located on the Department of Energy`s Savannah River Site (SRS). Major impacts to the swamp hydrology occurred with the completion of the production reactors and one coal-fired powerhouse at the SRS in the early 1950`s. Water was pumped from the Savannah River, through secondary heat exchangers of the reactors, and discharged into three of the tributary streams that flow into the swamp. This continued from 1954 to 1988 at various levels. The sustained increases in water volume resulted in overflow of the original stream banks and the creation of additional floodplains. Accompanying this was considerable erosion of the original stream corridor and deposition of a deep silt layer on the newly formed delta. Heated water was discharged directly into Pen Branch and water temperature in the stream often exceeded 50 C. The nearly continuous flood of the swamp, the thermal load of the water, and the heavy silting resulted in complete mortality of the original vegetation in large areas of the floodplain. Research has been ongoing to determine methods to reintroduce tree species characteristic of more mature forested wetlands. The goal of the restoration is to create structural and biological diversity in the forest canopy by establishing a mix of species typically present in riparian and wetland forests of the area.

  11. Estimation Model of Soil Freeze-Thaw Erosion in Silingco Watershed Wetland of Northern Tibet

    PubMed Central

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions. PMID:23935427

  12. Fate of physical, chemical, and microbial contaminants in domestic wastewater followingtreatment by small constructed wetlands

    Microsoft Academic Search

    Keith R. Hencha; Gary K. Bissonnette; Alan J. Sexstone; Jerry G. Coleman; Keith Garbutt; Jeffrey G. Skousen

    In order to evaluate the efficacy of constructed wetlands for treatment of domestic wastewater for small communities located in rural areas, small-scale wetland mesocosms (400 L each) containingtwo treatment desig ns (a mixture of Typha, Scirpus, and Juncus species; control without vegetation) were planted into two depths (45 or 60 cm) with pea gravel. Each mesocosm received 19 L\\/day of

  13. HABITAT ASSOCIATIONS OF LARVAL FISH IN A LAKE SUPERIOR COASTAL WETLAND

    EPA Science Inventory

    Habitat associations of larval fishes in Great Lakes coastal wetlands (GLCW) are not well documented. To determine the distribution of larval fish in coastal wetlands with regard to location and vegetation characteristics, we used a larval tow-sled to sample four macrohabitat typ...

  14. Increased methane emissions from an invasive wetland plant under elevated carbon dioxide levels

    Microsoft Academic Search

    Jenny Kao-Kniffin; Dominique S. Freyre; Teri C. Balser

    2011-01-01

    Wetlands function as important climate regulators by providing conditions for the large-scale production and release of methane from vegetation. Several studies have suggested an apparent link between two global warming gases that result in higher emissions of methane from rice paddies and wetlands subjected to elevated levels of atmospheric CO2. We show that an increase in the relative abundance of

  15. Impact of Municipal Wastewater Effluent on Seed Bank Response and Soils Excavated from a Wetland Impoundment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intensive management of wetlands typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased demand for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is c...

  16. Reporting on ecological condition and ecosystem services for the 2011 National Wetland Condition Assessment

    EPA Science Inventory

    The first-ever National Wetland Condition Assessment (NWCA) was conducted by the U.S. Environmental Protection Agency (USEPA) in 2011. Vegetation, algae, soil, water chemistry, and hydrologic data were collected at ~900 wetland points across the contiguous United States. The NW...

  17. Kinetic Adsorption of Ammonium Nitrogen by Substrate Materials for Constructed Wetlands

    Microsoft Academic Search

    Wen-Ling ZHU; Li-Hua CUI; Ying OUYANG; Cui-Fen LONG; Xiao-Dan TANG

    2011-01-01

    Constructed wetlands (CWs) are engineered systems that utilize natural systems including wetland vegetations, soils, and their associated microbial assemblages to assist in treating wastewater. The kinetic adsorption of ammonium nitrogen (NH+4-N) by CW substrate materials such as blast furnace slag (BFS), zeolite, ceramsite, vermiculite, gravel, paddy soil, red soil, and turf, was investigated using batch experiments and kinetic adsorption isotherms.

  18. The Role of Migratory Waterfowl as Nutrient Vectors in a Managed Wetland

    Microsoft Academic Search

    D. M. Post; J. P. Taylor; J. F. Kitchell; M. H. Olson; D. E. Schindler; B. R. Herwig

    1998-01-01

    Dense aggregations of waterfowl, often caused by loss of native wetlands and increased waterfowl numbers, can result in the destruction of wetland vegetation and agricultural crops, increase the risk of infec- tious disease outbreaks, and decrease water quality. Problems related to water quality may be particularly se- vere in arid regions of the southwestern United States, where water quality and

  19. EFFECTS OF AGRICULTURAL ACTIVITIES AND BEST MANAGEMENT PRACTICES ON WATER QUALITY OF SEASONAL PRAIRIE POTHOLE WETLANDS

    EPA Science Inventory

    Long-term effectsof within-basin tillage can constrain condition and function of prairie wetlands even after uplands are restored. Runoff was significantly greater to replicate wetlands within tilled basins with or without vegetated buffer strips as compared to ConsrvationReserve...

  20. Wetland Importance Matthew J. Gray

    E-print Network

    Gray, Matthew

    of Wetlands 3.5% of Land in United States NOTE: 50% of Listed Animals Occur in Wetlands Species Richness & NPP million /year Deforestation Channelization Levees 10 m ½ energy dissipated 1 ac. Wetland 4 ac-ft water

  1. 76 FR 22785 - Wetland Conservation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...NRCS-2011-0010] RIN 0578-AA58 Wetland Conservation AGENCY: Office of the Secretary...Paperwork Reduction Act. Background Existing wetland conservation provisions in 7 CFR part 12 require that NRCS' certification of a wetland determination be completed according...

  2. Ecologically Significant Wetlands in the

    E-print Network

    Ecologically Significant Wetlands in the North Fork Flathead River Watershed Prepared See Also: Ecologically Significant Wetlands in the Flathead, Stillwater, & Swan River Valleys Appendix 29 #12;Ecologically Significant Wetlands in the North Fork Flathead River Watershed Prepared

  3. Assessment of Water Availability Impact on Wetland Management using Multi-temporal Landsat Images and Bayesian-based Learning Machines

    NASA Astrophysics Data System (ADS)

    Alminagorta, O.; Torres, A. F.

    2013-12-01

    Water availability has a direct impact on the wetland ecosystems. While wetland managers need better information to allocate scarce water to improve wetland services, most monitoring activities of flood areas and vegetation condition on wetlands relies on manual estimation of water depth and use of airboat with GPS devices. This process is costly and time-consuming. Remote sensing techniques have been previously used to characterize vegetation conditions along with hydrological characteristics of the wetlands with excellent results. Nevertheless, limited analysis has been done to relate the resulting wetland characterization with the historical water availability records. The present paper addresses the lack of adequate feedback on wetland conditions upon the available water for the wetland system by making use of multi-temporal Landsat images. These images are processed at wetland unit and system level to extract information about vegetation, soil and water conditions. This information is then correlated with historical water availability records for the wetland system by means of the Relevance Vector Machine, a Bayesian-based algorithm known for its robustness, efficiency, and sparseness. This research is applied at the Bear River Migratory Bird Refuge (the Refuge), located on the northeast side of Great Salt Lake, Utah. The Refuge constitutes one of the most important habitats for migratory birds for the Pacific Flyway of North America. Water-discharge records and coverage vegetation collected at the Refuge has been used to calibrate and evaluate the effects on wetland services to the process of flooding and drought in wetland units during different years. The final product of this research is to provide a methodology that wetland managers can use to make informed decisions about water allocation to improve wetland services while avoiding wasting resources, effort, time and money.

  4. Decline in exotic tree density facilitates increased plant diversity: the experience from Melaleuca quinquenervia invaded wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian tree Melaleuca quinquenervia (melaleuca) formed dense monocultural forests several decades after invading Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We hypothesized that native plant diversity would increa...

  5. Wetlands and Bird Migration

    NSDL National Science Digital Library

    This activity demonstrates that coastal wetlands are an important factor to insure the success of bird migration. Students will discover that ponds, lakes and marshes provide food and shelter for traveling birds and, without the wetlands, birds would not have the energy to make the trek from areas as far south as Panama. They also learn that besides providing habitats for waterfowl, wetlands help relieve flooding, filter pollutants and are an integral part of the biosphere.

  6. Observing Wetland Habitats

    NSDL National Science Digital Library

    Observing Wetland Habitats contains tips on finding wetlands to explore and wetland scavenger hunt observation sheets that can be used as a starting point for discovery. While on their scavenger hunt, students can look for adaptations in plants and animals that help them live in a partially wet habitat. After the students have finished their scavenger hunt, they can share what they've seen and heard.

  7. Use of remote sensing to establish environmental baselines: Examples from Sumatra and the Mississippi River Delta

    SciTech Connect

    Wieser, J.D.; Janks, J.S.; Prelat, A.E. [Texaco Inc., Houston, TX (United States)

    1996-08-01

    To monitor changes in the environment, it is necessary to establish a baseline of conditions that characterize a place or thing at a particular period in time. This serves as a benchmark to which future changes can be compared and quantified. Remote sensing is an effective, fast, and low cost method to create environmental baselines. Examples of environmental baselines established by remote sensing are given for Indonesia and the USA. In Sumatra, Landsat Multispectral Scanner (MSS) and Thematic Mapper (TM) satellite images were used to assess land cover and land use changes from 1973 to 1992. Conversion of forest to secondary vegetation was the predominant change that occurred in the area in that time period. In the environmentally-sensitive wetlands of the Mississippi River Delta, airborne digital and photographic data were used to monitor regrowth of vegetation after 3D seismic activities. The initial mission was flown shortly after collection of seismic data in 1992 and remote sensing data were used to establish a baseline. Subsequent missions were flown in 1993 and 1994. Analysis of these data sets indicates that the area is revegetating and returning to its native state with no permanent impact to wetlands.

  8. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...Service [FWS-R6-R-2008-N0186; FF06R06000 134 FXRS1265066CCP0] Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland Management District, SD; Final Comprehensive Conservation Plan and...

  9. Hurricane Katrina: Wetland Destruction

    NSDL National Science Digital Library

    Wetlands along the southern coastlines of the United States serve as natural blocks to approaching hurricanes, starving them of warm ocean water and creating physical barriers to storm surge floods. However, construction of levees and canals in the last one hundred years has turned thousands of square miles of wetland habitat into open water. This video explores the importance of wetlands and examines the damage Hurricane Katrina caused to a wetland area south of New Orleans. The segment is one minute fifty-seven seconds in length. A background essay and list of discussion questions are also provided.

  10. STATUS OF RESTORATION SCIENCE: WETLANDS ECOSYSTEMS

    EPA Science Inventory

    Information on wetland creation and restoration is increasing. ast fall the U.S.National Oceanic and Atmospheric Administration published the next version of the status report on creation and restoration. n looking at projects, the reason they were established in a particular loc...

  11. System Modeling to Improve the Hydro-Ecological Performance of Diked Wetlands

    NASA Astrophysics Data System (ADS)

    Alminagorta, O.; Rosenberg, D. E.; Kettenring, K.

    2012-12-01

    Managing scarce water resources and invasive vegetation are common problems in wetlands. A systems model was developed to recommend water allocations and vegetation control actions among diked wetland units that will improve wetland habitat for bird species. Model recommendations are subject to constraints such as water availability, spatial connectivity of wetland units, hydraulic infrastructure capacities, vegetation growth and responses to management activities, plus financial and time resources available to manage water and invasive vegetation. Wetland habitat performance is quantified using two performance metrics. The first metric is a habitat suitability index (H) that represents the capacity of a given habitat attribute (such as water depth or vegetation cover) to support selected bird species. Suitability ranges from 0 (poor) to 1 (excellent) habitat quality. We combine the habitat suitability of water depth and vegetation coverage, weight by species and the wetted surface area to create the second metric defined as the weighted usable area for wetlands (WU). The WU represents the available surface area that provides suitable hydrological and ecological conditions for priority bird species. We apply the model at the Bear River Migratory Bird Refuge (the Refuge), which is the largest wetland complex on the Great Salt Lake, Utah. The Refuge provides important habitat for large populations of migratory birds that follow the North American Pacific and Central Flyways. Wetland managers and stakeholders participated throughout this study from identifying the problem, defining performance metrics, collecting data, through interpreting results. We ran the model for a base case representing hydrologic conditions in 2008 and eight scenarios that independently considered changes in water availability, financial budget, vegetation responses, and gate operation. Results of these analysis show that performance of wetland habitat are more affected by changes in vegetation response and water allocation than changes in gate operation or the financial budget available to reduce invasive vegetation. Also, comparison between the base case scenario of optimized management and past management activities show there are opportunities to increase by almost 2-fold the hydro-ecological performance of wetland habitat. This participatory modeling effort provides a general framework to develop and apply hydro-ecological performance metrics, model wetland habitat, and improve management in diked wetlands.

  12. The use of hydrologically altered wetlands to treat wastewater in coastal Louisiana

    SciTech Connect

    Breaux, A.M.

    1992-01-01

    Two major environmental problems currently affecting Louisiana are a high rate of coastal wetland loss and high levels of surface water pollution. The application of secondarily treated wastewater to wetlands is proposed to dealing with these problems. The benefits of wetland wastewater treatment include improved surface water quality, increased accretion rates to balance subsidence, improved plant productivity, and decreased capital outlays for conventional engineering treatment systems. Wetland treatment systems can be designed and operated to restore deteriorating wetlands to previous levels of productivity. Hydrologically altered wetlands in the Louisiana coastal zone are appropriate for receiving municipal and some industrial effluent. While the US EPA has determined that wetland wastewater treatment is effective in treating municipal effluent, it has discouraged the use of natural wetlands for this purpose. As a result, hydrologically altered wetlands in the Louisiana coastal zone are being neglected and ultimately lost, while scarce funds are used to construct artificial wetlands to treat municipal effluent. Effluent discharge to existing wetlands can be incorporated into a comprehensive management plan designed to increase sediment and nutrient input into subsiding wetlands in the Louisiana coastal zone. Secondarily treated effluent discharged from industrial and municipal facilities in the Louisiana coastal zone were reviewed for suitability for wetland wastewater treatment. Selection criteria for wetland treatment systems were developed for both dischargers and receiving wetlands. Designs for two potential case studies based on established selection criteria for wetland wastewater treatment systems are presented. An economic analysis of the four case studies indicates a high potential for financial savings when wetlands replace conventional engineering methods for tertiary treatment.

  13. Hydroperiod regime controls the organization of plant species in wetlands

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  14. The Influence of Speckled Alder on Nitrogen Accumulation in Adirondack Wetlands

    NASA Astrophysics Data System (ADS)

    Kiernan, B. D.; Hurd, T. M.; Raynal, D. J.

    2001-05-01

    Shrub-dominated wetlands of the Adirondacks typically support vigorous populations of nitrogen-fixing speckled alder Alnus incana (L.) Moench var. americana Regel), and are the second most abundant wetland type in the Adirondack region. In symbiotic association with an actinomycete of the genus Frankia, this shrub fixes 37-43 kg N/ha/yr in monotypic stands. This study was undertaken to quantify the abundance of alder in wetlands typed as "Scrub-shrub 1" (SS1; known as alder/willow wetlands) in the National Wetlands Inventory, and to determine the accumulation of nitrate and ammonium in alder wetland substrates. Twenty wetlands from the Oswegatchie-Black (OB) and Upper Hudson (UH) watersheds were randomly selected using the Adirondack Park Agency's GIS data base which includes wetland cover types assigned using remotely sensed data. Wetlands designated as "SS1" (scrub-shrub vegetation) and "SS1/EM1" (scrub-shrub with emergent herbaceous vegetation) were included in the sample. Six wetlands varying in alder abundance were chosen to estimate N accumulation in the substrate, with measurement of dissolved inorganic N in groundwater and ion exchange resin extracts. In the OB watershed, A. incana averaged 30 % of total shrub density in SS1 wetlands and 36 % in SS1/EM1 wetlands. Alder accounted for 49 % of all stems in UH SS1 wetlands, 28 % in the SS1/EM1 wetlands and in total accounted for 35 % of all stems in this study. Nitrate in IER extracts and groundwater was significantly higher in high-density alder wetlands (p < 0.05). Eight of the 20 wetlands included in this study were estimated to have less than 3,000 alder stems/ha, and five were estimated to have greater than 10,000 stems/ha. The other seven wetlands averaged 6,000 stems/ha. At nine sites, foliar N equaled or exceeded estimated atmospheric deposition (~10 kg/ha/yr), and was likely derived from N fixation. We conclude that 50 % of the SS1/EM1 wetlands and at least 75 % of the SS1 wetlands in these watersheds are characterized by elevated nitrate due to the effect of alder on these systems.

  15. International Wetlands Conference WETLANDS IN A COMPLEX WORLD

    E-print Network

    Slatton, Clint

    9th INTECOL International Wetlands Conference WETLANDS IN A COMPLEX WORLD June 3-8, 2012 Orlando .................................................................................... 27 Society of Wetland Scientists (SWS) Section-Organized Symposia and Section-Sponsored Sessions.................................................................................................................. 222 #12;9 th INTECOL: International Wetlands Conference 2 WELCOME TO THE JOINT CONFERENCE OF: 9TH

  16. Wetland Resources of Yellowstone National Park

    NSDL National Science Digital Library

    Elliott Charles

    This Yellowstone National Park online report provides an overview of the park's wetlands and associated flora and fauna. Chapters include wetland plants, wetlands and wildlife, wetlands and people, thermal wetlands, a wetland inventory, wetland classification and acreage, and others. Information is presented as text, photos, graphs, tables, and maps.

  17. Sedimentation of Prairie Wetlands

    NSDL National Science Digital Library

    In keeping with its high standards, the Northern Prairie Wildlife Research Center (NPWRC, discussed in the October 15, 1997 Scout Report for Science & Engineering) has released more wetland resources. Sedimentation of Prairie Wetlands by Robert Gleason and Ned Euliss, Jr. was first released in 1998.

  18. Wetlands Fact Sheets

    NSDL National Science Digital Library

    The U.S. Environmental Protection Agency has provided an extensive list of over 40 fact sheets relating to various aspects of wetlands. Most are provided in a low resoluion format for viewing or a high resolution format for printing. A great deal of basic information regarding the definition, values, and functions of wetlands is provided.

  19. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  20. Loss of Wetlands: Subsidence

    NSDL National Science Digital Library

    These demonstrations help to define subsidence and illustrate the resulting effects on wetlands. They will also introduce global warming and sea-level rise as factors in wetland loss. There are suggestions for more complex models to teach subsidence and formation of sinkholes related to the removal of subsurface materials such as gas and oil.