Sample records for wetland vegetation establishment

  1. Wetland vegetation establishment in L-Lake

    SciTech Connect

    Kroeger, S.R.

    1990-07-01

    Wetland vegetation was transplanted from PAR Pond to L-Lake between January and August, 1987. Approximately 100,000 individual plants representing over 40 species were transplanted along the southern shoreline. Three zones of vegetation were created: (1) submersed/floating-leaved, (2) emergent, (3) upper emergent/shrub. During the summers of 1987, 1988, 1989, the Savannah River Ecology Laboratory sampled the vegetation in 54 permanent transects located in planted (N=32) and unplanted areas (N=22). The 1989 vegetation data from L-Lake were compared to 1985 data from PAR Pond.

  2. Establishment of wetland vegetation on East Texas mine spoil

    E-print Network

    McKnight, Steven Keith

    1991-01-01

    (Echinochloa crusgaJli var. frumenraceae), and smartweed (Polygonum puncratum) seeds, and chufa (Cyperus esculenrus) and arrowhead (Sagirraria latifolia) tubers were subjected to 4 water regimes (spring drawdown, spring flooding, fall drawdown, fall flooding... (Sagirtaria larifolia), chufa (Cyperus esculenrus), and control plots (with no propagules) were established at random locations for each planting time/water level treatment. Plots were 1. 0 m x 0. 5 m and marked on all 4 corners with colored survey flags...

  3. Establishment of submergent vegetation and invertebrates in a wetland constructed on mine soil 

    E-print Network

    Thomas, James Alan

    1994-01-01

    . Results indicated borrowed soil may be utilized alone, or in conjunction with plantings of locally abundant species to successfully establish submergent macrophytes and associated invertebrates in wetland reclamation efforts....

  4. Vegetation establishment and evolution in four ponds that received sewage and wastewater in a portion of the Olezoa wetland complex, Yaounde, Cameroon, central Africa

    SciTech Connect

    Atekwana, E.A. (Western Michigan Univ., Kalamazoo, MI (United States). Dept. of Geology); Agendia, P.L. (Univ. of Yaounde (Cameroon). Dept. of Plant Biology)

    1994-04-01

    A study of the spatial and temporal changes in the pattern and distribution of tropical wetland vegetation in four ponds that received sewage and wastewater discharge, was undertaken for a small wetland ecosystem in the Olezoa drainage basin in Yaounde, Cameroon. More than 25 years of nutrient loading has led to the eutrophication and subsequent establishment of wetland vegetation in these ponds. Estimated free water surface areas of the ponds in 1964, 1976, and 1986 and 1992 determined from digitized aerial photographs and field measurements suggests a decline of 70 to 100% in the pond surface areas due to invasion and colonization by plants. The rate of pond surface decline and vegetation development is correlated with the construction of sewage plants and the discharge of untreated sewage and wastewater into the ponds. The main wetland plants that are established in the ponds consist of aquatic species Nymphae lotus, Enhydra fluctuants, Pistia stratiotes, Commelina sp., Ipomea aquatica and terrestrial species Echinochloa sp., Thalia welwitschii, Polygonum senegalense, Leersia haxandra and Cyperus papyrus. The pattern of wetland plant succession that resulted within each pond is correlated to the timing, duration and magnitude of sewage and wastewater discharge into the wetland complex.

  5. Textural signatures for wetland vegetation

    NASA Technical Reports Server (NTRS)

    Whitman, R. I.; Marcellus, K. L.

    1973-01-01

    This investigation indicates that unique textural signatures do exist for specific wetland communities at certain times in the growing season. When photographs with the proper resolution are obtained, the textural features can identify the spectral features of the vegetation community seen with lower resolution mapping data. The development of a matrix of optimum textural signatures is the goal of this research. Seasonal variations of spectral and textural features are particularly important when performing a vegetations analysis of fresh water marshes. This matrix will aid in flight planning, since expected seasonal variations and resolution requirements can be established prior to a given flight mission.

  6. Contribution of Seed Banks to Freshwater Wetland Vegetation Recovery

    Microsoft Academic Search

    MILAN C. VAVREK; WILLIAM J. CAMPBELL

    Recovery of freshwater wetlands after oil spills depends on removal or degradation of the oil and regeneration of the plant community. To quantify the importance of seed banks to re- establishment of vegetation, soil cores (N = 210) were extracted from a freshwater wetland near Dulac, LA and exposed to sweet or sour crude oil, diesel fuel, or tap water.

  7. Disturbance metrics predict a wetland Vegetation Index of Biotic Integrity

    USGS Publications Warehouse

    Stapanian, Martin A.; Mack, John; Adams, Jean V.; Gara, Brian; Micacchion, Mick

    2013-01-01

    Indices of biological integrity of wetlands based on vascular plants (VIBIs) have been developed in many areas in the USA. Knowledge of the best predictors of VIBIs would enable management agencies to make better decisions regarding mitigation site selection and performance monitoring criteria. We use a novel statistical technique to develop predictive models for an established index of wetland vegetation integrity (Ohio VIBI), using as independent variables 20 indices and metrics of habitat quality, wetland disturbance, and buffer area land use from 149 wetlands in Ohio, USA. For emergent and forest wetlands, predictive models explained 61% and 54% of the variability, respectively, in Ohio VIBI scores. In both cases the most important predictor of Ohio VIBI score was a metric that assessed habitat alteration and development in the wetland. Of secondary importance as a predictor was a metric that assessed microtopography, interspersion, and quality of vegetation communities in the wetland. Metrics and indices assessing disturbance and land use of the buffer area were generally poor predictors of Ohio VIBI scores. Our results suggest that vegetation integrity of emergent and forest wetlands could be most directly enhanced by minimizing substrate and habitat disturbance within the wetland. Such efforts could include reducing or eliminating any practices that disturb the soil profile, such as nutrient enrichment from adjacent farm land, mowing, grazing, or cutting or removing woody plants.

  8. Development of vegetation in small created wetlands in southeastern Wisconsin

    Microsoft Academic Search

    James A. Reinartz; elizabeth L. Warne

    1993-01-01

    We examined the natural colonization by vascular plants of 11 created wetlands in southeastern Wisconsin. The wetlands studied\\u000a were small depressional wetlands that were isolated from other wetland sites. Wetlands were sampled over a two-year period,\\u000a providing samples of wetlands aged one to three years. The development of wetland vegetation in these 11 naturally colonized\\u000a sites was compared to that

  9. Does prescribed fire benefit wetland vegetation?

    USGS Publications Warehouse

    Flores, C.; Bounds, D.L.; Ruby, D.E.

    2011-01-01

    The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce competition from less desirable plant species. We compared vegetative response to two fire rotations, annual burns and 3-year burns, and two control sites, Control 1 and Control 2. We tested the effects of fire within six tidal marsh wetlands at Blackwater National Wildlife Refuge and Fishing Bay Wildlife Management Area in Maryland. We examined changes in total live biomass (all species), total stem density, litter, and changes in live biomass and stem density of four dominant wetland plant species (11 variables). Our results suggest that annual prescribed fires will decrease the accumulation of litter, increase the biomass and stem densities of some wetland plants generally considered less desirable for wildlife, and have little or no effect on other wetland plants previously thought to benefit from fire. ?? 2011 US Government.

  10. Does Prescribed Fire Benefit Wetland Vegetation?

    Microsoft Academic Search

    Dixie L. Bounds; Douglas E. Ruby

    2011-01-01

    The effects of fire on wetland vegetation in the mid-Atlantic region of the United States are poorly known, despite the historical\\u000a use of fire by federal, state, and private landowners in the Chesapeake Bay Region. Prescribed fire is widely used by land\\u000a managers to promote vegetation that is beneficial to migratory waterfowl, muskrats, and other native wildlife and to reduce

  11. ESTUARINE WETLANDS (CHAPTER: TERRESTRIAL VEGETATION OF CALIFORNIA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter on estuarine wetlands is a peer-reviewed contribution to the 3rd edition of Terrestrial Vegetation of California (editors: M.G. Barbour, T. Keeler-Wolf, and A. Schoenherr, University of California Press). The objective of the chapter is to describe the distribution, floristic compositi...

  12. Simulation of wetlands forest vegetation dynamics

    USGS Publications Warehouse

    Phipps, R.L.

    1979-01-01

    A computer program, SWAMP, was designed to simulate the effects of flood frequency and depth to water table on southern wetlands forest vegetation dynamics. By incorporating these hydrologic characteristics into the model, forest vegetation and vegetation dynamics can be simulated. The model, based on data from the White River National Wildlife Refuge near De Witt, Arkansas, "grows" individual trees on a 20 x 20-m plot taking into account effects on the tree growth of flooding, depth to water table, shade tolerance, overtopping and crowding, and probability of death and reproduction. A potential application of the model is illustrated with simulations of tree fruit production following flood-control implementation and lumbering. ?? 1979.

  13. Effects of scale-dependent factors on herbaceous vegetation patterns in a wetland, northern Japan

    Microsoft Academic Search

    Shiro TSUYUZAKI; Akira HARAGUCHI; Fusayuki KANDA

    2004-01-01

    Herbaceous vegetation was examined in an Otanoshike wetland in northern Japan to clarify the relationships between vegetation patterns and environmental factors with different scales. Alders ( Alnus japonica) have recently invaded and might modify the herbaceous vegetation. In total, 150 50?×?50?cm plots were established on the transitional areas between alder thickets and grassy marshland. Cover was measured for the vascular

  14. Fish and Wildlife Benefits Associated with Wetland Establishment Practices

    Microsoft Academic Search

    Charles A. Rewa; USDA NRCS

    2007-01-01

    Efforts to establish wetlands through restoration and creation actions have increased in recent decades in response to regulatory and voluntary incentive programs. This paper summarizes the findings of studies conducted to document fish and wildlife response to these practices. The majority of published studies describe bird response to wetland restoration, with most reporting bird communities in restored wetlands to be

  15. LUMCON 2013 Summer Program Wetland Vegetation

    E-print Network

    Nyman, John

    Refuge) 2. Wetland definitions (Mitsch and Gosselink 2007: Chapter 2) 3. Plant ID and pressing 1. Wetland Cycle (Gosselink et al. 1998) 5. Field methods lab. Species area curve, FQI, Wetland Status 1. Fieldtrip (Batzer and Sharitz 2006 Chapter 6) 3. Plant ID and pressing 1. Deltaic wetlands (Gosselink et al. 1996

  16. Metric Similarity in Vegetation-Based Wetland Assessment Methods

    EPA Science Inventory

    Wetland vegetation is a recognized indicator group for wetland assessments, but until recently few published protocols used plant-based indicators. To examine the proliferation of such protocols since 1999, this report reviewed 20 published index of biotic integrity (IBI) type p...

  17. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth

    Microsoft Academic Search

    Deborah A. Maurer; Joy B. Zedler

    2002-01-01

    Phalaris arundinacea (Poaceae) is aggressively invading wetlands across North America. We tested the hypotheses that open canopies and increased nutrients facilitate vegetative establishment in the field, using a phytometer (6 rhizome fragments\\/plot, 24 plots\\/wetland). In each of three wetlands, phytometers received three levels of an NPK fertilizer or served as controls. Emergence and survival differed among sites (P=0.0005), but not

  18. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    SciTech Connect

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  19. Comparison of the prevalence index and average wetland values for identification of wetland vegetation

    SciTech Connect

    Zimmerman, R.E.; Shem, L.M.; Gowdy, M.J. [Argonne National Lab., IL (United States); Van Dyke, G.D. [Trinity Christian Coll., Palos Heights, IL (United States); Hackney, C.T. [North Carolina Univ., Wilmington, NC (United States)

    1992-07-01

    Prevalence index values (FICWD, 1989) and average wetland values for all species present were compared for three wetland gas pipeline rights-of-way (ROWS) and adjacent natural areas. The similarities in results using these two indicator values suggest that an average wetland value may offer a simpler, less time-consuming method of evaluating the vegetation of a study site as an indication of wetness. Both PIVs and AWVs, are presented for the ROWs and the adjacent natural area at each site.

  20. Comparison of the prevalence index and average wetland values for identification of wetland vegetation

    SciTech Connect

    Zimmerman, R.E.; Shem, L.M.; Gowdy, M.J. (Argonne National Lab., IL (United States)); Van Dyke, G.D. (Trinity Christian Coll., Palos Heights, IL (United States)); Hackney, C.T. (North Carolina Univ., Wilmington, NC (United States))

    1992-01-01

    Prevalence index values (FICWD, 1989) and average wetland values for all species present were compared for three wetland gas pipeline rights-of-way (ROWS) and adjacent natural areas. The similarities in results using these two indicator values suggest that an average wetland value may offer a simpler, less time-consuming method of evaluating the vegetation of a study site as an indication of wetness. Both PIVs and AWVs, are presented for the ROWs and the adjacent natural area at each site.

  1. A spatial simulation model of hydrology and vegetation dynamics in semi-permanent prairie wetlands

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter

    1993-01-01

    The objective of this study was to construct a spatial simulation model of the vegetation dynamics in semi-permanent prairie wetlands. A hydrologic submodel estimated water levels based on precipitation, runoff, and potential evapotranspiration. A vegetation submodel calculated the amount and distribution of emergent cover and open water using a geographic information system. The response of vegetation to water-level changes was based on seed bank composition, seedling recruitment and establishment, and plant survivorship. The model was developed and tested using data from the Cottonwood Lake study site in North Dakota. Data from semi-permanent wetland P1 were used to calibrate the model. Data from a second wetland, P4, were used to evaluate model performance. Simulation results were compared with actual water data from 1797 through 1989. Test results showed that differences between calculated and observed water levels were within 10 cm 75% of the time. Open water over the past decade ranged from 0 to 7% in wetland P4 and from 0 to 8% in submodel simulations. Several model parameters including evapotranspiration and timing of seedling germination could be improved with more complex techniques or relatively minor adjustments. Despite these differences the model adequately represented vegetation dynamics of prairie wetlands and can be used to examine wetland response to natural or human-induced climate change.

  2. Remote sensing for identification and classification of wetland vegetation

    USGS Publications Warehouse

    Cowardin, L.M.; Myers, V.I.

    1974-01-01

    Multispectral photography and ground truth were obtained on an area 12 miles (19.3 km) east of Bemidji, Minnesota, to identify and map wetlands less than 2 acres (0.8 hectare) in size, to map emergent vegetation in lakes, and to explore the feasibility of classifying vegetation from aerial photographs. Wetlands less than 2 acres in size were identified on photography taken in May 1971, and emergent vegetation was recorded on purposely overexposed infrared black and white photography from a flight in September 1971. Several vegetation types and species groups were recognizable with the aid of color, color infrared, and black and white infrared photography. Proper timing of flights, use of multispectral photography, and knowledge of the ecology of the area are considered essential for wetland mapping by remote sensing.

  3. Vegetation Changes and Partitioning of Selenium in 4YearOld Constructed Wetlands Treating Agricultural Drainage

    Microsoft Academic Search

    Z.-Q. Lin; N. Terry; S. Gao; S. Mohamed; Z. H. Ye

    2010-01-01

    The knowledge of selenium (Se) partitioning in treatment wetlands and wetland vegetation management are essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage in central California. In this field study, samples from different compartments of treatment wetlands were collected and the vegetation change in each wetland cell was examined four years after the wetland's inception. The results

  4. Reestablishment of wetland vegetation on gas pipeline rights-of-way in six different wetland ecosystems

    SciTech Connect

    Zimmerman, R.E. Shem, L.; Wilkey, P.L. [Argonne National Lab., IL (United States); Van Dyke, G.D. [Trinity Christian Coll. Palos Heights, IL (United States); Hackney, C. [North Carolina Univ., Wilmington, NC (United States); Gowdy, M. [Institute of Technology, Chicago, IL (United States)

    1992-05-01

    Vegetational surveys were carried out to compare reestablished vegetation on pipeline rights-of-way (ROWS) with that in adjacent natural ecosystems undisturbed by pipeline installation. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the ROW approximated or exceeded those in the adjacent natural area. In four ecosystems, the vegetation on the ROW was limited to a herbaceous layer by ROW maintenance; thus, the ROWs often involved a complex of species quite different from that found in the adjacent ecosystems.

  5. Inundation, Wetland Vegetation and Biogeochemical Processes in the Amazon Basin

    Microsoft Academic Search

    J. M. Melack; L. L. Hess; S. K. Hamilton; J. E. Richey; E. M. Novo

    2001-01-01

    Remote sensing of the Amazon basin with passive and active microwave techniques were applied to determine the temporally varying extent of inundation and associated vegetation, and used in conjunction with field measurements to calculate regional rates of carbon dioxide emission from wetlands to the atmosphere. Monthly inundation areas were derived from analysis of the 37-GHz polarization difference observed by the

  6. Classification of wetlands vegetation using small scale color infrared imagery

    NASA Technical Reports Server (NTRS)

    Williamson, F. S. L.

    1975-01-01

    A classification system for Chesapeake Bay wetlands was derived from the correlation of film density classes and actual vegetation classes. The data processing programs used were developed by the Laboratory for the Applications of Remote Sensing. These programs were tested for their value in classifying natural vegetation, using digitized data from small scale aerial photography. Existing imagery and the vegetation map of Farm Creek Marsh were used to determine the optimal number of classes, and to aid in determining if the computer maps were a believable product.

  7. Vegetation establishment in convectively accelerated streams

    NASA Astrophysics Data System (ADS)

    Crouzy, B.; McLelland, S. J.; Molnar, P.; Camporeale, C.; Perona, P.

    2013-12-01

    We study the conditions for vegetation establishment within river reaches with converging boundaries. Common to many such rivers worldwide is the existence of a limiting front (e.g., Figure 1a) beyond which all the riverbed vegetation is uprooted by flooding events. There are however exceptions, which leads to an interesting ecomorphodynamic problem (existence and position of the front). We use a theoretical 1-D framework based on morphodynamic equations modified in order to account for the presence of vegetation (Perona et al., submitted), and obtain the link between the position of the vegetated front and river eco-hydraulic variables under steady and unsteady conditions. We apply our framework to a number of flume experiments (unsteady flow) where Avena sativa L. (common oat) seedlings grow subject to periodic flow disturbances within a convergent flume channel (Figure 1b). We find that depending on the outcome of the competition between hydrological and biological processes there is either a limiting spatial front within the convergent section beyond which vegetation cannot survive, or vegetation colonizes the entire riverbed. The existence and the position of the front depend on the ability for vegetation to take root efficiently and withstand uprooting by the flow of the convectively accelerated stream (Crouzy et al., in press). The active role of vegetation and of unit streampower in this particular ecomorphodynamic process are then discussed in relation to the conceptual model of Gurnell and Petts (2006), and under the light of our theoretical and experimental results. REFERENCES - Crouzy, B., K. Edmaier, N. Pasquale and P. Perona (in press). Impact of floods on the statistical distribution of riverbed vegetation. Geomorphology doi:10.1016/j.geomorph.2012.09.013. - Gurnell A., Petts G. (2006). Trees as riparian engineers: The Tagliamento River, Italy. Earth Surface Processes and Landforms, 31: 1558--1574. - Perona, P., B. Crouzy, S. Mc Lelland, P. Molnar and C. Camporeale. Ecomorphodynamics of rivers with converging boundaries. Earth Surface Processes and Landforms, submitted.

  8. Mercury concentrations in oligohaline wetland vegetation and associated soil biogeochemistry.

    PubMed

    Willis, Jonathan M; Gambrell, Robert P; Hester, Mark W

    2011-10-01

    Concentrations of mercury were determined in above- and below-ground tissues of dominant plant species, as well as soils, in the wetlands of Lake Maurepas, Louisiana. Indicators of wetland soil biogeochemical status, such as soil redox potential, pore-water nutrient concentrations, and pore-water total sulfides, were also determined. Total mercury concentrations in plant tissues were within the typical range for vegetation not exposed to mercury contamination. Similarly, total mercury concentrations in soils were typical of uncontaminated wetlands within this geographic region. Soil methyl mercury levels in this study are slightly lower than those reported in other studies of nearby wetlands. This may reflect the less extensive geographic sampling in this study, or the low water levels in the Lake Maurepas system immediately prior to and during this study, which would have altered soil biogeochemical status. This is corroborated by measurements of soil redox potential and soil pore-water nitrogen and sulfur constituents conducted during this study that suggest minimal sulfate reduction was occurring in surficial soils. This study indicates that the wetlands surrounding Lake Maurepas are typical of many uncontaminated oligohaline wetlands in the southeastern U.S. in regard to mercury concentrations. PMID:21188507

  9. AIS-2 spectra of California wetland vegetation

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1987-01-01

    Spectral data gathered by Airborne Imaging Spectrometers-2 from wetlands were analyzed. Spectra representing stands of green Salicornia virginica, green Sesuvium verrucosum, senescing Distichlis spicata, a mixture of senescing Scirpus acutus and Scirpus californicus, senescing Scirpus paludosus, senescent S. paludosus, mowed senescent S. paludosus, and soil were isolated. No difference among narrowband spectral reflectance of the cover types was apparent between 0.8 to 1.6 micron. There were, however, broadband differences in brightness. These differences were sufficient to permit a fairly accurate decomposition of the image into its major cover type components using a procedure that assumes an additive linear mixture of surface spectra.

  10. Diurnal Cycles of Trace Gas Transfer through Wetland Vegetation

    NASA Astrophysics Data System (ADS)

    Reid, M. C.; Ho, D. T.; Jaffe, P. R.

    2010-12-01

    Natural and constructed wetlands are major sources of biogeochemical trace gases, and have recently gained attention as tools for passive remediation of discharging groundwater contaminated with volatile organic compounds (VOCs). Wetland plants act as conduits for the volatilization of dissolved compounds from the interstitial pore waters of aquatic sediments to the atmosphere, so clarifying the mechanisms of this vegetation-mediated gas transport is essential to understanding the emissions of compounds including methane and VOCs. The conservative gas tracer sulfur hexafluoride (SF6) was used to examine mechanisms of gas transport through the wetland macrophytes Scirpus acutus and Typha latifolia in greenhouse mesocosm experiments. The results provide novel experimental evidence for the enhancement by light of plant-mediated gas fluxes through S. acutus, a species with no previously documented light-activated gas transport mechanism. A nonlinear saturation model was fit to the tracer flux data using least-squares regression. The mechanism for this light-enhanced flux was investigated in additional experiments in which atmospheric humidity was deliberately manipulated. These results will be discussed with respect to the role of transpiration in enhancing plant-mediated gas transport. The SF6 flux data also quantify inter-species and seasonal variability in gas transfer rates, and capture the dynamics of pressurized gas flows in T. latifolia. A numerical model of gas transport mechanisms in the root and rhizosphere system was calibrated with experimental data and used to further examine mechanisms of gas exchange between saturated wetland sediments, vegetation, and the atmosphere.

  11. The Importance of Local and Regional Factors on the Vegetation of Created Wetlands in Central Europe

    Microsoft Academic Search

    Marek Svitok; Richard Hrivnák; Helena O?ahe?ová; Daniela Dúbravková; Peter Pa?ove-Balang; Vladimír Slobodník

    We assessed the relative importance of regional and local processes to wetland plant diversity in created depressional wetlands\\u000a in Central Europe (Košské mokrade wetlands, central Slovakia). Twelve wetlands were sampled for vegetation, water chemistry,\\u000a morphological, and hydrological data in 2008. A total of 39 plant species were found in the wetlands, dominated by Typha latifolia L. The results support the

  12. Vegetation Changes and Partitioning of Selenium in 4-Year-Old Constructed Wetlands Treating Agricultural Drainage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The knowledge of vegetation management and the partitioning of selenium (Se) in treatment wetlands is essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage water in the San Joaquin Valley, California. Vegetation changes in six vegetated wetl...

  13. Vegetation establishment success in restored carolina bay depressions on the Savannah River Site, South Carolina - phase one.

    SciTech Connect

    Sharitz, Rebecca, A.; Mulhouse, John, M.

    2004-05-01

    Successful wetlands restoration must re-establish or enhance three parameters: wetland hydrology, hydric soils, and hydrophytic vegetation (Mitsch and Gosselink 2000). On the Savannah River Site, South Carolina, restoration of small Carolina bay depression-wetlands was initiated in FY 2001 to provide wetland acreage for mitigation banking (US DOE 1997). Sixteen small depressions that had historically been drained for agricultural purposes were selected for restoration, and an additional four were initially chosen to serve as non-restored controls. Restoration treatments included plugging the existing ditches to increase water volume retention and wetland hydroperiod and clear-cutting removal of woody vegetation in the interiors. Planned endpoints of the restoration were herbaceous meadow and forested savanna bay interiors, and pine savanna and pine/hardwood forested bay margins (Barton and Singer 2001). To promote forested savanna interiors, saplings of bald cypress and swamp tupelo were planted following removal of the woody species.

  14. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model.

  15. Vegetation changes and partitioning of selenium in 4-year-old constructed wetlands treating agricultural drainage.

    PubMed

    Lin, Z Q; Terry, N; Gao, S; Mohamed, S; Ye, Z H

    2010-03-01

    The knowledge of selenium (Se) partitioning in treatment wetlands and wetland vegetation management are essential for long-term effective operation of constructed wetlands treating Se-laden agricultural tile-drainage in central California. In this field study, samples from different compartments of treatment wetlands were collected and the vegetation change in each wetland cell was examined four years after the wetland's inception. The results showed that saltgrass (Distichlis spicata) and rabbitfoot grass (Polypogon monspeliensis) were less competitive than cattail (Typha latifolia) and saltmarsh bulrush (Scirpus robustus). Over 90% of the wetland cell originally vegetated with saltgrass or rabbitfoot grass was occupied by invasive plants--i.e., when invasive species were not controlled in the wetlands. More Se was likely found in sediments from vegetated regions, compared to the unvegetated areas of the wetland cell. Particularly, rhizosphere sediments accumulated about 4-fold more Se than non-rhizosphere sediments. Among the total Se retained in the wetland 90% of the total Se was partitioned in the top 10-cm layer of sediment. The Se accumulation in plant materials accounted for about 2% of the total Se mass retained in each wetland cell. This field study demonstrated that wetland plants play significant roles in the treatment of Se-laden agricultural drainage. PMID:20734620

  16. Tissue culture and wetland establishment of the freshwater monocots Carex, Juncus, Scirpus , and Typha

    Microsoft Academic Search

    Suzanne M. D. Rogers

    2003-01-01

    Summary  Cell cultures of freshwater wetland monocots were regenerated, plants were grown in the greenhouse, and then established and\\u000a evaluated in wetlands. Typha (cattail), Juncus (rushes), Scirpus (bulrushes), and Carex (sedges) were studied because they are common, dominant, high biomass wetland-adapted plants, tolerant of chemically diverse\\u000a ecosystems. The goal was to define micropropagation and wetland establishment protocols. Tissue culture systems defined

  17. Wetland Vegetation Monitoring within Barataria Basin, Louisiana Following Exposure to Oil

    NASA Astrophysics Data System (ADS)

    Steyer, G.; Piazza, S.; Kokaly, R. F.; Patton, B.; Heckman, D.

    2011-12-01

    Following the Deepwater Horizon explosion and subsequent oil spill in April 2010 coastal wetlands in Louisiana were directly oiled, exposing vegetation and marsh soils to petroleum hydrocarbons. Oiling was observed at the marsh/water interface as well as within coastal marshes. The physical and chemical effects of oil spills can have both short and long term effects on wetland vegetation. These effects can include reductions in primary productivity and direct plant mortality. Even in the absence of this oiling event, the coastal landscape of Louisiana experiences high rates of land loss resulting from natural and anthropogenic causes. This additional stress has the potential to further reduce the extent and health of coastal marshes in this fragile ecosystem. We conducted a field study to document the impact of oiling on above and belowground vegetation biomass, plant species composition, and vegetation cover at sites within Barataria Basin, Louisiana. Six sampling sites were established, three within obviously oiled marshes and three where oiling was not readily apparent. Four sampling events occurred between October 2010 and October 2011. The preliminary results of the field study will be presented along with how these data helped validate remotely sensed data observations (AVIRIS) and calibrate ground reflectance in oiled and non-oiled marshes.

  18. The role of hydrodynamic transport in greenhouse gas fluxes at a wetland with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Gilson, E.; Knox, S. H.; Matthes, J. H.; Verfaillie, J. G.; Baldocchi, D. D.; Variano, E. A.

    2013-12-01

    In wetlands with emergent vegetation, the hydrodynamic transport of dissolved gases is often neglected because emergent plants transport gases directly and limit wind-driven air-water gas exchange by sheltering the water surface. Nevertheless, wetland hydrodynamics, and thermally-driven stirring in particular, have the potential to impact gas fluxes in these environments. We are evaluating the importance of hydrodynamic dissolved gas transport at a re-established marsh on Twitchell Island in the Sacramento-San Joaquin Delta (California, USA). At this marsh, the U.S. Geological Survey has previously observed rapid accumulation of organic material (carbon sequestration) as well as very high methane emissions. To assess the role of hydrodynamics in the marsh's greenhouse gas fluxes, we measured dissolved carbon dioxide and methane in the water column on a bi-weekly basis beginning in July 2012. We employed a model for air-water gas fluxes in wetlands with emergent vegetation that predicts gas transfer velocities from meteorological conditions. Modeled air-water gas fluxes were compared with net gas fluxes measured at the marsh via the eddy covariance technique. This comparison revealed that hydrodynamic transport due to thermal convection was responsible for approximately one third of net carbon dioxide and methane fluxes. The cooling at the water surface driving thermal convection occurred each night and was most pronounced during the warmest months of the year. These finding have implications for the prediction and management of greenhouse gas fluxes at re-established marshes in the Sacramento-San Joaquin Delta and other similar wetlands.

  19. Inundation, Wetland Vegetation and Biogeochemical Processes in the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Hess, L. L.; Hamilton, S. K.; Richey, J. E.; Novo, E. M.

    2001-12-01

    Remote sensing of the Amazon basin with passive and active microwave techniques were applied to determine the temporally varying extent of inundation and associated vegetation, and used in conjunction with field measurements to calculate regional rates of carbon dioxide emission from wetlands to the atmosphere. Monthly inundation areas were derived from analysis of the 37-GHz polarization difference observed by the Scanning Multichannel Microwave Radiometer (1979 to 1987) for the mainstem Amazon floodplain in Brazil, the Llanos de Moxos (Beni and Mamore rivers) in Bolivia, the Bananal Island (Araguaia River) and Roraima savannas. Maximum areas subject to inundation, including permanent open waters in rivers and lakes, were as follows (in km2): mainstem Amazon 97,400; Moxos 92,000; Bananal 58,500, and Roraima 16,500. Data from the Japanese Earth Resources Satellite-1, L-band synthetic aperture radar were used to determine inundation and wetland vegetation for a quadrat in the central Amazon basin (0o N to 8o S, 72o W to 54o W) at high water (May-June 1996) and low water (October 1995). Flooded area of rivers and floodplains (> 100 m in width) ranged from 79,000 km2 to 290,000 km2. When combined with estimates of inundation associated with streams not detected by the radar, a maximum area of 350,000 km2 (or 20% of the quadrat) was flooded. Combining the areal extent of flooding and measurements of free dissolved CO2 with an evasion model leads to outgassing of CO2 from inundated surfaces to the atmosphere in the central Amazon of 1.1 plus or minus 0.2 MgC ha-1 y-1. Extrapolated over the whole basin, the flux is 10 times the fluvial export of organic carbon to the ocean.

  20. Characterization of microtopography and its influence on vegetation patterns in created wetlands

    USGS Publications Warehouse

    Moser, K.; Ahn, C.; Noe, G.

    2007-01-01

    Created wetlands are increasingly used to mitigate wetland loss. Thus, identifying wetland creation methods that enhance ecosystem development might increase the likelihood of mitigation success. Noting that the microtopographic variation found in natural wetland settings may not commonly be found in created wetlands, this study explores relationships between induced microtopography, hydrology, and plant species richness/ diversity in non-tidal freshwater wetlands, comparing results from two created wetland complexes with those from a mature reference wetland complex in northern Virginia. Elevation, steel rod oxidation depth, and species cover were measured along replicate multiscale (0.5 m-, 1 m-, 2 m-, and 4 m-diameter) tangentially conjoined circular transects in each wetland. Microtopography was surveyed using a total station and results used to derive three roughness indices: tortuosity, limiting slope, and limiting elevation difference. Steel rod oxidation depth was used to estimate water table depth, with data collected four times during the growing season for each study site. Plant species cover was estimated visually in 0.2 m2 plots surveyed at peak growth and used to assess species richness, diversity, and wetland prevalence index. Differences in each attribute were examined among disked and non-disked created wetlands and compared to a natural wetland as a reference. Disked and non-disked created wetlands differed in microtopography, both in terms of limiting elevation difference and tortuosity. However, both were within the range of microtopography encompassed by natural wetlands. Disked wetlands supported higher plant diversity and species richness than either natural or non-disked wetlands, as well as greater within-site species assemblage variability than non-disked wetlands. Irrespective of creation method, plant diversity in created wetlands was correlated with tortuosity and limiting elevation difference, similar to correlations observed for natural wetlands. Vegetation was more hydrophytic at disked sites than at non-disked sites, and of equivalent wetland indicator status to natural sites, even though all sites appeared comparable in terms of hydrology. Results suggest that disking may enhance vegetation community development, thus better supporting the goals of wetland mitigation. ?? 2007, The Society of Wetland Scientists.

  1. Microbial and vegetative changes associated with development of a constructed wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetlands may be constructed to provide several ecosystem functions. A constructed wetland receiving agricultural runoff water was observed prior to, and for more than two years after, establishment. The excavated portion of this wetland was compared to an undisturbed, upland area and to an adjacent...

  2. Using MODIS Normalized Difference Vegetation Index to monitor seasonal and inter-annual dynamics of wetland vegetation in the Great Artesian Basin: a baseline for assessment of future changes in a unique ecosystem

    NASA Astrophysics Data System (ADS)

    Petus, C.; Lewis, M.; White, D.

    2012-07-01

    The Great Artesian Basin mound springs (Australia) are unique wetland ecosystems of great significance. However, these unique ecosystems are endangered by anthropogenic water extraction. Relationships have been established between the vegetated wetland area and the discharge associated with individual springs, providing a potential means of monitoring groundwater flow using measurements of wetland area. Previous studies using this relationship to monitor Great Artesian Basin springs have used aerial photography or high resolution satellite images, giving sporadic temporal information. These "snapshot " studies need to be placed within a longer and more regular context to better assess changes in response to aquifer draw-downs. In this study, the potential of medium resolution MODIS Normalized Difference Vegetation Index data for studying the long-term and high frequency temporal dynamics of wetland vegetation at the Dalhousie Spring Complex of the GAB is tested. Photosynthetic activity within Dalhousie wetlands could be differentiated from surrounding land responses. The study showed good correlation between wetland vegetated area and groundwater flow, but also the important influence of natural species phenologies, rainfall, and human activity on the observed seasonal and inter-annual vegetation dynamic. Declining trends in the extent of wetland areas were observed over the 2000- 2009 period followed by a return of wetland vegetation since 2010. This study underlined the need to continue long-term medium resolution satellite studies of the Great Artesian Basin as these data provide a good understanding of variability within the wetlands, give temporal context for less frequent studies and a strong baseline for assessment of future changes.

  3. Contribution to the knowledge of the wetland flora and vegetation of Amvrakikos Gulf, W Greece

    Microsoft Academic Search

    MARIA SARIKA; PANAYOTIS DIMOPOULOS; ARTEMIOS YANNITSAROS

    2005-01-01

    Sarika, M., Dimopoulos, P. & Yannitsaros, A.: Contribution to the knowledge of the wetland flora and vegetation of Amvrakikos Gulf, W Greece. - Willdenowia 35: 69-85. - ISSN 0511-9618; © 2005 BGBM Berlin-Dahlem. doi:10.3372\\/wi.35.35105 (available via http:\\/\\/dx.doi.org\\/) The wetland complex of Amvrakikos Gulf is the largest and most diverse in Greece and one of the 11 Internationally Important Wetlands catalogued

  4. Vegetation Cover Decreases Evaporative Water Loss in a Wetland Ecosystem

    NASA Astrophysics Data System (ADS)

    Wang, X.; Sternberg, L. O.; Miralles-Wilhelm, F. R.

    2007-12-01

    Analysis of oxygen and hydrogen isotope ratios of water is a useful tool for quantitative measurements of water evaporation. Water molecules with the lighter isotopes, H216O, evaporate faster than H218O and DH16O, leaving the residual water enriched in D and 18O. Therefore, the greater the evaporation, the higher the ?18O and ?D values in the remaining water body. Here we used stable isotope analyses to study evaporative processes in the a wetland water conservation area (WCA-1, South Florida Water Management District) where the primary purpose is to conserve regional water resources. Evaporation is one of the major paths of water loss in WCA-1. We collected water from 50 sampling stations located in the 145,920 acres of WCA-1 area for the months of August, September, and November 2006 and January 2007. Water samples were analyzed for oxygen and hydrogen isotope ratios. The results confirm that the water in this area is enriched by evaporation since a plot of water ?D versus ?18O lies off the meteoric water line. However, the enrichment of 18O and D within WCA-1 is not homogeneous, with differences in ?18O values between stations of up to 2‰. We GIS mapped the ?18O values of water for the entire area and found the isotopic enrichment pattern is consistent through time. This result suggests that water at different locations in WCA-1 has different evaporation rates. Possible factors that contribute to this evaporation pattern are: distance to the peripheral canal discharge station, water depth, and vegetation coverage. To find out which is (are) the determining factor(s) affecting water evaporation of the area, we mapped ?18O values of water with elevation and vegetation type of WCA-1 and calculated average elevation and percentage of vegetation coverage of a 100m2 area around each sampling station. A multiple linear regression between ?18O values of water and average distance from the discharge gates, elevation, and percentage coverage indicate that the observed evaporation pattern is not caused by water depth. Distance from the discharge gates and percentage vegetation coverage are both significantly correlated with ?18O values of water. The effect of distance is related to the water turnover rate, i.e. the further the location is to a discharge station the greater the time the water at that location has been exposed to evaporation. In contrast, the higher the vegetation coverage the lower the loss of water through evaporation. In the future, we will determine if the effect of vegetation coverage in diminishing water loss by evaporation is annulled by the loss through transpiration.

  5. Vegetation changes and land-use legacies of depression wetlands of the western coastal plain of South Carolina: 1951–1992

    Microsoft Academic Search

    L. Katherine Kirkman; Robert F. Lide; Gary Wein; Rebecca R. Sharitz

    1996-01-01

    We examined historical patterns of land use of depression wetlands (Carolina bay and bay-like wetlands) to determine if a\\u000a relationship between vegetative successional changes over a 41-year period and previous human disturbances (primarily agricultural)\\u000a could be established. Land cover was interpreted from 1951 (black and white) and 1992 (false color infrared) aerial photography\\u000a of the Savannah River Site (a 780

  6. Establishment, persistence, and management implications of experimental wetland plant communities

    Microsoft Academic Search

    Evan Weiher; Irene C. Wisheu; Paul A. Keddy; Dwayne R. J. Moore

    1996-01-01

    We inoculated 120 wetland microcosms representing 24 different environmental treatments with seeds from a carefully chosen\\u000a pool of 20 wetland plant species. The treatments were chosen to represent a variety of riverine and lacustrine wetlands, including\\u000a those with slow-growing, rare species. In the first season, an annual (Bidens cernua) was most abundant in all the microcosms. Both flooding and high

  7. RESPONSES OF WETLAND VEGETATION TO WATER LEVEL VARIATIONS IN LAKE ONTARIO

    Microsoft Academic Search

    Wolf-Dieter N. Busch; Lynn M. Lewis

    1984-01-01

    Water level fluctuations, a naturally occurring phenomena in the Great Lakes, cause a continuing rejuvenation of lake-influenced wetlands. Two Lake Ontario wetlands (Campbell and Sage Creek Marshes) were mapped for 1 ft. contour intervals and habitat-vegetation type. Historical habitat\\/vegetation conditions were evaluated through interpretation of aerial photography. The photography was selected to represent water levels different from the current. Habitat

  8. Influences of channelization on discharge of suspended sediment and wetland vegetation in Kushiro Marsh, northern Japan

    NASA Astrophysics Data System (ADS)

    Nakamura, Futoshi; Sudo, Tadashi; Kameyama, Satoshi; Jitsu, Mieko

    1997-03-01

    The effects of wetlands on hydrology, water quality, and wildlife habitat are internationally recognized. Protecting the remaining wetlands is one of the most important environmental issues in many countries. However wetlands in Japan have been gradually shrinking due to agricultural development and urbanization, which generally lowers the groundwater level and introduces suspended sediment and sediment-associated nutrients into wetlands. We examined the influences of channelization on discharge of suspended sediment and wetland vegetation in Hokkaido, northern Japan. The impact of river channelization was confirmed not only by the sediment budgets but also by river aggradation or degradation after the channelization and by the resultant vegetational changes. The budgets of suspended sediment demonstrated that wash load was the predominant component accounting for 95% of the total suspended load delivered into the wetland. This suspended sediment was primarily transported into the wetland by flooding associated with heavy rainfall. Twenty-three percent of the wash load and 63% of the suspended bed material load were deposited in the channelized reach, which produced aggradation of about 2 m at the end of the reach. A shorting of the length of the channel, due to channelization of a meandering river, steepened the slope and enhanced the stream power to transport sediment. This steepening shifted the depositional zones of fine sediment 5 km downstream and aggraded the riverbed. Development of the watershed may increase not only the water discharge but also the amount of suspended sediments. The aggradation reduced the carrying capacity of the channel and caused sediment ladened water to flood over the wetlands. The fine sediment accumulated on the wetlands gradually altered the edaphic conditions and wetland vegetation. A low percentage (10 to 15%) of organic contents of wetlands' soil is more evidence indicating that the present condition is far different from normal. Original vegetation such as sedges and Alnus japonica were disappearing from the adjacent areas of the river channel and were being replaced by willow trees ( Salix spp.).

  9. Modeling Hydrologic and Vegetation Responses in Freshwater Wetlands

    Microsoft Academic Search

    Ting Fong May Chui; Swee Yang Low; Shie-Yui Liong

    2010-01-01

    Wetlands constitute 6 - 7 % of the Earth's land surface and provide various critical ecosystem services such as purifying the air and water, mitigating floods and droughts, and supporting wildlife habitats. Despite the importance of wetlands, they are under threat of degradation by human-induced land use changes and climate change. Even if the value of wetlands is recognized, they

  10. Testing of winter vegetation construction and water purification effect of a cascaded wetland model of Jialu river

    Microsoft Academic Search

    Xuchun Ye; Xiao Guo

    2011-01-01

    In order to test the winter vegetation construction and water purification of wetland in vast northern China, a cascaded surface-flow wetland model with a total area of 7400m 2 was constructed along the Jialu river floodplain in Zhengzhou city of Henan province. After winter vegetation such as Potamogeton crispus, Elodea Canadensis and Iris. Sibirica were planted, vegetation development and purification

  11. Water temperature differences by plant community and location in re-established wetlands in the Sacramento-San Joaquin Delta, California, July 2005 to February 2008

    USGS Publications Warehouse

    Crepeau, Kathryn L.; Miller, Robin L.

    2014-01-01

    Rates of carbon storage in wetlands are determined by the balance of its inputs and losses, both of which are affected by environmental factors such as water temperature and depth. In the autumn of 1997, the U.S. Geological Survey re-established two wetlands with different shallow water depths—about 25 and 55 centimeters deep—to investigate the potential to reverse subsidence of delta islands by preserving and accumulating organic substrates derived from plant biomass inputs over time. Because cooler water temperatures can slow decomposition rates and increase accretion of plant biomass, water temperature was recorded from July 2005 to February 2008 in the deeper of the two wetlands, where areas of emergent and submerged vegetation persisted throughout the study, to assess differences in water temperature between the two vegetation types. Water temperature was compared at three depths in the water column between areas of emergent and submerged vegetation and between areas near the water inflow and in the wetland interior in both vegetation types. The latter comparison was a way of evaluating the effect of the length of time water had resided in the wetland on water temperatures. There were statistically significant differences in water temperature at all depths between the two vegetation types. Overall, in areas of emergent marsh vegetation, the mean water temperature at the surface was 1.4 degrees Celsius (°C) less than it was in areas of submerged vegetation; however, when analyses accounted for the changes in temperature due to seasonal and diurnal cycles, differences in the mean water temperature between the vegetation types were even greater than this. For example, in the spring, the mean temperatures in areas of emergent marsh vegetation at the surface, mid-point, and near the sediment in the water column were 2.0, 2.3, and 2.1 °C less, respectively, than water temperatures in areas of submerged vegetation. When diurnal changes in temperature were accounted for by comparing temperatures in mid-afternoon (at 3 p.m.), water-temperature differences were even greater than the seasonal means indicated. In areas of emergent vegetation, the mean temperatures were cooler than temperatures in areas of submerged vegetation at the surface, the mid-point, and near the sediment in the water column by 3.9, 3.6, and 2.3 °C, respectively. Furthermore, from July 2005 through December 2006, water temperatures at the surface in the interior of the wetland were significantly cooler than in areas near the inflow supplying water from the San Joaquin River by 1.0 °C in areas of submerged vegetation and by 1.1 °C in areas of emergent vegetation.

  12. Influence of hummocks and emergent vegetation on hydraulic performance in a surface flow wastewater treatment wetland

    USGS Publications Warehouse

    Keefe, Steffanie H.; Daniels, Joan S.; Runkel, Robert L.; Wass, Roland D.; Stiles, Eric A.; Barber, Larry B.

    2010-01-01

    A series of tracer experiments were conducted biannually at the start and end of the vegetation growing season in a surface flow wastewater treatment wetland located near Phoenix, AZ. Tracer experiments were conducted prior to and following reconfiguration and replanting of a 1.2 ha treatment wetland from its original design of alternating shallow and deep zones to incorporate hummocks (shallow planting beds situated perpendicular to flow). Tracer test data were analyzed using analysis of moments and the one-dimensional transport with inflow and storage numerical model to evaluate the effects of the seasonal vegetation growth cycle and hummocks on solute transport. Following reconfiguration, vegetation coverage was relatively small, and minor changes in spatial distribution influenced wetland hydraulics. During start-up conditions, the wetland underwent an acclimation period characterized by small vegetation coverage and large transport cross-sectional areas. At the start of the growing season, new growth of emergent vegetation enhanced hydraulic performance. At the end of the growing season, senescing vegetation created short-circuiting. Wetland hydrodynamics were associated with high volumetric efficiencies and velocity heterogeneities. The hummock design resulted in breakthrough curves characterized by multiple secondary tracer peaks indicative of varied flow paths created by bottom topography.

  13. Role of vegetation in a constructed wetland on nutrient-pesticide mixture toxicity of Hyalella azteca

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The toxicity of a nutrient-pesticide mixture in non-vegetated and vegetated sections of a constructed wetland (60 X 30 X 0.3 m) was assessed using Hyalella azteca 48 h aqueous whole effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple super phosphate, dia...

  14. Effects of vegetation in mitigating the toxicity of pesticide mixtures in sediments of a wetland mesocosm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study assessed effects of a mixture of two pesticides, diazinon and permethrin, on 48-h sediment toxicity to Hyalella azteca in a constructed wetland mesocosm containing non-vegetated and vegetated sections. Sediment samples were collected at inflow, middle, and back points within each sectio...

  15. Aircraft MSS data registration and vegetation classification of wetland change detection

    USGS Publications Warehouse

    Christensen, E.J.; Jensen, J.R.; Ramsey, Elijah W., III; Mackey, H.E., Jr.

    1988-01-01

    Portions of the Savannah River floodplain swamp were evaluated for vegetation change using high resolution (5a??6 m) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (200-250 ha), a first-order linear transformation provided registration accuracies of less than or equal to one pixel. A larger area was registered using a piecewise linear method. Five major wetland classes were identified and evaluated for change. Phenological differences and the variable distribution of vegetation limited wetland type discrimination. Using unsupervised methods and ground-collected vegetation data, overall classification accuracies ranged from 84 per cent to 87 per cent for each scene. Results suggest that high-resolution aircraft MSS data can be precisely registered, if small areas are used, and that wetland vegetation change can be accurately detected and monitored.

  16. Vegetation Response to Re-flooding in the Mesopotamian Wetlands, Southern Iraq

    Microsoft Academic Search

    M. A. Hamdan; T. Asada; F. M. Hassan; B. G. Warner; A. Douabul; M. R. A. Al-Hilli; A. A. Alwan

    2010-01-01

    Wetlands in the Mesopotamian Plain in southern Iraq were extensively drained in the 1990s. Re-flooding of drained areas commenced\\u000a in 2003, and included parts of the Central marsh between the Euphrates and Tigris Rivers. New vegetation in the re-flooded\\u000a areas of the Central marsh was studied in 2006. Most of the wetland plant species and communities widely distributed prior\\u000a to

  17. Direct and Indirect Effects of Vegetation on Methylmercury Production in Wetlands as Assessed by Experimental Plant Removal

    Microsoft Academic Search

    L. Windham-Myers; M. Marvin-Dipasquale

    2007-01-01

    Although vegetated wetlands are among the most active habitats for microbial methylmercury (MeHg) production, the relative influence of wetland vegetation itself is poorly understood. Plant physiology and biomass (live and dead) can modify both microbial populations and inorganic mercury (Hg(II)) bioavailability through a number of soil, water and atmospheric interactions. Alternatively, plant activity and structure can be simply a response

  18. Wetland vegetation change detection using high resolution aircraft MSS (multispectral scanner) data

    SciTech Connect

    Christensen, E.J.; Jensen, J.R.; Ramsey, E.W.; Mackey, H.E. Jr.

    1986-01-01

    Portions of the Savannah River floodplain were evaluated for wetland vegetation change using high-resolution (5.6 x 5.6 meter pixel) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (190 to 240 hectares), a first-order linear transformation provided registration accuracies less than or equal to one pixel. A larger area was successfully registered using a piecewise linear method. Five wetland classes and one transitional community were indentified and evaluated for change. Phenological differences and the variable distribution of vegetation limited wetland type discrimination. Using unsupervised methods and ground-collected vegetation data, overall classification accuracies ranged from 84 to 87 percent for each scene. A post-classification change analysis identified wetlands transformations in some areas. Cypress-tupelo swamp forest was commonly replaced by more thermally and flood-tolerant marsh species. In areas where cooling water releases were discontinued, invasion by scrub/shrub communities occurred. Results show that multi-date, high-resolution aircraft MSS data can be registered if small areas are used, and that wetland vegetation change can be accurately detected and monitored. 33 refs., 6 figs., 5 tabs.

  19. Efficiency of Constructed Wetland Vegetated with Cyperus alternifolius Applied for Municipal Wastewater Treatment

    PubMed Central

    Ebrahimi, Asghar; Taheri, Ensiyeh; Ehrampoush, Mohammad Hassan; Nasiri, Sara; Jalali, Fatemeh; Soltani, Rahele; Fatehizadeh, Ali

    2013-01-01

    The treatment of municipal wastewater from Yazd city (center of Iran) by constructed wetland vegetated with Cyperus alternifolius was assessed. Two identical wetlands with a total working volume of 60?L and 10?cm sandy layer at the bottom were used. First wetland (W1) was control and had no Cyperus alternifolius plant. Second wetland (W2) had 100 Cyperus alternifolius shrubs with 40?cm height. Influent wastewater was provided from Yazd's septic tanks effluents and after a 4-day retention time in wetlands, reactors effluent was sampled for parameters analysis. Results show that chemical oxygen demand (COD), NO3?–N, NH4+–N, and PO4?3–P in W1 were reduced to 72%, 88%, 32%, and 0.8%, and in W2, these parameters were removed in values of 83%, 81%, 47%, and 10%, respectively. In both wetlands, the highest and lowest removal efficiencies were related to COD and phosphorus, respectively. Also, the removed phosphorus can be released to stream when the soil saturated or influent phosphorus decreased and when the plant died. After a 4-day-retention time, the W2 wetland showed a statistically significantly lower COD and NH4+–N in comparison with W2 wetland. PMID:24027589

  20. Wetlands

    NSDL National Science Digital Library

    The National Wildlife Federation (NWF) offers this collection of online resources on wetlands and their protection. The site is organized into sections, including Types of Wetlands (featuring four major wetland types), Benefits of Wetlands (to humans and to wildlife), Threats to Wetlands (and to streams, rivers, and coasts), Wetlands Media Archives (current and past press releases and feature stories related to wetlands), Wetland Protections (coming soon), and Wetlands Policy Archives (coming soon). In each section, text and photographs offer a concise overview of the topic. For further information, including actions to preserve specific wetlands, floodplain restoration, or educational materials, see NWF's main Wetlands page.

  1. The impact of wetland vegetation drying time on abundance of mosquitoes and other invertebrates.

    PubMed

    Sanford, Michelle R; Keiper, Joe B; Walton, William E

    2003-12-01

    Vegetation management for constructed treatment wetlands often involves knocking down emergent vegetation with heavy equipment and inundating the dead vegetation after a period of drying. Such practices create favorable conditions for larval mosquitoes. We studied the relationship between length of the drying period for an emergent macrophyte, Typha sp., and the abundance of aquatic invertebrates in replicated 0.18-m3 wading pools. The mosquito, Culex tarsalis, was significantly more abundant in pools containing vegetation aged for 2 wk before inundation compared to pools containing vegetation aged 5 wk, freshly cut vegetation, or without vegetation. Potential larval mosquito food resources (particles between 2 and 61 microm in equivalent spherical diameter) in the 2-wk aging treatment did not differ significantly from the other treatments during the 5-wk experiment. The abundance of other larval culicids, nonculicine Diptera, and potential mosquito predators (i.e., Dytiscidae and Aeshnidae) did not differ significantly among the vegetation aging treatments. PMID:14710737

  2. Diazinon Mitigation in Constructed Wetlands: Influence of Vegetation

    Microsoft Academic Search

    M. T. Moore; C. M. Cooper; S. Smith Jr; R. F. Cullum; S. S. Knight; M. A. Locke; E. R. Bennett

    2007-01-01

    In intensively cultivated areas, agriculture is a significant source of pesticides associated with storm runoff. When these\\u000a pollutants enter aquatic receiving waters, they have potential to damage nearby aquatic ecosystems. Constructed wetlands are\\u000a a best management practice (BMP) designed to help alleviate this potential problem. A constructed wetland system (180?×?30 m)\\u000a comprised of a sediment retention basin and two treatment cells

  3. The use of discharge perturbations to understand in situ vegetation resistance in wetlands

    NASA Astrophysics Data System (ADS)

    Lal, A. M. Wasantha; Moustafa, M. Zaki; Wilcox, Walter M.

    2015-04-01

    The ability to better quantify resistance to water flow exerted by vegetation is receiving increased attention due to ongoing worldwide efforts to restore natural vegetation communities in the wetlands and use of vegetation for environmental benefits in streams and wetlands. In south Florida, vegetation resistance affects discharge through shallow wetlands of the Everglades and projects under way in the system to restore remaining natural systems. A more detailed knowledge of the flow dynamics in these wetlands is required to improve modeling of these systems that supports restoration and management efforts. The goal of this investigation is to understand the flow dynamics and the vegetation resistance within a 3 km by 7 km area in the Everglades referred to as STA-3/4 Cell 3A. Methods are developed to demonstrate the use of analytical solutions of partial differential equations (PDEs) and inverse methods to obtain bulk and spatially varying resistance parameters. To achieve this goal, a field test was conducted using sinusoidal discharge disturbances capable of creating water waves in the storm water treatment area (STAs). The discharges, wave speeds, and the wave attenuation rates from the test are used to develop graphical and empirical functions expressing discharge in terms of water depth and energy slope. The empirical functions developed are power law type, and different functions are developed for different depths. The results show that the Manning's equation is not applicable for wetlands with thick emergent vegetation, as well as the difficulty of applying a single power law-type expression for vegetation resistance over a wide range of depths and energy slopes without errors. This is partly due to the existence of multiple flow regimes and different power exponents over depth and energy slopes in these regimes. Results show that the flow regime at low depths is similar to porous media flow, and the flow regime at higher depths is more turbulent.

  4. Establishment of wetland vegetation on East Texas mine spoil 

    E-print Network

    McKnight, Steven Keith

    1991-01-01

    ). Spring drawdown was the only water regime to which all species responded. Barnyard grass produced the most (P & 0. 05) above-ground biomass, while Japanese millet produced the most (P& 0. 05) seed biomass in this water regime. Arrowhead grew under all... water regimes except fall drawdown. In the remaining 3 water regimes, total tuber biomass did not differ (P& 0. 05), while tuber number was greatest (P& 0. 05) in spring drawdown. Chufa produced no seed biomass and little above-ground biomass. Seed...

  5. Mapping swamp timothy (Cripsis schenoides) seed productivity using spectral values and vegetation indices in managed wetlands

    SciTech Connect

    Rahilly, P.J.A.; Li, D.; Guo, Q.; Zhu, J.; Ortega, R.; Quinn, N.W.T.; Harmon, T.C.

    2010-01-15

    This work examines the potential to predict the seed productivity of a key wetland plant species using spectral reflectance values and spectral vegetation indices. Specifically, the seed productivity of swamp timothy (Cripsis schenoides) was investigated in two wetland ponds, managed for waterfowl habitat, in California's San Joaquin Valley. Spectral reflectance values were obtained and associated spectral vegetation indices (SVI) calculated from two sets of high resolution aerial images (May 11, 2006 and June 9, 2006) and were compared to the collected vegetation data. Vegetation data were collected and analyzed from 156 plots for total aboveground biomass, total aboveground swamp timothy biomass, and total swamp timothy seed biomass. The SVI investigated included the Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Transformed Soil Adjusted Vegetation Index (TSAVI), Modified Soil Adjusted Vegetation Index (MSAVI), and Global Environment Monitoring Index (GEMI). We evaluated the correlation of the various SVI with in situ vegetation measurements for linear, quadratic, exponential and power functions. In all cases, the June image provided better predictive capacity relative to May, a result that underscores the importance of timing imagery to coincide with more favorable vegetation maturity. The north pond with the June image using SR and the exponential function (R{sup 2}=0.603) proved to be the best predictor of swamp timothy seed productivity. The June image for the south pond was less predictive, with TSAVI and the exponential function providing the best correlation (R{sup 2}=0.448). This result was attributed to insufficient vegetal cover in the south pond (or a higher percentage of bare soil) due to poor drainage conditions which resulted in a delay in swamp timothy germination. The results of this work suggest that spectral reflectance can be used to estimate seed productivity in managed seasonal wetlands.

  6. Effects of Agricultural Runoff on Vegetation Composition of a Priority Conservation Wetland, Vermont, USA

    E-print Network

    Vermont, University of

    . Forested the Franklin Bog watershed; second, stream water qual- and agricultural runoff from the mixed land use watershed created ity has an effect on the soil chemistry of the wetland; differential vegetation and within the Lake Champlain watershed. Three suggesting nutrient induced plant growth. Of the nine

  7. Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes

    E-print Network

    Wang, Yang

    Vegetation succession and carbon sequestration in a coastal wetland in northwest Florida: Evidence from carbon isotopes Yonghoon Choi and Yang Wang Department of Geological Sciences, Florida State. Measurements of stable carbon isotopic ratios as well as carbon (C), nitrogen (N), and phosphorus (P) contents

  8. Association between phosphorus and suspended solids in an Everglades treatment wetland dominated by submersed aquatic vegetation

    Microsoft Academic Search

    M. Farve; W. Harris; F. Dierberg; K. Portier

    2004-01-01

    Restoration of the Everglades requires reduction of total phosphorus (TP) in the influent run-off from the Everglades agricultural area (EAA). The Everglades nutrient removal project tested phosphorus (P) - removal efficiencies of several treatment wetland cells. The best TP reduction has occurred within the submersed aquatic vegetation (SAV) - dominated treatment Cell 4. A significant proportion of the P reduction

  9. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    NASA Astrophysics Data System (ADS)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    Anthropogenic intensification of nitrogen (N) loading to aquatic ecosystems is widespread and can lead to the degradation of these systems. Wetlands are important sites for N removal via denitrification, the microbially mediated reduction of reactive nitrate to inert N2 gas, but they can also produce high levels of greenhouse gases. Floating plants play an important role in encouraging denitrification, since they create low oxygen conditions that may favor denitrification. We investigated whether wetland sediments with floating plant cover had higher denitrification and greenhouse gas production rates than wetland sediments without floating plants. Replicate flow-through mesocosms with wetland sediment and water were constructed in a growth chamber to mimic the wetland where the sediment and water were collected. Mesocosm treatments were covered with floating vegetation (duckweed), an opaque tarp, or no cover to determine how cover type affects denitrification and greenhouse gas production and whether biotic or abiotic factors are likely responsible for observed differences. Denitrification and greenhouse gas production rates were calculated by measuring excess N2 gas, methane, and nitrous oxide concentrations in the water column and measuring the gas exchange rates between the water column and the atmosphere. Gas exchange rates were measured using an inert volatile tracer added to the water column and accumulation of gas in the mesocosm headspace. Additional mesocosm experiments were performed to determine how duckweed-dominated wetland systems respond to nitrogen loading and which mechanism for lowering dissolved oxygen concentrations is important in affecting denitrification under floating vegetation. Mesocosms with floating vegetation had lower dissolved oxygen than no cover or tarp-covered mesocosms, which is consistent with field and literature observations. Water flowing out of the mesocosms had statistically lower total nitrogen and nitrate concentrations compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.

  10. Modeling Vegetation Dynamics in Response to Hydrological Changes in a Small Urban Tropical Freshwater Wetland

    NASA Astrophysics Data System (ADS)

    Chui, T. M.; Palanisamy, B.; Mohanadas, H.

    2011-12-01

    Wetlands worldwide face drastic degradation from human-induced changes. A small freshwater wetland located within the dense urbanized island state of Singapore---the Nee Soon Wetland---is no exception. It is the only significant locality in Singapore of peat swamp forest and is home to a wide range of rare and endangered floral and faunal species. Unfortunately, changes in downstream land use and surrounding reservoirs' operations may pose threats to the coupled hydrological and vegetation systems. This study develops and applies coupled hydrological-vegetation models to understand the dynamic relationships between hydrology and vegetation systems, and simulates vegetation responses to hydrological changes in Nee Soon. The models combine a hydrological component with a vegetation component. The hydrological component accounts for both saturated and unsaturated flows, and incorporates evapotranspiration, rainfall infiltration and recharge from streams and reservoirs. The vegetation component is described by Lokta-Volterra equations that are tailored for plant growth, to simulate the vegetation dynamics of up to three species that thrive in different flooding conditions. Important findings include: (1) groundwater levels within Nee Soon are not highly sensitive to the operating levels of the surrounding reservoirs. However, (2) downstream drainage results in a localized zone of influence with significant adverse impacts, especially on the less flood-tolerant species. In addition, (3) the severely impacted less flood-tolerant species is unable to recover even when previous hydrological conditions are restored, unless the downstream drainage duration is reduced, or the plant characteristics such as maximum assimilation rates or competitiveness are increased. Finally, (4) hydrological conditions and species competitiveness supersede any other plant growth characteristics in determining the stable coexistence of different species. The developed models and modeling results simulation results help preservation efforts and guide conservation strategies in Nee Soon, as well as many wetlands worldwide.

  11. Effect of climate fluctuations on long-term vegetation dynamics in Carolina bay wetlands

    USGS Publications Warehouse

    Stroh, C.L.; De Steven, D.; Guntenspergen, G.R.

    2008-01-01

    Carolina bays and similar depression wetlands of the U.S. Southeastern Coastal Plain have hydrologic regimes that are driven primarily by rainfall. Therefore, climate fluctuations such as drought cycles have the potential to shape long-term vegetation dynamics. Models suggest two potential long-term responses to hydrologic fluctuations, either cyclic change maintaining open emergent vegetation, or directional succession toward forest vegetation. In seven Carolina bay wetlands on the Savannah River Site, South Carolina, we assessed hydrologic variation and vegetation response over a 15-year period spanning two drought and reinundation cycles. Changes in pond stage (water depth) were monitored bi-weekly to monthly each year from 1989?2003. Vegetation composition was sampled in three years (1989, 1993, and 2003) and analyzed in relation to changes in hydrologic conditions. Multi-year droughts occurred prior to the 1989 and 2003 sampling years, whereas 1993 coincided with a wet period. Wetland plant species generally maintained dominance after both wet and dry conditions, but the abundances of different plant growth forms and species indicator categories shifted over the 15-year period. Decreased hydroperiods and water depths during droughts led to increased cover of grass, upland, and woody species, particularly at the shallower wetland margins. Conversely, reinundation and longer hydroperiods resulted in expansion of aquatic and emergent species and reduced the cover of flood-intolerant woody and upland species. These semi-permanent Upper Coastal Plain bays generally exhibited cyclic vegetation dynamics in response to climate fluctuation, with wet periods favoring dominance by herbaceous species. Large basin morphology and deep ponding, paired with surrounding upland forest dominated by flood-intolerant pines, were features contributing to persistence of herbaceous vegetation. Drought cycles may promote directional succession to forest in bays that are smaller, shallower, or colonized by flood-tolerant hardwoods.

  12. Hydrologic, soil, and vegetation gradients in remnant and constructed riparian wetlands in west-central Missouri, 2001-04

    USGS Publications Warehouse

    Heimann, David C.; Mettler-Cherry, Paige A.

    2004-01-01

    A study was conducted by the U.S. Geological Survey in cooperation with the Missouri Department of Conservation at the Four Rivers Conservation Area (west-central Missouri), between January 2001 and March 2004, to examine the relations between environmental factors (hydrology, soils, elevation, and landform type) and the spatial distribution of vegetation in remnant and constructed riparian wetlands. Vegetation characterization included species composition of ground, understory, and overstory layers in selected landforms of a remnant bottomland hardwood ecosystem, monitoring survival and growth of reforestation plots in leveed and partially leveed constructed wetlands, and determining gradients in colonization of herbaceous vegetation in a constructed wetland. Similar environmental factors accounted for variation in the distribution of ground, understory, and overstory vegetation in the remnant bottomland forest plots. The primary measured determining factors in the distribution of vegetation in the ground layer were elevation, soil texture (clay and silt content), flooding inundation duration, and ponding duration, while the distribution of vegetation in the understory layer was described by elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, and distance from the Marmaton or Little Osage River. The primary measured determining factors in the distribution of overstory vegetation in Unit 1 were elevation, soil texture (clay, silt, and sand content), total flooding and ponding inundation duration, ponding duration, and to some extent, flooding inundation duration. Overall, the composition and structure of the remnant bottomland forest is indicative of a healthy, relatively undisturbed flood plain forest. Dominant species have a distribution of individuals that shows regeneration of these species with significant recruitment in the smaller size classes. The bottomland forest is an area whose overall hydrology has not been significantly altered; however, portions of the area have suffered from hydrologic alteration by a drainage ditch that is resulting in the displacement of swamp and marsh species by colonizing shrub and tree species. This area likely will continue to develop into an immature flood plain forest under the current (2004) hydrologic regime. Reforestation plots in constructed wetlands consisted of sampling survival and growth of multiple tree species (Quercus palustris, pin oak; Carya illinoiensis, pecan) established under several production methods and planted at multiple elevations. Comparison of survival between tree species and production types showed no significant differences for all comparisons. Survival was high for both species and all production types, with the highest mortality seen in the mounded root production method (RPM?) Quercus palustris (pin oak, 6.9 percent), while direct seeded Quercus palustris at middle elevation and bare root Quercus palustris seedlings at the low elevation plots had 100 percent survival. Measures of growth (diameter and height) were assessed among species, production types, and elevation by analyzing relative growth. The greatest rate of tree diameter (72.3 percent) and height (65.3 percent) growth was observed for direct seeded Quercus palustris trees planted at a middle elevation site. Natural colonized vegetation data were collected at multiple elevations within an abandoned cropland area of a constructed wetland. The primary measured determining factors in the distribution of herbaceous vegetation in this area were elevation, ponding duration, and soil texture. Richness, evenness, and diversity were all significantly greater in the highest elevation plots as a result of more recent disturbance in this area. While flood frequency and duration define the delivery mechanism for inundation on the flood plain, it is the duration of ponding and amount of 'topographic capture' of these floodwaters in fluvial lan

  13. Effects of vegetation manipulation on breeding waterfowl in prairie wetlands--a literature review

    USGS Publications Warehouse

    Kantrud, H.A.

    1986-01-01

    Literature on the effects of fire and grazing on the wetlands used by breeding prairie waterfowl is reviewed. Both dabbling and diving ducks and their broods prefer wetlands with openings in the marsh canopy. Decreased use is commonly associated with decreased habitat heterogeneity caused by tall, robust hydrophytes such as Typha spp. and other species adapted to form monotypes in the absence of disturbance. Nearly all previous studies indicate that reductions in height and density of tall, emergent hydrophytes by fire and grazing (unless very intensive) generally benefit breeding waterfowl. Such benefits are an increase in pair density, probably related to increased interspersion of cover and open water which decreases visibility among conspecific pairs, and improvements in their invertebrate food resources that result from increased habitat heterogeneity. Research needs are great because of the drastic changes that have accrued to prairie wetlands through fire suppression, cultivation, and other factors. The physical and biological environments preferred by species of breeding waterfowl during their seasonal and daily activities should be ascertained from future studies in wetland complexes that exist in the highest state of natural preservation. Long-term burning and grazing experiments should follow on specific vegetatively-degraded wetlands judged to be potentially important breeding areas. Seasonality, frequency, and intensity of treatments should be varied and combined and, in addition to measuring the response of the biotic community, the changes in the physical and chemical environment of the wetlands should be monitored to increase our knowledge of causative factors and possible predictive values.

  14. Wetland vegetation responses to liming an Adirondack watershed

    Microsoft Academic Search

    Mackun

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake

  15. Aquatic invertebrate responses to fish presence and vegetation complexity in Western Boreal wetlands, with implications for Waterbird productivity

    Microsoft Academic Search

    Jonathan P. Hornung; A. Lee Foote

    2006-01-01

    Aquatic invertebrates are essential to wetland function, serving as the key trophic link between primary producers, fish,\\u000a and waterfowl in boreal wetlands. We studied how both aquatic vegetation complexity and prevalence, and fish presence, could\\u000a be used to predict the distribution of invertebrate biomass in 24 wetlands of the Western Boreal Forest (WBF). The percent\\u000a volume occupied by aquatic plants

  16. Uncertainties in modelling CH4 emissions from northern wetlands in glacial climates: the role of vegetation parameters

    NASA Astrophysics Data System (ADS)

    Berrittella, C.; van Huissteden, J.

    2011-10-01

    Marine Isotope Stage 3 (MIS 3) interstadials are marked by a sharp increase in the atmospheric methane (CH4) concentration, as recorded in ice cores. Wetlands are assumed to be the major source of this CH4, although several other hypotheses have been advanced. Modelling of CH4 emissions is crucial to quantify CH4 sources for past climates. Vegetation effects are generally highly generalized in modelling past and present-day CH4 fluxes, but should not be neglected. Plants strongly affect the soil-atmosphere exchange of CH4 and the net primary production of the vegetation supplies organic matter as substrate for methanogens. For modelling past CH4 fluxes from northern wetlands, assumptions on vegetation are highly relevant since paleobotanical data indicate large differences in Last Glacial (LG) wetland vegetation composition as compared to modern wetland vegetation. Besides more cold-adapted vegetation, Sphagnum mosses appear to be much less dominant during large parts of the LG than at present, which particularly affects CH4 oxidation and transport. To evaluate the effect of vegetation parameters, we used the PEATLAND-VU wetland CO2/CH4 model to simulate emissions from wetlands in continental Europe during LG and modern climates. We tested the effect of parameters influencing oxidation during plant transport (fox), vegetation net primary production (NPP, parameter symbol Pmax), plant transport rate (Vtransp), maximum rooting depth (Zroot) and root exudation rate (fex). Our model results show that modelled CH4 fluxes are sensitive to fox and Zroot in particular. The effects of Pmax, Vtransp and fex are of lesser relevance. Interactions with water table modelling are significant for Vtransp. We conducted experiments with different wetland vegetation types for Marine Isotope Stage 3 (MIS 3) stadial and interstadial climates and the present-day climate, by coupling PEATLAND-VU to high resolution climate model simulations for Europe. Experiments assuming dominance of one vegetation type (Sphagnum vs. Carex vs. Shrubs) show that Carex-dominated vegetation can increase CH4 emissions by 50% to 78% over Sphagnum-dominated vegetation depending on the modelled climate, while for shrubs this increase ranges from 42% to 72%. Consequently, during the LG northern wetlands may have had CH4 emissions similar to their present-day counterparts, despite a colder climate. Changes in dominant wetland vegetation, therefore, may drive changes in wetland CH4 fluxes, in the past as well as in the future.

  17. An ecohydrological model for studying groundwater-vegetation interactions in wetlands

    NASA Astrophysics Data System (ADS)

    Chui, Ting Fong May; Low, Swee Yang; Liong, Shie-Yui

    2011-10-01

    SummaryDespite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards' equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka-Volterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table-plant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration toll back to the groundwater hydrology for a more accurate soil water balance. This study represents, to our knowledge, the first development of an ecohydrological model for wetland ecosystems that characterizes the coupled relationship between variably-saturated groundwater flow and plant growth dynamics.

  18. Role of Vegetation in a Constructed Wetland on Nutrient–Pesticide Mixture Toxicity to Hyalella azteca

    Microsoft Academic Search

    Richard E. Lizotte Jr; Matthew T. Moore; Martin A. Locke; Robert Kröger

    2011-01-01

    The toxicity of a nutrient–pesticide mixture in nonvegetated and vegetated sections of a constructed wetland (882 m2 each) was assessed using Hyalella azteca 48-h aqueous whole-effluent toxicity bioassays. Both sections were amended with a mixture of sodium nitrate, triple superphosphate,\\u000a diazinon, and permethrin simulating storm-event agricultural runoff. Aqueous samples were collected at inflow, middle, and\\u000a outflow points within each section 5 h, 24 h,

  19. Short-term responses of wetland vegetation after liming of an Adirondack watershed

    Microsoft Academic Search

    I. R. Mackun; D. J. Leopold; D. J. Raynal

    1994-01-01

    Watershed liming has been suggested as a long-term mitigation strategy for lake acidity, particularly in areas subject to high levels of acidic deposition. However, virtually no information has been available on the impacts of liming on wetland vegetation. In 1989, 1100 Mg of limestone (83.5% CaCO[sub 3]) were aerially applied to 48% (100 ha) of the Woods Lake watershed in

  20. Characteristics of methane emission from different vegetations on a wetland

    Microsoft Academic Search

    Atsuko Sugimoto; Noboru Fujita

    1997-01-01

    Methane flux was observed on a floating mat of temperate sphagnum bog, Mizorogaike, Japan, during the period April to October in 1993, to investigate the factors controlling CH4 emission, especially differences in vegetation and variation of water level. Comparing the CH4 flux among reed dominant site, marsh trefoil (a broad-leaved perennial aquatic herb) dominant site and sphagnum dominant site, the

  1. Wetland vegetation responses to liming an Adirondack watershed

    SciTech Connect

    Mackun, I.R.

    1993-01-01

    Watershed liming as a long-term mitigation strategy to neutralize lake acidity, from increasing acid deposition, was initiated in North America at Woods Lake in the west central Adirondack region of New York. In October 1989, a dose of 10 MT lime (83.5% CaCO[sub 3]) ha[sup [minus]1] was aerially applied to 48% of the watershed. The wetlands adjacent to Woods Lake showed two distinct community types: one dominated by Chamaedaphne calyculata, and one dominated by graminoids and other herbaceous species. Within two years, liming did not alter the structure of either community type, and changed the cover or frequency of only 6 of 64 individual taxa. Most of these changes occurred in the herbaceous community type. The only strong positive response to liming was a nearly threefold increase in cover of the rhizomatous sedge Cladium mariscoides. The cover of Carex interior and Sphagnum spp. benefited from lime addition, while cover of Drosera intermedia and Muhlenbergia uniflora, and frequency of Hypericum canadense responded negatively to lime. Liming influenced the competitive release of only three taxa, all forbs with small growth forms. The tissue chemistry of foliage and twigs of Myrica gale, Chamaedaphne calyculata, and Carex stricta in the Chamaedaphne calyculata community type clearly illustrated species-specific patterns of nutrient accumulation and allocation both before and after liming. Concentrations of 17 of 20 elements responded to liming, although the responses varied among species and plant parts. Carex foliage was least responsive to liming, and Chamaedaphne twigs were most responsive. Elemental changes in plant tissues will be reflected in litter and many influence long-term nutrient dynamics in the wetland community.

  2. Wetlands

    NSDL National Science Digital Library

    New Jersey

    2006-01-01

    Learners create a model of a wetland to observe how it absorbs and filters water from the environment. In part 1, learners make it "rain" on their wetland model and compare their predictions of where the water will go to where it actually goes. In part 2, learners consider and discuss the characteristics of wetland plants and animals and match pictures of different organisms to different types of wetlands. An addendum to the lesson provides extensive information, including photos, about wetland plants and animals, plus a section on "Types of Wetlands Found in New Jersey."

  3. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  4. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    SciTech Connect

    Not Available

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  5. TTC Dyeing for Evaluation of Wetland Vegetation Activity in Sarobetsu Mire, Northern Japan

    NASA Astrophysics Data System (ADS)

    Hayashida, K.; Murakami, Y.; Mizugaki, S.; Yano, M.

    2011-12-01

    Reduced groundwater levels cause drying and shrinkage of mires, resulting in rapid changes in wetland vegetation. To conserve pre-existing wetland vegetation, it is important to clarify its behavior in relation to groundwater level fluctuations. Sarobetsu Mire, the biggest high moor in Japan, is experiencing a transition of its wetland vegetation due to increased invasion by dwarf bamboo (Sasa (Eusasa)). Previous studies have been limited to qualitative assessment concluding that the reduction of wetland vegetation areas is taking place. The invasion of dwarf bamboo was found to be inhibited in areas with high groundwater levels, but few studies have sought to quantitatively assess the responses of individual plants to groundwater variations. Growth activity has often been measured using the triphenyl-tetrazolium-chloride (TTC) method, which is a simple approach. The purpose of this study is to develop a quantitative method to assess the response (in terms of activity) of wetland vegetation to groundwater levels. To examine the relationship between the two (i.e., whether plants are dead or alive), a pair of laboratory experiments was conducted using the TTC method and absorptimetry with dwarf bamboo collected from Sarobetsu Mire. The first experiment was to investigate the activity of wetland vegetation in an inundated environment, and the second was to investigate annual fluctuations in such activity. The results showed that the activity (in terms of absorbance) of dwarf bamboo continued to decrease immediately after collection, and that the absorbance peak at a wavelength of 480 nm was also smaller. However, after the submersion period exceeded 30 days, there were no significant changes in absorbance as the submersion period went on. This indicates that dwarf bamboo underwent activity loss and died when the submersion period exceeded 30 days. Dwarf bamboo was considered dead when absorbance (480 nm) was 0.2 or lower and the peak became unclear. Since the change in absorbance was the largest for dwarf bamboo at 480 nm, comparison at this wavelength was considered effective for activity judgment. This result indicated the feasibility of quantitative assessment for the activity of underground rhizomes of dwarf bamboo using TTC dyeing. The activity of dwarf bamboo is at its lowest in July, rises from July to December, is flat or shows a falling tendency from December to May, and falls sharply from June to July. The activity of rhizomes was low from June to August because their processes (in terms of nutrition) moved to the aerial parts of plants to supply nutrients to shoots. The growth of the aerial parts then subsided, suggesting that nutrients were stored in rhizomes from September onward. In the future, groundwater levels are expected to increase due to the restoration of river meanders as part of nature restoration projects, as well as in response to changes in hydrological environments caused by influences such as climate change. It will be necessary to verify the response of plant activity to groundwater levels using the TTC assessment method for various types of wetland vegetation and to promote verification in field tests.

  6. Vegetation class dependent errors in lidar ground elevation and canopy height estimates in a boreal wetland environment

    Microsoft Academic Search

    Chris Hopkinson; Laura E. Chasmer; Gabor Sass; Irena F. Creed; Michael Sitar; William Kalbfleisch; Paul Treitz

    2005-01-01

    An airborne scanning light detection and ranging (lidar) survey using a discrete pulse return airborne laser terrain mapper (ALTM) was conducted over the Utikuma boreal wetland area of northern Alberta in August 2002. These data were analysed to quantify vegetation class dependent errors in lidar ground surface elevation and vegetation canopy surface height. The sensitivity of lidar-derived land-cover frictional parameters

  7. The Correlation Analysis of Vegetation Variable Process and Climate Variables in Alpine-Cold Wetland in Arid Area

    Microsoft Academic Search

    Yan Dou; Xi Chen; Anming Bao; Geping Luo; Guli Japper; Junli Li

    2008-01-01

    Bayinbuluk alpine-cold wetland is an intermountain basin located in the middle of the Tienshan Mountains in Xinjiang, arid area. Some researches showed that there is a high correlation between the growth of vegetation and the meteorological factors (precipitation, temperature). In this paper, to quantify this correlation a study is carried out with MODIS Normalized Difference Vegetation Index (NDVI) 16-day composites

  8. Short-term responses of wetland vegetation after liming of an Adirondack watershed

    SciTech Connect

    Mackun, I.R.; Leopold, D.J.; Raynal, D.J. (State Univ. of New York, Syracuse, NY (United States))

    1994-08-01

    Watershed liming has been suggested as a long-term mitigation strategy for lake acidity, particularly in areas subject to high levels of acidic deposition. However, virtually no information has been available on the impacts of liming on wetland vegetation. In 1989, 1100 Mg of limestone (83.5% CaCO[sub 3]) were aerially applied to 48% (100 ha) of the Woods Lake watershed in the west-central Adirondack region of New York as part of the first comprehensive watershed liming study in North America. We inventoried wetland vegetation in 1.0-m[sup 2] plots before liming and during the subsequent 2 yr. Within this period liming influenced the cover, frequency, or importance values of only 6 of 64 wetland taxa. The cover of Sphagnum spp. and of the cespitose sedge Carex interior decreased in control relative to limed plots, and cover of the rhizomatous sedge Cladium mariscoides increased nearly threefold in limed areas. These two sedges, which are relatively tall, are characteristic of more calcareous habitats. Cover of the grass Muhlenbergia uniflora, cover and importance were adversely affected or inhibited by lime. It is unclear whether liming directly inhibited the growth of these three small-statured species, or whether the adverse effects of lime were mediated through shifts in competitive interactions with other species. The limited responses that we observed to liming, along with changes that occurred in control plots over the study period, may indicate that in the short term watershed liming was no more of a perturbation than the environmental factors responsible for natural annual variation in wetland communities.

  9. Wetlands

    NSDL National Science Digital Library

    2010-01-01

    This video segment explains why Native people regard wetlands not only for their important ecological function, but for their spiritual value as well. For many tribes, wetlands represent life. They consider wetlands to be sacred places that must be protected from external sources of pollution, such as runoff from landscaping businesses and municipal discharges. Included is a background essay that gives a history of wetlands and the destruction they are now facing from human development. The many benefits of wetlands, like their ability to protect property from flooding. There are four discussion questions about the importance of wetlands and their functions. There is a helpful section that shows you the standards for your state ranging from grades K-12, as well as links to related resources.

  10. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading

    Microsoft Academic Search

    F. E. Dierberg; T. A. DeBusk; S. D. Jackson; M. J. Chimney; K. Pietro

    2002-01-01

    Submerged aquatic vegetation (SAV) communities exhibit phosphorus (P) removal mechanisms not found in wetlands dominated by emergent macrophytes. This includes direct assimilation of water column P by the plants and pH-mediated P coprecipitation with calcium carbonate (CaCO3). Recognizing that SAV might be employed to increase the performance of treatment wetlands, we investigated P removal in mesocosms (3.7m2) stocked with a

  11. Hydrologic and Vegetative Removal of Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii Surrogate Microspheres in Coastal Wetlands

    PubMed Central

    Hogan, Jennifer N.; Daniels, Miles E.; Watson, Fred G.; Oates, Stori C.; Miller, Melissa A.; Conrad, Patricia A.; Shapiro, Karen; Hardin, Dane; Dominik, Clare; Melli, Ann; Jessup, David A.

    2013-01-01

    Constructed wetland systems are used to reduce pollutants and pathogens in wastewater effluent, but comparatively little is known about pathogen transport through natural wetland habitats. Fecal protozoans, including Cryptosporidium parvum, Giardia lamblia, and Toxoplasma gondii, are waterborne pathogens of humans and animals, which are carried by surface waters from land-based sources into coastal waters. This study evaluated key factors of coastal wetlands for the reduction of protozoal parasites in surface waters using settling column and recirculating mesocosm tank experiments. Settling column experiments evaluated the effects of salinity, temperature, and water type (“pure” versus “environmental”) on the vertical settling velocities of C. parvum, G. lamblia, and T. gondii surrogates, with salinity and water type found to significantly affect settling of the parasites. The mesocosm tank experiments evaluated the effects of salinity, flow rate, and vegetation parameters on parasite and surrogate counts, with increased salinity and the presence of vegetation found to be significant factors for removal of parasites in a unidirectional transport wetland system. Overall, this study highlights the importance of water type, salinity, and vegetation parameters for pathogen transport within wetland systems, with implications for wetland management, restoration efforts, and coastal water quality. PMID:23315738

  12. Distribution of Culex species in vegetation bands of a constructed wetland undergoing integrated mosquito management.

    PubMed

    Walton, William E; Popko, David A; Van Dam, Alex R; Merrill, Andrea

    2013-03-01

    The distribution and abundance of emerging Culex spp. were assessed within narrow (width: 3 m) and wide (width: 20 m) bands of California bulrush (Schoenoplectus californicus) and in the open water adjacent to emergent vegetation in 2 marshes of an ammonia-dominated wastewater treatment wetland in southern California. Emerging mosquitoes were collected along transects perpendicular to the path of water flow at 3 distances (1.5, 5, and 10 m) from the vegetation-open water interface in the wide bands of emergent vegetation, at the center of narrow bands of emergent vegetation, and at 1.5 m from the edge of emergent vegetation in the open water. The width of vegetation bands (3 vs. 20 m) influenced the effectiveness of integrated mosquito management practices, especially the application of mosquito control agents. Mosquito production from the 2 marshes also differed up to 14-fold, suggesting that the distance between the shorelines (62 vs. 74 m) of each marsh also influenced the efficacy of mosquito control agents applied from the shore and boats. Hot spots of mosquito production (75424 female Culex/m2/day) were found within the wide bands of bulrush. During summer, the relative abundance of Culex stigmatosoma among emerging mosquitoes increased from the periphery to the center of wide bands of emergent vegetation. Culex erythrothorax emergence rates were comparatively similar among the transects in the wide bands of emergent vegetation. Culex tarsalis adults increased in number from the periphery to the center of wide bands of bulrush and, in May, were > 95% of emerged mosquitoes. PMID:23687860

  13. Indicators of nitrate in wetland surface and soil-waters: interactions of vegetation and environmental factors Hydrology and Earth System Sciences, 8(4), 663672 (2004) EGU

    E-print Network

    Paris-Sud XI, Université de

    2004-01-01

    Indicators of nitrate in wetland surface and soil-waters: interactions of vegetation were found between nitrate concentrations and structural characteristics of the wetland vegetation and environmental factors 663 Hydrology and Earth System Sciences, 8(4), 663672 (2004) © EGU Indicators of nitrate

  14. A computer model to forecast wetland vegetation changes resulting from restoration and protection in coastal Louisiana

    USGS Publications Warehouse

    Visser, Jenneke M.; Duke-Sylvester, Scott M.; Carter, Jacoby; Broussard, Whitney P., III

    2013-01-01

    The coastal wetlands of Louisiana are a unique ecosystem that supports a diversity of wildlife as well as a diverse community of commercial interests of both local and national importance. The state of Louisiana has established a 5-year cycle of scientific investigation to provide up-to-date information to guide future legislation and regulation aimed at preserving this critical ecosystem. Here we report on a model that projects changes in plant community distribution and composition in response to environmental conditions. This model is linked to a suite of other models and requires input from those that simulate the hydrology and morphology of coastal Louisiana. Collectively, these models are used to assess how alternative management plans may affect the wetland ecosystem through explicit spatial modeling of the physical and biological processes affected by proposed modifications to the ecosystem. We have also taken the opportunity to advance the state-of-the-art in wetland plant community modeling by using a model that is more species-based in its description of plant communities instead of one based on aggregated community types such as brackish marsh and saline marsh. The resulting model provides an increased level of ecological detail about how wetland communities are expected to respond. In addition, the output from this model provides critical inputs for estimating the effects of management on higher trophic level species though a more complete description of the shifts in habitat.

  15. Direct and Indirect Effects of Vegetation on Methylmercury Production in Wetlands as Assessed by Experimental Plant Removal

    NASA Astrophysics Data System (ADS)

    Windham-Myers, L.; Marvin-Dipasquale, M.

    2007-12-01

    Although vegetated wetlands are among the most active habitats for microbial methylmercury (MeHg) production, the relative influence of wetland vegetation itself is poorly understood. Plant physiology and biomass (live and dead) can modify both microbial populations and inorganic mercury (Hg(II)) bioavailability through a number of soil, water and atmospheric interactions. Alternatively, plant activity and structure can be simply a response to geochemical conditions that also favor Hg(II)-methylation. Linked studies within the San Francisco Bay watershed have demonstrated that habitat-specific biogeochemical characteristics are the dominant factors controlling MeHg production, and that differences in wetland plant biomass, root density, decomposition rates, can directly influence sediment mercury cycling. A vegetated:de-vegetated paired plot approach was used to directly assess the influence of live plant activities on surface sediment mercury dynamics and associated biogeochemistry in differing wetland settings: salt marshes, permanent and seasonal freshwater wetlands, a freshwater floodplain, and agricultural rice fields. Although results from several of these subhabitats are pending, the data thus far have illustrated linkages between wetland plants and microbial Hg(II)-methylation. De- vegetation strongly influenced sediment biogeochemistry (e.g. redox, dissolved organic content, and reduced sulfur pools) in high interior pickleweed (Sarcocornia pacifica) dominated saltmarshes, where the high rates of MeHg production (up to 1 ng g-1dry sed d-1) observed in vegetated plots were reduced to <10 pg g-1dry sed d-1 in de-vegetated plots. Further, plant root densities were positively correlated with the activity of Hg(II)-methylating bacteria in these interior saltmarsh settings. The pool size of mercury available for methylation ("reactive mercury") was not measurably influenced by this short-term de-vegetation experiment, but across field studies, rhizosphere biomass was often negatively correlated with reactive mercury concentration due to a corresponding increase in solid-phase reduced-sulfur compounds associated with this zone. Because mercury methylation is controlled by both the reactive mercury pool size and the microbial Hg(II)-methylation activity, the direct influence of wetland plants on both of these terms can be profound and reflect multiple, and potentially contrasting, mercury cycling pathways. Experimental field manipulations, in conjunction with comparative habitat and process studies, represent essential tools to elucidate the influence of wetland plant communities on Hg cycling.

  16. [Study on nutrient and salinity in soil covered with different vegetations in Shuangtaizi estuarine wetlands].

    PubMed

    Song, Xiao-Lin; Lü, Xian-Guo; Zhang, Zhong-Sheng; Chen, Zhi-Ke; Liu, Zheng-Mao

    2011-09-01

    Nutrient elements and salinity in soil covered by different vegetations including Phragmites australis (Clay.) Trin., Typha orientalis Presl., Puccinellia distans Parl, and Suaeda salsa in Shuangtaizi estuarine wetlands were investigated to study their distribution characteristics and to reveal the nutrient element variation during the vegetation succession processes. Results indicated that total potassium, total phosphorus and salinity were different significantly in soil between different plant communities while available phosphorus, total nitrogen, available nitrogen, available potassium, total sulfur, iron and soil organic carbon were different insignificantly. Correlation analysis suggested that soil organic carbon were related significantly to total nitrogen, available phosphorus, available potassium, which implied that decomposition of plant litter might be the mail source of soil nitrogen and available nutrient. Salinity was significantly related to total phosphorus and iron in soil. In Shuangtaizi estuarine wetland soil, ratios of carbon to nitrogen (R(C/N)) was in the range of 12.21-26.33 and the average value was 18.21, which was higher than 12.0. It indicated that soil organic carbon in Shuangtaizi estuarine mainly came from land but not ocean and plants contributed the most of soil organic matters. There was no significant difference in R(C/N) between soil from the four plant communities (F = 1.890, p = 0.151). R(C/N) was related significantly to sol salinity (r = 0.346 3, p = 0.035 8) and was increasing with soil salinity. PMID:22165232

  17. Accounting for non-photosynthetic vegetation in remote-sensing-based estimates of carbon flux in wetlands

    USGS Publications Warehouse

    Schile, Lisa M.; Byrd, Kristin B.; Windham-Myers, Lisamarie; Kelly, Maggi

    2013-01-01

    Monitoring productivity in coastal wetlands is important due to their high carbon sequestration rates and potential role in climate change mitigation. We tested agricultural- and forest-based methods for estimating the fraction of absorbed photosynthetically active radiation (f APAR), a key parameter for modelling gross primary productivity (GPP), in a restored, managed wetland with a dense litter layer of non-photosynthetic vegetation, and we compared the difference in canopy light transmission between a tidally influenced wetland and the managed wetland. The presence of litter reduced correlations between spectral vegetation indices and f APAR. In the managed wetland, a two-band vegetation index incorporating simulated World View-2 or Hyperion green and near-infrared bands, collected with a field spectroradiometer, significantly correlated with f APAR only when measured above the litter layer, not at the ground where measurements typically occur. Measures of GPP in these systems are difficult to capture via remote sensing, and require an investment of sampling effort, practical methods for measuring green leaf area and accounting for background effects of litter and water.

  18. Chemical evolution and vegetation response in an altered wetland ecosystem, Hula Valley, Israel (1988-2004).

    PubMed

    Avisar, Dror; Fox, Adam S

    2012-01-01

    The Hula Nature Reserve (HNR) (0.3 km(2)) in northern Israel is a semiarid wetland ecosystem within the greater Hula Valley. In the 1950s, approximately 60 km(2) of wetlands were drained and converted to farmland. The HNR was established during this time to preserve some of the native flora and fauna. Agricultural runoff and a reflooding of the area with peat water in 1999 resulted in high sulfate (SO(4) (2-)) concentrations of 66.67 ± 4.00 mg/L. We identified the existence of SO(4) (2-), nitrate (NO(3) (-)), and ammonium (NH(4) (+)) nutrient gradients as well as related mechanisms affecting the growth and dieback of Cyperus papyrus. The observed changes in the C. papyrus populations were caused primarily by fluctuations in SO(4) (2-). After two key events that affected levels of SO(4) (2-) in the HNR, C. papyrus coverage was altered by more than 80%. PMID:22506702

  19. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands: a case study in the Yellow River wetland in China.

    PubMed

    Zhao, Tongqian; Xu, Huashan; He, Yuxiao; Tai, Chao; Meng, Hongqi; Zeng, Fanfu; Xing, Menglin

    2009-01-01

    Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K(15)NO3 to the tested vegetation, nitrogen content was 77.78% for P. communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. communis Trin (9.731 mg/g) > old P. communis Trin (4.939 mg/g) > S. triqueter (0.620 mg/g) > T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution. PMID:19862959

  20. A test of vegetation-related indicators of wetland quality in the prairie pothole region

    USGS Publications Warehouse

    Kantrud, H.A.; Newton, W.E.

    1996-01-01

    This study was part of an effort by the U.S. Environmental Protection Agency to quantitatively assess the environmental quality or 'health' of wetland resources on regional and national scales. During a two-year pilot study, we tested selected indicators of wetland quality in the U.S. portion of the prairie pothole region (PPR). We assumed that the amount of cropland versus non-cropland (mostly grassland) in the plots containing these basins was a proxy for their quality. We then tested indicators by their ability to discriminate between wetlands at the extremes of that proxy. Amounts of standing dead vegetation were greater in zones of greater water permanence. Depth of litter was greater in zones of greater water permanence and in zones of basins in poor-quality watersheds. Amounts of unvegetated bottom were greater in basins in poor-quality watersheds; lesser amounts occurred in all wetlands during a wetter year. Greater amounts of open water occurred during a wetter year and in zones of greater water permanence. When unadjusted for areas (ha) of communities, plant taxon richness was higher in wet-meadow and shallow-marsh zones in good-quality watersheds than in similar zones in poor-quality watersheds. Wet-meadow zones in good-quality watersheds had greater numbers of native perennials than those in poor-quality watersheds. This relation held when we eliminated all communities in good-quality watersheds larger than the largest communities in poor-quality watersheds from the data set. We conclude that although amounts of unvegetated bottom and plant taxon richness in wet-meadow zones were useful indicators of wetland quality during our study, the search for additional such indicators should continue. The value of these indicators may change with the notoriously unstable hydrological conditions in the PPR. Most valuable would be indicators that could be photographed or otherwise remotely sensed and would remain relatively stable under various hydrological conditions. An ideal set of indicators could detect the absence of stressors, as well as the presence of structures or functions, of known value to major groups of organisms.

  1. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    USGS Publications Warehouse

    Sasser, C.E.; Gosselink, J.G.; Swenson, E.M.; Swarzenski, C.M.; Leibowitz, N.C.

    1996-01-01

    In the 1940s extensive floating marshes (locally called 'flotant') were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking habitat based on differences in buoyancy dynamics (timing and degree of floating), substrate characteristics, and dominant vegetation. All floating marshes have low bulk density, organic substrates. Nearly all are fresh marshes. Panicum hemitomon floating marshes presently occur within the general regions that were reported in the 1940's by O'Neil, but are reduced in extent. Some of the former Panicum hemitomon marshes have been replaced by seasonally or variably floating marshes dominated, or co-dominated by Sagittaria lancifolia or Eleocharis baldwinii. ?? 1996 Kluwer Academic Publishers.

  2. A High Density Storm Surge Monitoring Network: Evaluating the Ability of Wetland Vegetation to Reduce Storm Surge

    NASA Astrophysics Data System (ADS)

    Lawler, S.; Denton, M.; Ferreira, C.

    2013-12-01

    Recent tropical storm activity in the Chesapeake Bay and a potential increase in the predicted frequency and magnitude of weather systems have drawn increased attention to the need for improved tools for monitoring, modeling and predicting the magnitude of storm surge, coastal flooding and the respective damage to infrastructure and wetland ecosystems. Among other forms of flood protection, it is believed that coastal wetlands and vegetation can act as a natural barrier that slows hurricane flooding, helping to reduce the impact of storm surge. However, quantifying the relationship between the physical process of storm surge and its attenuation by wetland vegetation is an active area of research and the deployment of in-situ measuring devices is crucial to data collection efforts in this field. The United States Geological Survey (USGS) mobile storm-surge network has already successfully provided a framework for evaluating hurricane induced storm surge water levels on a regional scale through the use of in-situ devices installed in areas affected by storm surge during extreme events. Based on the success of the USGS efforts, in this study we adapted the monitoring network to cover relatively small areas of wetlands and coastal vegetation with an increased density of sensors. Groups of 6 to 10 water level sensors were installed in sites strategically selected in three locations on the Virginia coast of the lower Chesapeake Bay area to monitor different types of vegetation and the resulting hydrodynamic patterns (open coast and inland waters). Each group of sensors recorded time series data of water levels for both astronomical tide circulation and meteorological induced surge. Field campaigns were carried out to survey characteristics of vegetation contributing to flow resistance (i.e. height, diameter and stem density) and mapped using high precision GPS. A geodatabase containing data from field campaigns will support the development and calibration of computational models to simulate storm surge flow over wetlands specifically designed to represent Virginia's aquatic vegetation and to improve our fundamental knowledge of tide and storm surge hydrodynamics in estuarine wetlands. This poster will present the results of the field measurements for events during the 2013 Hurricane Season, tidal flows within the study areas, and surge attenuation rates according to vegetation characteristics.

  3. Changes in vegetative coverage of the Hongze Lake national wetland nature reserve: a decade-long assessment using MODIS medium-resolution data

    NASA Astrophysics Data System (ADS)

    Yu, Kun; Hu, Chuanmin

    2013-01-01

    Wetlands are important ecosystems on Earth. However, global wetland coverage is being reduced due to both anthropogenic and natural effects. Thus, assessment of temporal changes in vegetative coverage, as a measure of the wetland health, is critical to help implement effective management plans and provide inputs for climate-related research. In this work, 596 moderate-resolution imaging spectroradiometer (MODIS) 250-m resolution images of the Hongze Lake national wetland nature reserve from 2000 to 2009 were used to study the vegetative coverage (above the water surface) of the reserve. Three vegetation indices [normalized difference vegetation index (NDVI), enhanced VI (EVI), and floating algae index (FAI)] were compared to evaluate their effectiveness in assessing relative changes. FAI was less sensitive than NDVI and EVI to aerosol effects and showed less statistical error than NDVI and EVI. Long-term FAI data revealed clear seasonal cycles in vegetative coverage in the 113-km2 core area of the reserve, with annual maximal coverage relatively stable after 2004. This suggests that the national wetland nature reserve was well protected through the study period. However, vegetative coverage decreased due to the flooding event in 2003. Moreover, correlation analysis showed that annual sunshine duration collectively played a significant role in affecting the wetland vegetative coverage.

  4. Mapping vegetation of a wetland ecosystem by fuzzy classification of optical and microwave satellite images supported by various ancillary data

    NASA Astrophysics Data System (ADS)

    Stankiewicz, Krystyna; Dabrowska-Zielinska, Katarzyna; Gruszczynska, Maryla; Hoscilo, Agata

    2003-03-01

    An approach to classification of satellite images aimed at vegetation mapping in a wetland ecosystem has been presented. The wetlands of the Biebrza Valley located in the NE part of Poland has been chosen as a site of interest. The difficulty of using satellite images for the classification of a wetland land cover lies in the strong variability of the hydration state of such ecosystem in time. Satellite images acquired by optical or microwave sensors depend heavily on the current water level which often masks the most interesting long-time scale features of vegetation. Therefore the images have to be interpreted in the context of various ancillary data related to the investigated site. In the case of Biebrza Valley the most useful information was obtained from the soil and hydration maps as well as from the old vegetation maps. The object oriented classification approach applied in eCognition software enabled simultaneous use of satellite images together with the additional thematic data. Some supplementary knowledge concerning possible plant cover changes was also introduced into the process of classification. The accuracy of the classification was assessed versus ground-truth data and results of visual interpretation of aerial photos. The achieved accuracy depends on the type of vegetation community in question and is better for forest or shrubs than for meadows.

  5. A numerical study of vegetation impact on reducing storm surge by wetlands in a semi-enclosed estuary

    USGS Publications Warehouse

    Kelin, Hu; Qin, Chen; Wang, Hongqing

    2014-01-01

    Coastal wetlands play a unique role in extreme hurricane events. The impact of wetlands on storm surge depends on multiple factors including vegetation, landscape, and storm characteristics. The Delft3D model, in which vegetation effects on flow and turbulence are explicitly incorporated, was applied to the semi-enclosed Breton Sound (BS) estuary in coastal Louisiana to investigate the wetland impact. Guided by extensive field observations, a series of numerical experiments were conducted based on variations of actual vegetation properties and storm parameters from Hurricane Isaac in 2012. Both the vegetation-induced maximum surge reduction (MSR) and maximum surge reduction rate (MSRR) increased with stem height and stem density, and were more sensitive to stem height. The MSR and MSRR decreased significantly with increasing wind intensity. The MSRR was the highest with a fast-moving weak storm. It was also found that the MSRR varied proportionally to the expression involving the maximum bulk velocity and surge over the area of interest, and was more dependent on the maximum bulk surge. Both MSR and MSRR appeared to increase when the area of interest decreased from the whole BS estuary to the upper estuary. Within the range of the numerical experiments, the maximum simulated MSR and MSRR over the upper estuary were 0.7 m and 37%, respectively.

  6. Prototype Application of NASA Missions to Identify Patterns of Wetland Vegetation Development within the South San Francisco Bay Salt Ponds

    NASA Astrophysics Data System (ADS)

    Hsu, W.; Newcomer, M. E.; Justice, E.; Guild, L. S.; Skiles, J. W.

    2010-12-01

    The South Bay Salt Pond Restoration Project is the largest tidal wetland restoration on the west coast of the United States. Monitoring vegetation development in these emergent habitats with remote sensing can provide restoration managers with an indication of ecological health and progress of development. Remotely sensed imagery was used to monitor vegetation development and to map vegetation patterns and biota changes historically, during, and after salt pond construction for ponds A19, A20, and A21. Percent vegetative cover was mapped using the Normalized Difference Vegetation Index (NDVI) from MODIS, Tasseled Cap Greenness (TCG) and NDVI from Landsat TM, and the Ratio Vegetation Index (RVI) from ASTER. Field parameters included in-situ measurements and geographic locations for percent vegetative cover, and site specific species information. Field data were incorporated into GIS, and vegetation was analyzed using spatial statistics methods and a qualitative post-classification comparison technique. NDVI values obtained from the Landsat scenes indicated a net gain of 3.35 acres of vegetation cover from February 2006 (before pond breaching) to August 2009 for pond A21 and 1.33 acres and 3.14 acres for ponds A20 and A19, respectively. Increases in vegetation indicate the marsh has built up to a steady-state condition to provide appropriate habitat for endangered plant and animal species and also indicates the success of restoration practices.

  7. Hydrologic, vegetation, and soil data collected in selected wetlands of the Big River Management area, Rhode Island, from 2008 through 2010

    USGS Publications Warehouse

    Borenstein, Meredith S.; Golet, Francis C.; Armstrong, David S.; Breault, Robert F.; McCobb, Timothy D.; Weiskel, Peter K.

    2012-01-01

    The Rhode Island Water Resources Board planned to develop public water-supply wells in the Big River Management Area in Kent County, Rhode Island. Research in the United States and abroad indicates that groundwater withdrawal has the potential to affect wetland hydrology and related processes. In May 2008, the Rhode Island Water Resources Board, the U.S. Geological Survey, and the University of Rhode Island formed a partnership to establish baseline conditions at selected Big River wetland study sites and to develop an approach for monitoring potential impacts once pumping begins. In 2008 and 2009, baseline data were collected on the hydrology, vegetation, and soil characteristics at five forested wetland study sites in the Big River Management Area. Four of the sites were located in areas of potential drawdown associated with the projected withdrawals. The fifth site was located outside the area of projected drawdown and served as a control site. The data collected during this study are presented in this report.

  8. wetlands

    Microsoft Academic Search

    Jarmo Laitinen; Teemu Tahvanainen; Sakari Rehell; Jari Oksanen

    Aro wetlands are a poorly-known, hydrologically extreme inland habitat type outside permanent waterbodies, often occurring in weekly paludified parts of peatlands. They are characterized by alternating flood and drought periods. We studied these habitats in the mid-boreal zone in the coastal part of Northern Ostrobothnia (65°N). We made classification (Cluster analysis) and ordination analyses (NMDS) with small-sized relevés and measured

  9. Vegetation effects on floating treatment wetland nutrient removal and harvesting strategies in urban stormwater ponds.

    PubMed

    Wang, Chih-Yu; Sample, David J; Bell, Cameron

    2014-11-15

    Floating treatment wetlands (FTWs) consist of emergent macrophytes that are placed on a floating mat in a pond for water treatment and aesthetic purposes. FTWs may have unique advantages with respect to treating urban runoff within existing retention ponds for excess nutrients. However, research is lacking in providing guidance on performance of specific species for treating urban runoff, and on timing of harvest. Harvesting is needed to remove nutrients permanently from the retention pond. We investigated vegetation effects on FTWs on nitrogen (N) and phosphorus (P) removal performance and storage in above-ground FTW macrophyte tissues. The study evaluated pickerelweed (PW, Pontederia cordata L.) and softstem bulrush (SB, Schoenoplectus tabernaemontani) over time in microcosms flushed with water obtained from a nearby urban retention pond in northern Virginia near Washington, DC. While the literature exhibits a wide range of experimental sizes, using the term mesocosm, we have chosen the term microcosm to reflect the small size of our vessel; and do not include effects of sediment. The experiment demonstrated PW outperformed SB for P and N removal. Based upon analysis of the accumulated nutrient removal over time, a harvest of the whole PW and SB plants in September or October is recommended. However, when harvesting only the aerial parts, we recommend harvesting above-ground PW tissues in July or August to maximize nutrient removal. This is because PW translocates most of its nutrients to below-ground storage organs in the fall, resulting in less nutrient mass in the above-ground tissue compared to the case in the summer (vegetative stage). Further research is suggested to investigate whether vegetation can be overly damaged from multiple harvests on an annual basis in temperate regions. PMID:25214393

  10. The Influence of Vegetation on Methane Ebullition in a Temperate Wetland

    NASA Astrophysics Data System (ADS)

    Roddy, S.; Varner, R. K.; Palace, M. W.

    2014-12-01

    Methane (CH4) is a potent greenhouse gas, with wetlands being the main natural source of CH4 to the atmosphere. Ebullition, or bubbling, is one pathway of CH4 emission to the atmosphere from wetland ecosystems. Rates of ebullition vary spatially and temporally and can be impacted by vegetation type, peat density, temperature and pressure. We present three years of ebullition measurements from Sallie's Fen, a temperate peatland located in Barrington, NH. We observed the continuous and episodic nature of ebullition and how it varied with species composition, specifically sedge dominated and shrub dominated areas, using six acoustic and manual sensors. These sensors recorded continuously from June through October in each year (2011-2013). From these sensors, manual collections of accumulated gas were sampled to measure both the volume of gas and concentration of CH4. To identify differences in ebullition rates due to varying species composition, we installed six additional sensors in June 2013. Measured ebullitive fluxes ranged from 0 to 345 mg/m2/day. Manual measurements in sedge dominated sites had an average flux of 40.8 mg/m2/day for the three year data set compared to an average flux rate of 31.7 mg/m2/day for the shrub dominated sites. Acoustic data shows relationships between water table height and changes in other environmental variables. A subsample of the manual bubble collections at each sensor was also analyzed for 13C-CH4 in order to understand the dominant methanogenic pathway and how this varies with species composition and season.

  11. Evidence and implications of the background phosphorus concentration of submerged aquatic vegetation wetlands in Stormwater Treatment Areas for Everglades restoration

    Microsoft Academic Search

    John M. Juston; Thomas A. DeBusk

    2011-01-01

    The limits of phosphorus (P) removal from the 18,120 ha Stormwater Treatment Areas (STAs) for Everglades restoration depend largely on the performance of submerged aquatic vegetation (SAV) wetlands, as SAV treatment cells now provide final stage treatment for 85% of the STA project. A long-term internal P profile in STA-2 cell 3 (STA2C3), one of the longest-running and best performing

  12. Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems

    Microsoft Academic Search

    Wendong Tao; Jing Wang

    2009-01-01

    Integration of partial nitrification (nitritation) and anaerobic ammonium oxidation (anammox) in constructed wetlands creates a sustainable design for nitrogen removal. Three wetland treatment systems were operated with synthetic wastewater (60mg NH3–NL?1) in a batch mode of fill – 1-week reaction – drain. Each treatment system had a surface flow wetland (unplanted, planted, and planted plus aerated, respectively) with a rooting

  13. Demonstration of wetland vegetation mapping in Florida from computer-processed satellite and aircraft multispectral scanner data

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1979-01-01

    The success of remotely mapping wetland vegetation of the southwestern coast of Florida is examined. A computerized technique to process aircraft and LANDSAT multispectral scanner data into vegetation classification maps was used. The cost effectiveness of this mapping technique was evaluated in terms of user requirements, accuracy, and cost. Results indicate that mangrove communities are classified most cost effectively by the LANDSAT technique, with an accuracy of approximately 87 percent and with a cost of approximately 3 cent per hectare compared to $46.50 per hectare for conventional ground survey methods.

  14. Wetland vegetation in Manzala lagoon, Nile Delta coast, Egypt: Rapid responses of pollen to altered nile hydrology and land use

    USGS Publications Warehouse

    Bernhardt, C.E.; Stanley, J.-D.; Horton, B.P.

    2011-01-01

    The pollen record in a sediment core from Manzala lagoon on the Nile delta coastal margin of Egypt, deposited from ca. AD 1860 to 1990, indicates rapid coastal wetland vegetation responses to two primary periods of human activity. These are associated with artificially altered Nile hydrologic regimes in proximal areas and distal sectors located to ???1200 km south of Manzala. Freshwater wetland plants that were dominant, such as Typha and Phragmites, decreased rapidly, whereas in the early 1900s, brackish water wetland species (e.g., Amaranthaceae) increased. This change occurred after closure of the Aswan Low Dam in 1902. The second major modification in the pollen record occurred in the early 1970s, after Aswan High Dam closure from 1965 to 1970, when Typha pollen abundance increased rapidly. Massive population growth occurred along the Nile during the 130 years represented by the core section. During this time, the total volume of lagoon water decreased because of conversion of wetland areas to agricultural land, and input of organic-rich sediment, sewage (municipal, agricultural, industrial), and fertilizer in Manzala lagoon increased markedly. Although the wetland plant community has continued to respond to increasingly intensified and varied human-induced pressures in proximal sectors, the two most marked changes in Manzala pollen best correlate with distal events (i.e., closure of the two dams at Aswan). The study also shows that the two major vegetation changes in Manzala lagoon each occurred less than 10 years after closure upriver of the Low and High dams that markedly altered the Nile regime from Upper Egypt to the coast. ?? 2011, the Coastal Education & Research Foundation (CERF).

  15. Demonstration Wetland at Henderson, Nevada

    USGS Multimedia Gallery

    Demonstration wetland at Henderson, Nevada, where vegetated hummocks were built into the wastewater treatment wetland to improve its effectiveness and sustainability, as well as provide quality wildlife habitat....

  16. Gas transfer velocities for quantifying methane, oxygen and other gas fluxes through the air-water interface of wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2012-12-01

    Empirical models for the gas transfer velocity, k, in the ocean, lakes and rivers are fairly well established, but there are few data to predict k for wetlands. We have conducted experiments in a simulated emergent marsh in the laboratory to explore the relationship between k, wind shear and thermal convection. Now we identify the implications of these results for gas transfer in actual wetlands by (1) quantifying the range of wind conditions in emergent vegetation canopies and the range of thermal convection intensities in wetland water columns, and (2) describing the non-linear interaction of these two stirring forces over their relevant ranges in wetlands. We measured mean wind speeds and wind speed variance within the shearless region of a Schoenoplectus-Typha marsh canopy in the Sacramento-San Joaquin Delta (Northern California, USA). The mean wind speed within this region, , is significantly smaller than wind above the canopy. Based on our laboratory experiments, for calm or even average wind conditions in this emergent marsh k600 is only on the order 0.1 cm hr-1 (for neutrally or stably stratified water columns). We parameterize unstable thermal stratification and the resulting thermal convection using the heat flux through the air-water interface, q. We analyzed a water temperature record for the Schoenoplectus-Typha marsh to obtain a long-term heat flux record. We used these heat flux data along with short-term heat flux data from other wetlands in the literature to identify the range of the gas transfer velocity associated with thermal convection in wetlands. The typical range of heat fluxes through water columns shaded by closed emergent canopies (-200 W m-2 to +200 W m-2) yields k600 values of 0.5 - 2.5 cm hr-1 according to the model we developed in the laboratory. Thus for calm or average wind conditions, the gas transfer velocity associated with thermal convection is significantly larger than the gas transfer velocity associated with wind shear. Because of the diurnal pattern in water column heat flux that follows the diurnal pattern in incoming solar radiation, this difference means gas transfer velocities are expected to vary diurnally during calm or average wind conditions, peaking late at night and early in the morning. Conversely for very windy conditions, alone may determine the gas transfer velocity even when high heat fluxes out of the water column are relatively high. For the calculation of k600 from , we developed an enhancement factor to account for the very high wind speed variance observed in the Schoenoplectus-Typha emergent canopy and likely seen in other emergent canopies as well. These wetland targeted gas transfer velocities will improve the accuracy of wetland gas flux measurements and models and enable the partitioning of net gas fluxes from wetlands into plant-mediated fluxes, ebullitive fluxes and fluxes due to the hydrodynamic transport of dissolved gases through the water column.

  17. Establishing standards to protect vegetation—ozone exposure/dose considerations

    NASA Astrophysics Data System (ADS)

    Lefohn, Allen S.; Runeckles, V. C.

    The establishment of appropriate standards to protect vegetation requires an understanding of the bridge between ambient air quality exposure and ultimate response. This paper discusses the ambient air quality-vegetation response system and suggests various approaches that could be used to identify an appropriate and simple O 3 standard which could provide the needed degree of environmental protection. Repeated peak O 3 concentrations appear to be responsible for affecting vegetation. Plants are sensitive to different hourly mean O 3 distribution patterns, even though the seasonal mean may be the same. The application at all locations of a long-term O 3 standard will not protect vegetation from repeated peaks. In establishing a secondary O 3 standard, more effort should be made to develop a short-term O 3 standard that accommodates repeated exposure of vegetation to peak concentrations. Vegetation effects data derived from experiments applying ambient O 3 exposures or regimes that mimic ambient conditions should be used as the primary data set to identify the hourly O 3 distribution patterns that elicit adverse vegetation responses.

  18. Reducing sedimentation of depressional wetlands in agricultural landscapes

    Microsoft Academic Search

    Susan K. Skagen; Cynthia P. Melcher; David A. Haukos

    2008-01-01

    Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their\\u000a watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment\\u000a of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants\\u000a that threaten wetlands and the current knowledge of design and usefulness of grass buffers

  19. Control of reed canarygrass promotes wetland herb and tree seedling establishment in an upper Mississippi River Floodplain forest

    USGS Publications Warehouse

    Thomsen, Meredith; Brownell, Kurt; Groshek, Matthew; Kirsch, Eileen

    2012-01-01

    Phalaris arundinacea (reed canarygrass) is recognized as a problematic invader of North American marshes, decreasing biodiversity and persisting in the face of control efforts. Less is known about its ecology or management in forested wetlands, providing an opportunity to apply information about factors critical to an invader's control in one wetland type to another. In a potted plant experiment and in the field, we documented strong competitive effects of reed canarygrass on the establishment and early growth of tree seedlings. In the field, we demonstrated the effectiveness of a novel restoration strategy, combining site scarification with late fall applications of pre-emergent herbicides. Treatments delayed reed canarygrass emergence the following spring, creating a window of opportunity for the early growth of native plants in the absence of competition from the grass. They also allowed for follow-up herbicide treatments during the growing season. We documented greater establishment of wetland herbs and tree seedlings in treated areas. Data from small exclosures suggest, however, that deer browsing can limit tree seedling height growth in floodplain restorations. Slower tree growth will delay canopy closure, potentially allowing reed canarygrass re-invasion. Thus, it may be necessary to protect tree seedlings from herbivory to assure forest regeneration.

  20. Mercury cycling in agricultural and managed wetlands of California: seasonal influences of vegetation on mercury methylation, storage, and transport

    USGS Publications Warehouse

    Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Kakouros, Evangelos; Agee, Jennifer L.; Kieu, Le H.; Stricker, Craig A.; Fleck, Jacob A.; Ackerman, Joshua T.

    2013-01-01

    Plants are a dominant biologic and physical component of many wetland capable of influencing the internal pools and fluxes of methylmercury (MeHg). To investigate their role with respect to the latter, we examined the changing seasonal roles of vegetation biomass and Hg, C and N composition from May 2007-February 2008 in 3 types of agricultural wetlands (domesticated or white rice, wild rice, and fallow fields), and in adjacent managed natural wetlands dominated by cattail and bulrush (tule). We also determined the impact of vegetation on seasonal microbial Hg methylation rates, and Hg and MeHg export via seasonal storage in vegetation, and biotic consumption of rice seed. Despite a compressed growing season of ~ 3 months, annual net primary productivity (NPP) was greatest in white rice fields and carbon more labile (leaf median C:N ratio = 27). Decay of senescent litter (residue) was correlated with microbial MeHg production in winter among all wetlands. As agricultural biomass accumulated from July to August, THg concentrations declined in leaves but MeHg concentrations remained consistent, such that MeHg pools generally increased with growth. Vegetation provided a small, temporary, but significant storage term for MeHg in agricultural fields when compared with hydrologic export. White rice and wild rice seeds reached mean MeHg concentrations of 4.1 and 6.2 ng gdw- 1, respectively. In white rice and wild rice fields, seed MeHg concentrations were correlated with root MeHg concentrations (r = 0.90, p < 0.001), suggesting transport of MeHg to seeds from belowground tissues. Given the proportionally elevated concentrations of MeHg in rice seeds, white and wild rice crops may act as a conduit of MeHg into biota, especially waterfowl which forage heavily on rice seeds within the Central Valley of California, USA. Thus, while plant tissues and rhizosphere soils provide temporary storage for MeHg during the growing season, export of MeHg is enhanced post-harvest through increased hydrologic and biotic export.

  1. Catastrophic Shifts in Wetland Geomorphology and Ecology in Response to Hydrology-Vegetation-Sediment Transport Feedbacks (Invited)

    NASA Astrophysics Data System (ADS)

    Larsen, L. G.; Harvey, J. W.

    2010-12-01

    Coastal marshes and long-hydroperiod floodplain wetlands exhibit strong bi-directional feedback between hydrology, vegetation, and sediment that impacts landscape dynamics and ecosystem services. In these ecosystems, vegetation responds to and also influences the distribution of topography, with effects on habitat provision, biological diversity, landscape connectivity, surface-subsurface exchange, and microbial and redox reactions. Topography evolves both autogenically and allogenically. Autogenically, peat accretes under reducing conditions as a function of local water levels, vegetation community, and nutrient concentrations. Concurrently, an allogenic sediment redistribution feedback process involves erosion of sediment from low, sparsely vegetated areas and deposition of sediment within dense vegetation that resists flow. It is well documented that these feedback processes are dominantly responsible for evolution of tidal marsh morphology and response of coastal marshes to sea level rise. Less well understood is the role these feedbacks play in the evolution of more slowly flowing interior marshes and in the response of these systems to perturbations in flow velocity as well as water level. We developed a cellular automata model that physically simulates both sediment redistribution and differential peat accretion feedbacks. Because of the efficiency of this simplified modeling technique, we ran the model over a broad range of environmental conditions in a generalized sensitivity analysis. As a result of the two feedback processes, simulated landscapes reflected a variety of morphologies found in coastal and interior wetlands worldwide, with differences attributable to relative dominance of physical (e.g., surface-water flow, water level) or biological (e.g., vegetation productivity and colonization) drivers. Significantly, under moderate surface-water flow velocities (4-6 cm s-1), a class of patterned wetlands with regular ridges and sloughs oriented parallel to the dominant flow direction emerged, which mimics the patterned, flow-parallel topography found in the Florida Everglades. Sediment redistribution and differential peat accretion feedbacks constitute the first description of a viable mechanism for formation of this ecologically important landscape structure and provide guidance for restoration efforts. We show that because of vegetative resistance to flow, this patterned landscape structure is prone to shift to an alternate stable state, dominated by a monoculture of emergent vegetation, under changes in surface-water flow velocity or water level. Results suggest that twentieth-century degradation of the Everglades ridge and slough landscape is attributable primarily to changes in water level and, secondarily, to diminished surface-water flow velocities. Because hydrology-vegetation-sediment feedbacks cause hysteresis in landscape evolution trajectories, restoration of historic flow velocities and water levels will not necessarily produce a return to historic landscape structure. Understanding the dynamics of sediment redistribution and differential peat accretion feedbacks will be essential in predicting how wetlands worldwide will respond to changes in climate or water management.

  2. FILENAME.PPT CONSTRUCTED WETLANDS:CONSTRUCTED WETLANDS

    E-print Network

    Detwiler, Russell

    Is A Constructed Wetland? What Is A Constructed Wetland? Saturated Substrates Definition: A designed and man-made complex of: Emergent and Submergent Vegetation Animal Life Water That Simulates Natural Wetlands #12 Wetland: Marsh Component #12;FILENAME.PPT #12;FILENAME.PPT 1'-6' Varying DepthsFlow Emergent Vegetation

  3. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm

    Microsoft Academic Search

    Keryn B. Gedan; Matthew L. Kirwan; Eric Wolanski; Edward B. Barbier; Brian R. Silliman

    2011-01-01

    For more than a century, coastal wetlands have been recognized for their ability to stabilize shorelines and protect coastal\\u000a communities. However, this paradigm has recently been called into question by small-scale experimental evidence. Here, we\\u000a conduct a literature review and a small meta-analysis of wave attenuation data, and we find overwhelming evidence in support\\u000a of established theory. Our review suggests

  4. Vegetation mapping from medium-density discrete echo Airborne Laser Scanning data: a case study of the Lake Balaton wetlands

    NASA Astrophysics Data System (ADS)

    Zlinszky, A.; Mücke, W.; Lehner, H.; Briese, C.; Pfeifer, N.

    2012-04-01

    Airborne Laser Scanning (ALS) is mainly used for collecting information on geomorphology, but the high spatial resolution and accuracy and especially the sensitivity to vertical structure are also proven to be valuable in vegetation mapping. Point cloud datasets acquired for regional or country-wide ALS surveys have strong potential as an easily accessible basis for consistent automatic vegetation mapping across large areas. However, automatized classification on the basis of multivariate analysis algorithms is not widely applied to moderate resolution discrete echo point clouds that these surveys typically produce. The number of relevant independent variables that can be derived from these datasets is often considered insufficient for multivariate classification-based detection of species or vegetation health, but in some cases it can be enhanced to a level sufficient for vegetation mapping. Although in conventional (single-wavelength) ALS the radiometric information produced is restricted to a single band, the differences of the radiometric parameters of the surveyed vegetation can considerably aid discrimination. In most cases, the horizontal distribution of the scanned points holds no information as this is governed by the sensor scan pattern. However, the horizontal distribution of points with specific radiometric intensity can add to the number of independent variables. In our case study of a lake shore and wetland area (ca. 100 km2 of wetlands distributed in a surveyed area of 1000 km2) a raster-based approach was used to average vertical structural parameters across cells occupied by several points. The information present in the position of the points relative to each other was thus exploited. Radiometric calibration of the echo amplitude also provided valuable information on vegetation type. Given a sufficient amount of pre-surveyed ground truth areas, a straightforward decision tree classification of LIDAR data mapped not only land cover categories, but also the main vegetation genera and the health of the dominant species. The decision tree algorithm was set up on the basis of a signature analysis comparing the histograms of each ALS-derived variable within the ground truth areas, and separating the classes based on histogram differences. This has proven robust enough to work across the full study area, and artefacts were relatively easy to recognize and understand. Classification accuracies produced by this study are between 60% and 92%, with an overall accuracy of 83% for all categories. While this is clearly below the maximum accuracy achievable by hyperspectral surveys of small areas, it is comparable to many passive multispectral or fused passive multispectral and ALS vegetation surveys and also the accuracies of ALS-based forest monitoring. Since the method itself is not specific for wetlands, it is believed that such an approach could provide valid vegetation classification results in other areas. As shown by this case study, medium-density discrete echo ALS datasets similar to those collected during European region-wide surveys can successfully be used to map vegetation classes relevant for ecology and conservation.

  5. Exploring the response of West Siberian wetland methane emissions to potential future changes in climate, vegetation, and soil microbial metabolism

    NASA Astrophysics Data System (ADS)

    Bohn, Theodore; Kaplan, Jed; Lettenmaier, Dennis

    2015-04-01

    Methane emissions from northern peatlands depend strongly on environmental conditions, wetland plant species assemblages (via root zone oxidation and plant-aided transport), and soil microbial behavior (via metabolic pathways). While the responses of wetland methane emissions to potential future climate change have been extensively explored, the effects of future changes in plant species and soil microbial metabolism are not as well studied. We ran the Variable Infiltration Capacity (VIC) land surface model over the West Siberian Lowland (WSL), with methane emissions parameters that vary spatially with dominant plant species, and forced with outputs from 32 CMIP5 models for the RCP4.5 scenario. We compared the effects of changes in climate and vegetation (in terms of both leaf area index and species abundances) on predicted wetland CH4 emissions for the period 2071-2100, relative to the period 1981-2010. We also explored possible acclimatization of soil microbial communities to these changes. We evaluated the effects of climate change, potential northward migration of plant species, and potential microbial acclimatization on end-of-century methane emissions over the WSL, in terms of both total annual emissions and the spatial distribution of emissions. Our results suggest that, while microbial acclimatization mitigates the effects of warmer temperatures, the northward migration of plant species enhances the response to warming (due to plant-aided transport), and additionally shifts the location of maximal emissions northward, where the possible release of ancient carbon with permafrost thaw is a concern. Our work indicates the importance of better constraining the responses of wetland plants and soil microbial communities to changes in climate as they are critical determinants of the region's future methane emissions.

  6. Evaluating the effect of rainfall variability on vegetation establishment in a semidesert grassland.

    PubMed

    Fehmi, Jeffrey S; Niu, Guo-Yue; Scott, Russell L; Mathias, Andrea

    2014-01-01

    Of the operations required for reclamation in arid and semi-arid regions, establishing vegetation entails the most uncertainty due to reliance on unpredictable rainfall for seed germination and seedling establishment. The frequency of successful vegetation establishment was estimated based on a land surface model driven by hourly atmospheric forcing data, 7 years of eddy-flux data, and 31 years of rainfall data at two adjacent sites in southern Arizona, USA. Two scenarios differing in the required imbibition time for successful germination were evaluated-2 or 3 days availability of sufficient surface moisture. Establishment success was assumed to occur if plants could germinate and if the drying front in the soil did not overtake the growth of seminal roots. Based on our results, vegetation establishment could be expected to fail in 32 % of years. In the worst 10-year span, six of ten plantings would have failed. In the best 10-year span, only one of ten was projected to fail. Across all assessments, at most 3 years in a row failed and 6 years in a row were successful. Funding for reclamation seeding must be available to allow reseeding the following year if sufficient amount and timing of rainfall does not occur. PMID:23974536

  7. Subsidence Reversal in a Re-established Wetland in the Sacramento-San Joaquin Delta, California, USA

    E-print Network

    Miller, Robin L.; Fram, Miranda; Fujii, Roger; Wheeler, Gail

    2008-01-01

    signifi- cant difference between east and west wetlandwest wetlands, and within emergent marsh areas of the east wetland itself, can- not be attributed to differenceswest wetland, however, change in land-surface elevation in the east wetland showed significant spatial variability (Figure 4b) reflecting differences

  8. Wetland grass to plantation forest - estimating vegetation height from the standard deviation of lidar frequency distributions

    Microsoft Academic Search

    C. Hopkinson; K. Limb; L. E. Chasmer; C. Gynand

    A vegetation height study was carried out using nine airborne scanning lidar (light detection and ranging) datasets collected over 12 different vegetation types ranging in average height from < 1 m to 24 m at four different sites across Canada between 2000 and 2002. The study tests the hypothesis that average vegetation canopy surface height (Ht) is related to the

  9. Development and testing of an index of biotic integrity based on submersed and floating vegetation and its application to assess reclamation wetlands in Alberta's oil sands area, Canada.

    PubMed

    Rooney, Rebecca C; Bayley, Suzanne E

    2012-01-01

    We developed and tested a plant-based index of biological integrity (IBI) and used it to evaluate the existing reclamation wetlands in Alberta's oil sands mining region. Reclamation plans call for >15,000 ha of wetlands to be constructed, but currently, only about 25 wetlands are of suitable age for evaluation. Reclamation wetlands are typically of the shallow open water type and range from fresh to sub-saline. Tailings-contaminated wetlands in particular may have problems with hydrocarbon- and salt-related toxicity. From 60 initial candidate metrics in the submersed aquatic and floating vegetation communities, we selected five to quantify biological integrity. The IBI included two diversity-based metrics: the species richness of floating vegetation and the percent of total richness contributed by Potamogeton spp. It also included three relative abundance-based metrics: that of Ceratophyllum demersum, of floating leafed species and of alkali-tolerant species. We evaluated the contribution of nonlinear metrics to IBI performance but concluded that the correlation between IBI scores and wetland condition was not improved. The method used to score metrics had an influence on the IBI sensitivity. We conclude that continuous scoring relative to the distribution of values found in reference sites was superior. This scoring approach provided good sensitivity and resolution and was grounded in reference condition theory. Based on these IBI scores, both tailings-contaminated and tailings-free reclamation wetlands have significantly lower average biological integrity than reference wetlands (ANOVA: F(2,59) = 34.7, p = 0.000000000107). PMID:21484300

  10. [The establishment of Holocene vegetation belts: quite near to a complete model of a solid mass].

    PubMed

    David, F

    2001-03-01

    Pollen and macro-remains were analysed in a sixth site (La Gouille 1,800 m) of the Chaîne des Hurtières (northern French Alps). Nine A.M.S. dates support the chronology. Thus, the establishment of the vegetation belt of a massif can be modelled in the northern French Alps. Betula invaded sub-Alpine grasslands as early as 10,000 14C BP. Around 9,600 14C BP shrublands with Corylus, Alnus and Sorbus were established before the spread of Abies at the site approximately 8,200 14C BP. A decrease in Abies prior to 8,100 14C BP occurred during the Venediger climatic oscillation. At around 2,940 14C BP, a strong regression of Abies due to human action is noted with the expansion of Alnus viridis. Recently, a second Abies retraction led to the present sparce P. cembra and Alnus viridis vegetation cover. PMID:11291314

  11. Responses of Hyalella azteca to a Pesticide-Nutrient Mixture in Vegetated and Non-vegetated Wetland Mesocosms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aquatic vegetation has been shown to improve water quality by trapping and processing contaminants such as pesticides, nutrients and sediments. Currently there is little information regarding effects of pesticide and nutrient mixtures on aquatic biota in these systems and the influence aquatic vege...

  12. Establishment of submergent vegetation and invertebrates in a wetland constructed on mine soil

    E-print Network

    Thomas, James Alan

    1994-01-01

    L. Potamogeton di versifoli us Rsf. P. nodosus Poir. P. puslilus L. E~me ento dmmannia auricuiata Willd. Cynodon dactylon (L. ) Pere. Cyperus sp Eleochatis macrostachya Britt, E. obtuse (Willd. ) Schult. E. parvula (R. & S. ) Link E.... 84 0. 98 0. 98 Ceratopbyllmn dememum Chare vulgan's ?j ot guadalupensis Potamogcton pecnnauu P. pusi lies P. nodosus P. avversiyoli us Unknown sp. ~Emer ense dmmannta aurictdata Cynodon dactvlon Cyperus sp. Eteoctmrts macrostacbya E...

  13. Integrated field lysimetry and porewater sampling for evaluation of chemical mobility in soils and established vegetation.

    PubMed

    Matteson, Audrey R; Mahoney, Denis J; Gannon, Travis W; Polizzotto, Matthew L

    2014-01-01

    Potentially toxic chemicals are routinely applied to land to meet growing demands on waste management and food production, but the fate of these chemicals is often not well understood. Here we demonstrate an integrated field lysimetry and porewater sampling method for evaluating the mobility of chemicals applied to soils and established vegetation. Lysimeters, open columns made of metal or plastic, are driven into bareground or vegetated soils. Porewater samplers, which are commercially available and use vacuum to collect percolating soil water, are installed at predetermined depths within the lysimeters. At prearranged times following chemical application to experimental plots, porewater is collected, and lysimeters, containing soil and vegetation, are exhumed. By analyzing chemical concentrations in the lysimeter soil, vegetation, and porewater, downward leaching rates, soil retention capacities, and plant uptake for the chemical of interest may be quantified. Because field lysimetry and porewater sampling are conducted under natural environmental conditions and with minimal soil disturbance, derived results project real-case scenarios and provide valuable information for chemical management. As chemicals are increasingly applied to land worldwide, the described techniques may be utilized to determine whether applied chemicals pose adverse effects to human health or the environment. PMID:25045915

  14. The effect of vegetation on pesticide dissipation from ponded treatment wetlands: Quantification using a simple model

    Microsoft Academic Search

    Michael T. Rose; Angus N. Crossan; Ivan R. Kennedy

    2008-01-01

    Field data shows that plants accelerate pesticide dissipation from aquatic systems by increasing sedimentation, biofilm contact and photolysis. In this study, a graphical model was constructed and calibrated with site-specific and supplementary data to describe the loss of two pesticides, endosulfan and fluometuron, from a vegetated and a non-vegetated pond. In the model, the major processes responsible for endosulfan dissipation

  15. Vegetation, substrate and hydrology in floating marshes in the Mississippi river delta plain wetlands, USA

    Microsoft Academic Search

    Charles E. Sasser; James G. Gosselink; Erick M. Swenson; Christopher M. Swarzenski; Nancy C. Leibowitz

    1996-01-01

    In the 1940s extensive floating marshes (locally called ‘flotant’) were reported and mapped in coastal wetlands of the Mississippi River Delta Plain. These floating marshes included large areas of Panicum hemitomon-dominated freshwater marshes, and Spartina patens\\/Scirpus olneyi brackish marshes. Today these marshes appear to be quite different in extent and type. We describe five floating habitats and one non-floating, quaking

  16. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural runoff: response to hydraulic and nutrient loading.

    PubMed

    Dierberg, F E; DeBusk, T A; Jackson, S D; Chimney, M J; Pietro, K

    2002-03-01

    Submerged aquatic vegetation (SAV) communities exhibit phosphorus (P) removal mechanisms not found in wetlands dominated by emergent macrophytes. This includes direct assimilation of water column P by the plants and pH-mediated P coprecipitation with calcium carbonate (CaCO3). Recognizing that SAV might be employed to increase the performance of treatment wetlands, we investigated P removal in mesocosms (3.7 m2) stocked with a mixture of taxa common to the region: Najas guadalupensis, Ceratophyllum demersum, Chara spp. and Potamogeton illinoensis. Three sets of triplicate mesocosms received agricultural runoff from June 1998 to February 2000 at nominal hydraulic retention times (HRTs) of 1.5, 3.5 or 7.0 days. Mean total P (TP) loading rates were 19.7. 8.3 and 4.5 g/m2/yr. After eight months of operation. N. guadalupensis dominated the standing crop biomass and P storage, whereas C. demersum exhibited the highest tissue P content. Chara spp. was prominent only in the 7.0)-day HRT treatments while P. illinoensis largely disappeared. Inflow soluble reactive phosphorus (SRP) (10 163 microg/L) was reduced consistently to near the detection limit (2 microg/L) in the 3.5- and 7.0-day HRT treatments, and to a mean of 9 microg/L in the 1.5-day HRT treatment. The mean inflow TP concentration (10(7) microg/L) was reduced to 52, 29 and 23 microg/L in the 1.5-, 3.5- and 7.0-day HRT treatments, respectively. Total P concentrations in new sediment (mean= 641, 408 and 459 mg/kg in the 1.5-. 3.5-, and 7.0-day HRT mesocosms, respectively) were much higher than in the muck soil used to stock the mesocosms (236 mg/ kg). The calcium content of new sediment was twice that of the muck soil (16.5% vs. 7.6%), demonstrating that CaCO3 production and, perhaps, coprecipitation of P occurred. We observed no nocturnal remobilization of SRP despite diel fluctuations in pH and dissolved oxygen. Mean outflow TP (21 microg/L) from a 147 ha SAV wetland (4-day nominal HRT) was similar to mean outflow TP in the 3.5-day and 7.0-day HRT treatments. The mesocosms adequately mimicked P removal and other important characteristics of the larger system and can be used to address research questions regarding treatment performance of full-scale SAV wetlands. Available data suggest that the incorporation of SAV communities into the stormwater treatment areas may benefit Everglades restoration. PMID:11996331

  17. Coastal vegetation invasion increases greenhouse gas emission from wetland soils but also increases soil carbon accumulation.

    PubMed

    Chen, Yaping; Chen, Guangcheng; Ye, Yong

    2015-09-01

    Soil properties and soil-atmosphere fluxes of CO2, CH4 and N2O from four coastal wetlands were studied throughout the year, namely, native Kandelia obovata mangrove forest vs. exotic Sonneratia apetala mangrove forest, and native Cyperus malaccensis salt marsh vs. exotic Spartina alterniflora salt marsh. Soils of the four wetlands were all net sources of greenhouse gases while Sonneratia forest contributed the most with a total soil-atmosphere CO2-equivalent flux of 137.27mgCO2m(-2)h(-1), which is 69.23%, 99.75% and 44.56% higher than that of Kandelia, Cyperus and Spartina, respectively. The high underground biomass and distinctive root structure of Sonneratia might be responsible for its high greenhouse gas emission from the soil. Soils in Spartina marsh emitted the second largest amount of total greenhouse gases but it ranked first in emitting trace greenhouse gases. Annual average CH4 and N2O fluxes from Spartina soil were 13.77 and 1.14?molm(-2)h(-1), respectively, which are 2.08 and 1.46 times that of Kandelia, 1.03 and 1.15 times of Sonneratia, and 1.74 and 1.02 times of Cyperus, respectively. Spartina has longer growing season and higher productivity than native marshes which might increase greenhouse gas emission in cold seasons. Exotic wetland soils had higher carbon stock as compared to their respective native counterparts but their carbon stocks were offset by a larger proportion because of their higher greenhouse gas emissions. Annual total soil-atmosphere fluxes of greenhouse gases reduced soil carbon burial benefits by 8.1%, 9.5%, 6.4% and 7.2% for Kandelia, Sonneratia, Cyperus and Spartina, respectively, which narrowed down the gaps in net soil carbon stock between native and exotic wetlands. The results indicated that the invasion of exotic wetland plants might convert local coastal soils into a considerable atmospheric source of greenhouse gases although they at the same time increase soil carbon accumulation. PMID:25918889

  18. Least Bittern distribution among structurally different vegetation types in managed wetlands of northwest Tennessee, USA

    Microsoft Academic Search

    Nicholas A. Winstead; Sammy L. King

    2006-01-01

    We conducted Least Bittern (Ixobrychus exilis) surveys on Reelfoot Lake and nearby Black Bayou Waterfowl Refuge, in northwest Tennessee, USA during May–June 2003 to determine\\u000a the distribution of Least Bitterns among structurally different vegetation types, including giant cutgrass (Zizaniopsis miliacea), swamp loosestrife (Decodon verticillatus), and woody vegetation. Least Bitterns were historically abundant on Reelfoot Lake when giant cutgrass once occupied

  19. The Virginia Wetlands Report

    E-print Network

    that impact tidal wetlands, subaqueous bottom and coastal pri- mary sand dunes and beaches. Each project The VIMS Center for Coastal Re sources Management has main- tained a database since 1988 to track authorized in 2003. The permitted impacts include 24 acres of vegetated tidal wetlands and 112 acres of non-vegetated

  20. [Spatial variation of soil moisture/salinity and the relationship with vegetation under natural conditions in Yancheng coastal wetland].

    PubMed

    Zhang, Hua-Bing; Liu, Hong-Yu; Li, Yu-Feng; An, Jing; Xue, Xing-Yu; Hou, Ming-Hang

    2013-02-01

    Taking the core part of Yancheng national nature reserve as the study area, according to soil sampling analysis of coastal wetlands in April and May 2011 land the 2011 ETM + remote sensing image, the spatial difference characteristic of coastal wetlands soil moisture and salinity, and the relationship with vegetation under natural conditions, were investigated with the model of correspondence analysis (CCA), linear regression simulation and geo-statistical method. The results showed: Firstly, the average level of the soil moisture was fluctuating between 36.820% and 46.333% , and the soil salinity was between 0.347% and 1.328% , in a more detailed sense, the Spartina swamp was the highest, followed by the mudflats swamp, the Suaeda salsa swamp, and the Reed marsh. Secondly, the spatial variation of soil moisture was consistent with that of the salinity, and the degree of variation in the east-west direction was greater than that in the north-south. The maximum soil moisture and salinity were found in the southwest Spartina swamp. The minimum was in the Reed swamp. The soil moisture and salinity were divided into 5 levels, from I to V. Level IV occupied the highest proportion, which were 36.156% and 28.531% , respectively. Finally, different landscape types with the combination of soil moisture and salinity showed a common feature that the moisture and salinity were from both high to low. The soil moisture value of Reed marshes was lower than 40.116% and the salinity value was lower than 0. 676% . The soil moisture value of Suaeda salsa marshes was between 38. 162% and 46. 403% and the salinity value was between 0.417% and 1.295%. The soil moisture value of Spartina swamp was higher than 43.214% and the salinity was higher than 1.090%. The soil moisture value of beach was higher than 43.214% and the salinity was higher than 0.677%. PMID:23668120

  1. Comparison of disturbed and undisturbed wetland communities using vegetation, aquatic macroinvertebrate and landscape analyses

    E-print Network

    Perry, Irene H

    1994-01-01

    by permanent markers left from one season to the next. Within this defined area all the vegetation was sampled, in late May 1994, by counting stems above the water or soil. In the case of Eleocharis, a clump of stems was counted as one. Non-vascular plants...

  2. Aircraft MSS data registration and vegetation classification for wetland change detection

    Microsoft Academic Search

    E. J. CHRISTENSEN; J. R. JENSEN; E. W. RAMSEY; H. E. MACKEY JR

    1988-01-01

    Portions of the Savannah River floodplain swamp were evaluated for vegetation change using high resolution (5·6 m) aircraft multispectral scanner (MSS) data. Image distortion from aircraft movement prevented precise image-to-image registration in some areas. However, when small scenes were used (200–250 ha), a first-order linear transformation provided registration accuracies of less than or equal to one pixel. A larger area

  3. Sample size, power, and analytical considerations for vertical structure data from profile boards in wetland vegetation

    Microsoft Academic Search

    David A. Haukos; Hong Zhi Sun; David B. Westeff; Loren M. Smith

    1998-01-01

    Profile boards are commonly used to estimate vertical cover of herbaceous vegetation in the evaluation of wildlife habitat.\\u000a However, data from this technique are seldom collected or analyzed in a consistent manner. Therefore, we investigated and\\u000a evaluated methods of profile-board data collection and analysis using univariate and multivariate techniques. We collected\\u000a 11,056 samples of vertical-structure data (percent cover) at 2,764

  4. Comparison of disturbed and undisturbed wetland communities using vegetation, aquatic macroinvertebrate and landscape analyses 

    E-print Network

    Perry, Irene H

    1994-01-01

    for this study was the Miller Springs Park below the Belton Dam near Temple, Texas (31'06'30"N, 97'28"E) (Fig. 1). The park is located on federal land owned by the US Army Corps of Engineers. In March of 1992 excessive rain caused the lake to top the spillway.... Substrate. Local Concerns. Objectives. . 6 . 11 . 13 . 15 . 16 . 18 II AREA DESCRIPTION. . 19 111 MATERIALS AND METHODS . . 22 Vegetation . . Aquatic Macroinvertebrates. . . . . . Landscape. . Water Quality. Substrate 22 24 . 28 . 30...

  5. A Wetland Field Study

    NSDL National Science Digital Library

    The field projects at this site give students an opportunity to investigate a number of wetland characteristics firsthand: surveying wetland vegetation, soils, water quality and wildlife; documenting the wetland from an artist's perspective; investigating land uses along its periphery; and refining a base map upon which all collected information can be recorded. This resource explains how to organize the field study, thereby securing the interest of the students. It is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. For educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  6. Pipeline Corridors through wetlands -- Impacts on plant communities: Mill Creek Tributary Crossing, Jefferson County, New York, 1992 Survey

    SciTech Connect

    Van Dyke, G.D. [Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology; Shem, L.M.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to identify representative impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of the survey July 1992, at the Mills Creek tributary crossing, Jefferson County, New York. Data were collected from three wetland communities along the 1991 pipeline and compared with predisturbance data obtained in a June 1991 survey. Within one year after pipeline installation, 50% of the soil surface of the ROW in the scrub-shrub community was covered by emergent vegetation. Average wetland values for the ROW in 1992 were lower than in 1991, indicating that the removal of woody plants resulted in a community composed of species with greater fidelity to wetlands. In the emergent marsh community after one year, the average percentage of surface covered by standing water was greater in the ROW than in the adjacent natural areas. The ROW in the forested wetland community also contained standing water, although none was found in the natural forest areas. The entire study site remains a wetland, with the majority of plant species in all sites being either obligate or facultative wetland species. Weighted and unweighted average wetland indices for each community, using all species, indicated wetland vegetation within the newly established ROW.

  7. VEGETATION AND ALGAL COMMUNITY COMPOSITION AND DEVELOPMENT OF THREE CONSTRUCTED WETLANDS RECEIVING AGRICULTURAL RUNOFF AND SUBSURFACE DRAINAGE, 1998 TO 2001

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland Reservoir Subirrigation Systems (WRSIS) aim to reduce non-point source pollution from agricultural fields while maintaining crop yield and creating wetland wildlife habitat. The WRSIS system directs drainage water from agricultural fields to flow into a passively revegetated constructed wetl...

  8. Mile High Wetland Bank

    NSDL National Science Digital Library

    The site listed here is provided by an environmental consulting firm that works with commercial and private landowners to establish Wetland Banks. An innovative concept (and growing reality) that has received mixed reviews from scientists, Wetland Banking attempts to combine the goals of developers (i.e., to develop a certain area) and wetland conservationists (i.e., to maintain/ restore areas of intact wetlands). If misused, this approach could work against wetland conservation; if properly instated, however, Wetland Banking might offer an alternative to the currently poor success rate of wetland mitigation projects. This resource by Mile High Wetlands Group, LLC, offers background information on Wetland banking, with an emphasis on the Group's local area (Colorado).

  9. Floristic composition of established vegetation and the soil seed bank in pasture communities under different traditional management regimes

    Microsoft Academic Search

    A. López-Mariño; E. Luis-Calabuig; F. Fillat; F. F. Bermúdez

    2000-01-01

    The floristic composition of the established vegetation and the soil seed bank in seven herbaceous communities under different traditional management regimes were compared in the Valdeón valley (Picos de Europa, Spain), a valley chosen for study because of its high diversity and non-dominance of any single species which have become increasingly rare in Western Europe as a result of changes

  10. Wetland Mapping Matthew J. Gray

    E-print Network

    Gray, Matthew

    1 Wetland Mapping Matthew J. Gray University of Tennessee Caribbean Wetland Mapping in the United States National Wetlands Inventory U.S. Fish and Wildlife Service is the principle federal agency that provides information on the status of U.S. wetlands. www.nwi.fws.gov Established in 1974 to produce maps

  11. The Role of Vegetation in Phosphorus Removal by Cold Climate Constructed Wetland: The Effects of Aeration and Growing Season

    Microsoft Academic Search

    Aleksandra Drizo; Eric Seitz; Eamon Twohig; David Weber; Simon Bird; Donald Ross

    The objective of this study was to evaluate the effectiveness and contribution of Schoenoplectus fluviatilis (Torr.) (river bulrush) to phosphorus (P) removal from dairy-farm effluent in a cold climate constructed wetland. After 3\\u000a years of operation (1,073 days), both nonaerated wetland cell 3 (C3) and aerated cell 4 (C4) exhibited a sharp decline in\\u000a dissolved reactive phosphorus (DRP) storage, indicating

  12. Establishing Minimum Flow Requirements Based on Benthic Vegetation: What are Some Issues Related to Identifying Quantity of Inflow and Tools Used to Quantify Ecosystem Response?

    NASA Astrophysics Data System (ADS)

    Hunt, M. J.; Nuttle, W. K.; Cosby, B. J.; Marshall, F. E.

    2005-05-01

    Establishing minimum flow requirements in aquatic ecosystems is one way to stipulate controls on water withdrawals in a watershed. The basis of the determination is to identify the amount of flow needed to sustain a threshold ecological function. To develop minimum flow criteria an understanding of ecological response in relation to flow is essential. Several steps are needed including: (1) identification of important resources and ecological functions, (2) compilation of available information, (3) determination of historical conditions, (4) establishment of technical relationships between inflow and resources, and (5) identification of numeric criteria that reflect the threshold at which resources are harmed. The process is interdisciplinary requiring the integration of hydrologic and ecologic principles with quantitative assessments. The tools used quantify the ecological response and key questions related to how the quantity of flow influences the ecosystem are examined by comparing minimum flow determination in two different aquatic systems in South Florida. Each system is characterized by substantial hydrologic alteration. The first, the Caloosahatchee River is a riverine system, located on the southwest coast of Florida. The second, the Everglades- Florida Bay ecotone, is a wetland mangrove ecosystem, located on the southern tip of the Florida peninsula. In both cases freshwater submerged aquatic vegetation (Vallisneria americana or Ruppia maritima), located in areas of the saltwater- freshwater interface has been identified as a basis for minimum flow criteria. The integration of field studies, laboratory studies, and literature review was required. From this information we developed ecological modeling tools to quantify and predict plant growth in response to varying environmental variables. Coupled with hydrologic modeling tools questions relating to the quantity and timing of flow and ecological consequences in relation to normal variability are addressed.

  13. -Spatio-temporal variation of salt marsh seedling establishment in relation to the environment -61 Journal of Vegetation Science 12: 61-74, 2001

    E-print Network

    not change. The `regeneration niche' of wetland plant communities includes the effects of multiple abiotic plant; ENSO; Exotic species; Hetero- geneity; Soil moisture; Soil salinity; Southern California; Up- per' operate during the germination and establishment of riverine herbaceous plant communities. Salinity

  14. Effects of a Long-Term Disturbance on Arthropods and Vegetation in Subalpine Wetlands: Manifestations of Pack Stock Grazing in Early versus Mid-Season

    PubMed Central

    Holmquist, Jeffrey G.; Schmidt-Gengenbach, Jutta; Haultain, Sylvia A.

    2013-01-01

    Conclusions regarding disturbance effects in high elevation or high latitude ecosystems based solely on infrequent, long-term sampling may be misleading, because the long winters may erase severe, short-term impacts at the height of the abbreviated growing season. We separated a) long-term effects of pack stock grazing, manifested in early season prior to stock arrival, from b) additional pack stock grazing effects that might become apparent during annual stock grazing, by use of paired grazed and control wet meadows that we sampled at the beginning and end of subalpine growing seasons. Control meadows had been closed to grazing for at least two decades, and meadow pairs were distributed across Sequoia National Park, California, USA. The study was thus effectively a landscape-scale, long-term manipulation of wetland grazing. We sampled arthropods at these remote sites and collected data on associated vegetation structure. Litter cover and depth, percent bare ground, and soil strength had negative responses to grazing. In contrast, fauna showed little response to grazing, and there were overall negative effects for only three arthropod families. Mid-season and long-term results were generally congruent, and the only indications of lower faunal diversity on mid-season grazed wetlands were trends of lower abundance across morphospecies and lower diversity for canopy fauna across assemblage metrics. Treatment x Season interactions almost absent. Thus impacts on vegetation structure only minimally cascaded into the arthropod assemblage and were not greatly intensified during the annual growing season. Differences between years, which were likely a response to divergent snowfall patterns, were more important than differences between early and mid-season. Reliance on either vegetation or faunal metrics exclusively would have yielded different conclusions; using both flora and fauna served to provide a more integrative view of ecosystem response. PMID:23308297

  15. Effects of irrigation on seed production and vegetative characteristics of four moist-soil plants on impounded wetlands in California

    USGS Publications Warehouse

    Mushet, D.M.; Euliss, N.H., Jr.; Harris, S.W.

    1992-01-01

    We examined the effects of irrigation on 4 moist-soil plants commonly managed for waterfowl in the Sacramento Valley, California. Irrigation resulted in taller and heavier swamp timothy (Heleochloa schoenoides), pricklegrass (Crypsis niliaca), and sprangletop (Leptochloa fasicularis). Barnyardgrass (Echinochloa crusgalli) grew taller in irrigated wetlands, but no significant difference in weight was detected. Only sprangletop yielded larger seed masses in response to irrigation. Without irrigation, swamp timothy and pricklegrass assumed a typical prostrate growth form, but with irrigation, they assumed a vertical growth form. Irrigation did not significantly affect plant density. Because of rising water costs, wetland managers should consider wildlife management objectives and plant responses before implementing irrigation practices.

  16. An integrated approach to assess broad-scale condition of coastal wetlands - The Gulf of Mexico Coastal Wetlands pilot survey

    USGS Publications Warehouse

    Nestlerode, J.A.; Engle, V.D.; Bourgeois, P.; Heitmuller, P.T.; Macauley, J.M.; Allen, Y.C.

    2009-01-01

    The Environmental Protection Agency (EPA) and U.S. Geological Survey (USGS) initiated a two-year regional pilot survey in 2007 to develop, test, and validate tools and approaches to assess the condition of northern Gulf of Mexico (GOM) coastal wetlands. Sampling sites were selected from estuarine and palustrine wetland areas with herbaceous, forested, and shrub/scrub habitats delineated by the US Fish and Wildlife Service National Wetlands Inventory Status and Trends (NWI S&T) program and contained within northern GOM coastal watersheds. A multi-level, stepwise, iterative survey approach is being applied to multiple wetland classes at 100 probabilistically-selected coastal wetlands sites. Tier 1 provides information at the landscape scale about habitat inventory, land use, and environmental stressors associated with the watershed in which each wetland site is located. Tier 2, a rapid assessment conducted through a combination of office and field work, is based on best professional judgment and on-site evidence. Tier 3, an intensive site assessment, involves on-site collection of vegetation, water, and sediment samples to establish an integrated understanding of current wetland condition and validate methods and findings from Tiers 1 and 2. The results from this survey, along with other similar regional pilots from the Mid-Atlantic, West Coast, and Great Lakes Regions will contribute to a design and implementation approach for the National Wetlands Condition Assessment to be conducted by EPA's Office of Water in 2011. ?? Springer Science+Business Media B.V. 2008.

  17. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. [Argonne National Lab., IL (United States); Isaacson, H.R. [Gas Research Institute (United States)

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  18. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. (Argonne National Lab., IL (United States)); Isaacson, H.R. (Gas Research Institute (United States))

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  19. Mechanisms involved in the re-establishment of Sphagnum dominated vegetation in rewetted bog remnants

    Microsoft Academic Search

    A. J. P. Smolders; H. B. M. Tomassen; M. van Mullekom; L. P. M. Lamers; J. G. M. Roelofs

    2003-01-01

    Restoration of peat bog vegetation inhighly degraded peatlands is generallyattempted by improving the hydrology ofthese areas. The present paper discussesand explains various restoration strategiesrelating to peat quality, water chemistryand hydrology. In some cases, (shallow)inundation of bog remnants leads to a rapidredevelopment of (floating) Sphagnumvegetation, usually when poorly humifiedSphagnum peat is still present. Afterinundation, the peat either swells up tothe newly

  20. Influence of wetland size on aquatic communities within wetland reservoir subirrigation systems in northwestern Ohio.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water management system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Specifically, each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to ...

  1. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions.

    PubMed

    Mendoza-Hernández, Pedro E; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature (Tss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth. PMID:23605562

  2. Vegetation patches improve the establishment of Salvia mexicana seedlings by modifying microclimatic conditions

    NASA Astrophysics Data System (ADS)

    Mendoza-Hernández, Pedro E.; Rosete-Rodríguez, Alejandra; Sánchez-Coronado, María E.; Orozco, Susana; Pedrero-López, Luis; Méndez, Ignacio; Orozco-Segovia, Alma

    2014-07-01

    Human disturbance has disrupted the dynamics of plant communities. To restore these dynamics, we could take advantage of the microclimatic conditions generated by remaining patches of vegetation and plastic mulch. These microclimatic conditions might have great importance in restoring disturbed lava fields located south of Mexico City, where the rock is exposed and the soil is shallow. We evaluated the effects of both the shade projected by vegetation patches and plastic mulch on the mean monthly soil surface temperature ( T ss) and photosynthetic photon flux density (PPFD) and on the survival and growth of Salvia mexicana throughout the year. This species was used as a phytometer of microsite quality. Shade reduced the T ss to a greater extent than mulch did. Both survival and growth were enhanced by shade and mulch, and the PPFD was related with seedling growth. During the dry season, plant biomass was lost, and there was a negative effect of PPFD on plant growth. At micro-meteorological scales, the use of shade projected by patches of vegetation and mulch significantly reduced the mortality of S. mexicana and enhanced its growth. Survival and growth of this plant depended on the environmental quality of microsites on a small scale, which was determined by the environmental heterogeneity of the patches and the landscape. For plant restoration, microsite quality must be evaluated on small scales, but on a large scale it may be enough to take advantage of landscape shade dynamics and the use of mulch to increase plant survival and growth.

  3. Functional assessment of five wetlands constructed to mitigate wetland loss in Ohio, USA

    Microsoft Academic Search

    Renée F. Wilson; William J. Mitsch

    1996-01-01

    Five replacement wetlands in Ohio, USA, were investigated to determine their ecological and legal success. Hydrology soils,\\u000a vegetation, wildlife, and water quality of each wetland determined their functional success. The progress of the wetlands\\u000a was also compared to their legal requirements. Four of the five wetlands (80%) were in compliance with legal requirements\\u000a and the same four wetlands demonstrated medium

  4. The potential use of storm water and effluent from a constructed wetland for re-vegetating a degraded pyrite trail in Queen Elizabeth National Park, Uganda

    NASA Astrophysics Data System (ADS)

    Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.

    During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite trail and the unpolluted zone. The concentration of lead in the regeneration zone and bare pyrite trail were similar but significantly higher in the unpolluted zone. Concentrations of TP and TN were significantly higher in unpolluted zone, followed by regeneration zone and bare pyrite trail. Storm water and effluent from a constructed wetland enhanced the revegetation process by modifying soil pH, making plant growth nutrients available and by providing a steady supply of moisture necessary for plant growth. T. latifolia and C. dactylon which seem to have tolerance of high concentrations of metals were the dominant species in the regeneration zone. If storm water and effluent supply continues, the aforementioned vegetation will colonize the pyrite trail and will eventually protect QENP and Lake George from metal contamination.

  5. Controls on wetland loss during large magnitude storms: a case study in Breton Sound, LA

    NASA Astrophysics Data System (ADS)

    Howes, N. C.; Hughes, Z. J.; Fitzgerald, D.; Georgiou, I. Y.; Kulp, M. A.; Miner, M. D.; Smith, J. M.; Barras, J. A.

    2010-12-01

    In 2005, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km^2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained largely intact and unchanged. Field studies were undertaken in Breton Sound, Louisiana, where both the low and high salinity wetlands experienced very similar hydrodynamic conditions during Hurricane Katrina. This site provides a natural case to study the causes of the observed land loss patterns. We observe geotechnical differences between soil profiles in high and low salinity wetlands, as controlled by vegetation, and which result in differential erosion. Low salinity wetlands contain a weak zone at a depth of ~30 cm below the marsh surface; this coincides with the base of rooting and has shear strengths as low as 500-1450 Pa. High salinity wetlands display deeper rooting, have no identifiable weak zone, and shear strengths exceed 4500 Pa throughout the upper soil profile. Results from a model (STWAVE-ADCIRC) are used to establish the hydrodynamic conditions during Hurricane Katrina (storm surge, wave height, and wave period). We calculate the potential shear stresses exerted by waves, accounting for the interaction between the oscillatory flow and the vegetation. Calculated shear stresses were in the range 425-3600 Pa, values sufficient to cause widespread erosion of the low salinity wetlands, but not the high salinity wetlands, corresponding with the observed patterns of land loss. A conceptual model is developed to illustrate the influence of rooting type and depth on the strength profile of wetlands soils and their susceptibility to erosion during large magnitude storms. These findings have implications for wetland restoration schemes involving freshwater diversions.

  6. Wetland 101

    NSDL National Science Digital Library

    This online course provides an introduction to wetland ecology, types of wetlands, wetland functions and values, and wetlands management. Topics include how a wetland is defined, wetland hydrology, seasonal and other fluctuations in water levels, and wetland soils and plants. The course consists of a series of slide presentations with self-quizzes and an online final quiz. Registration and log-in are required.

  7. Avian utilization of subsidence wetlands

    SciTech Connect

    Nawrot, J.R.; Conley, P.S.; Smout, C.L. [Southern Illinois Univ., Carbondale, IL (United States)

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avian utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.

  8. Improving aquatic plant growth using propagules and topsoil in created bentonite wetlands of Wyoming

    Microsoft Academic Search

    Mark C McKinstry; Stanley H Anderson

    2003-01-01

    Aquatic plants usually establish at created wetlands via water, wind, or animal transport of propagules from nearby wetlands. However, plants may not establish in created wetlands that are far removed from natural wetlands and their seed sources. In northeast Wyoming, over 1500 wetlands have been created as a result of bentonite mining and most are >50km from natural wetlands. Aquatic

  9. Assessment of Vegetation Establishment on Tailings Dam at an Iron Ore Mining Site of Suburban Beijing, China, 7 Years After Reclamation with Contrasting Site Treatment Methods

    NASA Astrophysics Data System (ADS)

    Yan, Demin; Zhao, Fangying; Sun, Osbert Jianxin

    2013-09-01

    Strip-mining operations greatly disturb soil, vegetation and landscape elements, causing many ecological and environmental problems. Establishment of vegetation is a critical step in achieving the goal of ecosystem restoration in mining areas. At the Shouyun Iron Ore Mine in suburban Beijing, China, we investigated selective vegetation and soil traits on a tailings dam 7 years after site treatments with three contrasting approaches: (1) soil covering (designated as SC), (2) application of a straw mat, known as "vegetation carpet", which contains prescribed plant seed mix and water retaining agent (designated as VC), on top of sand piles, and (3) combination of soil covering and application of vegetation carpet (designated as SC+VC). We found that after 7 years of reclamation, the SC+VC site had twice the number of plant species and greater biomass than the SC and VC sites, and that the VC site had a comparable plant abundance with the SC+VC site but much less biodiversity and plant coverage. The VC site did not differ with the SC site in the vegetation traits, albeit low soil fertility. It is suggested that application of vegetation carpet can be an alternative to introduction of topsoil for treatment of tailings dam with fine-structured substrate of ore sands. However, combination of topsoil treatment and application of vegetation carpet greatly increases vegetation coverage and plant biodiversity, and is therefore a much better approach for assisting vegetation establishment on the tailings dam of strip-mining operations. While application of vegetation carpet helps to stabilize the loose surface of fine-structured mine wastes and to introduce seed bank, introduction of fertile soil is necessary for supplying nutrients to plant growth in the efforts of ecosystem restoration of mining areas.

  10. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    SciTech Connect

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    2004-12-31

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increased attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for wetland-dependent wildlife. We present a brief summary of this project and the research studies now underway.

  11. Establishing the Capability of a 1D SVAT Modelling Scheme in Predicting Key Biophysical Vegetation Characterisation Parameters

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; Petropoulos, George P.; Carlson, Toby N.; Purdy, Sarah

    2015-04-01

    Sensitivity analysis (SA) consists of an integral and important validatory check of a computer simulation model before it is used to perform any kind of analysis. In the present work, we present the results from a SA performed on the SimSphere Soil Vegetation Atmosphere Transfer (SVAT) model utilising a cutting edge and robust Global Sensitivity Analysis (GSA) approach, based on the use of the Gaussian Emulation Machine for Sensitivity Analysis (GEM-SA) tool. The sensitivity of the following model outputs was evaluated: the ambient CO2 concentration and the rate of CO2 uptake by the plant, the ambient O3 concentration, the flux of O3 from the air to the plant/soil boundary, and the flux of O3 taken up by the plant alone. The most sensitive model inputs for the majority of model outputs were related to the structural properties of vegetation, namely, the Leaf Area Index, Fractional Vegetation Cover, Cuticle Resistance and Vegetation Height. External CO2 in the leaf and the O3 concentration in the air input parameters also exhibited significant influence on model outputs. This work presents a very important step towards an all-inclusive evaluation of SimSphere. Indeed, results from this study contribute decisively towards establishing its capability as a useful teaching and research tool in modelling Earth's land surface interactions. This is of considerable importance in the light of the rapidly expanding use of this model worldwide, which also includes research conducted by various Space Agencies examining its synergistic use with Earth Observation data towards the development of operational products at a global scale. This research was supported by the European Commission Marie Curie Re-Integration Grant "TRANSFORM-EO". SimSphere is currently maintained and freely distributed by the Department of Geography and Earth Sciences at Aberystwyth University (http://www.aber.ac.uk/simsphere). Keywords: CO2 flux, ambient CO2, O3 flux, SimSphere, Gaussian process emulators, BACCO GEM-SA, TRANSFORM-EO.

  12. Vegetation patterns in a calcareous sloping fen of southwestern Massachusetts, USA

    Microsoft Academic Search

    Deborah J. Picking; Peter L. M. Veneman

    2004-01-01

    Calcareous sloping fens are minerotrophic wetland systems that are well known for their high species richness, but little\\u000a is known about the local processes that govern the spatial patterns of species distribution within these communities. This\\u000a study was undertaken to document vegetative patterns and to quantify community differences within one such calcareous wetland.\\u000a A 250-m transect was established along a

  13. Establishment, succession, and stability of vegetation on surface-mined lands in eastern Montana. Final report

    SciTech Connect

    Sindelar, B.W.; Plantenberg, P.L.

    1982-09-30

    Mined land reclamation technology is advancing rapidly, and with it the potential for reclamation success. A most important aspect of reclamation, reconstruction of functional and productive ecosystems, has been investigated by this six-year study. By analyzing 15 individual sites intensively during five consecutive growing seasons, a large range in environmental, physical, and technological conditions was encountered. The potential for reclamation success at Colstrip was very good, as evidenced by naturally revegetated spoil. Spoil seeded after 1968 using the best current reclamation technology produced similar kinds of plant communities. Most were quite productive and were composed primarily of perennial grasses and forbs used in agricultural forage production. Yield fluctuated markedly in response to precipitation and fertilization but was consistently higher than on native rangeland in fair conditions. Some reclamation practices showed potential for enchancing the rate of successional advancement. Migration of native plants from surrounding plant communities was common, particularly in stands where competition was not too severe. Migration of native grasses was very slow but forbs were common migrants which considerably enhanced species diversity. A major objective of successional research is often to determine rate and trend of plant community development. The progression of community changes observed among these stands is shown diagrammatically in Figure 34. When introduced grasses and a dense temporary stabilizer cover crop were seeded together, rarely did native perennial species establish. The dynamic nature of the spoil communities was of major interest. Compositional changes were common and could occur very rapidly. Both drought and abundant precipitation occurred during the term of the study and had dramatic effects on the developing plant communities.

  14. Plant-water regime management in a wetland: consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias hybridus

    Microsoft Academic Search

    Jean-Marc Paillisson; Sebastien Reeber; Alexandre Carpentier; Loic Marion

    In this study we investigated the interplay between water level management, floating macrophytic vegetation and nesting whiskered\\u000a tern (Chlidonias hybridus) during 8 years (1995–2002) at a shallow macrophyte-dominated lake in western France. The specific question was to see if\\u000a slight increases in the water regime of the lake (three scenarios), as part of a restoration programme, affect the timing\\u000a of

  15. Plant-water regime management in a wetland: consequences for a floating vegetation-nesting bird, whiskered tern Chlidonias hybridus

    Microsoft Academic Search

    Jean-Marc Paillisson; Sebastien Reeber; Alexandre Carpentier; Loic Marion

    2006-01-01

    In this study we investigated the interplay between water level management, floating macrophytic vegetation and nesting whiskered\\u000a tern (Chlidonias hybridus) during 8 years (1995–2002) at a shallow macrophyte-dominated lake in western France. The specific question was to see if\\u000a slight increases in the water regime of the lake (three scenarios), as part of a restoration programme, affect the timing\\u000a of

  16. HYDROMORPHIC DETERMINANTS OF AQUATIC HABITAT VARIABILITY IN LAKE SUPERIOR COASTAL WETLANDS

    EPA Science Inventory

    This manuscript evaluates patterns in water quality, water movement, substrate, and vegetation in 10 Lake Superior coastal wetlands in light of wetland hydrology and morphology. Water quality, substrate, and vegetation structure are important aspects of habitat for fishes that u...

  17. Wetland Types

    NSDL National Science Digital Library

    This resource will help students to distinguish between wetland types. They will discover that coastal wetlands include salt marshes and tidal brackish marshes while inland wetlands consist of freshwater marshes, wet meadows, forested swamps, shrub swamps, bogs, fens, and vernal pools. A Guide to Wetland Wildlife in New England Regional Wetland "Celebrities" is included. This site is part of a guide that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. Even though the site is about wetlands in New England for educators and their middle school students it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland. An associated set of activities is also available.

  18. Virginia Wetlands Report Case Studies: Balancing Risks Associated with

    E-print Network

    Virginia Wetlands Report Case Studies: Balancing Risks Associated with Shoreline Protection in identifying when erosion protection is absolutely necessary and which solutions balance the private interests also creating a recreational amenity. The balance is the replacement of non- vegetated wetlands

  19. Chemical Properties of Pore Water and Sediment at Three Wetland Sites Near the F- and H-Area Seepage Basins, Savannah River Site

    SciTech Connect

    Friday, G.P.

    2001-05-15

    In 1980, vegetative stress and arboreal mortality in wetland plant communities down-gradient from the F- and H-Area seepage basins were detected using aerial imagery. By 1988, approximately six acres in H-Area and four acres in F-Area had been adversely impacted. Today, wetland plant communities have become well established at the H-Area tree-kill zone.

  20. The importance of subsurface geology for water source and vegetation communities in Cherokee Marsh, Wisconsin

    USGS Publications Warehouse

    Kurtz, A.M.; Bahr, J.M.; Carpenter, Q.J.; Hunt, R.J.

    2007-01-01

    Restoration of disturbed wetland systems is an important component of wetland mitigation, yet uncertainty remains about how hydrologic processes affect biologic processes and wetlands patterns. To design more effective restoration strategies and re-establish native plant communities in disturbed wetlands, it is imperative to understand undisturbed systems. A site within Cherokee Marsh located in Madison, Wisconsin, USA, contains a relatively undisturbed area of wetland consisting of plant communities common within the prairie landscape including a fen, sedge meadow, and shallow marsh. These distinct communities are found within an area of minimal topographic relief, yet transitions from one community to the next occur over short distances. This study sought to characterize the geologic, hydrologic, and chemical gradients associated with these shifts in vegetation to gain insight into the factors controlling the spatial differences in dominant plant species, which could be critical for restoration success. Vegetation analyses revealed a transition of dominant sedge species, which appeared to correspond to changes in hydrology from a ground-water dominated to a surface-water dominated system (as determined by water isotopes). Along the same vegetation transect, subsurface coring results show a heterogeneous composition of peat and till with lateral and vertical variations in stratigraphy, which relates to variability in ground-water discharge as evidenced by hydroperiods and stable isotope composition. Applications of this type of approach throughout the glaciated terrains of the midwestern and northeastern United States and Canada can improve future wetland restoration and management. ?? 2007, The Society of Wetland Scientists.

  1. Wetland Science

    NSDL National Science Digital Library

    This is the first section of a module about wetlands in New England for educators and their middle school students. Although designed for students in New England, it applies to and gives examples of wetlands across the country. It suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland. This guide aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. This first section explains what wetlands are and explains that the water cycle is the connection between wetlands and watersheds. In addition, it explains in detail the characteristics of wetland water, soil and plants. An associated set of activities is also available.

  2. A Study of Natural and Restored Wetland Hydrology

    USGS Publications Warehouse

    Bayless, E. Randall; Arihood, Leslie D.; Sidle, William C.; Pavlovic, Noel B.

    1999-01-01

    The U.S. Geological Survey and the U.S. Environmental Protection Agency are jointly studying the hydrology of a long-existing natural wetland and a recently restored wetland in the Kankakee River Valley in northwestern Indiana. In characterizing the two wetlands, project investigators are testing innovative methods to identify the analytical tools best suited for evaluating the success of wetland restoration. Investigators also are examining and comparing the relations between hydrology and restored wetland vegetation.

  3. Restoring biodiversity in the Gwydir Wetlands through environmental flows.

    PubMed

    Mawhinney, W A

    2003-01-01

    As part of the Water Reforms process, environmental flow rules have been progressively implemented in New South Wales rivers. The Integrated Monitoring of Environmental Flows (IMEF) is a major project established to better understand how rivers and associated wetlands respond to environmental water allocations. The results presented here represent the vegetation data collected for the testing of the hypothesis that "protecting or restoring a portion of freshes and high flows and otherwise maintaining natural flow variability will replenish anabranches and riverine wetlands, restoring their biodiversity". The study site is the Ramsar listed Gwydir Wetlands, located on the Gingham and Gwydir (Big Leather) Watercourses in the Lower Gwydir Valley, 100 km west of Moree. The expansion of irrigated agriculture in the lower Gwydir valley has severely altered flow regimes in the wetlands. The spread of the weed Phyla canescens (Lippia) is of major concern to landholders in the Gwydir Wetlands. Results indicate that Paspalum distichum (Water couch) and Eleocharis plana (Ribbed spike-rush) can maintain dominance over Phyla canescens if flooding occurs on a semi-regular basis. Conversely, Eichhornia crassipes (Water hyacinth) is a rampant noxious weed of open water in the Gwydir Wetlands, and has quickly spread in areas that are inundated for long periods. Management of this weed requires periodic drying of the wetlands to cause desiccation and death of the plants. The flooding requirement of individual species and plant associations in the Gwydir Wetlands are currently not fully understood. By providing better information on the consequence of different flows, the IMEF project will help to develop better management strategies to shift the dominance from introduced species such as P. canescens and E. crassipes to more desirable native plant species. PMID:14653636

  4. White Ranch Wetlands Biological Survey

    E-print Network

    White Ranch Wetlands Biological Survey and Permanent Vegetation Monitoring Plots Prepared for: U BIOLOGICAL SURVEY AND PERMANENT VEGETATION MONITORING PLOTS Introduction In May of 1997, the U. S. Fish Weisman Lake complex (Appendix G), · explanations of CNHP imperilment ranks and federal and state status

  5. Establishing quantitative relations between mammalian communities, climate regimes, and vegetation density - A diversity-based reference model and case study

    NASA Astrophysics Data System (ADS)

    Hertler, Christine; Wolf, Dominik; Bruch, Angela; Märker, Michael

    2013-04-01

    A considerable diversity of hominin taxa is described from the Pleistocene of sub-Saharan Africa. Inner-African range expansions of these taxa are primarily addressed by morphological comparisons of the hominin specimens and systematic interpretation of the results. Considering hominin expansion patterns as being at least co-determined by ecology and environment requires an assessment of respective features of paleo-communities as well as features of the environments with which they are associated. Challenges in validation and integration of reconstructions of hominin environments and ecologies can be met with well-organized recent reference models. Modelling the present day situation permits to assess relevant variables and to establish interactions among them on a quantitative basis. In a next step such a model can be applied to classify hominin paleoenvironments, for which not all data sources are available. An example for this approach is introduced here. In order to characterize hominin environments in sub-Saharan Africa, we assessed sets of variables for composition, structure and diversity of the large mammal communities, climate (temperature and precipitation), and vegetation in African national parks. These data are applied to analyse correlations between faunal communities and their environments on a quantitative basis. While information on large mammal communities is frequently available for hominin localities and regional climate features are addressed on the basis of abiotic proxies, information on paleoflora and vegetation is mostly lacking for the Plio-Pleistocene in sub-Saharan Africa. A quantitative reference model therefore offers new options for reconstructions. A recent reference model moreover permits to quantify descriptive terms like 'savanna'. We will introduce a reference model for sub-Saharan Africa and demonstrate its application in the reconstruction of hominin paleoenvironments. The corresponding quantitative characterization of Pleistocene specialized herbivore communities permits to infer habitat features. The hominin locality Makuyuni permits to study two successive fossil communities and changes occurring. Both fossil horizons are associated with either hominin specimens and/or artifacts. Therefore, hominins persist in the habitats in view of a changing environment.

  6. Integration of multi-temporal spectral and structural information to map wetland vegetation in a brackish Connecticut marsh

    NASA Astrophysics Data System (ADS)

    Gilmore, M. S.; Wilson, E. H.; Barrett, N.; Civco, D. L.; Prisloe, S.; Hurd, J. D.; Chadwick, C.

    2008-12-01

    This study utilizes multitemporal QuickBird and single date LiDar canopy height data to classify the common plant communities of a tidal marsh at the mouth of the Connecticut River. A specific goal was to map the expanding distribution of non-native Phragmites australis (Cav.) Trin ex Steud (common reed), which has been outcompeting native species, particularly in disturbed marshes. P. australis spreads vigorously, forming dense monocultures that result in reduced biodiversity of plant, avian and macroinvertebrate species. We collected visible to near-infrared (VNIR) reflectance spectra of the dominant plant species S. patens (salt meadow grass), Typha spp. (cattail), and P. australis over two growing seasons to develop metrics that maximize phenological spectral and canopy height variability to distinguish these plants within a complex marsh community containing >100 plant species. Relative to other species, P. australis is best distinguished by its high NIR response and height late in the growing season. Typha spp. was well distinguished from other species by its high red/green ratio and S. patens by a unique green/blue ratio and low heights throughout the growing season. The field spectra and LiDar-derived heights were used to guide an object-oriented classification methodology using multitemporal QuickBird data collected over the same time interval as the field spectra. The classification was validated using a field inventory of marsh vegetation. Overall maximum fuzzy accuracy for the classification was 97% for Phragmites, 63% for Typha spp. and 80% for S. patens meadows; this improved to 97%, 76%, and 92%, respectively, using a fuzzy acceptable match measure. Image acquisition timing was critical for the identification of targeted plant species in this heterogeneous marsh. These datasets and protocols may provide coastal resource managers, municipal officials and researchers a set of recommended guidelines for remote sensing data collection for marsh inventory and monitoring.

  7. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by probably the densest stage network in the world (more than 200 stations), located 5-10 km from one another. The stage data is very important in evaluating the uncertainty of the InSAR observations. Stage data also allow us to tie the relative InSAR observations (water level changes) to absolute reference frame and to produce high spatial-resolution (10-100 m resolution) maps of absolute water levels. High resolution wetland interferograms also provide direct observations of flow patterns and flow discontinuities and serve as excellent constraints for high resolution flow models. Because many wetlands are located in coastal zones, the high spatial resolution InSAR observations provide an opportunity to study dynamic interaction of tides and freshwater inflow, and the role of vegetation resistance to surface water flow.

  8. Wetland Mitigation Monitoring at the Fernald Preserve - 13200

    SciTech Connect

    Powell, Jane [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States)] [Fernald Preserve Site Manager, DOE Office of Legacy Management, Harrison, Ohio (United States); Bien, Stephanie; Decker, Ashlee; Homer, John [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States)] [Environmental Scientist, S.M. Stoller Corporation, Harrison, Ohio (United States); Wulker, Brian [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)] [Intern, S.M. Stoller Corporation, Harrison, Ohio (United States)

    2013-07-01

    The U.S. Department of Energy is responsible for 7.2 hectares (17.8 acres) of mitigation wetland at the Fernald Preserve, Ohio. Remedial activities affected the wetlands, and mitigation plans were incorporated into site-wide ecological restoration planning. In 2008, the Fernald Natural Resource Trustees developed a comprehensive wetland mitigation monitoring approach to evaluate whether compensatory mitigation requirements have been met. The Fernald Preserve Wetland Mitigation Monitoring Plan provided a guideline for wetland evaluations. The Ohio Environmental Protection Agency (Ohio EPA) wetland mitigation monitoring protocols were adopted as the means for compensatory wetland evaluation. Design, hydrologic regime, vegetation, wildlife, and biogeochemistry were evaluated from 2009 to 2011. Evaluations showed mixed results when compared to the Ohio EPA performance standards. Results of vegetation monitoring varied, with the best results occurring in wetlands adjacent to forested areas. Amphibians, particularly ambystomatid salamanders, were observed in two areas adjacent to forested areas. Not all wetlands met vegetation performance standards and amphibian biodiversity metrics. However, Fernald mitigation wetlands showed substantially higher ratings compared to other mitigated wetlands in Ohio. Also, soil sampling results remain consistent with other Ohio mitigated wetlands. The performance standards are not intended to be 'pass/fail' criteria; rather, they are reference points for use in making decisions regarding future monitoring and maintenance. The Trustees approved the Fernald Preserve Wetland Mitigation Monitoring Report with the provision that long-term monitoring of the wetlands continues at the Fernald Preserve. (authors)

  9. Influence of wetland type, hydrology, and wetland destruction on aquatic communities within wetland reservoir subirrigation systems in northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of two different types of wetlands adjacent to agricultural fields. Each WRSIS consists of one treatment wetland designed to process agricultural contaminants (...

  10. Detached Wetlands

    NSDL National Science Digital Library

    KET

    2011-01-11

    This video depicts a detached wetland, a small pool that forms beside a shallow meandering stream when it overflows its banks. These wetlands are important breeding grounds for the invertebrates that live in and beside streams

  11. Wetland Functions

    NSDL National Science Digital Library

    This resource explains a number of critical functions performed by wetlands. Students will discover that wetlands moderate impacts from flooding, control erosion, purify water, and provide habitat for fish and wildlife. They also provide a unique natural environment for people to enjoy outdoor recreation activities. It is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. Although it is about wetlands in New England for educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  12. Tidal Wetlands Impacts Data Homepage

    NSDL National Science Digital Library

    A cooperative effort between the Virginia Institute of Marine Science (VIMS) and the US Environmental Protection Agency (EPA), this site was designed "to assist resource managers, academicians, students, politicians, and the general public in the areas of research, education, environmental management, and policy ... about human impacts on tidal wetlands in Virginia." Non-interactive sections include the Overview of the VIMS Program, describing data collection methods; Overview of Management, describing the history and current status of tidal wetlands management; Nontidal wetlands impacts information, summarizing impacts to nontidal wetlands; and General Data Summaries, offering display tables and graphs. Two searchable sections provide for select examination of the data: Design a query for 1993-1997 and Design a query for 1988-1992 enable viewers to examine data by year, activity category, and watershed. Results are presented in tabular form and "display impacts to vegetated and nonvegetated wetlands by square footage." Photographs accompany the summary data.

  13. Impact of standing vegetation on early establishment of willow cuttings in the flooded area of the Parana River Delta (Argentina)

    Microsoft Academic Search

    Ana M. Garau; Fernando D. Caccia; Ana B. Guarnaschelli

    2008-01-01

    We assessed the growth and survival of a willow clone (Salix matsudana × Salix alba ‘A 13\\/44’) growing under different vegetation management in the flooded area of the Parana River Delta (Argentina) during\\u000a the first 2 years after planting. Treatments consisted in a combination of practices applied in the row and in the inter-row.\\u000a In the row (1-m wide) vegetation was manually cut

  14. Ecohydraulics and Estuarine Wetland Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow conditions. We present a preliminary analysis of the data aimed at the hydrodynamic and geomorphologic characterization of the different vegetation zones and the resulting habitat properties.

  15. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  16. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  17. Control of hardwood regeneration in restored carolina bay depression wetlands.

    SciTech Connect

    Moser, Lee, J.; Barton, Christopher, D.; Blake, John, I.

    2012-06-01

    Carolina bays are depression wetlands located in the coastal plain region of the eastern United States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches. Restoration of bays is of interest because they are important habitats for rare flora and fauna. Previous bay restoration projects have identified flood-tolerant woody competitors in the seedbank and re-sprouting as impediments to the establishment of desired herbaceous wetland vegetation communities. We restored 3 bays on the Savannah River Site, South Carolina, by plugging drainage ditches, harvesting residual pine/hardwood stands within the bays, and monitoring the vegetative response of the seedbank to the hydrologic change. We applied a foliar herbicide on one-half of each bay to control red maple (Acerrubrum), sweetgum (Liquidambar styraciflua), and water oak (Quercus nigra) sprouting, and we tested its effectiveness across a hydrologic gradient in each bay. Hardwood regeneration was partially controlled by flooding in bays that exhibited long growing season hydroperiods. The findings also indicated that herbicide application was an effective means for managing hardwood regeneration and re-sprouting in areas where hydrologic control was ineffective. Herbicide use had no effect on species richness in the emerging vegetation community. In late-season drawdown periods, or in bays where hydroperiods are short, more than one herbicide application may be necessary.

  18. Maine Department of Conservation: Wetlands Activity

    NSDL National Science Digital Library

    2011-07-18

    This four-week unit contains activities in which students investigate the natural history of a wetland, identify its boundaries, and study how it functions in the environment. They will investigate the formation of wetlands in Maine; prepare a series of map overlays researching wetland conditions for a site they have chosen in the community; learn how to recognize a wetland by hydrology, vegetation, and soil type; inventory the functions of the wetland site; and write an evaluation for it. To conclude the unit, the students will hold a mock town meeting in which they discuss the views of the various interested parties in preserving or destroying the wetland and debate the merits of the proposed changes to federal wetlands regulations.

  19. Estimated Ultraviolet Radiation Doses in Wetlands in

    E-print Network

    Knapp, Roland

    Estimated Ultraviolet Radiation Doses in Wetlands in Six National Parks Stephen A. Diamond,1 ABSTRACT Ultraviolet-B radiation (UV-B, 280­320-nm wave- lengths) doses were estimated for 1024 wetlands of vegetative features, and quantification of DOC concentration and spectral absorbance. UV-B dose estimates

  20. Identification and characterization of wetlands in the Bear Creek watershed

    SciTech Connect

    Rosensteel, B.A. [JAYCOR, Oak Ridge, TN (United States); Trettin, C.C. [Oak Ridge National Lab., TN (United States)

    1993-10-01

    The primary objective of this study was to identify, characterize, and map the wetlands in the Bear Creek watershed. A preliminary wetland categorization system based on the Cowardin classification system (Cowardin et al. 1979) with additional site-specific topographic, vegetation, and disturbance characteristic modifiers was developed to characterize the type of wetlands that exist in the Bear Creek watershed. An additional objective was to detect possible relationships among site soils, hydrology, and the occurrence of wetlands in the watershed through a comparison of existing data with the field survey. Research needs are discussed in the context of wetland functions and values and regulatory requirements for wetland impact assessment and compensatory mitigation.

  1. Differences in Aquatic Communities Between Wetlands Created by an Agricultural Water Recycling System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to s...

  2. Microbiological study of ready-to-eat salad vegetables from retail establishments uncovers a national outbreak of salmonellosis.

    PubMed

    Sagoo, S K; Little, C L; Ward, L; Gillespie, I A; Mitchell, R T

    2003-03-01

    The increasing availability of bagged prepared salad vegetables reflects consumer demand for fresh, healthy, convenient, and additive-free foods that are safe and nutritious. During May and June 2001 a study of retail bagged prepared ready-to-eat salad vegetables was undertaken to determine the microbiological quality of these vegetables. Examination of the salad vegetables revealed that the vast majority (3,826 of 3,852 samples; 99.3%) were of satisfactory or acceptable microbiological quality according to Public Health Laboratory Service microbiological guidelines, while 20 (0.5%) samples were of unsatisfactory microbiological quality. Unsatisfactory quality was due to Escherichia coli and Listeria spp. (not Listeria monocytogenes) levels in excess of 10(2) CFU/g. However, six (0.2%) samples were of unacceptable microbiological quality because of the presence of Salmonella (Salmonella Newport PT33 [one sample], Salmonella Umbilo [three samples], and Salmonella Durban [one sample]) or because of a L. monocytogenes level of 660 CFU/g, which indicates a health risk. In each case, the retailer involved and the UK Food Standards Agency were immediately informed, and full investigations were undertaken. Nineteen cases of Salmonella Newport PT33 infection were subsequently identified throughout England and Wales. The outbreak strain of Salmonella Newport PT33 isolated from the salad and from humans had a unique plasmid profile. Campylobacter spp. and E. coli O157 were not detected in any of the samples examined. The presence of Salmonella, as well as high levels of L. monocytogenes, is unacceptable. However, minimally processed cut and packaged salad is exposed to a range of conditions during growth, harvest, preparation, and distribution, and it is possible that these conditions may increase the potential for microbial contamination, highlighting the necessity for the implementation of good hygiene practices from farm to fork to prevent contamination and/or bacterial growth in these salad products. PMID:12636292

  3. Uptake of /sup 226/Ra by established vegetation and black cutworm larvae, Agrotis ipsilon (class Insecta: order Lepidoptera), on U mill tailings at Elliot Lake, Canada

    SciTech Connect

    Clulow, F.V.; Dave, N.K.; Lim, T.P.; Cloutier, N.R.

    1988-07-01

    Radium-226 levels in samples from an inactive U tailings site at Elliot Lake, Ontario, Canada, were: 9140 +/- 500 mBq g-1 dry weight in the substrate; 62 +/- 1 mBq g-1 dry weight in rye, Secale cereale, and less than 3.7 mBq g-1 dry weight in oats, Avena sativa, the dominant species established by revegetation of the tailings; and 117 +/- 7 mBq g-1 dry weight in washed and unwashed black cutworm larvae. Concentration ratios were: vegetation to tailings 0.001-0.007; black cutworms to vegetation 3.6 and black cutworms to tailings 0.01. The values are considered too low to be considered a hazard to herring gulls, Larus argentatus, which occasionally feed on cutworms.

  4. Results of preliminary reconnaissance trip to determine the presence of wetlands in wet forest habitats on the Island of Hawaii as part of the Hawaii Geothermal Project, October 1993

    SciTech Connect

    Wakeley, J.S.; Sprecher, S.W.; Lichvar, R.

    1994-02-25

    In October 1993, the authors sampled soils, vegetation, and hydrology at eight sites representing a range of substrates, elevations, soil types, and plant community types within rainforest habitats on the Island of Hawaii. Their purpose was to determine whether any of these habitats were wetlands according to the 1987 Corps of Engineers Wetlands Delineation Manual. None of the rainforest habitats they sampled was wetland in its entirety. However, communities established on pahoehoe lava flows contained scattered wetlands in depressions and folds in the lava, where water could accumulate. Therefore, large construction projects, such as that associated with proposed geothermal energy development in the area, have the potential to impact a significant number and/or area of wetlands. To estimate those impacts more accurately, they present a supplementary scope of work and cost estimate for additional sampling in the proposed geothermal project area.

  5. Hydrogeomorphic and Anthropogenic Influences on Water Quality, Habitat, and Fish of Great Lakes Coastal Wetlands

    EPA Science Inventory

    Great Lakes coastal wetlands represent a dynamic interface between coastal watersheds and the open lake. Compared to the adjacent lakes, these wetlands have generally warmer water, reduced wave energy, shallow bathymetry, higher productivity, and structurally complex vegetated h...

  6. Remote sensing of coastal wetlands

    NASA Technical Reports Server (NTRS)

    Hardisky, M. A.; Klemas, V.; Gross, M. F.

    1986-01-01

    Various aircraft and satellite sensors for detecting and mapping wetlands properties are examined. The uses of color IR photography to map coastal vegetation, and of Landsat MSS and TM and SPOT data to quantify biomass and productivity for large wetland areas are discussed. For spectral estimation of biomass and productivity, the relation between radiance and biomass needs to be studied; the quantity and orientation of dead biomass and the amount of soil reflectance in comparison with vegetation reflectance in a given target area affect the spectral estimation of biomass. The radiometric evaluation of brackish wetland, and remote sensing in mangroves are described. The collection of images in narrow, contiguous spectral band using imaging spectrometry is considered.

  7. Integration of Biosynthesis and Long-Distance Transport Establish Organ-Specific Glucosinolate Profiles in Vegetative Arabidopsis[W

    PubMed Central

    Andersen, Tonni Grube; Nour-Eldin, Hussam Hassan; Fuller, Victoria Louise; Olsen, Carl Erik; Burow, Meike; Halkier, Barbara Ann

    2013-01-01

    Although it is essential for plant survival to synthesize and transport defense compounds, little is known about the coordination of these processes. Here, we investigate the above- and belowground source-sink relationship of the defense compounds glucosinolates in vegetative Arabidopsis thaliana. In vivo feeding experiments demonstrate that the glucosinolate transporters1 and 2 (GTR1 and GTR2), which are essential for accumulation of glucosinolates in seeds, are likely to also be involved in bidirectional distribution of glucosinolates between the roots and rosettes, indicating phloem and xylem as their transport pathways. Grafting of wild-type, biosynthetic, and transport mutants show that both the rosette and roots are able to synthesize aliphatic and indole glucosinolates. While rosettes constitute the major source and storage site for short-chained aliphatic glucosinolates, long-chained aliphatic glucosinolates are synthesized both in roots and rosettes with roots as the major storage site. Our grafting experiments thus indicate that in vegetative Arabidopsis, GTR1 and GTR2 are involved in bidirectional long-distance transport of aliphatic but not indole glucosinolates. Our data further suggest that the distinct rosette and root glucosinolate profiles in Arabidopsis are shaped by long-distance transport and spatially separated biosynthesis, suggesting that integration of these processes is critical for plant fitness in complex natural environments. PMID:23995084

  8. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  9. Wetland Loss.

    ERIC Educational Resources Information Center

    Barrett, Marilyn

    1994-01-01

    Examines what wetland conservation means to different groups of Louisiana's coastal residents. Describes coastal resources, reasons for their deterioration, conservation efforts, and the impact of a public perception that conservation of wetlands is closely tied to conservation of the existing lifestyle. (LZ)

  10. Exploring Wetlands.

    ERIC Educational Resources Information Center

    Kerr, Elizabeth; Harrison, Gordon

    1996-01-01

    Presents a wetlands education model for secondary education students. Students monitor a wetland, participate in decision-making, and take actions to protect it. In a series of six steps, the model guides students through the process of defining a problem; envisioning solutions; evaluating appropriate solutions based on environmental, economic and…

  11. Predicting friction factor in herbaceous emergent wetlands

    NASA Astrophysics Data System (ADS)

    Wynn-Thompson, T.; Hall, K.

    2012-12-01

    Over 53% of all wetlands in the US have been lost since the mid-1780s; to counteract wetland losses, wetland land area is being replaced through wetland restoration and mitigation. Development of the target wetland hydroperiod is critical to restoration success. For wetlands in which outflow is a component of the water budget, such as in riparian wetlands, surface water stage is controlled all or in part by the hydraulic resistance within the wetland, requiring accurate simulation of hydraulic resistance due to vegetation. Hydraulic models that consider vegetation rely on an accurate determination of a resistance parameter such as a friction factor or drag coefficient. At low Reynolds numbers typical of flows in wetlands, hydraulic resistance is orders of magnitude higher than fully turbulent flows and resistance parameters are functions of the flow regime as well as the vegetation density and structure. The exact relationship between hydraulic resistance, flow regime, and vegetation properties at the low-Reynolds number flows remains unclear. Prior research has typically involved laboratory studies of flow through idealized, individual stems. However, emergent wetland vegetation frequently grows as clumps. The goals of this research were to investigate the effect of clumping vegetation on flow resistance and to develop a prediction equation for use in wetland design. A 6-m by 1-m by 0.4-m recirculating flume was planted with mature common rush, Juncus effusus, a common emergent wetland plant. Three different flow rates (3, 4, and 5 L/s) and three different tailgate heights (0, 2.5, and 5 cm) were used to simulate a range of flow conditions. Plant spacing and clump diameter were varied (20 and 25 cm, 8 and 12 cm, respectively). Friction factors ranged from 9 to 40 and decreased with increasing plant density. Non-dimensional parameters determined through Buckingham Pi analysis were used in a regression analysis to develop a prediction model. Results of the regression analysis showed that the fraction of vegetated occupied area was most significant factor in determining friction factor.

  12. Longitudinal dispersion in vegetated flow

    E-print Network

    Murphy, Enda

    2006-01-01

    Vegetation is ubiquitous in rivers, estuaries and wetlands, strongly influencing both water conveyance and mass transport. The plant canopy affects both mean and turbulent flow structure, and thus both advection and ...

  13. ACUTE TOXICITY OF METHYL-PARATHION IN WETLAND MESOCOSMS: INFLUENCE OF AQUATIC PLANTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acute toxicity of methyl-parathion (MeP) introduced into constructed wetlands for the purpose of assessing the importance of emergent vegetation was tested using Hyalella azecta (Crustacea: Amphipoda). A vegetated (90% cover, mainly Juncus effuses) and a non-vegetated wetland (each with a water...

  14. Role of vegetation (Typha latifolia) on nutrient removal in a horizontal subsurface-flow constructed wetland treating UASB reactor-trickling filter effluent.

    PubMed

    da Costa, Jocilene Ferreira; Martins, Weber Luiz Pinto; Seidl, Martin; von Sperling, Marcos

    2015-01-01

    The main objective of the work is to characterize the role of plants in a constructed wetland in the removal of nitrogen (N) and phosphorus (P). The experiments were carried out in a full-scale system in the city of Belo Horizonte, Brazil, with two parallel horizontal subsurface-flow constructed wetland units (one planted with Typha latifolia and one unplanted) treating the effluent from a system composed of an upflow anaerobic sludge blanket reactor and a trickling filter (TF). Each wetland unit received a mean flow of approximately 8.5 m³ d(-1) (population equivalent around 60 inhabitants each), with a surface hydraulic loading rate 0.12 m(3)m(-2)d(-1). The experiments were conducted from September 2011 to July 2013. Mean effluent concentrations from the wetlands were: (a) planted unit total nitrogen (TN) 22 mg L(-1), ammonia-N 19 mg L(-1), nitrite-N 0.10 mg L(-1), nitrate-N 0.25 mg L(-1), P-total 1.31 mg L(-1); and (b) unplanted unit TN 24 mg L(-1), ammonia-N 20 mg L(-1), nitrite-N 0.54 mg mL(-1), nitrate-N 0.15 mg L(-1), P-total 1.31 mg L(-1). The aerial part of the plant contained mean values of 24.1 gN (kg dry matter)(-1) and 4.4 gP (kg dry matter)(-1), and the plant root zone was composed of 16.5 gN (kg dry matter)(-1) and 4.1 gP (kg dry matter)(-1). The mean extraction of N by the plant biomass was 726 kgN ha(-1)y(-1), corresponding to 17% of the N load removed. For P, the extraction by the plant biomass was 105 kgP ha(-1)y(-1), corresponding to 9% of the P load removed. These results reinforce the reports that N and P removal due to plant uptake is a minor mechanism in horizontal subsurface-flow constructed wetlands operating under similar loading rates, typical for polishing of sanitary effluent. PMID:25860702

  15. Competitive effect versus competitive response of invasive and native wetland plant species.

    PubMed

    Hager, Heather A

    2004-03-01

    Non-native plants can have adverse effects on ecosystem structure and processes by invading and out-competing native plants. I examined the hypothesis that mature plants of non-native and native species exert differential effects on the growth of conspecific and heterospecific seedlings by testing predictions that (1) invasive vegetation has a stronger suppressive effect on seedlings than does native vegetation, (2) seedlings of invasive species are better able to grow in established vegetation than are native seedlings, and (3) invasive species facilitate conspecific and inhibit heterospecific seedling growth. I measured growth rates and interaction intensities for seedlings of four species that were transplanted into five wetland monoculture types: invasive Lythrum salicaria; native L. alatum, Typha angustifolia, T. latifolia; unvegetated control. Invasive L. salicaria had the strongest suppressive effect on actual and per-individual bases, but not on a per-gram basis. Seedlings of T. latifolia were better able to grow in established vegetation than were those of L. salicaria and T. angustifolia. These results suggest that L. salicaria is not a good invader of established vegetation, but once established, it is fairly resistant to invasion. Thus, it is likely that disturbance of established vegetation facilitates invasion by L. salicaria, allowing it to compete with other species in even-aged stands where its high growth rate and consequent production of aboveground biomass confer a competitive advantage. PMID:14758534

  16. Effects of sedge and cottongrass tussocks on plant establishment patterns in a post-mined peatland, northern Japan

    Microsoft Academic Search

    Asuka Koyama; Shiro Tsuyuzaki

    2010-01-01

    Facilitation (positive inter-specific interaction) plays an important role in promoting succession in harsh environments.\\u000a To examine whether tussocks facilitate the establishment of other species, after peat mining, investigations were carried\\u000a out in a formerly Sphagnum-dominated wetland (Sarobetsu mire, northern Japan). Two tussock-forming species, Carex middendorffii and Eriophorum vaginatum, have established in sparsely vegetated areas, with a dry ground surface, since

  17. Understanding Broadscale Drivers of Coastal Wetland Extent

    NASA Astrophysics Data System (ADS)

    Braswell, A. E.; Heffernan, J. B.

    2014-12-01

    Coastal wetlands provide valuable ecosystem services, but are threatened by sea level rise, anthropogenic disturbance, and changing sediment supply. Watershed characteristics, such as watershed area and upland land use, can mediate suspended sediment concentration; while estuarine characteristics, such as fetch, can determine the wave energy and erosion in a coastal area. These combined effects are mediated by local biogeomorphic feedbacks within wetlands to determine wetland extent. There has been little empirical or theoretical study of how broad-scale features of estuaries and watersheds influence wetland formation, persistence, and loss. As such, we cannot predict how wetland extent and resilience to sea level rise will respond to land use change and other human alterations. In this study, we ask, what factors control the broad-scale distribution of coastal wetlands? We examined relationships between coastal wetland extent and watershed/estuarine characteristics at multiple scales along the Eastern and Gulf coasts of the United States. Using existing GIS resources, we delineated the absolute and relative extents of coastal wetlands, and generated watershed and estuarine characteristics to serve as proxies of sediment input, the estuarine energy environment, and local wetland alteration. We found that present coastal wetland distributions reflect interactions across a wide range of spatial scales, ranging from local biogeomorphic processes, to estuarine-scale morphology that governs hydrodynamics, and to past and present watershed processes that influence sediment delivery. Coastal wetland extent scales with estuary size to the half power and the residuals reflect a bimodal distribution. The wetland extent distribution also displays multiple clusters, possibly signaling that local feedbacks drive wetland extent at some scales. When the results are broken up by region, this pattern is stronger in Northeastern United States. Using continental-scale variation in watershed and estuarine characteristics to understand where and how coastal wetlands have established, we hope to predict how wetland distributions will respond to sea level rise, altered sediment concentrations, and anthropogenic disturbance.

  18. What Makes a Wetland a Wetland?

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions of and activities about various kinds of wetlands. Contains seven learning activities ranging from creating wetland scenes with picture cutouts to actually exploring a wetland. Includes reproducible handouts and worksheets for several of the activities. (TW)

  19. Application of EPA wetland research program approach to a floodplain wetland restoration assessment.

    SciTech Connect

    Kolka, R., K.; Trettin, C., C.; Nelson, E., A.; Barton, C., D.; Fletcher, D., E.

    2002-01-01

    Kolka, R.K., C.C. Trettin, E.A. Nelson, C.D. Barton, and D.E. Fletcher. 2002. Application of the EPA Wetland Research Program Approach to a floodplain wetland restoration assessment. J. Env. Monitoring & Restoration 1(1):37-51. Forested wetland restoration assessment is difficult because of the timeframe necessary for the development of a forest ecosystem. The development of a forested wetland ecosystem includes the recovery of hydrology, soils, vegetation, and faunal communities. To assess forested wetland restoration projects, measures need to be developed that are sensitive to early changes in community development and are predictive of future conditions. In this study we apply the EPS's Wetland Research Program's (WRP) approach to assess the recovery of two thermally altered riparian wetland systems in South Carolina. In one of the altered wetland systems, approximately 75% of the wetland was planted with bottomland tree seedlings in an effort to hasten recovery. Individual studies addressing hydrology, soils, vegetation, and faunal communities indicate variable recovery responses.

  20. Mitigation of micropollutants inside wetland systems: Impacts of season and flow conditions

    NASA Astrophysics Data System (ADS)

    Lange, Jens; Herbstritt, Barbara; Schuetz, Tobias

    2014-05-01

    The important role of wetlands for retention and mitigation of micropollutants has been documented by numerous studies. Natural wetlands in stream eco-systems comprise different elements, e.g. open water bodies, densely vegetated areas and riparian zones with fluctuating water tables, where different biogeochemical conditions prevail. However, our main knowledge on the mitigation potential of these wetlands stems from input-output balances established for constructed systems and from controlled lab-scale experiments. Less is known about internal processes occurring in natural wetlands. The ability of hydrological tracers to serve as a reference for the transport of aquatic pollutants has been shown for a variety of micropollutants. In this study we used a set of hydrological tracers with different physico-chemical properties to assess the retention potential of a recently restored wetland that comprises a variety of internal flowpaths and wetland elements. We conducted our experiments during summer and winter to document the impacts of different seasons and flow conditions. As such we aimed to shed light on real-world retention capabilities of different wetland elements as a guideline for wetland (re-) construction. On a clear winter day (0°C, runoff 21 l/s) we injected 1kg of sodium bromide (NaBr), 1g of uranine (UR) and 1g of sulphorhodamine (SRB). Tracers were measured continuously by field fluorometers and conductivity meters complemented by manual and automatic sampling for laboratory analysis. In accordance with the constructional setup the Multi-Flow Dispersion Model (MDM) enabled us to numerically separate the existing three main flowpaths (FPs). Approximately 25% of the injected tracers traveled through FP1, which only comprised straight channel sections and narrow riparian zones. Approximately 65% of the tracers followed FP2, which contained one small open water body. The remaining tracers (approximately 10%) made their way through a large water body with a diffuse outlet through a densely vegetated zone. A comparison between conservative (NaBr) and non-conservative tracers (UR, SRB) yielded different retention capabilities for the three different FPs and hence wetland elements. During summer (20°C, runoff 0.8 l/s) we repeated the tracer injections using the same protocol. Then the entire wetland was densely vegetated and we expected higher tracer retention due to enhanced biological activity and longer residence times at low flow conditions. However, we observed the opposite, since only one flowpath (FP1) was active and all open water bodies were disconnected due to wetland succession. Regarding retention of micropollutants in our restored wetland we conclude that (a) retention in deep water bodies is decisive, (b) straight sections show relative small retention capabilities, (c) vegetation activity (summer/winter) seems less important for treatment than for flow path development, and (d) in our case photolysis is overall more effective than sorption. These findings highlight the importance of open water bodies for wetland restoration. This study was financed by the PhytoRet-Project (C.21) of the European INTERREG IV program Upper Rhine.

  1. Differences in Fish, Amphibian, and Reptile Communities Within Wetlands Created by an Agricultural Water Recycling System in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of a water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and one wetland to store subirriga...

  2. Remote Sensing and Wetland Ecology: a South African Case Study

    PubMed Central

    De Roeck, Els R.; Verhoest, Niko E.C.; Miya, Mtemi H.; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc

    2008-01-01

    Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 – 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery. For the characterisation of very small wetlands, high spatial resolution optical or radar images are needed. This study exemplifies the benefits of integrating remote sensing and ecology and hence stimulates interdisciplinary research of isolated wetlands.

  3. Forested wetlands

    SciTech Connect

    Lugo, A.E.; Brinson, M.; Brown, S. (eds.)

    1990-01-01

    Forested wetlands have important roles in global biogeochemical cycles, supporting freshwater and saltwater commercial fisheries, and in providing a place for wildlife of all kinds to flourish. Scientific attention towards these ecosystems has lagged with only a few comprehensive works on forested wetlands of the world. A major emphasis of this book is to develop unifying principles and data bases on the structure and function of forested wetlands, in order to stimulate scientific study of them. Wetlands are areas that are inundated or saturated by surface-water or ground-water, at such a frequency and duration that under natural conditions they support organisms adapted to poorly aerated and/or saturated soil. The strategy of classifying the conditions that control the structure and behavior of forested wetlands by assuming that the physiognomy and floristic composition of the system will reflect the total energy expenditure of the ecosystem; and the structural and functional characteristics of forested wetlands from different parts of the world are the major topics covered.

  4. 7 CFR 1467.6 - Establishing priority for enrollment of properties in WRP.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.6 Establishing...regions of the State where restoration of wetlands may better achieve State and regional...to the successful restoration of the wetlands and those adjacent landowners are...

  5. 7 CFR 1467.6 - Establishing priority for enrollment of properties in WRP.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.6 Establishing...regions of the State where restoration of wetlands may better achieve State and regional...to the successful restoration of the wetlands and those adjacent landowners are...

  6. Hardwood re-sprout control in hydrologically restored Carolina Bay depression wetlands.

    SciTech Connect

    Moser, Lee, Justin

    2009-06-01

    Carolina bays are isolated depression wetlands located in the upper coastal plain region of the eastern Unites States. Disturbance of this wetland type has been widespread, and many sites contain one or more drainage ditches as a result of agricultural conversion. Restoration of bays is of interest because they are important habitats for rare flora and fauna species. Previous bay restoration projects have identified woody competitors in the seedbank and re-sprouting as impediments to the establishment of herbaceous wetland vegetation communities. Three bays were hydrologically restored on the Savannah River Site, SC, by plugging drainage ditches. Residual pine/hardwood stands within the bays were harvested and the vegetative response of the seedbank to the hydrologic change was monitored. A foliar herbicide approved for use in wetlands (Habitat® (Isopropylamine salt of Imazapyr)) was applied on one-half of each bay to control red maple (Acer rubrum L.), sweet gum (Liquidambar styraciflua L.), and water oak (Quercus nigra L.) sprouting. The effectiveness of the foliar herbicide was tested across a hydrologic gradient in an effort to better understand the relationship between depth and duration of flooding, the intensity of hardwood re-sprout pressure, and the need for hardwood management practices such as herbicide application.

  7. Development of an indicator to monitor mediterranean wetlands.

    PubMed

    Sanchez, Antonio; Abdul Malak, Dania; Guelmami, Anis; Perennou, Christian

    2015-01-01

    Wetlands are sensitive ecosystems that are increasingly subjected to threats from anthropogenic factors. In the last decades, coastal Mediterranean wetlands have been suffering considerable pressures from land use change, intensification of urban growth, increasing tourism infrastructure and intensification of agricultural practices. Remote sensing (RS) and Geographic Information Systems (GIS) techniques are efficient tools that can support monitoring Mediterranean coastal wetlands on large scales and over long periods of time. The study aims at developing a wetland indicator to support monitoring Mediterranean coastal wetlands using these techniques. The indicator makes use of multi-temporal Landsat images, land use reference layers, a 50m numerical model of the territory (NMT) and Corine Land Cover (CLC) for the identification and mapping of wetlands. The approach combines supervised image classification techniques making use of vegetation indices and decision tree analysis to identify the surface covered by wetlands at a given date. A validation process is put in place to compare outcomes with existing local wetland inventories to check the results reliability. The indicator´s results demonstrate an improvement in the level of precision of change detection methods achieved by traditional tools providing reliability up to 95% in main wetland areas. The results confirm that the use of RS techniques improves the precision of wetland detection compared to the use of CLC for wetland monitoring and stress the strong relation between the level of wetland detection and the nature of the wetland areas and the monitoring scale considered. PMID:25826210

  8. Slowing the rate of loss of mineral wetlands on human dominated landscapes - Diversification of farmers markets to include carbon (Invited)

    NASA Astrophysics Data System (ADS)

    Creed, I. F.; Badiou, P.; Lobb, D.

    2013-12-01

    Canada is the fourth-largest exporter of agriculture and agri-food products in the world (exports valued at 28B), but instability of agriculture markets can make it difficult for farmers to cope with variability, and new mechanisms are needed for farmers to achieve economic stability. Capitalizing on carbon markets will help farmers achieve environmentally sustainable economic performance. In order to have a viable carbon market, governments and industries need to know what the carbon capital is and what potential there is for growth, and farmers need financial incentives that will not only allow them to conserve existing wetlands but that will also enable them to restore wetlands while making a living. In southern Ontario, farmers' needs to maximize the return on investment on marginal lands have resulted in loss of 70-90% of wetlands, making this region one of the most threatened region in terms of wetland degradation and loss in Canada. Our project establishes the role that mineral wetlands have in the net carbon balance by contributing insight into the potential benefits to carbon management provided by wetland restoration efforts in these highly degraded landscapes. The goal was to establish the magnitude of carbon offsets that could be achieved through wetland conservation (securing existing carbon stocks) and restoration (creating new carbon stocks). The experimental design was to focus on (1) small (0.2-2.0 ha) and (2) isolated (no inflow or outflow) mineral wetlands with the greatest restoration potential that included (3) a range of restoration ages (drained (0 yr), 3 yr, 6 yr, 12 yr, 20 yr, 35 yr, intact marshes) to capture potential changes in rates of carbon sequestration with restoration age of wetland. From each wetland, wetland soil carbon pools samples were collected at four positions: centre of wetland (open-water); emergent vegetation zone; wet meadow zone where flooding often occurs (i.e., high water mark); and upland where flooding rarely occurs (cores segmented into 5cm increments up to 45 cm, composited and analyzed for carbon pools using mass equivalent and carbon sequestration rates samples were taken at centre of wetland (open-water) (cores segmented into 1 cm increments up to 30 cm, composited and analyzed for Pb-210 and Cs-137 isotopes). The magnitude of wetland loss (?10 ha) is estimated to be over 1.5 million ha in southern Ontario since the time of European settlement. About 75% of converted wetlands (1.1 million ha) are now classified as 'undifferentiated agricultural lands.' We use our measured carbon sequestration rate Mg CO2 equivalents ha/yr under different scenarios of landowner uptake (5-50%) and prices for carbon offsets (2-50/MgCO2 equivalents) to estimate carbon sequestration and the value of this sequestration in restored wetlands. The project provides empirical evidence that restoring wetlands for carbon sequence could improve the livelihood of farmers and that policies should be established to incentivize farmers to adopt wetland restoration practices on marginal areas in order to improve the economic performance and environmental sustainability of agriculture in Ontario.

  9. Ecological distribution and crude density of breeding birds on prairie wetlands

    USGS Publications Warehouse

    Kantrud, H.A.; Stewart, R.E.

    1984-01-01

    Breeding populations of 28 species of wetland-dwelling birds other than waterfowl (Anatidae) were censused on 1,321 wetlands lying within the prairie pothole region of North Dakota. Ecological distribution and two crude measures of relative density were calculated for the 22 commonest species using eight wetland classes. Semipermanent wetlands supported nearly two-thirds of the population and were used by all 22 species, whereas seasonal wetlands contained about one-third of the population and were used by 20 species Semipermanent, fen, and temporary wetlands contained highest bird densities on the basis of wetland area; on the basis of wetland unit, densities were highest on semipermanent, permanent, alkali, and fen wetlands. The highest ranking of semipermanent wetlands by all three measures of use was probably because these wetlands, as well as being relatively numerous and large, were vegetatively diverse. The fairly large proportion of the bird population supported by seasonal wetlands was a result of wetland abundance and moderate vegetative diversity. Increased vegetative diversity results from the development of characteristic zones of hydrophytes at sites where water persists longer during the growing season. Frequent cultivation of prairie wetlands results in the replacement of tall, robust perennials by bare soil or stands of short, weak-stemmed annuals that likely are unattractive to nesting birds.

  10. Global warming and prairie wetlands: potential consequences for waterfowl habitat

    USGS Publications Warehouse

    Poiani, Karen A.; Johnson, W. Carter

    1991-01-01

    The accumulation of greenhouse gasses in the atmosphere is expected to warm the earth's climate at an unprecedented rate (Ramanathan 1988, Schneider 1989). If the climate models are correct, within 100 years the earth will not only be warmer than it has been during the past million years, but the change will have occurred more rapidly than any on record. Many profound changes in the earth's environment are expected, including rising sea level, increasing aridity in continental interiors, and melting permafrost. Ecosystems are expected to respond variously to a rapidly changing climate. Tree ranges in eastern North American are expected to shift northward, and seed dispersal may not be adequate to maintain current diversity (Cohn 1989, Johnson and Webb 1989). In coastal wetlands, rising sea level from melting icecaps and thermal expansion could flood salt-grass marshes and generally reduce the size and productivity of the intertidal zone (Peters and Darling 1985). As yet, little attention has been given to the possible effects of climatic warming on inland prairie wetland ecosystems. These wetlands, located in the glaciated portion of the North American Great Plains (Figure 1), constitute the single most important breeding area for waterfowl on this continent (Hubbard 1988). This region annually produces 50-80% of the continent's total duck production (Batt et al. 1989). These marshes also support a variety of other wildlife, including many species of nongame birds, muskrat, and mink (Kantrud et al. 1989a). Prairie wetlands are relatively shallow, water-holding depressions that vary in size, water permanence, and water chemistry. Permanence types include temporary ponds (typically holding water for a few weeks in the springs), seasonal ponds (holding water from spring until early summer), semipermanent ponds (holding water throughout the growing season during most years), and large permanent lakes (Stewart and Kantrud 1971). Refilling usually occurs in spring from precipitation and runoff from melting snow on frozen or saturated soils (Figure 2). Annual water levels fluctuate widely due to climate variability in the Great Plains (Borchert 1950, Kantrud et al. 1989b). Climate affects the quality of habitat for breeding waterfowl by controlling regional water conditions--water depth, areal extent, and length of wet/dry cycles (Cowardin et al. 1988)--and vegetation patterns such as the cover ration (the ratio of emergent plant cover to open water). With increased levels of atmospheric carbon dioxide, climate models project warmer and, in some cases, drier conditions for the northern Great Plains (Karl et al. 1991, Manabe and Wetherald 1986, Mitchell 1983, Rind and Lebedeff 1984). In general, a warmer, drier climate could lower waterfowl production directly by increasing the frequency of dry basins and indirectly by producing less favorable cover rations (i.e., heavy emergent cover with few or no open-water areas). The possibility of diminished waterfowl production in a greenhouse climate comes at a time when waterfowl numbers have sharply declined for other reasons (Johnson and Shaffer 1987). Breeding habitat continues to be lost or altered by agriculture, grazing, burning, mowing, sedimentation, and drainage (Kantrud et al. 1989b). For example, it has been estimated that 60% of the wetland area in North Dakota has been drained (Tiner 1984). Pesticides entering wetlands from adjacent agricultural fields have been destructive to aquatic invertebrate populations and have significantly lowered duckling survival (Grue et al. 1988). In this article, we discuss current understanding and projections of global warming; review wetland vegetation dynamics to establish the strong relationship among climate, wetland hydrology, vegetation patterns, and waterflow habitat; discuss the potential effects of a greenhouse warming on these relationships; and illustrate the potential effects of climate change on wetland habitat by using a simulation model. The extent to which intensive management of the waterfowl resource will be needed in the f

  11. The Choptank Watershed Wetland Conservation Effects Assessment Project: Monitoring the Delivery of Wetland Ecosystem Services across the Landscape

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CEAP-Wetlands (NRCS) and the Choptank Benchmark Watershed CEAP (ARS) have established a partnership to assess and ultimately enhance the effect of conservation practices on ecosystem services provided by wetlands in the Choptank Watershed. The provision of these wetland services (e.g., pollutant red...

  12. Geographically isolated wetlands: rethinking a misnomer

    USGS Publications Warehouse

    Mushet, David M.; Calhoun, Aram J. K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  13. Mapping Coastal Wetlands Using EM and Airborne Lidar: a Texas Example

    Microsoft Academic Search

    J. G. Paine; W. A. White; R. C. Smyth; J. R. Andrews; J. C. Gibeaut

    2005-01-01

    We combined EM induction and airborne lidar measurements with vegetation surveys along two transects across Mustang Island, a Texas barrier island, to examine whether EM and lidar can be used to map coastal wetlands and associated geomorphic environments. Lidar-derived elevations correlate well with National Wetland Inventory (NWI) upland, palustrine, estuarine, and marine units. Lidar can be used to map wetland

  14. Avian use of two experimental wetland basins in central Ohio in 1999 and 2001

    Microsoft Academic Search

    William I. Jones; William J. Mitsch

    Two experimental wetland basins, created under essentially identical conditions except for vegetative structure, are examined to compare the differences in their use by three populations of birds. The two wetlands are located in the Olentangy River Wetland Research Park on the campus of The Ohio State University, Columbus, Ohio USA. A census of birds was taken for each of the

  15. 77 FR 27210 - Publication of the Final National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-09

    ...0710-ZA06] Publication of the Final National Wetland Plant List AGENCY: U.S. Army Corps...availability of the final 2012 National Wetland Plant List (NWPL). The NWPL is used...vegetation parameter is met when conducting wetland determinations under the Clean Water...

  16. INFLUENCE OF MACROPHYTES ON WATER LEVEL AND FLOOD DYNAMICS IN A RIVERINE WETLAND IN NORTHERN GERMANY

    Microsoft Academic Search

    Michael Trepel; Bettina Holsten; Jan Kieckbusch; Insa Otten; Frank Pieper

    2003-01-01

    The hydrology of riverine wetlands is naturally controlled by groundwater, precipitation and river water exchange and is altered by wetland drainage, river straightening and deepening and regular management of riverine macrophyte vegetation. In this study, the effect of macrophyte growth and management on water level and flood dynamics is quantified for a lowland riverine wetland in Northern Germany in order

  17. Differences in Aquatic Communities Within Wetland Reservoir Subirrigation Systems in Northwestern Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Establishment of an agricultural water recycling system known as the wetland-reservoir subirrigation system (WRSIS) results in the creation of wetlands adjacent to agricultural fields. Specifically, each WRSIS consists of one wetland designed to process agricultural chemicals (WRSIS wetlands) and on...

  18. Wetland Bioblitz

    NSDL National Science Digital Library

    Twin Cities Public Television, Inc.

    2007-01-01

    This activity (located on page 3 of the PDF) is a full inquiry investigation into biodiversity of a given habitat. Groups of learners will work in pairs or small groups and conduct a bioblitz of a wetland, carefully observing, identifying and recording a list of as many plant and animal species as they can find. Data from all groups will be pooled to determine the “species richness,” the total number of species and to make a bar graph to compare numbers of each type of organism. Relates to linked video, DragonflyTV GPS: Wetlands.

  19. Vulnerability of northern prairie wetlands to climate change

    USGS Publications Warehouse

    Johnson, W.C.; Millett, B.V.; Gilmanov, T.; Voldseth, R.A.; Guntenspergen, G.R.; Naugle, D.E.

    2005-01-01

    The prairie pothole region (PPR) lies in the heart of North America and contains millions of glacially formed, depressional wetlands embedded in a landscape matrix of natural grassland and agriculture. These wetlands provide valuable ecosystem services and produce 50% to 80% of the continent's ducks. We explored the broad spatial and temporal patterns across the PPR between climate and wetland water levels and vegetation by applying a wetland simulation model (WETSIM) to 18 stations with 95-year weather records. Simulations suggest that the most productive habitat for breeding waterfowl would shift under a drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes, areas currently less productive or where most wetlands have been drained. Unless these wetlands are protected and restored, there is little insurance for waterfowl against future climate warming. WETSIM can assist wetland managers in allocating restoration dollars in an uncertain climate future.

  20. Differential assessment of designations of wetland status using two delineation methods.

    PubMed

    Wu, Meiyin; Kalma, Dennis; Treadwell-Steitz, Carol

    2014-07-01

    Two different methods are commonly used to delineate and characterize wetlands. The U.S. Army Corps of Engineers (ACOE) delineation method uses field observation of hydrology, soils, and vegetation. The U.S. Fish and Wildlife Service's National Wetland Inventory Program (NWI) relies on remote sensing and photointerpretation. This study compared designations of wetland status at selected study sites using both methods. Twenty wetlands from the Wetland Boundaries Map of the Ausable-Boquet River Basin (created using the revised NWI method) in the Ausable River watershed in Essex and Clinton Counties, NY, were selected for this study. Sampling sites within and beyond the NWI wetland boundaries were selected. During the summers of 2008 and 2009, wetland hydrology, soils, and vegetation were examined for wetland indicators following the methods described in the ACOE delineation manual. The study shows that the two methods agree at 78 % of the sampling sites and disagree at 22 % of the sites. Ninety percent of the sampling locations within the wetland boundaries on the NWI maps were categorized as ACOE wetlands with all three ACOE wetland indicators present. A binary linear logistic regression model analyzed the relationship between the designations of the two methods. The outcome of the model indicates that 83 % of the time, the two wetland designation methods agree. When discrepancies are found, it is the presence or absence of wetland hydrology and vegetation that causes the differences in delineation. PMID:24748237

  1. Subsidence in coastal Louisiana: causes, rates, and effects on wetlands

    Microsoft Academic Search

    D. F. Boesch; D. Levin; D. Nummedal; K. Bowles

    1983-01-01

    Coastal wetlands are being lost at a rapid and accelerating rate in Louisiana. Much of this loss is attributable to a relative lowering of the wetland surface below the level adequate to support vegetation. Such rapid subsidence is a natural phenomenon, related to the progradation and abandonment of distributary lobes of the Mississippi river Deltaic Plain. For a considerable period

  2. Wetland retention of lead from a hazardous waste site

    Microsoft Academic Search

    Shanshin Ton; Joseph J. Delfino; Howard T. Odum

    1993-01-01

    Wetland sediment, vegetation, and surface water samples were collected for total Pb analyses from locations designated on the site map (Fig. 1), with the results to be used to evaluate the storage of Pb in the wetland ecosystem. The soil and sediment samples were also treated by sequential chemical extractions (SCE) to fractionate the chemical forms. The distribution of the

  3. COMPARISON OF CREATED AND NATURAL FRESHWATER EMERGENT WETLANDS IN CONNECTICUT

    EPA Science Inventory

    Five three- to four-year old created palustrine/emergent wetland sites were compared with five nearby natural wetlands of comparable size and type. ydrologic, soil and vegetation data were compiled over a nearly two-year period (1988-90). reated sites, which were located along ma...

  4. Macrophyte zonation in stormwater wetlands: getting it right! A case study from subtropical Australia.

    PubMed

    Greenway, M; Jenkins, G; Polson, C

    2007-01-01

    In Australia stormwater wetlands are becoming an increasingly popular component of water sensitive urban design. However, they must be designed to cope with the dynamic nature of urban hydrology, in particular, fluctuations in water level. The concept of macrophyte zonation relies on a thorough understanding of the water regimes of different plant species. Water depth is crucial and the hydroperiod, i.e. duration and frequency of inundation, has a significant impact on the survival of wetland vegetation. The aim of this study was to investigate plant establishment in a newly constructed stormwater wetland in Brisbane, subtropical Australia. Changes in plant distribution and density have been monitored since 2001. Rainfall and water depth data enabled us to use a hydrologic model to predict the extent of inundation of the different macrophytes zones. The field survey showed macrophyte survival was poor with the complete loss of several species in marsh and ephemeral zones. The main reason for the lack of macrophyte establishment and survival was the extended periods of inundation (supported by the hydrologic model) and deeper water levels. Stormwater wetlands must be designed to ensure that ephemeral species are not permanently inundated or the preferred water depths in marsh zones are not exceeded for extended periods. PMID:17802859

  5. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Fall 2005 Vol. 20, No. 2 VMRC Adopts Wetland Mitigation/ Compensation Policy Changes By Tom Barnard When the Virginia Wetlands Act went banking, in lieu fees, etc., now in com- mon usage as wetland management tools. To the contrary, Virginia

  6. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Fall 2004 Vol. 19, No. 3 VIMS The Virginia Wetlands Report is a quarterly publication of the Wetlands Program at the Virginia Institute of Ma written request to: Wetlands Program, Virginia Institute of Marine Science, P.O. Box 1346, Gloucester Pt

  7. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Fall 1997 Vol. 12, No. 3The Virginia Wetlands Report Almost everyone of Locally Important Wetlands Carl H. Hershner Editor's note: The Virginia Coastal Resources Management use. #12;The Virginia Wetlands Report is a quarterly publication of the Wetlands Program

  8. Application of Systems Model and Remote Sensing Images to Improve Wetland Management

    NASA Astrophysics Data System (ADS)

    Alminagorta, O.; Torres-Rua, A. F.

    2013-05-01

    Wetlands are complex ecosystem that involves interaction among hydrological, ecological and spatial-temporal considerations. Also, water shortages and invasive vegetation are common problems in wetlands. The present paper has the purpose to contribute with the solution of these problems: (i) Providing a tool to wetland managers to monitor changes in vegetation cover and wetland hydrology over time; (ii) Finding a relationship between vegetation response and key hydrological attributes in wetlands and (iii) Incorporating these relationship in an optimization model to recommend water allocation and invasive vegetation control to improve wetland management. This research is applied at the Bear River Migratory Bird Refuge (the Refuge), located on the northeast side of Great Salt Lake, Utah. The Refuge constitutes one of the most important habitats for migratory birds for the Pacific Flyway of North America. Water measures and coverage vegetation collected in-situ at the Refuge has been used to calibrate and evaluate the effects on wetland plant communities to the process of flooding and drought in wetland units during different years. A MATLAB-based algorithm has been developed to process LandSat images to estimate the interaction between flooded areas and invasive vegetation cover. These interactions are embedded in a system optimization model to recommend water allocations and vegetation control actions among diked wetland units that improve wetland habitat for wildlife species. This modeling effort identify the interaction between invasive vegetation and flood wetland areas and embed those interactions in a systems model that wetland managers can use to make informed decisions about allocation of water and manage vegetation cover.

  9. Quality assurance project plan: 1991 EMAP wetlands southeastern pilot study

    SciTech Connect

    Swenson, E.M.; Lee, J.M.; Turner, R.E.

    1992-12-01

    The goal of the Environmental Monitoring and Assessment Program - Wetlands (EMAP-Wetlands) Southeastern Pilot Study is to develop field indicators of salt marsh condition. These indicators are of four general types: (1) vegetation; (2) hydrology; (3) soil parameters; and (4) soil constituents. Field measurements and samples will be collected during late summer/early fall in 1991 and will be analyzed to identify which indicators and measurements best delineate salt marsh in good condition from that in impaired condition. Thus the project will involve field work, laboratory analysis, and data analysis. Results from this project will be used to establish criteria and parameters for long-term monitoring and assessment of salt marshes, particularly those parameters that may serve as indicators of healthy salt marsh and deteriorated salt marsh. Since EMAP-Wetlands-Southeastern is a pilot study, the measurement criteria will be evaluated as one of the project goals. Of concern will be how well the standardized sampling methods performed in actual field conditions, and which of these methods can be used to assess and characterize salt marshes.

  10. Coastal Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the materials. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The unit materials emphasize the structure,…

  11. Wetland Delineation

    NSDL National Science Digital Library

    Carl Van Faasen

    2009-04-01

    Learning how to delineate a wetland using official criteria can be an enlightening experience for students and teachers. The objective of this investigation is for students to delineate the boundaries of an area in a watershed and categorize it as a wetla

  12. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  13. WETLAND DETECTION METHODS INVESTIGATION

    EPA Science Inventory

    The purpose of this investigation was to research and document the application of remote sensing technology for wetlands detection. arious sensors and platforms are evaluated for: suitability to monitor specific wetland systems; effectiveness of detailing wetland extent and capab...

  14. Soil and Hydrological Drivers of Typha latifolia Encroachment in a Marl Wetland

    Microsoft Academic Search

    P. J. Drohan; C. N. Ross; J. T. Anderson; R. F. Fortney; J. S. Rentch

    2006-01-01

    Aggressive species competition by Typha latifolia in wetland systems on marl-derived soils may threaten the unique vegetation in these areas. We examined historic water and\\u000a land use, soil chemistry, soil genesis, and topography in a wetland (Harewood Marsh) that is under encroachment by T. latifolia. An earthen road that bisects the wetland and active pastures in and around the wetland

  15. Organic phosphorus sequestration in subtropical treatment wetlands.

    PubMed

    Turner, Benjamin L; Newman, Susan; Newman, Jana M

    2006-02-01

    Diffuse phosphorus pollution is commonly remediated by diverting runoff through treatment wetlands to sequester phosphorus into soil layers. Much of the sequestered phosphorus occurs in organic forms, yet our understanding of its chemical nature is limited. We used NaOH-EDTA extraction and solution 31P NMR spectroscopy to speciate organic phosphorus sequestered in a large treatment wetland (STA-1W) in Florida, USA. The wetland was constructed on previously farmed peat and was designed to remove phosphorus from agricultural runoff prior to discharge into the Everglades. Unconsolidated benthic floc that had accumulated during the 9-year operation of the wetland was sampled along transects through two connected cells dominated by cattail (Typha dominigensis Pers.) and an additional cell colonized by submerged aquatic vegetation, including southern water nymph (Najas guadalupensis(Spreng.) Magnus) and coontail (Ceratophyllum demersum L.). Organic phosphorus was a greater proportion of the sequestered phosphorus in the cattail marsh compared to the submerged aquatic vegetation wetland, but occurred almost exclusively as phosphate diesters and their alkaline hydrolysis products. Itwas therefore markedly different from the organic phosphorus in mineral soils, which is dominated typically by inositol phosphates. Phosphate diesters are readily degradable in most soils, raising concern about the long-term fate of organic phosphorus in treatment wetlands. Further studies are now necessaryto assess the stability of the sequestered organic phosphorus in response to biogeochemical and hydrological perturbation. PMID:16509310

  16. Artificial Wetlands

    NSDL National Science Digital Library

    American Association for the Advancement of Science (; )

    2005-04-11

    Golf courses are known as places of recreation. But some of them could someday double as water treatment facilities. Water hazards on golf courses can be used to control environmental hazards. That's according to Purdue University soil microbiologist Ron Turco. He says the artificial wetlands can also control flooding in surrounding communities, by collecting excess water. This Science Update looks at the research, which leads to these findings and offers links to other resources for further inquiry.

  17. -TRANSITION FROM P-TO N-LIMITED PHYTOPLANKTON GROWTH IN AN ARTIFICIAL WETLAND -223 Applied Vegetation Science 9: 223-230, 2006

    E-print Network

    McCarthy, T.K.

    nitrogen limi- tation in the presence of moderate external phosphorus inputs. Keywords: Bog; Chlorophyte.higgins1@nuigalway.ie Introduction Oceanic raised bogs originally covered an area of 311 300 ha, or almost's raised bogs since the establishment of the Bord na Móna, the National Peat Board, in 1946. Vast expanses

  18. Pipeline corridors through wetlands -- Impacts on plant communities: Norris Brook Crossing Peabody, Massachusetts

    SciTech Connect

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted August 17--19, 1992, at the Norris Brook crossing in the town of Peabody, Essex County, Massachusetts. The pipeline at this site was installed during September and October 1990. A backhoe was used to install the pipeline. The pipe was assembled on the adjacent upland and slid into the trench, after which the backhoe was used again to fill the trench and cover the pipeline. Within two years after pipeline construction, a dense vegetative community, composed predominantly of native perennial species, had become established on the ROW. Compared with adjacent natural areas undisturbed by pipeline installation, there was an increase in purple loosestrife and cattail within the ROW, while large woody species were excluded from the ROW. As a result of the ROW`s presence, habitat diversity, edge-type habitat, and species diversity increased within the site. Crooked-stem aster, Aster prenanthoides (a species on the Massasschusetts list of plants of special concern), occurred in low numbers in the adjacent natural areas and had reinvaded the ROW in low numbers.

  19. Wetland extraction of Yancheng coastal area based on ALOS data

    NASA Astrophysics Data System (ADS)

    Weng, Yongling; Fan, Xingwang; Tao, Jinmei

    2010-09-01

    Jiangsu coastal area is abundant in wetland resources and possesses wetland reserve of global relevancy. However, the wetland area has been shrinking with more and more human activities. In this paper, 5 ALOS AVNIR-2 images as well as an additional TM image acquired at low tide level were selected to carry out a research of Yancheng coastal wetland. Characteristics of subcategories and vegetation coverage were surveyed during filed work before a 2-tier decision tree method was adopted to distinguish different wetland categories. At last, the total area was classified as 8 major wetland categories with an overall accuracy of 97.16% as well as Kappa coefficient of 0.96. Only 2 sampling sites biased in the classification when 28 field recorded samples were compared and the result was satisfying.

  20. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Fall 1996 Vol. 11, No. 3 The Virginia Wetlands Report Wetlands and Regional Watershed Management A Call for a Holistic Management Strategy for Virginias Watersheds Katharine and fill activities in the nation's wetlands. The General Assembly of Virginia, also awakened

  1. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Summer 1997 Vol. 12, No. 2The Virginia Wetlands Report Wetlands tremendous appeal, particularly in rapidly developing areas such as Tide- water, Virginia. The goal of preserving and protecting tidal wetlands in Virginia has become both easier and more difficult over the past

  2. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Winter/Spring 2000 Vol. 15, No. 1 Virginia Debates Nontidal Wetlands Regulation Carl Hershner Wetland regulation is once again a topic of debate in Virginia's General Assembly. The Common- wealth has been committed to a policy of net

  3. Constructed Wetland Technology

    Microsoft Academic Search

    R. Haberl; G. Langergraber

    Wetlands are transitional environments. In an ecological context, wetlands are intermediate between terrestrial and aquatic ecosystems. Wetlands might be defined as ecosystems depending on constant or recurrent, shallow inundation or saturation at or near the surface of the substrate. Natural wetlands have been used for wastewater treatment for centuries. Uncontrolled discharge of wastewater led in many cases to an irreversible

  4. Zambia Wetland

    Atmospheric Science Data Center

    2013-04-16

    ... and are influenced by terrain, vegetation structure, soil type and soil moisture content. Wet surfaces or areas with standing water ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  5. The role of seasonal wetlands in the ecology of the American alligator 

    E-print Network

    Subalusky, Amanda Lee

    2009-05-15

    the wetland and riverine habitats establish a level of functional connectivity between these aquatic ecosystems. I constructed a habitat suitability index of both the wetlands and the surrounding landscape to determine which patch and landscape characteristics...

  6. Wetlands Work

    NSDL National Science Digital Library

    Linda Messina

    2004-05-01

    With the help of coordinators from Louisiana State University--Louisiana Sea Grant College Program, this cross-curricular project in science, math, history, and environmental science resulted in an ongoing stewardship project at a historically important local wetland area, Alligator Bayou, which was in need of water monitoring. Biology students made connections to what they were learning in their science class to their everyday life as they collected, analyzed, and interpreted data from seven sites around the Alligator Bayou watershed. As a result of their research, students learned that knowledge based on data can help us understand and protect these ecosystems.

  7. Understanding wetlands

    NSDL National Science Digital Library

    Solomon Isiorho

    Students collect soil cores (~12 inches) from one or more wetlands, describe the color and other physical features they can observe. Section each core according to grain size or color, weigh each section, dry in oven for 24 hours (can use microwave if the soil is fairly sandy). Use sieve machine to sieve each section and weigh each size fraction (sand...coarse, medium, fine, very fine, silt/clay). The activity gives students practice in making good observation, measuring, interpreting and analyzing data, and to propose a probable source region for the soil materials. Have students plo Has minimal/no quantitative component

  8. Wetlands Transects

    NSDL National Science Digital Library

    Field work on local sites has many benefits. Often students are surprised to discover thriving ecosystems in the most familiar and ordinary places. In this activity students will lay out transect lines beside a local stream or river. There they will record species of plants and insects living around the stream. By doing so, students will learn how to use transect sampling techniques, use a variety of methods to sample species, and compare species diversity and density between parallel transects. This activity helps students gain experience in problem-solving, scientific processes, and communication and introduces the terms transect, wetland indicator plants, diversity, and sampling.

  9. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan. Topical report, October 1990--August 1992

    SciTech Connect

    Rastorfer, J.R. [Chicago State Univ., IL (United States). Dept. of Biological Sciences; Van Dyke, G.D.; Zellmer, S.D.; Wilkey, P.L. [Argonne National Lab., IL (United States)

    1995-04-01

    This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth wetland sites mapped Lenawee soils were selected in Midland County, Michigan: Site 1, a younger stand subjected to recent selective logging, and Site 2, a more mature stand. The collection of ecological data to analyze plant succession on the right-of-way (ROW) and the effects of the developing ROW plant communities on adjacent forest communities was initiated in 1989. Cover class estimates were made for understory and ROW plant species on the basis of 1 {times} 1{minus}m quadrats. Individual stem diameters and species counts were recorded for overstory plants in 10{minus}m quadrats. Although long-term studies have not been completed, firm baseline data were established for comparative analyses with future sampling. Current data indicate that vegetation became well-established on the ROW within one year and subsequently increased in coverage. About 65% of the species were wetland indicators, and the dominants included seeded and natural invading species; nevertheless, some elements of the original flora regenerated and persist. The plants of the ecotone understories of both sites changed from their original composition as a result of the installation of the gas pipeline. Although some forest species persist at both sites, the ecotone of Site I was influenced more by the seeded species, whereas the natural invaders were more important at Site 2.

  10. A study of the role of wetlands in defining spatial patterns of near-surface (top 1m) soil carbon in the Arctic

    NASA Astrophysics Data System (ADS)

    Cosby, B. J., Jr.; Blyth, E.; Oliver, R.; Gedney, N.

    2014-12-01

    A study of two observation-based maps (the Harmonised World Soil Database, HWSD and the Northern Circumpolar Soil Carbon Database, NCSCD) of the surface 1m of soil carbon in the Arctic reveal that, although the amounts of carbon estimated to be present in this region are very uncertain, the patterns are robust: both maps have soil carbon maxima that coincide with the major wetlands in the region, as described in the Global Lakes and Wetlands Database, the GLWD. In fact, the relationship between near-surface soil carbon and the presence of wetlands is stronger than the relationship with soil temperature and vegetation productivity. These relationships are explored using the land surface model of the UK Hadley Centre GCM: JULES (Joint UK Land Environment Simulator). The model is run to represent conditions at the end of the 20thcentury. Observed vegetation and phenology are used to define the vegetation, the physical properties of organic soils are represented, the fine-scale topography of the region is included in the parameterisation of the hydrology and as a result the GPP and wetlands of the region are reasonably well simulated using JULES. Despite this, the soil carbon simulated by the model does not reveal the same patterns and correlation with the wetland regions that are present in the data. This suggests that the model does not represent sufficiently strongly the suppression of heterotrophic respiration by saturated conditions. A simple adjustment to the JULES model was made whereby the heterotrophic respiration was reduced by the fraction of the grid that is modelled to be saturated. In effect, for the saturated areas the respiration was zero. This adjustment represents a simple experiment to establish the role of wetlands in defining the spatial patterns of near-surface soil carbon. The results were an improved predicted spatial pattern of soil carbon, with an increase in the correlation between soil carbon and wetlands although not as strong as suggested by the analysis of the data. The study suggests that land surface models in general, and JULES in particular, need to establish a stronger moderation of soil respiration in saturated conditions in order that future climate controls on wetlands in the Arctic will result in the correct changes in soil carbon and carbon emissions.

  11. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  12. Protect Your Wetlands

    NSDL National Science Digital Library

    This resource explains how to create a wetlands awareness program and how to protect wetlands through the regulatory process. In addition, it explains the federal programs designed to protect wetlands and how to procure state and local protection for wetlands. It is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. For educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  13. Constructing a Baseline Model of Alpine Wetlands of the Uinta Mountains, Utah, USA

    NASA Astrophysics Data System (ADS)

    Matyjasik, M.; Ford, R. L.; Bartholomew, L. M.; Welsh, S. B.; Hernandez, M.; Koerner, D.; Muir, M.

    2008-12-01

    Alpine wetlands of the Uinta Mountains, northeastern Utah, contain a variety of groundwater-dependent ecosystems. Unlike their counterparts in other areas of the Rocky Mountains, these systems have been relatively unstudied. The Reader Lakes area on the southern slope of the range was selected for detailed study because of its variety of wetland plant communities, homogenous bedrock geology, and minimal human impact. The primary goal of this interdisciplinary study is to establish the functional links between the geomorphology and hydrogeology of these high mountain wetlands and their constituent plant communities. In addition to traditional field studies and water chemistry, geospatial technologies are being used to organize and analyze both field data (water chemistry and wetland vegetation) and archived multispectral imagery (2006 NAIP images). The hydrology of these wetlands is dominated by groundwater discharge and their surface is dominated by string-and-flark morphology of various spatial scales, making these montane wetlands classic patterned fens. The drainage basin is organized into a series of large-scale stair-stepping wetlands, bounded by glacial moraines at their lower end. Wetlands are compartmentalized by a series of large strings (roughly perpendicular to the axial stream) and flarks. This pattern may be related to small ridges on the underlying ground moraine and possibly modified by beaver activity along the axial stream. Small-scale patterning occurs along the margins of the wetlands and in sloping-fen settings. The smaller-scale strings and flarks form a complex; self-regulating system in which water retention is enhanced and surface flow is minimized. Major plant communities have been identified within the wetlands for example: a Salix planifolia community associated with the peaty strings; Carex aquatilis, Carex limosa, and Eriophorum angustifolium communities associated with flarks; as well as a Sphagnum sp.- rich hummocky transition zone between wetland and non-wetland areas. On-going analyses of water-chemistry data will be used to identify discrete water sources and to characterize the degree of horizontal and vertical water mixing within the system, as well as to help identify the biochemical requirements of the different plant communities. Results indicate that the chemical composition of the main creek reflects the accumulative effect that the peaty flarks have on the creek as it passes through the wetland system, with pH overall decreasing from 7.3 to 7.0, dissolved oxygen decreasing from 9400 to 8400 micrograms per liter and total dissolved solids increasing from 9 mg/L to 13 mg/L. String ground water is characterized by relatively high pH (ranging from 6.0 to 7.1), high oxidizing-reducing potential (ORP) (ranging from 50 mV to 180 mV), high dissolved oxygen (from 2500 ?g/L to 9600 ?g /L) while flark ground water has relatively lower pH (5.6 to 6.8), low oxidizing reducing potential (ORP) (ranging from -66 mV to 150 mV), low dissolved oxygen (from 900 ?g /L to 9000 ?g /L).

  14. Wetland Losses and Human Impacts

    E-print Network

    Gray, Matthew

    1 Wetland Losses and Human Impacts Matthew J. Gray University of Tennessee Distribution of North American Wetlands Peatlands of Alaska and Canada Playa Lakes MAV Prairie Potholes Coastal Wetlands Everglades Sacramento Valley Great Lakes Wetlands Hudson and James Bay Wetlands 30% of World's Wetlands 89

  15. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of wetland

  16. Canada's Wetland Habitats

    NSDL National Science Digital Library

    This detailed information on the wetlands of Canada begins with an introduction defining wetlands and their locations along with details about their value and human and biological threats. The second chapter provides a summary of the Canadian wetland classification system with descriptions on the five classes of wetlands which are bogs, fens, swamps, marshes, and shallow open water. Chapter three gives an opportunity to explore the seven major wetland regions in Canada, which are classified as arctic, subarctic, boreal, prairie, temperate, oceanic, and mountain. The Ramsar internatioinal convention on wetlands and Canadian Ramsar sites are outlined in the last chapter.

  17. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  18. Subsidence in coastal Louisiana: causes, rates, and effects on wetlands

    SciTech Connect

    Boesch, D.F.; Levin, D.; Nummedal, D.; Bowles, K.

    1983-08-01

    Coastal wetlands are being lost at a rapid and accelerating rate in Louisiana. Much of this loss is attributable to a relative lowering of the wetland surface below the level adequate to support vegetation. Such rapid subsidence is a natural phenomenon, related to the progradation and abandonment of distributary lobes of the Mississippi river Deltaic Plain. For a considerable period after abandonment of new sediment sources, wetlands are able to keep pace with subsidence by accreting sediments reworked by marine processes. But inundation of interior wetlands removed from such an active sediment supply, wave exposure, and saltwater intrusion eventually result in deterioration of the wetlands. Human activities may accelerate this process by disrupting sediment supplies for wetland accretion, raising global sea level, causing saltwater intrusion, and withdrawals of subsurface materials. Present subsidence rates from tide gauge records exceed 40 mm/yr at the modern Mississippi River delta and approximate 10 mm/yr in wetlands near the gulf coast. Subsidence rates over the last 1000 years appear to have been half the rates presently observed. This either results from natural variability, inaccuracy of tide gauge records, or human influences. The effect of the high rate of increase in locally apparent sea level on wetlands is difficult to quantitatively predict because of local variations in subsidence and accretion, uncertainty regarding future global sea level, and lack of knowledge of the accretionary limits of wetlands. 66 references, 10 figures, 2 tables.

  19. Ecological outcomes and evaluation of success in passively restored southeastern depressional wetlands.

    SciTech Connect

    De Steven, Diane; Sharitz, Rebecca R.; Barton, Christopher, D.

    2010-11-01

    Abstract: Depressional wetlands may be restored passively by disrupting prior drainage to recover original hydrology and relying on natural revegetation. Restored hydrology selects for wetland vegetation; however, depression geomorphology constrains the achievable hydroperiod, and plant communities are influenced by hydroperiod and available species pools. Such constraints can complicate assessments of restoration success. Sixteen drained depressions in South Carolina, USA, were restored experimentally by forest clearing and ditch plugging for potential crediting to a mitigation bank. Depressions were assigned to alternate revegetation methods representing desired targets of herbaceous and wet-forest communities. After five years, restoration progress and revegetation methods were evaluated. Restored hydroperiods differed among wetlands, but all sites developed diverse vegetation of native wetland species. Vegetation traits were influenced by hydroperiod and the effects of early drought, rather than by revegetation method. For mitigation banking, individual wetlands were assessed for improvement from pre-restoration condition and similarity to assigned reference type. Most wetlands met goals to increase hydroperiod, herb-species dominance, and wetland-plant composition. Fewer wetlands achieved equivalence to reference types because some vegetation targets were incompatible with depression hydroperiods and improbable without intensive management. The results illustrated a paradox in judging success when vegetation goals may be unsuited to system constraints.

  20. 1997 Monitoring report for the Gunnison, Colorado Wetlands Mitigation Plan

    SciTech Connect

    NONE

    1997-11-01

    Under the Uranium Mill Tailings Remedial Action (UMTRA) Project, the U.S. Department of Energy (DOE) cleaned up uranium mill tailings and other surface contamination near the town of Gunnison, Colorado. Remedial action resulted in the elimination of 4.3 acres (ac) (1.7 hectares [ha]) of wetlands. This loss is mitigated by the enhancement of six spring-fed areas on Bureau of Land Management (BLM) land (mitigation sites). Approximately 254 ac (1 03.3 ha) were fenced at the six sites to exclude grazing livestock. Of the 254 ac (103.3 ha), 17.8 ac (7.2 ha) are riparian plant communities; the rest are sagebrush communities. Baseline grazed conditions of the riparian plant communities at the mitigation sites were measured prior to fencing. This report discusses results of the fourth year of a monitoring program implemented to document the response of vegetation and wildlife to the exclusion of livestock. Three criteria for determining success of the mitigation were established: plant height, vegetation density (bare ground), and vegetation diversity. By 1996, Prospector Spring, Upper Long`s Gulch, and Camp Kettle met the criteria. The DOE requested transfer of these sites to BLM for long-term oversight. The 1997 evaluation of the three remaining sites, discussed in this report, showed two sites (Houston Gulch and Lower Long`s Gulch) meet the criteria. The DOE will request the transfer of these two sites to the BLM for long-term oversight. The last remaining site, Sage Hen Spring, has met only two of the criteria (percent bare ground and plant height). The third criterion, vegetation diversity, was not met. The vegetation appears to be changing from predominantly wet species to drier upland species, although the reason for this change is uncertain. It may be due to below-normal precipitation in recent years, diversion of water from the spring to the stock tank, or manipulation of the hydrology farther up gradient.

  1. The Virginia Wetlands Report

    E-print Network

    . This effort Monitoring Wetlands Status and Trends: The Remote Sensing Solution Carl Hershner Aerial photograph Status and Trends: The Remote Sensing Solution .............................. 1 Roof Thatching and Wildlife Service's national Wetlands Inventory (NWI). NWI maps are developed manually by trained photo

  2. Investigating Neighborhood Wetlands

    NSDL National Science Digital Library

    Tim Shulstad, Lincoln Elementary School, Alexandria, MN, based on The Nature of Science and Engineering, an original activity created by Molly Stoddard, Prairie Wetlands Learning Center, Fergus Falls, MN.

    This activity is field investigation where students map a neighborhood wetland and generate various watershed questions. Students identify engineered structures in or around this wetland and consider how flood water can be controlled.

  3. Threats to Wetlands

    NSDL National Science Digital Library

    This resource presents a history of wetland loss and describes how wetlands are lost. It also stresses the consequences of wetland loss including flooding, loss of wildlife habitat, and declining water quality. The site is part of a module that aims to help students get to know the complexities of wetlands, discover wildlife, enjoy the experience of being outdoors, and learn how necessary wetlands are to the health of our environment. For educators and their middle school students, it suggests ways to study wetland characteristics, why wetlands are important, and how students and teachers can help protect a local wetland in any part of the country. An associated set of activities is also available.

  4. Education and training of future wetland scientists and managers

    USGS Publications Warehouse

    Wilcox, D.A.

    2008-01-01

    Wetland science emerged as a distinct discipline in the 1980s. In response, courses addressing various aspects of wetland science and management were developed by universities, government agencies, and private firms. Professional certification of wetland scientists began in the mid-1990s to provide confirmation of the quality of education and experience of persons involved in regulatory, management, restoration/construction, and research involving wetland resources. The education requirements for certification and the need for persons with specific wetland training to fill an increasing number of wetland-related positions identified a critical need to develop curriculum guidelines for an undergraduate wetland science and management major for potential accreditation by the Society of Wetland Scientists. That proposed major contains options directed toward either wetland science or management. Both options include required basic courses to meet the general education requirements of many universities, required upper-level specialized courses that address critical aspects of physical and biological sciences applicable to wetlands, and a minimum of four additional upper-level specialized courses that can be used to tailor a degree to students' interests. The program would be administered by an independent review board that would develop guidelines and evaluate university applications for accreditation. Students that complete the required coursework will fulfill the education requirements for professional wetland scientist certification and possess qualifications that make them attractive candidates for graduate school or entry-level positions in wetland science or management. Universities that offer this degree program could gain an advantage in recruiting highly qualified students with an interest in natural resources. Alternative means of educating established wetland scientists are likewise important, especially to provide specialized knowledge and experience or updates related to new management discoveries, policies, and regulations. ?? 2008 The Society of Wetland Scientists.

  5. California Wetlands Information System

    NSDL National Science Digital Library

    Comprehensive wetlands information to the general public, the educational community, and government agencies. Though much of the information is California-specific, there is an abundance of location-independent information available. Topics covered include restoration and mitigation, wetlands policy, vernal pools, and the role the state agencies play in wetlands conservation. Site features many links to external resources. The "What's new" section features all the latest California wetlands news and research.

  6. National Wetlands Inventory (NWI)

    NSDL National Science Digital Library

    The National Wetlands Inventory of the U.S. Fish and Wildlife Service provides information on the characteristics, extent, and status of U.S. wetlands and deepwater habitats. In addition to status and trends reports, this site contains publications, including manuals, plant and hydric soils lists, field guides, posters, wall size resource maps, atlases, state reports, and articles published in professional journals. The site also contains wetland maps and digital data, a kids and educators section, and a wetlands interactive mapper tool.

  7. Seed Rain of Restored and Natural Prairie Wetlands

    Microsoft Academic Search

    Karin M. Kettenring; Susan M. Galatowitsch

    2011-01-01

    In prairie wetland restorations, seeds may be limiting plant recolonization but this has never been quantified in the field.\\u000a We evaluated the seed rain in restored and natural wetlands to determine if seed limitation constrains plant recolonization.\\u000a We were particularly interested in determining whether Carex species, dominant vegetation of seasonally flooded zones, are seed limited in restorations. We quantified seed

  8. Vital role for wetlands

    Microsoft Academic Search

    1988-01-01

    This article describes the trend toward preservation and creative exploitation of wetlands for their water quality and flood control benefits. The US has lost over half of its original 215 million acres of wetlands due to earlier agricultural policies that encouraged conversion of wetlands to crop lands or to ecologically unsound flood control policies. Amoco Oil Company refinery is cited

  9. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Winter 1997 Vol. 12, No. 1The Virginia Wetlands Report Playing Wetland Board is Excellent Learning Tool for Virginia Beach Students by Karla L. Schillinger The apple School's eighth grade class. Designed by Catherine Kashanski of the Vermont Agency of Natural Resources

  10. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Spring 2002 Vol. 17, No. 1 Update On Virginia's New and Improved Nontidal Wetlands Program By Ellen Gilinsky, Ph.D. PWS Virginia Water Protection Permit Program Manager Virginia Department of Environmental Quality October 1, 2001 has

  11. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Summer 2000 Vol. 15, No. 2 the development of a new regulatory program for nontidal wet- lands in Virginia. The Governor has signed the public benefits derived from wetlands in Virginia. The final bills passed by the legislature were

  12. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Winter/Spring 2003 Vol. 18, No Resources Management in Virginia, VIMS re- searchers Ratana Chuenpagdee, Kirk Havens, Tom Barnard, and Patty introduces the study. The Commonwealth of Virginia has enacted laws to regulate development in wetlands

  13. EPA Wetlands Education

    NSDL National Science Digital Library

    The Wetlands Education site contains everything teachers need to help students understand wetlands and how they fit into the water cycle and the environment. The site offers links to activities, curricula and instructor guides, education programs, resources and teaching tools to assist teachers in wetlands and habitat education.

  14. Wetlands: An Interdisciplinary Exploration

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.

    2004-01-01

    The topic of wetlands provides a rich context for curriculum integration. This unit contains seven activities that integrate environmental science with math, technology, social studies, language arts, and other disciplines. In this series, students will identify plants and animals found in wetlands, understand the function of wetlands through the…

  15. Wetlands, Wildlife, and People.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Discusses the problems created when wetlands are drained or altered by humans. Provides a brief case study of the Everglades as an example of the effects of human intervention. Presents four learning activities (along with reproducible worksheets) that deal with the benefits of wetlands, and some debated issues over wetlands. (TW)

  16. Evaluation of surface water dynamics for water-food security in seasonal wetlands, north-central Namibia

    NASA Astrophysics Data System (ADS)

    Hiyama, T.; Suzuki, T.; Hanamura, M.; Mizuochi, H.; Kambatuku, J. R.; Niipele, J. N.; Fujioka, Y.; Ohta, T.; Iijima, M.

    2014-09-01

    Agricultural use of wetlands is important for food security in various regions. However, land-use changes in wetland areas could alter the water cycle and the ecosystem. To conserve the water environments of wetlands, care is needed when introducing new cropping systems. This study is the first attempt to evaluate the water dynamics in the case of the introduction of rice-millet mixed-cropping systems to the Cuvelai system seasonal wetlands (CSSWs) in north-central Namibia. We first investigated seasonal changes in surface water coverage by using satellite remote sensing data. We also assessed the effect of the introduction of rice-millet mixed-cropping systems on evapotranspiration in the CSSWs region. For the former investigation, we used MODIS and AMSR-E satellite remote sensing data. These data showed that at the beginning of the wet season, surface water appears from the southern (lower) part and then expands to the northern (higher) part of the CSSWs. For the latter investigation, we used data obtained by the classical Bowen ratio-energy balance (BREB) method at an experimental field site established in September 2012 on the Ogongo campus, University of Namibia. This analysis showed the importance of water and vegetation conditions when introducing mixed-cropping to the region.

  17. Restoration of theArboretum's EasternWetlands SoutheaSt MarSh

    E-print Network

    Sheridan, Jennifer

    Soil sampling and locations 18 4 3 Soil characteristics 18 Chapter 5 · Vegetation (Historical of Ponds 3 and 4 14 3 3 Gardner Marsh 15 Chapter 4 · Soils of the Eastern Wetlands 4 1 Soil types 17 4 2­Present) 5 1 Goals and methods 22 5 2 Southeast Marsh vegetation 22 5 3 Gardner Marsh vegetation 23 5 4 Plant

  18. Hurricane-induced failure of low salinity wetlands.

    PubMed

    Howes, Nick C; FitzGerald, Duncan M; Hughes, Zoe J; Georgiou, Ioannis Y; Kulp, Mark A; Miner, Michael D; Smith, Jane M; Barras, John A

    2010-08-10

    During the 2005 hurricane season, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km(2) of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained robust and largely unchanged. Here we highlight geotechnical differences between the soil profiles of high and low salinity regimes, which are controlled by vegetation and result in differential erosion. In low salinity wetlands, a weak zone (shear strength 500-1450 Pa) was observed approximately 30 cm below the marsh surface, coinciding with the base of rooting. High salinity wetlands had no such zone (shear strengths > 4500 Pa) and contained deeper rooting. Storm waves during Hurricane Katrina produced shear stresses between 425-3600 Pa, sufficient to cause widespread erosion of the low salinity wetlands. Vegetation in low salinity marshes is subject to shallower rooting and is susceptible to erosion during large magnitude storms; these conditions may be exacerbated by low inorganic sediment content and high nutrient inputs. The dramatic difference in resiliency of fresh versus more saline marshes suggests that the introduction of freshwater to marshes as part of restoration efforts may therefore weaken existing wetlands rendering them vulnerable to hurricanes. PMID:20660777

  19. Macrophyte growth in a pilot-scale constructed wetland for industrial wastewater treatment

    Microsoft Academic Search

    H. R. Hadad; M. A. Maine; C. A. Bonetto

    2006-01-01

    A pilot-scale wetland was constructed to assess the feasibility of treating the wastewater from a tool industry in Santo Tomé, Santa Fe, Argentina. The wastewater had high conductivity and pH, and contained Cr, Ni and Zn. This paper describes the growth of vegetation in the experimental wetland and the nutrient and metal removal.The wetland was 6×3×0.4m. Water discharge was 1000ld?1

  20. Response of ducks to glyphosate-induced habitat alterations in wetlands

    Microsoft Academic Search

    George M. Linz; Dage C. Blixt; David L. Bergman; William J. Bleier

    1996-01-01

    The effects of glyphosate herbicide-induced changes in wetland emergent vegetation (largely cattails,Typha spp.) on densities of ducks (Anatinae) were assessed in northeastern North Dakota. In 1990 and 1991, 17 cattail-dominated\\u000a wetlands were randomly assigned to 0% (reference wetlands), 50%, 70%, or 90% areal spray coverages with glyphosate herbicide.\\u000a Densities of green-winged teal (Anas crecca), bluewinged teal (Anas discors), gadwalls (Anas

  1. A comparison of sampling techniques to estimate number of wetlands

    USGS Publications Warehouse

    Johnson, R.R.; Higgins, K.F.; Naugle, D.E.; Jenks, J.A.

    1999-01-01

    Service use annual estimates of the number of ponded wetlands to estimate duck production and establish duck hunting regulations. Sampling techniques that minimize bias may provide more reliable estimates of annual duck production. Using a wetland geographic information system (GIS), we estimated number of wetlands using standard counting protocol with belt transects and samples of square plots. Estimates were compared to the known number of wetlands in the GIS to determine bias. Bias in transect-derived estimates ranged from +67-87% of the known number of wetlands, compared to bias of +3-6% in estimates from samples of 10.24-km2 plots. We recommend using samples of 10.24-km2 plots stratified by wetland density to decrease bias.

  2. Wetlands Assessment for site characterization, Advanced Neutron Source (ANS)

    SciTech Connect

    Wade, M.C.; Socolof, M.L. [Oak Ridge National Lab., TN (United States). Energy Div.; Rosensteel, B.; Awl, D. [JAYCOR, Vienna, VA (United States)

    1994-10-01

    This Wetlands Assessment has been prepared in accordance with the Department of Energy`s (DOE) Code of Federal Regulations (CFR) 10 CFR 1022, Compliance with Floodplain/Wetlands Environmental Review Requirements, which established the policy and procedure for implementing Executive Order 11990, Protection of Wetlands. The proposed action is to conduct characterization activities in or near wetlands at the ANS site. The proposed action will covered under a Categorical Exclusion, therefore this assessment is being prepared as a separate document [10 CFR 1022.12(c)]. The purpose of this Wetlands Assessment is to fulfill the requirements of 10 CFR 1022.12(a) by describing the project, discussing the effects of the proposed action upon the wetlands, and considering alternatives to the proposed action.

  3. Causes for vegetation dieback in a Louisiana salt marsh: A bioassay approach

    Microsoft Academic Search

    Eric C. Webb; Irving A. Mendelssohn; Brian J. Wilsey

    1995-01-01

    Wetlands in Louisiana are rapidly deteriorating. An important component of the wetland loss process is vegetation dieback. In order to determine the factors causing vegetation dieback in a Louisiana coastal marsh, a manipulative field experiment was conducted where four native salt marsh plant species with different salinity and flooding tolerances were placed at two elevations within a deteriorating marsh: (1)

  4. Constraining organic carbon sequestration in coastal wetlands in response to sea-level rise using samples along a salinity gradient in southeast Louisiana

    Microsoft Academic Search

    E. K. Williams; B. E. Rosenheim; A. S. Kolker

    2010-01-01

    Riverine and coastal wetlands store a significant amount of carbon in soils, peats, litter and vegetation, globally estimated at 500-700 GT. Although the total amount of carbon sequestered in wetland soils is much smaller than the amount stored in ocean waters (3800GT), wetlands can be considered a more effective sink of atmospheric carbon due to their slower relative rate of

  5. Symbiont nitrogenase, alder growth, and soil nitrate response to phosphorus addition in alder ( Alnus incana ssp. rugosa) wetlands of the Adirondack Mountains, New York State, USA

    Microsoft Academic Search

    Kemal Gökkaya; Todd M. Hurd; Dudley J. Raynal

    2006-01-01

    Speckled alder (Alnus incana ssp. rugosa) is a characteristic species of scrub-shrub 1-type wetlands, the second most common wetland type in major watersheds of the Adirondack Mountains in New York State. Speckled alder is an actinorhizal nitrogen fixer that relies heavily on N2 over soil N and fixes substantial amounts of nitrogen in wetlands, resulting in little vegetation processing of

  6. Wetlands Reserve Program

    NSDL National Science Digital Library

    Recognizing that the health of the nation's wetlands depends on the fate of private (as well as public-owned) wetlands, the Wetlands Reserve Program is an important, voluntary initiative led by the USDA Natural Resources Conservation Service (NRCS) to provide "technical and financial support" to help private landowners restore their wetlands. This straightforward site describes the Wetlands Reserve Program (WRP), including a map showing national WRP acreage, several question/ answer fact sheets, state programs and contacts, and a slide show (PowerPoint) entitled Producing Wildlife Habitat Results. Although the site targets the general public, students and educators will find it useful and instructive.

  7. -Long-term assessment of seed provenance effect on the establishment of Bromus erectus -821 Journal of Vegetation Science 19: 821-830, 2008

    E-print Network

    Stampfli, Andreas

    - Long-term assessment of seed provenance effect on the establishment of Bromus erectus - 821 © IAVS; Opulus Press Uppsala. Long-term assessment of seed provenance effect on the establishment.stampfli@ips.unibe.ch *Corresponding author; E-mail michaela.zeiter@ips.unibe.ch Abstract Questions: Do short-term seed

  8. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Microsoft Academic Search

    Jan Lepš

    2005-01-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected

  9. Use of macroinvertebrates to identify cultivated wetlands in the Prairie Pothole Region

    USGS Publications Warehouse

    Euliss, N.H., Jr.; Mushet, D.M.; Johnson, D.H.

    2001-01-01

    We evaluated the use of macroinvertebrates as a potential tool to identify dry and intensively farmed temporary and seasonal wetlands in the Prairie Pothole Region. The techniques we designed and evaluated used the dried remains of invertebrates or their egg banks in soils as indicators of wetlands. For both the dried remains of invertebrates and their egg banks, we weighted each taxon according to its affinity for wetlands or uplands. Our study clearly demonstrated that shells, exoskeletons, head capsules, eggs, and other remains of macroinvertebrates can be used to identify wetlands, even when they are dry, intensively farmed, and difficult to identify as wetlands using standard criteria (i.e., hydrology, hydrophytic vegetation, and hydric soils). Although both dried remains and egg banks identified wetlands, the combination was more useful, especially for identifying drained or filled wetlands. We also evaluated the use of coarse taxonomic groupings to stimulate use of the technique by nonspecialists and obtained satisfactory results in most situations.

  10. Ecological risk assessment of a wetland exposed to boron

    SciTech Connect

    Powell, R.L.; Kimerle, R.A.; Coyle, G.T. [Monsanto Co., St. Louis, MO (United States). Environmental Sciences Center; Best, G.R. [Univ. of Florida, Gainesville, FL (United States)

    1997-11-01

    A wetland located in the southeastern portion of the United States was the site of an investigation to determine the potential ecological risk of elevated boron concentrations to the flora and fauna living in the wetland. The conceptual model identified the vegetation as the primary receptor of concern, and thus the vegetation is the focus of this article. Samples of surface water, sediments, and selected vegetation were collected from the study wetland and several nearby reference sites and were analyzed for boron. Concentrations of boron in all three media exceeded reference site concentrations. Boron concentrations were highest near the suspected source but decreased almost to reference-site concentrations near the outer perimeter of the wetland. Some plants appeared stressed with yellowing and necrotic leaves; however, a correlation between tissue boron concentrations and the plant`s visual appearance was not apparent for all species studied. Modeling of the fate of boron indicated that the wetland has likely been at a steady state for many years and that boron concentrations were not expected to increase. It was concluded that no observable adverse ecological impacts to the vegetation could be attributed to boron, nor is it likely that the boron poses an unacceptable risk to the surrounding areas.

  11. Laboratory measurements of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surge and waves generated by hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation a...

  12. Experimental investigation of wave attenuation through model and live vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hurricanes and tropical storms often cause severe damage and loss of life in coastal areas. It is widely recognized that wetlands along coastal fringes reduce storm surge and waves. Yet, the potential role and primary mechanisms of wave mitigation by wetland vegetation are not fully understood. K...

  13. Using aquatic invertebrates to delineate seasonal and temporary wetlands in the Prairie Pothole Region of North America

    USGS Publications Warehouse

    Euliss, N.H., Jr.; Mushet, D.M.; Johnson, D.H.

    2002-01-01

    Tillage can destroy or greatly disturb indicators of hydric soils and hydrophytic vegetation, making delineation of tilled wetlands difficult. The remains of aquatic invertebrates (e.g., shells, drought-resistant eggs, and trichopteran cases) are easily identifiable and persist in wetland substrates even when wetlands are dry. Additionally, these remains are not easily destroyed by mechanical tillage. To test the feasibility of using invertebrate remains to delineate wetlands, we used two methods to identify the wetland edge of ten seasonal and ten temporary wetlands, evenly divided between grassland and cropland landscapes. First, we identified the wetland edge using hydric soil and vegetation indicators along six evenly spaced transects in each wetland (our standard delineation). We then identified the wetland edge along the same transects using aquatic invertebrate remains as our indicator. In grassland landscapes, delineations of the wetland edge made using invertebrate remains were consistently at the same location or closer to the wetland center as the standard delineations for both seasonal and temporary wetlands. In cropland landscapes, however, many of our invertebrate delineations of seasonal and temporary wetlands were on the upland side of our standard delineations. We attribute the differences to movement of remains during tillage, increased maximum pool levels in cropland wetlands, and disturbance of hydric soils and plants. We found that the elevations of the wetland edge indicated by invertebrate remains were more consistent within a wetland than elevations determined by standard delineations. Aquatic invertebrate remains can be useful in delineating wetlands when other indicators have been destroyed or severely disturbed by tillage.

  14. Assessment of saltwater intrusion impact on gas exchange behavior of Louisiana Gulf Coast wetland species

    Microsoft Academic Search

    S. R. Pezeshki; R. D. DeLaune

    1989-01-01

    A review of gas exchange responses of wetland plants to salinity is presented for several species representative of different wetland habitats extending along water level and salinity gradients in the Louisiana Gulf Coast, U.S.A. The information was synthesized from earlier plant physiological response studies. Vegetation examined represent a broad range of sensitivity to salt, including brackish marsh, freshwater marsh, and

  15. The use of wetlands in the Mississippi Delta for wastewater assimilation: a review

    Microsoft Academic Search

    J. W. Day; Jae-Young Ko; J. Rybczyk; D. Sabins; R. Bean; G. Berthelot; C. Brantley; L. Cardoch; W. Conner; J. N. Day; A. J. Englande; S. Feagley; E. Hyfield; J. Lindsey; J. Mistich; E. Reyes; R. Twilley

    2004-01-01

    The use of wetlands for treatment of wastewaters has a number of important ecological and economic benefits. Adding nutrient rich treated wastewater effluent to selected coastal wetlands results in the following benefits: (1) improved effluent water quality; (2) increased accretion rates to help offset subsidence; (3) increased productivity of vegetation; and (4) financial and energy savings of capital not invested

  16. Nitrous oxide generation, denitrification, and nitrate removal in a seepage wetland intercepting surface and subsurface flows

    E-print Network

    Gold, Art

    Nitrous oxide generation, denitrification, and nitrate removal in a seepage wetland intercepting within agricultural landscapes, with respect to removing nitrate (NO3 À ) from agricultural catchments lysimeter (0.5 m diameter) installed around undisturbed wetland soil and vegetation. Although minimal

  17. Assessment of Water Availability Impact on Wetland Management using Multi-temporal Landsat Images and Bayesian-based Learning Machines

    NASA Astrophysics Data System (ADS)

    Alminagorta, O.; Torres, A. F.

    2013-12-01

    Water availability has a direct impact on the wetland ecosystems. While wetland managers need better information to allocate scarce water to improve wetland services, most monitoring activities of flood areas and vegetation condition on wetlands relies on manual estimation of water depth and use of airboat with GPS devices. This process is costly and time-consuming. Remote sensing techniques have been previously used to characterize vegetation conditions along with hydrological characteristics of the wetlands with excellent results. Nevertheless, limited analysis has been done to relate the resulting wetland characterization with the historical water availability records. The present paper addresses the lack of adequate feedback on wetland conditions upon the available water for the wetland system by making use of multi-temporal Landsat images. These images are processed at wetland unit and system level to extract information about vegetation, soil and water conditions. This information is then correlated with historical water availability records for the wetland system by means of the Relevance Vector Machine, a Bayesian-based algorithm known for its robustness, efficiency, and sparseness. This research is applied at the Bear River Migratory Bird Refuge (the Refuge), located on the northeast side of Great Salt Lake, Utah. The Refuge constitutes one of the most important habitats for migratory birds for the Pacific Flyway of North America. Water-discharge records and coverage vegetation collected at the Refuge has been used to calibrate and evaluate the effects on wetland services to the process of flooding and drought in wetland units during different years. The final product of this research is to provide a methodology that wetland managers can use to make informed decisions about water allocation to improve wetland services while avoiding wasting resources, effort, time and money.

  18. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  19. Classifying and mapping wetlands and peat resources using digital cartography

    USGS Publications Warehouse

    Cameron, Cornelia C.; Emery, David A.

    1992-01-01

    Digital cartography allows the portrayal of spatial associations among diverse data types and is ideally suited for land use and resource analysis. We have developed methodology that uses digital cartography for the classification of wetlands and their associated peat resources and applied it to a 1:24 000 scale map area in New Hampshire. Classifying and mapping wetlands involves integrating the spatial distribution of wetlands types with depth variations in associated peat quality and character. A hierarchically structured classification that integrates the spatial distribution of variations in (1) vegetation, (2) soil type, (3) hydrology, (4) geologic aspects, and (5) peat characteristics has been developed and can be used to build digital cartographic files for resource and land use analysis. The first three parameters are the bases used by the National Wetlands Inventory to classify wetlands and deepwater habitats of the United States. The fourth parameter, geological aspects, includes slope, relief, depth of wetland (from surface to underlying rock or substrate), wetland stratigraphy, and the type and structure of solid and unconsolidated rock surrounding and underlying the wetland. The fifth parameter, peat characteristics, includes the subsurface variation in ash, acidity, moisture, heating value (Btu), sulfur content, and other chemical properties as shown in specimens obtained from core holes. These parameters can be shown as a series of map data overlays with tables that can be integrated for resource or land use analysis.

  20. Vulnerability of Northern Prairie Wetlands to Climate Change

    NSDL National Science Digital Library

    W. CARTER JOHNSON, BRUCE V. MILLETT, TAGIR GILMANOV, RICHARD A. VOLDSETH, GLENN R. GUNTENSPERGEN, and DAVID E. NAUGLE (; )

    2005-11-01

    This peer reviewed article from Bioscience journal is on the effect of climate change on northern prairie wetlands. The prairie pothole region (PPR) lies in the heart of North America and contains millions of glacially formed, depressional wetlands embedded in a landscape matrix of natural grassland and agriculture. These wetlands provide valuable ecosystem services and produce 50% to 80% of the continent's ducks. We explored the broad spatial and temporal patterns across the PPR between climate and wetland water levels and vegetation by applying a wetland simulation model (WETSIM) to 18 stations with 95-year weather records. Simulations suggest that the most productive habitat for breeding waterfowl would shift under a drier climate from the center of the PPR (the Dakotas and southeastern Saskatchewan) to the wetter eastern and northern fringes, areas currently less productive or where most wetlands have been drained. Unless these wetlands are protected and restored, there is little insurance for waterfowl against future climate warming. WETSIM can assist wetland managers in allocating restoration dollars in an uncertain climate future

  1. Wetland Losses and Human Impacts

    E-print Network

    Gray, Matthew

    ) Estuarine wetlands are most common coastal wetland Gulf of Mexico Louisiana Tennessee Wetlands Approximately--agriculture. It is important to Louisiana, the South and Nation as a whole." 1940s-70 State Legislation #12;3 State Wetland1 Wetland Losses and Human Impacts Matthew J. Gray University of Tennessee Distribution of North

  2. Decline in exotic tree density facilitates increased plant diversity: the experience from Melaleuca quinquenervia invaded wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Australian tree Melaleuca quinquenervia (melaleuca) formed dense monocultural forests several decades after invading Florida and the Caribbean islands. These dominant forests have displaced native vegetation in sensitive wetland systems. We hypothesized that native plant diversity would increa...

  3. Evaluation of the nutrient removal efficiency of a constructed wetland system 

    E-print Network

    Hart, Kimberly Ann

    2006-10-30

    In north central Texas, USA, free-water surface wetlands have been constructed to treat pre-treated wastewater effluent from the Trinity River. Water quality and vegetation data from the first two years of operation (June ...

  4. Estimation Model of Soil Freeze-Thaw Erosion in Silingco Watershed Wetland of Northern Tibet

    PubMed Central

    2013-01-01

    The freeze-thaw (FT) erosion is a type of soil erosion like water erosion and wind erosion. Limited by many factors, the grading evaluation of soil FT erosion quantities is not well studied. Based on the comprehensive analysis of the evaluation indices of soil FT erosion, we for the first time utilized the sensitivity of microwave remote sensing technology to soil moisture for identification of FT state. We established an estimation model suitable to evaluate the soil FT erosion quantity in Silingco watershed wetland of Northern Tibet using weighted summation method of six impact factors including the annual FT cycle days, average diurnal FT phase-changed water content, average annual precipitation, slope, aspect, and vegetation coverage. Finally, with the support of GIS, we classified soil FT erosion quantity in Silingco watershed wetland. The results showed that soil FT erosion are distributed in broad areas of Silingco watershed wetland. Different soil FT erosions with different intensities have evidently different spatial and geographical distributions. PMID:23935427

  5. Transport and attenuation of dissolved glyphosate and AMPA in a stormwater wetland.

    PubMed

    Imfeld, Gwenaël; Lefrancq, Marie; Maillard, Elodie; Payraudeau, Sylvain

    2013-01-01

    Glyphosate is an herbicide used widely and increasingly since the early 1990s in production of many crops and in urban areas. However, knowledge on the transport of glyphosate and its degradation to aminomethylphosphonic acid (AMPA) in ecosystems receiving urban or agricultural runoff is lacking. Here we show that transport and attenuation of runoff-associated glyphosate and AMPA in a stormwater wetland differ and largely vary over time. Dissolved concentrations and loads of glyphosate and AMPA in a wetland receiving runoff from a vineyard catchment were assessed during three consecutive seasons of glyphosate use (March to June 2009, 2010 and 2011). The load removal of glyphosate and AMPA by the wetland gradually varied yearly from 75% to 99%. However, glyphosate and AMPA were not detected in the wetland sediment, which emphasises that sorption on the wetland vegetation, which increased over time, and biodegradation were prevailing attenuation processes. The relative load of AMPA as a percentage of total glyphosate increased in the wetland and ranged from 0% to 100%, which indicates the variability of glyphosate degradation via the AMPA pathway. Our results demonstrate that transport and degradation of glyphosate in stormwater wetlands can largely change over time, mainly depending on the characteristics of the runoff event and the wetland vegetation. We anticipate our results to be a starting point for considering degradation products of runoff-associated pesticides during their transfer in wetlands, in particular when using stormwater wetlands as a management practice targeting pesticide attenuation. PMID:22633860

  6. Refinement of microwave vegetation indices

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous investigations have established the basis for a new type of vegetation index based on passive microwave satellite observations. These microwave vegetation indices (MVIs) have been qualitatively evaluated by examining global spatial and seasonal temporal features. Limited quantitative studie...

  7. Changes in piping plover nesting habitat availability at Great Plains alkaline wetlands, 1938–1997

    Microsoft Academic Search

    Brian G. Root; Mark R. Ryan

    2004-01-01

    Alkaline wetland beaches provide crucial habitat for breeding piping plovers (Charadrius melodus) in the northern Great Plains of the United States and Canada. Vegetation encroachment has been identified as a potential\\u000a threat that decreases alkaline beach habitat availability, but the long-term status of these breeding habitats has not been\\u000a evaluated. We measured vegetation changes at two North Dakota alkaline wetland

  8. Anatomy and propagation dynamics of continuous-flux release bottom gravity currents through emergent aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Testik, F. Y.; Yilmaz, N. A.

    2015-05-01

    The anatomy and propagation dynamics of non-Newtonian fluid mud gravity currents through emergent aquatic vegetation were investigated experimentally. The motivation of this study was related to the pipeline disposal of the dredged fluid mud into vegetated wetlands and near-shore areas, during which bottom gravity currents form. Our experimental observations showed that the presence of vegetation affects the propagation dynamics, hence the anatomy, of the gravity currents significantly. Vegetation-induced drag force dominated the resisting forces acting on the gravity current, forcing the current to transition into a drag-dominated propagation phase. During this transition, the gravity current profile evolved into a well-defined triangular/wedge shape. The onset of the fully established drag-dominated propagation phase was marked by the establishment of an equilibrium slope angle for the upper interface of the current with the ambient fluid. This equilibrium/terminal slope angle value remained constant throughout the rest of the drag-dominated propagation phase. Parameterizations for the required propagation distance for the onset of the fully established drag-dominated propagation phase, the array-averaged drag coefficient at the onset of this propagation phase, and the value of the terminal slope angle were proposed. Our experimental observations on the anatomy of gravity currents during the drag-dominated propagation phase were discussed in detail. This study documented significant effects of the vegetation in the propagation dynamics and anatomy of gravity currents, which warrants future detailed studies.

  9. 76 FR 22785 - Wetland Conservation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-25

    ...NRCS-2011-0010] RIN 0578-AA58 Wetland Conservation AGENCY: Office of the Secretary...Paperwork Reduction Act. Background Existing wetland conservation provisions in 7 CFR part 12 require that NRCS' certification of a wetland determination be completed according...

  10. The establishment and management of emergent vegetation in sewage-fed artificial marshes and the effects of these marshes on water quality

    Microsoft Academic Search

    Karl E. Ulrich; Thomas M. Burton

    1984-01-01

    Experiments on the establishment and harvest ofPhragmites\\u000a australis,Zizania\\u000a aquatica,Typha\\u000a latifolia,Typha\\u000a angustifolia,Sparganium\\u000a eurycarpum andSpartina\\u000a pectinata were conducted in three 0.4 ha clay-bottomed man-made marshes in the central portion of the lower peninsula of Michigan.\\u000a Propagules consisted of seeds for the annualZ. aquatica and root and rhizome clumps for the other species.S. eurycarpum showed rapid establishment but was subject to invasion by

  11. [Recreational attraction of urban park wetlands in Beijing].

    PubMed

    Li, Fen; Sun, Ran-Hao; Chen, Li-Ding

    2012-08-01

    Taking the 20 urban park wetlands in Beijing as test objects, a 3-layer evaluation index system including urban park wetland landscape quality, location condition, and accessibility for the recreational attraction of urban bark wetlands was established, and, by using analytic hierarchy process (AHP) and an integrating index evaluation method, the recreational attraction of the urban park wetlands in Beijing was quantitatively assessed, and validated with questionnaire data. In Beijing, the urban park wetlands with high recreational attraction were in the order of the Summer Palace, Olympic Park, Qinglong Lake Park, Beihai Park, Yuanmingyuan Park, Yuyuantan Park, Shidu, Golden Sea Lake scenic area, Taoranting Park, and Yeyahu wetland. The Rice Fragrance Lake wetland and Zhenzhuhu scenic area had the lowest recreational attraction, and the others were fair. The evaluation results were supported by the questionnaire data, which indicated that the index system and evaluation model were useful. According to the recreational services, the 20 park wetlands in Beijing could be clustered into four categories, which could be managed in different ways. Appropriately assessing the recreational services of urban park wetlands could help the decision-making on the urban parks optimal planning and designing, improve human living environment, and optimize the spatial distribution of urban landscape. PMID:23189684

  12. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada's Prairie Wetlands.

    PubMed

    Main, Anson R; Michel, Nicole L; Headley, John V; Peru, Kerry M; Morrissey, Christy A

    2015-07-21

    Neonicotinoids are commonly used seed treatments on Canada's major prairie crops. Transported via surface and subsurface runoff into wetlands, their ultimate aquatic fate remains largely unknown. Biotic and abiotic wetland characteristics likely affect neonicotinoid presence and environmental persistence, but concentrations vary widely between wetlands that appear ecologically (e.g., plant composition) and physically (e.g., depth) similar for reasons that remain unclear. We conducted intensive surveys of 238 wetlands, and documented 59 wetland (e.g., dominant plant species) and landscape (e.g., surrounding crop) characteristics as part of a novel rapid wetland assessment system. We used boosted regression tree (BRT) analysis to predict both probability of neonicotinoid analytical detection and concentration. BRT models effectively predicted the deviance in neonicotinoid detection (62.4%) and concentration (74.7%) from 21 and 23 variables, respectively. Detection was best explained by shallow marsh plant species identity (34.8%) and surrounding crop (13.9%). Neonicotinoid concentration was best explained by shallow marsh plant species identity (14.9%) and wetland depth (14.2%). Our research revealed that plant composition is a key indicator and/or driver of neonicotinoid presence and concentration in Prairie wetlands. We recommend wetland buffers consisting of diverse native vegetation be retained or restored to minimize neonicotinoid transport and retention in wetlands, thereby limiting their potential effects on wetland-dependent organisms. PMID:26098364

  13. Wetlands and Bird Migration

    NSDL National Science Digital Library

    This activity demonstrates that coastal wetlands are an important factor to insure the success of bird migration. Students will discover that ponds, lakes and marshes provide food and shelter for traveling birds and, without the wetlands, birds would not have the energy to make the trek from areas as far south as Panama. They also learn that besides providing habitats for waterfowl, wetlands help relieve flooding, filter pollutants and are an integral part of the biosphere.

  14. Wastewater Reclamation/Wetlands

    E-print Network

    Hickey, D.

    2011-01-01

    -ft/yr ? Estimated Project Cost - $246 million ? Project Completed ? 2009 Major Existing/Proposed WWTP Diversion Point Future Transfer Pathway Lake Ray Hubbard Lavon Lake Chapman Lake Inflow Lake Texoma Inflow Constructed Wetland East Fork... Raw Water Supply Project Schematic East Fork Raw Water Supply Project Location Lake Ray Hubbard Lavon Lake Constructed Wetland Project Site East Fork Raw Water Supply Project ? 1,840 acre constructed wetland (largest...

  15. Observing Wetland Habitats

    NSDL National Science Digital Library

    Observing Wetland Habitats contains tips on finding wetlands to explore and wetland scavenger hunt observation sheets that can be used as a starting point for discovery. While on their scavenger hunt, students can look for adaptations in plants and animals that help them live in a partially wet habitat. After the students have finished their scavenger hunt, they can share what they've seen and heard.

  16. Hydroperiod regime controls the organization of plant species in wetlands

    PubMed Central

    Foti, Romano; del Jesus, Manuel; Rinaldo, Andrea; Rodriguez-Iturbe, Ignacio

    2012-01-01

    With urban, agricultural, and industrial needs growing throughout the past decades, wetland ecosystems have experienced profound changes. Most critically, the biodiversity of wetlands is intimately linked to its hydrologic dynamics, which in turn are being drastically altered by ongoing climate changes. Hydroperiod regimes, e.g., percentage of time a site is inundated, exert critical control in the creation of niches for different plant species in wetlands. However, the spatial signatures of the organization of plant species in wetlands and how the different drivers interact to yield such signatures are unknown. Focusing on Everglades National Park (ENP) in Florida, we show here that cluster sizes of each species follow a power law probability distribution and that such clusters have well-defined fractal characteristics. Moreover, we individuate and model those signatures via the interplay between global forcings arising from the hydroperiod regime and local controls exerted by neighboring vegetation. With power law clustering often associated with systems near critical transitions, our findings are highly relevant for the management of wetland ecosystems. In addition, our results show that changes in climate and land management have a quantifiable predictable impact on the type of vegetation and its spatial organization in wetlands. PMID:23150589

  17. The Influence of Speckled Alder on Nitrogen Accumulation in Adirondack Wetlands

    NASA Astrophysics Data System (ADS)

    Kiernan, B. D.; Hurd, T. M.; Raynal, D. J.

    2001-05-01

    Shrub-dominated wetlands of the Adirondacks typically support vigorous populations of nitrogen-fixing speckled alder Alnus incana (L.) Moench var. americana Regel), and are the second most abundant wetland type in the Adirondack region. In symbiotic association with an actinomycete of the genus Frankia, this shrub fixes 37-43 kg N/ha/yr in monotypic stands. This study was undertaken to quantify the abundance of alder in wetlands typed as "Scrub-shrub 1" (SS1; known as alder/willow wetlands) in the National Wetlands Inventory, and to determine the accumulation of nitrate and ammonium in alder wetland substrates. Twenty wetlands from the Oswegatchie-Black (OB) and Upper Hudson (UH) watersheds were randomly selected using the Adirondack Park Agency's GIS data base which includes wetland cover types assigned using remotely sensed data. Wetlands designated as "SS1" (scrub-shrub vegetation) and "SS1/EM1" (scrub-shrub with emergent herbaceous vegetation) were included in the sample. Six wetlands varying in alder abundance were chosen to estimate N accumulation in the substrate, with measurement of dissolved inorganic N in groundwater and ion exchange resin extracts. In the OB watershed, A. incana averaged 30 % of total shrub density in SS1 wetlands and 36 % in SS1/EM1 wetlands. Alder accounted for 49 % of all stems in UH SS1 wetlands, 28 % in the SS1/EM1 wetlands and in total accounted for 35 % of all stems in this study. Nitrate in IER extracts and groundwater was significantly higher in high-density alder wetlands (p < 0.05). Eight of the 20 wetlands included in this study were estimated to have less than 3,000 alder stems/ha, and five were estimated to have greater than 10,000 stems/ha. The other seven wetlands averaged 6,000 stems/ha. At nine sites, foliar N equaled or exceeded estimated atmospheric deposition (~10 kg/ha/yr), and was likely derived from N fixation. We conclude that 50 % of the SS1/EM1 wetlands and at least 75 % of the SS1 wetlands in these watersheds are characterized by elevated nitrate due to the effect of alder on these systems.

  18. Hurricane Katrina: Wetland Destruction

    NSDL National Science Digital Library

    Wetlands along the southern coastlines of the United States serve as natural blocks to approaching hurricanes, starving them of warm ocean water and creating physical barriers to storm surge floods. However, construction of levees and canals in the last one hundred years has turned thousands of square miles of wetland habitat into open water. This video explores the importance of wetlands and examines the damage Hurricane Katrina caused to a wetland area south of New Orleans. The segment is one minute fifty-seven seconds in length. A background essay and list of discussion questions are also provided.

  19. The use of hydrologically altered wetlands to treat wastewater in coastal Louisiana

    SciTech Connect

    Breaux, A.M.

    1992-01-01

    Two major environmental problems currently affecting Louisiana are a high rate of coastal wetland loss and high levels of surface water pollution. The application of secondarily treated wastewater to wetlands is proposed to dealing with these problems. The benefits of wetland wastewater treatment include improved surface water quality, increased accretion rates to balance subsidence, improved plant productivity, and decreased capital outlays for conventional engineering treatment systems. Wetland treatment systems can be designed and operated to restore deteriorating wetlands to previous levels of productivity. Hydrologically altered wetlands in the Louisiana coastal zone are appropriate for receiving municipal and some industrial effluent. While the US EPA has determined that wetland wastewater treatment is effective in treating municipal effluent, it has discouraged the use of natural wetlands for this purpose. As a result, hydrologically altered wetlands in the Louisiana coastal zone are being neglected and ultimately lost, while scarce funds are used to construct artificial wetlands to treat municipal effluent. Effluent discharge to existing wetlands can be incorporated into a comprehensive management plan designed to increase sediment and nutrient input into subsiding wetlands in the Louisiana coastal zone. Secondarily treated effluent discharged from industrial and municipal facilities in the Louisiana coastal zone were reviewed for suitability for wetland wastewater treatment. Selection criteria for wetland treatment systems were developed for both dischargers and receiving wetlands. Designs for two potential case studies based on established selection criteria for wetland wastewater treatment systems are presented. An economic analysis of the four case studies indicates a high potential for financial savings when wetlands replace conventional engineering methods for tertiary treatment.

  20. A study on the phytoaccumulation of waste elements in wetland plants of a Ramsar site in India.

    PubMed

    Chatterjee, Soumya; Chetia, Mridul; Singh, Lokendra; Chattopadhyay, Buddhadeb; Datta, Siddhartha; Mukhopadhyay, S K

    2011-07-01

    Some wetland plant species are adapted to growing in the areas of higher metal concentrations. Use of such vegetation in remediation of soil and water contaminated with heavy metals is a promising cost-effective alternative to the more established treatment methods. Throughout the year, composite industrial effluents bringing various kinds of heavy metals contaminate our study site, the East Calcutta Wetlands, a Ramsar site at the eastern fringe of Kolkata city (formerly Calcutta), India. In the present study, possible measures for remediation of contaminated soil and water (with elements namely, Ca, Cr, Cu, Pb, Zn, Mn, and Fe) of the ecosystem had been investigated. Ten common regional wetland plant species were selected to study their efficiency and diversity in metal uptake and accumulation. Results showed that Bermuda grass (Cynodon dactylon) had the highest total Cr concentration (6,601 ± 33 mg kg(?-1) dw). The extent of accumulation of various elements in ten common wetland plants of the study sites was: Pb (4.4-57 mg kg(?-1) dw), Cu (6.2-39 mg kg(?-1) dw), Zn (59-364 mg kg(?-1) dw), Mn (87-376 mg kg(?-1) dw), Fe (188-8,625 mg kg(?-1) dw), Ca (969-3,756 mg kg(?-1) dw), and Cr (27-660 mg kg(?-1) dw) indicating an uptake gradient of elements by plants as Ca>Fe>Mn>Cr>Zn>Cu>Pb. The present study indicates the importance of identification and efficiency of metal uptake and accumulation capabilities by plants in relation to their applications in remediation of a contaminated East Calcutta Wetland ecosystem. PMID:20827506

  1. Soil biogeochemical characteristics influenced by alum application in a municipal wastewater treatment wetland.

    PubMed

    Malecki-Brown, Lynette M; White, John R; Reddy, K R

    2007-01-01

    Constructed treatment wetlands are a relatively low-cost alternative used for tertiary treatment of wastewater. Phosphorus (P) removal capacity of these wetlands may decline, however, as P is released from the accrued organic soils. Little research has been done on methods to restore the treatment capacity of aging constructed wetlands. One possibility is the seasonal addition of alum during periods of low productivity and nutrient removal. Our 3-mo mesocosm study investigated the effectiveness of alum in immobilizing P during periods of reduced treatment efficiency, as well as the effects on soil biogeochemistry. Eighteen mesocosms were established, triplicate experimental and control units for Typha sp., Schoenoplectus californicus, and submerged aquatic vegetation (SAV) (Najas guadalupensis dominated). Alum was slowly dripped to the water column of the experimental units at a rate of 0.91 g Al m(-2) d(-1) and water quality parameters were monitored. Soil cores were collected at experiment initiation and completion and sectioned into 0- to 5- and 5- to 10-cm intervals for characterization. The alum floc remained in the 0- to 5-cm surface soil, however, soil pH and microbial parameters were impacted throughout the upper 10 cm with the lowest pH found in the Typha treatment. Plant type did not impact most biogeochemical parameters; however, data were more variable in the SAV mesocosms. Amorphous Al was greater in the surface soil of alum-treated mesocosms, inversely correlated with soil pH and microbial biomass P in both soil layers. Microbial activity was also suppressed in the surface soil of alum-treated mesocosms. This research suggests alum may significantly affect the biogeochemistry of treatment wetlands and needs further investigation. PMID:17965393

  2. Evaluating Wetlands Sustainability Using a Hierarchical Systems Approach

    NASA Astrophysics Data System (ADS)

    Allen, L. E.; Kolm, K. E.

    2002-12-01

    A hierarchical systems analysis approach, using Geographical Information Systems (GIS)software, is used to integrate and assess the different types of data necessary to characterize the surface and ground-water system as it pertains to the wetlands environment within the landscape context. This hierarchical approach was applied to the Cucumber Gulch wetlands complex, located near Breckenridge, Colorado. The Cucumber Gulch watershed is currently being studied for proposed expansion and development of the existing Breckenridge ski area. The delineated wetland complex is a jurisdictional wetland and is protected under section 404 of the Clean Water Act. The proposed development has the potential to impact the wetlands complex. The various data integrated through the hierarchical systems analysis include climate, topography, geomorphology, geology, vegetation, hydrology, and anthropogenic influences to the natural system. A three-dimensional solid computer model of the surface and sub-surface geology was constructed. Through analysis and integration of these various layers, the surface and ground-water hydrological framework and flow models were developed and calibrated. Throughout the process the ground-water modeling performed to assess the sustainability of the wetland was reconciled with the hydrological framework developed from the "soft" data layers, and with the hydrologic system conceptual model developed from the hierarchical systems analysis. This hierarchical systems approach to modeling provided the Town of Breckenridge with means of assessing the validity of the computer models and potential impact to the wetland complex. Computer modeling was continually refined in response to this process.

  3. Assessing Natural and Anthropogenic Variability in Wetland Structure for Two Hydrogeomorphic Riverine Wetland Subclasses

    NASA Astrophysics Data System (ADS)

    Dvorett, Daniel; Bidwell, Joseph; Davis, Craig; DuBois, Chris

    2013-10-01

    The hydrogeomorphic approach (HGM) to wetland classification and functional assessment has been applied regionally throughout the United States, but the ability of HGM functional assessment models to reflect wetland condition has limited verification. Our objective was to determine how variability derived from anthropogenic effects and natural variability impacted site assessment variables within regional wetland subclasses in central Oklahoma. We collected data for nine potential assessment variables including vegetation physiognomy (e.g., tree basal area, herbaceous cover, canopy cover, etc.) and soil organic matter at wetlands of two HGM riverine subclasses (oxbow and riparian) in May and June, 2010. Using Akaike Information Criteria, we identified limited relationships between landscape disturbance metrics and assessment variables within subclasses. The high degree of natural variability from climatic and hydrologic factors within both subclasses may be masking the impact of landscape disturbance on the other measured assessment variables. Precipitation had significant effects on assessment variables within each of the subclasses. To reduce natural climatic variability, the reference domain may need to be further subdivided. The approach used in this study provides fairly rapid and quantitative methods for evaluating the effectiveness of using HGM assessment variables in assessing wetland condition regionally.

  4. Wetland Resources of Yellowstone National Park

    NSDL National Science Digital Library

    Elliott Charles

    This Yellowstone National Park online report provides an overview of the park's wetlands and associated flora and fauna. Chapters include wetland plants, wetlands and wildlife, wetlands and people, thermal wetlands, a wetland inventory, wetland classification and acreage, and others. Information is presented as text, photos, graphs, tables, and maps.

  5. Wetland Restoration Response Analysis using MODIS and Groundwater Data

    PubMed Central

    Melesse, Assefa M.; Nangia, Vijay; Wang, Xixi; McClain, Michael

    2007-01-01

    Vegetation cover and groundwater level changes over the period of restoration are the two most important indicators of the level of success in wetland ecohydrological restoration. As a result of the regular presence of water and dense vegetation, the highest evapotranspiration (latent heat) rates usually occur within wetlands. Vegetation cover and evapotranspiration of large areas of restoration like that of Kissimmee River basin, South Florida will be best estimated using remote sensing technique than point measurements. Kissimmee River basin has been the area of ecological restoration for some years. The current ecohydrological restoration activities were evaluated through fractional vegetation cover (FVC) changes and latent heat flux using Moderate Resolution Imaging Spectroradiometer (MODIS) data. Groundwater level data were also analyzed for selected eight groundwater monitoring wells in the basin. Results have shown that the average fractional vegetation cover and latent heat along 10 km buffer of Kissimmee River between Lake Kissimmee and Lake Okeechobee was higher in 2004 than in 2000. It is evident that over the 5-year period of time, vegetated and areas covered with wetlands have increased significantly especially along the restoration corridor. Analysis of groundwater level data (2000-2004) from eight monitoring wells showed that, the average monthly level of groundwater was increased by 20 cm and 34 cm between 2000 and 2004, and 2000 and 2003, respectively. This change was more evident for wells along the river.

  6. Microhabitat Use by Trichoptera in a Lake Erie Coastal Wetland

    Microsoft Academic Search

    C. M. Cook; J. Keiper

    2005-01-01

    We examined the differences in microhabitat use by caddisfly (Trichoptera) adults at a Lake Erie coastal wetlands complex in northwestern Ohio. Light traps were employed in three vegetative zones; a Pontedaria stand, a submerged willow\\/cottonwood forest, and an adjacent open water area. We used concealed UV lights inside of replicate traps (n = 4 per habitat), attracting only caddisflies near

  7. HYDROGEOMORPHIC INFLUENCES ON MACROPHYTES AS HABITAT IN GREAT LAKES WETLANDS

    EPA Science Inventory

    We used rapid survey techniques to map saubmergerd, floating and emergent vegetation in 10 coastal wetlands of Lake Superior. Density and structure of plant beds in "bay," "main channel," and "side channel" areas was evaluated from cover indices and presence/dominance by growth f...

  8. CHARACTERIZATION OF NATURAL WETLAND SOILS RECEIVING ACID MINE DRAINAGE1

    Microsoft Academic Search

    Kyle M. Stephens; John C Sencindiver; Jeffery G. Skousen

    A proposed section of Appalachian Corridor H will pass through an area of the Beaver Creek watershed in Tucker County, WV previously mined for the acid-producing Upper Freeport coal. Presently, partially-reclaimed spoils from past mining activities are generating acid mine drainage. Wetlands adjacent to the spoils are supporting vegetative communities and they appear to be naturally treating the drainage. We

  9. Organic Vegetable Organic Vegetable

    E-print Network

    .......................................6 Safety ................................................................6 Insect Management ...............................19 disease, and weed management. Information on other aspects of vegetable production may be found of management and time invested in developing the system, organic produce should bring a premium price compared

  10. Building spectral libraries for wetlands land cover classification and hyperspectral remote sensing.

    PubMed

    Zomer, R J; Trabucco, A; Ustin, S L

    2009-05-01

    Recent advances in remote sensing provide opportunities to map plant species and vegetation within wetlands at management relevant scales and resolutions. Hyperspectral imagers, currently available on airborne platforms, provide increased spectral resolution over existing space-based sensors that can document detailed information on the distribution of vegetation community types, and sometimes species. Development of spectral libraries of wetland species is a key component needed to facilitate advanced analytical techniques to monitor wetlands. Canopy and leaf spectra at five sites in California, Texas, and Mississippi were sampled to create a common spectral library for mapping wetlands from remotely sensed data. An extensive library of spectra (n=1336) for coastal wetland communities, across a range of bioclimatic, edaphic, and disturbance conditions were measured. The wetland spectral libraries were used to classify and delineate vegetation at a separate location, the Pacheco Creek wetland in the Sacramento Delta, California, using a PROBE-1 airborne hyperspectral data set (5m pixel resolution, 128 bands). This study discusses sampling and collection methodologies for building libraries, and illustrates the potential of advanced sensors to map wetland composition. The importance of developing comprehensive wetland spectral libraries, across diverse ecosystems is highlighted. In tandem with improved analytical tools these libraries provide a physical basis for interpretation that is less subject to conditions of specific data sets. To facilitate a global approach to the application of hyperspectral imagers to mapping wetlands, we suggest that criteria for and compilation of wetland spectral libraries should proceed today in anticipation of the wider availability and eventual space-based deployment of advanced hyperspectral high spatial resolution sensors. PMID:18395960

  11. Mitigation of two pyrethroid insecticides in a Mississippi Delta constructed wetland.

    PubMed

    Moore, M T; Cooper, C M; Smith, S; Cullum, R F; Knight, S S; Locke, M A; Bennett, E R

    2009-01-01

    Constructed wetlands are a suggested best management practice to help mitigate agricultural runoff before entering receiving aquatic ecosystems. A constructed wetland system (180 m x 30 m), comprising a sediment retention basin and two treatment cells, was used to determine the fate and transport of simulated runoff containing the pyrethroid insecticides lambda-cyhalothrin and cyfluthrin, as well as suspended sediment. Wetland water, sediment, and plant samples were collected spatially and temporally over 55 d. Results showed 49 and 76% of the study's measured lambda-cyhalothrin and cyfluthrin masses were associated with vegetation, respectively. Based on conservative effects concentrations for invertebrates and regression analyses of maximum observed wetland aqueous concentrations, a wetland length of 215 m x 30 m width would be required to adequately mitigate 1% pesticide runoff from a 14 ha contributing area. Results of this experiment can be used to model future design specifications for constructed wetland mitigation of pyrethroid insecticides. PMID:18789833

  12. The research of ecology-oriented reasonable deployment of water resources at Shuangtaizi estuary wetland

    NASA Astrophysics Data System (ADS)

    Lu, Xiaofeng; Wang, Tieliang; Su, Fangli; Zhou, Linfei; Li, Bo

    2011-06-01

    Shuangtaizi estuary wetland, the largest natural conservation district in China, and one of the best preserved, largest ecological lands with the most complete vegetation types in the world, is located in Panjin city, Liaoning Province. In recent years, the degradation of Shuangtaizi estuary wetland is very serious. In order to rescue lives in the wetland and protect valuable natural resources, the information system of Shuangtaizi estuary wetland was built with `3S' technology, and the minimum, optimum, and maximum eco-environmental water requirements were calculated respectively. Furthermore, for restoring the ecological functions of wetland and preventing wetland degradation, the balance between supply and demand of water resource was analyzed, and an optimal allocation scheme of water resources was proposed based on three kinds of equilibrium.

  13. Automated Algorithm for Extraction of Wetlands from IRS Resourcesat Liss III Data

    NASA Astrophysics Data System (ADS)

    Subramaniam, S.; Saxena, M.

    2011-09-01

    Wetlands play significant role in maintaining the ecological balance of both biotic and abiotic life in coastal and inland environments. Hence, understanding of their occurrence, spatial extent of change in wetland environment is very important and can be monitored using satellite remote sensing technique. The extraction of wetland features using remote sensing has so far been carried out using visual/ hybrid digital analysis techniques, which is time consuming. To monitor the wetland and their features at National/ State level, there is a need for the development of automated technique for the extraction of wetland features. A knowledge based algorithm has been developed using hierarchical decision tree approach for automated extraction of wetland features such as surface water spread, wet area, turbidity and wet vegetation including aquatic for pre and post monsoon period. The results obtained for Chhattisgarh, India using the automated technique has been found to be satisfactory, when compared with hybrid digital/visual analysis technique.

  14. Gulf Coast Wetlands

    Atmospheric Science Data Center

    2014-05-15

    article title:  Wetlands of the Gulf Coast     ... coastal areas of four states along the Gulf of Mexico: Louisiana, Mississippi, Alabama and part of the Florida panhandle. The images ... web of estuarine channels and extensive coastal wetlands that provide important habitat for fisheries. The city of New Orleans ...

  15. Wetland InSAR

    Microsoft Academic Search

    S. Wdowinski; S. Kim; F. Amelung; T. Dixon

    2006-01-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from

  16. Loss of Wetlands: Subsidence

    NSDL National Science Digital Library

    These demonstrations help to define subsidence and illustrate the resulting effects on wetlands. They will also introduce global warming and sea-level rise as factors in wetland loss. There are suggestions for more complex models to teach subsidence and formation of sinkholes related to the removal of subsurface materials such as gas and oil.

  17. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Fall 2003 Vol. 18, No. 3 Most familiar with the Coastal Primary Sand Dune ProtectionAct in Virginia.You may have even heard of "secondary and recreational attractiveness that is coastal Virginia. Given these valuable natural functions, the Commonwealth

  18. The Virginia Wetlands Report

    E-print Network

    The Virginia Wetlands Report Continued on page 2 Spring 1996 Vol. 11, No. 2The Virginia Wetlands Resources Management Program Grant, administered by Virginia's Department of Environmental Quality, and to vari- ous state agency personnel who interface with the shoreline permit program in Virginia

  19. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Spring 2005 Vol. 20, No. 1- tained a database since 1988 to track cumulative impacts to Virginia's coastal resources authorized and the Virginia Marine Resources Commission. Permit decisions made at the federal level by the USArmy Corps

  20. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Summer 2003 Vol. 18, No. 2 Virginia Horseshoe Crab Management Up date. Tom Barnard and Lyle Varnell Vol.14,No.3 Dragonflies: Hawks Clamworm (Nereis succinea). Rebecca Jo Thomas Birds Vol.V,No.1 VirginiaRail. Vol.V(2) The Living Marsh

  1. The Virginia Wetlands Report

    E-print Network

    VWR -- 1 The Virginia Wetlands Report The Virginia Wetlands Report Fall 2002 Vol. 17, No. 3 Marina The Center for Coastal Resources Management at VIMS, with a NOAAgrant from the Virginia Coastal Program, has- ing ones. The tool is a series of maps of the Virginia coastline shown in seg- ments which are rated

  2. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  3. Sedimentation of Prairie Wetlands

    NSDL National Science Digital Library

    In keeping with its high standards, the Northern Prairie Wildlife Research Center (NPWRC, discussed in the October 15, 1997 Scout Report for Science & Engineering) has released more wetland resources. Sedimentation of Prairie Wetlands by Robert Gleason and Ned Euliss, Jr. was first released in 1998.

  4. Wetlands Fact Sheets

    NSDL National Science Digital Library

    The U.S. Environmental Protection Agency has provided an extensive list of over 40 fact sheets relating to various aspects of wetlands. Most are provided in a low resoluion format for viewing or a high resolution format for printing. A great deal of basic information regarding the definition, values, and functions of wetlands is provided.

  5. USDA PROGRAMS WETLAND RESTORATION

    E-print Network

    Gray, Matthew

    ) Width 35 ­ 180 feet Shallow Water Areas (CP9) 10 acre limit per tract Native grass buffer around WATER CONTROL STRUCTURES TREE PLANTING CRP CONTINUOUS PROGRAM WETLAND/BUFFER PRACTICES Filter strips (CP21) Forested riparian buffer (CP22) Shallow water areas for wildlife (CP9) Wetland restoration (CP23

  6. MITIGATING WETLANDS LOSSES

    EPA Science Inventory

    Under Section 404 of the Clean Water Act, compensatory mitigation of wetlands is required to offset any unavoidable adverse impacts to wetlands that cannot otherwise be minimized. Compensatory mitigation usually is in the form of restoration, enhancement, or creation of new wetl...

  7. Wetlands and Pollution

    NSDL National Science Digital Library

    Ned Rozell

    This forum from the Geophysical Institute at the University of Alaska in Fairbanks discusses the creation of wetlands as a means to help cure village sewage problems. The author believes that constructed wetlands have the potential to capture pollutants from sewage lagoons and keep them from drifting downstream to be ingested by animals and plants.

  8. The value of wetlands in protecting southeast louisiana from hurricane storm surges.

    PubMed

    Barbier, Edward B; Georgiou, Ioannis Y; Enchelmeyer, Brian; Reed, Denise J

    2013-01-01

    The Indian Ocean tsunami in 2004 and Hurricanes Katrina and Rita in 2005 have spurred global interest in the role of coastal wetlands and vegetation in reducing storm surge and flood damages. Evidence that coastal wetlands reduce storm surge and attenuate waves is often cited in support of restoring Gulf Coast wetlands to protect coastal communities and property from hurricane damage. Yet interdisciplinary studies combining hydrodynamic and economic analysis to explore this relationship for temperate marshes in the Gulf are lacking. By combining hydrodynamic analysis of simulated hurricane storm surges and economic valuation of expected property damages, we show that the presence of coastal marshes and their vegetation has a demonstrable effect on reducing storm surge levels, thus generating significant values in terms of protecting property in southeast Louisiana. Simulations for four storms along a sea to land transect show that surge levels decline with wetland continuity and vegetation roughness. Regressions confirm that wetland continuity and vegetation along the transect are effective in reducing storm surge levels. A 0.1 increase in wetland continuity per meter reduces property damages for the average affected area analyzed in southeast Louisiana, which includes New Orleans, by $99-$133, and a 0.001 increase in vegetation roughness decreases damages by $24-$43. These reduced damages are equivalent to saving 3 to 5 and 1 to 2 properties per storm for the average area, respectively. PMID:23536815

  9. Where are the Wetlands?

    NSDL National Science Digital Library

    In this activity students walk around outdoors and observe the wetlands they find. Observations will include types of plants and animals, types of soil, smells, and sounds that may be different from those they have experienced in places they might not consider to be a wetland. In a wooded area students look for signs that water has been there although it may be dry when they are there. They look for water marks on trees, debris and leaves caught in bushes or trees above ground level, leaf litter that is soft due to absorption of water from the ground, or plant leaves covered with a film of mud or silt as they try to identify one or more types of wetland. Students may collect and identify wetland plants and consult topographic maps of the wetland area.

  10. Comparison of Function of Created Wetlands of Two Age Classes in Central Pennsylvania

    NASA Astrophysics Data System (ADS)

    Hoeltje, S. M.; Cole, C. A.

    2009-04-01

    Hydrogeomorphic (HGM) functional assessment models were used to assess whether function in created wetlands of two ages (1 year old and >12 years old) was equivalent to that of natural (reference) mainstem floodplain wetlands. Reference wetlands scored higher than both created age classes for providing energy dissipation and short-term surface water storage. Reference wetlands scored higher in maintaining native plant community and structure than 1-year-old sites, and 12-year-old wetlands scored higher than reference sites for providing vertebrate habitat structure. Analysis of individual model variables showed that reference wetlands had greater vegetative biomass and higher soil organic matter content than both created wetland age classes. Created wetlands were farther from natural wetlands and had smaller mean forest patch sizes within a 1-km-radius circle around the site than did the reference sites, indicating less hydrologic connectivity. Created wetlands also had less microtopographic variation than reference wetlands. The 1-year-old created sites were placed in landscape settings with greater land use diversity and road density than reference sites. The 12-year-old sites had a higher gradient and a higher percentage of their surrounding area in urban land use. These results show that the created wetlands were significantly structurally different (if not functionally so) from reference wetlands even after 12 years. The most profound differences were in hydrology and the characteristics of the surrounding landscape. More attention needs to be focused on placing created wetlands in appropriate settings to encourage proper hydrodynamics, eliminate habitat fragmentation, and minimize the effects of stressors to the site.

  11. Wetland Losses and Human Impacts

    E-print Network

    Gray, Matthew

    --agriculture. It is important to Louisiana, the South and Nation as a whole." 1940s-70 State Wetland Losses 53% in Lower US Most1 Wetland Losses and Human Impacts Matthew J. Gray University of Tennessee Distribution of North American Wetlands Peatlands of Alaska and Canada Playa Lakes MAV Prairie Potholes Coastal Wetlands

  12. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  13. Wetland Wildlife Ecology Spring 2012

    E-print Network

    Watson, Craig A.

    1 WIS 4443C 4 credits Wetland Wildlife Ecology Spring 2012 Course Objectives Lecture and Laboratory to identify representatives of wetland wildlife groups (birds, amphibians, mammals) Course Description, and ecological concepts associated with wetland ecology and the wildlife species that are dependant on wetlands

  14. Creating and managing wetland impoundments to provide habitat for aquatic birds

    USGS Publications Warehouse

    Perry, M.C.; Kangas, P.; Obrecht, H.H., III

    2000-01-01

    Patuxent Research Refuge, located in Central Maryland (USA), has approximately 140 ha of impoundments that were constructed for recreational and wildlife conservation purposes. Impoundments are of three major designs: dammed ravines, excavated basins, and diked ponds. Over 50 species of wetland plants were transplanted to impoundments of Patuxent from many parts of the United States between 1945 and 1963 to determine the species best suited for establishment in tannin-stained infertile waters. The wood duck was the only waterfowl species commonly observed on the Refuge when the area was established, but Canada geese, mallards, and black ducks, were introduced and numerous techniques developed to improve nesting and brood habitat. Twenty-six waterfowl species and 80 species of other water birds have used the impoundments for resting, feeding, or nesting. Management is now conducted to optimize avian biodiversity. Management techniques include drawdowns of water every 3-5 years in most impoundments to provide maximum plant and invertebrate food resources for wildlife. Research on the impounded wetlands at Patuxent has included evaluation of vegetation in regard to water level management, improving nest box design to reduce use of boxes by starlings, imprinting of waterfowl to elevated nesting structures to reduce predation on nests, and drawdown techniques to increase macroinvertebrates. Data on waterfowl abundance are evaluated relative to management activities and a preliminary computer model for management of the impoundments has been developed. Past, present, and future management and research projects are reviewed in this paper.

  15. Pipeline corridors through wetlands - impacts on plant communities: Cassadaga Creek Tributary Crossing, Gerry Township, Chautauqua County, New York. Topical report, August 1992--November 1993

    SciTech Connect

    Shem, L.M.; Van Dyke, G.D.; Zimmerman, R.E. [Argonne National Lab., IL (United States)

    1994-12-01

    The goal of the Gas Research Institute Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they traverse. To accomplish this goal, 12 existing wetland crossings were surveyed. These sites varied in elapsed time since pipeline construction, wetland type, pipeline installation techniques, and right-of-way (ROW) management practices. This report presents the results of a survey conducted over the period of August 3-4, 1992, at the Cassadaga wetlands crossing in Gerry Township, Chautauqua County, New York. The pipeline at this site was installed during February and March 1981. After completion of pipeline installation, the ROW was fertilized, mulched, and seeded with annual ryegrass. Two adjacent sites were surveyed in this study: a forested wetland and an emergent wetlands Eleven years after pipeline installation, the ROW at both sites supported diverse vegetative communities. Although devoid of large woody species, the ROW within the forested wetland had a dense vegetative cover. The ROW within the emergent wetland had a slightly less dense and more diverse vegetative community compared with that in the adjacent natural areas (NAs). The ROW within the emergent wetland also had a large number of introduced species that were not present in the adjacent NAs. The ROW, with its emergent marsh plant community, provided habitat diversity within the forested wetlands Because the ROW contained species not found within the adjacent NAs, overall species diversity was increased.

  16. Mine-drainage treatment wetland as habitat for herptofaunal wildlife

    NASA Astrophysics Data System (ADS)

    Lacki, Michael J.; Hummer, Joseph W.; Webster, Harold J.

    1992-07-01

    Land reclamation techniques that incorporate habitat features for herptofaunal wildlife have received little attention. We assessed the suitability of a wetland, constructed for the treatment of mine-water drainage, for supporting herptofaunal wildlife from 1988 through 1990 using diurnal and nocturnal surveys. Natural wetlands within the surrounding watershed were also monitored for comparison. The treatment wetland supported the greatest abundance and species richness of herptofauna among the sites surveyed. Abundance was a function of the frog density, particularly green frogs ( Rana clamitans) and pickerel frogs ( R. palustris), while species richness was due to the number of snake species found. The rich mix of snake species present at the treatment wetland was believed due to a combination of an abundant frog prey base and an amply supply of den sites in rock debris left behind from earlier surface-mining activities. Nocturnal surveys of breeding male frogs demonstrated highest breeding activity at the treatment wetland, particularly for spring peepers ( Hyla crucifer). Whole-body assays of green frog and bullfrog ( R. catesbeiana) tissues showed no differences among sites in uptake of iron, aluminum, and zinc; managanese levels in samples from the treatment wetland were significantly lower than those from natural wetlands. These results suggest that wetlands established for water quality improvement can provide habitat for reptiles and amphibians, with the species composition dependent on the construction design, the proximity to source populations, and the degree of acidity and heavy-metal concentrations in drainage waters.

  17. Pipeline corridors through wetlands - summary of seventeen plant-community studies at ten wetland crossings. Topical report, February 1990--August 1994

    SciTech Connect

    Van Dyke, G.D. [Argonne National Lab., IL (United States)]|[Trinity Christian College, Palos Heights, IL (United States); Shem, L.M.; Wilkey, P.L.; Zimmerman, R.E.; Alsum, S.K. [Argonne National Lab., IL (United States)

    1994-12-01

    As part of the Gas Research Institute Wetland Corridors Program, Argonne National Laboratory conducted field studies on 10 wetland crossings located in six states to document impacts of natural gas pipeline rights-of-way (ROWS) on 15 wetland plant communities. This study is unique in the number, range, ages, and variety of wetland crossings surveyed and compared. Vegetation data and recorded observations were analyzed to reveal patterns associated with age, installation technology, maintenance practices, and wetland type. This report summarizes the findings of this study. Results revealed that ROWs of pipelines installed according to recent wetland regulations rapidly revegetated with dense and diverse plant communities. The ROW plant communities were similar to those in the adjacent natural areas in species richness, wetland indicator values, and percentages of native species. The ROW plant communities developed from naturally available propagules without fertilization, liming, or artificial seeding. ROWs contributed to increased habitat and plant species diversity in the wetland. There was little evidence that they degrade the wetland by providing avenues for the spread of invasive and normative plant species. Most impacts are temporal in nature, decreasing rapidly during the first several years and more slowly thereafter to the extent permitted by maintenance and other ROW activities.

  18. A multivariate assessment of changes in wetland habitat for waterbirds at Moosehorn National Wildlife Refuge, Maine, USA

    USGS Publications Warehouse

    Hierl, L.A.; Loftin, C.S.; Longcore, J.R.; McAuley, D.G.; Urban, D.L.

    2007-01-01

    We assessed changes in vegetative structure of 49 impoundments at Moosehorn National Wildlife Refuge (MNWR), Maine, USA, between the periods 1984-1985 to 2002 with a multivariate, adaptive approach that may be useful in a variety of wetland and other habitat management situations. We used Mahalanobis Distance (MD) analysis to classify the refuge?s wetlands as poor or good waterbird habitat based on five variables: percent emergent vegetation, percent shrub, percent open water, relative richness of vegetative types, and an interspersion juxtaposition index that measures adjacency of vegetation patches. Mahalanobis Distance is a multivariate statistic that examines whether a particular data point is an outlier or a member of a data cluster while accounting for correlations among inputs. For each wetland, we used MD analysis to quantify a distance from a reference condition defined a priori by habitat conditions measured in MNWR wetlands used by waterbirds. Twenty-five wetlands declined in quality between the two periods, whereas 23 wetlands improved. We identified specific wetland characteristics that may be modified to improve habitat conditions for waterbirds. The MD analysis seems ideal for instituting an adaptive wetland management approach because metrics can be easily added or removed, ranges of target habitat conditions can be defined by field-collected data, and the analysis can identify priorities for single or multiple management objectives.

  19. Assessing the diversity and composition of bacterial communities across a wetland, transition, upland gradient in Macon County Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetlands provide essential functions to the ecosphere that range from water filtration to flood control. Current methods of evaluating the quality of wetlands include assessing vegetation, soil type, and period of inundation. With recent advances in molecular and bioinformatic techniques, measuremen...

  20. Impacts of Delayed Drawdown on Aquatic Biota and Water Quality in Seasonally Managed Wetlands of the Grasslands Ecological Area

    E-print Network

    Quinn, Nigel W.T.

    2009-01-01

    vegetation and bird waste present in these wetlands. Waterbird disturbance before and during avian survey data collection limited wetlandwetlands were drained by removing weir boards individually to maximize forage for water birds.

  1. Channel, Floodplain, And Wetland Responses To Floods And Overbank Sedimentation, 1846-2006, Halfway Creek Marsh, Upper Mississippi Valley, Wisconsin

    EPA Science Inventory

    Conversion of upland forest and prairie vegetation to agricultural land uses, following Euro-American settlement in the Upper Mississippi River System, led to accelerated runoff and soil erosion that subsequently transformed channels, floodplains, and wetlands on bottomlands. Ha...

  2. Integrated wetland management: an analysis with group model building based on system dynamics model.

    PubMed

    Chen, Hsin; Chang, Yang-Chi; Chen, Kung-Chen

    2014-12-15

    The wetland system possesses diverse functions such as preserving water sources, mediating flooding, providing habitats for wildlife and stabilizing coastlines. Nonetheless, rapid economic growth and the increasing population have significantly deteriorated the wetland environment. To secure the sustainability of the wetland, it is essential to introduce integrated and systematic management. This paper examines the resource management of the Jiading Wetland by applying group model building (GMB) and system dynamics (SD). We systematically identify local stakeholders' mental model regarding the impact brought by the yacht industry, and further establish a SD model to simulate the dynamic wetland environment. The GMB process improves the stakeholders' understanding about the interaction between the wetland environment and management policies. Differences between the stakeholders' perceptions and the behaviors shown by the SD model also suggest that our analysis would facilitate the stakeholders to broaden their horizons and achieve consensus on the wetland resource management. PMID:25194518

  3. Strategies for assessing the cumulative effects of wetland alteration on water quality

    NASA Astrophysics Data System (ADS)

    Brinson, Mark M.

    1988-09-01

    Assessment of cumulative impacts on wetlands can benefit by recognizing three fundamental wetland categories: basin, riverine, and fringe. The geomorphological settings of these categories have relevance for water quality. Basin, or depressional, wetlands are located in headwater areas, and capture runoff from small areas. Thus, they are normally sources of water with low elemental concentration. Although basin wetlands normally possess a high capacity for assimilating nutrients, there may be little opportunity for this to happen if the catchment area is small and little water flows through them. Riverine wetlands, in contrast, interface extensively with uplands. It has been demonstrated that both the capacity and the opportunity for altering water quality are high in riverine wetlands. Fringe wetlands are very small in comparison with the large bodies of water that flush them. Biogeochemical influences tend to be local, rather than having a measurable effect on the larger body of water. Consequently, the function of these wetlands for critical habitat may warrant protection from high nutrient levels and toxins, rather than expecting them to assume an assimilatory role. The relative proportion of these wetland types within a watershed, and their status relative to past impacts can be used to develop strategies for wetland protection. Past impacts on wetlands, however, are not likely to be clearly revealed in water quality records from monitoring studies, either because records are too short or because too many variables other than wetland impacts affect water quality. It is suggested that hydrologic records be used to reconstruct historical hydroperiods in wetlands for comparison with current, altered conditions. Changes in hydroperiod imply changes in wetland function, especially for biogeochemical processes in sediments. Hydroperiod is potentially a more sensitive index of wetland function than surface areas obtained from aerial photographs. Identification of forested wetlands through photointerpretation relies on vegetation that may remain intact for decades after drainage. Finally, the depositional environment of wetlands is a landscape characteristic that has not been carefully evaluated nor fully appreciated. Impacts that reverse depositional tendencies also may accelerate rates of change, causing wetlands to be large net exporters rather than modest net importers. Increases in rates as well as direction can cause stocks of materials, accumulated over centuries in wetland sediments, to be lost within decades, resulting in nutrient loading to downstream aquatic ecosystems.

  4. Shifting mosaics: vegetation of Suisun Marsh

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wetland vegetation varies considerably along the estuarine continuum from San Francisco Bay to the Delta. The estuarine flora of Suisun Marsh is distinctive and supports a number of rare and endangered plant species, that are threatened by alien plant invasions. Conservation and management of Suisun...

  5. Effectiveness of mitigation measures with constructed forested wetlands in Maryland

    USGS Publications Warehouse

    Perry, M.C.

    1997-01-01

    Intensive research on six constructed forested wetlands in Central Maryland was conducted in 1993-1996 to determine success of these habitats as functional forested wetlands for wildlife. Areas studied ranged in size from 2 to 35 acres and were constructed by private companies under contract with three mitigation agencies. Adjacent natural forested wetlands were used as reference sites where similar data were collected. Based on data from the first four years of this study it appears that it will take 35-50 years before these areas have forested wetland vegetation and wildlife similar to that found on mature forested wetlands. This long-time period is based on the high mortality and slow growth of nursery-stock trees and shrubs transplanted on the areas. Mortality and slow growth resulted mostly from excessive surface water on the sites. The level of ground water did not appear to be a factor in regard to transplant mortality. Green ash was the woody transplant species that had the least mortality. Sampling of vegetative ground cover with one-meter square quadrats showed the predominance of grasses and herbs. [abridged abstract

  6. Morphological Impacts of Sea Level Rise Driven Wetland Loss on Two Florida Inlets

    NASA Astrophysics Data System (ADS)

    Lovering, J. L.; Adams, P. N.; Kline, S. W.

    2012-12-01

    Shoreline response to sea level rise has been extensively studied, but relatively little work has examined potential changes to tidal inlet systems, of which there are more than 70 on the U. S. Atlantic coast. Sea level rise can influence the hydrodynamics of an inlet system by flooding adjacent low-lying regions and changing distribution of wetland vegetation in the back barrier basin. If sea level rise causes wetland vegetation loss, a basin's tidal prism can increase by: (1) conversion of previously vegetated marsh land to open water, and/or (2) tidal wave attenuation reduction in the basin, which increases efficiency of tidal exchange. In this study, we used a simple conceptual model paired with empirical relationships to investigate how two Florida inlets, Saint Augustine Inlet and Ponce de Leon Inlet, with contrasting wetland configurations, are expected to respond to wetland loss. While both inlets have similar areas of vegetated wetland, the distributions of vegetation throughout the basins differ. For both inlets, the model indicates that a loss in wetland area leads to an increase in tidal prism, cross-sectional area, and ebb shoal volume. At the Saint Augustine Inlet basin, the wetland vegetation is mostly fringing, creating a main basin channel with little tidal wave attenuation. The Ponce de Leon Inlet site has a more complex tidal channel network in the back basin, which is caused the presence of numerous marsh islands. The tortuous path that flood tidal water must travel during a tidal exchange causes higher spatial rates of tidal wave attenuation. Wetland loss at the Ponce de Leon Inlet site should increase the tidal prism of the system through both aforementioned mechanisms, whereas wetland loss at the Saint Augustine Inlet site should change the tidal prism only by increasing basin area. We conclude that tidal inlets with greater initial tidal wave attenuation have the potential to experience greater increases in tidal prism due to wetland loss. When considering the impact of wetland area loss on the coastal sediment budget, we calculate that, for the sites examined in this study, 1% of vegetated area loss can increase the equilibrium volume of the associated ebb shoal complex by an amount equivalent to 1-2 years of net longshore sediment transport.

  7. Management practices and controls on methane emissions from sub-tropical wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, Nicholas; Casa-Nova Gomez, Nuri; Bernacchi, Carl

    2015-04-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on any combination of climate conditions, natural and anthropogenic disturbances, or ecosystem perturbations. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are the main source for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. CH4 is one of the most damaging green house gases with current emission estimates ranging from 55 to 231 Tg CH4 yr-1. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04"N, 81o21'8.56"W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. Grazing alone, does not appear to alter net ecosystem CH4 emissions from subtropical semi-native and improved wetlands. Pasture type is a stronger indicator of wetland methane potential. Wetlands embedded in improved pastures exhibited periods of increased methane emission that was particularly noticeable during the wet season (July- Nov). These results help quantify GHG emissions from subtropical wetlands under different management practices while demonstrating the differences in these fluxes based on the surrounding ecosystem.

  8. Remote sensing application for identifying wetland sites on Cyprus: problems and prospects

    NASA Astrophysics Data System (ADS)

    Markogianni, Vassilik; Tzirkalli, Elli; Gücel, Salih; Dimitriou, Elias; Zogaris, Stamatis

    2014-08-01

    Wetland features in seasonally semi-arid islands pose particular difficulties in identification, inventory and conservation assessment. Our survey presents an application of utilizing images of a newly launched sensor, Landsat 8, to rapidly identify inland water bodies and produce a screening-level island-wide inventory of wetlands for the first time in Cyprus. The method treats all lentic water bodies (artificial and natural) and areas holding semi-aquatic vegetation as wetland sites. The results show that 179 sites are delineated by the remote sensing application and when this is supplemented by expert-guided identification and ground surveys during favourable wet-season conditions the total number of inventoried wetland sites is 315. The number of wetland sites is surprisingly large since it does not include micro-wetlands (under 2000 m2 or 0.2 ha) or widespread narrow lotic and riparian stream reaches. In Cyprus, a number of different wetland types occur and often in temporary or ephemerally flooded conditions and they are usually of very small areal extent. Many wetlands are artificial or semi-artificial water bodies, and numerous natural small wetland features are often degraded by anthropogenic changes or exist as remnant patches and are therefore heavily modified compared to their original natural state. The study proves that there is an urgent need for integrated and multidisciplinary study and monitoring of wetlands cover due to either climate change effects and/or anthropogenic interventions. Small wetlands are particularly vulnerable while many artificial wetlands are not managed for biodiversity values. The remote sensing and GIS application are efficient tools for this initial screening-level inventory. The need for baseline inventory information collection in support of wetland conservation is multi-scalar and requires an adaptive protocol to guide effective conservation planning.

  9. Propagation of Human Enteropathogens in Constructed Horizontal Wetlands Used for Tertiary Wastewater Treatment ?

    PubMed Central

    Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.

    2009-01-01

    Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, ?84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland. PMID:19411413

  10. del Moral--Primary Successional Wetland--1 PREDICTABILITY OF PRIMARY SUCCESSIONAL WETLANDS ON PUMICE,

    E-print Network

    del Moral, Roger

    ON PUMICE, MOUNT ST. HELENS ROGER DEL MORAL Department of Botany, Box 355325, University of Washington. (1999) studied wetlands established after the 1980 eruption of Mount St. Helens on the Pumice Plain on pumice. Earlier studies on Mount St. Helens suggested that homogeneity increases as species expand from

  11. Model estimation of land-use effects on water levels of northern Prairie wetlands

    USGS Publications Warehouse

    Voldseth, R.A.; Johnson, W.C.; Gilmanov, T.; Guntenspergen, G.R.; Millett, B.V.

    2007-01-01

    Wetlands of the Prairie Pothole Region exist in a matrix of grassland dominated by intensive pastoral and cultivation agriculture. Recent conservation management has emphasized the conversion of cultivated farmland and degraded pastures to intact grassland to improve upland nesting habitat. The consequences of changes in land-use cover that alter watershed processes have not been evaluated relative to their effect on the water budgets and vegetation dynamics of associated wetlands. We simulated the effect of upland agricultural practices on the water budget and vegetation of a semipermanent prairie wetland by modifying a previously published mathematical model (WETSIM). Watershed cover/land-use practices were categorized as unmanaged grassland (native grass, smooth brome), managed grassland (moderately heavily grazed, prescribed burned), cultivated crops (row crop, small grain), and alfalfa hayland. Model simulations showed that differing rates of evapotranspiration and runoff associated with different upland plant-cover categories in the surrounding catchment produced differences in wetland water budgets and linked ecological dynamics. Wetland water levels were highest and vegetation the most dynamic under the managed-grassland simulations, while water levels were the lowest and vegetation the least dynamic under the unmanaged-grassland simulations. The modeling results suggest that unmanaged grassland, often planted for waterfowl nesting, may produce the least favorable wetland conditions for birds, especially in drier regions of the Prairie Pothole Region. These results stand as hypotheses that urgently need to be verified with empirical data.

  12. The ALOS Kyoto &Carbon Initiative Wetlands Products: New Datasets for Wetlands Mapping and Monitoring

    NASA Astrophysics Data System (ADS)

    Hess, L. L.; McDonald, K.; Rosenqvist, A.; Shimada, M.

    2006-12-01

    The successsful launch on January 24, 2006 of the Advanced Land Observing Satellite (ALOS) by the Japan Aerospace Exploration Agency (JAXA) initiated the acquisition of synthetic aperture radar (SAR) datasets dedicated to monitoring the world's major wetland regions. The Japanese Earth Resources Satellite (JERS-1, operational from 1992 to 1998, demonstrated the unique capabilities of L-band SAR for mapping wetland hydrology. While inundation and freeze-thaw mapping were successfully carried out over the Amazon and Congo basins and the boreal forest region through the Global Rainforest and Boreal Forest Mapping Projects using 1990s-era JERS-1 mosaics, the limited temporal coverage of these datasets did not permit full characterization of seasonal inundation or freeze-thaw dynamics. The ALOS Kyoto & Carbon Initiative of JAXA's Earth Observation Research and Applications Center has designed an acquisition plan for ALOS Phased Array L-band SAR (PALSAR) datasets specifically aimed at seasonal mapping of wetland hydrology. Observations with the ScanSAR mode (~150 m resolution, 350 km swath width) are targeted to the major wetland regions of the globe at a 45-day repeat interval. Planned datasets to be derived from PALSAR include wetland extent, vegetation structure, and seasonal inundation or freeze-thaw extent for the tropical and boreal regions, and mapping and assessment of key wetland functional types such as mangroves, tropical peatlands, paddy rice, and lakes. These products will provide the basis for science applications such as trace gas and hydrologic modeling, as well as for habitat mapping for biodiversity assessment and conservation planning.

  13. Evaluation of nutrient retention in four restored Danish riparian wetlands

    Microsoft Academic Search

    Carl Chr. Hoffmann; Brian Kronvang; Joachim Audet

    2011-01-01

    During the last 15–20 years, re-establishment of freshwater riparian wetlands and remeandering of streams and rivers have\\u000a been used as a tool to mitigate nutrient load in downstream recipients in Denmark. The results obtained on monitoring four\\u000a different streams and wetland restoration projects are compared with respect to hydrology, i.e. flow pattern and discharge\\u000a of ground or surface water, retention of

  14. Floodwaters Renew Zambia's Kafue Wetland

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Not all floods are unwanted. Heavy rainfall in southern Africa between December 2003 and April 2004 provided central Zambia with floodwaters needed to support the diverse uses of water within the Kafue Flats area. The Kafue Flats are home to about one million people and provide a rich inland fishery, habitat for an array of unique wildlife, and the means for hydroelectricity production. The Flats falls between two dams: Upstream to the west (not visible here) is the Izhi-tezhi, and downstream (middle right of the images) is the Kafue Gorge dam. Since the construction of these dams, the flooded area has been reduced and the timing and intensity of the inundation has changed. During June 2004 an agreement was made with the hydroelectricity company to restore water releases from the dams according to a more natural flooding regime. These images from NASA's Multi-angle Imaging SpectroRadiometer (MISR) illustrate surface changes to the wetlands and other surfaces in central Zambia resulting from an unusually lengthy wet season. The Kafue Flats appear relatively dry on July 19, 2003 (upper images), with the Kafue River visible as a slender dark line that snakes from east to west on its way to join the Zambezi (visible in the lower right-hand corner). On July 21, 2004 (lower images), well into the dry season, much of the 6,500-square kilometer area of the Kafue Flats remains inundated. To the east of the Kafue Flats is Lusaka, the Zambian capital, visible as a pale area in the middle right of the picture, north of the river. In the upper portions of these images is the prominent roundish shape of the Lukanga Swamp, another important wetland.

    The images along the left are natural-color views from MISR's nadir camera, and the images along the right are angular composites in which red band data from MISR's 46o forward, nadir, and 46o backward viewing cameras is displayed as red, green and blue, respectively. In order to preserve brightness variations among the various cameras, the data from each camera were processed identically. Here, color changes indicate surface texture, and are influenced by terrain, vegetation structure, soil type and soil moisture content. Wet surfaces or areas with standing water appear blue in this display because sun glitter makes smooth, wet surfaces look brighter at the backward camera's view angle. Mostly the landscape appears somewhat purple, indicating that most of the surfaces scatter sunlight in both backward and forward directions. Areas that appear with a slight greenish hue can indicate sparce vegetation, since the nadir camera is more likely to sight the gaps between the trees or shrubs, and since vegetation is darker (in the red band) than the underlying soil surface. Areas which preferentially exhibit a red or pink hue correspond with wetland vegetation. The plateau of the Kafue National Park, to the west of Lukanga Swamp, appears brighter in 2004 compared with 2003, which indicates weaker absorption at the red band. Overall, the 2004 image exhibits a subtle blue hue (preference for forward-scattering) compared with 2003, which indicates overall surface changes that may be a result of enhanced surface wetness.

    The Multiangle Imaging SpectroRadiometer observes the daylit Earth continuously and every 9 days views the entire globe between 82o north and 82o south latitude. These data products were generated from a portion of the imagery acquired during Terra orbits 19072 and 24421. The panels cover an area of 235 kilometers x 239 kilometers, and utilize data from blocks 100 to 103 within World Reference System-2 path 172.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  15. The Value of Wetlands

    NSDL National Science Digital Library

    2007-08-09

    This video segment adapted from Texas Parks and Wildlife Department explores the role of the wetlands in our environment, including providing habitats for wildlife, acting as natural water filters, and playing a part in the greater water cycle.

  16. Environmental Protection Agency: Wetlands

    NSDL National Science Digital Library

    The Environmental Protection Agency (EPA) has created this site to inform the general public about their role in wetland preservation and restoration. At the top of their page, visitors can read the "What they are" area to get some basic definitions, look over some fact sheets, and learn about the recent history of wetlands in the United States. Also on the homepage are sections such as "Why Protect Wetlands?", "How are Wetlands Protected?", and "What You Can Do To Protect our Vital Resource". These sections are meant for general audiences, and they might be used in classroom settings as a way to illuminate the role of the EPA and some of the broader concerns surrounding different natural environments. The right-hand side of the homepage features "In the News" items about recent regulatory changes, interagency agreements, and public hearings and comment periods. Finally, on the left-hand side of the page contains thematic sections like "Monitoring and Assessment", "Restoration", and "Education".

  17. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry

    USGS Publications Warehouse

    Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.

    2008-01-01

    Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.

  18. Transfer of pesticides and copper in a stormwater wetland receiving contaminated runoff from a vineyard catchment

    NASA Astrophysics Data System (ADS)

    Maillard, E.; Babcsanyi, I.; Payraudeau, S.; Imfeld, G.

    2012-04-01

    Wetlands can collect contaminated runoff from urban and agricultural catchments, and have intrinsic physical, chemical and biological processes useful for mitigating pesticides. However, knowledge about the ability of wetlands to mitigate pesticide mixtures in runoff is currently very limited. Our results show that stormwater wetlands that primarily serve for flood protection can also be effective tools for reducing concentrations and loads of runoff-related pesticides. Concentrations and loads of 20 pesticides and degradation products, as well as copper were continuously recorded during the period of pesticide application (April to September 2009, 2010 and 2011) at the inlet, the outlet and in sediments of a stormwater wetland that collects runoff from a vineyard catchment. Removal rates of dissolved loads ranged from 39% (simazine) to 100% (cymoxanil, gluphosinate, kresoxim methyl and terbuthylazine). Dimethomorph, diuron, glyphosate and metalaxyl were more efficiently removed in spring than in summer. The calculation of sedimentation rates from discharge measurements and total suspended solids (TSS) values revealed that the wetland retained more than 77% of the input mass of suspended solids, underscoring the capability of the wetland to trap pesticide-laden particles. Only flufenoxuron was frequently detected in the wetland sediments. An inter-annual comparison showed that changes in the removal of aminomethylphosphonic acid (AMPA, a degradation product of glyphosate), isoxaben or simazine can be attributed mainly to the larger vegetation cover in 2010 compared to 2009. More than 80% of the copper load entering the wetland was retained in the sediments and the plants. Our results demonstrate that stormwater wetlands can efficiently remove pesticide mixtures and copper in agricultural runoff during critical periods of pesticide application. Nevertheless, fluctuations in the runoff regime, as well as the vegetation and hydrochemical characteristics affect the removal rate of individual pesticides and copper in stormwater wetlands. Therefore the use of stormwater wetlands as a management practice targeting pesticide and copper mitigation should not be conceived as a unique solution to treat pesticide runoff.

  19. Wetland Filter Model

    NSDL National Science Digital Library

    Twin Cities Public Television, Inc.

    2007-01-01

    In this quick activity (located on page 2 of the PDF), learners will model how wetlands act as natural filters for the environment. Learners prepare a mixture of water, soil, gravel, and leaves and then pour it down a piece of artificial grass, observing how much gets trapped in the fake grass and comparing water at the bottom with the initial “polluted” sample. Relates to the linked video, DragonflyTV GPS: Wetlands.

  20. Coastal wetlands of Chesapeake Bay

    USGS Publications Warehouse

    Baldwin, Andrew H.; Kangas, Patrick J.; Megonigal, J. Patrick; Perry, Matthew C.; Whigham, Dennis F.; Batzer, Darold P., (Edited By)

    2012-01-01

    Wetlands are prominent landscapes throughout North America. The general characteristics of wetlands are controversial, thus there has not been a systematic assessment of different types of wetlands in different parts of North America, or a compendium of the threats to their conservation. Wetland Habitats of North America adopts a geographic and habitat approach, in which experts familiar with wetlands from across North America provide analyses and syntheses of their particular region of study. Addressing a broad audience of students, scientists, engineers, environmental managers, and policy makers, this book reviews recent, scientifically rigorous literature directly relevant to understanding, managing, protecting, and restoring wetland ecosystems of North America.

  1. Living in Harmony with Wetlands

    NSDL National Science Digital Library

    Natural Resources Conservation Service / Attn: Conservation Communication Staff

    This Natural Resource Conservation Service (NRCS) site provides basic information on wetland areas and is written so that adults and children may use the site to learn more about these areas. These summaries include information on where wetlands are located, how a wetland is defined, and what kinds of animals and plants are found in wetlands. Additionally, information is provided on common agricultural practices and crops found in wetland areas. This site is a good source for a quick tour through wetlands and what they can contribute to an ecosystem.

  2. Wetland Loss: Digging of Canals

    NSDL National Science Digital Library

    This activity has students build a model canal and perform experiments with it to illustrate the destruction of wetlands, resulting from the digging of canals for oil and gas exploration in the coastal wetlands and cypress logging in the swamps. Older students will examine topographic maps of the area in which they live to identify natural and constructed canals in the wetlands, and find older maps to compare the area of wetlands before and after major canals were built. Students can also research the relationship between channel building, subsidence and salt-water intrusion, and wetland loss in both fresh and salt-water wetlands across the United States.

  3. Wetland selection by breeding and foraging black terns in the Prairie Pothole Region of the United States

    USGS Publications Warehouse

    Steen, Valerie A.; Powell, Abby N.

    2012-01-01

    We examined wetland selection by the Black Tern (Chlidonias niger), a species that breeds primarily in the prairie pothole region, has experienced population declines, and is difficult to manage because of low site fidelity. To characterize its selection of wetlands in this region, we surveyed 589 wetlands throughout North and South Dakota. We documented breeding at 5% and foraging at 17% of wetlands. We created predictive habitat models with a machine-learning algorithm, Random Forests, to explore the relative role of local wetland characteristics and those of the surrounding landscape and to evaluate which characteristics were important to predicting breeding versus foraging. We also examined area-dependent wetland selection while addressing the passive sampling bias by replacing occurrence of terns in the models with an index of density. Local wetland variables were more important than landscape variables in predictions of occurrence of breeding and foraging. Wetland size was more important to prediction of foraging than of breeding locations, while floating matted vegetation was more important to prediction of breeding than of foraging locations. The amount of seasonal wetland in the landscape was the only landscape variable important to prediction of both foraging and breeding. Models based on a density index indicated that wetland selection by foraging terns may be more area dependent than that by breeding terns. Our study provides some of the first evidence for differential breeding and foraging wetland selection by Black Terns and for a more limited role of landscape effects and area sensitivity than has been previously shown.

  4. Microtopography enhances nitrogen cycling and removal in created mitigation wetlands

    USGS Publications Warehouse

    Wolf, K.L.; Ahn, C.; Noe, G.B.

    2011-01-01

    Natural wetlands often have a heterogeneous soil surface topography, or microtopography (MT), that creates microsites of variable hydrology, vegetation, and soil biogeochemistry. Created mitigation wetlands are designed to mimic natural wetlands in structure and function, and recent mitigation projects have incorporated MT as one way to attain this goal. Microtopography may influence nitrogen (N) cycling in wetlands by providing adjacent areas of aerobic and anaerobic conditions and by increasing carbon storage, which together facilitate N cycling and removal. This study investigated three created wetlands in the Virginia Piedmont that incorporated disking-induced MT during construction. One site had paired disked and undisked plots, allowing an evaluation of the effects of this design feature on N flux rates. Microtopography was measured using conventional survey equipment along a 1-m circular transect and was described using two indices: tortuosity (T), describing soil surface roughness and relief, and limiting elevation difference (LD), describing soil surface relief. Ammonification, nitrification, and net N mineralization were determined with in situ incubation of modified ion-exchange resin cores and denitrification potential was determined using denitrification enzyme assay (DEA). Results demonstrated that disked plots had significantly greater LD than undisked plots one year after construction. Autogenic sources of MT (e.g. tussock-forming vegetation) in concert with variable hydrology and sedimentation maintained and in some cases enhanced MT in study wetlands. Tortuosity and LD values remained the same in one wetland when compared over a two-year period, suggesting a dynamic equilibrium of MT-forming and -eroding processes at play. Microtopography values also increased when comparing the original induced MT of a one-year old wetland with MT of older created wetlands (five and eight years old) with disking-induced MT, indicating that MT can increase by natural processes over time. When examined along a hydrologic gradient, LD increased with proximity to an overflow point as a result of differential sediment deposition and erosion during flood events. Nitrification increased with T and denitrification potential increased with LD, indicating that microtopographic heterogeneity enhances coupled N fluxes. The resulting N flux patterns may be explained by the increase in oxygen availability elicited by greater T (enhancing nitrification) and by the adjacent zones of aerobic and anaerobic conditions elicited by greater LD (enhancing coupled nitrification and denitrification potential). Findings of this study support the incorporation of MT into the design and regulatory evaluation of created wetlands in order to enhance N cycling and removal. ?? 2011.

  5. Remote sensing of aquatic vegetation: theory and applications

    Microsoft Academic Search

    Thiago S. F. Silva; Maycira P. F. Costa; John M. Melack; Evlyn M. L. M. Novo

    2008-01-01

    Aquatic vegetation is an important component of wetland and coastal ecosystems, playing a key role in the ecological functions\\u000a of these environments. Surveys of macrophyte communities are commonly hindered by logistic problems, and remote sensing represents\\u000a a powerful alternative, allowing comprehensive assessment and monitoring. Also, many vegetation characteristics can be estimated\\u000a from reflectance measurements, such as species composition, vegetation structure,

  6. Impact of municipal wastewater effluent on seed bank response and soils excavated from a wetland impoundment

    USGS Publications Warehouse

    Finocchiaro, R.G.; Kremer, R.J.; Fredrickson, L.H.

    2009-01-01

    Intensive management of wetlands to improve wildlife habitat typically includes the manipulation of water depth, duration, and timing to promote desired vegetation communities. Increased societal, industrial, and agricultural demands for water may encourage the use of alternative sources such as wastewater effluents in managed wetlands. However, water quality is commonly overlooked as an influence on wetland soil seed banks and soils. In four separate greenhouse trials conducted over a 2-yr period, we examined the effects of municipal wastewater effluent (WWE) on vegetation of wetland seed banks and soils excavated from a wildlife management area in Missouri, USA. We used microcosms filled with one of two soil materials and irrigated with WWE, Missouri River water, or deionized water to simulate moist-soil conditions. Vegetation that germinated from the soil seed bank was allowed to grow in microcosms for approximately 100 d. Vegetative taxa richness, plant density, and biomass were significantly reduced in WWE-irrigated soil materials compared with other water sources. Salinity and sodicity rapidly increased in WWE-irrigated microcosms and probably was responsible for inhibiting germination or interfering with seedling development. Our results indicate that irrigation with WWE promoted saline-sodic soil conditions, which alters the vegetation community by inhibiting germination or seedling development. ?? 2009, The Society of Wetland Scientists.

  7. Association between wetland disturbance and biological attributes in floodplain wetlands

    USGS Publications Warehouse

    Chipps, S.R.; Hubbard, D.E.; Werlin, K.B.; Haugerud, N.J.; Powell, K.A.; Thompson, J.; Johnson, T.

    2006-01-01

    We quantified the influence of agricultural activities on environmental and biological conditions of floodplain wetlands in the upper Missouri River basin. Seasonally-flooded wetlands were characterized as low impact (non-disturbed) or high impact (disturbed) based on local land use. Biological data collected from these wetlands were used to develop a wetland condition index (WCI). Fourteen additional wetlands were sampled to evaluate the general condition of seasonally-flooded floodplain wetlands. Structural and functional attributes of macrophyte, algae, and macroinvertebrate communities were tested as candidate metrics for assessing biotic responses. The WCI we developed used six biological metrics to discriminate between disturbed and non-disturbed wetlands: 1) biomass of Culicidae larvae, 2) abundance of Chironomidae larvae, 3) macroinvertebrate diversity, 4) total number of plant species, 5) the proportion of exotic plant species, and 6) total number of sensitive diatom species. Disturbed wetlands had less taxa richness and species diversity and more exotic and nuisance (e.g., mosquitoes) species. Environmental differences between low and high impact wetlands included measures of total potassium, total phosphorus, total nitrogen, alkalinity, conductance, and sediment phosphorus concentration. Canonical analyses showed that WCI scores were weakly correlated (P = 0.057) with environmental variables in randomly selected wetlands. In addition, mean WCI score for random wetlands was higher than that for high impact wetlands, implying that floodplain wetlands were less impacted by the types of agricultural activities affecting high impact sites. Inter-year sampling of some wetlands revealed that WCI metrics were correlated in 2000 and 2001, implying that biological metrics provided useful indicators of disturbance in floodplain wetlands. ?? 2006, The Society of Wetland Scientists.

  8. Correlation between aircraft MSS and lidar remotely sensed data on a forested wetland

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Inland wetland in a portion of the Savannah River swamp forest were mapped with an overall accuracy of 88.5 percent on April 26,l985 using high resolution aircraft Daedalus AADS-1268 MSS data. In addition, data were acquired using a NASA sensor system flown along two flight lines over the Steel Creek Delta. The data were significantly correlated with in situ tree height measurements. The data were registered to the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly associated with the Steel Creek Delta wetland classes encountered along the transect (an F-value of 58.46 at the 0.0001 level of confidence). The relationship between vegetation height and vegetation type was then used to produce a three-dimensional model of the landscape which can be of value when computing biomass or canopy density in this forested wetland environment.

  9. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  10. The Amenity Value of Wetlands

    E-print Network

    Gao, Shan

    2010-07-14

    Wetlands provide recreation and cultural values including scenic views, aesthetics, open-spaces, and leisure opportunities to surrounding residents. This study applies a hedonic approach to estimate the impact of wetland amenities on nearby single...

  11. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition

    PubMed Central

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang; Zhao, Guohui

    2015-01-01

    Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understanding how methane emissions from the Zoige wetland is fundamental to elucidate the carbon cycle in alpine wetlands responding to global warming. In this study, microcosms were performed to investigate the effects of temperature and vegetation on methane emissions and microbial processes in the Zoige wetland soil. A positive correlation was observed between temperature and methane emissions. However, temperature had no effect on the main methanogenic pathway—acetotrophic methanogenesis. Moreover, methanogenic community composition was not related to temperature, but was associated with vegetation, which was also involved in methane emissions. Taken together, these results indicate temperature increases methane emissions in alpine wetlands, while vegetation contributes significantly to methanogenic community composition and is associated with methane emissions. These findings suggest that in alpine wetlands temperature and vegetation act together to affect methane emissions, which furthers a global warming feedback loop. PMID:26109512

  12. Warmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition.

    PubMed

    Cui, Mengmeng; Ma, Anzhou; Qi, Hongyan; Zhuang, Xuliang; Zhuang, Guoqiang; Zhao, Guohui

    2015-01-01

    Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understanding how methane emissions from the Zoige wetland is fundamental to elucidate the carbon cycle in alpine wetlands responding to global warming. In this study, microcosms were performed to investigate the effects of temperature and vegetation on methane emissions and microbial processes in the Zoige wetland soil. A positive correlation was observed between temperature and methane emissions. However, temperature had no effect on the main methanogenic pathway-acetotrophic methanogenesis. Moreover, methanogenic community composition was not related to temperature, but was associated with vegetation, which was also involved in methane emissions. Taken together, these results indicate temperature increases methane emissions in alpine wetlands, while vegetation contributes significantly to methanogenic community composition and is associated with methane emissions. These findings suggest that in alpine wetlands temperature and vegetation act together to affect methane emissions, which furthers a global warming feedback loop. PMID:26109512

  13. Effects of anisotropy on pattern formation in wetland ecosystems

    NASA Astrophysics Data System (ADS)

    Cheng, Yiwei; Stieglitz, Marc; Turk, Greg; Engel, Victor

    2011-02-01

    Wetland ecosystems are often characterized by distinct vegetation patterns. Various mechanisms have been proposed to explain the formation of these patterns; including spatially variable peat accumulation and water ponding. Recently, short-range facilitation and long-range competition for resources (a.k.a scale dependent feedback) has been proposed as a possible mechanism for pattern formation in wetland ecosystems. We modify an existing, spatially explicit, advection-reaction-diffusion model to include for a regional hydraulic gradient and effective anisotropy in hydraulic conductivity. This effective anisotropic hydraulic conductivity implicitly represents the effect of ponding: a reduction in the long-range inhibition of vegetation growth in the direction perpendicular to the prevailing hydraulic gradient. We demonstrate that by accounting for effective anisotropy in a simple modeling framework that encompasses only a scale dependent feedback between biomass and nutrient flow, we can reproduce the various vegetation patterns observed in wetland ecosystems: maze, and vegetation bands both perpendicular and parallel to prevailing flow directions. We examine the behavior of this model over a range of plant transpiration rates and regional hydraulic gradients. Results show that by accounting for the effective x-y anisotropy that results from biomass-water interaction (i.e., ponding) we can better understand the mechanisms that drive ecosystem patterning.

  14. Amphipod densities and indices of wetland quality across the upper-Midwest, USA

    USGS Publications Warehouse

    Anteau, M.J.; Afton, A.D.

    2008-01-01

    Nutritional, behavioral, and diet data for lesser scaup (Aythya affinis [Eyton, 1838]) indicates that there has been a decrease in amphipod (Gammarus lacustris [G. O. Sars, 1863] and Hyalella azteca [Saussure, 1858]) density and wetland quality throughout the upper-Midwest, USA. Accordingly, we estimated densities of Gammarus and Hyalella in six eco-physiographic regions of Iowa, Minnesota, and North Dakota; 356 randomly selected semipermanent and permanent wetlands were sampled during springs 2004 and 2005. We also examined indices of wetland quality (e.g., turbidity, fish communities, aquatic vegetation) among regions in a random subset of these wetlands (n = 267). Gammarus and Hyalella were present in 19% and 54% of wetlands sampled, respectively. Gammarus and Hyalella densities in North Dakota were higher than those in Iowa and Minnesota. Although historical data are limited, our regional mean (1 to 12 m-3) amphipod densities (Gammarus + Hyalella) were markedly lower than any of the historical density estimates. Fish, important predators of amphipods, occurred in 31%-45% of wetlands in North Dakota, 84% of wetlands in the Red River Valley, and 74%-84% of wetlands in Iowa and Minnesota. Turbidity in wetlands of Minnesota Morainal (4.0 NTU geometric mean) and Red River Valley (6.1 NTU) regions appeared low relative to that of the rest of the upper-Midwest (13.2-17.5 NTU). We conclude that observed estimates of amphipods, fish, and turbidity are consistent with low wetland quality, which has resulted in lower food availability for various wildlife species, especially lesser scaup, which use these wetlands in the upper-Midwest. ?? 2008, The Society of Wetland Scientists.

  15. Influence of weather extremes on the water levels of glaciated prairie wetlands

    USGS Publications Warehouse

    Johnson, W.C.; Boettcher, S.E.; Poiani, K.A.; Guntenspergen, G.

    2004-01-01

    Orchid Meadows is a long-term wetland research and monitoring site on the Coteau des Prairie in extreme east-central South Dakota, USA. It is a 65-ha Waterfowl Production Area with numerous temporary, seasonal, and semi-permanent wetlands. Ground water and surface water have been monitored at the site from 1987 to 1989 and from 1993 to the present. Vegetation has been monitored since 1993. The monitoring record includes two nearly back-to-back weather extremes: a drought in the late 1980s and a deluge in the early- to mid-1990s. Wetlands differed sharply in water levels between 3-yr dry and wet periods. For example, the time of inundation ranged among semi-permanent wetlands from 13 to 71 percent during the dry years to 100 percent during the wet years, while for seasonal wetlands, it was 0-29 percent and 46-100 percent, respectively, during dry and wet periods. Temporary wetlands had no surface water during the dry period but had standing water 0-67 percent of the time during the deluge years. The highest ground-water levels during the dry period were lower than most levels during the wet period. The difference in the water-table elevations of temporary wetlands between the periods was as much as 4 m. Ground-water levels near semi-permanent wetlands were considerably more stable (annual range of 0.3-1.6 m) than those near temporary wetlands (1.3-2.5 m). The results support the concept that weather extremes drive the wetland cover cycle and other key ecological processes in prairie wetlands. The new data from Orchid Meadows, together with other long-term data sets from North Dakota and Saskatchewan, Canada, are useful for many research purposes, including the parameterization and testing of models that simulate the effects of climate variability and climate change on prairie wetland ecosystems.

  16. Evaluation of US EPA Environmental Monitoring and Assessment Program's (EMAP)-Wetlands sampling design and classification

    NASA Astrophysics Data System (ADS)

    Ernst, Ted L.; Leibowitz, Nancy C.; Roose, Denis; Stehman, Steve; Urquhart, N. Scott

    1995-01-01

    The United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP) will monitor the nation's resources by evaluating the status and trends of selected indicators of condition using a probability-based sampling design. The EMAP-Wetlands program will monitor the condition of the nation's wetlands. The EMAP classification system is an aggregation of the many subclasses of the US Fish and Wildlife Service's National Wetlands Inventory (NWI) classification system. This aggregation results in fewer wetland classes with more wetlands per class than the NWI system. Aggregation of the NWI classification was based primarily on dominant vegetation cover, flooding regimes, dominant water source, and adjacency to rivers and lakes. We evaluated the EMAP classification system and sampling design using NWI digital wetlands data for portions of Illinois, Washington, North Dakota, and South Dakata. Relative numbers of wetlands, total areas, average areas, and common versus rare classes were compared between the EMAP and NWI classification systems. As expected, the EMAP classification provided fewer wetland polygons, each with larger areas, without altering total wetland area. Summary statistics comparing sample estimates to true population parameters (represented by the NWI data) demonstrated the effectiveness of the EMAP sampling design with the exception of rare EMAP classes in the selected regions. Although simple random sampling is inadequate for both large and small wetlands, the EMAP sampling design is readily adapted to provide better estimates for these categories. Aggregating the NWI classification to the EMAP classification provides fewer wetland classes, with more wetlands per class, for EMAP's annual reports and statistical summaries.

  17. Prairie wetland complexes as landscape functional units in a changing climate

    USGS Publications Warehouse

    Johnson, W. Carter; Werner, Brett; Guntenspergen, Glenn R.; Voldseth, Richard A.; Millett, Bruce; Naugle, David E.; Tulbure, Mirela; Carroll, Rosemary W.H.; Tracy, John; Olawsky, Craig

    2010-01-01

    The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climatewarming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.

  18. Prairie Wetland Complexes as Landscape Functional Units in a Changing Climate

    NSDL National Science Digital Library

    W. Carter Johnson (South Dakota State University; Horticulture, Forestry, Landscape, and Parks)

    2010-02-01

    The wetland complex is the functional ecological unit of the prairie pothole region (PPR) of central North America. Diverse complexes of wetlands contribute high spatial and temporal environmental heterogeneity, productivity, and biodiversity to these glaciated prairie landscapes. Climate-warming simulations using the new model WETLANDSCAPE (WLS) project major reductions in water volume, shortening of hydroperiods, and less-dynamic vegetation for prairie wetland complexes. The WLS model portrays the future PPR as a much less resilient ecosystem: The western PPR will be too dry and the eastern PPR will have too few functional wetlands and nesting habitat to support historic levels of waterfowl and other wetland-dependent species. Maintaining ecosystem goods and services at current levels in a warmer climate will be a major challenge for the conservation community.

  19. Effects of Anthropogenic Nutrient Enrichment on Exotic and Restored Native Aquatic Vegetation 

    E-print Network

    Parnell, Allison

    2012-07-16

    Understanding how nutrient input into coastal wetlands influences aquatic vegetation and the fate of anthropogenic nutrient inputs can help improve water quality management plans. The goals of this study were to (1) compare nutrient concentrations...

  20. RIPARIAN BUFFER WIDTH, VEGETATIVE COVER, AND NITROGEN REMOVAL EFFECTIVENESS: A REVIEW OF CURRENT SCIENCE AND REGULATIONS

    EPA Science Inventory

    Riparian zones, the vegetated region adjacent to streams and wetlands, are thought to be effective at intercepting and controlling nitrogen loads entering water bodies. Buffer width may be related to nitrogen removal efficiency by influencing nitrogen retention through plant seq...

  1. Wetlands of the Gulf Coast

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This set of images from the Multi-angle Imaging SpectroRadiometer highlights coastal areas of four states along the Gulf of Mexico: Louisiana, Mississippi, Alabama and part of the Florida panhandle. The images were acquired on October 15, 2001 (Terra orbit 9718)and represent an area of 345 kilometers x 315 kilometers.

    The two smaller images on the right are (top) a natural color view comprised of red, green, and blue band data from MISR's nadir(vertical-viewing) camera, and (bottom) a false-color view comprised of near-infrared, red, and blue band data from the same camera. The predominantly red color of the false-color image is due to the presence of vegetation, which is bright at near-infrared wavelengths. Cities appear as grey patches, with New Orleans visible at the southern edge of Lake Pontchartrain, along the left-hand side of the images. The Lake Pontchartrain Bridge runs approximately north-south across the middle of the lake. The distinctive shape of the Mississippi River Delta can be seen to the southeast of New Orleans. Other coastal cities are visible east of the Mississippi, including Biloxi, Mobile and Pensacola.

    The large image is similar to the true-color nadir view, except that red band data from the 60-degree backward-looking camera has been substituted into the red channel; the blue and green data from the nadir camera have been preserved. In this visualization, green hues appear somewhat subdued, and a number of areas with a reddish color are present, particularly near the mouths of the Mississippi, Pascagoula, Mobile-Tensaw, and Escambia Rivers. Here, the red color is highlighting differences in surface texture. This combination of angular and spectral information differentiates areas with aquatic vegetation associated with poorly drained bottom lands, marshes, and/or estuaries from the surrounding surface vegetation. These wetland regions are not as well differentiated in the conventional nadir views.

    Variations in ocean color are apparent in all three views, and represent the outflow of suspended sediment from the seabed shelf to the open waters of the Gulf of Mexico. Major features include the Mississippi Delta, where large amounts of land-derived sediments have been deposited in shallow coastal waters. These deltaic environments form a complex, interconnected web of estuarine channels and extensive coastal wetlands that provide important habitat for fisheries. The city of New Orleans is prone to flooding, with about 45% of the metropolitan core situated at or below sea level. The city is protected by levees, but the wetlands which also function as a buffer from storm surges have been disappearing.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  2. Use of Wetland Habitats by Selected Nongame Water Birds in Maine

    USGS Publications Warehouse

    Gibbs, J.P.; Longcore, J.R.; McAuley, D.G.; Ringelman, J.K.

    1991-01-01

    We examined the use of 87 palustrine and lacustrine wetlands by nongame water birds in central and eastern Maine using 3,527 h of observation (1,501 visits) made during April-August, 1977-85. Wetlands used by 15 species of water birds were distinguished from those not used, according to 20 habitat features. The species were the common loon (Gavia immer) , pied-billed grebe (Podilymbus podiceps), double-crested cormorant (Phalacrocorax auritus), American bittern (Botaurus lentiginosus), great blue heron (Ardea herodias), green-backed heron (Butorides striatus), osprey (Pandion haliaetus), bald eagle (Haliaeetus leucocephalus), northern harrier (Circus cyaneus), Virgima rail (Rallus limicola), sora (Porzana carolina), spotted sandpiper (Actitis macularia), common snipe (Gallinago gallinago), herring gull (Larus argentatus), and belted kingfisher (Ceryle alcyon). Predictive models of habitat use were developed for each species. Water birds were classified by similarity of habitats used, and species use was contrasted by wetland type. Smaller, isolated wetlands were used by fewer (P 66%) or open (<33%) wetlands. Low pH typified wetlands used by large-bodied piscivores (common loon, cormorant, osprey). Other water birds were associated with more densely vegetated, chemically buffered wetlands. Habitat features associated with wetland use by each waterbird species are reported, as are numerical responses of waterbird populations to wetland features and estimates of annual variation in habitat occupancy. Lacustrine wetlands supported a distinct, low diversity community of water birds, including most fish-eating species. Waterbird diversity at forested palustrine wetlands was intermediate between lacustrine communities and more species-rich assemblages at palustrine emergent and scrub-shrub wetlands. Regional variation in wetland characteristics and water bird use was associated with surficial geology, soils, and management practices. Management for nongame water birds in Maine should consider providing emergent and aquatic-bed vegetation with variable cover-to-water ratios, accommodating species-specific habitat needs, focusing on species of restricted distribution and low abundance, and maintaining wetland complexes. Bird use and habitat information from 87 wetlands and models of habitat selection for each species are provided in appendixes.

  3. Ecological indicators of nutrient enrichment, freshwater wetlands, Midwestern United States (U.S.)

    Microsoft Academic Search

    Christopher Craft; Kandice Krull; Sean Graham

    2007-01-01

    Vegetation and soil indicators of nutrient condition were evaluated in 30 wetlands, 10 each in 3 Nutrient Ecoregions (NE) (VI-Corn Belt and Northern Great Plains, VII-Mostly Glaciated Dairy Region, IX-Temperate Forested Plains and Hills) of the Midwestern United States (U.S.) to identify robust indicators for assessment of wetland nutrient enrichment and eutrophication. Nutrient condition was characterized by surface water inorganic

  4. Environmental Conditions Promoting Non-native Phragmites australis Expansion in Great Lakes Coastal Wetlands

    Microsoft Academic Search

    Mirela G. Tulbure; Carol A. Johnston

    2010-01-01

    The invasion and expansion of the non-native Phragmites australis in Great Lakes coastal wetlands is of increasing concern, but quantitative studies of the extent, rate, and causes of invasion\\u000a have been lacking. Here we revisited 307 plots in 14 wetlands along the Great Lakes coast in 2005 that had previously been\\u000a sampled for vegetation in 2001–2003. During the 2–4 years between

  5. Effects of habitat management treatments on plant community composition and biomass in a Montane Wetland

    Microsoft Academic Search

    Jane E. Austin; Janet R. Keough; William H. Pyle

    2007-01-01

    Grazing and burning are commonly applied practices that can impact the diversity and biomass of wetland plant communities.\\u000a We evaluated the vegetative response of wetlands and adjacent upland grasslands to four treatment regimes (continuous idle,\\u000a fall prescribed burning followed by idle, annual fall cattle grazing, and rotation of summer grazing and idle) commonly used\\u000a by the U.S. Fish and Wildlife

  6. Physiological parameters of plants as indicators of water quality in a constructed wetland

    Microsoft Academic Search

    Oren Shelef; Avi Golan-Goldhirsh; Tanya Gendler; Shimon Rachmilevitch

    Introduction  Increasing demand for water has stimulated efforts to treat wastewater for reuse in agriculture. Decentralized facilities\\u000a for wastewater treatment became popular as a solution to remote and small communities. These systems mimic natural wetlands,\\u000a cleaning wastewater as they flow through a complex of filter media, microbial fauna, and vegetation. The function of plants\\u000a in constructed wetlands (CWs) has not been

  7. Biodegradation of Trichloroethene by Methane Oxidizers Naturally Associated with Wetland Plant Roots

    Microsoft Academic Search

    Christina L. Powell; Abinash Agrawal

    2011-01-01

    Trichloroethene (TCE) can undergo natural attenuation within wetland environments, particularly by oxidative processes that\\u000a occur in the vegetated subsurface. The goal of this study was to evaluate TCE degradation potential through aerobic cometabolism\\u000a by methane-oxidizing microorganisms associated with the roots of wetland plant species, Carex comosa and Scirpus atrovirens. The degradation experiments were conducted in 2.4 L Teflon microcosms with 15 g

  8. 488-D Ash Basin Vegetative Cover Treatibility Study

    SciTech Connect

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  9. 488-D Ash Basin Vegetative Cover Treatibility Study.

    SciTech Connect

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen.

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  10. Recognizing Wetlands An Informational Pamphlet

    E-print Network

    US Army Corps of Engineers

    conditions. Wetlands generally include swamps, marshes, bogs, and similar areas. Wetlands are areas of these wetland types include, but are not limited to, many bottomland forests, pocosins, pine savannahs, bogs, cattail marshes, bulrush and tule marshes, and sphagnum bogs). · Area has soils that are called peats

  11. Developing a New Wetland Habitat

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2006-01-01

    This article features a project at Ohio's Miami Valley Career Technology Center (MVCTC) which has made a real difference in the wetland environment on campus. The goals of the wetland project were to replace a poorly functioning tile system and develop two wetland areas for local and migratory wildlife. The environmental/natural resources students…

  12. Wetland Mapping: History and Trends

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Historically, the biologic, aesthetic, and economic values of wetlands were largely unappreciated. Wetlands within the United States have been and are continuing to disappear at a rapid rate. Efforts are being made to conserve remaining wetlands and many regulatory policies have been adopted in su...

  13. NATIONAL WETLANDS INVENTORY (NWI) MAPS

    EPA Science Inventory

    National Wetland Inventory digital data files are records of wetlands location and classification as defined by the U.S. Fish & Wildlife Service. This data set is one of a series available in 7.5 minute by 7.5 minute blocks containing ground planimetric coordinates of wetlands p...

  14. Hydrogeologic characterization of Illinois wetlands

    Microsoft Academic Search

    J. J. Miner; M. V. Miller; N. L. Rorick; C. S. Fucciolo

    1994-01-01

    The Illinois State Geological Survey (ISGS), under contract from the Illinois Department of Transportation (IDOT), is evaluating a series of selected wetlands and sites proposed for wetland construction and\\/or restoration. The program is associated with wetland mitigation for unavoidable effects of state highway construction. The goal of this ongoing program is: (1) to collect commonly lacking geologic, geomorphic, hydrologic, and

  15. Alum application to improve water quality in a municipal wastewater treatment wetland.

    PubMed

    Malecki-Brown, Lynette M; White, John R; Sees, M

    2009-01-01

    Nutrient removal in treatment wetlands declines during winter months due to temperature. A 3-mo (wintertime) mesocosm study was conducted to determine the effectiveness of alum in immobilizing P as well as other nutrients during this period of reduced treatment efficiency. Eighteen mesocosms, triplicate alum, and three controls or no alum were established with either Typha spp., Schoenoplectus californicus, or SAV (Najas guadalupensis-dominated). Alum was delivered by timer at a rate of 0.81 g Al m(-2) d(-1) and parameters measured included: pH, soluble reactive phosphorus (SRP), total phosphorus (TP), dissolved organic carbon (DOC), dissolved inorganic nitrogen (DIN), total kjeldahl nitrogen (TKN), and soluble aluminum (Al). Alum-treated mesocosms had significantly lower pH values (8.1) than controls (8.8), but well within the elevated pH range for aluminum toxicity. Alum significantly reduced all measured water column nutrients with the exception of ammonium N, which remained unaffected, and particulate P, which increased. This study demonstrated that seasonal low-dosage alum application to different vegetation communities in a treatment wetland can significantly improve treatment efficiencies for SRP (87 vs. 58%) and TP (62 vs. 44%) but also increase DOC (19 vs. 0%) and TKN (12 vs. -3%) removal capacity to a lesser degree. Alum applications within close proximity of the treatment wetland effluent points should be implemented with caution due to the production of alum floc-bound P which could potentially affect discharge permit compliance for total suspended solids or total P. PMID:19244503

  16. Environmental Protection Agency: Wetlands

    NSDL National Science Digital Library

    The Environmental Protection Agency (EPA) has created this site to inform the general public about their role in wetland preservation and restoration. At the top of their page, visitors can click on the "What are Wetlands?" area to get some basic definitions, look over some fact sheets, and learn about the recent history of wetlands in the United States. Also on the homepage are sections such as "Why Protect Wetlands?", "How are Wetlands Protected?", and "What You Can Do To Protect our Vital Resource". These sections are meant for general audiences, and they might be used in classroom settings as a way to illuminate the role of the EPA and some of the broader concerns surrounding different natural environments. The right-hand side of the homepage features "In the News" items about recent regulatory changes, interagency agreements, and public hearings and comment periods. Finally, on the left-hand side of the page contains thematic sections like "Monitoring and Assessment", "Restoration", and "Education".

  17. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    USGS Publications Warehouse

    Werner, B.A.; Johnson, W. Carter; Guntenspergen, Glenn R.

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species.

  18. Evidence for 20th century climate warming and wetland drying in the North American Prairie Pothole Region

    PubMed Central

    Werner, Brett A; Johnson, W Carter; Guntenspergen, Glenn R

    2013-01-01

    The Prairie Pothole Region (PPR) of North America is a globally important resource that provides abundant and valuable ecosystem goods and services in the form of biodiversity, groundwater recharge, water purification, flood attenuation, and water and forage for agriculture. Numerous studies have found these wetlands, which number in the millions, to be highly sensitive to climate variability. Here, we compare wetland conditions between two 30-year periods (1946–1975; 1976–2005) using a hindcast simulation approach to determine if recent climate warming in the region has already resulted in changes in wetland condition. Simulations using the WETLANDSCAPE model show that 20th century climate change may have been sufficient to have a significant impact on wetland cover cycling. Modeled wetlands in the PPR's western Canadian prairies show the most dramatic effects: a recent trend toward shorter hydroperiods and less dynamic vegetation cycles, which already may have reduced the productivity of hundreds of wetland-dependent species. PMID:24223283

  19. Estuarine wetland evolution including sea-level rise and infrastructure effects.

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jose Fernando; Trivisonno, Franco; Rojas, Steven Sandi; Riccardi, Gerardo; Stenta, Hernan; Saco, Patricia Mabel

    2015-04-01

    Estuarine wetlands are an extremely valuable resource in terms of biotic diversity, flood attenuation, storm surge protection, groundwater recharge, filtering of surface flows and carbon sequestration. On a large scale the survival of these systems depends on the slope of the land and a balance between the rates of accretion and sea-level rise, but local man-made flow disturbances can have comparable effects. Climate change predictions for most of Australia include an accelerated sea level rise, which may challenge the survival of estuarine wetlands. Furthermore, coastal infrastructure poses an additional constraint on the adaptive capacity of these ecosystems. Numerical models are increasingly being used to assess wetland dynamics and to help manage some of these situations. We present results of a wetland evolution model that is based on computed values of hydroperiod and tidal range that drive vegetation preference. Our first application simulates the long term evolution of an Australian wetland heavily constricted by infrastructure that is undergoing the effects of predicted accelerated sea level rise. The wetland presents a vegetation zonation sequence mudflats - mangrove - saltmarsh from the seaward margin and up the topographic gradient but is also affected by compartmentalization due to internal road embankments and culverts that effectively attenuates tidal input to the upstream compartments. For this reason, the evolution model includes a 2D hydrodynamic module which is able to handle man-made flow controls and spatially varying roughness. It continually simulates tidal inputs into the wetland and computes annual values of hydroperiod and tidal range to update vegetation distribution based on preference to hydrodynamic conditions of the different vegetation types. It also computes soil accretion rates and updates roughness coefficient values according to evolving vegetation types. In order to explore in more detail the magnitude of flow attenuation due to roughness and its effects on the computation of tidal range and hydroperiod, we performed numerical experiments simulating floodplain flow on the side of a tidal creek using different roughness values. Even though the values of roughness that produce appreciable changes in hydroperiod and tidal range are relatively high, they are within the range expected for some of the wetland vegetation. Both applications of the model show that flow attenuation can play a major role in wetland hydrodynamics and that its effects must be considered when predicting wetland evolution under climate change scenarios, particularly in situations where existing infrastructure affects the flow.

  20. 7 CFR 920.20 - Establishment and membership.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA Administrative Body § 920...Establishment and membership. There is hereby established a Kiwifruit Administrative Committee consisting of 12...

  1. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...2010-01-01 2010-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office...Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation §...

  2. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...2011-01-01 2011-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office...Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation §...

  3. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Butera, M. K.

    1983-01-01

    Results are given for three separate investigations of remote sensing over wetlands, including the delineations of roseau cane and mangrove from both Landsat and aircraft MSS data, and the delineation of wetland communities for potential waste assimilation in a coastal river floodplain from Landsat MSS data only. Attention is also given to data processing and analysis techniques of varying levels of sophistication, which must increase with surface cover diversity. All computer processing in these studies was performed on a minicomputer configured with the adequate memory, image display capability, and associated peripherals, using state-of-the-art digital MSS data analysis software.

  4. Wetland Biogeochemistry Laboratory

    NSDL National Science Digital Library

    The Wetland Biogeochemistry Laboratory (WBL) at the University of Florida "promotes teaching, research and outreach activities on biogeochemical processes regulating the fate and transport of nutrients, metals, and toxic organics in wetland and aquatic ecosystems." Current research projects range from the use of biogeochemical markers to assess phosphorus loading in the Everglades to a spatial analysis of physico-chemical properties of Lake Okeechobee sediments; teaching materials, publications, and current events are also posted at the Website. For additional online resources in this field, see the collection of related links.

  5. Small and Large-scale Drivers of Denitrification Patterns in "Accidental" Urban Wetlands in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Suchy, A. K.; Palta, M. M.; Childers, D. L.; Stromberg, J. C.

    2014-12-01

    Understanding spatial and temporal patterns of microbial conversion of nitrate (NO3-) to nitrogen (N) gas (denitrification) is important for predicting permanent losses of reactive N from systems. In many landscapes, wetlands serve as hotpots of denitrification by providing optimal condition for denitrifiers (sub-oxic, carbon-rich sediments). Much research on denitrification has occurred in non-urban or highly managed urban wetlands. However, in urban landscapes N-rich stormwater is often discharged into areas not designed or managed to reduce N loads. "Accidental" wetlands forming at these outfalls may have the capacity to remove NO3-; however, these "accidental" urban wetlands can contain novel soils and vegetation, and are subject to unique hydrologic conditions that could create spatial and temporal patterns of denitrification that differ from those predicted in non-urban counterparts. We performed denitrification enzyme assays (measuring denitrification potential, or DP) on soil samples taken from nine wetlands forming at storm drain outfalls in Phoenix, AZ. The wetlands ranged from perennially flooded, to intermittently flooded (~9 months/year), to ephemerally flooded (2-3 weeks/year). To assess spatial variation in carbon availability to denitrifiers, samples were taken from 3-4 dominant vegetation patch types within each wetland. To assess temporal variation in DP, samples were taken across three seasons differing in rainfall pattern. We found small- and large-scale spatiotemporal patterns in DP that have important implications for management of urban wetlands for stormwater quality. DP varied among plant patches and was typically highest in patches of Ludwigia peploides, indicating that plant species type may mediate within-wetland variations in carbon availability, and therefore NO3- removal capacity. We found a range of responses in DP among wetlands to season, which appeared to be driven in part by flood regime: DP in perennially-flooded wetlands was largely unchanged across seasons, DP in intermittently-flooded wetlands generally increased in summer monsoons and decreased in winter, and ephemerally-flooded wetlands had a variable response in DP to season. This pattern indicates temporally variable controls on NO3- removal capacity at the whole-wetland scale.

  6. High Arctic Hillslope-Wetland Linkages: Types, Patterns and Importance

    NASA Astrophysics Data System (ADS)

    Young, K. L.; Abnizova, A.

    2012-12-01

    High Arctic wetlands are lush areas in an otherwise barren landscape. They help to store and replenish water and they serve as significant resting and breeding grounds for migratory birds. In addition, they provide rich grazing grounds for arctic fauna such as muskox and caribou. Arctic wetlands can be small, patchy grounds of wet vegetation or they can encompass large zones characterized by lakes, ponds, wet meadows, and, often times, they are inter-mixed with areas of dry ground. While seasonal snowmelt continues to remain the most critical source of water for recharging ponds, lakes, and meadows in these environments, less is known about the role of lateral inputs of water into low-lying wetlands, namely water flowing into these wetland ecosystems from adjacent hillslopes, which often surround them. This paper will review the different modes of hillslope runoff into both patchy and regional-scale wetlands including late-lying snowbeds, snow-filled creeks, and both small and large (>1st order) streams. It will draw upon field results from four arctic islands (Ellesmere, Cornwallis, Somerset and Bathurst Island) and a research period which spans from the mid'90s until present. Our study will evaluate seasonal and inter-seasonal patterns of snowmelt driven discharge (initiation, duration), timing, and magnitude of peak flows, in addition to stream response to rainfall and dry episodes. The impacts of these lateral water sources for a range of wetlands (ponds, wet meadows) will include an analysis of water level fluctuations (frequency, duration), shrinkage/expansion rates, and water quality. Finally, this study will surmise how these types of lateral hillslope inflows might shift in the future and suggest the impact of these changes on the sustainability of High Arctic wetland terrain.

  7. Concentration distribution of contaminant transport in wetland flows

    NASA Astrophysics Data System (ADS)

    Wu, Zi; Fu, Xudong; Wang, Guangqian

    2015-06-01

    Study on contaminant transport in wetland flows is of fundamental importance. Recent investigation on scalar transport in laminar tube flows (Wu and Chen, 2014. J. Fluid Mech., 740: 196-213.) indicates that the vertical concentration difference in wetland flows may be remarkable for a very long time, which cannot be captured by the extensively applied one-dimensional Taylor dispersion model. To understand detailed information for the vertical distribution of contaminant in wetland flows, for the first time, the present paper deduces an analytical solution for the multi-dimensional concentration distribution by the method of mean concentration expansion. The solution is verified by both our analytical and numerical results. Representing the effects of vegetation in wetlands, the unique dimensionless parameter ? can cause the longitudinal contraction of the contaminant cloud and the change of the shape of the concentration contours. By these complicated effects, it is shown unexpectedly that the maximum vertical concentration difference remains nearly unaffected, although its longitudinal position may change. Thus the slow-decaying transient effect (Wu and Chen, 2014. J. Hydrol., 519: 1974-1984.) is shown also apply to the process of contaminant transport in wetland flows.

  8. Identifying tropical mountain wetlands with Asymmetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Buytaert, W.; Schumann, G.

    2009-04-01

    Land cover classification in remote areas is often done with remotely sensed data. However, on classic spectrometer data, wetlands are difficult to distinguish from neighbouring grass and shrubland vegetation, despite the differences in hydrological regime and species variety. Another problem with spectrometer data is the interference of cloud cover, which is abundant in the areas where wetlands tend to occur. Radar measurements, which are not affected by cloud cover, are sensitive to soil moisture. As such, they have the potential to identify wetlands from well drained grasslands. In this study, Asymmetric Synthetic Aperture Radar from the ESA ENVISAT satellite are used to identify wetlands in the Ecuadorian paramo ecosystem. This ecosystem occurs above the treeline (3500 m) and is characterised by highly intermingled grass- and wetlands. By comparing ASAR data from different months, hydrologically active zones can be identified. Corroboration with field observations and rain gauge data show that the areas identified with ASAR coincide with locations with a high tendency for saturation and ponding. By linking precipitation data from local raingauges with the ASAR images, the hydrological regime of the area can be characterised. This information is valuable for hydrological and ecological studies, particularly in the paramo region, which has an important water supply function and is a hotspot for biodiversity.

  9. Effects of permafrost thaw on northern wetland methane emissions

    NASA Astrophysics Data System (ADS)

    Turetsky, M. R.; Olefeldt, D.; Waddington, J. M.

    2012-12-01

    There has been a renewed interest in northern, high latitude methane emissions because of 1) the recent unexpected increase in atmospheric methane concentrations after a period of stability, 2) large releases of methane in bubbles from arctic thermokarst lakes, and 3) the recent discovery that high latitude soil carbon stocks are much larger than previously recognized. Global inverse modeling shows that Arctic methane emissions increased by 30% from 2003-2007, and that high latitude emissions were more sensitive to warming than water table fluctuations. Arctic wetlands and lakes likely have contributed at least partly to recent increases in atmospheric methane concentrations. Across the circumpolar region, thermokarst associated with permafrost thaw is creating lakes and wetlands that tend to have elevated methane emissions. Thaw wetlands in interior Alaska release methane primarily through plants, especially Carex species, as well as ebullition (bubbles). Ebullition was sensitive to soil temperature both in the field and in a laboratory experiment, indicating that continued warming may contribute to increases in northern wetland methane emissions by increasing the area of thaw wetlands on the landscape as well as by stimulating bubble formation and release. A meta-analysis of data from more than 300 sites suggests that increased methane emissions following permafrost thaw are more likely related to altered water table position, soil temperature and vegetation composition, rather than increases in unfrozen soil carbon stocks.

  10. A comparative study of the gas exchange potential between three wetland species using sulfur hexafluoride as a tracer

    Microsoft Academic Search

    N Salhani; E Stengel

    2001-01-01

    The gas-exchange potential of three wetland species (helophytes) was examined in an aquatic model vegetation facility (AMOVA) using sulfur hexafluoride (SF6) as a tracer. Three beds containing gravel and vegetated with Phragmitesaustralis, Typhalatifolia and Schoenoplectuslacustris were compared to an unvegetated gravel bed as a reference. A mass balance of SF6 emissions revealed a different seasonal emission pattern for the three

  11. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources

    SciTech Connect

    Matthews, E.; Fung, I. (New York Goddard Institute for Space Studies, NY (USA))

    1987-03-01

    A global data base of wetlands at 1 degree resolution was developed from the integration of three independent global, digital sources: (1) vegetation, (2) soil properties and (3) fractional inundation in each 1 degree cell. The integration yielded a global distribution of wetland sites identified with in situ ecological and environmental characteristics. The wetland sites were classified into five major groups on the basis of environmental characteristics governing methane emissions. The global wetland area derived in this study is 5.3 trillion sq m, approximately twice the wetland area previously used in methane emission studies. Methane emission was calculated using methane fluxes for the major wetland groups, and simple assumptions about the duration of the methane production season. The annual methane emission from wetlands is about 110 Tg, well within the range of previous estimates. Tropical/subtropical peat-poor swamps from 20 degrees N to 30 degrees S account from 30% of the global wetland area and 25% of the total methane emission. About 60% of the total emission comes from peat-rich bogs concentrated from 50-70 degrees N, suggesting that the highly seasonal emission from these ecosystems is the major contributor to the large annual oscillations observed in atmospheric methane concentrations at these latitudes. 78 refs., 6 figs., 5 tabs.

  12. Activities for A Wetland Field Study (title provided or enhanced by cataloger)

    NSDL National Science Digital Library

    These activities were designed to enhance the sixth chapter of a module about wetlands. The activities can be used as part of the module or can stand alone as lab activities. In the first activity students set up a plant transect, identify as many different types of vegetation as possible in the wetland, and compare upland and wetland species by observing differences in their structure. The objective of the second activity is to observe soil profiles and record wetland soil characteristics. Next, students record direct and indirect observations of wetland wildlife. If there is a body of surface water at the site, students will investigate characteristics of water including velocity (for running water), temperature, dissolved oxygen, pH, and evidence of point and nonpoint source pollution in the water. Students next make an artist's inventory of the wetland by describing, illustrating, and photographing its shapes, colors, and sounds. In the final steps students observe and document any impacts that people have made to the wetland interior and boundaries and refine the measurements of the wetland base map. As they proceed, students should work together to assimilate the qualitative and quantitative information they have gathered in the field so it can be shared with others.

  13. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: An ecosustainable approach

    SciTech Connect

    Rai, P.K. [Mizoram Central University, Tanhril (India). School for Earth Science & Natural Resource Management

    2008-07-01

    This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.

  14. A Wetland Camp for Upland Teachers.

    ERIC Educational Resources Information Center

    Soniat, Lyle; Duggan, Suzanne

    1995-01-01

    Discusses a workshop to provide an opportunity for north Louisiana teachers to learn firsthand about Louisiana's coastal wetlands. The multidisciplinary sessions focused on coastal wetland ecosystems, covering wetland productivity, the functions and value of wetlands, current wetland issues, water quality, botany, geology, fisheries management,…

  15. Par Pond vegetation status Summer 1995 -- Summary

    SciTech Connect

    Mackey, H.E. Jr.; Riley, R.S.

    1996-01-01

    The water level of Par Pond was lowered approximately 20 feet in mid-1991 in order to protect downstream residents from possible dam failure suggested by subsidence on the downstream slope of the dam and to repair the dam. This lowering exposed both emergent and nonemergent macrophyte beds to drying conditions resulting in extensive losses. A survey of the newly emergent, shoreline aquatic plant communities of Par Pond began in June 1995, three months after the refilling of Par Pond to approximately 200 feet above mean sea level. These surveys continued in July, September, and late October, 1995. Communities similar to the pre-drawdown, Par Pond aquatic plant communities are becoming re-established. Emergent beds of maidencane, lotus, waterlily, and watershield are extensive and well developed. Cattail occurrence continued to increase during the summer, but large beds common to Par Pond prior to the drawdown have not formed. Estimates from SPOT HRV, remote sensing satellite data indicated that as much as 120 hectares of emergent wetlands vegetation may have been present along the Par Pond shoreline by early October, 1995. To track the continued development of macrophytes in Par Pond, future surveys throughout 1996 and 1997, along with the continued evaluation of satellite data to map the areal extent of the macrophyte beds of Par Pond, are planned.

  16. Wetland survey of the X-10 Bethel Valley and Melton Valley groundwater operable units at Oak Ridge National Labortory Oak Ridge, Tennessee

    SciTech Connect

    Rosensteel, B.A.

    1996-03-01

    Executive Order 11990, Protection of Wetlands, (May 24, 1977) requires that federal agencies avoid, to the extent possible, adverse impacts associated with the destruction and modification of wetlands and that they avoid direct and indirect support of wetlands development when there is a practicable alternative. In accordance with Department of Energy (DOE) Regulations for Compliance with Floodplains and Wetlands Environmental Review Requirements (Subpart B, 10 CFR 1022.11), surveys for wetland presence or absence were conducted in both the Melton Valley and the Bethel Valley Groundwater Operable Units (GWOU) on the DOE Oak Ridge Reservation (ORR) from October 1994 through September 1995. As required by the Energy and Water Development Appropriations Act of 1992, wetlands were identified using the criteria and methods set forth in the Wetlands Delineation Manual (Army Corps of Engineers, 1987). Wetlands were identified during field surveys that examined and documented vegetation, soils, and hydrologic evidence. Most of the wetland boundary locations and wetland sizes are approximate. Boundaries of wetlands in Waste Area Grouping (WAG) 2 and on the former proposed site of the Advanced Neutron Source in the upper Melton Branch watershed were located by civil survey during previous wetland surveys; thus, the boundary locations and areal sizes in these areas are accurate. The wetlands were classified according to the system developed by Cowardin et al. (1979) for wetland and deepwater habitats of the United States. A total of 215 individual wetland areas ranging in size from 0.002 ha to 9.97 ha were identified in the Bethel Valley and Melton Valley GWOUs. The wetlands are classified as palustrine forested broad-leaved deciduous (PFO1), palustrine scrub-shrub broad-leaved deciduous (PSS1), and palustrine persistent emergent (PEM1).

  17. Nitrate fate and transport through current and former depressional wetlands in an agricultural landscape, Choptank Watershed, Maryland, United States

    USGS Publications Warehouse

    Denver, J.M.; Ator, S.W.; Lang, M.W.; Fisher, T.R.; Gustafson, A.B.; Fox, R.; Clune, J.W.; McCarty, G.W.

    2014-01-01

    Understanding local groundwater hydrology and geochemistry is critical for evaluating the effectiveness of wetlands at mitigating agricultural impacts on surface waters. The effectiveness of depressional wetlands at mitigating nitrate (NO3) transport from fertilized row crops, through groundwater, to local streams was examined in the watershed of the upper Choptank River, a tributary of Chesapeake Bay on the Atlantic Coastal Plain. Hydrologic, geochemical, and water quality data were collected from January of 2008 through December of 2009 from surface waters and networks of piezometers installed in and around current or former depressional wetlands of three major types along a gradient of anthropogenic alteration: (1) natural wetlands with native vegetation (i.e., forested); (2) prior-converted croplands, which are former wetlands located in cultivated fields; and (3) hydrologically restored wetlands, including one wetland restoration and one shallow water management area. These data were collected to estimate the orientation of groundwater flow paths and likely interactions of groundwater containing NO3 from agricultural sources with reducing conditions associated with wetlands of different types. Natural wetlands were found to have longer periods of soil saturation and reducing conditions conducive to denitrification compared to the other wetland types studied. Because natural wetlands are typically located in groundwater recharge areas along watershed divides, nitrogen (N) from nearby agriculture was not intercepted. However, these wetlands likely improve water quality in adjacent streams via dilution. Soil and geochemical conditions conducive to denitrification were also present in restored wetlands and prior-converted croplands, and substantial losses of agricultural NO3 were observed in groundwater flowing through these wetland sediments. However, delivery of NO3 from agricultural areas through groundwater to these wetlands resulting in opportunities for denitrification were limited, particularly where reducing conditions did not extend throughout the entire thickness of the surficial aquifer allowing NO3 to pass conservatively beneath a wetland along deeper groundwater flow paths. The complexity of N fate and transport associated with depressional wetlands complicates the understanding of their importance to water quality in adjacent streams. Although depressional wetlands often contribute low NO3 water to local streams, their effectiveness as landscape sinks, for N from adjacent agriculture varies with natural conditions, such as the thickness of the aquifer and the extent of reducing conditions. Measurement of such natural geologic, hydrologic, and geochemical conditions are therefore fundamental to understanding N mitigation in individual wetlands.

  18. Seasonal dynamics and habitat specificity of mosquitoes in an English wetland: implications for UK wetland management and restoration.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-06-01

    We engaged in field studies of native mosquitoes in a Cambridgeshire Fen, investigating a) the habitat specificity and seasonal dynamics of our native fauna in an intensively managed wetland, b) the impact of water-level and ditch management, and c) their colonization of an arable reversion to flooded grassland wetland expansion project. Studies from April to October, 2010 collected 14,000 adult mosquitoes (15 species) over 292 trap-nights and ?4,000 pre-imaginal mosquitoes (11 species). Open floodwater species (Aedes caspius and Aedes cinereus, 43.3%) and wet woodland species (Aedes cantans/annulipes and Aedes rusticus, 32.4%) dominated, highlighting the major impact of seasonal water-level management on mosquito populations in an intensively managed wetland. In permanent habitats, managing marginal ditch vegetation and ditch drying significantly affect densities of pre-imaginal anophelines and culicines, respectively. This study presents the first UK field evidence of the implications of wetland expansion through arable reversion on mosquito colonization. Understanding the heterogeneity of mosquito diversity, phenology, and abundance in intensively managed UK wetlands will be crucial to mitigating nuisance and vector species through habitat management and biocidal control. PMID:26047189

  19. The Virginia Wetlands Report

    E-print Network

    , the young (nymphs) feed on tadpoles, small fish, mosquito larvae and small crustaceans. The nymph may shed and mosquito bites. But did you know that your best friend in the fight against these pesky bugs lives part of its life in wetlands? Dragonflies are highly beneficial and effective predators of mosquitoes

  20. WETLAND MONITORING IN UGANDA

    Microsoft Academic Search

    E. J. Huising

    Wetlands occupy an estimated 13 percent of Uganda's national territory and they serve a number of functions. They serve for example as granaries for water storage, as nurseries for fish. They may sustain high levels of bio-diversity and represent important bird areas (IBA). Some act as basins for tertiary treatment of urban wastewater, and many people depend for their livelihoods

  1. Wading into Wetlands.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Wading into Wetlands." Contents are organized into the following sections: (1)…

  2. NATIONAL WETLANDS INVENTORY (NWI)

    EPA Science Inventory

    Extent: All of WA, about 25% of OR, about 5% of ID. Data are digitized by USFWS from the NWI 1:24,000 scale paper maps. NWI contains information on the location and classification (Cowardin, et al., 1979) of wetlands and deepwater habitats (streams, lakes, & estuaries). The da...

  3. Acute Toxicity of MethylParathion in Wetland Mesocosms: Assessing the Influence of Aquatic Plants Using Laboratory Testing with Hyalella azteca

    Microsoft Academic Search

    R. Schulz; M. T. Moore; E. R. Bennett; C. D. Milam; J. L. Bouldin; J. L. Farris; S. Smith Jr.; C. M. Cooper

    2003-01-01

    Methyl-parathion (MeP) was introduced into constructed wetlands for the purpose of assessing the importance of distance from the source of contamination and the role of emergent vegetation on the acute toxicity to Hyalella azteca (Crustacea: Amphipoda). A vegetated (90% cover: mainly Juncus effuses) and a nonvegetated wetland (each with a water body of 50 × 5.5 × 0.2 m) were

  4. Seasonal changes of macroinvertebrate communities in a stormwater wetland collecting pesticide runoff from a vineyard catchment (Alsace, France).

    PubMed

    Martin, Sylvain; Bertaux, Aurélie; Le Ber, Florence; Maillard, Elodie; Imfeld, Gwenaël

    2012-01-01

    Agricultural land use may influence macroinvertebrate communities by way of pesticide contamination associated with agricultural runoff. However, information about the relation between runoff-related pesticides and communities of benthic macroinvertebrates in stormwater wetland that receive agricultural runoff does not currently exist. Here we show changes in macroinvertebrates communities of a stormwater wetland that collects pesticide-contaminated runoff from a vineyard catchment. Sixteen runoff-associated pesticides, including the insecticide flufenoxuron, were continuously quantified at the inlet of the stormwater wetland from April to September (period of pesticide application). In parallel, benthic macroinvertebrate communities, pesticide concentrations, and physicochemical parameters in the wetland were assessed twice a month. Twenty-eight contaminated runoffs ranging from 1.1 to 114 m3 entered the wetland during the study period. Flufenoxuron concentrations in runoff-suspended solids ranged from 1.5 to 18.5 ?g kg(-1) and reached 6 ?g kg(-1) in the wetland sediments. However, flufenoxuron could not be detected in water. The density, diversity, and abundance of macroinvertebrates largely varied over time. Redundancy and formal concept analyses showed that concentrations of flufenoxuron, vegetation cover, and flow conditions significantly determine the community structures of stormwater wetland macroinvertebrates. This study shows that flow conditions, vegetation cover, and runoff-related pesticides jointly affect communities of benthic macroinvertebrates in stormwater wetlands. PMID:21656048

  5. Phosphorus Dynamic in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2010-12-01

    The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.

  6. Pollutant removal from municipal sewage lagoon effluents with a free-surface wetland.

    PubMed

    Cameron, Kimberley; Madramootoo, Chandra; Crolla, Anna; Kinsley, Christopher

    2003-07-01

    This research project was initiated to refine the knowledge available on the treatment of rural municipal wastewater by constructed wetlands. To determine the treatment capacity of a constructed wetland system receiving municipal lagoon effluents, the wetland was monitored over one treatment season, from May 19 to November 3, 2000. The wetland system consisted of a three-cell free-surface wetland, phosphorus adsorption slag filters and a vegetated filter strip. Bimonthly water samples at the inlet and outlet of each component of the wetland system were analysed for biochemical oxygen demand, nitrate and nitrite, ammonia and ammonium, total Kjeldahl nitrogen (TKN), total suspended solids (TSS), total phosphorus (TP), ortho-phosphate (ortho-PO(4)), fecal coliforms (FCs) and Escherichia coli. The free-surface wetland cells treating the lagoon effluents achieved removals as follows: biochemical oxygen demand (34%), ammonia and ammonium (52%), TKN (37%), TSS (93%), TP (90%), ortho-PO(4) (82%), FCs (52%) and E. coli (58%). The wetland cells reduced total nitrogen, TP and biochemical oxygen demand to levels below the maximum permissible levels required for direct discharge to nearby receiving waters (TN<3.0 mg x L(-1), TP<0.3 mg x L(-1), BOD(5)<3.0 mg x L(-1)). The vegetated filter strip treating the effluents from the wetland cells achieved removals as follows: biochemical oxygen demand (18%), ammonia and ammonium (28%), TKN (11%), TSS (22%), TP (5%), FCs (28%) and E. coli (22%). It may therefore serve as an additional treatment stage further reducing the concentrations of these mentioned parameters. The slag filters reduced TP in the lagoon effluents by up to 99%, and, in this study, were concluded to be effective phosphorus adsorbers. PMID:12767284

  7. Understanding the Effects of Climate and Water Management on Carbon and Energy Fluxes for Restored Wetlands in the Sacramento - San Joaquin Delta, California, USA

    NASA Astrophysics Data System (ADS)

    Anderson, F.; Bergamaschi, B. A.; Von Dessonneck, T.; Keating, K.; Verfaillie, J. G.; Hatala, J.; Baldocchi, D. D.; Byrd, K. B.; Windham-Myers, L.; Detto, M.; Fujii, R.

    2011-12-01

    Our research efforts focus on the differences in carbon and energy fluxes due to the effects of water management on two 3.5-hectare restored wetlands on Twitchell Island in the Sacramento-San Joaquin Delta (Delta). These flux measurements are part of an ongoing, long-term study investigating management techniques to mitigate subsidence through atmospheric carbon sequestration and soil carbon storage. Wetlands were established in 1997, with the western wetland managed at a water depth of 25cm and the eastern wetland managed at a depth of 55cm. Over the past 14 years, the western pond has developed into a dense canopy of emergent marsh species with some floating vegetation. The eastern wetland is a combination of the same emergent marsh species and floating vegetation as the western wetland, but it also includes areas of open water, submerged vegetation, and algae. Carbon and energy flux measurements are collected using the eddy covariance method, comprised of a CSAT3 sonic anemometer, an open-path CO2/H2O infrared gas analyzer, and a closed-path tunable diode laser fast methane sensor. The Delta is a unique place as the temperate climate and clear summer skies are conducive for maximum daily CO2 uptake rates to be on the order of 30 ?mol m-2 s-1 or higher. These elevated rates of CO2 uptake were measured in the eastern wetland during 2002 through 2004. However, in 2010, maximum CO2 uptake rates were only about 10 ?mol m-2 s-1. We hypothesize that large mats of accumulating senescent material have slowed or stopped the growth of the emergent marsh species, which were not present during the measurements taken in 2002 through 2004. Additionally, we added CH4 flux measurements in 2010, and the anaerobic conditions created by permanent flooding resulted in rates of 250 nmol m-2 s-1 or higher. CH4 values are some of the highest observed compared to other Delta flux studies (rice, pasture, and natural wetlands), which yield measurements ranging from 10 - 100 nmol m-2 s-1. We tested our hypothesis in 2011 by moving the eddy covariance tower to the western pond, where the emergent marsh species are denser. Here we present results showing diurnal and seasonal trends of CO2 fluxes for years 2002-2004 and 2010-2011, and CH4 fluxes for years 2010-2011. To understand the influence of seasonal variability, we normalized fluxes with abiotic and biotic conditions, such as air, leaf, and water temperatures, differences in humidity, and changes in daily and seasonal variations in solar radiation. We also present results from a footprint algorithm designed to examine seasonal variances in the footprint from the 2010-2011 flux measurements. Lastly, we show and compare results from other ongoing flux studies in the Delta.

  8. Onsite Wastewater Treatment Systems: Constructed Wetlands

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    A constructed wetland system for domestic wastewater treatment is designed to mimic the natural wetland treatment process of Mother Nature. This publication explains the treatment, design, operation and maintenance of constructed wetlands....

  9. Techniques for Wetlands Construction and Management

    E-print Network

    Locke, Shawn; Frentress, C.; Cathey, James; Mason, C.; Hirsch, R.; Wagner, M.

    2007-09-04

    Wetlands are important ecosystems that contain a vast array of plants and animals. Wetlands perform a variety of vital functions, such as purifying water. This publication explains the role of wetlands and how to construct and manage them....

  10. 76 FR 777 - National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ...Corps of Engineers ZRIN 0710-ZA06 National Wetland Plant List AGENCY: U. S. Army Corps of...SUMMARY: The National Wetland Plant List (NWPL) is used to delineate wetlands for purposes of the Clean Water Act and...

  11. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Wetlands. 258.12 Section 258.12...Location Restrictions § 258.12 Wetlands. (a) New MSWLF units and lateral expansions shall not be located in wetlands, unless the owner or...

  12. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Wetlands. 258.12 Section 258.12...Location Restrictions § 258.12 Wetlands. (a) New MSWLF units and lateral expansions shall not be located in wetlands, unless the owner or...

  13. Onsite Wastewater Treatment Systems: Constructed Wetlands 

    E-print Network

    Lesikar, Bruce J.

    2008-10-23

    A constructed wetland system for domestic wastewater treatment is designed to mimic the natural wetland treatment process of Mother Nature. This publication explains the treatment, design, operation and maintenance of constructed wetlands....

  14. Mud On the Move: Measuring Suspended Sediment Concentrations within Tidal Wetlands in the San Francisco Estuary

    NASA Astrophysics Data System (ADS)

    Callaway, J.; Ferner, M.; Lacy, J. R.; Schile, L. M.

    2014-12-01

    Supply of suspended sediment is critical for the development and sustainability of tidal wetlands. Suspended sediment concentration (SSC) is also a key parameter used in calibrating wetland accretion models, which aid in understanding restoration dynamics and projecting resilience to sea-level rise. Despite the importance of suspended sediment, few field studies have directly measured SSC within tidal wetlands, relying instead on measurements in adjacent waters or focusing on long-term rates of sediment accretion. We refined and tested a simple method for collecting SSC samples within wetlands on an incoming high tide, using siphon collectors. Bottles were positioned during low tide at set locations along transects extending away from either channels or the lower boundary of the vegetated wetland. This sampling protocol was developed collaboratively, with substantial input from local wetland managers and other stakeholders within the San Francisco Bay area and beyond. Simultaneously, we measured time series of SSC, water level, and tidal currents in the subtidal shallows, on the intertidal mudflats, and in two channels within the wetland. We observed significant sediment export during king tides in the wetland channels. Cumulative suspended sediment flux (SSF) over four days during the January 2014 king tides was approximately 10 tons/m of channel width, towards the bay. During neap tides SSF in the channels was directed landward but was lower in magnitude. Elevated velocities in the channels during ebb king tides suggest that resuspension within the channels, rather than erosion of the wetland, accounts for much of the bayward SSF. Within the wetland, SSC from the siphon samplers was highest at the bayward end of the cross-shore transects, indicating landward sediment flux. Taken together with long term accretion data which indicates sediment accumulation within the wetland, our results suggest that sediment is primarily supplied across the wetland-Bay interface, and exported from the wetland through tidal channels. These findings are relevant to the design and monitoring of restored wetlands, which frequently rely on transport through breaches for sediment supply. They also indicate the importance of accounting for sediment export as well as import in modeling the response of wetlands to sea-level rise.

  15. Landscape ecological assessment and eco-tourism development in the South Dongting Lake Wetland, China.

    PubMed

    He, Ping; Wang, Bao-zhong

    2003-03-01

    As an important resource and the living environment of mankind, wetland has become gradually a highlight, strongly concerned and intensively studied by scientists and sociologists. The governments in the world and the whole society have been paying more and more attention on it. The Dongting Lake of China is regarded as an internationally important wetland. For a rational development and protection of the wetland, an investigation and studied on its resources and its value to tourism in the South Dongting Lake was conducted, to create an assessment system of the ecological landscapes, and to evaluate qualitatively and quantitatively the value of wetland landscape to the ecotourism. The results showed that the scenic value of the South Dongting Lake Wetland satisfied the criterion of AAAA grade of China national scenic attraction. The eco-tourism value of the landscape cultures in the South Dongting Lake Wetland was discussed with emphasis. It were formulated that a principle and frame of sustainable exploitation of the wetland landscapes and it was proposed as well that establishing a Wetland Park and developing eco-tourism in the South Dongting Lake Wetland is a fragile ecosystem with low resistance to the impact of the exploitation. Thus, we must pay intensively attention to the influence of exploitation on the landscape, take the ecological risk in account to employ a right countermeasure and avoid the negative affection. PMID:12765271

  16. Design, construction and performance of a horizontal subsurface flow wetland system in Australia.

    PubMed

    Bolton, Lise M W; Bolton, Keith G E

    2013-01-01

    Malabugilmah is a remote Aboriginal community located in Clarence Valley, Northern NSW, Australia. In 2006, seven horizontal subsurface flow wetland clusters consisting of 3 m × 2 m wetland cells in series were designed and constructed to treat septic tank effluent to a secondary level (Total Suspended Solids (TSS) < 30 mg/L and Biochemical Oxygen Demand (BOD5) <20 mg/L) and achieve >50% Total Nitrogen (TN) reduction, no net Total Phosphorus (TP) export and ?99.9% Faecal Coliform (FC) reduction. The wetland cell configuration allowed the wetlands to be located on steeper terrain, enabling effluent to be treated to a secondary level without the use of pumps. In addition to the water quality targets, the wetlands were designed and constructed to satisfy environmental, economic and social needs of the community. The wetland systems were planted with a local Australian wetland tree species which has become well established. Two wetland clusters have been monitored over the last 4 years. The wetlands have demonstrated to be robust over time, providing a high level of secondary treatment over an extended period. PMID:24225090

  17. World's wetlands. [Ecology and productivity

    SciTech Connect

    Patrick, R.

    1981-02-01

    The 70 million acres of wetlands represent a valuable US resource, providing spawning and nursery grounds for animals, productive areas for photosynthesis, cleansing water, and absorbing floods. Wetlands perform a valuable function in species diversification by nurturing vulnerable plants and animals. The formation of peat affects the carbon dioxide cycle by slowing the recycling of carbon dioxide. Research is needed to determine what will happen as development in the Arctic zones destroys peat and wetlands. (DCK)

  18. USDA Forest Service wetlands research

    SciTech Connect

    Bartuska, A.M. (USDA Forest Service, Washington, DC (United States))

    1993-05-01

    Wetland and riparian systems play a major role in flood control, water quality, and food chain support. Timber production, fisheries, and recreation vie economically as primary uses of forested wetlands. This article reviews current Forest Service research in the Intermountain Region, North Central Region, Northeast Region, Pacific Northwest Region, Rocky Mountain Region, and Southern Region. Future research areas are discussed: ecosystem processes, restoration and rehabilitation, management of the wetland resource, socioeconomic values, and landscape-scale links. 8 refs.

  19. Nitrate removal in shallow, open-water treatment wetlands.

    PubMed

    Jasper, Justin T; Jones, Zackary L; Sharp, Jonathan O; Sedlak, David L

    2014-10-01

    The diffuse biomat formed on the bottom of shallow, open-water unit process wetland cells contains suboxic zones that provide conditions conducive to NO3(-) removal via microbial denitrification, as well as anaerobic ammonium oxidation (anammox). To assess these processes, nitrogen cycling was evaluated over a 3-year period in a pilot-scale wetland cell receiving nitrified municipal wastewater effluent. NO3(-) removal varied seasonally, with approximately two-thirds of the NO3(-) entering the cell removed on an annual basis. Microcosm studies indicated that NO3(-) removal was mainly attributable to denitrification within the diffuse biomat (i.e., 80 ± 20%), with accretion of assimilated nitrogen accounting for less than 3% of the NO3(-) removed. The importance of denitrification to NO3(-) removal was supported by the presence of denitrifying genes (nirS and nirK) within the biomat. While modest when compared to the presence of denitrifying genes, a higher abundance of the anammox-specific gene hydrazine synthase (hzs) at the biomat bottom than at the biomat surface, the simultaneous presence of NH4(+) and NO3(-) within the biomat, and NH4(+) removal coupled to NO2(-) and NO3(-) removal in microcosm studies, suggested that anammox may have been responsible for some NO3(-) removal, following reduction of NO3(-) to NO2(-) within the biomat. The annual temperature-corrected areal first-order NO3(-) removal rate (k20 = 59.4 ± 6.2 m yr(-1)) was higher than values reported for more than 75% of vegetated wetlands that treated water in which NO3(-) was the primary nitrogen species (e.g., nitrified secondary wastewater effluent and agricultural runoff). The inclusion of open-water cells, originally designed for the removal of trace organic contaminants and pathogens, in unit-process wetlands may enhance NO3(-) removal as compared to existing vegetated wetland systems. PMID:25208126

  20. RESPONSE OF COASTAL RIVERINE AND MICROBIAL AND VEGETATION COMMUNITIES TO NUTRIENT LOADING GRADIENTS: MINING SURVEY DATA FOR CRITERIA DEVELOPMENT

    EPA Science Inventory

    A probabilistic survey of Lake Michigan coastal riverine wetlands demonstrated microbial, algal, and vegetation responses to gradients in nutrient loading and N:P ratios. Sediment porewater, exchangeable, and total nutrients were strongly correlated with historic loading rates, a...

  1. Temporal changes in wetland landscapes of a section of the St. Lawrence River, Canada

    NASA Astrophysics Data System (ADS)

    Jean, Martin; Bouchard, André

    1991-03-01

    Historical aerial photographs (from 1946 through 1983) were used to study and describe the nature and extent of changes in wetland vegetation of a section of the St. Lawrence River and to evaluate the relative importance of water level, fire, and vegetational development as causal factors of these historical changes. Data were encoded and analyzed using a geographical information system, autocorrelation, and Mantel tests. Results show three temporal patterns in wetland dynamics. First, some wetland zones have been reduced by human activities (urbanization, landfilling, canal dredging). The second group consists of wetland areas that remain stable and do not change over time. They are generally protected sites artificially maintained by water-level control. A third situation has occurred in the Lake Saint-François National Wildlife Area, where no significant wetland losses were detected, but where landscape structure has changed greatly. Modeling with Mantel tests suggests that, in the latter case, these changes in wetland landscape are related to the suppression of burning (fires set deliberately by Indians) since the purchase of the territory by the Canadian federal government. This situation has caused rapid replacement of wet meadows by Alnus rugosa scrub and a possible decline in habitat diversity.

  2. Hyperspectral remote sensing of vegetation

    USGS Publications Warehouse

    Thenkabail, Prasad S.; Lyon, John G.; Huete, Alfredo

    2011-01-01

    Hyperspectral narrow-band (or imaging spectroscopy) spectral data are fast emerging as practical solutions in modeling and mapping vegetation. Recent research has demonstrated the advances in and merit of hyperspectral data in a range of applications including quantifying agricultural crops, modeling forest canopy biochemical properties, detecting crop stress and disease, mapping leaf chlorophyll content as it influences crop production, identifying plants affected by contaminants such as arsenic, demonstrating sensitivity to plant nitrogen content, classifying vegetation species and type, characterizing wetlands, and mapping invasive species. The need for significant improvements in quantifying, modeling, and mapping plant chemical, physical, and water properties is more critical than ever before to reduce uncertainties in our understanding of the Earth and to better sustain it. There is also a need for a synthesis of the vast knowledge spread throughout the literature from more than 40 years of research.

  3. Application of wetland valuation techniques: Examples from Great Lakes Coastal wetlands

    SciTech Connect

    Amacher, G.S.; Brazee, R.J.; Bulkley, J.W.; Moll, R.A.

    1989-04-01

    Proper wetland valuation procedures have not been applied in the past to Michigan's coastal wetlands. Previous valuation studies fail to value individual wetland ecological functions and use improper techniques to derive wetland values. The results of previous studies hence undervalue Michigan wetlands. This report uses existing Michigan wetland data and proper economic methods to illustrate the utilization of proper economic methods to value recreational fishing, commercial, fishing, and real-estate benefits for Lake St. Clair and Saginaw Bay wetlands.

  4. National Wetlands Inventory Online Mapper

    NSDL National Science Digital Library

    The National Wetlands Inventory (NWI) online mapper displays current geospatially referenced information on the status, extent, characteristics and functions of wetland, riparian, deepwater and related aquatic habitats for the lower 48 States, Hawaii, Alaska, Puerto Rico, Guam, and Saipan. Users may zoom or pan to the desired area and view availability information for map scales either less than or greater than 1:100,000, and access wetland polygons, metadata and scans, or historic wetlands information. Other layers include cities and towns, roads and highways, zip code boundaries, U.S. Geological Survey map index outlines, and others. A tutorial on how to use the mapper is provided.

  5. Alteration of soil microbial communities and water quality in restored wetlands

    USGS Publications Warehouse

    Bossio, D.A.; Fleck, J.A.; Scow, K.M.; Fujii, R.

    2006-01-01

    Land usage is a strong determinant of soil microbial community composition and activity, which in turn determine organic matter decomposition rates and decomposition products in soils. Microbial communities in permanently flooded wetlands, such as those created by wetland restoration on Sacramento-San Joaquin Delta islands in California, function under restricted aeration conditions that result in increasing anaerobiosis with depth. It was hypothesized that the change from agricultural management to permanently flooded wetland would alter microbial community composition, increase the amount and reactivity of dissolved organic carbon (DOC) compounds in Delta waters; and have a predominant impact on microbial communities as compared with the effects of other environmental factors including soil type and agricultural management. Based on phospholipid fatty acid (PLFA) analysis, active microbial communities of the restored wetlands were changed significantly from those of the agricultural fields, and wetland microbial communities varied widely with soil depth. The relative abundance of monounsaturated fatty acids decreased with increasing soil depth in both wetland and agricultural profiles, whereas branched fatty acids were relatively more abundant at all soil depths in wetlands as compared to agricultural fields. Decomposition conditions were linked to DOC quantity and quality using fatty acid functional groups to conclude that restricted aeration conditions found in the wetlands were strongly related to production of reactive carbon compounds. But current vegetation may have had an equally important role in determining DOC quality in restored wetlands. In a larger scale analysis, that included data from wetland and agricultural sites on Delta islands and data from two previous studies from the Sacramento Valley, an aeration gradient was defined as the predominant determinant of active microbial communities across soil types and land usage. ?? 2005 Elsevier Ltd. All rights reserved.

  6. Nitrogen source tracking with delta(15)N content of coastal wetland plants in Hawaii.

    PubMed

    Bruland, Gregory L; MacKenzie, Richard A

    2010-01-01

    Inter- and intra-site comparisons of the nitrogen (N) stable isotope composition of wetland plant species have been used to identify sources of N in coastal areas. In this study, we compared delta(15)N values from different herbaceous wetland plants across 34 different coastal wetlands from the five main Hawaiian Islands and investigated relationships of delta(15)N with land use, human population density, and surface water quality parameters (i.e., nitrate, ammonium, and total dissolved N). The highest delta(15)N values were observed in plants from wetlands on the islands of Oahu (8.7-14.6 per thousand) and Maui (8.9-9.2 per thousand), whereas plants from wetlands on the islands of Kauai, Hawaii, and Molokai had delta(15)N values usually <4 per thousand. The enrichment in delta(15)N values in plant tissues from wetlands on Oahu and Maui was most likely a result of the more developed and densely populated watersheds on these two islands. Urban development within a 1000-m radius and population density were positively correlated to average delta(15)N vegetation values from each wetland site (r = 0.56 and 0.51, respectively; p < 0.001). This suggested that site mean delta(15)N values from mixed stands of wetland plants have potential as indices of N sources in coastal lowland wetlands in Hawaii and that certain sites on Oahu and Maui have experienced significant anthropogenic N loading. This information can be used to monitor future changes in N inputs to coastal wetlands throughout Hawaii and the Pacific. PMID:20048329

  7. Ecological effects of pipeline construction through deciduous forested wetlands, Midland County, Michigan

    SciTech Connect

    Zellmer, S.D. (Argonne National Lab., IL (United States)); Rastorfer, J.R. (Chicago State Univ., IL (United States). Dept. of Biological Sciences ANL/CSU Cooperative Herbarium, Chicago, IL (United States)); Van Dyke, G.D. (Trinity Christian Coll., Palos Heights, IL (United States). Dept. of Biology)

    1991-07-01

    Implementation of recent federal and state regulations promulgated to protect wetlands makes information on effects of gas pipeline rights-of-way (ROWs) in wetlands essential to the gas pipeline industry. This study is designed to record vegetational changes induced by the construction of a large-diameter gas pipeline through deciduous forested wetlands. Two second-growth forested wetland sites mapped as Lenawee soils, one mature and one subjected to recent selective logging, were selected in Midland County, Michigan. Changes in the adjacent forest and successional development on the ROW are being documented. Cover-class estimates are being made for understory and ROW plant species using 1 {times}1-m quadrats. Counts are also being made for all woody species with stems < 2 cm in diameter at breast height (dbh) in the same plots used for cover-class estimates. Individual stem diameters and species counts are being recorded for all woody understory and overstory plants with stems {ge}2 cm dbh in 10 {times} 10-m plots. Although analyses of the data have not been completed, preliminary analyses indicate that some destruction of vegetation at the ROW forest edge may have been avoidable during pipeline construction. Rapid regrowth of many native wetland plant species on the ROW occurred because remnants of native vegetation and soil-bearing propagules of existing species survived on the ROW after pipeline construction and seeding operations. 91 refs., 11 figs., 3 tabs.

  8. Restoration of Ailing Wetlands

    PubMed Central

    Schmitz, Oswald J.

    2012-01-01

    It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes) can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide. PMID:22291573

  9. Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers

    NASA Astrophysics Data System (ADS)

    Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf

    2014-08-01

    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity < 10) tidal zone of upper estuaries has been suggested to be more complex and locally influenced by geomorphological and hydrological features, the environmental dynamics of dissolved organic matter (DOM) and the environmental drivers controlling its source, transport, and fate have scarcely been evaluated. Here, we investigated the distribution patterns of DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity < 10) of the oligo/meso-haline zone for three distinct wetland-influenced rivers; namely the Bekanbeushi River, a cool-temperate river with estuarine lake in Hokkaido, Japan, the Harney River, a subtropical river with tidally-submerged mangrove fringe in Florida, USA, and the Judan River, a small, acidic, tropical rainforest river in Borneo, Malaysia. For the first two rivers, a clear decoupling between DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here indicate that upper estuarine oligo/meso-haline regions of coastal wetland rivers are highly dynamic with regard to the biogeochemical behavior of DOM.

  10. Water Requirement and Sustainable Development of Lake Wetlands

    Microsoft Academic Search

    Lei Zhiyi; Wu Ying

    2009-01-01

    A water balance model is established in this paper. The relationship between water requirement and lake ecosystem is built and reflected by the appropriate water level to protect lakes and wetlands. And some measures of controlling human management action with water limit are put forward by the example of the Baiyangdian Lake.

  11. Higher diversity of ammonia/ammonium-oxidizing prokaryotes in constructed freshwater wetland than natural coastal marine wetland.

    PubMed

    Wang, Yong-Feng; Gu, Ji-Dong

    2013-08-01

    Anaerobic ammonium-oxidizing (anammox) bacteria, aerobic ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) are three groups of ammonium/ammonia-oxidizing prokaryotes (AOPs) that are involved in the nitrogen cycle. This research compared the AOP communities in a constructed freshwater wetland with a natural coastal marine wetland in the subtropical Hong Kong. Both vegetated/rhizosphere and nonvegetated sediments were investigated to identify the effects of different macrophytes on the AOP communities. The polymerase chain reaction (PCR)-amplified gene fragments of 16S rRNA and archaeal and bacterial amoA (encoding the ammonia monooxygenase alpha subunit) were applied as molecular biomarkers to analyze the AOPs' phylogeny and diversity. Quantitative PCR was used to determine the abundances of AOPs in the sediments. The results showed that the relatively more heterogeneous freshwater wetland contained a broader range of phylotypes, higher diversity, more complex community structures, and more unevenly distributed abundances of AOPs than the coastal wetland. The effects of vegetation on the community structures of AOPs were plant-specific. The exotic Typha angustifolia affected the community structures of all AOPs and enhanced their abundances in the rhizosphere region. Both Phragmites australis and Cyperus malaccensis showed some effects on the community structures of AOB, but minimal effects on those of anammox bacteria or AOA. Kandelia obovata had almost no detectable effect on all AOPs due to their smaller size. This study suggested that the freshwater and coastal marine wetlands may have different contributions to the inorganic N removal due to the variations in AOP communities and plant types. PMID:23053083

  12. Evaluation of the biotic potential of microorganisms and higher plants to enhance the quality of constructed wetlands. Final report

    SciTech Connect

    Mays, D.A.; Floyd, M.; Taylor, R.W.; Sistani, K.

    1998-09-30

    A project was carried out from October 1, 1991 through September 30, 1998 to evaluate the growth of several species of wetland plants in constructed cells using mine spoil as a growth medium, to evaluate microbial diversity and finally, to demonstrate the concept on an actual strip-mined site. In order to gain background information for evaluation of constructed wetlands, several wetlands on both undisturbed and strip-mined areas were evaluated to determine the physical and chemical characteristics of the substrates as well as the vegetation characteristics. The research phase of this projects consisted of 10 wetland cells each 7x16 m in size with the water depth varying from 0 to 40 cm. The substrates were allowed to stabilize over winter and each cell was planted in the spring of 1993 with 18 plants each of cattail, maidencance, soft stem bulrush and pickerel weed. All cells were thickly vegetated by the end of the first growing season.

  13. Freshwater wetlands and wildlife

    SciTech Connect

    Sharitz, R.R.; Gibbons, J.W. (eds.)

    1989-01-01

    This volume is a product of the Freshwater Wetlands and Wildlife symposium held in Charleston, South Carolina, on March 24--27, 1986 and contains 94 papers. The stimulus for the symposium came from our interest in augmenting the findings of the long-term research programs on freshwater wetlands and wildlife that have been carried out on the US Department of Energy's Savannah River Site in South Carolina. The symposium provided a forum on an international scale for the exchange of data about freshwater ecosystems: their functions, uses, and their future. The papers in this volume address issues related to natural, man-managed, and degraded ecosystems. The volume is divided into two sections. The first section deals with the functions and values of wetlands, including their use as habitat for plants and animals, their role in trophic dynamics, and their basic processes. The second section treats the subject of their status and management, including techniques for assessing their value, laws for protecting them, and plans for properly managing them. Individual papers will be indexed and entered separately on the energy data base.

  14. Evaluation of Surface Hydrological Connectivity Between a Forested Coastal Wetland and Regulated Waters of the United States

    NASA Astrophysics Data System (ADS)

    Dean, D. D.; Wilcox, B. P.; Jacob, J. S.; Sipocz, A.; Munster, C.

    2008-12-01

    Rapid urbanization, industry, and agriculture have put enormous developmental pressure on coastal forested wetlands along the Texas coast. At least 97,000 acres of freshwater forested wetlands on the Texas coast have been lost since 1955, amid much larger losses of other coastal wetland types (TPWD-Texas Wetlands Conservation Plan, 1996). Some coastal wetlands are protected by federal regulations under the Clean Water Act in an effort to maintain wetland hydrological and ecological services, such as water quality improvement and flood control. However, federal protection of many important coastal wetlands is dependent upon documented proof of a hydrologic connection to federally protected Waters of the United States and reasonable influence on the quality of those waters. This study focuses on a 13 acre catchment of coastal flatwoods wetland with an ambiguous legal status because of a possible , but undocumented, hydrologic connection to regulated Waters of the United States. Documentation of the hydrologic connectivity of this type of wetland is critical because of the geographic extent of similar wetlands and their contributions to water quality. The objective of the study was to determine if a hydrologic connection exists, and if so, to quantify the strength of the connection. A surface connection was established based on runoff and rainfall data collected since April of 2005, with the wetland discharging surface water directly into an adjacent protected wetland. The connection was weak during dry years, but in years with average rainfall, surface runoff accounted for a much more significant portion of the water budget. These results suggest that runoff water from similar wetlands contributes directly to protected wetland waters, and may influence water quality downstream.

  15. Biogeochemical factors which regulate the formation and fate of sulfide in wetlands

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.; Lyons, W. Berry; Gaudette, H. E.

    1992-01-01

    Coastal wetland areas occupy a small percentage of the terrestrial environment yet are extremely productive regions which support rapid rates of belowground bacterial activity. Wetlands appear to be significant as biogenic sources of gaseous sulfur, carbon, and nitrogen. These gases are important as tracers of man's activities, and they influence atmospheric chemistry. The interactions among wetland biogeochemical processes regulate the anaerobic production of reduced gases and influence the fate of these volatiles. Therefore, spatial and temporal variations in hydrology, salinity, temperature and specification, and growth of vegetation affect the type and magnitude of gas emissions thus hindering predictive estimates of gas flux. Our research is divided into two major components, the first is the biogeochemical characterization of a selected tidal wetland area in terms of factors likely to regulate sulfide flux; the second is a direct measurement of gaseous sulfur flux as related to changes in these biogeochemical conditions. Presently, we are near completion of phase one.

  16. Correlation between aircraft MSS and LIDAR remotely sensed data on a forested wetland in South Carolina

    NASA Technical Reports Server (NTRS)

    Jensen, John R.; Hodgson, Michael E.; Mackey, Halkard E., Jr.; Krabill, William

    1987-01-01

    Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative cluster busting technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.

  17. Louisiana wetland water level monitoring using retracked TOPEX/POSEIDON altimetry

    USGS Publications Warehouse

    Lee, H.; Shum, C.K.; Yi, Y.; Ibaraki, M.; Kim, J.-W.; Braun, Andreas; Kuo, C.-Y.; Lu, Zhiming

    2009-01-01

    Previous studies using satellite radar altimetry to observe inland river and wetland water level changes usually spatially average high-rate (10-Hz for TOPEX, 18-Hz for Envisat) measurements. Here we develop a technique to apply retracking of TOPEX waveforms by optimizing the estimated retracked gate positions using the Offset Center of Gravity retracker. This study, for the first time, utilizes stacking of retracked TOPEX data over Louisiana wetland and concludes that the water level observed by each of 10-Hz data with along-track sampling of ~660 m exhibit variations, indicating detection of wetland dynamics. After further validations using nearby river gauges, we conclude that TOPEX is capable of measuring accurate water level changes beneath heavy-vegetation canopy region (swamp forest), and that it revealed wetland dynamic flow characteristics along track with spatial scale of 660 m or longer. ?? Taylor & Francis Group, LLC.

  18. Correlation between aircraft MSS and LIDAR remotely sensed data on a forested wetland in South Carolina

    SciTech Connect

    Jensen, J.R.; Hodgson, M.E.; Mackey, H.E. Jr.; Krabill, W.

    1987-01-01

    Wetlands in a portion of the Savannah River swamp forest, the Steel Creek Delta, were mapped using April 26, 1985 high-resolution aircraft multispectral scanner (MSS) data. Due to the complex spectral characteristics of the wetland vegetation, it was necessary to implement several techniques in the classification of the MSS imagery of the Steel Creek Delta. In particular, when performing unsupervised classification, an iterative ''cluster busting'' technique was used which simplified the cluster labeling process. In addition to the MSS data, light detecting and ranging (LIDAR) data were acquired by National Aeronautics and Space Administration (NASA) personnel along two flightlines over the Steel Creek Delta. These data were registered with the wetland classification map and correlated. Statistical analyses demonstrated that the laser derived canopy height information was significantly correlated with the Steel Creek Delta wetland classes encountered along the profiling transect of the LIDAR data.

  19. Association Between Wetland Disturbance and Biological Attributes in Floodplain Wetlands

    EPA Science Inventory

    Our study explored the relationship between agricultural related disturbance and variation in wetland biota. Our results are intended to provide resource managers with information and tools to asess the condition of floodplain wetlands and make better decisions in terms of their...

  20. Late Holocene vegetation and climate change at Moraine Bog, Tiedemann Glacier, southern Coast Mountains, British Columbia

    Microsoft Academic Search

    T. A. Arsenault; John J. Clague; R. W. Mathewes

    2007-01-01

    Moraine Bog lies just outside the outermost lateral moraine of Tiedemann Glacier in the southern Coast Mountains of British Columbia. A sediment core taken from the wetland was analyzed for pollen, magnetic susceptibility, and loss on ignition to reconstruct changes in vegetation and climate during the late Holocene. Vegetation changed little between about 3500 and 2400 14C years BP. A