Sample records for wheat straw composition

  1. Compostability and biodegradation study of PLA-wheat straw and PLA-soy straw based green composites in simulated composting bioreactor.

    PubMed

    Pradhan, Ranjan; Misra, Manjusri; Erickson, Larry; Mohanty, Amar

    2010-11-01

    A laboratory scale simulated composting facility (as per ASTM D 5338) was designed and utilized to determine and evaluate the extent of degradation of polylactic acid (PLA), untreated wheat and soy straw and injection moulded composites of PLA-wheat straw (70:30) and PLA-soy straw (70:30). The outcomes of the study revealed the suitability of the test protocol, validity of the test system and defined the compostability of the composites of PLA with unmodified natural substrate. The study would help to design composites using modified soy straw and wheat straw as reinforcement/filler to satisfy ASTM D 6400 specifications. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    PubMed Central

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  3. Multilevel composition fractionation process for high-value utilization of wheat straw cellulose.

    PubMed

    Chen, Hong-Zhang; Liu, Zhi-Hua

    2014-01-01

    Biomass refining into multiple products has gained considerable momentum due to its potential benefits for economic and environmental sustainability. However, the recalcitrance of biomass is a major challenge in bio-based product production. Multilevel composition fractionation processes should be beneficial in overcoming biomass recalcitrance and achieving effective conversion of multiple compositions of biomass. The present study concerns the fractionation of wheat straw using steam explosion, coupled with ethanol extraction, and that this facilitates the establishment of sugars and lignin platform and enables the production of regenerated cellulose films. The results showed that the hemicellulose fractionation yield was 73% under steam explosion at 1.6 MPa for 5.2 minutes, while the lignin fractionation yield was 90% by ethanol extraction at 160°C for 2 hours and with 60% ethanol (v/v). The cellulose yield reached up to 93% after steam explosion coupled with ethanol extraction. Therefore, cellulose sugar, hemicellulose sugar, and lignin platform were established effectively in the present study. Long fibers (retained by a 40-mesh screening) accounted for 90% of the total cellulose fibers, and the glucan conversion of short fibers was 90% at 9.0 hours with a cellulase loading of 25 filter paper units/g cellulose in enzymatic hydrolysis. Regenerated cellulose film was prepared from long fibers using [bmim]Cl, and the tensile strength and breaking elongation was 120 MPa and 4.8%, respectively. The cross-section of regenerated cellulose film prepared by [bmim]Cl displayed homogeneous structure, which indicated a dense architecture and a better mechanical performance. Multilevel composition fractionation process using steam explosion followed by ethanol extraction was shown to be an effective process by which wheat straw could be fractionated into different polymeric fractions with high yields. High-value utilization of wheat straw cellulose was achieved by

  4. Effect of Surface-Modified TiO2 Nanoparticles on the Anti-Ultraviolet Aging Performance of Foamed Wheat Straw Fiber/Polypropylene Composites

    PubMed Central

    Xuan, Lihui; Han, Guangping; Wang, Dong; Cheng, Wanli; Gao, Xun; Chen, Feng; Li, Qingde

    2017-01-01

    Surface modification and characterization of titanium dioxide (TiO2) nanoparticles and their roles in thermal, mechanical, and accelerated aging behavior of foamed wheat straw fiber/polypropylene (PP) composites are investigated. To improve the dispersion of nanoparticles and increase the possible interactions between wheat straw fiber and the PP matrix, the surface of the TiO2 nanoparticles was modified with ethenyltrimethoxy silane (A171), a silane coupling agent. The grafting of A171 on the TiO2 nanoparticles’ surface was characterized by Fourier transform infrared spectroscopy (FTIR). The wheat straw fibers treated with A171 and modified TiO2 nanoparticles were characterized by FTIR and thermogravimetric analysis (TGA). FTIR spectra confirmed that the organic functional groups of A171 were successfully grafted onto the TiO2 nanoparticles and wheat straw fibers, and the modified TiO2 nanoparticles were adsorbed onto the wheat straw fibers. Thermogravimetric analysis showed that a higher thermal stability of the wheat straw fiber was obtained with the modified TiO2 nanoparticles. The flexural, tensile, and impact properties were improved. A higher ultraviolet (UV) stability of the samples treated with modified TiO2 nanoparticles was exhibited by the study of the color change and loss in mechanical properties. PMID:28772816

  5. Fast modification on wheat straw outer surface by water vapor plasma and its application on composite material.

    PubMed

    Chen, Weimin; Xu, Yicheng; Shi, Shukai; Cao, Yizhong; Chen, Minzhi; Zhou, Xiaoyan

    2018-02-02

    The presence of non-poplar extracts, cutin, and wax layer in the wheat straw outer surface (WOS) greatly limit its application in bio-composite preparation. In this study, a dielectric-barrier-discharge plasma using water vapor as feeding gas was used to fast modify the WOS. The morphology, free radical concentrations, surface chemical components, and contact angles of WOS before and after plasma modification were investigated. Wheat straw was further prepared into wheat straw-based composites (WSC) and its bonding strength was evaluated by a paper tension meter. The results showed that water vapor plasma leads to the appearance of surface roughness, the generation of massive free radicals, and the introduction of oxygen-containing groups. In addition, both initial and equilibrium contact angle and the surface total free energy were significantly increased after plasma modification. These results synergistically facilitate the spread and permeation of adhesive onto the WOS and thus improve the bonding strength of all prepared WSCs. A good linear relationship between bonding strength and surface roughness parameters, contact angles, and total free energy were observed. In general, this study provided a time-saving and cost-effective modification method to realize WSC manufacture.

  6. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process.

    PubMed

    Snelders, Jeroen; Dornez, Emmie; Benjelloun-Mlayah, Bouchra; Huijgen, Wouter J J; de Wild, Paul J; Gosselink, Richard J A; Gerritsma, Jort; Courtin, Christophe M

    2014-03-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized and the mass balance studied. Cellulose pulp yield was 48% of straw dry matter, while it was 21% and 27% for the lignin and hemicellulose-rich fractions. Composition analysis showed that 67% of wheat straw xylan and 96% of lignin were solubilized during the process, resulting in cellulose pulp of 63% purity, containing 93% of wheat straw cellulose. The isolated lignin fraction contained 84% of initial lignin and had a purity of 78%. A good part of wheat straw xylan (58%) ended up in the hemicellulose-rich fraction, half of it as monomeric xylose, together with proteins (44%), minerals (69%) and noticeable amounts of acids used during processing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Coproduction of xylose, lignosulfonate and ethanol from wheat straw.

    PubMed

    Zhu, Shengdong; Huang, Wangxiang; Huang, Wenjing; Wang, Ke; Chen, Qiming; Wu, Yuanxin

    2015-06-01

    A novel integrated process to coproduce xylose, lignosulfonate and ethanol from wheat straw was investigated. Firstly, wheat straw was treated by dilute sulfuric acid and xylose was recovered from its hydrolyzate. Its optimal conditions were 1.0wt% sulfuric acid, 10% (w/v) wheat straw loading, 100°C, and 2h. Then the acid treated wheat straw was treated by sulfomethylation reagent and its hydrolyzate containing lignosulfonate was directly recovered. Its optimal conditions were 150°C, 15% (w/v) acid treated wheat straw loading, and 5h. Finally, the two-step treated wheat straw was converted to ethanol through enzymatic hydrolysis and microbial fermentation. Under optimal conditions, 1kg wheat straw could produce 0.225kg xylose with 95% purity, 4.16kg hydrolyzate of sulfomethylation treatment containing 5.5% lignosulfonate, 0.183kg ethanol and 0.05kg lignin residue. Compared to present technology, this process is a potential economically profitable wheat straw biorefinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of thermal pretreatment on chemical composition, physical structure and biogas production kinetics of wheat straw.

    PubMed

    Rajput, Asad Ayub; Zeshan; Visvanathan, Chettiyappan

    2018-05-21

    Hard lignocellulosic structure of wheat straw is the main hindrance in its anaerobic digestion. Thus, a laboratory scale batch experiment was conducted to study the effect of thermal pretreatment on anaerobic digestion of wheat straw. For this purpose, different thermal pretreatment temperatures of 120, 140, 160 and 180 °C were studied and the results were compared with raw wheat straw. Significant differences in biogas production were observed at temperature higher than 160 °C. Highest biogas yield of 615 Nml/gVS and volatile solids reduction of 69% was observed from wheat straw pretreated at 180 °C. Wheat straw pretreated at 180 °C showed 53% higher biogas yield as compared to untreated. Further, FTIR analysis revealed change in chemical bonds of lignocellulosic structure of wheat straw. Modified Gompertz model was best fitted on biogas production data and predicted shorter lag phase time and higher biogas production as the pretreatment temperature increased. Overall, change in lignocellulosic structure and increase in cellulose content were the main reason in enhancing biogas production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Oyster mushroom cultivation with rice and wheat straw.

    PubMed

    Zhang, Ruihong; Li, Xiujin; Fadel, J G

    2002-05-01

    Cultivation of the oyster mushroom, Pleurotus sajor-caju, on rice and wheat straw without nutrient supplementation was investigated. The effects of straw size reduction method and particle size, spawn inoculation level, and type of substrate (rice straw versus wheat straw) on mushroom yield, biological efficiency, bioconversion efficiency, and substrate degradation were determined. Two size reduction methods, grinding and chopping, were compared. The ground straw yielded higher mushroom growth rate and yield than the chopped straw. The growth cycles of mushrooms with the ground substrate were five days shorter than with the chopped straw for a similar particle size. However, it was found that when the straw was ground into particles that were too small, the mushroom yield decreased. With the three spawn levels tested (12%, 16% and 18%), the 12% level resulted in significantly lower mushroom yield than the other two levels. Comparing rice straw with wheat straw, rice straw yielded about 10% more mushrooms than wheat straw under the same cultivation conditions. The dry matter loss of the substrate after mushroom growth varied from 30.1% to 44.3%. The straw fiber remaining after fungal utilization was not as degradable as the original straw fiber, indicating that the fungal fermentation did not improve the feed value of the straw.

  10. Pyrolysis of agricultural biomass residues: Comparative study of corn cob, wheat straw, rice straw and rice husk.

    PubMed

    Biswas, Bijoy; Pandey, Nidhi; Bisht, Yashasvi; Singh, Rawel; Kumar, Jitendra; Bhaskar, Thallada

    2017-08-01

    Pyrolysis studies on conventional biomass were carried out in fixed bed reactor at different temperatures 300, 350, 400 and 450°C. Agricultural residues such as corn cob, wheat straw, rice straw and rice husk showed that the optimum temperatures for these residues are 450, 400, 400 and 450°C respectively. The maximum bio-oil yield in case of corn cob, wheat straw, rice straw and rice husk are 47.3, 36.7, 28.4 and 38.1wt% respectively. The effects of pyrolysis temperature and biomass type on the yield and composition of pyrolysis products were investigated. All bio-oils contents were mainly composed of oxygenated hydrocarbons. The higher area percentages of phenolic compounds were observed in the corn cob bio-oil than other bio-oils. From FT-IR and 1 H NMR spectra showed a high percentage of aliphatic functional groups for all bio-oils and distribution of products is different due to differences in the composition of agricultural biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Alkali pretreated of wheat straw and its enzymatic hydrolysis.

    PubMed

    Han, Lirong; Feng, Juntao; Zhang, Shuangxi; Ma, Zhiqing; Wang, Yonghong; Zhang, Xing

    2012-01-01

    The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and sodium hydroxide (NaOH) treatment had high effect on the enzymatic hydrolysis of wheat straws. The optimal pretreatment condition was to grind the wheat straws into the sizes of 120 meshes followed by treatment with 1.0% NaOH for 1.5 h (121°C/15psi). Under this condition, the cellulose content of wheat straw was increased by 44.52%, while the content of hemicellulose and lignin was decreased by 44.15% and 42.52%, respectively. Scanning Electronic Microscopy and infrared spectrum analyses showed that significant changes occurred in the structure of wheat straws after pretreatment, which is favorable for the hydrolysis and saccharification. Cellulase produced by Penicillium waksmanii F10-2 was used to hydrolyze the pretreated wheat straw and the optimal condition was determined to be 30 h of enzymatic reaction under the temperature of 55°C, pH 5.5 and substrate concentration of 3%.

  12. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    PubMed

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Growth of Pleurotus ostreatus on wheat straw and wheat-grain-based media: Biochemical aspects and preparation of mushroom inoculum.

    PubMed

    Sainos, E; Díaz-Godínez, G; Loera, O; Montiel-González, A M; Sánchez, C

    2006-10-01

    Mycelial growth, intracellular activity of proteases, laccases and beta-1,3-glucanases, and cytoplasmic protein were evaluated in the vegetative phase of Pleurotus ostreatus grown on wheat straw and in wheat-grain-based media in Petri dishes and in bottles. The productivity of the wheat straw and wheat-grain-based spawn in cylindrical polyethylene bags containing 5 kg of chopped straw was also determined. We observed high activity of proteases and high content of intracellular protein in cultures grown on wheat straw. This suggests that the proteases are not secreted into the medium and that the protein is an important cellular reserve. On the contrary, cultures grown on wheat straw secreted laccases into the medium, which could be induced by this substrate. P. ostreatus grown on media prepared with a combination of wheat straw and wheat grain showed a high radial growth rate in Petri dishes and a high level of mycelial growth in bottles. The productivities of wheat straw and wheat-grain-based spawn were similar. Our results show that cheaper and more productive mushroom spawn can be prepared by developing the mycelium on wheat straw and wheat-grain-based substrates.

  14. The effect of particle size and amount of inoculum on fungal treatment of wheat straw and wood chips.

    PubMed

    van Kuijk, Sandra J A; Sonnenberg, Anton S M; Baars, Johan J P; Hendriks, Wouter H; Cone, John W

    2016-01-01

    The aim of this study was to optimize the fungal treatment of lignocellulosic biomass by stimulating the colonization. Wheat straw and wood chips were treated with Ceriporiopsis subvermispora and Lentinula edodes with various amounts of colonized millet grains (0.5, 1.5 or 3.0 % per g of wet weight of substrate) added to the substrates. Also, wheat straw and wood chips were chopped to either 0.5 or 2 cm. Effectiveness of the fungal treatment after 0, 2, 4, 6, or 8 wk of incubation was determined by changes in chemical composition, in vitro gas production (IVGP) as a measure for rumen degradability, and ergosterol content as a measure of fungal biomass. Incomplete colonization was observed for C. subvermispora treated wheat straw and L. edodes treated wood chips. The different particle sizes and amounts of inoculum tested, had no significant effects on the chemical composition and the IVGP of C. subvermispora treated wood chips. Particle size did influence L. edodes treatment of wheat straw. The L. edodes treatment of 2 cm wheat straw resulted in a more selective delignification and a higher IVGP than the smaller particles. Addition of 1.5 % or 3 % L. edodes inoculum to wheat straw resulted in more selective delignification and a higher IVGP than addition of 0.5 % inoculum. Particle size and amount of inoculum did not have an effect on C. subvermispora treatment of wood chips. At least 1.5 % L. edodes colonized millet grains should be added to 2 cm wheat straw to result in an increased IVGP and acid detergent lignin (ADL) degradation.

  15. Selective ligninolysis of wheat straw and wood chips by the white-rot fungus Lentinula edodes and its influence on in vitro rumen degradability.

    PubMed

    van Kuijk, Sandra J A; Del Río, José C; Rencoret, Jorge; Gutiérrez, Ana; Sonnenberg, Anton S M; Baars, Johan J P; Hendriks, Wouter H; Cone, John W

    2016-01-01

    The present work investigated the influence of lignin content and composition in the fungal treatment of lignocellulosic biomass in order to improve rumen degradability. Wheat straw and wood chips, differing in lignin composition, were treated with Lentinula edodes for 0, 2, 4, 8 and 12 wk and the changes occurring during fungal degradation were analyzed using pyrolysis-gas chromatography-mass spectrometry and detergent fiber analysis. L. edodes preferentially degraded lignin, with only limited cellulose degradation, in wheat straw and wood chips, leaving a substrate enriched in cellulose. Syringyl (S)-lignin units were preferentially degraded than guaiacyl (G)-lignin units, resulting in a decreased S/G ratio. A decreasing S/G ratio (wheat straw: r = -0.72, wood chips: r = -0.75) and selective lignin degradation (wheat straw: r = -0.69, wood chips: r = -0.88) were correlated with in vitro gas production (IVGP), a good indicator for rumen degradability. L. edodes treatment increased the IVGP of wheat straw and wood chips. Effects on IVGP were similar for wheat straw and wood chips indicating that lignin content and 3D-structure of cell walls influence in vitro rumen degradability more than lignin composition.

  16. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    PubMed Central

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  17. Effects of variety, cropping year, location and fertilizer application on nutritive value of durum wheat straw.

    PubMed

    Tolera, A; Tsegaye, B; Berg, T

    2008-04-01

    This study was carried out to assess the effects of variety, year, location and level of fertilizer application on chemical composition and in sacco dry matter (DM) degradability of durum wheat straw as well as to understand the relationship between straw quality and agronomic traits of the crop and to assess the possibilities of selecting wheat varieties that combine high grain yield with desirable straw quality. Two local (Arendeto and Tikur sinde) and two improved (Boohai and Gerardo) varieties of durum wheat (Triticum turgidum Desf.) were used in the experiment. The four varieties were grown at two locations (Akaki and Ejere) in the years 2001/2002 and 2002/2003 in 5 x 5 m plots in three replications. Diammonium phosphate and urea fertilizers were applied at four levels (0/0, 32/23, 41/23 and 64/46 kg/ha of nitrogen/phosphorus). Straw quality was assessed based on chemical composition and in sacco DM degradability. Correlation of straw quality with grain and straw yield and with other agronomic characteristics of the crop was determined. The potential utility index (a measure that integrates grain and digestible straw yield) was used for ranking of the varieties. The local varieties had higher crude protein (CP) and lower neutral detergent fibre contents and higher digestibility than the improved varieties. The cropping year and location had significant effect on CP content and degradability of the straw, which could be due to climatic variation. However, the fertilizer level did not have any significant effect on straw quality except that the CP content of the straw tended to increase with increasing level of fertilizer application. Based on the potential utility index the varieties ranked, in a decreasing order, as Tikur sinde > Arendeto > Gerardo > Boohai and the ranking was consistent across years and locations. Except the CP content, straw quality was not negatively correlated with grain and straw yield. This indicates that there is a possibility of

  18. Microbial production of biopolymers from the renewable resource wheat straw.

    PubMed

    Gasser, E; Ballmann, P; Dröge, S; Bohn, J; König, H

    2014-10-01

    Production of poly-ß-hydroxybutyrate (PHB) and the chemical basic compound lactate from the agricultural crop 'wheat straw' as a renewable carbon resource. A thermal pressure hydrolysis procedure for the breakdown of wheat straw was applied. By this means, the wheat straw was converted into a partially solubilized hemicellulosic fraction, consisting of sugar monomers, and an insoluble cellulosic fraction, containing cellulose, lignin and a small portion of hemicellulose. The insoluble cellulosic fraction was further hydrolysed by commercial enzymes in monomers. The production of PHB from the sugar monomers originating from hemicellulose or cellulose was achieved by the isolates Bacillus licheniformis IMW KHC 3 and Bacillus megaterium IMW KNaC 2. The basic chemical compound, lactate, a starting compound for the production of polylactide (PLA), was formed by some heterofermentative lactic acid bacteria (LAB) able to grow with xylose from the hemicellulosic wheat straw hydrolysate. Two strains were selected which were able to produce PHB from the sugars both from the hemicellulosic and the cellulosic fraction of the wheat straw. In addition, some of the LAB tested were capable of producing lactate from the hemicellulosic hydrolysate. The renewable resource wheat straw could serve as a substrate for microbiologically produced basic chemicals and biodegradable plastics. © 2014 The Society for Applied Microbiology.

  19. Nutraceutical and functional scenario of wheat straw.

    PubMed

    Pasha, Imran; Saeed, Farhan; Waqas, Khalid; Anjum, Faqir Muhammad; Arshad, Muhammad Umair

    2013-01-01

    In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.

  20. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw.

    PubMed

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B; Du, Chenyu

    2013-12-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    NASA Astrophysics Data System (ADS)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (<2.1 μm) was found with a sharp increase during the hazy days mostly due to the increased emissions of wheat straw burning. Molecular compositions of organic compounds in the fresh smoke particles from wheat straw burning demonstrate that sharply increased concentrations of glycerol and succinic and malic acids in the fine particles during the haze event were mainly derived from the field burning of wheat straw, although the sources of glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  2. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    NASA Astrophysics Data System (ADS)

    Zeng, Jijiao

    -GC-MS), thermogravimetric (TG) /differential thermogravimetric (DTG) and X-ray diffraction (XRD). Finally, the fungal secretomes and composition, functional groups, and structural changes of the fungal spent wheat straw lignin were determined. Milled wood lignin (MWL) was extracted from biological treated and untreaed wheat straw. Detailed structural analysis through two dimentional heteronuclear multiple quantum coherence nuclear magnetic resonances (2D HMQC NMR) of the pretreated lignin (acetylated) revealed low abundances of the substructures dibenzodioxacin and cinnamyl alcohol. Further analysis of lignin by Fourier transmission infrared (FTIR) and pyrolysis gas chromatography/ mass spectrometry (Py-GC/MS) demonstrated the significant decrease of guaiacyl units. The results support previous findings on the biodegradation of wheat straw as analyzed by 13C cross polarization magic angle spinning (CPMAS). Revealing the characteristic behavior of P. chrysosporium-mediated biomass degradation, the information presented in this paper offers new insight into the understanding of biological lignin degradation of wheat straw by P. chrysosporium.

  3. Thermal transitions of the amorphous polymers in wheat straw

    Treesearch

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2011-01-01

    The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under these conditions two transitions arising from the glass transition of lignin...

  4. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  5. Effect of wheat and Miscanthus straw biochars on soil enzymatic activity, ecotoxicity, and plant yield

    NASA Astrophysics Data System (ADS)

    Mierzwa-Hersztek, Monika; Gondek, Krzysztof; Klimkowicz-Pawlas, Agnieszka; Baran, Agnieszka

    2017-07-01

    The variety of technological conditions and raw materials from which biochar is produced is the reason why its soil application may have different effects on soil properties and plant growth. The aim of this study was to evaluate the effect of the addition of wheat straw and Miscanthus giganteus straw (5 t DM ha-1) and biochar obtained from this materials in doses of 2.25 and 5 t DM ha-1 on soil enzymatic activity, soil ecotoxicity, and plant yield (perennial grass mixture with red clover). The research was carried out under field conditions on soil with the granulometric composition of loamy sand. No significant effect of biochar amendment on soil enzymatic activity was observed. The biochar-amended soil was toxic to Vibrio fischeri and exhibited low toxicity to Heterocypris incongruens. Application of wheat straw biochar and M. giganteus straw biochar in a dose of 5 t DM ha-1 contributed to an increase in plant biomass production by 2 and 14%, respectively, compared to the soil with mineral fertilisation. Biochars had a more adverse effect on soil enzymatic activity and soil ecotoxicity to H. incongruens and V. fischeri than non-converted wheat straw and M. giganteus straw, but significantly increased the grass crop yield.

  6. Influence of straw incorporation with and without straw decomposer on soil bacterial community structure and function in a rice-wheat cropping system.

    PubMed

    Zhao, Jun; Ni, Tian; Xun, Weibing; Huang, Xiaolei; Huang, Qiwei; Ran, Wei; Shen, Biao; Zhang, Ruifu; Shen, Qirong

    2017-06-01

    To study the influence of straw incorporation with and without straw decomposer on bacterial community structure and biological traits, a 3-year field experiments, including four treatments: control without fertilizer (CK), chemical fertilizer (NPK), chemical fertilizer plus 7500 kg ha -1 straw incorporation (NPKS), and chemical fertilizer plus 7500 kg ha -1 straw incorporation and 300 kg ha -1 straw decomposer (NPKSD), were performed in a rice-wheat cropping system in Changshu (CS) and Jintan (JT) city, respectively. Soil samples were taken right after wheat (June) and rice (October) harvest in both sites, respectively. The NPKS and NPKSD treatments consistently increased crop yields, cellulase activity, and bacterial abundance in both sampling times and sites. Moreover, the NPKS and NPKSD treatments altered soil bacterial community structure, particularly in the wheat harvest soils in both sites, separating from the CK and NPK treatments. In the rice harvest soils, both NPKS and NPKSD treatments had no considerable impacts on bacterial communities in CS, whereas the NPKSD treatment significantly shaped bacterial communities compared to the other treatments in JT. These practices also significantly shifted the bacterial composition of unique operational taxonomic units (OTUs) rather than shared OTUs. The relative abundances of copiotrophic bacteria (Proteobacteria, Betaproteobacteria, and Actinobacteria) were positively correlated with soil total N, available N, and available P. Taken together, these results indicate that application of straw incorporation with and without straw decomposer could particularly stimulate the copiotrophic bacteria, enhance the soil biological activity, and thus, contribute to the soil productivity and sustainability in agro-ecosystems.

  7. Metataxonomic profiling and prediction of functional behaviour of wheat straw degrading microbial consortia

    PubMed Central

    2014-01-01

    Background Mixed microbial cultures, in which bacteria and fungi interact, have been proposed as an efficient way to deconstruct plant waste. The characterization of specific microbial consortia could be the starting point for novel biotechnological applications related to the efficient conversion of lignocellulose to cello-oligosaccharides, plastics and/or biofuels. Here, the diversity, composition and predicted functional profiles of novel bacterial-fungal consortia are reported, on the basis of replicated aerobic wheat straw enrichment cultures. Results In order to set up biodegradative microcosms, microbial communities were retrieved from a forest soil and introduced into a mineral salt medium containing 1% of (un)treated wheat straw. Following each incubation step, sequential transfers were carried out using 1 to 1,000 dilutions. The microbial source next to three sequential batch cultures (transfers 1, 3 and 10) were analyzed by bacterial 16S rRNA gene and fungal ITS1 pyrosequencing. Faith’s phylogenetic diversity values became progressively smaller from the inoculum to the sequential batch cultures. Moreover, increases in the relative abundances of Enterobacteriales, Pseudomonadales, Flavobacteriales and Sphingobacteriales were noted along the enrichment process. Operational taxonomic units affiliated with Acinetobacter johnsonii, Pseudomonas putida and Sphingobacterium faecium were abundant and the underlying strains were successfully isolated. Interestingly, Klebsiella variicola (OTU1062) was found to dominate in both consortia, whereas K. variicola-affiliated strains retrieved from untreated wheat straw consortia showed endoglucanase/xylanase activities. Among the fungal players with high biotechnological relevance, we recovered members of the genera Penicillium, Acremonium, Coniochaeta and Trichosporon. Remarkably, the presence of peroxidases, alpha-L-fucosidases, beta-xylosidases, beta-mannases and beta-glucosidases, involved in lignocellulose

  8. Cellulase production using different streams of wheat grain- and wheat straw-based ethanol processes.

    PubMed

    Gyalai-Korpos, Miklós; Mangel, Réka; Alvira, Pablo; Dienes, Dóra; Ballesteros, Mercedes; Réczey, Kati

    2011-07-01

    Pretreatment is a necessary step in the biomass-to-ethanol conversion process. The side stream of the pretreatment step is the liquid fraction, also referred to as the hydrolyzate, which arises after the separation of the pretreated solid and is composed of valuable carbohydrates along with compounds that are potentially toxic to microbes (mainly furfural, acetic acid, and formic acid). The aim of our study was to utilize the liquid fraction from steam-exploded wheat straw as a carbon source for cellulase production by Trichoderma reesei RUT C30. Results showed that without detoxification, the fungus failed to utilize any dilution of the hydrolyzate; however, after a two-step detoxification process, it was able to grow on a fourfold dilution of the treated liquid fraction. Supplementation of the fourfold-diluted, treated liquid fraction with washed pretreated wheat straw or ground wheat grain led to enhanced cellulase (filter paper) activity. Produced enzymes were tested in hydrolysis of washed pretreated wheat straw. Supplementation with ground wheat grain provided a more efficient enzyme mixture for the hydrolysis by means of the near-doubled β-glucosidase activity obtained.

  9. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    PubMed

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  10. Optimization of furfural and 5-hydroxymethylfurfural production from wheat straw by a microwave-assisted process.

    PubMed

    Yemiş, Oktay; Mazza, Giuseppe

    2012-04-01

    Optimization of acid-catalyzed conversion conditions of wheat straw into furfural, 5-hydroxymethylfurfural (HMF), glucose, and xylose was studied by response surface methodology (RSM). A central composite design (CCD) was used to determine the effects of independent variables, including reaction temperature (140-200 °C), residence time (1-41 min), pH (0.1-2.1), and liquid:solid ratio (15-195 mL/g) on furan and sugar production. The surface response analysis revealed that temperature, time and pH had a strong influence on the furfural, HMF, xylose and glucose yield, whereas liquid to solid ratio was found not to be significant. The initial pH of solution was the most important variable in acid-catalyzed conversion of wheat straw to furans. The maximum predicted furfural, HMF, xylose and glucose yields were 66%, 3.4%, 100%, and 65%, respectively. This study demonstrated that the microwave-assisted process was a very effective method for the xylose production from wheat straw by diluted acid catalysis. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  11. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen.

    PubMed

    Jin, Wei; Wang, Ying; Li, Yuanfei; Cheng, Yanfen; Zhu, Weiyun

    2018-04-01

    This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Production of bioethanol from wheat straw: An overview on pretreatment, hydrolysis and fermentation.

    PubMed

    Talebnia, Farid; Karakashev, Dimitar; Angelidaki, Irini

    2010-07-01

    Wheat straw is an abundant agricultural residue with low commercial value. An attractive alternative is utilization of wheat straw for bioethanol production. However, production costs based on the current technology are still too high, preventing commercialization of the process. In recent years, progress has been made in developing more effective pretreatment and hydrolysis processes leading to higher yield of sugars. The focus of this paper is to review the most recent advances in pretreatment, hydrolysis and fermentation of wheat straw. Based on the type of pretreatment method applied, a sugar yield of 74-99.6% of maximum theoretical was achieved after enzymatic hydrolysis of wheat straw. Various bacteria, yeasts and fungi have been investigated with the ethanol yield ranging from 65% to 99% of theoretical value. So far, the best results with respect to ethanol yield, final ethanol concentration and productivity were obtained with the native non-adapted Saccharomyses cerevisiae. Some recombinant bacteria and yeasts have shown promising results and are being considered for commercial scale-up. Wheat straw biorefinery could be the near-term solution for clean, efficient and economically-feasible production of bioethanol as well as high value-added products. Copyright 2009 Elsevier Ltd. All rights reserved.

  13. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    PubMed

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    PubMed Central

    Mengeloglu, Fatih; Karakus, Kadir

    2008-01-01

    Thermal behaviors of wheat straw flour (WF) filled thermoplastic composites were measured applying the thermogravimetric analysis and differential scanning calorimetry. Morphology and mechanical properties were also studied using scanning electron microscope and universal testing machine, respectively. Presence of WF in thermoplastic matrix reduced the degradation temperature of the composites. One for WF and one for thermoplastics, two main decomposition peaks were observed. Morphological study showed that addition of coupling agent improved the compatibility between WFs and thermoplastic. WFs were embedded into the thermoplastic matrix indicating improved adhesion. However, the bonding was not perfect because some debonding can also be seen on the interface of WFs and thermoplastic matrix. In the case of mechanical properties of WF filled recycled thermoplastic, HDPE and PP based composites provided similar tensile and flexural properties. The addition of coupling agents improved the properties of thermoplastic composites. MAPE coupling agents performed better in HDPE while MAPP coupling agents were superior in PP based composites. The composites produced with the combination of 50-percent mixture of recycled HDPE and PP performed similar with the use of both coupling agents. All produced composites provided flexural properties required by the ASTM standard for polyolefin-based plastic lumber decking boards. PMID:27879719

  15. Potential of pelleted wheat straw as an alternative bedding material for broilers.

    PubMed

    Kheravii, S K; Swick, R A; Choct, M; Wu, S-B

    2017-06-01

    Broiler chickens are commonly placed on wood shavings as litter, but alternative litter sources are required due to the scarcity of wood shavings in many parts of the world. This study aimed to compare pelleted straw, chopped wheat straw, wood shavings, rice hulls, and shredded paper as litter candidates. Three-hundred-sixty Ross 308 one-day-old male chicks were used in this study. There were 5 litter treatments with 6 replicate pens, each with 12 birds. The feed conversion ratio (FCR) of birds reared on pelleted straw was improved compared (P < 0.05) to that of birds raised on rice hulls, whereas it did not differ for birds placed on wood shavings, rice hulls, chopped straw, or shredded paper. It was observed that the birds reared on wood shavings had higher relative gizzard weight at d 24 compared to those reared on pelleted straw (P < 0.05). Gizzard pH and measured cecal bacterial groups were not affected by the type of bedding material. Cecal bacterial groups measured at d 10 were not affected by bedding material. Birds reared on pelleted wheat straw had a lower incidence of footpad lesions than those on chopped straw and shredded paper on d 24 (P < 0.001) and 29 (P < 0.01). Litter source did not affect the occurrence of breast blisters at d 24, 29, or 35. On d 24, 29, and 35, pelleted straw litter was less caked than chopped straw and shredded paper (P < 0.001) whereas no significant differences were observed among pelleted straw, wood shavings, and rice hulls. The study demonstrated the potential benefits to using pelleted wheat straw as a bedding material. Further assessment of pelleting of wheat straw and other materials on broiler health, performance, and welfare are needed to determine the economic benefits of pelleted litter. © 2017 Poultry Science Association Inc.

  16. Induction of wheat straw delignification by Trametes species

    PubMed Central

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M.; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  17. Chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of potato-wheat straw silage treated with molasses and lactic acid bacteria and corn silage.

    PubMed

    Babaeinasab, Y; Rouzbehan, Y; Fazaeli, H; Rezaei, J

    2015-09-01

    The aim of this study was to determine the effect of molasses and lactic acid bacteria (LAB) on the chemical composition, silage fermentation characteristics, and in vitro ruminal fermentation parameters of an ensiled potato-wheat straw mixture in a completely randomized design with 4 replicates. Wheat straw was harvested at full maturity and potato tuber when the leaves turned yellowish. The potato-wheat straw (57:43 ratio, DM basis) mixture was treated with molasses, LAB, or a combination. Lalsil Fresh LB (Lallemand, France; containing NCIMB 40788) or Lalsil MS01 (Lallemand, France; containing MA18/5U and MA126/4U) were each applied at a rate of 3 × 10 cfu/g of fresh material. Treatments were mixed potato-wheat straw silage (PWSS) without additive, PWSS inoculated with Lalsil Fresh LB, PWSS inoculated with Lalsil MS01, PWSS + 5% molasses, PWSS inoculated with Lalsil Fresh LB + 5% molasses, PWSS inoculated with Lalsil MS01 + 5% molasses, and corn silage (CS). The compaction densities of PWSS treatments and CS were approximately 850 and 980 kg wet matter/m, respectively. After anaerobic storage for 90 d, chemical composition, silage fermentation characteristics, in vitro gas production (GP), estimated OM disappearance (OMD), ammonia-N, VFA, microbial CP (MCP) production, and cellulolytic bacteria count were determined. Compared to CS, PWSS had greater ( < 0.001) values of DM, ADL, water-soluble carbohydrates, pH, and ammonia-N but lower ( < 0.05) values of CP, ash free-NDF (NDFom), ash, nitrate, and lactic, acetic, propionic, and butyric acids concentrations. When PWSS was treated with molasses, LAB, or both, the contents of CP and lactic and acetic acids increased, whereas NDFom, ammonia-N, and butyric acid decreased ( < 0.05). Based on in vitro ruminal experiments, PWSS had greater ( < 0.05) values of GP, OMD, and MCP but lower ( < 0.05) VFA and acetic acid compared to CS. With adding molasses alone or in combination with LAB inoculants to PWSS, the values of GP

  18. Scale-up of wheat straw conversion to fuel ethanol at 100 liter scale

    USDA-ARS?s Scientific Manuscript database

    Wheat straw can serve as low cost feedstock for conversion to ethanol. Pretreatment is crucial prior to enzymatic hydrolysis. We have used dilute H2SO4 pretreatment at a high temperature for pretreatment of wheat straw. The pretreated hydrolyzate was bioabated using a novel fungal strain able to ...

  19. Improving enzymatic hydrolysis efficiency of wheat straw through sequential autohydrolysis and alkaline post-extraction.

    PubMed

    Wu, Xinxing; Huang, Chen; Zhai, Shengcheng; Liang, Chen; Huang, Caoxing; Lai, Chenhuan; Yong, Qiang

    2018-03-01

    In this work, a two-step pretreatment process of wheat straw was established by combining autohydrolysis pretreatment and alkaline post-extraction. The results showed that employing alkaline post-extraction to autohydrolyzed wheat straw could significantly improve its enzymatic hydrolysis efficiency from 36.0% to 83.7%. Alkaline post-extraction lead to the changes of the structure characteristics of autohydrolyzed wheat straw. Associations between enzymatic hydrolysis efficiency and structure characteristics were also studied. The results showed that the factors of structure characteristics such as delignification, xylan removal yield, crystallinity, accessibility and hydrophobicity are positively related to enzymatic hydrolysis efficiency within a certain range for alkaline post-extracted wheat straw. The results demonstrated that autohydrolysis coupled with alkaline post-extraction is an effective and promising method to gain fermentable sugars from biomass. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Effect of Pleurotus ostreatus and Erwinia carotovora on wheat straw digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Streeter, C.L.; Conway, K.E.; Horn, G.W.

    1981-11-01

    The objectives of this study were to determine whether growing Pleurotus ostreatus and Erwinia carotovora on wheat straw would synergistically improve the digestibility of straw and whether there was a necessity of sterilizing the straw by autoclaving prior to inoculation. Dry matter decomposition of autoclaved and non-autoclaved straw was similar when both organisms were used in the system after 28 days incubation. However, in vitro ruminal dry matter digestibility of straw was significantly improved (P less than 10) only when the straw was autoclaved prior to inoculation with both organisms. (Refs. 21).

  1. Effects of grinding processes on enzymatic degradation of wheat straw.

    PubMed

    Silva, Gabriela Ghizzi D; Couturier, Marie; Berrin, Jean-Guy; Buléon, Alain; Rouau, Xavier

    2012-01-01

    The effectiveness of wheat straw fine to ultra-fine grindings at pilot scale was studied. The produced powders were characterised by their particle-size distribution (laser diffraction), crystallinity (WAXS) and enzymatic degradability (Trichoderma reesei enzymatic cocktail). A large range of wheat-straw powders was produced: from coarse (median particle size ∼800 μm) to fine particles (∼50 μm) using sieve-based grindings, then ultra-fine particles ∼20 μm by jet milling and ∼10 μm by ball milling. The wheat straw degradability was enhanced by the decrease of particle size until a limit: ∼100 μm, up to 36% total carbohydrate and 40% glucose hydrolysis yields. Ball milling samples overcame this limit up to 46% total carbohydrate and 72% glucose yields as a consequence of cellulose crystallinity reduction (from 22% to 13%). Ball milling appeared to be an effective pretreatment with similar glucose yield and superior carbohydrate yield compared to steam explosion pretreatment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Combined effect of enzyme inducers and nitrate on selective lignin degradation in wheat straw by Ganoderma lobatum.

    PubMed

    Hermosilla, Edward; Schalchli, Heidi; Mutis, Ana; Diez, María Cristina

    2017-09-01

    Lignin is one of the main barriers to obtaining added-value products from cellulosic fraction of lignocellulosic biomass due to its random aromatic structure and strong association with cellulose and hemicellulose. Inorganic and organic compounds have been used as enzyme inducers to increase the ligninolytic potential of white-rot fungi, without considering their effect on the selectivity of degradation. In this study, the selective lignin degradation in wheat straw by Ganoderma lobatum was optimized using a central composite design to evaluate the combined effect of Fe 2+ and Mn 2+ as inducers of ligninolytic enzymes and NO 3 - as an additional nitrogen source. Selective lignin degradation was promoted to maximize lignin degradation and minimize weight losses. The optimal conditions were 0.18 M NO 3 - , 0.73 mM Fe 2+ , and 1 mM Mn 2+ , which resulted in 50.0% lignin degradation and 18.5% weight loss after 40 days of fungal treatment. A decrease in absorbance at 1505 and 900 cm -1 in fungal-treated samples was observed in the FTIR spectra, indicating lignin and cellulose degradation in fungal-treated wheat straw, respectively. The main ligninolytic enzymes detected during lignin degradation were manganese-dependent and manganese-independent peroxidases. Additionally, confocal laser scanning microscopy revealed that lignin degradation in wheat straw by G. lobatum resulted in higher cellulose accessibility. We concluded that the addition of enzyme inducers and NO 3 - promotes selective lignin degradation in wheat straw by G. lobatum.

  3. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass.

    PubMed

    Petrik, Siniša; Kádár, Zsófia; Márová, Ivana

    2013-04-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw into ethanol, simultaneous saccharification and fermentation of S. cerevisiae was performed under semi-anaerobic conditions. The highest ethanol production efficiency of 65-66% was obtained following pretreatment at 200°C without the catalytic action of acetic acid, and at 195 and 200°C respectively in the presence of catalyst. Red yeast strain S. roseus produced 1.73-2.22 mg g(-1) of ergosterol on the filter cake, 1.15-4.17 mg g(-1) of ergosterol and 1.23-1.56 mg g(-1) of β-carotene on pretreated wheat straw hydrolysates and also the highest amount of carotenoids and ergosterol on untreated wheat straw (1.70 and 4.17 mg g(-1), respectively). Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Xylanase and β-xylosidase production by Aspergillus ochraceus: new perspectives for the application of wheat straw autohydrolysis liquor.

    PubMed

    Michelin, Michele; Polizeli, Maria de Lourdes T M; Ruzene, Denise S; Silva, Daniel P; Vicente, António A; Jorge, João A; Terenzi, Héctor F; Teixeira, José A

    2012-01-01

    The xylanase biosynthesis is induced by its substrate-xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

  5. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed

    PubMed Central

    Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander

    2014-01-01

    Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here “Biotech Feed” was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was also observed to be significantly enriched with essential amino acids and fungal protein by fungal fermentation, eventually increasing its nutritional value. The Biotech Feed upon in vitro analysis showed potential to replace 50% grain from concentrate mixture. Further, the calves fed on Biotech Feed based diets exhibited significantly higher (p<0.05) dry matter intake (DMI: 3.74 Kg/d), dry matter digestibility (DMD: 57.82%), total digestible nutrients (TDN: 54.76%) and comparatively gained 50 g more daily body weight. PMID:25269679

  6. Enhanced yields and soil quality in a wheat-maize rotation using buried straw mulch.

    PubMed

    Guo, Zhibin; Liu, Hui; Wan, Shuixia; Hua, Keke; Jiang, Chaoqiang; Wang, Daozhong; He, Chuanlong; Guo, Xisheng

    2017-08-01

    Straw return may improve soil quality and crop yields. In a 2-year field study, a straw return method (ditch-buried straw return, DB-SR) was used to investigate the soil quality and crop productivity effects on a wheat-corn rotation system. This study consisted of three treatments, each with three replicates: (1) mineral fertilisation alone (CK0); (2) mineral fertilisation + 7500 kg ha -1 wheat straw incorporated at depth of 0-15 cm (NPKWS); and (3) mineral fertilisation + 7500 kg ha -1 wheat straw ditch buried at 15-30 cm (NPKDW). NPKWS and NPKDW enhanced crop yield and improved soil biotical properties compared to mineral fertilisation alone. NPKDW contributed to greater crop yields and soil nutrient availability at 15-30 cm depths, compared to NPKWS treatment. NPKDW enhanced soil microbial activity and bacteria species richness and diversity in the 0-15 cm layer. NPKWS increased soil microbial biomass, bacteria species richness and diversity at 15-30 cm. The comparison of the CK0 and NPKWS treatments indicates that a straw ditch buried by digging to the depth of 15-30 cm can improve crop yields and soil quality in a wheat-maize rotation system. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    PubMed

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  8. Properties of Wheat-Straw Boards with Frw Based on Interface Treatment

    NASA Astrophysics Data System (ADS)

    Zhu, X. D.; Wang, F. H.; Liu, Y.

    This paper explored the effect of MDI, UF and FRW content on the mechanical and fire retardant property of straw based panels with surface alkali liquor processing. In order to manufacture the straw based panel with high quality, low toxic and fire retardant, the interface of wheat-straw was treated with alkaline liquid, and the orthogonal test was carried out to optimize the technical parameters. The conductivity and diffusion coefficient K of the straw material after alkaline liquid treatment increased obviously. This indicated that alkaline liquid treatment improved the surface wet ability of straw, which is helpful for the infiltration of resin. The results of orthogonal test showed that the optimized treating condition was alkaline liquid concentration as 0.4-0.8%, alkaline dosage as 1:2.5-1:4.5, alkalinetreated time as 12h-48 h.The physical and mechanical properties of wheat-straw boards after treated increased remarkably and it could satisfy the national standard. The improvement of the straw surface wet ability is helpful to the forming of chemical bond. Whereas the variance analysis of the fire retardant property of straw based panel showed that TTI, pkHRR and peak value appearance time were not affected by the MDI, UF and FRW content significantly. The results of orthogonal test showed that the optimized processing condition was MDI content as 3%, UF resin content as 6% and the FRW content as 10%.

  9. [Effects of nitrogen application rates and straw returning on nutrient balance and grain yield of late sowing wheat in rice-wheat rotation].

    PubMed

    Zhang, Shan; Shi, Zu-liang; Yang, Si-jun; Gu, Ke-jun; Dai, Ting-bo; Wang, Fei; Li, Xiang; Sun, Ren-hua

    2015-09-01

    Field experiments were conducted to study the effects of nitrogen application rates and straw returning on grain yield, nutrient accumulation, nutrient release from straw and nutrient balance in late sowing wheat. The results showed that straw returning together with appropriate application of nitrogen fertilizer improved the grain yield. Dry matter, nitrogen, phosphorus and potassium accumulation increased significantly as the nitrogen application rate increased. At the same nitrogen application rate (270 kg N · hm(-2)), the dry matter, phosphorus and potassium accumulation of the treatment with straw returning were higher than that without straw returning, but the nitrogen accumulation was lower. Higher-rate nitrogen application promoted straw decomposition and nutrient release, and decreased the proportion of the nutrient released from straw after jointing. The dry matter, phosphorus and potassium release from straw showed a reverse 'N' type change with the wheat growing, while nitrogen release showed a 'V' type change. The nutrient surplus increased significantly with the nitrogen application rate. At the nitrogen application rate for the highest grain yield, nitrogen and potassium were surplus significantly, and phosphorus input could keep balance. It could be concluded that as to late sowing wheat with straw returning, applying nitrogen at 257 kg · hm(-2) and reducing potassium fertilizer application could improve grain yield and reduce nutrients loss.

  10. Enzymatic saccharification of biologically pre-treated wheat straw with white-rot fungi.

    PubMed

    Dias, Albino A; Freitas, Gil S; Marques, Guilhermina S M; Sampaio, Ana; Fraga, Irene S; Rodrigues, Miguel A M; Evtuguin, Dmitry V; Bezerra, Rui M F

    2010-08-01

    Wheat straw was submitted to a pre-treatment by the basidiomycetous fungi Euc-1 and Irpex lacteus, aiming to improve the accessibility of cellulose towards enzymatic hydrolysis via previous selective bio-delignification. This allowed the increase of substrate saccharification nearly four and three times while applying the basidiomycetes Euc-1 and I. lacteus, respectively. The cellulose/lignin ratio increased from 2.7 in the untreated wheat straw to 5.9 and 4.6 after the bio-treatment by the basidiomycetes Euc-1 and I. lacteus, respectively, thus evidencing the highly selective lignin biodegradation. The enzymatic profile of both fungi upon bio-treatment of wheat straw have been assessed including laccase, manganese-dependent peroxidase, lignin peroxidase, carboxymethylcellulase, xylanase, avicelase and feruloyl esterase activities. The difference in efficiency and selectivity of delignification within the two fungi treatments was interpreted in terms of specific lignolytic enzyme profiles and moderate xylanase and cellulolytic activities. (c) 2010 Elsevier Ltd. All rights reserved.

  11. Production of ethyl levulinate by direct conversion of wheat straw in ethanol media.

    PubMed

    Chang, Chun; Xu, Guizhuan; Jiang, Xiaoxian

    2012-10-01

    The production of ethyl levulinate from wheat straw by direct conversion in ethanol media was investigated. Response surface methodology (RSM) was applied to optimize the effects of processing parameters, and the regression analysis was performed on the data obtained. A close agreement between the experimental results and the model predictions was achieved. The optimal conditions for ethyl levulinate production from wheat straw were acid concentration 2.5%, reaction temperature 183°C, mass ratio of liquid to solid 19.8 and reaction time 36 min. Under the optimum conditions, the yield of ethyl levulinate 17.91% was obtained, representing a theoretical yield of 51.0%. The results suggest that wheat straw can be used as potential raw materials for the production of ethyl levulinate by direct conversion in ethanol media. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Ozone pretreatment and fermentative hydrolysis of wheat straw

    NASA Astrophysics Data System (ADS)

    Ben'ko, E. M.; Chukhchin, D. G.; Lunin, V. V.

    2017-11-01

    Principles of the ozone pretreatment of wheat straw for subsequent fermentation into sugars are investigated. The optimum moisture contents of straw in the ozonation process are obtained from data on the kinetics of ozone absorbed by samples with different contents of water. The dependence of the yield of reducing sugars in the fermentative reaction on the quantity of absorbed ozone is established. The maximum conversion of polysaccharides is obtained at ozone doses of around 3 mmol/g of biomass, and it exceeds the value for nonozonated samples by an order of magnitude. The yield of sugar falls upon increasing the dose of ozone. The process of removing lignin from the cell walls of straw during ozonation is visualized by means of scanning electron microscopy.

  13. Bulk density and compaction behavior of knife mill chopped switchgrass,wheat straw, and corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.

    2009-08-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5 18.4 kg/m3 for switchgrass, 36.1 8.6 kg/m3 for wheat straw, and 52.1 10.8 kg/m3 for corn stover. Mean tapped bulk densities were 81.8 26.2 kg/m3 for switchgrass, 42.8 11.7 kg/m3 for wheat straw, and 58.9 13.4 kg/m3 for corn stover. Percentage changes in compressibility duemore » to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2 51.5 for chopped wheat straw and 42.1 117.7 for chopped corn stover within the tested consolidation pressure range of 5 120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone s model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone s model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.« less

  14. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover.

    PubMed

    Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab

    2010-01-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

  15. Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment.

    PubMed

    Solé-Bundó, Maria; Eskicioglu, Cigdem; Garfí, Marianna; Carrère, Hélène; Ferrer, Ivet

    2017-08-01

    This study aimed at analyzing the anaerobic co-digestion of microalgal biomass grown in wastewater and wheat straw. To this end, Biochemical Methane Potential (BMP) tests were carried out testing different substrate proportions (20-80, 50-50 and 80-20%, on a volatile solid basis). In order to improve their biodegradability, the co-digestion of both substrates was also evaluated after applying a thermo-alkaline pretreatment (10% CaO at 75°C for 24h). The highest synergies in degradation rates were observed by adding at least 50% of wheat straw. Therefore, the co-digestion of 50% microalgae - 50% wheat straw was investigated in mesophilic lab-scale reactors. The results showed that the methane yield was increased by 77% with the co-digestion as compared to microalgae mono-digestion, while the pretreatment only increased the methane yield by 15% compared to the untreated mixture. Thus, the anaerobic co-digestion of microalgae and wheat straw was successful even without applying a thermo-alkaline pretreatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    Treesearch

    Wolfgang Stelte; Craig Clemons; Jens K. Holm; Jesper Ahrenfeldt; Ulrik B. Henriksen; Anand R. Sanadi

    2012-01-01

    The utilization of wheat straw as a renewable energy resource is limited due to its low bulk density. Pelletizing wheat straw into fuel pellets of high density increases its handling properties but is more challenging compared to pelletizing wood biomass. Straw has a lower lignin content and a high concentration of hydrophobic waxes on its outer surface that may limit...

  17. Selenium uptake by edible oyster mushrooms (Pleurotus sp.) from selenium-hyperaccumulated wheat straw.

    PubMed

    Bhatia, Poonam; Prakash, Ranjana; Prakash, N Tejo

    2013-01-01

    In an effort to produce selenium (Se)-fortifying edible mushrooms, five species of oyster mushroom (Pleurotus sp.), were cultivated on Se-rich wheat straw collected from a seleniferous belt of Punjab, India. Total selenium was analyzed in the selenium hyperaccumulated wheat straw and the fruiting bodies. Significantly high levels (p<0.0001) of Se uptake were observed in fruiting bodies of all mushrooms grown on Se-rich wheat straw. To the best of our knowledge, accumulation and quantification of selenium in mushrooms has hitherto not been reported with substrates naturally enriched with selenium. The results demonstrate the potential of selenium-rich agricultural residues as substrates for production of Se-enriched mushrooms and the ability of different species of oyster mushrooms to absorb and fortify selenium. The study envisages potential use of selenium-rich agricultural residues towards cultivation of Se-enriched mushrooms for application in selenium supplementation or neutraceutical preparations.

  18. Effects of Different Tillage and Straw Return on Soil Organic Carbon in a Rice-Wheat Rotation System

    PubMed Central

    Zhu, Liqun; Hu, Naijuan; Yang, Minfang; Zhan, Xinhua; Zhang, Zhengwen

    2014-01-01

    Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C) contents. However, the effects of tillage method or straw return on soil organic C (SOC) have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC) and labile organic C fractions at three soil depths (0–7, 7–14 and 14–21 cm) for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC), dissolved organic C (DOC) and microbial biomass C (MBC) contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0–7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7–14 cm depth. However, at 14–21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta. PMID:24586434

  19. Yield and size of oyster mushroom grown on rice/wheat straw basal substrate supplemented with cotton seed hull.

    PubMed

    Yang, Wenjie; Guo, Fengling; Wan, Zhengjie

    2013-10-01

    Oyster mushroom (Pleurotus ostreatus) was cultivated on rice straw basal substrate, wheat straw basal substrate, cotton seed hull basal substrate, and wheat straw or rice straw supplemented with different proportions (15%, 30%, and 45% in rice straw substrate, 20%, 30%, and 40% in wheat straw substrate) of cotton seed hull to find a cost effective substrate. The effect of autoclaved sterilized and non-sterilized substrate on growth and yield of oyster mushroom was also examined. Results indicated that for both sterilized substrate and non-sterilized substrate, oyster mushroom on rice straw and wheat basal substrate have faster mycelial growth rate, comparatively poor surface mycelial density, shorter total colonization period and days from bag opening to primordia formation, lower yield and biological efficiency, lower mushroom weight, longer stipe length and smaller cap diameter than that on cotton seed hull basal substrate. The addition of cotton seed hull to rice straw and wheat straw substrate slowed spawn running, primordial development and fruit body formation. However, increasing the amount of cotton seed hull can increase the uniformity and white of mycelium, yield and biological efficiency, and increase mushroom weight, enlarge cap diameter and shorten stipe length. Compared to the sterilized substrate, the non-sterilized substrate had comparatively higher mycelial growth rate, shorter total colonization period and days from bag opening to primordia formation. However, the non-sterilized substrate did not gave significantly higher mushroom yield and biological efficiency than the sterilized substrate, but some undesirable characteristics, i.e. smaller mushroom cap diameter and relatively long stipe length.

  20. Energy assessment of second generation (2G) ethanol production from wheat straw in Indian scenario.

    PubMed

    Mishra, Archana; Kumar, Akash; Ghosh, Sanjoy

    2018-03-01

    Impact of second-generation ethanol (2G) use in transportation sector mainly depends upon energy efficiency of entire production process. The objective of present study was to determine energy efficiency of a potential lignocellulosic feedstock; wheat straw and its conversion into cellulosic ethanol in Indian scenario. Energy efficiency was determined by calculating Net energy ratio (NER), i.e. ratio of output energy obtained by ethanol and input energy used in ethanol production. Energy consumption and generation at each step is calculated briefly (11,837.35 MJ/ha during Indian dwarf irrigated variety of wheat crop production and 7.1148 MJ/kg straw during ethanol production stage). Total energy consumption is calculated as 8.2988 MJ/kg straw whereas energy generation from ethanol is 15.082 MJ/kg straw; resulting into NER > 1. Major portion of agricultural energy input is contributed by diesel and fertilisers whereas refining process of wheat straw feedstock to ethanol and by-products require mainly in the form of steam and electricity. On an average, 1671.8 kg water free ethanol, 930 kg lignin rich biomass (for combustion), and 561 kg C5-molasses (for fodder) per hectare are produced. Findings of this study, net energy ratio (1.81) and figure of merit (14.8028 MJ/nil kg carbon) proves wheat straw as highest energy efficient lignocellulosic feedstock for the country.

  1. Effects of low-level radioactive soil contamination and sterilization on the degradation of radiolabeled wheat straw.

    PubMed

    Niedrée, Bastian; Vereecken, Harry; Burauel, Peter

    2012-07-01

    After the explosion of reactor 4 in the nuclear power plant near Chernobyl, huge agricultural areas became contaminated with radionuclides. In this study, we want to elucidate whether (137)Cs and (90)Sr affect microorganisms and their community structure and functions in agricultural soil. For this purpose, the mineralization of radiolabeled wheat straw was examined in lab-scale microcosms. Native soils and autoclaved and reinoculated soils were incubated for 70 days at 20 °C. After incubation, the microbial community structure was compared via 16S and 18S rDNA denaturing gradient gel electrophoresis (DGGE). The radioactive contamination with (137)Cs and (90)Sr was found to have little effect on community structure and no effect on the straw mineralization. The autoclaving and reinoculation of soil had a strong influence on the mineralization and the community structure. Additionally we analyzed the effect of soil treatment on mineralization and community composition. It can be concluded that other environmental factors (such as changing content of dissolved organic carbon) are much stronger regulating factors in the mineralization of wheat straw and that low-level radiation only plays a minor role. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Enzymatic hydrolysis of autohydrolyzed wheat straw followed by refining to produce fermentable sugars.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    Wheat straw was pretreated using an autohydrolysis process with different temperatures (160-200 °C) and times (10-20 min) in order to allow the recovery of hemicellulose in the filtrate and help open up the structure of the biomass for improved accessibility of enzymes during enzymatic hydrolysis. Autohydrolysis at 190 °C for 10 min provided the highest overall sugar (12.2/100g raw wheat straw) in the autohydrolysis filtrate and recovered 62.3% of solid residue. Before enzymatic hydrolysis, the pulps obtained from each pretreatment condition were subjected to a refining post-treatment to improve enzyme accessibility. Enzymatic hydrolysis was performed for all the pretreated solids with and without refining post-treatment at the enzyme loadings of 4 and 10 FPU/g oven dry substrate for 96 h. A total of 30.4 g sugars can be recovered from 100g wheat straw at 180 °C for 20 min with 4 FPU/g enzyme charge. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Technoeconomic analysis of wheat straw densification in the Canadian Prairie Province of Manitoba.

    PubMed

    Mupondwa, Edmund; Li, Xue; Tabil, Lope; Phani, Adapa; Sokhansanj, Shahab; Stumborg, Mark; Gruber, Margie; Laberge, Serge

    2012-04-01

    This study presents a technoeconomic analysis of wheat straw densification in Canada's prairie province of Manitoba as an integral part of biomass-to-cellulosic-ethanol infrastructure. Costs of wheat straw bale and pellet transportation and densification are analysed, including densification plant profitability. Wheat straw collection radius increases nonlinearly with pellet plant capacity, from 9.2 to 37km for a 2-35tonnesh(-1) plant. Bales are cheaper under 250km, beyond which the cheapest feedstocks are pellets from the largest pellet plant that can be built to exploit economies of scale. Feedstocks account for the largest percentage of variable costs. Marginal and average cost curves suggest Manitoba could support a pellet plant up to 35tonnesh(-1). Operating below capacity (75-50%) significantly erodes a plant's net present value (NPV). Smaller plants require higher NPV break-even prices. Very large plants have considerable risk under low pellet prices and increased processing costs. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Fermentation technologies for ethanol production from wheat straw by a recombinant bacterium

    USDA-ARS?s Scientific Manuscript database

    Wheat straw, a globally abundant byproduct of wheat production, contains about 70% carbohydrate that could potentially be used as a low cost feedstock for production of fuel ethanol. Typically four process steps are involved in the production of ethanol from any lignocellulosic feedstock – pretreat...

  5. Succinic acid production from orange peel and wheat straw by batch fermentations of Fibrobacter succinogenes S85.

    PubMed

    Li, Qiang; Siles, Jose A; Thompson, Ian P

    2010-10-01

    Succinic acid is a platform molecule that has recently generated considerable interests. Production of succinate from waste orange peel and wheat straw by consolidated bioprocessing that combines cellulose hydrolysis and sugar fermentation, using a cellulolytic bacterium, Fibrobacter succinogenes S85, was studied. Orange peel contains D-limonene, which is a well-known antibacterial agent. Its effects on batch cultures of F. succinogenes S85 were examined. The minimal concentrations of limonene found to inhibit succinate and acetate generation and bacterial growth were 0.01%, 0.1%, and 0.06% (v/v), respectively. Both pre-treated orange peel by steam distillation to remove D: -limonene and intact wheat straw were used as feedstocks. Increasing the substrate concentrations of both feedstocks, from 5 to 60 g/L, elevated succinate concentration and productivity but lowered the yield. In addition, pre-treated orange peel generated greater succinate productivities than wheat straw but had similar resultant titres. The greatest succinate titres were 1.9 and 2.0 g/L for pre-treated orange peel and wheat straw, respectively. This work demonstrated that agricultural waste such as wheat straw and orange peel can be biotransformed to succinic acid by a one-step consolidated bioprocessing. Measures to increase fermentation efficiency are also discussed.

  6. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    PubMed

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These

  7. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact.

    PubMed

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-10-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems.

  8. Mass loss and chemical structures of wheat and maize straws in response to ultraviolet-B radiation and soil contact

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Mao, Jingdong; Zhang, Congzhi; Chen, Lin; Xin, Xiuli; Zhao, Bingzi

    2015-01-01

    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14–19% and the ambient radiation by 9–16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems. PMID:26423726

  9. Integrated Process for Ethanol, Biogas, and Edible Filamentous Fungi-Based Animal Feed Production from Dilute Phosphoric Acid-Pretreated Wheat Straw.

    PubMed

    Nair, Ramkumar B; Kabir, Maryam M; Lennartsson, Patrik R; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-01-01

    Integration of wheat straw for a biorefinery-based energy generation process by producing ethanol and biogas together with the production of high-protein fungal biomass (suitable for feed application) was the main focus of the present study. An edible ascomycete fungal strain Neurospora intermedia was used for the ethanol fermentation and subsequent biomass production from dilute phosphoric acid (0.7 to 1.2% w/v) pretreated wheat straw. At optimum pretreatment conditions, an ethanol yield of 84 to 90% of the theoretical maximum, based on glucan content of substrate straw, was observed from fungal fermentation post the enzymatic hydrolysis process. The biogas production from the pretreated straw slurry showed an improved methane yield potential up to 162% increase, as compared to that of the untreated straw. Additional biogas production, using the syrup, a waste stream obtained post the ethanol fermentation, resulted in a combined total energy output of 15.8 MJ/kg wheat straw. Moreover, using thin stillage (a waste stream from the first-generation wheat-based ethanol process) as a co-substrate to the biogas process resulted in an additional increase by about 14 to 27% in the total energy output as compared to using only wheat straw-based substrates. ᅟ.

  10. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw.

    PubMed

    García-Cubero, M A Teresa; González-Benito, Gerardo; Indacoechea, Irune; Coca, Mónica; Bolado, Silvia

    2009-02-01

    Wheat and rye straws were pretreated with ozone to increase the enzymatic hydrolysis extent of potentially fermentable sugars. Through a 2(5-1) factorial design, this work studies the influence of five operating parameters (moisture content, particle size, ozone concentration, type of biomass and air/ozone flow rate) on ozonization pretreatment of straw in a fixed bed reactor under room conditions. The acid insoluble lignin content of the biomass was reduced in all experiments involving hemicellulose degradation. Near negligible losses of cellulose were observed. Enzymatic hydrolysis yields of up to 88.6% and 57% were obtained compared to 29% and 16% in non-ozonated wheat and rye straw respectively. Moisture content and type of biomass showed the most significant effects on ozonolysis. Additionally, ozonolysis experiments in basic medium with sodium hydroxide evidenced a reduction in solubilization and/or degradation of lignin and reliable cellulose and hemicellulose degradation.

  11. Efficient anaerobic transformation of raw wheat straw by a robust cow rumen-derived microbial consortium.

    PubMed

    Lazuka, Adèle; Auer, Lucas; Bozonnet, Sophie; Morgavi, Diego P; O'Donohue, Michael; Hernandez-Raquet, Guillermina

    2015-11-01

    A rumen-derived microbial consortium was enriched on raw wheat straw as sole carbon source in a sequential batch-reactor (SBR) process under strict mesophilic anaerobic conditions. After five cycles of enrichment the procedure enabled to select a stable and efficient lignocellulolytic microbial consortium, mainly constituted by members of Firmicutes and Bacteroidetes phyla. The enriched community, designed rumen-wheat straw-derived consortium (RWS) efficiently hydrolyzed lignocellulosic biomass, degrading 55.5% w/w of raw wheat straw over 15days at 35°C and accumulating carboxylates as main products. Cellulolytic and hemicellulolytic activities, mainly detected on the cell bound fraction, were produced in the earlier steps of degradation, their production being correlated with the maximal lignocellulose degradation rates. Overall, these results demonstrate the potential of RWS to convert unpretreated lignocellulosic substrates into useful chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Unraveling the effects of laccase treatment on enzymatic hydrolysis of steam-exploded wheat straw.

    PubMed

    Oliva-Taravilla, Alfredo; Moreno, Antonio D; Demuez, Marie; Ibarra, David; Tomás-Pejó, Elia; González-Fernández, Cristina; Ballesteros, Mercedes

    2015-01-01

    Laccase enzymes are promising detoxifying agents during lignocellulosic bioethanol production from wheat straw. However, they affect the enzymatic hydrolysis of this material by lowering the glucose recovery yields. This work aimed at explaining the negative effects of laccase on enzymatic hydrolysis. Relative glucose recovery in presence of laccase (10IU/g substrate) with model cellulosic substrate (Sigmacell) at 10% (w/v) was almost 10% points lower (P<0.01) than in the absence of laccase. This fact could be due to an increase in the competition of cellulose binding sites between the enzymes and a slight inhibition of β-glucosidase activity. However, enzymatic hydrolysis and infrared spectra of laccase-treated and untreated wheat straw filtered pretreated residue (WS-FPR), revealed that a grafting process of phenoxy radicals onto the lignin fiber could be the cause of diminished accessibility of cellulases to cellulose in pretreated wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production.

    PubMed

    Lin, Yunqin; Ge, Xumeng; Li, Yebo

    2014-10-01

    Spent mushroom substrate (SMS) is a biomass waste generated from mushroom production. About 5 kg of SMS is generated for every kg of mushroom produced. In this study, solid state anaerobic digestion (SS-AD) of SMS, wheat straw, yard trimmings, and their mixtures was investigated at different feedstock to effluent ratios. SMS was found to be highly degradable, which resulted in inhibition of SS-AD due to volatile fatty acid (VFA) accumulation and a decrease in pH. This issue was addressed by co-digestion of SMS with either yard trimmings or wheat straw. SS-AD of SMS/yard trimmings achieved a cumulative methane yield of 194 L/kg VS, which was 16 and 2 times higher than that from SMS and yard trimmings, respectively. SS-AD of SMS/wheat straw obtained a cumulative methane yield of 269 L/kg VS, which was 23 times as high as that from SMS and comparable to that from wheat straw. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.

    PubMed

    Badve, Mandar P; Gogate, Parag R; Pandit, Aniruddha B; Csoka, Levente

    2014-01-01

    The present work deals with application of hydrodynamic cavitation for intensification of delignification of wheat straw as an essential step in the paper manufacturing process. Wheat straw was first treated with potassium hydroxide (KOH) for 48 h and subsequently alkali treated wheat straw was subjected to hydrodynamic cavitation. Hydrodynamic cavitation reactor used in the work is basically a stator and rotor assembly, where the rotor is provided with indentations and cavitational events are expected to occur on the surface of rotor as well as within the indentations. It has been observed that treatment of alkali treated wheat straw in hydrodynamic cavitation reactor for 10-15 min increases the tensile index of the synthesized paper sheets to about 50-55%, which is sufficient for paper board manufacture. The final mechanical properties of the paper can be effectively managed by controlling the processing parameters as well as the cavitational parameters. It has also been established that hydrodynamic cavitation proves to be an effective method over other standard digestion techniques of delignification in terms of electrical energy requirements as well as the required time for processing. Overall, the work is first of its kind application of hydrodynamic cavitation for enhancing the effectiveness of delignification and presents novel results of significant interest to the paper and pulp industry opening an entirely new area of application of cavitational reactors. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery

    USDA-ARS?s Scientific Manuscript database

    An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...

  16. Grinding energy and physical properties of chopped and hammer-milled barley, wheat, oat, and canola straws

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J.S. Tumuluru; L.G. Tabil; Y. Song

    2014-01-01

    In the present study, specific energy for grinding and physical properties of wheat, canola, oat and barley straw grinds were investigated. The initial moisture content of the straw was about 0.13–0.15 (fraction total mass basis). Particle size reduction experiments were conducted in two stages: (1) a chopper without a screen, and (2) a hammer mill using three screen sizes (19.05, 25.4, and 31.75 mm). The lowest grinding energy (1.96 and 2.91 kWh t-1) was recorded for canola straw using a chopper and hammer mill with 19.05-mm screen size, whereas the highest (3.15 and 8.05 kWh t-1) was recorded for barleymore » and oat straws. The physical properties (geometric mean particle diameter, bulk, tapped and particle density, and porosity) of the chopped and hammer-milled wheat, barley, canola, and oat straw grinds measured were in the range of 0.98–4.22 mm, 36–80 kg m-3, 49–119 kg m-3, 600–1220 kg m-3, and 0.9–0.96, respectively. The average mean particle diameter was highest for the chopped wheat straw (4.22-mm) and lowest for the canola grind (0.98-mm). The canola grinds produced using the hammer mill (19.05-mm screen size) had the highest bulk and tapped density of about 80 and 119 kg m-3; whereas, the wheat and oat grinds had the lowest of about 58 and 88–90 kg m-3. The results indicate that the bulk and tapped densities are inversely proportional to the particle size of the grinds. The flow properties of the grinds calculated are better for chopped straws compared to hammer milled using smaller screen size (19.05 mm).« less

  17. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    PubMed Central

    Kristensen, Jan B; Thygesen, Lisbeth G; Felby, Claus; Jørgensen, Henning; Elder, Thomas

    2008-01-01

    Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall. PMID:18471316

  18. Flowability parameters for chopped switchgrass, wheat straw and corn stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chevanan, Nehru; Womac, A.R.; Bitra, V.S.P.

    2009-02-01

    A direct shear cell to measure the shear strength and flow properties of chopped switchgrass, wheat straw, and corn stover was designed, fabricated, and tested. Yield loci (r2=0.99) determined at pre-consolidation pressures of 3.80 kPa and 5.02 kPa indicated that chopped biomass followed Mohr-Coulomb failure. Normal stress significantly affected the displacement required for shear failure, as well as the friction coefficient values for all three chopped biomass types. Displacement at shear failure ranged from 30 to 80 mm, and depended on pre-consolidation pressure, normal stress, and particle size. Friction coefficient was inversely related to normal stress, and was highest formore » chopped corn stover. Also, chopped corn stover exhibited the highest angle of internal friction, unconfined yield strength, major consolidation strength, and cohesive strength, all of which indicated increased challenges in handling chopped corn stover. The measured angle of internal friction and cohesive strength indicated that chopped biomass cannot be handled by gravity alone. The measured angle of internal friction and cohesive strength were 43 and 0.75 kPa for chopped switchgrass; 44 and 0.49 kPa for chopped wheat straw; and 48 and 0.82 kPa for chopped corn stover. Unconfined yield strength and major consolidation strength used for characterization of bulk flow materials and design of hopper dimensions were 3.4 and 10.4 kPa for chopped switchgrass; 2.3 and 9.6 kPa for chopped wheat straw and 4.2 and 11.8 kPa for chopped corn stover. These results are useful for development of efficient handling, storage, and transportation systems for biomass in biorefineries.« less

  19. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment-severity equation.

    PubMed

    Le, Duy Michael; Sørensen, Hanne R; Knudsen, Niels Ole; Schjoerring, Jan K; Meyer, Anne S

    2014-01-01

    Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass.

  20. Effects of rhamnolipid on the cellulase and xylanase in hydrolysis of wheat straw.

    PubMed

    Wang, Hong-Yuan; Fan, Bing-Quan; Li, Chun-Hua; Liu, Shuang; Li, Min

    2011-06-01

    The effects of biosurfactant rhamnolipid (RL) and chemical surfactant Triton X-100 on the production of cellulases and xylanase from Penicillium expansum (P. expansum) in untreated, acid- and alkali-pretreated wheat straw submerged fermentations were studied, and the influences on the activity and stability of Cellulase R-10 were also investigated. The results showed that RL and Triton X-100 enhanced the activities of cellulases and xylanase to different extents and the stimulatory effects of RL were superior to those of Triton X-100. During the peak enzyme production phase, RL (60 RE mg/l) increased cellulases activities by 25.5-102.9%, in which the raise of the same enzyme in acid-pretreated straw broths was the most. It was found that the reducing sugars by hydrolyzing wheat straw with Cellulase R-100 were not visibly increased after adding RL. However, it distinctly protected Cellulase R-10 from degradation or inactivation, keeping the reducing sugars yield at about 17%. Copyright © 2011. Published by Elsevier Ltd.

  1. Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn

    PubMed Central

    Gaitán-Hernández, Rigoberto; Cortés, Norberto; Mata, Gerardo

    2014-01-01

    The research evaluated the interactions of two main factors (strain / types of spawn) on various parameters with the purpose to assess its effect on yield and biochemical composition of Lentinula edodes fruiting bodies cultivated on pasteurized wheat straw. The evaluation was made with four strains (IE-40, IE-105, IE-124 and IE-256). Different types of spawns were prepared: Control (C) (millet seed, 100%), F1 (millet seed, 88.5%; wheat bran, 8.8%; peat moss, 1.3%; and CaS04, 1.3%) and F2 (the same formula as F1, but substituting the wheat bran with powdered wheat straw). Wheat straw was pasteurized by soaking it for 1 h in water heated to 65 °C. After this the substrate (2 kg wet weight) was placed in polypropylene bags. The bags were inoculated with each spawn (5% w/w) and incubated in a dark room at 25 °C. A proximate analysis of mature fruiting bodies was conducted. The mean Biological Efficiency (BE) varied between 66.0% (C-IE-256) and 320.1% (F1-IE-124), with an average per strain of 125.6%. The highest mean BE was observed on spawn F1 (188.3%), significantly different from C and F2. The protein content of fruiting bodies was high, particularly in strain IE-40-F1 (17.7%). The amount of fat varied from 1.1 (F1-IE-40) to 2.1% (F2-IE-105) on dry matter. Carbohydrates ranged from 58.8% (F1-IE-40) to 66.1% (F1-IE-256). The energy value determined ranged from 302.9 kcal (F1-IE-40) to 332.0 kcal (F1-IE-256). The variability on BE observed in this study was significantly influenced by the spawn’s formulation and genetic factors of the different strains. PMID:25242929

  2. History of adaptation determines short-term shifts in performance and community structure of hydrogen-producing microbial communities degrading wheat straw.

    PubMed

    Valdez-Vazquez, Idania; Morales, Ana L; Escalante, Ana E

    2017-11-01

    This study addresses the question of ecological interest for the determination of structure and diversity of microbial communities that degrade lignocellulosic biomasses to produce biofuels. Two microbial consortia with different history, native of wheat straw (NWS) and from a methanogenic digester (MD) fed with cow manure, were contrasted in terms of hydrogen performance, substrate disintegration and microbial diversity. NWS outperformed the hydrogen production rate of MD. Microscopic images revealed that NWS acted on the cuticle and epidermis, generating cellulose strands with high crystallinity, while MD degraded deeper layers, equally affecting all polysaccharides. The bacterial composition markedly differed according to the inocula origin. NWS almost solely comprised hydrogen producers of the phyla Firmicutes and Proteobacteria, with 38% members of Enterococcus. After hydrogen fermentation, NWS comprised 8% Syntrophococcus, an acetogen that cleaves aryl ethers of constituent groups on the aromatic components of lignin. Conversely, MD comprised thirteen phyla, primarily including Firmicutes with H 2 -producing members, and Bacteroidetes with non-H 2 -producing members, which reduced the hydrogen performance. Overall, the results of this study provide clear evidence that the history of adaptation of NWS enhanced the hydrogen performance from untreated wheat straw. Further, native wheat straw communities have the potential to refine cellulose fibers and produce biofuels simultaneously. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  3. Syngas production by chemical-looping gasification of wheat straw with Fe-based oxygen carrier.

    PubMed

    Hu, Jianjun; Li, Chong; Guo, Qianhui; Dang, Jiatao; Zhang, Quanguo; Lee, Duu-Jong; Yang, Yunlong

    2018-05-03

    The iron-based oxygen carriers (OC's), Fe 2 O 3 /support (Al 2 O 3 , TiO 2 , SiO 2 and ZrO 2 ), for chemical looping gasification of wheat straw were prepared using impregnation method. The surface morphology, crystal structure, carbon deposition potential, lattice oxygen activity and selectivity of the yielded OCs were examined. The Fe 2 O 3 /Al 2 O 3 OCs at 60% loading has the highest H 2 yield, H 2 /CO ratio, gas yield, and carbon conversion amongst the tested OC's. Parametric studies revealed that an optimal loading Fe 2 O 3 of 60%, steam-to-biomass ratio of 0.8 and oxygen carrier-to-biomass ratio of 1.0 led to the maximum H 2 /CO ratio, gas yield, H 2  + CO ratio, and carbon conversion from the gasified wheat straw. High temperature, up to 950 °C, enhanced the gasification performance. A kinetic network interpreted the noted experimental results. The lattice oxygen provided by the prepared Fe 2 O 3 /Al 2 O 3 oxygen carriers promotes chemical looping gasification efficiencies from wheat straw. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Alkaline-assisted screw press pretreatment affecting enzymatic hydrolysis of wheat straw.

    PubMed

    Yan, Qingqi; Wang, Yumei; Rodiahwati, Wawat; Spiess, Antje; Modigell, Michael

    2017-02-01

    Screw press processing of biomass can be considered as a suitable mechanically based pretreatment for biofuel production since it disrupts the structure of lignocellulosic biomass with high shear and pressure forces. The combination with chemical treatment has been suggested to increase the conversion of lignocellulosic biomass to fermentable sugars. Within the study, the synergetic effect of alkaline (sodium hydroxide, NaOH) soaking and screw press pretreatment on wheat straw was evaluated based on, e.g., sugar recovery and energy efficiency. After alkaline soaking (at 0.1 M for 30 min) and sequential screw press pretreatment with various screw press configurations and modified screw barrel, the lignin content of pretreated wheat straw was quantified. In addition, the structure of pretreated wheat straw was investigated by scanning electron microscopy and measurement of specific surface area. It could be shown that removal of lignin is more important than increase of surface area of the biomass to reach a high sugar recovery. The rate constant of the enzymatic hydrolysis increased from 1.1 × 10 -3  1/h for the non-treated material over 2.3 × 10 -3  1/h for the alkaline-soaked material to 26.9 × 10 -3  1/h for alkaline-assisted screw press pretreated material, indicating a nearly 25-fold improvement of the digestibility by the combined chemo-mechanical pretreatment. Finally, the screw configuration was found to be an important factor for improving the sugar recovery and for reducing the specific energy consumption of the screw press pretreatment.

  5. Ammonia volatilization and atmospheric N deposition following straw and urea application from a rice-wheat rotation in southeastern China

    NASA Astrophysics Data System (ADS)

    Sun, Liying; Wu, Zhen; Ma, Yuchun; Liu, Yinglie; Xiong, Zhengqin

    2018-05-01

    Ammonia is a vital component of the nitrogen (N) cycle of terrestrial ecosystems in terms of volatilization and deposition. Here, a field experiment was undertaken to simultaneously investigate the effects of rice straw and urea incorporation on ammonia volatilization, atmospheric N deposition, yields and agronomic nitrogen use efficiency (NUE) under a rice-wheat system in China. The experiment involved four treatments: control (0 N, 0 straw), NS0 (250 kg N ha-1 season-1, 0 straw), NS1 (250 kg N ha-1 season-1, 3 t ha-1 yr-1 straw), and NS2 (250 kg N ha-1 season-1, 6 t ha-1 yr-1 straw) in the rice-wheat annual rotation system. The results indicated that the NS0, NS1 and NS2 treatments emitted cumulative ammonia of 14.0%, 16.4%, and 19.2%, respectively in the rice season and 7.6%, 11.1%, and 12.3%, respectively in the wheat season among the total urea-N application. Compared to the NS0 treatment, the NS1 and NS2 treatments significantly increased the cumulative ammonia emissions by 15.5% (p < 0.05) and 33.5% (p < 0.05), respectively in the rice season and 39.9% (p < 0.05) and 53.1% (p < 0.05), respectively in the wheat season. There was no significant difference between the NS2 and NS1 treatments during the wheat season. The amount of NH4+-N deposition accounted for 56.1% of the total inorganic N deposition during the whole rice-wheat system. The bulk NH4+-N deposition during the period of fertilization contributed 73.9% and 5.7% to the total NH4+-N deposition in the rice and wheat season, respectively. Overall, straw incorporation increased ammonia volatilization, not affecting the crop grain yield or NUE. The seasonal variation in NH4+-N bulk deposition was closely related to N fertilizer application.

  6. Biogeochemical Processes That Produce Dissolved Organic Matter From Wheat Straw

    USGS Publications Warehouse

    Wershaw, Robert L.; Rutherford, David W.; Leenheer, Jerry A.; Kennedy, Kay R.; Cox, Larry G.; Koci, Donald R.

    2003-01-01

    The chemical reactions that lead to the formation of dissolved organic matter (DOM) in natural waters are poorly understood. Studies on the formation of DOM generally are complicated because almost all DOM isolates have been derived from mixtures of plant species composed of a wide variety of different types of precursor compounds for DOM formation. This report describes a study of DOM derived mainly from bales of wheat straw that had been left in a field for several years. During this period of time, black water from the decomposing wheat straw accumulated in pools in the field. The nuclear magnetic resonance and infrared spectra of the black water DOM indicate that it is composed almost entirely of lignin and carbohydrate polymeric units. Analysis by high-performance size-exclusion chromatography with multi-angle laser-light scattering detection indicates that the number average molecular weight of the DOM is 124,000 daltons. The results presented in this report indicate that the black water DOM is composed of hemicellulose chains cross-linked to lignin oligomers. These types of structures have been shown to exist in the hemicellulose matrix of plant cell walls. The cross-linked lignin-hemicellulose complexes apparently were released from partially degraded wheat-straw cell walls with little alteration. In solution in the black water, these lignin-hemicellulose polymers fold into compact globular particles in which the nonpolar parts of the polymer form the interiors of the particles and the polar groups are on the exterior surfaces of the particles. The tightly folded, compact conformation of these particles probably renders them relatively resistant to microbial degradation. This should be especially the case for the aromatic lignin structures that will be buried in the interiors of the particles.

  7. Effect of exogenous xylanase on rumen in vitro gas production and degradability of wheat straw.

    PubMed

    Togtokhbayar, Norovsambuu; Cerrillo, María A; Rodríguez, Germán Buendía; Elghandour, Mona M M Y; Salem, Abdelfattah Z M; Urankhaich, Chuluunbaatar; Jigjidpurev, Sukhbaatar; Odongo, Nicholas E; Kholif, Ahmed E

    2015-08-01

    The objective of this study was to determine effects of xylanase on in vitro gas production (GP) and in sacco degradability of wheat straw. Rumen fluid was obtained from three Mongolian native goats fitted with permanent rumen cannulas. The trial consisted of five doses (0, 0.5, 1.0, 1.5, 2.0 μL/g of substrate) of a commercial xylanase (Dyadic® xylanase PLUS, Dyadic International, Inc., Jupiter, FL, USA). For the in sacco degradability, different levels of xylanase enzyme were added directly onto 2 g of wheat straw in nylon bags and incubated in the rumen for 3, 6, 12, 24 and 48 h to estimate degradability of wheat straw. Total GP increased (P < 0.001) at all times of incubation at intermediate levels of xylanase. Methane production had a similar pattern at 3 and 12 h of incubation; increased linearly at 24 h of incubation, and was unaffected at 6 and 48 h of incubation. Rumen NH3 -N concentration increased linearly at 3 h and the highest values were observed with intermediate enzyme levels. All ruminal volatile fatty acids increased linearly with intermediate levels of the fibrolytic enzyme. The in sacco rate of dry matter degradation decreased linearly (P = 0.020) with increasing enzymes. Intermediate levels of xylanase improved rumen kinetic fermentation and degradability. The outcome of this research indicated that the application of xylanase enzyme could improve in vitro GP fermentation of wheat straw. © 2015 Japanese Society of Animal Science.

  8. Methane production from wheat straw with anaerobic sludge by heme supplementation.

    PubMed

    Xi, Yonglan; Chang, Zhizhou; Ye, Xiaomei; Xu, Rong; Du, Jing; Chen, Guangyin

    2014-11-01

    Wheat straw particles were directly used as substrate for batch anaerobic digestion with anaerobic sludge under 35°C to evaluate the effects of adding heme on methane production. When 1mg/l heme was added to the fermentation process with no agitated speed, a maximum cumulative methane production of 12227.8ml was obtained with cumulative methane yield of wheat straw was 257.4ml/g-TS (total solid), which was increased by 20.6% compared with 213.5ml/g-TS of no heme was added in the reactor. Meanwhile, oxido-reduction potential (ORP) level was decreased, the activity of coenzyme F420 was significantly improved and NADH/NAD(+) ratio were the highest than other experimental groups. These results suggest that heme-supplemented anaerobic sludge with no agitated speed may be providing a more reductive environment, which is a cost-effective method of anaerobic digestion from biomass waste to produce methane with less energy consuming. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Reinforcement of the bio-gas conversion from pyrolysis of wheat straw by hot caustic pre-extraction.

    PubMed

    Zhang, Lilong; Chen, Keli; He, Liang; Peng, Lincai

    2018-01-01

    Pyrolysis has attracted growing interest as a versatile means to convert biomass into valuable products. Wheat straw has been considered to be a promising biomass resource due to its low price and easy availability. However, most of the products obtained from wheat straw pyrolysis are usually of low quality. Hot soda extraction has the advantage of selective dissolution of lignin whilst retaining the carbohydrates. This can selectively convert biomass into high-quality desired products and suppress the formation of undesirable products. The aim of this study was to investigate the pyrolysis properties of wheat straw under different hot caustic pretreatment conditions. Compared with the untreated straw, a greater amount of gas was released and fewer residues were retained in the extracted wheat straw, which was caused by an increase in porosity. When the NaOH loading was 14%, the average pore size of the extracted straw increased by 12% and the cumulative pore volume increased by 157% compared with the untreated straw. The extracted straw obtained from the 14% NaOH extraction was clearly selective for pyrolysis products. On one hand, many lignin pyrolysis products disappeared, and only four main lignin-unit-pyrolysis products were retained. On the other hand, polysaccharide pyrolysis products were enriched. Both propanone and furfural have outstanding peak intensities that could account for approximately 30% of the total pyrolysis products. However, with the excessive addition of NaOH (i.e. > 22% w/w) during pretreatment, the conversion of bio-gas products decreased. Thermogravimetric and low-temperature nitrogen-adsorption analysis showed that the pore structure had been seriously destroyed, leading to the closing of the release paths of the bio-gas and thus increasing the re-polymerisation of small bio-gas molecules. After suitable extraction (14% NaOH loading extraction), a considerable amount (25%) of the soluble components dissolved out of the straw. This

  10. Direct Conversion of Wheat Straw into Electricity with a Biomass Flow Fuel Cell Mediated by Two Redox Ion Pairs.

    PubMed

    Gong, Jian; Liu, Wei; Du, Xu; Liu, Congmin; Zhang, Zhe; Sun, Feifei; Yang, Le; Xu, Dong; Guo, Hua; Deng, Yulin

    2017-02-08

    In this paper, a biomass flow fuel cell to directly convert wheat straw to electricity at low temperature (80-90 °C) and atmospheric pressure is presented. Two redox ion pairs, Fe 3+ /Fe 2+ and VO 2 + /VO 2+ , acting as redox catalysts and charge carriers, were used in the anode and cathode flow tanks, respectively. The wheat straw was first oxidized by Fe 3+ in the anode tank at approximately 100 °C. The reduced Fe 2+ in the anode was used to construct a fuel cell with VO 2 + in the cathode. The VO 2 + ions were reduced to VO 2+ and regenerated to VO 2 + by oxygen oxidation. The wheat straw flow fuel cell showed a power output of 100 mW cm -2 . Mediated with liquid Fe 3+ carriers, the solid powder of wheat straw could be gradually degraded into low-molecular-weight organic molecules and even oxidized to CO 2 at the anode without using noble-metal catalysts. The overpotential for the electrodes of the flow fuel cell was examined and the energy cost was estimated. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    PubMed

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Effects of ditch-buried straw return on water percolation, nitrogen leaching and crop yields in a rice-wheat rotation system.

    PubMed

    Yang, Haishui; Xu, Mingmin; Koide, Roger T; Liu, Qian; Dai, Yajun; Liu, Ling; Bian, Xinmin

    2016-03-15

    Crop residue management and nitrogen loss are two important environmental problems in the rice-wheat rotation system in China. This study investigated the effects of burial of straw on water percolation, nitrogen loss by leaching, crop growth and yield. Greenhouse mesocosm experiments were conducted over the course of three simulated cropping seasons in a rice1-wheat-rice2 rotation. Greater amounts of straw resulted in more water percolation, irrespective of crop season. Burial at 20 and 35 cm significantly reduced, but burial at 50 cm increased nitrogen leaching. Straw at 500 kg ha(-1) reduced, but at 1000 kg ha(-1) and at 1500 kg ha(-1) straw increased nitrogen leaching in three consecutive crop rotations. In addition, straw at 500 kg ha(-1) buried at 35 cm significantly increased yield and its components for both crops. This study suggests that N losses via leaching from the rice-wheat rotation may be reduced by the burial of the appropriate amount of straw at the appropriate depth. Greater amounts of buried straw, however, may promote nitrogen leaching and negatively affect crop growth and yields. Complementary field experiments must be performed to make specific agronomic recommendations. © 2015 Society of Chemical Industry.

  13. Shiitake Medicinal Mushroom, Lentinus edodes (Higher Basidiomycetes) Productivity and Lignocellulolytic Enzyme Profiles during Wheat Straw and Tree Leaf Bioconversion.

    PubMed

    Elisashvili, Vladimir; Kachlishvili, Eva; Asatiani, Mikheil D

    2015-01-01

    Two commercial strains of Lentinus edodes have been comparatively evaluated for their productivity and lignocellulolytic enzyme profiles in mushroom cultivation using wheat straw or tree leaves as the growth substrates. Both substrates are profitable for recycling into shiitake fruit bodies. L. edodes 3715 gave the lowest yield of mushroom during tree leaves bioconversion with the biological efficiency (BE) 74.8% while the L. edodes 3721 BE achieved 83.4%. Cultivation of shiitake on wheat straw, especially in the presence of additional nitrogen source, increased the L. edodes 3721 BE to 92-95.3% owing to the high hydrolases activity and favorable conditions. Despite the quantitative variations, each strain of L. edodes had a similar pattern for secreting enzymes into the wheat straw and tree leaves. The mushrooms laccase and MnP activities were high during substrate colonization and declined rapidly during primordia appearance and fruit body development. While oxidase activity decreased, during the same period cellulases and xylanase activity raised sharply. Both cellulase and xylanase activity peaked at the mature fruit body stage. When mushrooms again shifted to the vegetative growth, oxidase activity gradually increased, whereas the hydrolases activity dropped rapidly. The MnP, CMCase, and FP activities of L. edodes 3721 during cultivation on wheat straw were higher than those during mushroom growth on tree leaves whereas the laccase activity was rather higher in fermentation of tree leaves. Enrichment of wheat straw with an additional nitrogen source rather favored to laccase, MnP, and FPA secretion during the vegetative stage of the L. edodes 3721 growth.

  14. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Treesearch

    Jan B. Kristensen; G. Thygesen Lisbeth; Claus Felby; Henning Jorgensen; Thomas Elder

    2008-01-01

    Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw...

  15. Size exclusion chromatography for the removal of pigments from extracellular ligninolytic enzyme extracts from decayed wheat straw.

    PubMed

    Shukla, Dharmendra; Patel, Bhavesh; Modi, Hasmukh; Vyas, Bharat Rajiv Manuel

    2011-11-01

    Solid-state fermentation of wheat straw was carried out by a native white rot basidiomycete Daedaleopsis flavida strain 5A. Extract prepared from the 12-day decayed wheat straw contained extracellular ligninolytic enzymes like manganese peroxidase (MnP), manganese-independent peroxidase (MIP), lignin peroxidase (LiP) and laccase along with straw-degraded products and pigments. Sephacryl S-200 size exclusion chromatography in 16/100 column was used for the separation of these ligninolytic enzymes and straw-degraded products and pigments. Recovery of pigment-free ligninolytic enzyme activities as protein was 40% of the total proteins loaded and specific LiP activity increased 34 fold after size exclusion chromatography. Thus accurate estimation of LiP by veratryl alcohol oxidation assay was possible only after the removal of interfering pigments. The reproducibility of size exclusion chromatography is adjudged satisfactory from the consistent results obtained after seven repetitive uses of matrices.

  16. Electron and Fluorescence Microscopy of Extracellular Glucan and Aryl-Alcohol Oxidase during Wheat-Straw Degradation by Pleurotus eryngii

    PubMed Central

    Barrasa, J. M.; Gutiérrez, A.; Escaso, V.; Guillén, F.; Martínez, M. J.; Martínez, A. T.

    1998-01-01

    The ligninolytic fungus Pleurotus eryngii grown in liquid medium secreted extracellular polysaccharide (87% glucose) and the H2O2-producing enzyme aryl-alcohol oxidase (AAO). The production of both was stimulated by wheat-straw. Polyclonal antibodies against purified AAO were obtained, and a complex of glucanase and colloidal gold was prepared. With these tools, the localization of AAO and extracellular glucan in mycelium from liquid medium and straw degraded under solid-state fermentation conditions was investigated by transmission electron microscopy (TEM) and fluorescence microscopy. These studies revealed that P. eryngii produces a hyphal sheath consisting of a thin glucan layer. This sheath appeared to be involved in both mycelial adhesion to the straw cell wall during degradation and AAO immobilization on hyphal surfaces, with the latter evidenced by double labeling. AAO distribution during differential degradation of straw tissues was observed by immunofluorescence microscopy. Finally, TEM immunogold studies confirmed that AAO penetrates the plant cell wall during P. eryngii degradation of wheat straw. PMID:9435085

  17. Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    NASA Technical Reports Server (NTRS)

    Mackowiak, C. L.; Garland, J. L.

    1990-01-01

    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).

  18. Bioethanol production from wheat straw via enzymatic route employing Penicillium janthinellum cellulases.

    PubMed

    Singhania, Reeta Rani; Saini, Jitendra Kumar; Saini, Reetu; Adsul, Mukund; Mathur, Anshu; Gupta, Ravi; Tuli, Deepak Kumar

    2014-10-01

    This study concerns in-house development of cellulases from a mutant Penicillium janthinellum EMS-UV-8 and its application in separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes for bioethanol production from pre-treated wheat straw. In a 5L fermentor, the above strain could produce cellulases having activity of 3.1 FPU/mL and a specific activity of 0.83 FPU/mg of protein. In-house developed cellulase worked more efficiently in case of SSF as ethanol concentration of 21.6g/L and yield of 54.4% were obtained which were higher in comparison to SHF (ethanol concentration 12 g/L and 30.2% yield). This enzyme preparation when compared with commercial cellulase for hydrolysis of pre-treated wheat straw was found competitive. This study demonstrates that P. janthinellum EMS-UV-8 is a potential fungus for future large-scale production of cellulases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Registration of 'Linkert' spring wheat with good straw strength and adult plant resistance to the Ug99 family of stem rust races

    USDA-ARS?s Scientific Manuscript database

    Straw strength is one of the most important criteria for spring wheat cultivar selection in the north central U.S. ‘Linkert’ (PI 672164) hard red spring wheat was released by the University of Minnesota Agricultural Experiment Station in 2013 and has very good straw strength, high grain protein con...

  20. Sequential and simultaneous strategies for biorefining of wheat straw using room temperature ionic liquids, xylanases and cellulases.

    PubMed

    Husson, Eric; Auxenfans, Thomas; Herbaut, Mickael; Baralle, Manon; Lambertyn, Virginie; Rakotoarivonina, Harivoni; Rémond, Caroline; Sarazin, Catherine

    2018-03-01

    Sequential and simultaneous strategies for fractioning wheat straw were developed in combining 1-ethyl-3-methyl imidazolium acetate [C2mim][OAc], endo-xylanases from Thermobacillus xylanilyticus and commercial cellulases. After [C2mim][OAc]-pretreatment, hydrolysis catalyzed by endo-xylanases of wheat straw led to efficient xylose production with very competitive yield (97.6 ± 1.3%). Subsequent enzymatic saccharification allowed achieving a total degradation of cellulosic fraction (>99%). These high performances revealed an interesting complementarity of [C2mim][OAc]- and xylanase-pretreatments for increasing enzymatic digestibility of cellulosic fraction in agreement with the structural and morphological changes of wheat straw induced by each of these pretreatment steps. In addition a higher tolerance of endo-xylanases from T. xylaniliticus to [C2mim][AcO] until 30% v/v than cellulases from T. reesei was observed. Based on this property, a simultaneous strategy combining [C2mim][OAc]- and endo-xylanases as pretreatment in a one-batch produced xylose with similar yield than those obtained by the sequential strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Differential proteomic analysis of the secretome of Irpex lacteus and other white-rot fungi during wheat straw pretreatment.

    PubMed

    Salvachúa, Davinia; Martínez, Angel T; Tien, Ming; López-Lucendo, María F; García, Francisco; de Los Ríos, Vivian; Martínez, María Jesús; Prieto, Alicia

    2013-08-10

    Identifying new high-performance enzymes or enzyme complexes to enhance biomass degradation is the key for the development of cost-effective processes for ethanol production. Irpex lacteus is an efficient microorganism for wheat straw pretreatment, yielding easily hydrolysable products with high sugar content. Thus, this fungus was selected to investigate the enzymatic system involved in lignocellulose decay, and its secretome was compared to those from Phanerochaete chrysosporium and Pleurotus ostreatus which produced different degradation patterns when growing on wheat straw. Extracellular enzymes were analyzed through 2D-PAGE, nanoLC/MS-MS, and homology searches against public databases. In wheat straw, I. lacteus secreted proteases, dye-decolorizing and manganese-oxidizing peroxidases, and H2O2 producing-enzymes but also a battery of cellulases and xylanases, excluding those implicated in cellulose and hemicellulose degradation to their monosaccharides, making these sugars poorly available for fungal consumption. In contrast, a significant increase of β-glucosidase production was observed when I. lacteus grew in liquid cultures. P. chrysosporium secreted more enzymes implicated in the total hydrolysis of the polysaccharides and P. ostreatus produced, in proportion, more oxidoreductases. The protein pattern secreted during I. lacteus growth in wheat straw plus the differences observed among the different secretomes, justify the fitness of I. lacteus for biopretreatment processes in 2G-ethanol production. Furthermore, all these data give insight into the biological degradation of lignocellulose and suggest new enzyme mixtures interesting for its efficient hydrolysis.

  2. Bio-composites made from pine straw

    Treesearch

    Cheng Piao; Todd F. Shupe; Chung Y. Hse; Jamie Tang

    2004-01-01

    Pine straw is renewable natural resource that is under-utilized. The objective of this study was to evaluate the physical and mechanical performances of pine straw composites. Three panel density levels (0.8, 0.9, 1.0 g/cm2) and two resin content levels (1% pMDI + 4% UF, 2% pMDI + 4% UF) were selected as treatments. For the pine-straw-bamboo-...

  3. One-step process of hydrothermal and alkaline treatment of wheat straw for improving the enzymatic saccharification.

    PubMed

    Sun, Shaolong; Zhang, Lidan; Liu, Fang; Fan, Xiaolin; Sun, Run-Cang

    2018-01-01

    To increase the production of bioethanol, a two-step process based on hydrothermal and dilute alkaline treatment was applied to reduce the natural resistance of biomass. However, the process required a large amount of water and a long operation time due to the solid/liquid separation before the alkaline treatment, which led to decrease the pure economic profit for production of bioethanol. Therefore, four one-step processes based on order of hydrothermal and alkaline treatment have been developed to enhance concentration of glucose of wheat straw by enzymatic saccharification. The aim of the present study was to systematically evaluated effect for different one-step processes by analyzing the physicochemical properties (composition, structural change, crystallinity, surface morphology, and BET surface area) and enzymatic saccharification of the treated substrates. In this study, hemicelluloses and lignins were removed from wheat straw and the morphologic structures were destroyed to various extents during the four one-step processes, which were favorable for cellulase absorption on cellulose. A positive correlation was also observed between the crystallinity and enzymatic saccharification rate of the substrate under the conditions given. The surface area of the substrate was positively related to the concentration of glucose in this study. As compared to the control (3.0 g/L) and treated substrates (11.2-14.6 g/L) obtained by the other three one-step processes, the substrate treated by one-step process based on successively hydrothermal and alkaline treatment had a maximum glucose concentration of 18.6 g/L, which was due to the high cellulose concentration and surface area for the substrate, accompanying with removal of large amounts of lignins and hemicelluloses. The present study demonstrated that the order of hydrothermal and alkaline treatment had significant effects on the physicochemical properties and enzymatic saccharification of wheat straw. The one

  4. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.

    PubMed

    Wang, Lin; Mao, Jiugeng; Zhao, Hejuan; Li, Min; Wei, Qishun; Zhou, Ying; Shao, Heping

    2016-09-01

    Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4-5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost.

  5. Effect of wheat-maize straw return on the fate of nitrate in groundwater in the Huaihe River Basin, China.

    PubMed

    Li, Rongfu; Ruan, Xiaohong; Bai, Ying; Ma, Tianhai; Liu, Congqiang

    2017-08-15

    Straw return is becoming a routine practice in disposing of crop residues worldwide. However, the potential effect of such operation on the chemistry of local groundwater is not well documented. Here, shallow groundwater in an area where wheat-maize straw return is practiced was analyzed, and the seasonal changes in the nitrate concentration and the isotope compositions of NO 3 - and H 2 O were determined along two flow paths. Measured δD and δ 18 O in waters indicated that the groundwater was mainly recharged by atmospheric precipitation, while measured δ 15 N and δ 18 O in nitrate suggested that the sources for groundwater NO 3 - included urea fertilizer, soil nitrogen, and sewage/manure. Reduced NO 3 - concentrations coincided with an enrichment of organic matter in the groundwater of the straw return area, revealing an environmental condition that facilitates nitrate reduction, whereas increased δ 15 N-NO 3 - and δ 18 O-NO 3 - along the flow path suggested the occurrence of denitrification. Further analyses showed that, compared to the cases in the absence of straw return, as much as 80% and 90% of groundwater nitrate was removed in low and high water seasons in the straw return area, pointing to a potential positive effect of straw return to groundwater quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Growth, carcass yield and meat quality attributes of Red Maasai sheep fed wheat straw-based diets.

    PubMed

    Safari, John G; Mushi, Daniel E; Mtenga, Louis A; Kifaro, George C; Eik, Lars O

    2011-01-01

    Thirty-two castrated Red Maasai sheep (12.7 kg initial body weight, aged 12-18 months), were used in an 84-day experiment to evaluate diets based on treated straw upon growth performance, carcass yield and meat quality. The animals were blocked by weight into four similar groups and randomly allotted into four dietary treatments, with eight individually fed animals per treatment. The dietary treatments were ad libitum untreated wheat straw (UTS), wheat straw treated with urea and lime (TS), straw and ad libitum hay (UTSH), and TS and ad libitum hay (TSH). In addition, each experimental animal received 220 g/day (on as fed basis) of a concentrate diet. Treatment of straw increased (P < 0.05) dry matter intake (42.3 vs. 33.7 g/kg W (75)/day), energy intake (4.6 vs. 3.7 MJ ME/d) and the average daily gain (40.7 vs. 23.1 g). Animals on TS produced heavier (P < 0.05) carcasses (6.6 vs. 5.4 kg) with superior conformation than animals on UTS. Percentage cooking loss was higher in carcasses from animals fed TS compared to those from other diets. Except M. longissimus dorsi and M. semitendinosus, tenderness of muscles was not affected by diet but ageing of meat improved (P < 0.001) tenderness. Overall, straw treatment increased carcass yields with limited effects on meat quality attributes.

  7. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    PubMed

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw.

    PubMed

    Wang, Xiaojiao; Yang, Gaihe; Feng, Yongzhong; Ren, Guangxin; Han, Xinhui

    2012-09-01

    This study investigated the possibilities of improving methane yield from anaerobic digestion of multi-component substrates, using a mixture of dairy manure (DM), chicken manure (CM) and wheat straw (WS), based on optimized feeding composition and the C/N ratio. Co-digestion of DM, CM and WS performed better in methane potential than individual digestion. A larger synergetic effect in co-digestion of DM, CM and WS was found than in mixtures of single manures with WS. As the C/N ratio increased, methane potential initially increased and then declined. C/N ratios of 25:1 and 30:1 had better digestion performance with stable pH and low concentrations of total ammonium nitrogen and free NH(3). Maximum methane potential was achieved with DM/CM of 40.3:59.7 and a C/N ratio of 27.2:1 after optimization using response surface methodology. The results suggested that better performance of anaerobic co-digestion can be fulfilled by optimizing feeding composition and the C/N ratio. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Influence of Wheat Straw Pelletizing and Inclusion Rate in Dry Rolled or Steam-flaked Corn-based Finishing Diets on Characteristics of Digestion for Feedlot Cattle.

    PubMed

    Manríquez, O M; Montano, M F; Calderon, J F; Valdez, J A; Chirino, J O; Gonzalez, V M; Salinas-Chavira, J; Mendoza, G D; Soto, S; Zinn, R A

    2016-06-01

    Eight Holstein steers (216±48 kg body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous 4×4 Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect (p≥0.48) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected (p≥0.27). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However

  11. Performance Monitoring: Evaluating a Wheat Straw PRB for Nitrate Removal at an Agricultural Operation

    EPA Science Inventory

    The U.S. EPA Office of Research and Development’s National Risk Management Research Laboratory (NRMRL) is conducting long-term monitoring of a wheat straw permeable reactive barrier (PRB) for remediation of ground water contaminated with nitrate from a now-closed swine concentrat...

  12. Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw.

    PubMed

    Sun, Fubao; Chen, Hongzhang

    2008-09-01

    In order to defray the cost of biodiesel production, the ensuing work was to further investigate utilization of the crude glycerol (CG) from oleochemicals industry in the atmospheric autocatalytic organosolv pretreatment (AAOP) to enhance enzymatic hydrolysis. The AAOP-CG enabled wheat straw to achieve with reasonable enzymatic hydrolysis yields, reaching 75% for the wet substrate and 63% for the dried. Lipophilic compounds from the CG formed pitch deposition on the fiber, which was responsible for low delignification (30%) and also troublesome in practical operation. Pitch deposits itself had no significant role on enzymatic hydrolysis. A striking finding of the lignin recondensation and/or lignin-carbohydrate complex helped explain why dried pretreated wheat straw had a low enzymatic hydrolysis yield. The CG was suitable for the AAOP to enhance enzymatic hydrolysis of lignocellulosic biomass. But it was advisable to remove lipophilic compounds from crude glycerol before utilization.

  13. Characterization of mixing and yield stress of pretreated wheat straw slurries used for the production of biofuels through tomography technique.

    PubMed

    Naghavi-Anaraki, Yasaman; Turcotte, Ginette; Ein-Mozaffari, Farhad

    2018-05-29

    Wheat straw is a low-cost feedstock for the production of biofuel. Pretreatment process is an important stage in producing biofuels since it makes the fibers more accessible to enzymatic hydrolysis which is the final step of producing biofuels. Pretreated wheat straw (PWS) slurries are non-Newtonian fluids with yield stress. Mixing of fluids exhibiting yield stress such as the pretreated wheat straw slurry results in the generation of cavern, which is a fully-mixed zone, around the impeller and the stationary regions elsewhere, which causes difficulties in the production of biofuels. In this study, the non-invasive electrical resistance tomography technique was utilized to determine the cavern dimensions as a function of the impeller type and impeller speed. The cavern sizes were then used to measure the yield stress of PWS slurries as a function of fiber size (≤ 2 and ≤ 6 mm) and fiber concentration (6, 8, and 10 wt%).

  14. Adsorptive Removal of Toxic Chromium from Waste-Water Using Wheat Straw and Eupatorium adenophorum

    PubMed Central

    Song, Dagang; Pan, Kaiwen; Tariq, Akash; Azizullah, Azizullah; Sun, Feng; Li, Zilong; Xiong, Qinli

    2016-01-01

    Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr) is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI) efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI) from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI) removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI). The maximum Cr (VI) adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI) from contaminated water. PMID:27911906

  15. Adsorptive Removal of Toxic Chromium from Waste-Water Using Wheat Straw and Eupatorium adenophorum.

    PubMed

    Song, Dagang; Pan, Kaiwen; Tariq, Akash; Azizullah, Azizullah; Sun, Feng; Li, Zilong; Xiong, Qinli

    2016-01-01

    Environmental pollution with heavy metals is a serious issue worldwide posing threats to humans, animals and plants and to the stability of overall ecosystem. Chromium (Cr) is one of most hazardous heavy metals with a high carcinogenic and recalcitrant nature. Aim of the present study was to select low-cost biosorbent using wheat straw and Eupatorium adenophorum through simple carbonization process, capable of removing Cr (VI) efficiently from wastewater. From studied plants a low cost adsorbent was prepared for removing Cr (VI) from aqueous solution following very simple carbonization method excluding activation process. Several factors such as pH, contact time, sorbent dosage and temperature were investigated for attaining ideal condition. For analysis of adsorption equilibrium isotherm data, Langmuir, Freundlich and Temkin models were used while pseudo-first-order, pseudo-second-order, external diffusion and intra-particle diffusion models were used for the analysis of kinetic data. The obtained results revealed that 99.9% of Cr (VI) removal was observed in the solution with a pH of 1.0. Among all the tested models Langmuir model fitted more closely according to the data obtained. Increase in adsorption capacity was observed with increasing temperature revealing endothermic nature of Cr (VI). The maximum Cr (VI) adsorption potential of E. adenophorum and wheat straw was 89.22 mg per 1 gram adsorbent at 308K. Kinetic data of absorption precisely followed pseudo-second-order model. Present study revealed highest potential of E. adenophorum and wheat straw for producing low cost adsorbent and to remove Cr (VI) from contaminated water.

  16. Biomass yield and feeding value of rye, triticale, and wheat straw produced under a dual-purpose management system.

    PubMed

    Ates, S; Keles, G; Demirci, U; Dogan, S; Ben Salem, H

    2017-11-01

    Dual-purpose management of winter cereals for grazing and grain production provides highly nutritive forage for ruminants in the spring and may positively affect straw feeding value. A 2-yr study investigated the effect of spring defoliation of triticale, wheat, and rye at the tillering and stem elongation stages on total biomass, grain yields, and straw quality. Furthermore, straws of spring-defoliated and undefoliated (control) cereal crops were evaluated for nutritional value and voluntary intake as a means of assessing the efficiency of dual-purpose management systems from the winter feeding context as well. The feeding study consisted of 9 total mixed rations (TMR), each containing 35% triticale, rye, or wheat straw obtained under 3 spring-defoliation regimens. The TMR were individually fed to fifty-four 1-yr-old Anatolian Merino ewes for 28 d. Defoliation of the crops at tillering did not affect the total biomass production or grain yields. However, biomass and grain yields were reduced ( < 0.01) by 55 and 52%, respectively, in crops defoliated at stem elongation. Straw of spring-defoliated cereals had less NDF and ADF concentrations ( < 0.01) but greater CP ( < 0.01), nonfiber carbohydrates ( < 0.01), and ME concentrations ( < 0.01) compared with straw from undefoliated crops. The increase in the nutritive value of straw led to greater nutrient digestion ( < 0.01) and intake of DM and OM of ewes ( < 0.01). However, sheep live weight gain did not differ among treatments ( > 0.77). This study indicated that straw feeding value and digestibility can be increased through spring defoliation.

  17. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance.

    PubMed

    Ji, Fang; Wu, Jirong; Zhao, Hongyan; Xu, Jianhong; Shi, Jianrong

    2015-03-05

    A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB) and determined the deoxynivalenol (DON) content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.

  18. Pretreating wheat straw by phosphoric acid plus hydrogen peroxide for enzymatic saccharification and ethanol production at high solid loading.

    PubMed

    Qiu, Jingwen; Ma, Lunjie; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Hu, Yaodong

    2017-08-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP) for enzymatic hydrolysis and ethanol fermentation at high solid loadings. Results indicated solid loading could reach 20% with 77.4% cellulose-glucose conversion and glucose concentration of 164.9g/L in hydrolysate, it even was promoted to 25% with only 3.4% decrease on cellulose-glucose conversion as the pretreated-wheat straw was dewatered by air-drying. 72.9% cellulose-glucose conversion still was achieved as the minimized enzyme input of 20mg protein/g cellulose was employed for hydrolysis at 20% solid loading. In the corresponding conditions, 100g wheat straw can yield 11.2g ethanol with concentration of 71.2g/L by simultaneous saccharification and fermentation. Thus, PHP-pretreatment benefitted the glucose or ethanol yield at high solid loadings with lower enzyme input. Additionally, decreases on the maximal cellulase adsorption and the direct-orange/direct-blue indicated drying the PHP-pretreated substrates negatively affected the hydrolysis due to the shrinkage of cellulase-size-accommodable pores. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Selection of strains of Lentinula edodes and Lentinula boryana adapted for efficient mycelial growth on wheat straw.

    PubMed

    Mata, G; Delpech, P; Savoie, J M

    2001-09-01

    Mycelial growth rates are presented for 11 strains of Lentinula edodes and six strains of Lentinula boryana cultivated on solid media: derived from malt extract (MEA); malt yeast extract (YMEA); and, YMEA plus soluble lignin derivatives (YMEA+WSLD). The results were compared with data for mycelial growth rates, of the same strains cultivated on substrates derived from wheat straw treated at different temperatures (50, 65, 75 and autoclaving at 121 degrees C). In general, the addition of WSLD significantly reduced mycelial growth rates in both species. The greatest mycelial growth rate was obtained on sterilized straw at 121 degrees C for the majority of strains. However, this growth was not significantly different from that obtained at 75 degrees C. L. edodes showed greater growth rates than L. boryana. The feasibility of using estimates of mycelial growth rate on YMEA and YMEA+WSLD are discussed as possible indicators of a strain's potential for mycelial growth on substrates derived from wheat straw.

  20. Direct ethanol production from starch, wheat bran and rice straw by the white rot fungus Trametes hirsuta.

    PubMed

    Okamoto, Kenji; Nitta, Yasuyuki; Maekawa, Nitaro; Yanase, Hideshi

    2011-03-07

    The white rot fungus Trametes hirsuta produced ethanol from a variety of hexoses: glucose, mannose, cellobiose and maltose, with yields of 0.49, 0.48, 0.47 and 0.47 g/g of ethanol per sugar utilized, respectively. In addition, this fungus showed relatively favorable xylose consumption and ethanol production with a yield of 0.44 g/g. T. hirsuta was capable of directly fermenting starch, wheat bran and rice straw to ethanol without acid or enzymatic hydrolysis. Maximum ethanol concentrations of 9.1, 4.3 and 3.0 g/l, corresponding to 89.2%, 78.8% and 57.4% of the theoretical yield, were obtained when the fungus was grown in a medium containing 20 g/l starch, wheat bran or rice straw, respectively. The fermentation of rice straw pretreated with ball milling led to a small improvement in the ethanol yield: 3.4 g ethanol/20 g ball-milled rice straw. As T. hirsuta is an efficient microorganism capable of hydrolyzing biomass to fermentable sugars and directly converting them to ethanol, it may represent a suitable microorganism in consolidated bioprocessing applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments.

    PubMed

    Daly, Paul; van Munster, Jolanda M; Blythe, Martin J; Ibbett, Roger; Kokolski, Matt; Gaddipati, Sanyasi; Lindquist, Erika; Singan, Vasanth R; Barry, Kerrie W; Lipzen, Anna; Ngan, Chew Yee; Petzold, Christopher J; Chan, Leanne Jade G; Pullan, Steven T; Delmas, Stéphane; Waldron, Paul R; Grigoriev, Igor V; Tucker, Gregory A; Simmons, Blake A; Archer, David B

    2017-01-01

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retaining more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and IL

  2. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Paul; van Munster, Jolanda M.; Blythe, Martin J.

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retainingmore » more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and

  3. Expression of Aspergillus niger CAZymes is determined by compositional changes in wheat straw generated by hydrothermal or ionic liquid pretreatments

    DOE PAGES

    Daly, Paul; van Munster, Jolanda M.; Blythe, Martin J.; ...

    2017-02-07

    The capacity of fungi, such as Aspergillus niger, to degrade lignocellulose is harnessed in biotechnology to generate biofuels and high-value compounds from renewable feedstocks. Most feedstocks are currently pretreated to increase enzymatic digestibility: improving our understanding of the transcriptomic responses of fungi to pretreated lignocellulosic substrates could help to improve the mix of activities and reduce the production costs of commercial lignocellulose saccharifying cocktails. We investigated the responses of A. niger to untreated, ionic liquid and hydrothermally pretreated wheat straw over a 5-day time course using RNA-seq and targeted proteomics. The ionic liquid pretreatment altered the cellulose crystallinity while retainingmore » more of the hemicellulosic sugars than the hydrothermal pretreatment. Ionic liquid pretreatment of straw led to a dynamic induction and repression of genes, which was correlated with the higher levels of pentose sugars saccharified from the ionic liquid-pretreated straw. Hydrothermal pretreatment of straw led to reduced levels of transcripts of genes encoding carbohydrate-active enzymes as well as the derived proteins and enzyme activities. Both pretreatments abolished the expression of a large set of genes encoding pectinolytic enzymes. These reduced levels could be explained by the removal of parts of the lignocellulose by the hydrothermal pretreatment. The time course also facilitated identification of temporally limited gene induction patterns. The presented transcriptomic and biochemical datasets demonstrate that pretreatments caused modifications of the lignocellulose, to both specific structural features as well as the organisation of the overall lignocellulosic structure, that determined A. niger transcript levels. The experimental setup allowed reliable detection of substrate-specific gene expression patterns as well as hitherto non-expressed genes. Our data suggest beneficial effects of using untreated and

  4. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture.

    PubMed

    Zhang, Xiumin; Wang, Min; Wang, Rong; Ma, Zhiyuan; Long, Donglei; Mao, Hongxiang; Wen, Jiangnan; Bernard, Lukuyu A; Beauchemin, Karen A; Tan, Zhiliang

    2018-04-10

    Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg -1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg -1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). Urea pretreatment increased (P < 0.05) neutral-detergent solubles (NDS) content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P < 0.05) NDS content, in vitro DM degradation and propionate molar proportion, and lower (P < 0.05) acetate:propionate ratio and lower methane production with a decline of methanogens, in comparison to control. Urea+nitrate pretreatment combines positive effects of urea pretreatment and nitrate supplementation, and can be a potential strategy to improve ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  5. Straw enhanced CO2 and CH4 but decreased N2O emissions from flooded paddy soils: Changes in microbial community compositions

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Yu, Jian-Guang; Zhao, Ya-Hui; Chang, Zhi-Zhou; Shi, Xiao-Xia; Ma, Lena Q.; Li, Hong-Bo

    2018-02-01

    To explore microbial mechanisms of straw-induced changes in CO2, CH4, and N2O emissions from paddy field, wheat straw was amended to two paddy soils from Taizhou (TZ) and Yixing (YX), China for 60 d under flooded condition. Illumia sequencing was used to characterize shift in bacterial community compositions. Compared to control, 1-5% straw amendment significantly elevated CO2 and CH4 emissions with higher increase at higher application rates, mainly due to increased soil DOC concentrations. In contrast, straw amendment decreased N2O emission. Considering CO2, CH4, and N2O emissions as a whole, an overall increase in global warming potential was observed with straw amendment. Total CO2 and CH4 emissions from straw-amended soils were significantly higher for YX than TZ soil, suggesting that straw-induced greenhouse gas emissions depended on soil characteristics. The abundance of C-turnover bacteria Firmicutes increased from 28-41% to 54-77% with straw amendment, thereby increasing CO2 and CH4 emissions. However, straw amendment reduced the abundance of denitrifying bacteria Proteobacteria from 18% to 7.2-13% or increased the abundance of N2O reducing bacteria Clostridium from 7.6-11% to 13-30%, thereby decreasing N2O emission. The results suggested straw amendment strongly influenced greenhouse gas emissions via alerting soil properties and bacterial community compositions. Future field application is needed to ascertain the effects of straw return on greenhouse gas emissions.

  6. Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment.

    PubMed

    Reilly, Matthew; Dinsdale, Richard; Guwy, Alan

    2015-08-01

    A factorially designed experiment to examine the effectiveness of Ca(OH)2 pre-treatment, enzyme addition and particle size, on the mesophilic (35 °C) anaerobic digestion of wheat straw was conducted. Experiments used a 48 h pre-treatment with Ca(OH)2 7.4% (w/w), addition of Accellerase®-1500, with four particle sizes of wheat straw (1.25, 2, 3 and 10mm) and three digestion time periods (5, 15 and 30 days). By combining particle size reduction and Ca(OH)2 pre-treatment, the average methane potential was increased by 315% (from 48 NmL-CH4 g-VS(-1) to 202 NmL-CH4 g-VS(-1)) after 5 days of anaerobic digestion compared to the control. Enzyme addition or Ca(OH)2 pre-treatment with 3, 2 and 1.25 mm particle sizes had 30-day batch yields of between 301 and 335 NmL-CH4 g-VS(-1). Alkali pre-treatment of 3mm straw was shown to have the most potential as a cost effective pre-treatment and achieved 290 NmL-CH4 g-VS(-1), after only 15 days of digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An economic evaluation of biological conversion of wheat straw to butanol: A biofuel

    USDA-ARS?s Scientific Manuscript database

    A cost estimation study was performed for a biological butanol production plant with a capacity of 150 x 10**6 kg butanol/year. Wheat straw was used as a feedstock. In addition to butanol, acetone (78.05 x 10**6 kg/year) and ethanol (28.54 x 10**6 kg/year) would also be produced. The total capital c...

  8. Natural cellulose fibers from soybean straw.

    PubMed

    Reddy, Narendra; Yang, Yiqi

    2009-07-01

    This paper reports the development of natural cellulose technical fibers from soybean straw with properties similar to the natural cellulose fibers in current use. About 220 million tons of soybean straw available in the world every year could complement the byproducts of other major food crops as inexpensive, abundant and annually renewable sources for natural cellulose fibers. Using the agricultural byproducts as sources for fibers could help to address the concerns on the future price and availability of both the natural and synthetic fibers in current use and also help to add value to the food crops. A simple alkaline extraction was used to obtain technical fibers from soybean straw and the composition, structure and properties of the fibers was studied. Technical fibers obtained from soybean straw have high cellulose content (85%) but low% crystallinity (47%). The technical fibers have breaking tenacity (2.7 g/den) and breaking elongation (3.9%) higher than those of fibers obtained from wheat straw and sorghum stalk and leaves but lower than that of cotton. Overall, the structure and properties of the technical fibers obtained from soybean straw indicates that the fibers could be suitable for use in textile, composite and other industrial applications.

  9. Preservation of Ceriporiopsis subvermispora and Lentinula edodes treated wheat straw under anaerobic conditions.

    PubMed

    Mao, Lei; Sonnenberg, Anton S M; Hendriks, Wouter H; Cone, John W

    2018-02-01

    No attention has been paid so far to the preservation of fungal-treated lignocellulose for longer periods. In the present study, we treated wheat straw (WS) with the white-rot fungi Ceriporiopsis subvermispora and Lentinula edodes for 8 weeks and assessed changes in pH, chemical composition and in vitro gas production (IVGP) weekly. Fungal-treated WS was also stored for 64 days 'as is', with the addition of lactic acid bacteria (LAB) or with a combination of LAB and molasses in airtight glass jars mimicking ensiling conditions. Both fungi significantly reduced the lignin and hemicellulose content of WS, and increased the cellulose content. The IVGP increased with increasing time of incubation, indicating the increase in digestibility. Both fungi lowered the pH of WS under 4.3, which guarantees an initial and stable low pH during anaerobic storage. Minor changes in fibre composition and IVGP were observed for stored L. edodes treated WS, whereas no change occurred for C. subvermispora. It is possible to conserve C. subvermispora and L. edodes treated straw under anaerobic condition without additives up to 64 days. This finding is important for practical application to supply fungi-treated feed to ruminant animals for a prolonged period. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry. © 2017 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  10. Influence of tillage practices and straw incorporation on soil aggregates, organic carbon, and crop yields in a rice-wheat rotation system

    PubMed Central

    Song, Ke; Yang, Jianjun; Xue, Yong; Lv, Weiguang; Zheng, Xianqing; Pan, Jianjun

    2016-01-01

    In this study, a fixed-site field experiment was conducted to study the influence of different combinations of tillage and straw incorporation management on carbon storage in different-sized soil aggregates and on crop yield after three years of rice-wheat rotation. Compared to conventional tillage, the percentages of >2 mm macroaggregates and water-stable macroaggregates in rice-wheat double-conservation tillage (zero-tillage and straw incorporation) were increased 17.22% and 36.38% in the 0–15 cm soil layer and 28.93% and 66.34% in the 15–30 cm soil layer, respectively. Zero tillage and straw incorporation also increased the mean weight diameter and stability of the soil aggregates. In surface soil (0–15 cm), the maximum proportion of total aggregated carbon was retained with 0.25–0.106 mm aggregates, and rice-wheat double-conservation tillage had the greatest ability to hold the organic carbon (33.64 g kg−1). However, different forms occurred at higher levels in the 15–30 cm soil layer under the conventional tillage. In terms of crop yield, the rice grown under conventional tillage and the wheat under zero tillage showed improved equivalent rice yields of 8.77% and 6.17% compared to rice-wheat double-cropping under zero tillage or conventional tillage, respectively. PMID:27812038

  11. Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation.

    PubMed

    Lin, Hui; Cheng, Wan; Ding, Hai-tao; Chen, Xue-jiao; Zhou, Qi-fa; Zhao, Yu-hua

    2010-10-01

    Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation (SSF) was investigated. In submerged fermentation, A. oryzae A-4 accumulated lipid to 15-18.15% of biomass when pure cellulose was utilized as the sole substrate. In SSF of the wheat straw and bran mixture, A. oryzae A-4 yielded lipid of 36.6mg/g dry substrate (gds), and a cellulase activity of 1.82 FPU/gds with 25.25% of holocellulose utilization in the substrates were detected on the 6th day. The lipid yield reached 62.87 mg/gds in SSF on the 6th day under the optimized conditions from Plackett-Burman design (PBD). Cellulase secretion of A. oryzae A-4 was found to influence the lipid yield. Dilute acid pretreatment of the straw and addition of some agro-industrial wastes to the straw could enhance lipid production of A. oryzae A-4. Copyright 2010 Elsevier Ltd. All rights reserved.

  12. Rapid Assessment of In Situ Wheat Straw Residue Via Remote Sensing Platforms

    NASA Technical Reports Server (NTRS)

    Sullivan, D. G.; Shaw, J. N.; Mask, P. L.; Rickman, D.; Luvall, J.; Wersinger, J. M.; Guertal, E. A.

    2003-01-01

    Crop residues influence near surface soil organic carbon content (SOC), impact our ability to remotely assess soil properties, and play a role in global carbon budgets. Methods that measure crop residues are laborious, and largely inappropriate for regional estimates. The objective of this study was to evaluate remote sensing (RS) data for rapid quantification of residue cover. In March 2000 and April 2001, residue plots (15 m x 15 m) were established in the Coastal Plain and Appalachian Plateau physiographic regions of Alabama. Treatments consisted of five wheat (Triticum aestivum L.) straw cover rates (0, 10, 20, 50, and 80%) replicated 3 times. Soil water content and residue decomposition were monitored. Spectral measurements were acquired via spectroradiometer (350 - 1050 nm), Airborne Terrestrial Applications Sensor (ATLAS) (400 - 12,500 nm), airborne color photography (400 - 600 nm), and IKONOS satellite (450 - 900 nm). Spectroradiometer data were acquired monthly, aircraft images yearly, and satellite per availability. Results showed all platforms successfully estimated residue cover variability using red, near infrared (NIR) and thermal infrared (TIR) regions of the spectrum. Airborne ATLAS imagery was best explaining as much as 98% of the variability in wheat straw cover. Spectroradiometer, color infrared photography, and IKONOS imagery accounted for 84, 56, and 24% of the variability, respectively.

  13. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    PubMed

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater.

    PubMed

    Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang

    2017-01-01

    This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h-1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7-6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42-, HCO3- and NO3- all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater.

  15. Significance of Herbaspirillum seropedicae inoculation and/or straw amendment on growth and dinitrogen fixation of wheat using 15N-dilution method.

    PubMed

    el-Komy, H M; Saad, O A; Hetta, A M

    2003-01-01

    The effect of Herbaspirillum seropedicae inoculation and/or maize straw (0, 5 and 10 Mg/hm2) amendment on the growth and N2 fixation of wheat was determined in pot experiments using 15N-dilution method. Inoculation resulted in accumulation of fixed nitrogen, and % N from atmosphere being 24.6 and 26.5% in wheat shoot and grain, respectively. Straw amendment reduced % Natm to 16.1 and 20.2% at high straw level (10 Mg/hm2). Rational nitrogen fertilization (180 kg N/hm2) completely inhibited N2 fixation by H. seropedicae inoculation. Bacterial inoculation increased dry shoot and grain yield up to 23 and 31%, respectively. The highest levels of shoot and grain dry mass (46.5 and 42.4%) were obtained by N-fertilization in both inoculated and uninoculated plants. Total shoot and grain N-yield increased irrespective of organic matter amendment by inoculation up to 9 and 25%, respectively. N-fertilized plants recorded a maximum increase in N-yield (57 and 51%). H. seropedicae was reisolated from inoculated wheat histosphere after harvesting (90 d from sowing). Neither organic matter nor mineral nitrogen applications had any marked effect on bacterial total counts colonizing wheat histosphere. Moreover, no symptoms of mottled stripe disease were observed on leaves and stems of inoculated plants.

  16. Bleach boosting effect of xylanase A from Bacillus halodurans C-125 in ECF bleaching of wheat straw pulp.

    PubMed

    Lin, Xiao-qiong; Han, Shuang-yan; Zhang, Na; Hu, Hui; Zheng, Sui-ping; Ye, Yan-rui; Lin, Ying

    2013-02-05

    Past studies have revealed major difficulties in applications of xylanase in the pulp and paper industry as enzymes isolated from many different species could not tolerate high temperatures or highly alkaline conditions. The thermostable xylanase A from Bacillus halodurans C-125 (C-125 xylanase A) was successfully cloned and expressed in Pichia pastoris with a yield as high as 3361 U/mL in a 2 L reactor. Its thermophilic and basophilic properties (optimal activity at 70 °C and pH 9.0), together with the fact it is cellulase-free, render this enzyme attractive for compatible applications in the pulp and paper industry. The pretreatment of wheat straw pulp with C-125 xylanase A at pH 9.0 and 70 °C for 90 min induced the release of both chromophores (Ab(237), Ab(254), Ab(280)) and hydrophobic compounds (Ab(465)) into the filtrate as well as sugar degradation. Moreover, the addition of 10 U xylanase to 1 g wheat straw pulp (dry weight) as pretreatment improved brightness by 5.2% ISO and decreased the kappa number by 5.0% when followed by hydrogen peroxide bleaching. In addition, compared with two commercial enzymes, Pulpzyme HC and AU-PE89, which are normally incorporated in ECF bleaching of wheat straw pulp, C-125 xylanase A proved to be more effective in enhancing brightness as well as preserving paper strength properties. When evaluating the physical properties of pulp samples, such as tensile index, tearing index, bursting index, and post-color (PC) number, the enzymes involved in pretreating pulps exhibited better or the same performances as chemical treatment. Compared with chemical bleaching, chlorine consumption can be significantly reduced by 10% for xylanase-pretreated wheat straw pulp while maintaining the brightness together with the kappa number at the same level. Scanning electron microscopy revealed significant surface modification of enzyme-pretreated pulp fibers with no marked fiber disruptions. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Post-harvest processing methods for reduction of silica and alkali metals in wheat straw.

    PubMed

    Thompson, David N; Shaw, Peter G; Lacey, Jeffrey A

    2003-01-01

    Silica and alkali metals in wheat straw limit its use for bioenergy and gasification. Slag deposits occur via the eutectic melting of SiO2 with K2O, trapping chlorides at surfaces and causing corrosion. A minimum melting point of 950 degrees C is desirable, corresponding to an SiO2:K2O weight ratio of about 3:1. Mild chemical treatments were used to reduce Si, K, and Cl, while varying temperature, concentration, % solids, and time. Dilute acid was more effective at removing K and Cl, while dilute alkali was more effective for Si. Reduction of minerals in this manner may prove economical for increasing utilization of the straw for combustion or gasification.

  18. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.

    PubMed

    Salmones, Dulce; Mata, Gerardo; Waliszewski, Krzysztof N

    2005-03-01

    The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies.

  19. [The influence of straw, particularly rice straw, together with calcium-cyanamide on the microbiological activity of two Portuguese soils (author's transl)].

    PubMed

    Glathe, H; El Din, A; Scheuer, A

    1976-01-01

    The influence of calcium-cyanamide upon the microbiological activity was tested in pot experiments under controlled conditions in two Portuguese soils (sandy and loamy) after the addition of rice or wheat straw (rice straw 0.275% N, wheat straw 0.307% N). The amount of straw was equalled to 100 dz/ha, the application of calcium-cyanamide to 25, 50 and 100 kg N/ha. In the containers treated with straw the total amount of microorganisms (Koch-method) was higher in sandy than in loamy soil after 30 days, but after 70 days it was higher in loamy soil. The content of active nitrogen (NH4 + NO3) increased, when calcium-cyanamide was added, but decreased after the application of straw. After 70 days sandy soil again showed an increase of active nitrogen. Straw increased the rates of CO2-production considerably, wheat straw was superior to rice straw. Calcium-cyanamide increased the CO2-production more in sandy than in loamy soil or German loess, which was also used for this experiment. Only in the case of rice straw higher doses of calcium-cyanamide had a positive effect. After 70 days the CO2-production rose only when rice straw was applied. The dehydrogenase-activity was increased in both soils, but a superiority of wheat straw occurred in sandy soil only. The microbiological activity in the pots with straw was higher in sandy than in loamy soil, the addition of calcium-cyanamide accelerated it. Doses of 25-50 kg N/ha are sufficient generally. The period of the formation of insoluble organic N-compounds, usually connected with the application of organic matter with a wide N:C-ratio, seems to be reduced by the addition of calcium-cyanamide.

  20. Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment.

    PubMed

    Qiu, Weihua; Chen, Hongzhang

    2012-08-01

    Laccase, capable of selectively degrading lignin while keeping cellulose intact, has been widely applied for the modification and bio-bleaching of pulp. In this study Sclerotium sp. laccase (MSLac) was employed in combination with steam explosion to evaluate the effect of this treatment on cellulose hydrolysis. Combined steam explosion with laccase pretreatment enhanced the cellulose conversion rate of wheat straw no matter in the case of successive (MSLac-Cel) and simultaneous (MSLac+Cel) MSLac and cellulase hydrolysis. The highest cellulose conversion rate of 84.23% was obtained when steam-exploded wheat straw (SEWS) (1.3 MPa, 5 min) was treated by MSLac+Cel at a laccase loading of 0.55 U g(-1) substrate. FT-IR and SEM analyses indicated that MSLac oxidized the phenol and changed electron configuration of the ring, which contributed to loosening the compact wrap of lignin-carbohydrate complex and consequently enhancing the enzymatic hydrolysis efficiency of cellulose. This article provided a promising method for lignocellulose bio-pretreatment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater

    PubMed Central

    Li, Hui; Chen, Ya Qin; Chen, Shuai; Wang, Xiao Li; Guo, Shu; Qiu, Yue Feng; Liu, Yong Di; Duan, Xiao Li; Yu, Yun Jiang

    2017-01-01

    This study synthesized the wheat straw biochar-supported nanoscale zerovalent iron (BC-nZVI) via in-situ reduction with NaBH4 and biochar pyrolyzed at 600°C. Wheat straw biochar, as a carrier, significantly enhanced the removal of trichloroethylene (TCE) by nZVI. The pseudo-first-order rate constant of TCE removal by BC-nZVI (1.079 h−1) within 260 min was 1.4 times higher and 539.5 times higher than that of biochar and nZVI, respectively. TCE was 79% dechlorinated by BC-nZVI within 15 h, but only 11% dechlorinated by unsupported nZVI, and no TCE dechlorination occurred with unmodified biochar. Weakly acidic solution (pH 5.7–6.8) significantly enhanced the dechlorination of TCE. Chloride enhanced the removal of TCE, while SO42−, HCO3− and NO3− all inhibited it. Humic acid (HA) inhibited BC-nZVI reactivity, but the inhibition decreased slightly as the concentration of HA increased from 40 mg∙L-1 to 80 mg∙L-1, which was due to the electron shutting by HA aggregates. Results suggest that BC-nZVI was promising for remediation of TCE contaminated groundwater. PMID:28264061

  2. Rice straw-wood particle composite for sound absorbing wooden construction materials.

    PubMed

    Yang, Han-Seung; Kim, Dae-Jun; Kim, Hyun-Joong

    2003-01-01

    In this study, rice straw-wood particle composite boards were manufactured as insulation boards using the method used in the wood-based panel industry. The raw material, rice straw, was chosen because of its availability. The manufacturing parameters were: a specific gravity of 0.4, 0.6, and 0.8, and a rice straw content (10/90, 20/80, and 30/70 weight of rice straw/wood particle) of 10, 20, and 30 wt.%. A commercial urea-formaldehyde adhesive was used as the composite binder, to achieve 140-290 psi of bending modulus of rupture (MOR) with 0.4 specific gravity, 700-900 psi of bending MOR with 0.6 specific gravity, and 1400-2900 psi of bending MOR with a 0.8 specific gravity. All of the composite boards were superior to insulation board in strength. Width and length of the rice straw particle did not affect the bending MOR. The composite boards made from a random cutting of rice straw and wood particles were the best and recommended for manufacturing processes. Sound absorption coefficients of the 0.4 and 0.6 specific gravity boards were higher than the other wood-based materials. The recommended properties of the rice straw-wood particle composite boards are described, to absorb noises, preserve the temperature of indoor living spaces, and to be able to partially or completely substitute for wood particleboard and insulation board in wooden constructions.

  3. Enzymatic hydrolysis optimization of microwave alkali pretreated wheat straw and ethanol production by yeast.

    PubMed

    Singh, Anita; Bishnoi, Narsi R

    2012-03-01

    Microwave alkali pretreated wheat straw was used for in-house enzyme production by Aspergillusflavus and Trichodermareesei. Produced enzymes were concentrated, pooled and assessed for the hydrolysis of pretreated wheat straw. Factors affecting hydrolysis were screened out by Placket-Burman design (PBD) and most significant factors were further optimized by Box-Behnken design (BBD). Under optimum conditions, 82% efficiency in hydrolysis yield was observed. After the optimization by response surface methodology (RSM), a model was proposed to predict the optimum value confirmed by the experimental results. The concentrated enzymatic hydrolyzate was fermented for ethanol production by Saccharomyces cerevisiae, Pichia stipitis and co-culture of both. The yield of ethanol was found to be 0.48 g(p)/g(s), 0.43 g(p)/g(s) and 0.40 g(p)/g(s) by S. cerevisiae, P. stipitis and by co-culture, respectively, using concentrated enzymatic hydrolyzate. During anaerobic fermentation 42.31 μmol/mL, 36.69 μmol/mL, 43.35 μmol/mL CO(2) was released by S. cerevisiae, P. stipitis and by co-culture, respectively. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Amino acid production from rice straw and wheat bran hydrolysates by recombinant pentose-utilizing Corynebacterium glutamicum.

    PubMed

    Gopinath, Vipin; Meiswinkel, Tobias M; Wendisch, Volker F; Nampoothiri, K Madhavan

    2011-12-01

    Corynebacterium glutamicum wild type lacks the ability to utilize the pentose fractions of lignocellulosic hydrolysates, but it is known that recombinants expressing the araBAD operon and/or the xylA gene from Escherichia coli are able to grow with the pentoses xylose and arabinose as sole carbon sources. Recombinant pentose-utilizing strains derived from C. glutamicum wild type or from the L-lysine-producing C. glutamicum strain DM1729 utilized arabinose and/or xylose when these were added as pure chemicals to glucose-based minimal medium or when they were present in acid hydrolysates of rice straw or wheat bran. The recombinants grew to higher biomass concentrations and produced more L-glutamate and L-lysine, respectively, than the empty vector control strains, which utilized the glucose fraction. Typically, arabinose and xylose were co-utilized by the recombinant strains along with glucose either when acid rice straw and wheat bran hydrolysates were used or when blends of pure arabinose, xylose, and glucose were used. With acid hydrolysates growth, amino acid production and sugar consumption were delayed and slower as compared to media with blends of pure arabinose, xylose, and glucose. The ethambutol-triggered production of up to 93 ± 4 mM L-glutamate by the wild type-derived pentose-utilizing recombinant and the production of up to 42 ± 2 mM L-lysine by the recombinant pentose-utilizing lysine producer on media containing acid rice straw or wheat bran hydrolysate as carbon and energy source revealed that acid hydrolysates of agricultural waste materials may provide an alternative feedstock for large-scale amino acid production.

  5. [Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region].

    PubMed

    Wang, Jun; Wang, De-Jian; Zhang, Gang; Wang, Yuan

    2013-01-01

    An experiment using monolith lysimeter was conducted to compare the characteristic of N loss by ammonia (NH3) volatilization between the gleyed paddy soil (G soil) and hydromorphic paddy soil (H soil) the Changshu National Agro-ecological Experimental Station of the Chinese Academy of Sciences(31 degrees 33' N, 123 degrees 38' E). Three treatments were designed for each soil type, i. e. control (no urea and straw applied), nitrogen solely and nitrogen plus wheat straw. Ammonia volatilization, flood water NH4(+) -N concentration, pH and top soil Eh were measured during the rice-growing season. Results showed that the NH3 volatilization flux and cumulative N losses by NH3 volatilization from G soil were significantly higher than those from H soil, the average cumulative N losses being about 41.8 kg x hm(-2) and 11.2 kg x hm(-2), or 15.2% and 3.8% of the fertilizer N, respectively. The average N loss by NH3 volatilization during the tillering stage was the highest among the three fertilization stages, accounting for 29.4% and 8.3% of the fertilizer N for G soil and H soil, respectively. Wheat straw returning significantly increased paddy filed NH3 volatilization losses. Comparing with the sole application of fertilizer-N, the cumulative N loss by NH3 volatilization of fertilizer-N in combination with wheat straw was increased by 19.8% and 20.6% for G soil and H soil, respectively. In addition, ammonia volatilization fluxes showed a positive relationship with the flood water NH4(+) -N concentration and pH for both soils, but the relationship with top soil Eh still needs further study.

  6. White-rot fungal pretreatment of wheat straw with Phanerochaete chrysosporium for biohydrogen production: simultaneous saccharification and fermentation.

    PubMed

    Zhi, Zelun; Wang, Hui

    2014-07-01

    This paper demonstrates biohydrogen production was enhanced by white-rot fungal pretreatment of wheat straw (WS) through simultaneous saccharification and fermentation (SSF). Wheat straw was pretreated by Phanerochaete chrysosporium at 30 °C under solid state fermentation for 12 days, and lignin was removed about 28.5 ± 1.3 %. Microscopic structure observation combined thermal gravity and differential thermal gravity analysis further showed that the lignocellulose structure obviously disrupted after fungal pretreatment. Subsequently, the pretreated WS and crude cellulases prepared from Trichoderma atroviride were applied in SSF for hydrogen production using Clostridium perfringens. The maximum hydrogen yield was obtained to be 78.5 ± 3.4 ml g(-1)-pretreated WS, which was about 1.8-fold than the unpretreated group. Furthermore, the modified Gompertz model was applied study the progress of cumulative H(2) production. This work developed a novel bio-approach to improve fermentative H(2) yield from lignocellulosic biomass.

  7. Environmental performance of straw-based pulp making: A life cycle perspective.

    PubMed

    Sun, Mingxing; Wang, Yutao; Shi, Lei

    2018-03-01

    Agricultural straw-based pulp making plays a vital role in pulp and paper industry, especially in forest deficient countries such as China. However, the environmental performance of straw-based pulp has scarcely been studied. A life cycle assessment on wheat straw-based pulp making in China was conducted to fill of the gaps in comprehensive environmental assessments of agricultural straw-based pulp making. On average, the global warming potential (GWP), GWP excluding biogenic carbon, acidification potential and eutrophication potential of wheat straw based pulp making are 2299kg CO 2 -eq, 4550kg CO 2 -eq, 16.43kg SO 2 -eq and 2.56kg Phosphate-eq respectively. The dominant factors contributing to environmental impacts are coal consumption, electricity consumption, and chemical (NaOH, ClO 2 ) input. Chemical input decrease and energy recovery increase reduce the total environmental impacts dramatically. Compared with wood-based and recycled pulp making, wheat straw-based pulp making has higher environmental impacts, which are mainly due to higher energy and chemical requirements. However, the environmental impacts of wheat straw-based pulp making are lower than hemp and flax based pulp making from previous studies. It is also noteworthy that biogenic carbon emission is significant in bio industries. If carbon sequestration is taken into account in pulp making industry, wheat straw-based pulp making is a net emitter rather than a net absorber of carbon dioxide. Since wheat straw-based pulp making provides an alternative for agricultural residue management, its evaluation framework should be expanded to further reveal its environmental benefits. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarummore » and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.« less

  9. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DOE PAGES

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément; ...

    2015-06-18

    Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during bioethanol production, and the spectra were analysed to identify components associated with recalcitrance. A total of 1122more » wheat straw samples from nine different locations in Denmark and one location in the United Kingdom, spanning a large variation in genetic material and environmental conditions during growth, were analysed. The FTIR-PAS spectra of non-pretreated wheat straw were correlated with the measured sugar release, determined by a high-throughput pretreatment and enzymatic hydrolysis (HTPH) assay. A partial least square regression (PLSR) calibration model predicting the glucose and xylose release was developed. The interpretation of the regression coefficients revealed a positive correlation between the released glucose and xylose with easily hydrolysable compounds, such as amorphous cellulose and hemicellulose. Additionally, we observed a negative correlation with crystalline cellulose and lignin, which inhibits cellulose and hemicellulose hydrolysis. FTIR-PAS was used as a reliable method for the rapid estimation of sugar release during bioethanol production. The spectra revealed that lignin inhibited the hydrolysis of polysaccharides into monomers, while the crystallinity of cellulose retarded its hydrolysis into glucose. Amorphous cellulose and xylans were found to contribute significantly to the released amounts of glucose and xylose

  10. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément

    Complexity and high cost are the main limitations for high-throughput screening methods for the estimation of the sugar release from plant materials during bioethanol production. In addition, it is important that we improve our understanding of the mechanisms by which different chemical components are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during bioethanol production, and the spectra were analysed to identify components associated with recalcitrance. A total of 1122more » wheat straw samples from nine different locations in Denmark and one location in the United Kingdom, spanning a large variation in genetic material and environmental conditions during growth, were analysed. The FTIR-PAS spectra of non-pretreated wheat straw were correlated with the measured sugar release, determined by a high-throughput pretreatment and enzymatic hydrolysis (HTPH) assay. A partial least square regression (PLSR) calibration model predicting the glucose and xylose release was developed. The interpretation of the regression coefficients revealed a positive correlation between the released glucose and xylose with easily hydrolysable compounds, such as amorphous cellulose and hemicellulose. Additionally, we observed a negative correlation with crystalline cellulose and lignin, which inhibits cellulose and hemicellulose hydrolysis. FTIR-PAS was used as a reliable method for the rapid estimation of sugar release during bioethanol production. The spectra revealed that lignin inhibited the hydrolysis of polysaccharides into monomers, while the crystallinity of cellulose retarded its hydrolysis into glucose. Amorphous cellulose and xylans were found to contribute significantly to the released amounts of glucose and xylose

  11. A new pulping process for wheat straw to reduce problems with the discharge of black liquor.

    PubMed

    Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G

    2007-11-01

    Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor.

  12. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    NASA Astrophysics Data System (ADS)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  13. Bioethanol and lipid production from the enzymatic hydrolysate of wheat straw after furfural extraction.

    PubMed

    Brandenburg, Jule; Poppele, Ieva; Blomqvist, Johanna; Puke, Maris; Pickova, Jana; Sandgren, Mats; Rapoport, Alexander; Vedernikovs, Nikolajs; Passoth, Volkmar

    2018-07-01

    This study investigates biofuel production from wheat straw hydrolysate, from which furfural was extracted using a patented method developed at the Latvian State Institute of Wood Chemistry. The solid remainder after furfural extraction, corresponding to 67.6% of the wheat straw dry matter, contained 69.9% cellulose of which 4% was decomposed during the furfural extraction and 26.3% lignin. Enzymatic hydrolysis released 44% of the glucose monomers in the cellulose. The resulting hydrolysate contained mainly glucose and very little amount of acetic acid. Xylose was not detectable. Consequently, the undiluted hydrolysate did not inhibit growth of yeast strains belonging to Saccharomyces cerevisiae, Lipomyces starkeyi, and Rhodotorula babjevae. In the fermentations, average final ethanol concentrations of 23.85 g/l were obtained, corresponding to a yield of 0.53 g ethanol per g released glucose. L. starkeyi generated lipids with a rate of 0.08 g/h and a yield of 0.09 g per g consumed glucose. R. babjevae produced lipids with a rate of 0.18 g/h and a yield of 0.17 per g consumed glucose. In both yeasts, desaturation increased during cultivation. Remarkably, the R. babjevae strain used in this study produced considerable amounts of heptadecenoic, α,- and γ-linolenic acid.

  14. Ozonation and alkaline-peroxide pretreatment of wheat straw for Cryptococcus curvatus fermentation

    NASA Technical Reports Server (NTRS)

    Greenwalt, C. J.; Hunter, J. B.; Lin, S.; McKenzie, S.; Denvir, A.

    2000-01-01

    Crop residues in an Advanced Life Support System (ALS) contain many valuable components that could be recovered and used. Wheat is 60% inedible, with approximately 90% of the total sugars in the residue cellulose and hemicellulose. To release these sugars requires pretreatment followed by enzymatic hydrolysis. Cryptococcus curvatus, an oleaginous yeast, uses the sugars in cellulose and hemicellulose for growth and production of storage triglycerides. In this investigation, alkaline-peroxide and ozonation pretreatment methods were compared for their efficiency to release glucose and xylose to be used in the cultivation of C. curvatus. Leaching the biomass with water at 65 degrees C for 4 h prior to pretreatment facilitated saccharification. Alkaline-peroxide and ozone pretreatment were almost 100% and 80% saccharification efficient, respectively. The sugars derived from the hydrolysis of alkaline-peroxide-treated wheat straw supported the growth of C. curvatus and the production of edible single-cell oil.

  15. Lignocellulose degradation patterns, structural changes, and enzyme secretion by Inonotus obliquus on straw biomass under submerged fermentation.

    PubMed

    Xu, Xiangqun; Xu, Zhiqi; Shi, Song; Lin, Mengmeng

    2017-10-01

    This study examined the white rot fungus I. obliquus on the degradation of three types of straw biomass and the production of extracellular lignocellulolytic enzymes under submerged fermentation. The fungus process resulted in a highest lignin loss of 72%, 39%, and 47% in wheat straw, rice straw, and corn stover within 12days, respectively. In merely two days, the fungus selectively degraded wheat straw lignin by 37%, with only limited cellulose degradation (13%). Fourier transform infrared spectroscopy revealed that the fungus most effectively degraded the wheat straw lignin and rice straw crystalline cellulose. Scanning electronic microscopy showed the most pronounced structural changes in wheat straw. High activities of manganese peroxidase (159.0U/mL) and lignin peroxidase (123.4U/mL) were observed in wheat straw culture on Day 2 and 4, respectively. Rice straw was the best substrate to induce the production of cellulase and xylanase. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Potential of a gypsum-free composting process of wheat straw for mushroom production.

    PubMed

    Mouthier, Thibaut M B; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry; Kabel, Mirjam A

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process.

  17. Chemical characterization and oxidative potential of particles emitted from open burning of cereal straws and rice husk under flaming and smoldering conditions

    NASA Astrophysics Data System (ADS)

    Fushimi, Akihiro; Saitoh, Katsumi; Hayashi, Kentaro; Ono, Keisuke; Fujitani, Yuji; Villalobos, Ana M.; Shelton, Brandon R.; Takami, Akinori; Tanabe, Kiyoshi; Schauer, James J.

    2017-08-01

    Open burning of crop residue is a major source of atmospheric fine particle emissions. We burned crop residues (rice straws, barley straws, wheat straws, and rice husks produced in Japan) in an outdoor chamber and measured particle mass, composition (elemental carbon: EC, organic carbon: OC, ions, elements, and organic species), and oxidative potential in the exhausts. The fine particulate emission factors from the literature were within the range of our values for rice straws but were 1.4-1.9 and 0.34-0.44 times higher than our measured values for barley straw and wheat straw, respectively. For rice husks and wheat straws, which typically lead to combustion conditions that are relatively mild, the EC content of the particles was less than 5%. Levoglucosan seems more suitable as a biomass burning marker than K+, since levoglucosan/OC ratios were more stable than K+/particulate mass ratios among crop species. Stigmasterol and β-sitosterol could also be used as markers of biomass burning with levoglucosan or instead of levoglucosan. Correlation analysis between chemical composition and combustion condition suggests that hot or flaming combustions enhance EC, K+, Cl- and polycyclic aromatic hydrocarbons emissions, while low-temperature or smoldering combustions enhance levoglucosan and water-soluble organic carbon emissions. Oxidative potential, measured with macrophage-based reactive oxygen species (ROS) assay and dithiothreitol (DTT) assay, of open burning fine particles per particulate mass as well as fine particulate emission factors were the highest for wheat straws and second highest for rice husks and rice straws. Oxidative potential per particulate mass was in the lower range of vehicle exhaust and atmosphere. These results suggest that the contribution of open burning is relatively small to the oxidative potential of atmospheric particles. In addition, oxidative potential (both ROS and DTT activities) correlated well with water-insoluble organic species

  18. Effect of long term feeding of ammoniated wheat straw treated with or without HCl on blood biochemical parameters in growing male buffalo (Bubalus bubalis) calves.

    PubMed

    Mehra, Usha Rani; Sahu, Dev Sharan; Naik, Prafulla Kumar; Dass, Ram Sharan; Verma, Ashok Kumar

    2005-01-01

    Twenty-four growing male buffalo calves (one year of age; 88.54 +/- 3.81 kg average body weight) were divided into three comparable groups (I, II and III) on the basis of their body weight (BW) in a completely randomised design to study the effect of long term feeding of ammoniated wheat straw (AWS) and hydrochloric acid treated ammoniated wheat straw (HCl-AWS) on blood biochemical changes. The animals were offered a concentrate mixture (CM) along with wheat straw (WS), ammoniated wheat straw (AWS) (4% urea at a 50% moisture level) and hydrochloric acid treated ammoniated wheat straw (HCI-AWS) (4% urea at a 50% moisture level and HCI added to trap 30% of NH3 evolved) in groups I, II and III, respectively for an average daily gain (ADG) of 500 g. All the diets were made iso-nitrogenous by preparing three types of concentrate mixtures of different CP levels. The blood was collected from the jugular vein randomly from three animals of each group initially after 8 months post feeding and subsequently after two months interval up to 14 months of experimental feeding. Due to urea ammoniation, the CP content of WS increased from 3.66 to 8.51 and was further increased to 11.35 due to the addition of HCl during urea-ammoniation of wheat straw. The cumulative period mean plasma glucose values (mg %), in group II (53.13) were significantly (P < 0.001) higher than those in groups I (48.44) and III (50.60). The cumulative period mean values of serum albumin and globulin (g %) were not significantly different and were comparable among the groups I (3.33 and 3.06), II (3.53 and 2.97) and III (3.49 and 2.94). The cumulative period mean values of serum albumin: globulin ratio and total protein values were not significantly different among the different groups. Serum urea and creatinine values were significantly (P < 0.001) higher in group III (58.66 and 2.24) as compared to groups I and II. The cumulative period mean values of serum alkaline phosphatase (ALP) (KA units) did not

  19. Simulation of the ozone pretreatment of wheat straw.

    PubMed

    Bhattarai, Sujala; Bottenus, Danny; Ivory, Cornelius F; Gao, Allan Haiming; Bule, Mahesh; Garcia-Perez, Manuel; Chen, Shulin

    2015-11-01

    Wheat straw is a potential feedstock in biorefinery for sugar production. However, the cellulose, which is the major source of sugar, is protected by lignin. Ozonolysis deconstructs the lignin and makes cellulose accessible to enzymatic digestion. In this study, the change in lignin concentration with different ozonolysis times (0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60min) was fit to two different kinetic models: one using the model developed by Garcia-Cubero et al. (2012) and another including an outer mass transfer barrier or "cuticle" region where ozone mass transport is reduced in proportion to the mass of unreacted insoluble lignin in the cuticle. The kinetic parameters of two mathematical models for predicting the soluble and insoluble lignin at different pretreatment time were determined. The results showed that parameters derived from the cuticle-based model provided a better fit to experimental results compared to a model without a cuticle layer. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22.

    PubMed

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan; Qi, Benkun; Wan, Yinhua

    2014-04-01

    A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain's promising features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid-liquid separation and detoxification were avoided. Using this process, 46.12 g LA could be produced from 100g dry wheat straw with a supplement of 10 g/L corn steep liquid powder at the cellulase loading of 20 FPU (filter paper activity units)/g cellulose. The process by B. coagulans IPE22 provides an economical route to produce LA from lignocellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions

    DOE PAGES

    Rinnan, Asmund; Bruun, Sander; Lindedam, Jane; ...

    2017-02-07

    Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less

  2. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinnan, Asmund; Bruun, Sander; Lindedam, Jane

    Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less

  3. Combined bioaugmentation with anaerobic ruminal fungi and fermentative bacteria to enhance biogas production from wheat straw and mushroom spent straw.

    PubMed

    Ferraro, Alberto; Dottorini, Giulia; Massini, Giulia; Mazzurco Miritana, Valentina; Signorini, Antonella; Lembo, Giuseppe; Fabbricino, Massimiliano

    2018-07-01

    Bioaugmentation with anaerobic ruminal fungi and a pool of hydrogen-producing fermenting bacteria was tested on wheat straw (WS) and mushroom spent straw (MSS) with the aim of improving anaerobic digestion performance. Batch tests were set up to simulate a Bioaugmentation Anaerobic Digestion (BAD) treatment comparing single- (I-BAD) and two-stage (II-BAD) process configurations, at two reactor scales, 120 and 1200 ml (×10). In both cases, higher CH 4 cumulative production was obtained in the II-BAD configuration on WS (65.1 ± 8.9 Nml and 922 ± 73.8 Nml respectively). The II-BADx10 tests allowed increasing CH 4 production (≃290% and ≃330% on WS and MSS, respectively) when compared to the unaugmented condition. Final results highlighted the achievable advantages of the two stage configuration in terms of CH 4 production enhancement. Microbial community investigations confirmed the efficiency of the bioaugmentation treatment and revealed that such a result was mainly related to the Methanosarcinales increase, mostly composed by Methanosaeta. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. [Effects of nitrogen application on decomposition and nutrient release of returned maize straw in Guanzhong Plain, Northwest China].

    PubMed

    Huang, Ting Miao; Wang, Zhao Hui; Hou, Yang Yi; Gu, Chi Ming; Li, Xiao; Zheng, Xian Feng

    2017-07-18

    With 15 N isotope labeled maize straw in nylon net bags and buried in the wheat field at two N rates of 0 and 200 kg N·hm -2 , the effects of nitrogen application on the decomposition of straw dry matter and the release dynamics of carbon, nitrogen, phosphorus and potassium (C, N, P and K) after maize straw retention were investigated in the winter wheat-summer maize rotation system in Guanzhong Plain, Shaanxi, China. Results showed that N application did not affect the decomposition of the returned straw C and dry matter, but promoted the release of P and inhibited the release of N and K from straw during sowing to wintering periods of winter wheat. From the grain filling to the harvest of winter wheat, the decomposition of the returned straw and the release of N, P and K were not affected, but the release of straw C was significantly enhanced by N application. The release dynamic of straw C was synchronized with the decomposition of the dry matter, and the C/N of straw declined gradually with the extension of wheat growing. Until the harvest of winter wheat, the accumulative decomposition rate of straw dry matter was less than 50%, and the total straw C release rate was around 47.9% to 51.1%. The C/N ratio of the returned straw was decreased from 32.2 to 20.2 and 17.9, respectively at N rates of 0 and 200 kg N·hm -2 . From sowing to harvest of winter wheat, the net release of N, P and K from the straw was observed. The N release was 7.2-9.4 kg·hm -2 and 12.7%-16.6% of the total straw N, and the P release was 1.29-1.44 kg·hm -2 and 29.0%-32.4% of the total straw P, while a great deal of K was released quickly, with approximately 80% of the straw K released before wintering, 51.8-52.5 kg·hm -2 and 90.5%-91.7% of the total straw K released at wheat harvest. It was suggested that the K fertilizer application should be decreased for the winter wheat due to the great amount K release from the returned maize straw, and an extra amount of N and P fertilizer should

  5. Process for calcium xylonate production as a concrete admixture derived from in-situ fermentation of wheat straw pre-hydrolysate.

    PubMed

    Zhou, Xin; Zhou, Xuelian; Tang, Xiusheng; Xu, Yong

    2018-08-01

    One of the major obstacles in process of lignocellulosic biorefinery is the utilization of pre-hydrolysate from pre-treatment. Although lignocellulosic pre-hydrolysate can serve as an economic starting material for xylonic acid production, the advancement of xylonic acid or xylonate is still limited by further commercial value or applications. In the present study, xylose in the high concentration wheat straw pre-hydrolysate was first in-situ biooxidized to xylonate by Gluconobacter oxydans. To meet the needs of commercialization, crude powdered calcium xylonate was prepared by drying process and calcium xylonate content in the prepared crude product was more than 70%. Then, the calcium xylonate product was evaluated as concrete admixture without any complex purification steps and the results demonstrated that xylonate could improve the performance of concrete. Overall, the crude xylonate product directly produced from low-cost wheat straw pre-hydrolysate can potentially be developed as retarding reducer, which could subsequently benefit lignocellulosic biorefinery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Effect of fertilizer prepared from human feces and straw on germination, growth and development of wheat

    NASA Astrophysics Data System (ADS)

    Liu, Dianlei; Xie, Beizhen; Dong, Chen; Liu, Guanghui; Hu, Dawei; Qin, Youcai; Li, Hongyan; Liu, Hong

    2018-04-01

    Solid waste treatment is one of the most important rate-limiting steps in the material circulation and energy flow of Bioregenerative Life Support System (BLSS). In our previous work, an efficient and controllable solid waste bio-convertor has been built and a solid waste degradation efficiency of 41.0% has been reached during a 105-d BLSS experiment. However, the fermented residues should be further utilized to fulfill the closure of the system. One solution might be to use the residues as the fertilizer for plant cultivation. Thus in this study, substrates were prepared using different ratios of the fermented residues to the vermiculite. And the influences of different ratios of the fermented residues on the seed germination, growth, photosynthetic characteristics and antioxidant capacity of wheat were studied. The results showed that the optimal rate of the fermented residue was 5%. With this ratio, the seed germination reached 97.3% with the root length, shoot length and biomass production as 59 mm, 52 mm and 150 mg, respectively, at the 4th day. Besides, the highest straw height of 25.1 cm was obtained at the 21st day. The salinity adversely affected the growth and some relevant metabolic processes of wheat. The Group-40% led to the lowest seed germination of 34.7% and the minimum straw height of 15 cm. This inhibition might be caused by the high Na content of 2118 mg/kg in the fermented residues. Chlorophyll b was more sensitive to the mineral nutrition stress and affects the wheat photosynthetic characteristics. Higher reactive oxygen species levels and reduced antioxidant enzymes may contribute, directly and/or indirectly, to the decline in the observed pigment contents in wheat.

  7. Visualization and Semiquantitative Study of the Distribution of Major Components in Wheat Straw in Mesoscopic Scale using Fourier Transform Infrared Microspectroscopic Imaging.

    PubMed

    Yang, Zengling; Mei, Jiaqi; Liu, Zhiqiang; Huang, Guangqun; Huang, Guan; Han, Lujia

    2018-06-19

    Understanding the biochemical heterogeneity of plant tissue linked to crop straw anatomy is attractive to plant researchers and researchers in the field of biomass refinery. This study provides an in situ analysis and semiquantitative visualization of major components distribution in internodal transverse sections of wheat straw based on Fourier transform infrared (FTIR) microspectroscopic imaging, with a fast non-negativity-constrained least squares (fast NNLS) fitting. This paper investigates changes in biochemical components of tissue during stages of elongation, booting, heading, flowering, grain-filling, milk-ripening, dough, and full-ripening. Visualization analysis was carried out with reference spectra for five components (microcrystalline cellulose, xylan, lignin, pectin, and starch) of wheat straw. Our result showed that (a) the cellulose and lignin distribution is consistent with that from tissue-dyeing with safranin O-fast green and (b) the distribution of cellulose, lignin, and starch is consistent with chemical images for characteristic wavelength at 1432, 1507, and 987 cm -1 , respectively, showing no interference from the other components analyzed. With the validation from biochemical images using characteristic wavelength and tissue-dyeing techniques, further semiquantitative analysis in local tissues based on fast NNLS was carried out, and the result showed that (a) the contents of cellulose in various tissues are very different, with most in parenchyma tissue and least in the epidermis and (b) during plant development, the fluctuation of each component in tissues follows nearly the same trend, especially within vascular bundles and parenchyma tissue. Thus, FTIR microspectroscopic imaging combined with suitable chemometric methods can be successfully applied to study chemical distributions within the internodes transverse sections of wheat straw, providing semiquantitative chemical information.

  8. Polylactide-based renewable green composites from agricultural residues and their hybrids.

    PubMed

    Nyambo, Calistor; Mohanty, Amar K; Misra, Manjusri

    2010-06-14

    Agricultural natural fibers like jute, kenaf, sisal, flax, and industrial hemp have been extensively studied in green composites. The continuous supply of biofibers in high volumes to automotive part makers has raised concerns. Because extrusion followed by injection molding drastically reduces the aspect ratio of biofibers, the mechanical performance of injection molded agricultural residue and agricultural fiber-based composites are comparable. Here, the use of inexpensive agricultural residues and their hybrids that are 8-10 times cheaper than agricultural fibers is demonstrated to be a better way of getting sustainable materials with better performance. Green renewable composites from polylactide (PLA), agricultural residues (wheat straw, corn stover, soy stalks, and their hybrids) were successfully prepared through twin-screw extrusion, followed by injection molding. The effect on mechanical properties of varying the wheat straw amount from 10 to 40 wt % in PLA-wheat straw composites was studied. Tensile moduli were compared with theoretical calculations from the rule of mixture (ROM). Combination of agricultural residues as hybrids is proved to reduce the supply chain concerns for injection molded green composites. Densities of the green composites were found to be lower than those of conventional glass fiber composites.

  9. Pretreatment of wheat straw by nonionic surfactant-assisted dilute acid for enhancing enzymatic hydrolysis and ethanol production.

    PubMed

    Qi, Benkun; Chen, Xiangrong; Wan, Yinhua

    2010-07-01

    Pretreating wheat straw (WS) with combined use of varied sulfuric acid concentration (0-3%, w/v) and Tween 20 concentration (0-1%) was investigated in an attempt to enhance the hydrolysis and fermentability of pretreated WS. Enzymatic hydrolysis yield of glucan and xylan and ethanol production by simultaneous saccharification and fermentation (SSF) of water-insoluble solids (WIS) were significantly affected by the amount of Tween 20 added during acid pretreatment. Any further addition of Tween 20 in either hydrolysis stage or fermentation stage only led to small increase in glucan conversion and ethanol production. Determination of adsorption of cellulases during hydrolysis showed that Tween 20-assisted acid treated straw solution contained more free cellulases than individual acid treated straw solution, indicating that modification of lignin surface by Tween 20 added during pretreatment likely occurred. In addition, the effects of pretreatment conditions on overall recovery of glucose and xylose after pretreatment and enzymatic hydrolysis were also investigated. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Potential of a gypsum-free composting process of wheat straw for mushroom production

    PubMed Central

    Mouthier, Thibaut M. B.; Kilic, Baris; Vervoort, Pieter; Gruppen, Harry

    2017-01-01

    Wheat straw based composting generates a selective substrate for mushroom production. The first phase of this process requires 5 days, and a reduction in time is wished. Here, we aim at understanding the effect of gypsum on the duration of the first phase and the mechanism behind it. Hereto, the regular process with gypsum addition and the same process without gypsum were studied during a 5-day period. The compost quality was evaluated based on compost lignin composition analysed by py-GC/MS and its degradability by a commercial (hemi-)cellulolytic enzyme cocktail. The composting phase lead to the decrease of the pyrolysis products 4-vinylphenol and 4-vinylguaiacol that can be associated with p-coumarates and ferulates linking xylan and lignin. In the regular compost, the enzymatic conversion reached 32 and 39% for cellulose, and 23 and 32% for xylan after 3 and 5 days, respectively. In absence of gypsum similar values were reached after 2 and 4 days, respectively. Thus, our data show that in absence of gypsum the desired compost quality was reached 20% earlier compared to the control process. PMID:28982119

  11. Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover.

    PubMed

    Kaparaju, Prasad; Felby, Claus

    2010-05-01

    The objective of the study was to characterize and map changes in lignin during hydrothermal and wet explosion pre-treatments of wheat straw and corn stover. Chemical composition, microscopic (atomic force microscopy and scanning electron microscopy) and spectroscopic (attenuated total reflectance Fourier transform infrared spectroscopy, ATR-FTIR) analyses were performed. Results showed that both pre-treatments improved the cellulose and lignin content with substantial removal of hemicellulose in the pre-treated biomasses. These values were slightly higher for hydrothermal compared to wet explosion pre-treatment. ATR-FTIR analyses also confirmed these results. Microscopic analysis showed that pre-treatments affected the biomass by partial difibration. Lignin deposition on the surface of the hydrothermally pre-treated fibre was very distinct while severe loss of fibril integrity was noticed with wet exploded fibre. The present study thus revealed that the lignin cannot be removed by the studied pre-treatments. However, both pre-treatments improved the accessibility of the biomass towards enzymatic hydrolysis. Copyright 2009 Elsevier Ltd. All rights reserved.

  12. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC.

    PubMed

    Negahdar, Leila; Gonzalez-Quiroga, Arturo; Otyuskaya, Daria; Toraman, Hilal E; Liu, Li; Jastrzebski, Johann T B H; Van Geem, Kevin M; Marin, Guy B; Thybaut, Joris W; Weckhuysen, Bert M

    2016-09-06

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13 C nuclear magnetic resonance ( 13 C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13 C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.

  13. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    PubMed Central

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil. PMID:27668136

  14. Preparation of wheat straw based superabsorbent resins and their applications as adsorbents for ammonium and phosphate removal.

    PubMed

    Liu, Jia; Su, Yuan; Li, Qian; Yue, Qinyan; Gao, Baoyu

    2013-09-01

    A novel wheat straw cellulose-g-poly (potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) was prepared by graft copolymerization. The structure and performance of the WSC-g-PKA/PVA semi-IPNs SAR was studied and compared with those of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) SAR. The effects of various experimental parameters such as solution pH, concentration, contact time and ion strength on NH4(+) and PO4(3-) removal from solutions were investigated. Equilibrium isotherm data of adsorption of both NH4(+) and PO4(3-) were well fitted to the Freundlich model. Kinetic analysis showed that the pseudo-second-order kinetic model was more suitable for describing the whole adsorption process of NH4(+) and PO4(3-) on SARs. Overall, WSC-g-PKA/PVA semi-IPNs SAR showed better properties in comparison with WSC-g-PKA SAR and it could be considered as one efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Bioprocessing of wheat and paddy straw for their nutritional up-gradation.

    PubMed

    Sharma, Rakesh Kumar; Arora, Daljit Singh

    2014-07-01

    Solid-state bioprocessing of agricultural residues seems to be an emerging and effective method for the production of high quality animal feed. Seven strains of white-rot fungi were selected to degrade wheat and paddy straw (PS) under solid-state conditions. Degradation of different components, i.e., hemicellulose, cellulose and lignin was evaluated along with nutritional parameters including; in vitro digestibility, crude protein, amino acids, total phenolic contents (TPC) etc. Effect of nitrogen-rich supplements on degradation of lignocellulosics was evaluated using two best selected fungal strains (Phlebia brevispora and Phlebia floridensis). The best selected conditions were used to upscale the process up to 200 g batches of wheat and PS. Lignin was selectively degraded up to 30 % with a limited loss of 11-12 % in total organic matter. Finally, the degraded agro-residues demonstrated 50-62 % enhancement in their digestibility. Two-threefold enhancement in other nutritional quality (amino acids, TPCs and antioxidant activity) fortifies the process. Thus the method is quite helpful to design an effective solid-state fermentation system to improve the nutritive quality of agricultural residues by simultaneous production of lignocellulolytic enzyme production and antioxidants.

  16. A solid state fungal fermentation-based strategy for the hydrolysis of wheat straw☆

    PubMed Central

    Pensupa, Nattha; Jin, Meng; Kokolski, Matt; Archer, David B.; Du, Chenyu

    2013-01-01

    This paper reports a solid-state fungal fermentation-based pre-treatment strategy to convert wheat straw into a fermentable hydrolysate. Aspergillus niger was firstly cultured on wheat straw for production of cellulolytic enzymes and then the wheat straw was hydrolyzed by the enzyme solution into a fermentable hydrolysate. The optimum moisture content and three wheat straw modification methods were explored to improve cellulase production. At a moisture content of 89.5%, 10.2 ± 0.13 U/g cellulase activity was obtained using dilute acid modified wheat straw. The addition of yeast extract (0.5% w/v) and minerals significantly improved the cellulase production, to 24.0 ± 1.76 U/g. The hydrolysis of the fermented wheat straw using the fungal culture filtrate or commercial cellulase Ctec2 was performed, resulting in 4.34 and 3.13 g/L glucose respectively. It indicated that the fungal filtrate harvested from the fungal fermentation of wheat straw contained a more suitable enzyme mixture than the commercial cellulase. PMID:24121367

  17. Heat treatment of wheat straw by immersion in hot water decreases mushroom yield in Pleurotus ostreatus.

    PubMed

    Jaramillo Mejía, Santiago; Albertó, Edgardo

    2013-01-01

    The oyster mushroom, Pleurotus ostreatus, is cultivated worldwide. It is one of the most appreciated mushrooms due to its high nutritional value. Immersion of the substrate in hot water is one of the most popular and worldwide treatment used for mushroom farmers. It is cheap and easy to implement. To compare the yields obtained during mushroom production of P. ostreatus using different pre-treatments (immersion in hot water, sterilization by steam and the use of fungicide) to determine if they influence mushroom crop. Four different treatments of substrate (wheat straw) were carried out: (i) immersion in hot water (IHW); (ii) steam sterilization; (iii) chemical; and (iv) untreated. The residual water from the IHW treatment was used to evaluate the mycelium growth and the production of P. ostreatus. Carbendazim treatment produced highest yields (BE: 106.93%) while IHW produced the lowest BE with 75.83%. Sugars, N, P, K and Ca were found in residual water of IHW treatment. The residual water increased the mycelium growth but did not increase yields. We have proved that IHW treatment of substrate reduced yields at least 20% when compared with other straw treatments such as steam, chemical or untreated wheat straw. Nutrients like sugars, proteins and minerals were found in the residual water extract which is the resultant water where the immersion treatment is carried out. The loss of these nutrients would be the cause of yield decrease. Alternative methods to the use of IHW as treatment of the substrate should be considered to reduce economical loss. Copyright © 2012 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Haitao; Xie, Yimin; Zheng, Xing

    With this study, to understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition,more » through quantitative 13C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.« less

  19. Comparative study of lignin characteristics from wheat straw obtained by soda-AQ and kraft pretreatment and effect on the following enzymatic hydrolysis process

    DOE PAGES

    Yang, Haitao; Xie, Yimin; Zheng, Xing; ...

    2016-02-18

    With this study, to understand the structural changes of lignin after soda-AQ and kraft pretreatment, milled straw lignin, black liquor lignin and residual lignin extracted from wheat straw were characterized by FT-IR, UV, GPC and NMR. The results showed that the main lignin linkages were β-aryl ether substructures (β-O-4'), followed by phenylcoumaran (β-5') and resinol (β-β') substructures, while minor content of spirodienone (β-1'), dibenzodioxocin (5-5') and α,β-diaryl ether linkages were detected as well. After pretreatment, most lignin inter-units and lignin-carbohydrate complex (LCC) linkages were degraded and dissolved in black liquor, with minor amount left in residual pretreated biomass. In addition,more » through quantitative 13C and 2D-HSQC NMR spectral analysis, lignin and LCC were found to be more degraded after kraft pretreatment than soda-AQ pretreatment. Furthermore, the subsequent enzymatic hydrolysis results showed that more cellulose in wheat straw was converted to glucose after kraft pretreatment, indicating that LCC linkages were important in the enzymatic hydrolysis process.« less

  20. Two-Dimensional NMR Evidence for Cleavage of Lignin and Xylan Substituents in Wheat Straw Through Hydrothermal Pretreatment and Enzymatic Hydrolysis

    Treesearch

    Daniel J. Yelle; Prasad Kaparaju; Christopher G. Hunt; Kolby Hirth; Hoon Kim; John Ralph; Claus Felby

    2012-01-01

    Solution-state two-dimensional (2D) nuclear magnetic resonance (NMR) spectroscopy of plant cell walls is a powerful tool for characterizing changes in cell wall chemistry during the hydrothermal pretreatment process of wheat straw for second-generation bioethanol production. One-bond 13C-1H NMR correlation spectroscopy, via...

  1. Photo-biohydrogen production potential of Rhodobacter capsulatus-PK from wheat straw

    PubMed Central

    2013-01-01

    Background Biotechnological exploitation of lignocellulosic biomass is promising for sustainable and environmentally sound energy provision strategy because of the abundant availability of the renewable resources. Wheat straw (WS) comprising of 75-80% cellulose and hemicellulose is one of widely available, inexpensive and renewable lignocellulosic biomass types. The cellulosic and hemicellulose substrate can be hydrolyzed into monomeric sugars by chemical and/or biological methods. Results This study examined comparative potential of dilute acid and pre-ammonia pretreated and enzymatically hydrolyzed wheat straw (WS) for hydrogen production by purple non sulfur bacterium Rhodobacter capsulatus-PK. Gas production became noticeable after 14 h of inoculation in WS pretreated with 4% H2SO4. The detoxified liquid hydrolyzate (DLH) after overliming attained a production level of 372 mL-H2/L after 16 h under illumination of 120-150 W/m2 at 30 ± 2.0°C. Whereas the non-detoxified acid pretreated hydrolyzate (NDLH) of WS could produce only upto 254 mL-H2/L after 21 h post inoculation. Evolution of H2 became observable just after 10 ± 2.0 h of inoculation by employing 48 h age inoculum on the WS pretreated with 30% ammonia, hydrolyzed with cellulase 80 FPU/g and β-glucosidase 220 CbU/ml at 50°C. Upto 712 ml/L of culture was measured with continuous shaking for 24 h. The 47.5% and 64.2% higher hydrogen volume than the DLH and NDLH substrates, respectively appeared as a function of significantly higher monomeric sugar contents of the enzymatically hydrolyzed substrate and lesser/zero amounts of toxic derivatives including pH reducing agents. Conclusion Photofermentative hydrogen production from lignocellulosic waste is a feasible approach for eco-friendly sustainable supply of bioenergy in a cost-effective way. Results of this study provide new insight for addressing biotechnological exploitation of abundantly available and low-cost cellulosic substrates

  2. Fibrolytic potential of anaerobic fungi (Piromyces sp.) isolated from wild cattle and blue bulls in pure culture and effect of their addition on in vitro fermentation of wheat straw and methane emission by rumen fluid of buffaloes.

    PubMed

    Paul, Shyam S; Deb, Sitangshu M; Punia, Balbir S; Singh, Dharminder; Kumar, Rajiv

    2010-05-01

    Ten isolates of anaerobic fungi of Piromyces genus from wild cattle and blue bulls (five isolates from each host species) were evaluated for their fibrolytic ability in pure culture, their suitability for use as a microbial additive in buffaloes and their effect on methane emission. In pure culture, only two out of five isolates from wild cattle degraded wheat straw efficiently, whereas all five isolates from wild blue bulls did. Isolate CF1 (from cattle) showed the highest apparent digestibility (53.4%), true digestibility (70.8%) and neutral detergent fibre digestibility (75.0%) of wheat straw after 5 days of incubation. When added to buffalo rumen fluid, all five isolates from cattle increased (P < 0.05) in vitro apparent digestibility of wheat straw compared with the control (received autoclaved culture), but all five isolates from blue bulls failed to influence in vitro digestibility of wheat straw. Isolate CF1 showed the highest stimulating effect on straw digestion by buffalo rumen fluid microbes and increased apparent digestibility (51.9 vs 29.4%, P < 0.05), true digestibility (57.9 vs 36.5%, P < 0.05) and neutral detergent fibre digestibility (51.5 vs 26.9%, P < 0.05) of wheat straw compared with the control after 24 h of fermentation. There were also significant increases in fungal count and enzyme activities of carboxymethylcellulase and xylanase in the CF1-added group compared with the control group. Gas and methane production g(-1) truly digested dry matter of straw were comparable among all groups including the control. Wild cattle and blue bulls harbour some anaerobic fungal strains with strong capability to hydrolyse fibre. The fungal isolate CF1 has high potential for use as a microbial feed additive in buffaloes to improve digestibility of fibrous feeds without increasing methane emission per unit of digested feed.

  3. Optimizing Phosphoric Acid plus Hydrogen Peroxide (PHP) Pretreatment on Wheat Straw by Response Surface Method for Enzymatic Saccharification.

    PubMed

    Qiu, Jingwen; Wang, Qing; Shen, Fei; Yang, Gang; Zhang, Yanzong; Deng, Shihuai; Zhang, Jing; Zeng, Yongmei; Song, Chun

    2017-03-01

    Wheat straw was pretreated by phosphoric acid plus hydrogen peroxide (PHP), in which temperature, time, and H 3 PO 4 proportion for pretreatment were investigated by using response surface method. Results indicated that hemicellulose and lignin removal positively responded to the increase of pretreatment temperature, H 3 PO 4 proportion, and time. H 3 PO 4 proportion was the most important variable to control cellulose recovery, followed by pretreatment temperature and time. Moreover, these three variables all negatively related to cellulose recovery. Increasing H 3 PO 4 proportion can improve enzymatic hydrolysis; however, reduction on cellulose recovery results in decrease of glucose yield. Extra high temperature or long time for pretreatment was not beneficial to enzymatic hydrolysis and glucose yield. Based on the criterion for minimizing H 3 PO 4 usage and maximizing glucose yield, the optimized pretreatment conditions was 40 °C, 2.0 h, and H 3 PO 4 proportion of 70.2 % (H 2 O 2 proportion of 5.2 %), by which glucose yielded 299 mg/g wheat straw (946.2 mg/g cellulose) after 72-h enzymatic hydrolysis.

  4. Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods.

    PubMed

    Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja

    2014-10-29

    Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).

  5. [Effects of applying inorganic P and wheat straw on the microbial biomass P and microbial P concentration in a calcareous soil with low concentration available P].

    PubMed

    Zhao, Xiao-Rong; Zhou, Ran; Li, Gui-Tong; Lin, Qi-Mei

    2009-02-01

    In an incubation test, a calcareous soil with low concentration of available P was amended with KH2PO4 (0, 25, 50, and 100 mg P x kg(-1)) and ground wheat straw (5 g C x kg(-1)), and incubated at 25 degrees C for 90 days. The aim was to investigate the change patterns of soil microbial biomass P and microbial P concentration as well as their relationships with soil available P. The results showed that both soil microbial biomass P and microbial P concentration increased with increasing inorganic P addition, with the maximum being 71.37 and 105.34 mg x kg(-1), respectively. The combined application of inorganic P (except 100 mg P x kg(-1)) and wheat straw decreased the soil microbial biomass P and microbial P concentration, being most obvious at early incubation period. Soil microbial biomass P and microbial P concentration had significant positive correlations (P < 0.05) with soil available P (R2 = 0.26 and 0.40, n = 49, respectively). The applied P could rapidly transform into microbial biomass P. The maximum apparent contribution rate of applied P to microbial biomass P was 71%. The added wheat straw could further improve the apparent contribution rate.

  6. Possibility of using waste tire composites reinforced with rice straw as construction materials.

    PubMed

    Yang, Han-Seung; Kim, Dae-Jun; Lee, Young-Kyu; Kim, Hyun-Joong; Jeon, Jin-Yong; Kang, Chun-Won

    2004-10-01

    Agricultural lignocellulosic fiber (rice straw)-waste tire particle composite boards were manufactured for use as insulation boards in construction, using the same method as that used in the wood-based panel industry. The manufacturing parameters were: a specific gravity of 0.8 and a rice straw content (10/90, 20/80 and 30/70 by wt.% of rice straw/waste tire particle). A commercial polyurethane adhesive for rubber was used as the composite binder. The water proof, water absorption and thickness swelling properties of the composite boards were better than those of wood particleboard. Furthermore, the flexibility and flexural properties of the composite boards were superior to those of other wood-based panel products. The composite boards also demonstrated good acoustical insulation, electrical insulation, anti-caustic and anti-rot properties. These boards can be used to prevent impact damage, are easily modifiable and are inexpensive. They are able to be used as a substitute for insulation boards and other flexural materials in construction.

  7. Impact of organic loading rate on the performance of psychrophilic dry anaerobic digestion of dairy manure and wheat straw: long-term operation.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-04-01

    Development of efficient processes for valorising animal wastes would be a major advancement in cold-climate regions. This paper reports the results of long term (315 days experiment) of novel psychrophilic (20°C) dry anaerobic digestion (PDAD) of cow feces and wheat straw in laboratory scale sequence batch reactor operated at increasing organic loading rate. The PDAD process fed with a mixture of feces and straw (TS of 27%) over a treatment cycle length of 21 days at organic loading rate (OLR) 4.0, 5.0 and 6.0 g TCOD kg(-1) inoculum d(-1) (of 2.9 ± 0.1, 3.7 ± 0.1, and 4.4 ± 0.1g VS kg(-1) inoculum d(-1), respectively) resulted in average specific methane yield (SMY) of 187.3 ± 18.1, 163.6 ± 39.5, 150.8 ± 32.9 N L CH4 kg(-1)VS fed, respectively. PDAD of cow feces and wheat straw is possible with VS-based inoculum-to-substrate ratio of 1.4 at OLR of 6.0 g TCOD kg(-1) inoculum d(-1). Hydrolysis was the limiting step reaction. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  8. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw

    Treesearch

    Yi Ding; Bo Du; Xuebing Zhao; J.Y. Zhu; Dehua Liu

    2017-01-01

    Phosphomolybdic acid (PMo12) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo12 with solubilization of a fraction of hemicelluloses, and the PMo12...

  9. Acid-catalyzed autohydrolysis of wheat straw to improve sugar recovery.

    PubMed

    Ertas, Murat; Han, Qiang; Jameel, Hasan

    2014-10-01

    A comparison study of autohydrolysis and acid-catalyzed autohydrolysis of wheat straw was performed to understand the impact of acid addition on overall sugar recovery. Autohydrolysis combined with refining is capable of achieving sugar recoveries in the mid 70s. If the addition of a small amount of acid is capable of increasing the sugar recovery even higher it may be economically attractive. Acetic, sulfuric, hydrochloric and sulfurous acids were selected for acid-catalyzed autohydrolysis pretreatments. Autohydrolysis with no acid at 190 °C showed the highest total sugar in the prehydrolyzate. Enzymatic hydrolysis was performed for all the post-treated solids with and without refining at enzyme loadings of 4 and 10 FPU/g for 96 h. Acid-catalyzed autohydrolysis at 190 °C with sulfurous acid showed the highest total sugar recovery of 81.2% at 4 FPU/g enzyme charge compared with 64.3% at 190 °C autohydrolysis without acid. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effect of pretreatment severity in continuous steam explosion on enzymatic conversion of wheat straw: Evidence from kinetic analysis of hydrolysis time courses.

    PubMed

    Monschein, Mareike; Nidetzky, Bernd

    2016-01-01

    Focusing on continuous steam explosion, the influence of pretreatment severity due to varied acid loading on hydrolysis of wheat straw by Trichoderma reesei cellulases was investigated based on kinetic evaluation of the saccharification of each pretreated substrate. Using semi-empirical descriptors of the hydrolysis time course, key characteristics of saccharification efficiency were captured in a quantifiable fashion. Not only hydrolysis rates per se, but also the transition point of their bi-phasic decline was crucial for high saccharification degree. After 48h the highest saccharification was achieved for substrate pretreated at relatively low severity (1.2% acid). Higher severity increased enzyme binding to wheat straw, but reduced the specific hydrolysis rates. Higher affinity of the lignocellulosic material for cellulases does not necessarily result in increased saccharification, probably because of lignin modifications occurring at high pretreatment severities. At comparable severity, continuous pretreatment produced a substrate more susceptible to enzymatic hydrolysis than the batch process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of four pretreatments on enzymatic hydrolysis and ethanol fermentation of wheat straw. Influence of inhibitors and washing.

    PubMed

    Toquero, Cristina; Bolado, Silvia

    2014-04-01

    Pretreatment is essential in the production of alcohol from lignocellulosic material. In order to increase enzymatic sugar release and bioethanol production, thermal, dilute acid, dilute basic and alkaline peroxide pretreatments were applied to wheat straw. Compositional changes in pretreated solid fractions and sugars and possible inhibitory compounds released in liquid fractions were analysed. SEM analysis showed structural changes after pretreatments. Enzymatic hydrolysis and fermentation by Pichia stipitis of unwashed and washed samples from each pretreatment were performed so as to compare sugar and ethanol yields. The effect of the main inhibitors found in hydrolysates (formic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was first studied through ethanol fermentations of model media and then compared to real hydrolysates. Hydrolysates of washed alkaline peroxide pretreated biomass provided the highest sugar concentrations, 31.82g/L glucose, and 13.75g/L xylose, their fermentation yielding promising results, with ethanol concentrations reaching 17.37g/L. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention.

    PubMed

    Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang

    2012-07-18

    With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture.

  13. Effects of straw mulch on soil water and winter wheat production in dryland farming

    PubMed Central

    Peng, Zhang; Ting, Wei; Haixia, Wang; Min, Wang; Xiangping, Meng; Siwei, Mou; Rui, Zhang; Zhikuan, Jia; Qingfang, Han

    2015-01-01

    The soil water supply is the main factor that limits dryland crop production in China. In a three-year field experiment at a dryland farming experimental station, we evaluated the effects of various straw mulch practices on soil water storage, grain yield, and water use efficiency (WUE) of winter wheat (Triticum aestivum). Field experiments were conducted with six different mulch combinations (two different mulch durations and three different mulch amounts): high (SM1; 9000 kg ha−1), medium (SM2; 6000 kg ha−1), and low (SM3; 3000 kg ha−1) straw mulch treatments for the whole period; and high (SM4), medium (SM5) and low (SM6) straw mulch treatments during the growth period only, where the control was the whole period without mulch (CK). Throughout the whole growth period of the three-year experiment, the average soil water content in the 0–200 cm soil layer increased by 0.7–22.5% compared with CK, while the WUE increased significantly by 30.6%, 32.7% and 24.2% with SM1, SM2, and SM3, respectively (P < 0.05). The yield increased by 13.3–23.0% when mulch was provided during the growth period, while the WUE increased by 15.2%, 17.2% and 18.0% with SM4, SM5, and SM6, respectively, compared with CK. PMID:26035528

  14. Improving the fermentation quality of wheat straw silage stored at low temperature by psychrotrophic lactic acid bacteria.

    PubMed

    Zhang, Miao; Lv, Haoxin; Tan, Zhongfang; Li, Ya; Wang, Yanping; Pang, Huili; Li, Zongwei; Jiao, Zhen; Jin, Qingsheng

    2017-02-01

    This study aimed to explore the feasible approaches to develop a silage production technique in regions with low temperatures. An effective low-temperature silage technology system was constructed and two frigostable Lactobacillus (L.) strains isolated from alpine pastures were selected and proved to be available for wheat straw silage at 5°C. The strains QZ227 and QZ887 were both identified as L. plantarum according to the phenotype, 16S rRNA, and RecA gene analysis. QZ227, QZ887 and a commercial inoculant FG1 consisting of L. plantarum were effective for improving the fermentation quality of wheat straws silage at 5°C for 30 days as indicated by the higher content of lactic acid and for 60 days by lower pH values, while the control with sterile water instead conferred reduced benefits. Additionally, silages fermented at low temperature proved to be acceptable for feeding livestock after being placed in a simulated environmental temperature of 20°C for 14 days to detect its edibility during the early spring when the temperature begins to rise. Both QZ227 and QZ887 showed potential applications of silage making in frigid areas and were effective inoculants in a low-temperature silage technology system. © 2016 Japanese Society of Animal Science.

  15. [Effect of straw-returning on the storage and distribution of different active fractions of soil organic carbon].

    PubMed

    Wang, Hul; Wang, Xu-dong; Tian, Xiao-hong

    2014-12-01

    The impacts of straw mulching and returning on the storage of soil dissolved organic carbon (DOC), particulate organic carbon (POC) and mineral associated organic carbon (MOC), and their proportions to the total organic carbon (TOC) were studied based on a field experiment. The results showed that compared to the treatment of wheat straw soil-returning (WR), the storage of TOC and MOC decreased by 4.1% and 9.7% respectively in 0-20 cm soil in the treatment with wheat straw mulching (WM), but the storage of DOC and POC increased by 207.7% and 11.9%, and TOC and POC increased significantly in 20-40 cm soil. Compared to the treatment with maize straw soil-returning (MR), the storage of TOC and MOC in the plough pan soil of the treatment with maize straw mulching (MM) increased by 13.6% and 14.6% , respectively. Compared to the WR-MR treatment, the storage of TOC and MOC in top soil (0-20 icm) significantly decreased by 8.5% and 10.3% respectively in WM-MM treatment. The storage of TOC, and POC in top soil was significantly higher in the treatments with maize straw soil-returning or mulching than that with wheat straw. Compared to the treatment without straw (CK), the storage of TOC in top soil increased by 5.2% to 18.0% in the treatments with straw returning or mulching in the six modes (WM, WR, MM, MR, WM-MM,WR-MR) (P<0.05), but the storage of TOC in the plough pan soil decreased by 8.0% to 11.5% (P<0.05) except for the treatments of WM and MM. The storage of DOC and DOC/TOC ratio decreased significantly in top soil in the treatments with straw mulching or returning in six modes. The storage of POC and POC/TOC ratio in WM and WM-MM treatments, MOC and MOC/TOC ratio in WR treatment, increased significantly in top soil. In the other three treatments with straw mulching and returning (MM, MR, WR-MR), the storage of POC and MOC increased significantly in top soil. These results suggested that straw mulching had the potential to accumulate active organic carbon fraction

  16. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    PubMed Central

    2012-01-01

    Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS) combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS) unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS), resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L) did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and second

  17. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler

    USDA-ARS?s Scientific Manuscript database

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  18. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles.

    PubMed

    Chen, Haixin; Liu, Jingjing; Zhang, Afeng; Chen, Jing; Cheng, Gong; Sun, Benhua; Pi, Xiaomin; Dyck, Miles; Si, Bingcheng; Zhao, Ying; Feng, Hao

    2017-02-01

    Mulching practices have long been used to modify the soil temperature and moisture conditions and thus potentially improve crop production in dryland agriculture, but few studies have focused on mulching effects on soil gaseous emissions. We monitored annual greenhouse gas (GHG) emissions under the regime of straw and plastic film mulching using a closed chamber method on a typical winter-wheat (Triticum aestivum L. cv Xiaoyan 22) and summer-maize (Zea mays L. cv Qinlong 11) rotation field over two-year period in the Loess Plateau, northwestern China. The following four field treatments were included: T1 (control, no mulching), T2 (4000kgha -1 wheat straw mulching, covering 100% of soil surface), T3 (half plastic film mulching, covering 50% of soil surface), and T4 (complete plastic film mulching, covering 100% of soil surface). Compared with the control, straw mulching decreased soil temperature and increased soil moisture, whereas plastic film mulching increased both soil temperature and moisture. Accordingly, straw mulching increased annual crop yields over both cycles, while plastic film mulching significantly enhanced annual crop yield over cycle 2. Compared to the no-mulching treatment, all mulching treatments increased soil CO 2 emission over both cycles, and straw mulching increased soil CH 4 absorption over both cycles, but patterns of soil N 2 O emissions under straw or film mulching are not consistent. Overall, compared to T1, annual GHG intensity was significantly decreased by 106%, 24% and 26% under T2, T3 and T4 over cycle 1, respectively; and by 20%, 51% and 29% under T2, T3 and T4 over cycle 2, respectively. Considering the additional cost and environmental issues associated with plastic film mulching, the application of straw mulching might achieve a balance between food security and GHG emissions in the Chinese Loess Plateau. However, further research is required to investigate the perennial influence of different mulching applications. Copyright

  19. Improving lead adsorption through chemical modification of wheat straw by lactic acid

    NASA Astrophysics Data System (ADS)

    Mu, Ruimin; Wang, Minxiang; Bu, Qingwei; Liu, Dong; Zhao, Yanli

    2018-01-01

    This work describes the creation of a new cellulosic material derived from wheat straw modified by lactic acid for adsorption of lead in aqueous solution, called 0.3LANS (the concentration of the lactic acid were 0.3mol/L). Batch experiments were conducted to study the effects of initial pH value, contact time, adsorbent dose, initial concentration and temperature. Fourier transform infrared (FTIR), Elemental analysis, BET surface area and Scanning electron micrographs (SEM) analysis were used to investigate the chemical modification. Adsorption isotherm models namely, Langmuir, Freundlich were used to analyse the equilibrium data, and the Langmuir isotherm model provided the best correlation, means that the adsorption was chemical monolayer adsorption and the adsorption capacity qm was increased with increasing temperature, and reached 51.49mg/g for 0.3LANS at 35°C, showing adsorption was exothermic.

  20. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw.

    PubMed

    Ding, Yi; Du, Bo; Zhao, Xuebing; Zhu, J Y; Liu, Dehua

    2017-03-01

    Phosphomolybdic acid (PMo 12 ) was used as an electron mediator and proton carrier to mediate biomass pretreatment for ethanol production and electricity generation from wheat straw. In the pretreatment, lignin was oxidized anaerobically by PMo 12 with solubilization of a fraction of hemicelluloses, and the PMo 12 was simultaneously reduced. In an external liquid flow cell, the reduced PMo 12 was re-oxidized with generation of electricity. The effects of several factors on pretreatment were investigated for optimizing the conditions. Enzymatic conversion of cellulose and xylan were about 80% and 45%, respectively, after pretreatment of wheat straw with 0.25M PMo 12 , at 95°C for 45min. FeCl 3 was found to be an effective liquid mediator to transfer electrons to air, the terminal electron acceptor. By investigating the effects of various operation parameters and cell structural factors, the highest output power density of about 11mW/cm 2 was obtained for discharging of the reduced PMo 12 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Ethanol Production from Wet-Exploded Wheat Straw Hydrolysate by Thermophilic Anaerobic Bacterium Thermoanaerobacter BG1L1 in a Continuous Immobilized Reactor

    NASA Astrophysics Data System (ADS)

    Georgieva, Tania I.; Mikkelsen, Marie J.; Ahring, Birgitte K.

    Thermophilic ethanol fermentation of wet-exploded wheat straw hydrolysate was investigated in a continuous immobilized reactor system. The experiments were carried out in a lab-scale fluidized bed reactor (FBR) at 70°C. Undetoxified wheat straw hydrolysate was used (3-12% dry matter), corresponding to sugar mixtures of glucose and xylose ranging from 12 to 41 g/1. The organism, thermophilic anaerobic bacterium Thermoanaerobacter BG1L1, exhibited significant resistance to high levels of acetic acid (up to 10 g/1) and other metabolic inhibitors present in the hydrolysate. Although the hydrolysate was not detoxified, ethanol yield in a range of 0.39-0.42 g/g was obtained. Overall, sugar efficiency to ethanol was 68-76%. The reactor was operated continuously for approximately 143 days, and no contamination was seen without the use of any agent for preventing bacterial infections. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol. The work reported here also demonstrates that the use of FBR configuration might be a viable approach for thermophilic anaerobic ethanol fermentation.

  2. Process design of SSCF for ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw.

    PubMed

    Bondesson, Pia-Maria; Galbe, Mats

    2016-01-01

    Pretreatment is an important step in the production of ethanol from lignocellulosic material. Using acetic acid together with steam pretreatment allows the positive effects of an acid catalyst to be retained, while avoiding the negative environmental effects associated with sulphuric acid. Acetic acid is also formed during the pretreatment and hydrolysis of hemicellulose, and is a known inhibitor that may impair fermentation at high concentrations. The purpose of this study was to improve ethanol production from glucose and xylose in steam-pretreated, acetic-acid-impregnated wheat straw by process design of simultaneous saccharification and co-fermentation (SSCF), using a genetically modified pentose fermenting yeast strain Saccharomyces cerevisiae . Ethanol was produced from glucose and xylose using both the liquid fraction and the whole slurry from pretreated materials. The highest ethanol concentration achieved was 37.5 g/L, corresponding to an overall ethanol yield of 0.32 g/g based on the glucose and xylose available in the pretreated material. To obtain this concentration, a slurry with a water-insoluble solids (WIS) content of 11.7 % was used, using a fed-batch SSCF strategy. A higher overall ethanol yield (0.36 g/g) was obtained at 10 % WIS. Ethanol production from steam-pretreated, acetic-acid-impregnated wheat straw through SSCF with a pentose fermenting S. cerevisiae strain was successfully demonstrated. However, the ethanol concentration was too low and the residence time too long to be suitable for large-scale applications. It is hoped that further process design focusing on the enzymatic conversion of cellulose to glucose will allow the combination of acetic acid pretreatment and co-fermentation of glucose and xylose.

  3. Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: A C/N optimization case.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Shi, Zhendan; Zhao, Sanqin

    2016-07-01

    The present study emphasized the co-digestion of the thermal-H2O2 pretreated wheat straw (WS) and chicken manure (CM) with the waste activated sludge at four levels of C/N (35:1, 30:1, 25:1 and 20:1). All C/N compositions were found significant (P<0.05) to enhance methane generation and process stability during the anaerobic co-digestion of WS and CM. The experimental results revealed that the composition having C/N value of 20:1 was proved as optimum treatment with the methane enhancing capability of 85.11%, CODs removal efficiency of 48.55% and 66.83% VS removal as compared with the untreated WS. The other compositions having C/N of 25:1, 30:1 and 35:1 provided 75.85%, 63.04% and 59.96% enhanced methane respectively as compared with the control. Pretreatment of the WS reduced its C/N value up to 65%. Moreover, to optimize the most suitable C/N composition, the process stability of the co-digestion of WS and CM was deeply monitored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Comparison of sodium carbonate-oxygen and sodium hydroxide-oxygen pretreatments on the chemical composition and enzymatic saccharification of wheat straw.

    PubMed

    Geng, Wenhui; Huang, Ting; Jin, Yongcan; Song, Junlong; Chang, Hou-Min; Jameel, Hasan

    2014-06-01

    Pretreatment of wheat straw with a combination of sodium carbonate (Na2CO3) or sodium hydroxide (NaOH) with oxygen (O2) 0.5MPa was evaluated for its delignification ability at relatively low temperature 110°C and for its effect on enzymatic hydrolysis efficiency. In the pretreatment, the increase of alkali charge (as Na2O) up to 12% for Na2CO3 and 6% for NaOH, respectively, resulted in enhancement of lignin removal, but did not significantly degrade cellulose and hemicellulose. When the pretreated solid was hydrolyzed with a mixture of cellulases and hemicellulases, the sugar yield increased rapidly with the lignin removal during the pretreatment. A total sugar yield based on dry matter of raw material, 63.8% for Na2CO3-O2 and 71.9% for NaOH-O2 was achieved under a cellulase loading of 20FPU/g-cellulose. The delignification efficiency and total sugar yield from enzymatic hydrolysis were comparable to the previously reported results at much higher temperature without oxygen. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. [Influence of Different Straws Returning with Landfill on Soil Microbial Community Structure Under Dry and Water Farming].

    PubMed

    Lan, Mu-ling; Gao, Ming

    2015-11-01

    Based on rice, wheat, corn straw and rape, broad bean green stalk as the research object, using phospholipid fatty acid (PLFA) method, combining principal component analysis method to study the soil microbial quantity, distribution of flora, community structure characteristics under dry and water farming as two different cultivated land use types. The PLFA analysis results showed that: under dry farming, total PLFA quantity ranged 8.35-25.15 nmol x g(-1), showed rape > broad bean > corn > rice > wheat, rape and broad bean significantly increased total PLFA quantity by 1.18 and 1.08 times compared to the treatment without straw; PLFA quantity of bacterial flora in treatments with straws was higher than that without straw, and fungal biomass was significantly increased, so was the species richness of microbial community. Under water faming, the treatments of different straws returning with landfill have improved the PLFA quantity of total soil microbial and flora comparing with the treatment without straw, fungi significantly increased, and species richness of microbial communities value also increased significantly. Total PLFA quantity ranged 4.04-22.19 nmol x g(-1), showed rice > corn > wheat > broad bean > rape, which in rape and broad bean treatments were lower than the treatment without straw; fungal PLFA amount in 5 kinds of straw except broad bean treatment was significantly higher than that of the treatment without straw, bacteria and total PLFA quantity in broad bean processing were significantly lower than those of other treatments, actinomycetes, G+, G- had no significant difference between all treatments; rice, wheat, corn, rape could significantly increase the soil microbial species richness index and dominance index under water faming. The results of principal component analysis showed that broad bean green stalk had the greatest impact on the microbial community structure in the dry soil, rape green stalk and wheat straw had the biggest influence on

  6. Heat and microbial treatments for nutritional upgrading of wheat straw

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, O.; Vered, Y.; Sharma, A.

    1986-03-01

    The ligninolytic activities of four cellulolytic organisms were compared using straw. Only Aspergillus japonicus and Polyporous versicolor appreciably degraded lignin with A. japonicus yielding the most protein. In solid culture, most protein was produced by P. versicolor, closely followed by A. japonicus. Pertreatment of the straw by hot water facilitated biodegradation and protein production. The nutritional value of the residual straw was also increased by some fungal cultures. The greatest amount of degradable polysaccharide in the straw was made available by A. japonicus in liquid media and Pleurotus ostreatus in solid media. 29 references.

  7. Lactic acid production from lime-treated wheat straw by Bacillus coagulans: neutralization of acid by fed-batch addition of alkaline substrate

    PubMed Central

    Maas, Ronald H. W.; Bakker, Robert R.; Jansen, Mickel L. A.; Visser, Diana; de Jong, Ed; Eggink, Gerrit

    2008-01-01

    Conventional processes for lignocellulose-to-organic acid conversion requires pretreatment, enzymatic hydrolysis, and microbial fermentation. In this study, lime-treated wheat straw was hydrolyzed and fermented simultaneously to lactic acid by an enzyme preparation and Bacillus coagulans DSM 2314. Decrease in pH because of lactic acid formation was partially adjusted by automatic addition of the alkaline substrate. After 55 h of incubation, the polymeric glucan, xylan, and arabinan present in the lime-treated straw were hydrolyzed for 55%, 75%, and 80%, respectively. Lactic acid (40.7 g/l) indicated a fermentation efficiency of 81% and a chiral l(+)-lactic acid purity of 97.2%. In total, 711 g lactic acid was produced out of 2,706 g lime-treated straw, representing 43% of the overall theoretical maximum yield. Approximately half of the lactic acid produced was neutralized by fed-batch feeding of lime-treated straw, whereas the remaining half was neutralized during the batch phase with a Ca(OH)2 suspension. Of the lime added during the pretreatment of straw, 61% was used for the neutralization of lactic acid. This is the first demonstration of a process having a combined alkaline pretreatment of lignocellulosic biomass and pH control in fermentation resulting in a significant saving of lime consumption and avoiding the necessity to recycle lime. PMID:18247027

  8. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm.

    PubMed

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV=0.0776, R(c)=0.9777, RMSEP=0.0963, and R(p)=0.9686 for pH model; RMSECV=1.3544% w/w, R(c)=0.8871, RMSEP=1.4946% w/w, and R(p)=0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm

    NASA Astrophysics Data System (ADS)

    Jiang, Hui; Liu, Guohai; Mei, Congli; Yu, Shuang; Xiao, Xiahong; Ding, Yuhan

    2012-11-01

    The feasibility of rapid determination of the process variables (i.e. pH and moisture content) in solid-state fermentation (SSF) of wheat straw using Fourier transform near infrared (FT-NIR) spectroscopy was studied. Synergy interval partial least squares (siPLS) algorithm was implemented to calibrate regression model. The number of PLS factors and the number of subintervals were optimized simultaneously by cross-validation. The performance of the prediction model was evaluated according to the root mean square error of cross-validation (RMSECV), the root mean square error of prediction (RMSEP) and the correlation coefficient (R). The measurement results of the optimal model were obtained as follows: RMSECV = 0.0776, Rc = 0.9777, RMSEP = 0.0963, and Rp = 0.9686 for pH model; RMSECV = 1.3544% w/w, Rc = 0.8871, RMSEP = 1.4946% w/w, and Rp = 0.8684 for moisture content model. Finally, compared with classic PLS and iPLS models, the siPLS model revealed its superior performance. The overall results demonstrate that FT-NIR spectroscopy combined with siPLS algorithm can be used to measure process variables in solid-state fermentation of wheat straw, and NIR spectroscopy technique has a potential to be utilized in SSF industry.

  10. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  11. One-step, green, and economic synthesis of water-soluble photoluminescent carbon dots by hydrothermal treatment of wheat straw, and their bio-applications in labeling, imaging, and sensing

    NASA Astrophysics Data System (ADS)

    Yuan, Ming; Zhong, Ruibo; Gao, Haiyang; Li, Wanrong; Yun, Xiaoling; Liu, Jingran; Zhao, Xinmin; Zhao, Guofen; Zhang, Feng

    2015-11-01

    The use of biomass as renewable and sustainable energy source has attracted the attention of politics and research and development (R&D) facilities around the world. Agricultural straw acts as a typical biowaste, which still needs highly effective recycling to save the biomass urgently at present. Photoluminescent carbon dots (C-dots) are novel biocompatible nanomaterials that have been proved to be produced from many carbon-abundant materials and hold great promise for the modern nanobiomedicine. In order to realize a "one-stone-two-birds" strategy, we report a green, economic, one-pot method in this article for synthesizing photoluminescent C-dots by hydrothermal treatment of wheat straw. Using X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), we show that the as-prepared C-dots are amorphous in structure and are mainly composed of carbon. Their tiny size (<2 nm), combined with the characteristic excitation-dependent relatively bright emission, and robust photostability made the C-dots a potential biocompatible nanomaterial for bio-applications. We have experimentally demonstrated their potential applications in biomedical labeling, imaging, and sensing/detecting. The high yield (∼20%) of C-dots from wheat straw may suggest a new economic strategy for recycling biowaste.

  12. Feeding value of urea molasses-treated wheat straw ensiled with fresh cattle manure for growing crossbred cattle calves.

    PubMed

    Sarwar, Muhammad; Shahzad, Muhammad A; Nisa, Mahr U; Afzal, Danish; Sharif, Muhammad; Saddiqi, Hafiz A

    2011-03-01

    The study was carried out to evaluate the influence of urea plus molasses-treated wheat straw (WS) ensiled with cattle manure (CM) on nutrients intake, their digestibilities, and growth performance of crossbred (Sahiwal × Holstein Friesian) cattle calves. The CM was mixed with ground WS in a ratio of 30:70 on dry matter (DM) basis. The WS-CM mixture treated with urea (4% DM) and molasses (4% DM) was allowed to ferment for 40 days in a cemented pit. Four iso-nitrogenous and iso-energetic fermented wheat straw (FWS)-based experimental diets were formulated. The FWS0, FWS20, FWS30, and FWS40 diets contained 0%, 20%, 30%, and 40% FWS, respectively. Twenty calves (9-10 months of age) were randomly allocated to four dietary treatments in a randomized complete block design, five in each group. Increasing trends for DM, organic matter, crude protein, and neutral detergent fiber intakes by calves were observed with increasing dietary FWS level. Weight gain was significantly different among calves fed different levels of FWS. The highest weight gain (491.8 g/day) was observed in calves fed FWS40 diet, while calves fed FWS0 and FWS20 diets gained 350.0 and 449.6 g/day, respectively. The results from this study imply that the FWS can be added up to 30% in the diet of growing crossbred calves without any detrimental effect on their performance.

  13. The effects of straw or straw-derived gasification biochar applications on soil quality and crop productivity: A farm case study.

    PubMed

    Hansen, Veronika; Müller-Stöver, Dorette; Imparato, Valentina; Krogh, Paul Henning; Jensen, Lars Stoumann; Dolmer, Anders; Hauggaard-Nielsen, Henrik

    2017-01-15

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study investigated the impact of traditional straw incorporation vs. straw removal for thermal gasification bioenergy production and the application of straw gasification biochar (GB) on soil quality and crop production. Two rates of GB were applied over three successive years in which the field was cropped with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon content significantly and had no effect on crop yields. The application of straw and GB had a positive effect on the populations of bacteria and protists, but no effect on earthworms. The high rate of GB increased soil exchangeable potassium content and soil pH indicating its potassium bioavailability and liming properties. These results suggest, that recycling GB into agricultural soils has the potential to be developed into a system combining bioenergy generation from agricultural residues and crop production, while maintaining soil quality. However, future studies should be undertaken to assess its long-term effects and to identify the optimum balance between straw removal and biochar application rate. Copyright © 2016. Published by Elsevier Ltd.

  14. Nitrogen-functionalization biochars derived from wheat straws via molten salt synthesis: An efficient adsorbent for atrazine removal.

    PubMed

    Yang, Fan; Sun, Lili; Xie, Weiling; Jiang, Qun; Gao, Yan; Zhang, Wei; Zhang, Ying

    2017-12-31

    N-doped porous carbon sheets (NPCS) resulted from wheat straws are fabricated through using molten salts via the carbonization-functionalization progress, which show unique hierarchical structure, large pore volume and high surface area with affluent micropores. Results indicate that there exist many hierarchical pores consisting of the single carbon sheet with ultrathin nature, owing to the template role of molten salt mixtures at high temperature. Such superior structure can bring about desired performance of adsorption capacity of 82.8mg/g and quick adsorption rate of 1.43L/(gh) with an initial concentration of 35mg/L at 25°C. Langmuir and Freundlich models are adopted to interpret the adsorption behavior of atrazine and modified Freundlich and intraparticle diffusion (IPD) models are employed to characterize the dynamics of adsorption. Furthermore, nitrogen-functionalization biochars via molten salt synthesis should be further developed as a one-pot methodology to produce N-doped carbons, opening up a feasible approach for resource utilization of crop straws and other biomass wastes. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The hemicellulolytic enzyme arsenal of Thermobacillus xylanilyticus depends on the composition of biomass used for growth

    PubMed Central

    2012-01-01

    Background Thermobacillus xylanilyticus is a thermophilic and highly xylanolytic bacterium. It produces robust and stable enzymes, including glycoside hydrolases and esterases, which are of special interest for the development of integrated biorefineries. To investigate the strategies used by T. xylanilyticus to fractionate plant cell walls, two agricultural by-products, wheat bran and straw (which differ in their chemical composition and tissue organization), were used in this study and compared with glucose and xylans. The ability of T. xylanilyticus to grow on these substrates was studied. When the bacteria used lignocellulosic biomass, the production of enzymes was evaluated and correlated with the initial composition of the biomass, as well as with the evolution of any residues during growth. Results Our results showed that T. xylanilyticus is not only able to use glucose and xylans as primary carbon sources but can also use wheat bran and straw. The chemical compositions of both lignocellulosic substrates were modified by T. xylanilyticus after growth. The bacteria were able to consume 49% and 20% of the total carbohydrates in bran and straw, respectively, after 24 h of growth. The phenolic and acetyl ester contents of these substrates were also altered. Bacterial growth on both lignocellulosic biomasses induced hemicellulolytic enzyme production, and xylanase was the primary enzyme secreted. Debranching activities were differentially produced, as esterase activities were more important to bacterial cultures grown on wheat straw; arabinofuranosidase production was significantly higher in bacterial cultures grown on wheat bran. Conclusion This study provides insight into the ability of T. xylanilyticus to grow on abundant agricultural by-products, which are inexpensive carbon sources for enzyme production. The composition of the biomass upon which the bacteria grew influenced their growth, and differences in the biomass provided resulted in dissimilar enzyme

  16. Pulp properties resulting from different pretreatments of wheat straw and their influence on enzymatic hydrolysis rate.

    PubMed

    Rossberg, Christine; Steffien, Doreen; Bremer, Martina; Koenig, Swetlana; Carvalheiro, Florbela; Duarte, Luís C; Moniz, Patrícia; Hoernicke, Max; Bertau, Martin; Fischer, Steffen

    2014-10-01

    Wheat straw was subjected to three different processes prior to saccharification, namely alkaline pulping, natural pulping and autohydrolysis, in order to study their effect on the rate of enzymatic hydrolysis. Parameters like medium concentration, temperature and time have been varied in order to optimize each method. Milling the raw material to a length of 4mm beforehand showed the best cost-value-ratio compared to other grinding methods studied. Before saccharification the pulp can be stored in dried form, leading to a high yield of glucose. Furthermore the relation of pulp properties (i.e. intrinsic viscosity, Klason-lignin and hemicelluloses content, crystallinity, morphology) to cellulose hydrolysis is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Chemical composition, functional and sensory characteristics of wheat-taro composite flours and biscuits.

    PubMed

    Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel

    2014-09-01

    The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p < 0.05) increased with increase in taro level. Conversely the dough elasticity index (range 59.8-0 %), extensibility (78-22 mm) and strength (range 281-139 × 10(-4) joules) significantly (p < 0.05) diminished with increase in wheat substitution. Up to 10 % substitution with RIN taro flour and 15 % with egg-like taro flour, the composite taro-wheat dough exhibited elasticity indices acceptable for the production of baking products, whereas at all levels of taro substitution, the composite biscuits samples were either acceptable as or better (5-10 % substitution with RIN flour) than 100 % wheat biscuit.

  18. Accumulation of biomass and bioenergy in culms of cereals as a factor of straw cutting height

    NASA Astrophysics Data System (ADS)

    Zając, Tomasz; Synowiec, Agnieszka; Oleksy, Andrzej; Macuda, Jan; Klimek-Kopyra, Agnieszka; Borowiec, Franciszek

    2017-04-01

    Cereal straw is an important biomass source in Europe. This work assessed: 1) the morphological and energetic characteristics of culms of spring and winter cereals, 2) the energy deposited in the different aboveground parts of cereals, 3) losses of energy due to different cutting heights. The straw of winter and spring cereals was collected from arable fields during the seasons 2009/10 and 2010/11 in southern Poland. Detailed biometric measurements of culms and internodes were performed. The losses of straw biomass and energy were assessed during simulation of cutting the culm at different heights, up to 50 cm. Longer and heavier culms were developed by winter wheat and triticale and oat. Cutting of straw up to 10 cm did not lead to significant losses in straw yield. The total amount of energy in the culms was as follows: triticale > winter wheat > oat > spring wheat > winter barley > spring barley. Cutting the culms above 20 cm led to significant differences in terms of biomass energy between cereal species. The smallest losses of energy were recorded for spring and winter barley. Oat and barley accumulated the highest energy in grains.

  19. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    NASA Astrophysics Data System (ADS)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  20. Bambara-wheat composite flour: rheological behavior of dough and functionality in bread.

    PubMed

    Erukainure, Ochuko L; Okafor, Jane N C; Ogunji, Akinyele; Ukazu, Happiness; Okafor, Ebele N; Eboagwu, Ijeoma L

    2016-11-01

    The rheological behavior and functional properties of doughs from bambara-wheat composite flour was investigated. Bambara-wheat composite flour was prepared by substituting wheat with 0%, 10%, 15%, and 20% of bambara flour. The rheological behavior of their dough was analyzed with Mixolab. Breads produced from the flour were analyzed for physical characteristics. Organoleptic analysis was carried out by 20 panelists. Mixolab analysis revealed, except for stability time, depreciating values for dough consistency (C1), protein weakening (C2), starch gelatinization (C3), amylase activity (C4), and retrogradation (C5) as the inclusion of bambara flour increased. Physical characteristics of the loaves revealed significant ( P  < 0.05) decreasing bread volume and increasing specific volume, respectively, as bambara inclusion increased. There was significant ( P  < 0.05) difference between wheat bread and the bambara-wheat composites in all the studied quality attributes. 15% bambara-wheat composite bread was the most accepted amongst the composite breads. Inclusion of bambara flour improved the protein behavior of the composite, but did not evidently show benefits in the baking characteristics.

  1. Lignin Films from Spruce, Eucalyptus, and Wheat Straw Studied with Electroacoustic and Optical Sensors: Effect of Composition and Electrostatic Screening on Enzyme Binding.

    PubMed

    Pereira, Antonio; Hoeger, Ingrid C; Ferrer, Ana; Rencoret, Jorge; Del Rio, José C; Kruus, Kristiina; Rahikainen, Jenni; Kellock, Miriam; Gutiérrez, Ana; Rojas, Orlando J

    2017-04-10

    Lignins were isolated from spruce, wheat straw, and eucalyptus by using the milled wood lignin (MWL) method. Functional groups and compositional analyses were assessed via 2D NMR and 31 P NMR to realize their effect on enzyme binding. Films of the lignins were fabricated and ellipsometry, atomic force microscopy, and water contact angle measurements were used for their characterization and to reveal the changes upon enzyme adsorption. Moreover, lignin thin films were deposited on quartz crystal microgravimetry (QCM) and surface plasmon (SPR) resonance sensors and used to gain further insights into the lignin-cellulase interactions. For this purpose, a commercial multicomponent enzyme system and a monocomponent Trichoderma reesei exoglucanase (CBH-I) were considered. Strong enzyme adsorption was observed on the various lignins but compared to the multicomponent cellulases, CBH-I displayed lower surface affinity and higher binding reversibility. This resolved prevalent questions related to the affinity of this enzyme with lignin. Remarkably, a strong correlation between enzyme binding and the syringyl/guaiacyl (S/G) ratio was found for the lignins, which presented a similar hydroxyl group content ( 31 P NMR): higher protein affinity was determined on isolated spruce lignin (99% G units), while the lowest adsorption occurred on isolated eucalyptus lignin (70% S units). The effect of electrostatic interactions in enzyme adsorption was investigated by SPR, which clearly indicated that the screening of charges allowed more extensive protein adsorption. Overall, this work furthers our understanding of lignin-cellulase interactions relevant to biomass that has been subjected to no or little pretreatment and highlights the widely contrasting effects of the nature of lignin, which gives guidance to improve lignocellulosic saccharification and related processes.

  2. Feasibility of co-composting of sewage sludge, spent mushroom substrate and wheat straw.

    PubMed

    Meng, Liqiang; Li, Weiguang; Zhang, Shumei; Wu, Chuandong; Lv, Longyi

    2017-02-01

    In this study, the lab-scale co-composting of sewage sludge (SS) with mushroom substrate (SMS) and wheat straw (WS) conducted for 20days was evaluated. The addition of SMS evidently increased CO 2 production and dehydrogenase activity. The combined addition of SMS and WS significantly improved the compost quality in terms of temperature, organic matter degradation and germination index, especially, reduced 21.9% of NH 3 emission. That's because SMS and WS possessed the complementarity of free air space and contained plenty of degradable carbon source. The SMS could create a comfortable environment for the nitrifying bacteria and improve nitrification. The carbohydrates from combined addition of SMS and WS could be utilized by thermophilic microorganisms, stimulate ammonia assimilation and reduce NH 3 emission. These results suggested that adding SMS and WS could not only improve the degradation of organic matter and the quality of compost product, but also stimulate ammonia assimilation and reduce ammonia emission. Copyright © 2016. Published by Elsevier Ltd.

  3. Treatment of wheat straw using tannase and white-rot fungus to improve feed utilization by ruminants.

    PubMed

    Raghuwanshi, Shailendra; Misra, Swati; Saxena, Rajendra Kumar

    2014-02-20

    Current research to enrich cattle feed has primarily focused on treatment using white rot fungi, while there are scarce reports using the enzyme tannase, which is discussed only in reviews or in the form of a hypothesis. In this context, the aim of the present study was to evaluate the effect of tannase on wheat straw (WS) and also the effect of lyophilized tannase at concentrations of 0.1%, 0.2%, and 0.3% (w/w) on WS followed by fermentation with Ganoderma sp. for 10 d and compared in relation to biochemical parameters, crude protein (CP) content, and nutritional value by calculating the C/N ratio in order to improve the nutritional value of cattle feed. Penicillium charlesii, a tannase-producing microorganism, produced 61.4 IU/mL of tannase in 54 h when 2% (w/v) tannic acid (TA) was initially used as a substrate in medium containing (% w/v) sucrose (1.0), NaNO3 (1.0), and MgSO4 (0.08 pH, 5.0) in a 300-L fermentor (working volume 220 L), and concomitantly fed with 1.0% (w/v) TA after 24 h. The yield of partially purified and lyophilized tannase was 5.8 IU/mg. The tannin-free myco-straw at 0.1% (w/w) tannase showed 37.8% (w/w) lignin degradation with only a 20.4% (w/w) decrease in cellulose content and the in vitro feed digestibility was 32.2%. An increase in CP content (up to 1.28-fold) along with a lower C/N ratio of 25.0%, as compared to myco-straw, was obtained. The use of tannin-free myco-straw has potential to improve the nutritional content of cattle feed. This biological treatment process was safe, eco-friendly, easy to perform, and was less expensive as compared to other treatment methods.

  4. Treatment of wheat straw using tannase and white-rot fungus to improve feed utilization by ruminants

    PubMed Central

    2014-01-01

    Background Current research to enrich cattle feed has primarily focused on treatment using white rot fungi, while there are scarce reports using the enzyme tannase, which is discussed only in reviews or in the form of a hypothesis. In this context, the aim of the present study was to evaluate the effect of tannase on wheat straw (WS) and also the effect of lyophilized tannase at concentrations of 0.1%, 0.2%, and 0.3% (w/w) on WS followed by fermentation with Ganoderma sp. for 10 d and compared in relation to biochemical parameters, crude protein (CP) content, and nutritional value by calculating the C/N ratio in order to improve the nutritional value of cattle feed. Results Penicillium charlesii, a tannase-producing microorganism, produced 61.4 IU/mL of tannase in 54 h when 2% (w/v) tannic acid (TA) was initially used as a substrate in medium containing (% w/v) sucrose (1.0), NaNO3 (1.0), and MgSO4 (0.08 pH, 5.0) in a 300-L fermentor (working volume 220 L), and concomitantly fed with 1.0% (w/v) TA after 24 h. The yield of partially purified and lyophilized tannase was 5.8 IU/mg. The tannin-free myco-straw at 0.1% (w/w) tannase showed 37.8% (w/w) lignin degradation with only a 20.4% (w/w) decrease in cellulose content and the in vitro feed digestibility was 32.2%. An increase in CP content (up to 1.28-fold) along with a lower C/N ratio of 25.0%, as compared to myco-straw, was obtained. Conclusions The use of tannin-free myco-straw has potential to improve the nutritional content of cattle feed. This biological treatment process was safe, eco-friendly, easy to perform, and was less expensive as compared to other treatment methods. PMID:24555694

  5. Evaluation of different water-washing treatments effects on wheat straw combustion properties.

    PubMed

    Ma, Qiulin; Han, Lujia; Huang, Guangqun

    2017-12-01

    A series of experiments was conducted to explore the effects of various water-washing solid-liquid ratios (1:50 and 1:10) and the stirring on wheat straw (WS) combustion properties. Comparing different solid-liquid ratio groups, a 16% increment in the higher heating value was obtained for 1:50 groups and only 5% for 1:10 groups relative to the raw material. Moreover, energy was lost 4-26 times greater in 1:10 groups than 1:50 groups. While water-washing reduced the comprehensive combustibility index by 14.89%-32.09%, the index values of washed WS were all higher than 2, indicating good combustion performance. The combustion activation energy of four washed WS were 175, 172, 186, and 176kJ/mol, which were all higher than the 160kJ/mol of WS. The fouling/slagging propensity of washed WS reduced to a lower possibility compared to medium of untreated WS. Overall, the recommended condition for washing WS before combustion is 1:50 ratio without stirring. Copyright © 2017. Published by Elsevier Ltd.

  6. Impact of process conditions on the density and durability of wheat, oat, canola, and barley straw briquettes

    DOE PAGES

    Tumuluru, J. S.; Tabil, L. G.; Song, Y.; ...

    2014-10-01

    The present study is to understand the impact of process conditions on the quality attributes of wheat oat, barley, and canola straw briquettes. Analysis of variance indicated that briquette moisture content and initial density immediately after compaction and final density after 2 weeks of storage are strong functions of feedstock moisture content and compression pressure, whereas durability rating is influenced by die temperature and feedstock moisture content. Briquettes produced at a low feedstock moisture content of 9 % (w.b.) yielded maximum densities >700 kg/m3 for wheat, oat, canola, and barley straws. Lower feedstock moisture content of <10 % (w.b.) andmore » higher die temperatures >110 °C and compression pressure >10 MPa minimized the briquette moisture content and maximized densities and durability rating based on surface plots observations. Optimal process conditions indicated that a low feedstock moisture content of about 9 % (w.b.), high die temperature of 120–130 °C, medium-to-large hammer mill screen sizes of about 24 to 31.75 mm, and low to high compression pressures of 7.5 to 12.5 MPa minimized briquette moisture content to <8 % (w.b.) and maximized density to >700 kg/m3. Durability rating >90 % is achievable at higher die temperatures of >123 °C, lower to medium feedstock moisture contents of 9 to 12 % (w.b.), low to high compression pressures of 7.5 to 12.5 MPa, and large hammer mill screen size of 31.75 mm, except for canola where a lower compression pressure of 7.5 to 8.5 MPa and a smaller hammer mill screen size of 19 mm for oat maximized the durability rating values.« less

  7. [Effects of different straw recycling and tillage methods on soil respiration and microbial activity].

    PubMed

    Li, Xiao-sha; Wu, Ning; Liu, Ling; Feng, Yu-peng; Xu, Xu; Han, Hui-fang; Ning, Tang-yuan; Li, Zeng-jia

    2015-06-01

    To explore the effects of different tillage methods and straw recycling on soil respiration and microbial activity in summer maize field during the winter wheat and summer maize double cropping system, substrate induced respiration method and CO2 release method were used to determine soil microbial biomass carbon, microbial activity, soil respiration, and microbial respiratory quotient. The experiment included 3 tillage methods during the winter wheat growing season, i.e., no-tillage, subsoiling and conventional tillage. Each tillage method was companied with 2 straw management patterns, i.e., straw recycling and no straw. The results indicated that the conservation tillage methods and straw recycling mainly affected 0-10 cm soil layer. Straw recycling could significantly improve the microbial biomass carbon and microbial activity, while decrease microbial respiratory quotient. Straw recycling could improve the soil respiration at both seedling stage and anthesis, however, it could reduce the soil respiration at filling stage, wax ripeness, and harvest stage. Under the same straw application, compared with conventional tillage, the soil respiration and microbial respiratory quotient in both subsoiling and no-tillage were reduced, while the microbial biomass carbon and microbial activity were increased. During the summer maize growing season, soil microbial biomass carbon and microbial activity were increased in straw returning with conservation tillage, while the respiratory quotient was reduced. In 0-10 cm soil layer, compared with conventional tillage, straw recycling with subsoiling and no-tillage significantly increased soil microbial biomass carbon by 95.8% and 74.3%, and increased soil microbial activity by 97.1% and 74.2%, respectively.

  8. Rice straw mulch for post-fire erosion control: assessing non-target effects on vegetation communities

    Treesearch

    Kristen L. Shive; Becky L. Estes; Angela M. White; Hugh D. Safford; Kevin L. O' Hara; Scott L. Stephens

    2017-01-01

    Straw mulch is commonly used for post-fire erosion control in severely burned areas but this practice can introduce non-native species, even when certified weed-free straw is used. Rice straw has recently been promoted as an alternative to wheat under the hypothesis that non-native species that are able to grow in a rice field are unlikely to establish in dry forested...

  9. Improvement of high-yield pulp properties by using a small amount of bleached wheat straw pulp.

    PubMed

    Zhang, Hongjie; He, Zhibin; Ni, Yonghao

    2011-02-01

    In this study, the potential of using bleached wheat straw pulp (BWSP) was explored to improve the tensile strength of the high-yield pulp (HYP) while preserving its high bulk property. The results showed that with the addition of 5-10% refined BWSP, the HYP tensile strength can be increased by about 10-20% without sacrificing the bulk. Similar results were obtained by adding refined BWSP into a mixed furnish of bleached kraft pulps (BKPs) and HYP. The explanation was that micro fines from refined BWSP can act as binders to improve the HYP interfiber bonding, as a result, the HYP tensile strength can be improved by using a small amount of BWSP, while the HYP bulk is not significantly affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Dissecting the effect of chemical additives on the enzymatic hydrolysis of pretreated wheat straw.

    PubMed

    Monschein, Mareike; Reisinger, Christoph; Nidetzky, Bernd

    2014-10-01

    Chemical additives were examined for ability to increase the enzymatic hydrolysis of thermo-acidically pretreated wheat straw by Trichoderma reesei cellulase at 50 °C. Semi-empirical descriptors derived from the hydrolysis time courses were applied to compare influence of these additives on lignocellulose bioconversion on a kinetic level, presenting a novel view on their mechanism of action. Focus was on rate retardation during hydrolysis, substrate conversion and enzyme adsorption. PEG 8000 enabled a reduction of enzyme loading by 50% while retaining the same conversion of 67% after 24h. For the first time, a beneficial effect of urea is reported, increasing the final substrate conversion after 48 h by 16%. The cationic surfactant cetyl-trimethylammonium bromide (CTAB) enhanced the hydrolysis rate at extended reaction time (rlim) by 34% and reduced reaction time by 28%. A combination of PEG 8000 and urea increased sugar release more than additives used individually. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Isolation and characterization of lignins from wheat straw: Application as binder in lithium batteries.

    PubMed

    Domínguez-Robles, Juan; Sánchez, Rafael; Díaz-Carrasco, Pilar; Espinosa, Eduardo; García-Domínguez, M T; Rodríguez, Alejandro

    2017-11-01

    Three different lignin-rich fractions have been used as binder material for electrodes in rechargeable lithium batteries. Lignin samples were obtained through three different pulping processes; kraft, soda and organosolv pulping processes, using wheat straw as raw material. Physico-chemical characterization of three types of lignins was evaluated. Characterization has been performed using Fourier transform infrared spectroscopy (FTIR) and 31 P NMR Spectroscopy to analyse the functional groups; gel permeation chromatography (GPC) for determining molar mass distribution (MWD), and thermogravimetric analysis (TGA) to follow the thermal behaviour. Electrodes containing lignin or poly vinylidene fluoride (PVDF) were tested electrochemically. The three different lignin samples exhibited excellent performance as binder, retaining the specific capacity after 50 cycles at a current density of 100mAg -1 . These results show that lignin could be used as a low-cost and environmental binder, replacing the PVDF polymer in electrodes for energy storage applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Effects of straw and biochar amendments on aggregate stability, soil organic carbon, and enzyme activities in the Loess Plateau, China.

    PubMed

    Zhang, Man; Cheng, Gong; Feng, Hao; Sun, Benhua; Zhao, Ying; Chen, Haixin; Chen, Jing; Dyck, Miles; Wang, Xudong; Zhang, Jianguo; Zhang, Afeng

    2017-04-01

    Soil from the Loess Plateau of China is typically low in organic carbon and generally has poor aggregate stability. Application of organic amendments to these soils could help to increase and sustain soil organic matter levels and thus to enhance soil aggregate stability. A field experiment was carried out to evaluate the effect of the application of wheat straw and wheat straw-derived biochar (pyrolyzed at 350-550 °C) amendments on soil aggregate stability, soil organic carbon (SOC), and enzyme activities in a representative Chinese Loess soil during summer maize and winter wheat growing season from 2013 to 2015. Five treatments were set up as follows: no fertilization (CK), application of inorganic fertilizer (N), wheat straw applied at 8 t ha -1 with inorganic fertilizer (S8), and wheat straw-derived biochar applied at 8 t ha -1 (B8) and 16 t ha -1 (B16) with inorganic fertilizer, respectively. Compared to the N treatment, straw and straw-derived biochar amendments significantly increased SOC (by 33.7-79.6%), microbial biomass carbon (by 18.9-46.5%), and microbial biomass nitrogen (by 8.3-38.2%), while total nitrogen (TN) only increased significantly in the B16 plot (by 24.1%). The 8 t ha -1 straw and biochar applications had no significant effects on soil aggregation, but a significant increase in soil macro-aggregates (>2 mm) (by 105.8%) was observed in the B16 treatment. The concentrations of aggregate-associated SOC increased by 40.4-105.8% in macro-aggregates (>2 mm) under straw and biochar amendments relative to the N treatment. No significant differences in invertase and alkaline phosphatase activity were detected among different treatments. However, urease activity was greater in the biochar treatment than the straw treatment, indicating that biochar amendment improved the transformation of nitrogen in the soil. The carbon pool index and carbon management index were increased with straw and biochar amendments, especially in the B16 treatment

  13. Two approaches for introduction of wheat straw lignin into rigid polyurethane foams

    NASA Astrophysics Data System (ADS)

    Arshanitsa, A.; Paberza, A.; Vevere, L.; Cabulis, U.; Telysheva, G.

    2014-05-01

    In present work the BIOLIGNIN{trade mark, serif} obtained in the result of wheat straw organosolv processing in CIMV pilot plant (France) was investigated as a component of rigid polyurethanes (PUR) foam systems. Different separate approaches of lignin introduction into PUR foam system were studied: as filler without chemical preprocessing and as liquid lignopolyol obtained by lignin oxypropylation in alkali conditions. The incorporation of increasing amount of lignin as filler into reference PUR foam systems on the basis of mixture of commercial polyethers Lupranol 3300 and Lupranol 3422 steadily decreased the compression characteristics of foams, their dimensional stability and hydrophobicity. The complete substitution of Lupranol 3300 by lignopolyol increases its cell structure uniformity and dimensional stability and does not reduce the physical-mechanical properties of foam. In both cases the incorporation of lignin into PUR foam leads to the decreasing of maximum values of thermodegradation rates. The lignin filler can be introduced into lignopolyol based PUR foam in higher quantity than in the reference Lupranol based PUR without reduction of compression characteristics of material. In this work the optimal lignin content in the end product - PUR foam as both polyol and filler is 16%.

  14. Evaluation of thermophilic fungal consortium for paddy straw composting.

    PubMed

    Kumar, Adesh; Gaind, Sunita; Nain, Lata

    2008-06-01

    Out of 10 thermophilic fungi isolated from wheat straw, farm yard manure, and soil, only three showed highest cellobiase, carboxymethyl cellulase, xylanase, and FPase activities. They were identified as Aspergillus nidulans (Th(4)), Scytalidium thermophilum (Th(5)), and Humicola sp. (Th(10)). A fungal consortium of these three fungi was used to compost a mixture (1:1) of silica rich paddy straw and lignin rich soybean trash. The composting of paddy straw for 3 months, during summer period in North India, resulted in a product with C:N ratio 9.5:1, available phosphorus 0.042% and fungal biomass 6.512 mg of N-acetyl glucosamine/100 mg of compost. However, a C:N ratio of 10.2:1 and highest humus content of 3.3% was achieved with 1:1 mixture of paddy straw and soybean trash. The fungal consortium was effective in converting high silica paddy straw into nutritionally rich compost thereby leading to economical and environment friendly disposal of this crop residue.

  15. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    PubMed

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  16. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    NASA Astrophysics Data System (ADS)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  17. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    PubMed Central

    Bouasker, Marwen; Belayachi, Naima; Hoxha, Dashnor; Al-Mukhtar, Muzahim

    2014-01-01

    The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw. PMID:28788605

  18. Sugarcane biomass for biorefineries: comparative composition of carbohydrate and non-carbohydrate components of bagasse and straw.

    PubMed

    Szczerbowski, Danielle; Pitarelo, Ana Paula; Zandoná Filho, Arion; Ramos, Luiz Pereira

    2014-12-19

    Two fractions of sugarcane, namely bagasse and straw (or trash), were characterized in relation to their chemical composition. Bagasse presented values of glucans, hemicelluloses, lignin and ash of 37.74, 27.23, 20.57 and 6.53%, respectively, while straw had 33.77, 27.38, 21.28 and 6.23% of these same components. Ash content was relatively high in both cane biomass fractions. Bagasse showed higher levels of contaminating oxides while straw had a higher content of alkaline and alkaline-earth oxides. A comparison between the polysaccharide chemical compositions of these lignocellulosic materials suggests that similar amounts of fermentable sugars are expected to arise from their optimal pretreatment and enzymatic hydrolysis. Details about the chemical properties of cane biomass holocellulose, hemicelluloses A and B and α-cellulose are provided, and these may offer a good opportunity for designing more efficient enzyme cocktails for substrate saccharification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Open burning of rice, corn and wheat straws: primary emissions, photochemical aging, and secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    Fang, Zheng; Deng, Wei; Zhang, Yanli; Ding, Xiang; Tang, Mingjin; Liu, Tengyu; Hu, Qihou; Zhu, Ming; Wang, Zhaoyi; Yang, Weiqiang; Huang, Zhonghui; Song, Wei; Bi, Xinhui; Chen, Jianmin; Sun, Yele; George, Christian; Wang, Xinming

    2017-12-01

    Agricultural residues are among the most abundant biomass burned globally, especially in China. However, there is little information on primary emissions and photochemical evolution of agricultural residue burning. In this study, indoor chamber experiments were conducted to investigate primary emissions from open burning of rice, corn and wheat straws and their photochemical aging as well. Emission factors of NOx, NH3, SO2, 67 non-methane hydrocarbons (NMHCs), particulate matter (PM), organic aerosol (OA) and black carbon (BC) under ambient dilution conditions were determined. Olefins accounted for > 50 % of the total speciated NMHCs emission (2.47 to 5.04 g kg-1), indicating high ozone formation potential of straw burning emissions. Emission factors of PM (3.73 to 6.36 g kg-1) and primary organic carbon (POC, 2.05 to 4.11 gC kg-1), measured at dilution ratios of 1300 to 4000, were lower than those reported in previous studies at low dilution ratios, probably due to the evaporation of semi-volatile organic compounds under high dilution conditions. After photochemical aging with an OH exposure range of (1.97-4.97) × 1010 molecule cm-3 s in the chamber, large amounts of secondary organic aerosol (SOA) were produced with OA mass enhancement ratios (the mass ratio of total OA to primary OA) of 2.4-7.6. The 20 known precursors could only explain 5.0-27.3 % of the observed SOA mass, suggesting that the major precursors of SOA formed from open straw burning remain unidentified. Aerosol mass spectrometry (AMS) signaled that the aged OA contained less hydrocarbons but more oxygen- and nitrogen-containing compounds than primary OA, and carbon oxidation state (OSc) calculated with AMS resolved O / C and H / C ratios increased linearly (p < 0.001) with OH exposure with quite similar slopes.

  20. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw.

    PubMed

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-16

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4', β-β', β-5' linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  1. Enzymatic saccharification of pretreated wheat straw: comparison of solids-recycling, sequential hydrolysis and batch hydrolysis.

    PubMed

    Pihlajaniemi, Ville; Sipponen, Satu; Sipponen, Mika H; Pastinen, Ossi; Laakso, Simo

    2014-02-01

    In the enzymatic hydrolysis of lignocellulose materials, the recycling of the solid residue has previously been considered within the context of enzyme recycling. In this study, a steady state investigation of a solids-recycling process was made with pretreated wheat straw and compared to sequential and batch hydrolysis at constant reaction times, substrate feed and liquid and enzyme consumption. Compared to batch hydrolysis, the recycling and sequential processes showed roughly equal hydrolysis yields, while the volumetric productivity was significantly increased. In the 72h process the improvement was 90% due to an increased reaction consistency, while the solids feed was 16% of the total process constituents. The improvement resulted primarily from product removal, which was equally efficient in solids-recycling and sequential hydrolysis processes. No evidence of accumulation of enzymes beyond the accumulation of the substrate was found in recycling. A mathematical model of solids-recycling was constructed, based on a geometrical series. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. A multi-substrate approach for functional metagenomics-based screening for (hemi)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes.

    PubMed

    Maruthamuthu, Mukil; Jiménez, Diego Javier; Stevens, Patricia; van Elsas, Jan Dirk

    2016-01-28

    Functional metagenomics is a promising strategy for the exploration of the biocatalytic potential of microbiomes in order to uncover novel enzymes for industrial processes (e.g. biorefining or bleaching pulp). Most current methodologies used to screen for enzymes involved in plant biomass degradation are based on the use of single substrates. Moreover, highly diverse environments are used as metagenomic sources. However, such methods suffer from low hit rates of positive clones and hence the discovery of novel enzymatic activities from metagenomes has been hampered. Here, we constructed fosmid libraries from two wheat straw-degrading microbial consortia, denoted RWS (bred on untreated wheat straw) and TWS (bred on heat-treated wheat straw). Approximately 22,000 clones from each library were screened for (hemi)cellulose-degrading enzymes using a multi-chromogenic substrate approach. The screens yielded 71 positive clones for both libraries, giving hit rates of 1:440 and 1:1,047 for RWS and TWS, respectively. Seven clones (NT2-2, T5-5, NT18-17, T4-1, 10BT, NT18-21 and T17-2) were selected for sequence analyses. Their inserts revealed the presence of 18 genes encoding enzymes belonging to twelve different glycosyl hydrolase families (GH2, GH3, GH13, GH17, GH20, GH27, GH32, GH39, GH53, GH58, GH65 and GH109). These encompassed several carbohydrate-active gene clusters traceable mainly to Klebsiella related species. Detailed functional analyses showed that clone NT2-2 (containing a beta-galactosidase of ~116 kDa) had highest enzymatic activity at 55 °C and pH 9.0. Additionally, clone T5-5 (containing a beta-xylosidase of ~86 kDa) showed > 90% of enzymatic activity at 55 °C and pH 10.0. This study employed a high-throughput method for rapid screening of fosmid metagenomic libraries for (hemi)cellulose-degrading enzymes. The approach, consisting of screens on multi-substrates coupled to further analyses, revealed high hit rates, as compared with recent other studies. Two

  3. Characterization of a Novel Dye-Decolorizing Peroxidase (DyP)-Type Enzyme from Irpex lacteus and Its Application in Enzymatic Hydrolysis of Wheat Straw

    PubMed Central

    Salvachúa, Davinia; Prieto, Alicia

    2013-01-01

    Irpex lacteus is a white rot basidiomycete proposed for a wide spectrum of biotechnological applications which presents an interesting, but still scarcely known, enzymatic oxidative system. Among these enzymes, the production, purification, and identification of a new dye-decolorizing peroxidase (DyP)-type enzyme, as well as its physico-chemical, spectroscopic, and catalytic properties, are described in the current work. According to its N-terminal sequence and peptide mass fingerprinting analyses, I. lacteus DyP showed high homology (>95%) with the hypothetical (not isolated or characterized) protein cpop21 from an unidentified species of the family Polyporaceae. The enzyme had a low optimal pH, was very stable to acid pH and temperature, and showed improved activity and stability at high H2O2 concentrations compared to other peroxidases. Other attractive features of I. lacteus DyP were its high catalytic efficiency oxidizing the recalcitrant anthraquinone and azo dyes assayed (kcat/Km of 1.6 × 106 s-1 M-1) and its ability to oxidize nonphenolic aromatic compounds like veratryl alcohol. In addition, the effect of this DyP during the enzymatic hydrolysis of wheat straw was checked. The results suggest that I. lacteus DyP displayed a synergistic action with cellulases during the hydrolysis of wheat straw, increasing significantly the fermentable glucose recoveries from this substrate. These data show a promising biotechnological potential for this enzyme. PMID:23666335

  4. Structural features of reconstituted wheat wax films

    PubMed Central

    Pambou, Elias; Li, Zongyi; Campana, Mario; Hughes, Arwel; Clifton, Luke; Gutfreund, Philipp; Foundling, Jill

    2016-01-01

    Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid–liquid and solid–air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops. PMID:27466439

  5. Enhancing saccharification of wheat straw by mixing enzymes from genetically-modified Trichoderma reesei and Aspergillus niger.

    PubMed

    Jiang, Yanping; Duarte, Alexandra Vivas; van den Brink, Joost; Wiebenga, Ad; Zou, Gen; Wang, Chengshu; de Vries, Ronald P; Zhou, Zhihua; Benoit, Isabelle

    2016-01-01

    To increase the efficiency of enzymatic hydrolysis for plant biomass conversion into renewable biofuel and chemicals. By overexpressing the point mutation A824 V transcriptional activator Xyr1 in Trichoderma reesei, carboxymethyl cellulase, cellobiosidase and β-D-glucosidase activities of the best mutant were increased from 1.8 IU/ml, 0.1 IU/ml and 0.05 IU/ml to 4.8 IU/ml, 0.4 IU/ml and 0.3 IU/ml, respectively. The sugar yield of wheat straw saccharification by combining enzymes from this mutant and the Aspergillus niger genetically modified strain ΔcreA/xlnR c/araR c was improved up to 7.5 mg/ml, a 229 % increase compared to the combination of wild type strains. Mixing enzymes from T. reesei and A. niger combined with the genetic modification of transcription factors is a promising strategy to increase saccharification efficiency.

  6. Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time.

    PubMed

    Cai, Andong; Liang, Guopeng; Zhang, Xubo; Zhang, Wenju; Li, Ling; Rui, Yichao; Xu, Minggang; Luo, Yiqi

    2018-05-01

    Understanding drivers of straw decomposition is essential for adopting appropriate management practice to improve soil fertility and promote carbon (C) sequestration in agricultural systems. However, predicting straw decomposition and characteristics is difficult because of the interactions between many factors related to straw properties, soil properties, and climate, especially under future climate change conditions. This study investigated the driving factors of straw decomposition of six types of crop straw including wheat, maize, rice, soybean, rape, and other straw by synthesizing 1642 paired data from 98 published papers at spatial and temporal scales across China. All the data derived from the field experiments using little bags over twelve years. Overall, despite large differences in climatic and soil properties, the remaining straw carbon (C, %) could be accurately represented by a three-exponent equation with thermal time (accumulative temperature). The lignin/nitrogen and lignin/phosphorus ratios of straw can be used to define the size of labile, intermediate, and recalcitrant C pool. The remaining C for an individual type of straw in the mild-temperature zone was higher than that in the warm-temperature and subtropical zone within one calendar year. The remaining straw C after one thermal year was 40.28%, 37.97%, 37.77%, 34.71%, 30.87%, and 27.99% for rice, soybean, rape, wheat, maize, and other straw, respectively. Soil available nitrogen and phosphorus influenced the remaining straw C at different decomposition stages. For one calendar year, the total amount of remaining straw C was estimated to be 29.41 Tg and future temperature increase of 2 °C could reduce the remaining straw C by 1.78 Tg. These findings confirmed the long-term straw decomposition could be mainly driven by temperature and straw quality, and quantitatively predicted by thermal time with the three-exponent equation for a wide array of straw types at spatial and temporal

  7. Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Starch Co-filler

    USDA-ARS?s Scientific Manuscript database

    Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...

  8. Hydrothermal pretreatment of several lignocellulosic mixtures containing wheat straw and two hardwood residues available in Southern Europe.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work studied the processing of biomass mixtures containing three lignocellulosic materials largely available in Southern Europe, eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP). The mixtures were chemically characterized, and their pretreatment, by autohydrolysis, evaluated within a severity factor (logR0) ranging from 1.73 up to 4.24. A simple modeling strategy was used to optimize the autohydrolysis conditions based on the chemical characterization of the liquid fraction. The solid fraction was characterized to quantify the polysaccharide and lignin content. The pretreatment conditions for maximal saccharides recovery in the liquid fraction were at a severity range (logR0) of 3.65-3.72, independently of the mixture tested, which suggests that autohydrolysis can effectively process mixtures of lignocellulosic materials for further biochemical conversion processes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Thermo-Chemical Conversion of Microwave Activated Biomass Mixtures

    NASA Astrophysics Data System (ADS)

    Barmina, I.; Kolmickovs, A.; Valdmanis, R.; Vostrikovs, S.; Zake, M.

    2018-05-01

    Thermo-chemical conversion of microwave activated wheat straw mixtures with wood or peat pellets is studied experimentally with the aim to provide more effective application of wheat straw for heat energy production. Microwave pre-processing of straw pellets is used to provide a partial decomposition of the main constituents of straw and to activate the thermo-chemical conversion of wheat straw mixtures with wood or peat pellets. The experimental study includes complex measurements of the elemental composition of biomass pellets (wheat straw, wood, peat), DTG analysis of their thermal degradation, FTIR analysis of the composition of combustible volatiles entering the combustor, the flame temperature, the heat output of the device and composition of the products by comparing these characteristics for mixtures with unprocessed and mw pre-treated straw pellets. The results of experimental study confirm that mw pre-processing of straw activates the thermal decomposition of mixtures providing enhanced formation of combustible volatiles. This leads to improvement of the combustion conditions in the flame reaction zone, completing thus the combustion of volatiles, increasing the flame temperature, the heat output from the device, the produced heat energy per mass of burned mixture and decreasing at the same time the mass fraction of unburned volatiles in the products.

  10. [Effects of adding straw carbon source to root knot nematode diseased soil on soil microbial biomass and protozoa abundance].

    PubMed

    Zhang, Si-Hui; Lian, Jian-Hong; Cao, Zhi-Ping; Zhao, Li

    2013-06-01

    A field experiment with successive planting of tomato was conducted to study the effects of adding different amounts of winter wheat straw (2.08 g x kg(-1), 1N; 4.16 g x kg(-1), 2N; and 8.32 g x kg(-1), 4N) to the soil seriously suffered from root knot nematode disease on the soil microbial biomass and protozoa abundance. Adding straw carbon source had significant effects on the contents of soil microbial biomass carbon (MBC) and microbial biomass nitrogen (MBN) and the abundance of soil protozoa, which all decreased in the order of 4N > 2N > 1N > CK. The community structure of soil protozoa also changed significantly under straw addition. In the treatments with straw addition, the average proportion of fagellate, amoeba, and ciliates accounted for 36.0%, 59.5%, and 4.5% of the total protozoa, respectively. Under the same adding amounts of wheat straw, there was an increase in the soil MBC and MBN contents, MBC/MBN ratio, and protozoa abundance with increasing cultivation period.

  11. Acceptability of wheat-sorghum composite flour products: an assessment.

    PubMed

    Keregero, M M; Mtebe, K

    1994-12-01

    The acceptability of sorghum as human food has been a problem in Tanzania even in regions showing promising potential for its production and utilization. Reasons given for low acceptability of sorghum products as human foods include unpleasant colour, aroma, mouthfeel, taste, unpleasant aftertaste and stomachfeel. An acceptability test of selected sorghum products was, therefore, conducted in the Department of Food Science and Technology, Sokoine University of Agriculture, Morogoro, Tanzania. The objective of the test was to determine consumers' preference for the following wheat-sorghum composite flour products: bread and buns or 'maandazi'. The products were prepared using sorghum flour composited with wheat flour in the following proportions: 100% brown sorghum flour (standard products); and 80:20%; 60:40%; 40:60% and 20:80% for wheat/sorghum (white and brown) composite flours. Results indicated that in the case of composite flour bread, preference for the product improved as the amount of sorghum flour decreased. In the case of buns or 'maandazi' the 100% sorghum flour products of both white and brown were equally preferred. Buns prepared from 100% sorghum flour of white and brown varieties showed promising potential in the improvement of the acceptability of sorghum products. Taking advantage of such products, especially in villages, could enhance sorghum utilization in rural communities.

  12. Production of short-chain fatty acids from the biodegradation of wheat straw lignin by Aspergillus fumigatus.

    PubMed

    Baltierra-Trejo, Eduardo; Sánchez-Yáñez, Juan Manuel; Buenrostro-Delgado, Otoniel; Márquez-Benavides, Liliana

    2015-11-01

    The wheat straw lignin-rich fraction (WSLig-RF) can be used as a raw material for the production of metabolites for industrial use if ligninolytic mitosporic fungi are used for its biodegradation into aromatics and short-chain fatty acids (SCFAs, i.e., SCFA2-6). Although methods for the production of SCFA2-6 have been described previously, quantitative data of SCFA2-6 production have not been reported. The objectives of this study were to investigate the biodegradation of different concentrations of WSLig-RF by Aspergillus fumigatus and to identify whether SCFA2-6 production was dependent on the concentration of aromatics. A. fumigatus generated 2805mgL(-1) acetic acid when mixed with WSLig-RF at a concentration of 20gL(-1). Thus, aromatics are a substrate for the biosynthesis of SCFA2-6, and their production depends on the concentration of WSLig-RF aromatics. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Prewashing enhances the liquid hot water pretreatment efficiency of waste wheat straw with high free ash content.

    PubMed

    Huang, Chen; Wu, Xinxing; Huang, Yang; Lai, Chenhuan; Li, Xin; Yong, Qiang

    2016-11-01

    The effect of prewashing process prior to the liquid hot water (LHW) pretreatment of high free ash content waste wheat straw (WWS) was investigated. It was found that prewashing process decreased the ash content of WWS greatly, from 29.48% to 9.82%. This contributed to the lower pH value of prehydrolyzate and higher xylan removal in the following LHW pretreatment. More importantly, the prewashing process effectively increased the cellulose enzymatic hydrolysis efficiency of pretreated WWS, from 53.04% to 84.15%. The acid buffering capacity (ABC) and cation exchange capacity (CEC) of raw and prewashed WWS were examined. The majority of free ash removal from WWS by prewashing resulted in the decrease of the ABC of the WWS from 211.74 to 61.81mmol/pH-kg, and potentially enhancing the efficiency of the follow-up LHW pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    PubMed Central

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-01-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120–200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4′, β-β′, β-5′ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature. PMID:27982101

  15. Effect of hydrothermal pretreatment on the structural changes of alkaline ethanol lignin from wheat straw

    NASA Astrophysics Data System (ADS)

    Chen, Xue; Li, Hanyin; Sun, Shaoni; Cao, Xuefei; Sun, Runcang

    2016-12-01

    Due to the enormous abundance of lignin and its unique aromatic nature, lignin has great potential for the production of industrially useful fuels, chemicals, and materials. However, the rigid and compact structure of the plant cell walls significantly blocks the separation of lignin. In this study, wheat straw was hydrothermally pretreated at different temperatures (120-200 °C) followed by post-treatment with 70% ethanol containing 1% NaOH to improve the isolation of lignin. Results demonstrated that the content of associated carbohydrates of the lignin fractions was gradually reduced with the increment of the hydrothermal severity. The structure of the lignins changed regularly with the increase of the pretreatment temperature from 120 to 200 °C. In particular, the contents of β-O-4‧, β-β‧, β-5‧ linkages and aliphatic OH in the lignins showed a tendency of decrease, while the content of phenolic OH and thermal stability of the lignin fractions increased steadily as the increment of the pretreatment temperature.

  16. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost

    PubMed Central

    Jurak, Edita; Punt, Arjen M.; Arts, Wim; Kabel, Mirjam A.; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus’ mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained. PMID:26436656

  17. Alkali-explosion pretreatment of straw and bagasse for enzymic hydrolysis.

    PubMed

    Puri, V P; Pearce, G R

    1986-04-01

    Sugarcane bagasse and wheat straw were subjected to alkali treatment at 200 degrees C for 5 min and at 3.45 MPa gas pressure (steam and nitrogen), followed by an explosive discharge through a defibrating nozzle, in an attempt to improve the rate and extent of digestibility. The treatment resulted in the solubilization of 40-45% of the components and in the production of a pulp that gave saccharification yields of 80 and 65% in 8 h for bagasse and wheat straw, respectively. By comparison, alkali steaming at 200 degrees C (1.72 MPa) for 5 min gave saccharification yields of only 58 and 52% in 48 h. The increase in temperature from 140 to 200 degrees C resulted in a gradual increase in in vitro organic matter digestibility (IVOMD) for both the substrates. Also, the extent of alkalinity during pretreatment appears to effect the reactivity of the final product towards enzymes. Pretreatment times ranging from 5 to 60 caused a progressive decline in the IVOMD of bagasse and wheat straw by the alkali explosion method and this was accompanied by a progressive decrease in pH values after explosion. In the alkali-steaming method, pretreatment time had no apparent effect with either substrate. An analysis of the alkali-exploded products showed that substantial amounts of hemicellulose and a small proportion of the lignin were solubilized. The percentage crystallinity of the cellulose did not alter in either substrate but there was a substantial reduction in the degree of polymerization. The superiority of the alkali-explosion pretreatment is attributed to the efficacy of fiber separation and disintegration; this increases the surface area and reduces the degree of polymerization.

  18. Biogas production from wheat straw and manure--impact of pretreatment and process operating parameters.

    PubMed

    Risberg, Kajsa; Sun, Li; Levén, Lotta; Horn, Svein Jarle; Schnürer, Anna

    2013-12-01

    Non-treated or steam-exploded straw in co-digestion with cattle manure was evaluated as a substrate for biogas production compared with manure as the sole substrate. All digestions were performed in laboratory-scale CSTR reactors (5L) operating with an organic loading late of approximately 2.8 g VS/L/day, independent of substrate mixture. The hydraulic retention was 25 days and an operating temperature of 37, 44 or 52°C. The co-digestion with steam exploded straw and manure was evaluated with two different mixtures, with different proportion. The results showed stable performance but low methane yields (0.13-0.21 N L CH4/kg VS) for both manure alone and in co-digestion with the straw. Straw appeared to give similar yield as manure and steam-explosion treatment of the straw did not increase gas yields. Furthermore, there were only slight differences at the different operating temperatures. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Improved Production of Thermostable Cellulase from Thermoascus aurantiacus RCKK by Fermentation Bioprocessing and Its Application in the Hydrolysis of Office Waste Paper, Algal Pulp, and Biologically Treated Wheat Straw.

    PubMed

    Jain, Kavish Kumar; Kumar, Sandeep; Deswal, Deepa; Kuhad, Ramesh Chander

    2017-02-01

    Thermostable cellulases have wide variety of applications and distinctive advantages, but their low titer becomes the hurdle in their commercialization. In the present work, an assessment of optimum levels of significant factors (temperature, moisture ratio, inoculum size, and ammonium sulfate) and the effect of their interactions on production of thermostable CMCase, FPase, and β-glucosidase by Thermoascus aurantiacus RCKK under solid-state fermentation (SSF) was carried out using central composite design (CCD) of response surface methodology (RSM). The study revealed 33, 13, and 8 % improvement in FPase, CMCase, and β-glucosidase production, respectively. Moreover, crude cellulase from T. aurantiacus RCKK efficiently hydrolyzed office waste paper, algal pulp (Gracillaria verulosa), and biologically treated wheat straw at 60 °C with sugar release of about 830 mg/ml, 285 mg/g, and 260 mg/g of the substrate, respectively. The thermostable enzyme from T. aurantiacus RCKK holds potential to be used in biofuel industry.

  20. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota

    PubMed Central

    Ogura, Tatsuki; Date, Yasuhiro; Kikuchi, Jun

    2013-01-01

    Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an “ECOMICS” web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation. PMID:23840554

  1. Biobleaching of wheat straw-rich soda pulp with alkalophilic laccase from gamma-proteobacterium JB: optimization of process parameters using response surface methodology.

    PubMed

    Singh, Gursharan; Ahuja, Naveen; Batish, Mona; Capalash, Neena; Sharma, Prince

    2008-11-01

    An alkalophilic laccase from gamma-proteobacterium JB was applied to wheat straw-rich soda pulp to check its bleaching potential by using response surface methodology based on central composite design. The design was employed by selecting laccase units, ABTS (2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid)) concentration and pH as model factors. The results of second order factorial design experiments showed that all three independent variables had significant effect on brightness and kappa number of laccase-treated pulp. Optimum conditions for biobleaching of pulp with laccase preparation (specific activity, 65 nkat mg(-1) protein) were 20 nkat g(-1) of pulp, 2mM ABTS and pH 8.0 which enhanced brightness by 5.89% and reduced kappa number by 21.1% within 4h of incubation at 55 degrees C, without further alkaline extraction of pulp. Tear index (8%) and burst index (18%) also improved for laccase-treated pulp as compared to control raw pulp. Treatment of chemically (CEH1H2) bleached pulp with laccase showed significant effect on release of chromophores, hydrophobic and reducing compounds. Laccase-prebleaching of raw pulp reduced the use of hypochlorite by 10% to achieve brightness of resultant hand sheets similar to the fully chemically bleached pulp.

  2. Effect of bioaugmentation by cellulolytic bacteria enriched from sheep rumen on methane production from wheat straw.

    PubMed

    Ozbayram, E Gozde; Kleinsteuber, Sabine; Nikolausz, Marcell; Ince, Bahar; Ince, Orhan

    2017-08-01

    The aim of this study was to determine the potential of bioaugmentation with cellulolytic rumen microbiota to enhance the anaerobic digestion of lignocellulosic feedstock. An anaerobic cellulolytic culture was enriched from sheep rumen fluid using wheat straw as substrate under mesophilic conditions. To investigate the effects of bioaugmentation on methane production from straw, the enrichment culture was added to batch reactors in proportions of 2% (Set-1) and 4% (Set-2) of the microbial cell number of the standard inoculum slurry. The methane production in the bioaugmented reactors was higher than in the control reactors. After 30 days of batch incubation, the average methane yield was 154 mL N CH 4 g VS -1 in the control reactors. Addition of 2% enrichment culture did not enhance methane production, whereas in Set-2 the methane yield was increased by 27%. The bacterial communities were examined by 454 amplicon sequencing of 16S rRNA genes, while terminal restriction fragment length polymorphism (T-RFLP) fingerprinting of mcrA genes was applied to analyze the methanogenic communities. The results highlighted that relative abundances of Ruminococcaceae and Lachnospiraceae increased during the enrichment. However, Cloacamonaceae, which were abundant in the standard inoculum, dominated the bacterial communities of all batch reactors. T-RFLP profiles revealed that Methanobacteriales were predominant in the rumen fluid, whereas the enrichment culture was dominated by Methanosarcinales. In the batch rectors, the most abundant methanogens were affiliated to Methanobacteriales and Methanomicrobiales. Our results suggest that bioaugmentation with sheep rumen enrichment cultures can enhance the performance of digesters treating lignocellulosic feedstock. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw.

    PubMed

    Rodrigues, Ana Cristina; Felby, Claus; Gama, Miguel

    2014-03-01

    The potential of enzymes recycling after hydrolysis and fermentation of wheat straw under a variety of conditions was investigated, monitoring the activity of the enzymes in the solid and liquid fractions, using low molecular weight substrates. A significant amount of active enzymes could be recovered by recycling the liquid phase. In the early stage of the process, enzyme adsorb to the substrate, then gradually returning to the solution as the saccharification proceeds. At 50°C, normally regarded as an acceptable operational temperature for saccharification, the enzymes (Celluclast) significantly undergo thermal deactivation. The hydrolysis yield and enzyme recycling efficiency in consecutive recycling rounds can be increased by using high enzyme loadings and moderate temperatures. Indeed, the amount of enzymes in the liquid phase increased with its thermostability and hydrolytic efficiency. This study contributes towards developing effective enzymes recycling strategies and helping to reduce the enzyme costs on bioethanol production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Comparison of some new pretreatment methods for second generation bioethanol production from wheat straw and water hyacinth.

    PubMed

    Guragain, Yadhu Nath; De Coninck, Joelle; Husson, Florence; Durand, Alain; Rakshit, Sudip Kumar

    2011-03-01

    Pretreatment of lignocellulosic residues like water hyacinth (WH) and wheat straw (WS) using crude glycerol (CG) and ionic liquids (IL) pretreatment was evaluated and compared with conventional dilute acid pretreatment (DAT) in terms of enzymatic hydrolysis yield and fermentation yield of pretreated samples. In the case of WS, 1-butyl-3-methylimidazolium acetate pretreatment was found to be the best method. The hydrolysis yields of glucose and total reducing sugars were 2.1 and 3.3 times respectively higher by IL pretreatment than DAT, while it was 1.4 and 1.9 times respectively higher with CG pretreatment. For WH sample, CG pretreatment was as effective as DAT and more effective than IL pretreatment regarding hydrolysis yield. The fermentation inhibition was not noticeable with both types of pretreatment methods and feedstocks. Besides, CG pretreatment was found as effective as pure glycerol pretreatment for both feedstocks. This opens up an attractive economic route for the utilization of CG. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Characterization of wheat straw-degrading anaerobic alkali-tolerant mixed cultures from soda lake sediments by molecular and cultivation techniques

    PubMed Central

    Porsch, Katharina; Wirth, Balázs; Tóth, Erika M; Schattenberg, Florian; Nikolausz, Marcell

    2015-01-01

    Alkaline pretreatment has the potential to enhance the anaerobic digestion of lignocellulosic biomass to biogas. However, the elevated pH of the substrate may require alkalitolerant microbial communities for an effective digestion. Three mixed anaerobic lignocellulolytic cultures were enriched from sediments from two soda lakes with wheat straw as substrate under alkaline (pH 9) mesophilic (37°C) and thermophilic (55°C) conditions. The gas production of the three cultures ceased after 4 to 5 weeks, and the produced gas was composed of carbon dioxide and methane. The main liquid intermediates were acetate and propionate. The physiological behavior of the cultures was stable even after several transfers. The enrichment process was also followed by molecular fingerprinting (terminal restriction fragment length polymorphism) of the bacterial 16S rRNA gene and of the mcrA/mrtA functional gene for methanogens. The main shift in the microbial community composition occurred between the sediment samples and the first enrichment, whereas the structure was stable in the following transfers. The bacterial communities mainly consisted of Sphingobacteriales, Clostridiales and Spirochaeta, but differed at genus level. Methanothermobacter and Methanosarcina genera and the order Methanomicrobiales were predominant methanogenes in the obtained cultures. Additionally, single cellulolytic microorganisms were isolated from enrichment cultures and identified as members of the alkaliphilic or alkalitolerant genera. The results show that anaerobic alkaline habitats harbor diverse microbial communities, which can degrade lignocellulose effectively and are therefore a potential resource for improving anaerobic digestion. PMID:25737100

  6. Effect of Hydrolyzed Wheat Gluten and Starch Ratio on the Viscoelastic Properties of Rubber Composites

    USDA-ARS?s Scientific Manuscript database

    The hydrolyzed wheat gluten (WG) and wheat starch (WS) showed substantial reinforcement effects in rubber composites. Due to different abilities of WG and WS to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG and WS as a co-filler. The...

  7. Using straw hydrolysate to cultivate Chlorella pyrenoidosa for high-value biomass production and the nitrogen regulation for biomass composition.

    PubMed

    Zhang, Tian-Yuan; Wang, Xiao-Xiong; Wu, Yin-Hu; Wang, Jing-Han; Deantes-Espinosa, Victor M; Zhuang, Lin-Lan; Hu, Hong-Ying; Wu, Guang-Xue

    2017-11-01

    Heterotrophic cultivation of Chlorella pyrenoidosa based on straw substrate was proposed as a promising approach in this research. The straw pre-treated by ammonium sulfite method was enzymatically hydrolyzed for medium preparation. The highest intrinsic growth rate of C. pyrenoidosa reached to 0.097h -1 in hydrolysate medium, which was quicker than that in glucose medium. Rising nitrogen concentration could significantly increase protein content and decrease lipid content in biomass, meanwhile fatty acids composition kept stable. The highest protein and lipid content in microalgal biomass reached to 62% and 32% under nitrogen excessive and deficient conditions, respectively. Over 40% of amino acids and fatty acids in biomass belonged to essential amino acids (EAA) and essential fatty acids (EFA), which were qualified for high-value uses. This research revealed the rapid biomass accumulation property of C. pyrenoidosa in straw hydrolysate medium and the effectiveness of nitrogen regulation to biomass composition at heterotrophic condition. Copyright © 2017. Published by Elsevier Ltd.

  8. Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw.

    PubMed

    Wang, Chong; Zuo, Jiane; Chen, Xiaojie; Xing, Wei; Xing, Linan; Li, Peng; Lu, Xiangyang; Li, Chao

    2014-12-01

    The microbial community structures in an integrated two-phase anaerobic reactor (ITPAR) were investigated by 16S rDNA clone library technology. The 75L reactor was designed with a 25L rotating acidogenic unit at the top and a 50L conventional upflow methanogenic unit at the bottom, with a recirculation connected to the two units. The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw, which showed a very good biogas production and decomposition of cellulosic materials. The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales, Clostridiales and Syntrophobacterales were dominated in the reactor, with more bacteria community diversities in the acidogenic unit. The methanogens were mostly related with Methanosaeta, Methanosarcina, Methanoculleus, Methanospirillum and Methanobacterium; the predominating genus Methanosaeta, accounting for 40.5%, 54.2%, 73.6% and 78.7% in four samples from top to bottom, indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit. The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit. The differentiation of methanogenic community composition in two phases, as well as pH values and volatile fatty acid (VFA) concentrations confirmed the phase separation of the ITPAR. Overall, the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens, more diverse communities and stronger syntrophic associations among microorganisms, which made two phase anaerobic digestion of cellulosic materials more efficient. Copyright © 2014. Published by Elsevier B.V.

  9. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain.

    PubMed

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn.

  10. Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain

    PubMed Central

    Wang, Fan; Wang, Zhaohui; Kou, Changlin; Ma, Zhenghua; Zhao, Dong

    2016-01-01

    The recycling of livestock manure in cropping systems is considered to enhance soil fertility and crop productivity. However, there have been no systematic long-term studies of the effects of manure application on soil and crop macro- and micro-nutrients, heavy metals, and crop yields in China, despite their great importance for sustainable crop production and food safety. Thus, we conducted field experiments in a typical cereal crop production area of the North China Plain to investigate the effects of compost manure application rates on wheat yield, as well as on the macro-/micro-nutrients and heavy metals contents of soil and wheat. We found that compost application increased the soil total N and the available K, Fe, Zn, and Mn concentrations, whereas the available P in soil was not affected, and the available Cu decreased. In general, compost application had no significant effects on the grain yield, biomass, and harvest index of winter wheat. However, during 2012 and 2013, the N concentration decreased by 9% and 18% in straw, and by 16% and 12% in grain, respectively. With compost application, the straw P concentration only increased in 2012 but the grain P generally increased, while the straw K concentration tended to decrease and the grain K concentration increased in 2013. Compost application generally increased the Fe and Zn concentrations in straw and grain, whereas the Cu and Mn concentrations decreased significantly compared with the control. The heavy metal concentrations increased at some compost application rates, but they were still within the safe range. The balances of the macro-and micro-nutrients indicated that the removal of nutrients by wheat was compensated for by the addition of compost, whereas the level of N decreased without the application of compost. The daily intake levels of micronutrients via the consumption of wheat grain were still lower than the recommended levels when sheep manure compost was applied, except for that of Mn. PMID

  11. Surface characterization of lignocellulosics for composite manufacture

    NASA Astrophysics Data System (ADS)

    Iyer, Ananth V.

    The objectives of this research were to form moisture resistant wheat strawboards, either by altering the straw surface characteristics or by changing the chemistry of the polymeric 4, 4' diphenylmethane diisocyanate (PMDI)-based matrix and interface. Part I compared the surface characteristics of wheat, barley, oat, rice, kenaf, hemp and softwood particles. All cereal straws had two surfaces: epidermis and brittle-pith unlike one heterogeneous type observed for bast fibers and softwood particles. The epidermis of cereal straws was not wet by water or aqueous binders, whereas the pith surface allowed the penetration of water, but was not readily wetted by aqueous binders. Between the different surface treatments evaluated for wheat straw in Part II, NaOH selectively peeled-off the epidermis and pith layers. The treated straw particles were formable into strawboards using aqueous phenol-formaldehyde, urea-formaldehyde, and duroplastic acrylic acid binders with good internal bond strength (IBS) and adequate water resistance. In Part III it was shown that, decreasing straw particle sizes and bleaching worsened the mechanical properties of strawboards, but the moisture absorption properties of bleached strawboards were lower than the unbleached ones. Layering of straw particles in strawboards did not seem to affect their mechanical or moisture absorption properties. Part IV showed that the pith surface of wheat straw was fractured on curing with PMDI, providing hollow microcrevices for water accumulation. Furthermore, the cured PMDI formed a network polyurea/polyuretonimine/polycarbodiimide/polyisocyanurate polymer on straw surfaces whose properties dictated the properties of strawboards. Among the different mono-, bi-, and tri-functional alcohols, amines and carboxylic acids evaluated in Part V as H-donor substitutes to moisture for reaction with PMDI on straw surfaces, ethylene glycol, resorcinol, glycerin and citric acid provided IBS values greater than the ANSI

  12. [Adsorption behavior of copper ion and methylene blue on citric acid- esterified wheat straw].

    PubMed

    Sun, Jin; Zhong, Ke-Ding; Feng, Min; Liu, Xing-Yan; Gong, Ren-Min

    2008-03-01

    A cationic adsorbent with carboxyl groups derived from citric acid- esterified wheat straw (EWS) was prepared by the method of solid phase preparation, and a batch experiment was conducted to study the adsorption behaviors of Cu (II) and methylene blue (MB) in aqueous solution on the EWS under conditions of different initial pH, adsorbent dosage, adsorbate concentration, and contact time. The results showed that the maximum adsorption of Cu (II) and MB was obtained when the initial solution pH was > or = 4.0. 96% of Cu (II) in 100 mg x L(-1) Cu solution and 99% of MB in 250 mg x L(-1) dye solution could be removed by > or = 2.0 g x L(-1) of EWS. The adsorption of Cu (II) and MB fitted the Langmuir sorption isothermal model. The maximum removal capacity (Qm) of EWS was 79.37 mg x g(-1) for Cu (II) and 312.50 mg x g(-1) for MB, and the adsorption equilibrium of Cu (II) and MB was reached within 75 min and 5 h, respectively. The adsorption processes of Cu (II) and MB could be described by pseudo-first order and pseudo-second order kinetic functions, respectively.

  13. Straw use and availability for second generation biofuels in England.

    PubMed

    Glithero, Neryssa J; Wilson, Paul; Ramsden, Stephen J

    2013-08-01

    Meeting EU targets for renewable transport fuels by 2020 will necessitate a large increase in bioenergy feedstocks. Although deployment of first generation biofuels has been the major response to meeting these targets they are subject to wide debate on their sustainability leading to the development of second generation technologies which use lignocellulosic feedstocks. Second generation biofuel can be subdivided into those from dedicated bioenergy crops (DESGB), e.g. miscanthus, or those from co-products (CPSGB) such as cereal straw. Potential supply of cereal straw as a feedstock for CPSGB's is uncertain in England due to the difficulty in obtaining data and the uncertainty in current estimates. An on-farm survey of 249 farms (Cereal, General Cropping and Mixed) in England was performed and linked with Farm Business Survey data to estimate current straw use and potential straw availability. No significant correlations between harvested grain and straw yields were found for wheat and oilseed rape and only a weak correlation was observed for barley. In England there is a potential cereal straw supply of 5.27 Mt from arable farm types; 3.82 Mt are currently used and 1.45 Mt currently chopped and incorporated. If currently chopped and incorporated cereal straw from arable farm types was converted into bioethanol, this could represent 1.5% of the UK petrol consumption by energy equivalence. The variations in regional straw yields (t ha -1 ) have a great effect on the England supply of straw and the potential amount of bioethanol that can be produced.

  14. The impact of particle size and initial solid loading on thermochemical pretreatment of wheat straw for improving sugar recovery.

    PubMed

    Rojas-Rejón, Oscar A; Sánchez, Arturo

    2014-07-01

    This work studies the effect of initial solid load (4-32 %; w/v, DS) and particle size (0.41-50 mm) on monosaccharide yield of wheat straw subjected to dilute H(2)SO(4) (0.75 %, v/v) pretreatment and enzymatic saccharification. Response surface methodology (RSM) based on a full factorial design (FFD) was used for the statistical analysis of pretreatment and enzymatic hydrolysis. The highest xylose yield obtained during pretreatment (ca. 86 %; of theoretical) was achieved at 4 % (w/v, DS) and 25 mm. The solid fraction obtained from the first set of experiments was subjected to enzymatic hydrolysis at constant enzyme dosage (17 FPU/g); statistical analysis revealed that glucose yield was favored with solids pretreated at low initial solid loads and small particle sizes. Dynamic experiments showed that glucose yield did not increase after 48 h of enzymatic hydrolysis. Once established pretreatment conditions, experiments were carried out with several initial solid loading (4-24 %; w/v, DS) and enzyme dosages (5-50 FPU/g). Two straw sizes (0.41 and 50 mm) were used for verification purposes. The highest glucose yield (ca. 55 %; of theoretical) was achieved at 4 % (w/v, DS), 0.41 mm and 50 FPU/g. Statistical analysis of experiments showed that at low enzyme dosage, particle size had a remarkable effect over glucose yield and initial solid load was the main factor for glucose yield.

  15. Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors

    PubMed Central

    Shi, Xiao-Shuang; Yu, Jun-Hong; Yin, Hua; Hu, Shu-Min; Huang, Shu-Xia

    2017-01-01

    Three semicontinuous continuous stirred-tank reactors (CSTR) operating at mesophilic conditions (35°C) were used to investigate the effect of hydraulic retention time (HRT) on anaerobic digestion of wheat straw. The results showed that the average biogas production with HRT of 20, 40, and 60 days was 46.8, 79.9, and 89.1 mL/g total solid as well as 55.2, 94.3, and 105.2 mL/g volatile solids, respectively. The methane content with HRT of 20 days, from 14.2% to 28.5%, was the lowest among the three reactors. The pH values with HRT of 40 and 60 days were in the acceptable range compared to that with HRT of 20 days. The propionate was dominant in the reactor with HRT of 20 days, inhibiting the activities of methanogens and causing the lower methane content in biogas. The degradation of cellulose, hemicellulose, and crystalline cellulose based on XRD was also strongly influenced by HRTs. PMID:28589134

  16. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.

    PubMed

    Singh, A K; Hamel, C; Depauw, R M; Knox, R E

    2012-03-01

    Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, 'AC Morse' had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas 'Commander', which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of 'Mongibello', which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

  17. Removal of straw lignin from spent pulping liquor using synthetic cationic and biobased flocculants

    USDA-ARS?s Scientific Manuscript database

    Aqueous alkaline delignification of wheat straw produces hemicellulose for bioenergy and other applications. After removal of the hemicellulose, spent pulping liquor (SPL) remains. The spent pulping liquor is approximately 28% water, 40% ash, 3% hemicellulose, 25% lignin, 5% protein, and less than...

  18. Optimization of liquid fermentation of microbial consortium WSD-5 followed by saccharification and acidification of wheat straw.

    PubMed

    Wen, Boting; Yuan, Xufeng; Cao, Yanzhuan; Liu, Yan; Wang, Xiaofen; Cui, Zongjun

    2012-08-01

    The microbial consortium WSD-5 is composed of bacteria and fungi, and the cooperation and symbiosis of the contained microbes enhance the degradation ability of WSD-5. Experiment results showed that the highest cellulase and hemicellulase were obtained when ventilation volume was 4 L/min, stirring rate was 0 rpm, and substrate loading rate was 3%. After 6 days of cultivation, a 67.60% loss in wheat straw dry weight was observed. The crude enzyme secreted from WSD-5 after optimization was evaluated by experiments of saccharification and acidification. The maximum concentration of reducing sugars was 3254 mg/L after 48 h saccharification. The concentration of sCOD peaked on day 2 with a value of 4345 mg/L during acidification, and the biogas yield and methane yield were 22.3% and 32.3% higher than un-acidified samples. This study is the first attempt to explore both the saccharification and the acidification ability of crude enzymes secreted by microbial consortium. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Registration of 'Norden' hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Grain yield, protein content, and straw strength are the three primary traits that growers consider when selecting wheat cultivars in the Red River Valley region of Minnesota and North Dakota. ‘Norden’ (PI 665250) was released by the University of Minnesota Agricultural Experiment Station in 2012 b...

  20. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    PubMed Central

    Maas, Ronald HW; Bakker, Robert R; Boersma, Arjen R; Bisschops, Iemke; Pels, Jan R; de Jong, Ed; Weusthuis, Ruud A; Reith, Hans

    2008-01-01

    Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight) is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae). After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52%) in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (in)organic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane), whereas the solid fraction functioned as fuel for thermal conversion (combustion), yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per kilogram (dry basis). PMID

  1. Production of bioethanol and value added compounds from wheat straw through combined alkaline/alkaline-peroxide pretreatment.

    PubMed

    Yuan, Zhaoyang; Wen, Yangbing; Li, Guodong

    2018-07-01

    An efficient scheme was developed for the conversion of wheat straw (WS) into bioethanol, silica and lignin. WS was pre-extracted with 0.2 mol/L sodium hydroxide at 30 °C for 5 h to remove about 91% of initial silica. Subsequently, the alkaline-pretreated solids were subjected to alkaline hydrogen peroxide (AHP) pretreatment with 40 mg hydrogen peroxide (H 2 O 2 )/g biomass at 50 °C for 7 h to prepare highly digestible substrate. The results of enzymatic hydrolysis demonstrated that the sequential alkaline-AHP pretreated WS was efficiently hydrolyzed at 10% (w/v) solids loading using an enzyme dosage of 10 mg protein/g glucan. The total sugar conversion of 92.4% was achieved. Simultaneous saccharification and co-fermentation (SSCF) was applied to produce ethanol from the two-stage pretreated substrate using Saccharomyces cerevisiae SR8u strain. Ethanol with concentration of 31.1 g/L was produced. Through the proposed process, about 86.4% and 54.1% of the initial silica and lignin were recovered, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Phytochemical Composition, Anti-inflammatory, and Antiproliferative Activity of Whole Wheat Flour

    USDA-ARS?s Scientific Manuscript database

    Five wheat cultivars (Macon, Louise, WestBred 936, Alpowa, and Blanca Grande) were evaluated for phenolics composition, carotenoid, and tocopherol composition, anti-inflammatory activity, and antiproliferative activity against HT-29 cells. Total ferulic acid ranged from 451.7-731.3 µg/g , with the ...

  3. Dynamic modeling the composting process of the mixture of poultry manure and wheat straw.

    PubMed

    Petric, Ivan; Mustafić, Nesib

    2015-09-15

    Due to lack of understanding of the complex nature of the composting process, there is a need to provide a valuable tool that can help to improve the prediction of the process performance but also its optimization. Therefore, the main objective of this study is to develop a comprehensive mathematical model of the composting process based on microbial kinetics. The model incorporates two different microbial populations that metabolize the organic matter in two different substrates. The model was validated by comparison of the model and experimental data obtained from the composting process of the mixture of poultry manure and wheat straw. Comparison of simulation results and experimental data for five dynamic state variables (organic matter conversion, oxygen concentration, carbon dioxide concentration, substrate temperature and moisture content) showed that the model has very good predictions of the process performance. According to simulation results, the optimum values for air flow rate and ambient air temperature are 0.43 l min(-1) kg(-1)OM and 28 °C, respectively. On the basis of sensitivity analysis, the maximum organic matter conversion is the most sensitive among the three objective functions. Among the twelve examined parameters, μmax,1 is the most influencing parameter and X1 is the least influencing parameter. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effect of magnetite powder on anaerobic co-digestion of pig manure and wheat straw.

    PubMed

    Wang, Yanzi; Ren, Guangxin; Zhang, Tong; Zou, Shuzhen; Mao, Chunlan; Wang, Xiaojiao

    2017-08-01

    This study investigated the effects of different amounts of magnetite powder (i.e., 0g, 1.5g, 3g, 4.5g, 6g) on the anaerobic co-digestion of pig manure (PM) and wheat straw (WS). The variations in pH, alkalinity, cellulase activity (CEA), dehydrogenase activity (DHA) and methane production, were analyzed by phases. Correlation of the activities of the two enzymes with methane production was also analyzed, and the Gompertz model was used to evaluate the efficiency of anaerobic digestion (AD) with the addition of magnetite powder. The results showed that magnetite powder had significant effects on the anaerobic co-digestion of PM and WS. The maximum total methane production with the addition of 3g of magnetite powder was 195mL/g total solids (TS), an increase of 72.1%. The CEA and DHA increased with magnetite powder in the ranges of 1.5-4.5g, 1.5-6g, respectively, while the methane production showed a better correlation with DHA than with CEA. Using the Gompertz model, the efficiency of AD was optimal when adding 3g magnetite powder, with higher methane production potential (206mL/g TS), shorter lag-phase time (14.9d) and shorter AD period (44d). Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Unveiling the metabolic potential of two soil-derived microbial consortia selected on wheat straw

    PubMed Central

    Jiménez, Diego Javier; Chaves-Moreno, Diego; van Elsas, Jan Dirk

    2015-01-01

    Based on the premise that plant biomass can be efficiently degraded by mixed microbial cultures and/or enzymes, we here applied a targeted metagenomics-based approach to explore the metabolic potential of two forest soil-derived lignocellulolytic microbial consortia, denoted RWS and TWS (bred on wheat straw). Using the metagenomes of three selected batches of two experimental systems, about 1.2 Gb of sequence was generated. Comparative analyses revealed an overrepresentation of predicted carbohydrate transporters (ABC, TonB and phosphotransferases), two-component sensing systems and β-glucosidases/galactosidases in the two consortia as compared to the forest soil inoculum. Additionally, “profiling” of carbohydrate-active enzymes showed significant enrichments of several genes encoding glycosyl hydrolases of families GH2, GH43, GH92 and GH95. Sequence analyses revealed these to be most strongly affiliated to genes present on the genomes of Sphingobacterium, Bacteroides, Flavobacterium and Pedobacter spp. Assembly of the RWS and TWS metagenomes generated 16,536 and 15,902 contigs of ≥10 Kb, respectively. Thirteen contigs, containing 39 glycosyl hydrolase genes, constitute novel (hemi)cellulose utilization loci with affiliation to sequences primarily found in the Bacteroidetes. Overall, this study provides deep insight in the plant polysaccharide degrading capabilities of microbial consortia bred from forest soil, highlighting their biotechnological potential. PMID:26343383

  6. Strong cellulase inhibitors from the hydrothermal pretreatment of wheat straw

    PubMed Central

    2013-01-01

    Background The use of the enzymatic hydrolysis of lignocellulose with subsequent fermentation to ethanol provides a green alternative for the production of transportation fuels. Because of its recalcitrant nature, the lignocellulosic biomass must be pretreated before enzymatic hydrolysis. However, the pretreatment often results in the formation of compounds that are inhibitory for the enzymes or fermenting organism. Although well recognized, little quantitative information on the inhibition of individual cellulase components by identified inhibitors is available. Results Strong cellulase inhibitors were separated from the liquid fraction of the hydrothermal pretreatment of wheat straw. HPLC and mass-spectroscopy analyses confirmed that the inhibitors were oligosaccharides (inhibitory oligosaccharides, IOS) with a degree of polymerization from 7 to 16. The IOS are composed of a mixture of xylo- (XOS) and gluco-oligosaccharides (GOS). We propose that XOS and GOS are the fragments of the xylan backbone and mixed-linkage β-glucans, respectively. The IOS were approximately 100 times stronger inhibitors for Trichoderma reesei cellobiohydrolases (CBHs) than cellobiose, which is one of the strongest inhibitors of these enzymes reported to date. Inhibition of endoglucanases (EGs) by IOS was weaker than that of CBHs. Most of the tested cellulases and hemicellulases were able to slowly degrade IOS and reduce the inhibitory power of the liquid fraction to some extent. The most efficient single enzyme component here was T. reesei EG TrCel7B. Although reduced by the enzyme treatment, the residual inhibitory power of IOS and the liquid fraction was strong enough to silence the major component of the T. reesei cellulase system, CBH TrCel7A. Conclusions The cellulase inhibitors described here may be responsible for the poor yields from the enzymatic conversion of the whole slurries from lignocellulose pretreatment under conditions that do not favor complete degradation of

  7. Effect of Straw Amendment on Soil Zn Availability and Ageing of Exogenous Water-Soluble Zn Applied to Calcareous Soil.

    PubMed

    Chen, Yanlong; Cui, Juan; Tian, Xiaohong; Zhao, Aiqing; Li, Meng; Wang, Shaoxia; Li, Xiushaung; Jia, Zhou; Liu, Ke

    2017-01-01

    Organic matter plays a key role in availability and transformation of soil Zn (zinc), which greatly controls Zn concentrations in cereal grains and human Zn nutrition level. Accordingly, soils homogenized with the wheat straw (0, 12 g straw kg-1) and Zn fertilizer (0, 7 mg Zn kg-1) were buried and incubated in the field over 210 days to explore the response of soil Zn availability and the ageing of exogenous Zn to straw addition. Results indicated that adding straw alone scarcely affected soil DTPA-Zn concentration and Zn fractions because of the low Zn concentration of wheat straw and the high soil pH, and large clay and calcium carbonate contents. However, adding exogenous Zn plus straw increased the DTPA-Zn abundance by about 5-fold and had the similar results to adding exogenous Zn alone, corresponding to the increased Zn fraction loosely bounded to organic matter, which had a more dominant presence in Zn reaction than soil other constituents such as carbonate and minerals in calcareous soil. The higher relative amount of ineffective Zn (~50%) after water soluble Zn addition also occurred, and at the days of 120-165 and 180-210when the natural temperature and rainfall changed mildly, the ageing process of exogenous Zn over time was well evaluated by the diffusion equation, respectively. Consequently, combining crop residues with exogenous water soluble Zn application is promising strategy to maximize the availability of Zn in calcareous soil, but the higher ageing rate of Zn caused by the higher Zn mobility should be considered.

  8. Process optimization for the preparation of straw feedstuff for rearing yellow mealworms (Tenebrio molitor L.) in BLSS

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Liu, lh64. Hong

    2012-07-01

    It has been confirmed in our previous work that in bioregenerative life support systems, feeding yellow mealworms (Tenebrio molitor L.) using fermented straw has the potential to provide good animal protein for astronauts, meanwhile treating with plant wastes. However, since the nitrogen content in straw is very low, T. molitor larvae can not obtain sufficient nitrogen, which results in a relatively low growth efficiency. In this study, wheat straw powder was mixed with simulated human urine before fermentation. Condition parameters, e.g. urine:straw ratio, moisture content, inoculation dose, fermentation time, fermentation temperature and pH were optimized using Taguchi method. Larval growth rate and average individual mass of mature larva increased significantly in the group of T. molitor larvae fed with feedstuff prepared with the optimized process.

  9. Effects of Saccharomyces cerevisiae Supplementation and Anhydrous Ammonia Treatment of Wheat Straw on In-situ Degradability and, Rumen Fermentation and Growth Performance of Yearling Lambs

    PubMed Central

    Cömert, Muazzez; Şayan, Yılmaz; Özelçam, Hülya; Baykal, Gülşah Yeğenoğlu

    2015-01-01

    The effects of Saccharomyces cerevisiae supplementation (6.6×108 cfu) and anhydrous ammonia treatment (3%) of wheat straw (WS) were investigated on in-situ dry matter (DM) degradability, and on rumen fermentation and growth performance of lambs. Rumen-fistulated Menemen sheep fed a diet with and without live yeast were used to assess the DM degradability characteristics of WS and ammonia-treated wheat straw (WSNH3). Twenty-six yearling Menemen male lambs were fed in four groups. Lambs of control group (WS) received untreated WS without supplemental yeast, whereas other three groups were fed WS treated with anhydrous ammonia (WSNH3 group), untreated WS and yeast (WS+YEAST group) or WS treated with anhydrous ammonia and yeast (WSNH3+YEAST group). Supplemented live yeast (4 g/d) was added in the diet. Lambs were offered untreated or ammonia treated WS ad-libitum and concentrate was fed at 1% of live body weight. The degradability of the water-insoluble (fraction B) was significantly increased by all of the treatment groups. Potential degradability (A+B), effective DM degradability’s (pe2, pe5, and pe8) and average daily weight gain increased only in WSNH3+YEAST group (p<0.05). Voluntary DM intake was not increased by the treatments (p>0.05), but voluntary metabolizable energy and crude protein intake were increased by WSNH3 and by WSNH3+YEAST (p<0.05). Average daily rumen pH was not affected by any of the treatments, but average daily NH3-N was significantly higher in the WSNH3 and WSNH3+YEAST groups, and total volatile fatty acids were significantly higher in the WS+YEAST and WSNH3+YEAST groups. In conclusion, the improvement of feed value of WS was better by the combination of ammonia-treatment and yeast supplementation compared to either treatment alone. PMID:25656177

  10. Biorefining strategy for maximal monosaccharide recovery from three different feedstocks: eucalyptus residues, wheat straw and olive tree pruning.

    PubMed

    Silva-Fernandes, Talita; Duarte, Luís Chorão; Carvalheiro, Florbela; Marques, Susana; Loureiro-Dias, Maria Conceição; Fonseca, César; Gírio, Francisco

    2015-05-01

    This work proposes the biorefining of eucalyptus residues (ER), wheat straw (WS) and olive tree pruning (OP) combining hydrothermal pretreatment (autohydrolysis) with acid post-hydrolysis of the liquid fraction and enzymatic hydrolysis of the solid fraction towards maximal recovery of monosaccharides from those lignocellulose materials. Autohydrolysis of ER, WS and OP was performed under non-isothermal conditions (195-230°C) and the non-cellulosic saccharides were recovered in the liquid fraction while cellulose and lignin remained in the solid fraction. The acid post-hydrolysis of the soluble oligosaccharides was studied by optimizing sulfuric acid concentration (1-4%w/w) and reaction time (10-60 min), employing a factorial (2(2)) experimental design. The solids resulting from pretreatment were submitted to enzymatic hydrolysis by applying commercial cellulolytic enzymes Celluclast® 1.5L and Novozyme® 188 (0.225 and 0.025 g/g solid, respectively). This strategy provides high total monosaccharide recovery or high glucose recovery from lignocellulosic materials, depending on the autohydrolysis conditions applied. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Hydrothermal carbonization (HTC) of wheat straw: influence of feedwater pH prepared by acetic acid and potassium hydroxide.

    PubMed

    Reza, M Toufiq; Rottler, Erwin; Herklotz, Laureen; Wirth, Benjamin

    2015-04-01

    In this study, influence of feedwater pH (2-12) was studied for hydrothermal carbonization (HTC) of wheat straw at 200 and 260°C. Acetic acid and KOH were used as acidic and basic medium, respectively. Hydrochars were characterized by elemental and fiber analyses, SEM, surface area, pore volume and size, and ATR-FTIR, while HTC process liquids were analyzed by HPLC and GC. Both hydrochar and HTC process liquid qualities vary with feedwater pH. At acidic pH, cellulose and elemental carbon increase in hydrochar, while hemicellulose and pseudo-lignin decrease. Hydrochars produced at pH 2 feedwater has 2.7 times larger surface area than that produced at pH 12. It also has the largest pore volume (1.1 × 10(-1) ml g(-1)) and pore size (20.2 nm). Organic acids were increasing, while sugars were decreasing in case of basic feedwater, however, phenolic compounds were present only at 260°C and their concentrations were increasing in basic feedwater. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence on anaerobic digestion by intermediate thermal hydrolysis of waste activated sludge and co-digested wheat straw.

    PubMed

    Bjerg-Nielsen, Michael; Ward, Alastair James; Møller, Henrik Bjarne; Ottosen, Lars Ditlev Mørck

    2018-02-01

    This paper analyses time (30 and 60 min) and temperature (120-190 °C) effects of intermediate thermal hydrolysis (ITHP) in a two-step anaerobic digestion of waste activated sludge (WAS) with and without wheat straw as a co-substrate. Effects were analyzed by measuring biochemical methane potential for 60 days and assessing associated kinetic and chemical data. Compared to non-treatment, ITHP increased the secondary step methane yield from 52 to 222 L CH 4  kg VS -1 and from 147 to 224 L CH 4  kg VS -1 for pre-digested WAS and pre-co-digested WAS respectively at an optimum of 170 °C and 30 min. The hydrolysis coefficients (k hyd ) increased by up to 127% following treatment. Increasing ITHP time from 30 to 60 min showed ambiguous results regarding methane yields, whilst temperature had a clear and proportional effect on the concentrations of acetic acid. The energy balances were found to be poor and dewatering to increase total solids above the values tested here is necessary for this process to be energetically feasible. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.

    PubMed

    Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua

    2015-06-01

    The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain

    PubMed Central

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-01-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l−1 of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v−1) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60–80% PHWS lie between 0.37 and 0.46 g g−1 of sugar, while the selectivity for butyric acid was as high as 0.9–1.0 g g−1 of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. PMID:26230610

  15. Biological pretreatment of rice straw with Streptomyces griseorubens JSD-1 and its optimized production of cellulase and xylanase for improved enzymatic saccharification efficiency.

    PubMed

    Zhang, Dan; Luo, Yanqing; Chu, Shaohua; Zhi, Yuee; Wang, Bin; Zhou, Pei

    2016-08-17

    Biological pretreatment of rice straw and production of reducing sugars by hydrolysis of bio-pretreated material with Streptomyces griseorubens JSD-1 was investigated. After 10 days of incubation, various chemical compositions of inoculated rice straw were degraded and used for further enzymatic hydrolysis studies. The production of cellulolytic enzyme by S. griseorubens JSD-1 favored the conversion of cellulose to reducing sugars. The culture medium for cellulolytic enzyme production by using agro-industrial wastes was optimized through response surface methodology. According to the response surface analysis, the concentrations of 11.13, 20.34, 4.61, and 2.85 g L(-1) for rice straw, wheat bran, peptone, and CaCO3, respectively, were found to be optimum for cellulase and xylanase production. Then the hydrolyzed spent Streptomyces cells were used as a nitrogen source and the maximum filter paper cellulase, carboxymethylcellulase, and xylanase activities of 25.79, 78.91, and 269.53 U mL(-1) were achieved. The crude cellulase produced by S. griseorubens JSD-1 was subsequently used for the hydrolysis of bio-pretreated rice straw, and the optimum saccharification efficiency of 88.13% was obtained, indicating that the crude enzyme might be used instead of commercial cellulase during a saccharification process. These results give a basis for further study of bioethanol production from agricultural cellulosic waste.

  16. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity.

    PubMed

    Zhang, Zhuo-Min; Wu, Wen-Wei; Li, Gong-Ke

    2008-09-01

    Mushrooms are very popular in the market for their nutritional and medicinal use. Mushroom volatiles are not only an important factor in the flavor, but also contain many antioxidant compounds. Antioxidant activity is a very important property for disease prevention. The volatile compositional characteristics of straw mushrooms (Volvariella volvacea [Bull. ex Fr.] Sing.) and oyster mushrooms (Pleurotus ostreatus [Jacq. ex Fr.] Kummer) during maturity and the mushroom antioxidant activity related to the non-volatiles and volatiles are studied by a chromatographic method in combination with a spectrophotometric method. The volatile compounds of straw and oyster mushrooms are sampled and identified by a combination sampling method, including headspace solid phase microextraction and steam distillation, followed by gas chromatography-mass spectrometry detection. Among all the volatile compounds identified, 1-octen-3-ol and 3-octanone are the two main compounds with the highest amounts in the volatile compositions of straw and oyster mushrooms. During maturity time of the straw mushrooms, the unsaturated 1-octen-3-ol peak area is reduced, whereas the saturated 3-octanone peak area is increased. However, during normal maturity time of oyster mushrooms, the peak areas of 1-octen-3-ol and 3-octanone remain at the same level. 1-Octen-3-ol has a different antioxidant activity from 3-octanone. Combining the results of antioxidant experiments of water extract and main volatile components by the use of a phosphomolybdenum spectrophotometric method, the conclusion is drawn that oyster mushrooms might possess stronger antioxidant activities than straw mushrooms.

  17. Mapping quantitative trait loci with additive effects and additive x additive epistatic interactions for biomass yield, grain yield, and straw yield using a doubled haploid population of wheat (Triticum aestivum L.).

    PubMed

    Li, Z K; Jiang, X L; Peng, T; Shi, C L; Han, S X; Tian, B; Zhu, Z L; Tian, J C

    2014-02-28

    Biomass yield is one of the most important traits for wheat (Triticum aestivum L.)-breeding programs. Increasing the yield of the aerial parts of wheat varieties will be an integral component of future wheat improvement; however, little is known regarding the genetic control of aerial part yield. A doubled haploid population, comprising 168 lines derived from a cross between two winter wheat cultivars, 'Huapei 3' (HP3) and 'Yumai 57' (YM57), was investigated. Quantitative trait loci (QTL) for total biomass yield, grain yield, and straw yield were determined for additive effects and additive x additive epistatic interactions using the QTLNetwork 2.0 software based on the mixed-linear model. Thirteen QTL were determined to have significant additive effects for the three yield traits, of which six also exhibited epistatic effects. Eleven significant additive x additive interactions were detected, of which seven occurred between QTL showing epistatic effects only, two occurred between QTL showing epistatic effects and additive effects, and two occurred between QTL with additive effects. These QTL explained 1.20 to 10.87% of the total phenotypic variation. The QTL with an allele originating from YM57 on chromosome 4B and another QTL contributed by HP3 alleles on chromosome 4D were simultaneously detected on the same or adjacent chromosome intervals for the three traits in two environments. Most of the repeatedly detected QTL across environments were not significant (P > 0.05). These results have implications for selection strategies in wheat biomass yield and for increasing the yield of the aerial part of wheat.

  18. PCDD/F EMISSIONS FROM BURNING WHEAT AND RICE FIELD RESIDUE

    EPA Science Inventory

    The paper presents the first known values for emissions of polychlorinated dibenzodioxins and dibenzofurans (PCDDs/Fs) from combustion of agricultural field biomass. Wheat and rice straw stubble collected from two western U.S. states were tested in a field burn simulation to dete...

  19. [Soil respiration and carbon balance in wheat field under conservation tillage].

    PubMed

    Zhang, Sai; Wang, Long-Chang; Huang, Zhao-Cun; Jia, Hui-Juan; Ran, Chun-Yan

    2014-06-01

    In order to study the characteristics of carbon sources and sinks in the winter wheat farmland ecosystem in southwest hilly region of China, the LI6400-09 respiratory chamber was adopted in the experiment conducted in the experimental field in Southwest University in Chongqing. The soil respiration and plant growth dynamics were analyzed during the growth period of wheat in the triple intercropping system of wheat-maize-soybean. Four treatments including T (traditional tillage), R (ridge tillage), TS (traditional tillage + straw mulching), and RS (ridge tillage + straw mulching) were designed. Root biomass regression (RR) and root exclusion (RE) were used to compare the contribution of root respiration to total soil respiration. The results showed that the average soil respiration rate was 1.71 micromol x (m2 x s)(-1) with a variation of 0.62-2.91 micromol x (m2 x s)(-1). Significant differences in soil respiration rate were detected among different treatments. The average soil respiration rate of T, R, TS and RS were 1.29, 1.59, 1.99 and 1.96 micromol x (m2 x s)(-1), respectively. R treatment did not increase the soil respiration rate significantly until the jointing stage. Straw mulching treatment significantly increased soil respiration, with a steadily high rate during the whole growth period. During the 169 days of growth, the total soil respiration was 2 266.82, 2799.52, 3 483.73 and 3 443.89 kg x hm(-2) while the cumulative aboveground biomasses were 51 800.84, 59 563.20, 66 015.37 and 7 1331.63 kg x hm(-2). Compared with the control, the yield of R, TS and RS increased by 14.99%, 27.44% and 37.70%, respectively. The contribution of root respiration to total soil respiration was 47.05% by RBR, while it was 53.97% by RE. In the early growth period, the carbon source was weak. The capacity of carbon sink started to increase at the jointing stage and reached the maximum during the filling stage. The carbon budget of wheat field was 5 924.512, 6743.807, 8350

  20. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    PubMed Central

    Forte, Annachiara; Zucaro, Amalia; Basosi, Riccardo; Fierro, Angelo

    2016-01-01

    The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA) approach, the environmental performance of bio-based 1,4-butanediol (BDO) produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy). The aim was: (i) to identify the hotspots along the production chain; and (ii) to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO). Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation. PMID:28773687

  1. Biosorption of heavy metal ions using wheat based biosorbents--a review of the recent literature.

    PubMed

    Farooq, Umar; Kozinski, Janusz A; Khan, Misbahul Ain; Athar, Makshoof

    2010-07-01

    Conventional technologies for the removal/remediation of toxic metal ions from wastewaters are proving expensive due to non-regenerable materials used and high costs. Biosorption is emerging as a technique offering the use of economical alternate biological materials for the purpose. Functional groups like carboxyl, hydroxyl, sulphydryl and amido present in these biomaterials, make it possible for them to attach metal ions from waters. Every year, large amounts of straw and bran from Triticum aestivum (wheat), a major food crop of the world, are produced as by-products/waste materials. The purpose of this article is to review rather scattered information on the utilization of straw and bran for the removal/minimization of metal ions from waters. High efficiency, high biosorption capacity, cost-effectiveness and renewability are the important parameters making these materials as economical alternatives for metal removal and waste remediation. Applications of available adsorption and kinetic models as well as influences of change in temperature and pH of medium on metal biosorption by wheat straw and wheat bran are reviewed. The biosorption mechanism has been found to be quite complex. It comprises a number of phenomena including adsorption, surface precipitation, ion-exchange and complexation. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  2. Improving the enzymatic hydrolysis of dilute acid pretreated wheat straw by metal ion blocking of non-productive cellulase adsorption on lignin.

    PubMed

    Akimkulova, Ardak; Zhou, Yan; Zhao, Xuebing; Liu, Dehua

    2016-05-01

    Eleven salts were selected to screen the possible metal ions for blocking the non-productive adsorption of cellulase onto the lignin of dilute acid pretreated wheat straw. Mg(2+) was screened finally as the promising candidate. The optimal concentration of MgCl2 was 1 mM, but the beneficial action was also dependent on pH, hydrolysis time and cellulase loading. Significant improvement of glucan conversion (19.3%) was observed at low cellulase loading (5 FPU/g solid). Addition of isolated lignins, tannic acid and lignin model compounds to pure cellulose hydrolysis demonstrated that phenolic hydroxyl group (Ph-OH) was the main active site blocked by Mg(2+). The interaction between Mg(2+) and Ph-OH of lignin monomeric moieties followed an order of p-hydroxyphenyl (H)>guaiacyl (G)>syringyl (S). Mg(2+) blocking made the lignin surface less negatively charged, which might weaken the hydrogen bonding and electrostatically attractive interaction between lignin and cellulase enzymes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Water–use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau

    PubMed Central

    Wang, Li-fang; Shangguan, Zhou-ping

    2015-01-01

    Mulching and tillage are widely considered to be major practices for improving soil and water conservation where water is scarce. This paper studied the effects of FM (flat mulching), RFM (ridge-furrow mulching), SM (straw mulching), MTMC (mulching with two materials combined), MOM (mulching with other materials), NT (no-tillage) ST (subsoiling tillage) and RT (rotational tillage) on wheat yield based on a synthesis of 85 recent publications (including 2795 observations at 24 sites) in the Loess Plateau, China. This synthesis suggests that wheat yield was in the range of 259–7898 kg ha−1 for FM and RFM. The sequence of water use efficiency (WUE) effect sizes was similar to that of wheat yield for the practices. Wheat yields were more sensitive to soil water at planting covered by plastic film, wheat straw, liquid film, water-permeable plastic film and sand compared to NT, ST and RT. RFM and RT increased the yields of wheat by 18 and 15%, respectively, and corresponding for WUE by 20.11 and 12.50%. This synthesis demonstrates that RFM was better for avoiding the risk of reduced production due to lack of precipitation; however, under conditions of better soil moisture, RT and MTMC were also economic. PMID:26192158

  4. Soil bacterial community shifts associated with sugarcane straw removal

    NASA Astrophysics Data System (ADS)

    Pimentel, Laisa; Gumiere, Thiago; Andreote, Fernando; Cerri, Carlos

    2017-04-01

    In Brazil, the adoption of the mechanical unburned sugarcane harvest potentially increase the quantity of residue left in the field after harvesting. Economically, this material has a high potential for second generation ethanol (2G) production. However, crop residues have an essential role in diverse properties and processes in the soil. The greater part of the uncertainties about straw removal for 2G ethanol production is based on its effects in soil microbial community. In this sense, it is important to identify the main impacts of sugarcane straw removal on soil microbial community. Therefore, we conducted a field study, during one year, in Valparaíso (São Paulo state - Brazil) to evaluate the effects of straw decomposition on soil bacterial community. Specifically, we wanted: i) to compare the rates of straw removal and ii) to evaluate the effects of straw decomposition on soil bacterial groups over one year. The experiment was in a randomized block design with treatments arranged in strip plot. The treatments are different rates of sugarcane straw removal, namely: no removal, 50, 75 and 100% of straw removal. Soil sampling was carried out at 0, 4, 8 and 12 months after the sugarcane harvest (August 2015). Total DNA was extracted from soil using the PowersoilTM DNA Isolation kit. And the abundance of bacterial in each soil sample was estimated via quantification of 16S rRNA gene. The composition of the bacterial communities was estimated via terminal restriction fragment length polymorphism (T-RFLP) analysis, and the T-RF sizes were performed on a 3500 Genetic Analyzer. Finally, the results were examined with GeneMapper 4.1 software. There was bacterial community shifts through the time and among the rates of sugarcane straw removal. Bacterial community was firstly determined by the time scale, which explained 29.16% of total variation. Rates of straw removal explained 11.55% of shifts on bacterial community. Distribution through the time is an important

  5. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration.

    PubMed

    Xue, Cheng; Auf'm Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems.

  6. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration

    PubMed Central

    Xue, Cheng; auf’m Erley, Gunda Schulte; Rossmann, Anne; Schuster, Ramona; Koehler, Peter; Mühling, Karl-Hermann

    2016-01-01

    The use of late nitrogen (N) fertilization (N application at late growth stages of wheat, e.g., booting, heading or anthesis) to improve baking quality of wheat has been questioned. Although it increases protein concentration, the beneficial effect on baking quality (bread loaf volume) needs to be clearly understood. Two pot experiments were conducted aiming to evaluate whether late N is effective under controlled conditions and if these effects result from increased N rate or N splitting. Late N fertilizers were applied either as additional N or split from the basal N at late boot stage or heading in the form of nitrate-N or urea. Results showed that late N fertilization improved loaf volume of wheat flour by increasing grain protein concentration and altering its composition. Increasing N rate mainly enhanced grain protein quantitatively. However, N splitting changed grain protein composition by enhancing the percentages of gliadins and glutenins as well as certain high molecular weight glutenin subunits (HMW-GS), which led to an improved baking quality of wheat flour. The late N effects were greater when applied as nitrate-N than urea. The proportions of glutenin and x-type HMW-GS were more important than the overall protein concentration in determining baking quality. N splitting is more effective in improving wheat quality than the increase in the N rate by late N, which offers the potential to cut down N fertilization rates in wheat production systems. PMID:27313585

  7. Transfer factor of (90)Sr and (137)Cs to lettuce and winter wheat at different growth stage applications.

    PubMed

    Al Attar, Lina; Al-Oudat, Mohammad; Safia, Bassam; Ghani, Basem Abdul

    2015-12-01

    The effect of clay soil contamination time on the transfer factors (Fvs) of (137)Cs and (90)Sr was investigated in four different growth stages of winter wheat and lettuce crops. The experiment was performed in an open field using lysimeters. The Fvs were the ratio of the activity concentrations of the radionuclides in crops to those in soil, both as dry weight (Bq kg(-1)). Significant difference of log-Fvs was evaluated using one-way Analysis of Variance (ANOVA). Basically, Fvs of (90)Sr were higher than those of (137)Cs, despite of the application stage or crop' variety. Higher Fvs for both radionuclides were observed for lettuce in comparison to winter wheat. Fvs of (90)Sr showed comparable trends for both crops with enhanced Fvs obtained when contamination occurred in early stages, i.e. 1.20 for lettuce and 0.88 and 0.02 for winter wheat, straw and grains, respectively. Despite the fluctuation noted in the pattern of Fvs for (137)Cs, soil contaminated at the second stage gave the highest Fvs for lettuce and grains, with geometric means of 0.21 and 0.01, respectively. However, wheat-straw showed remarkable increase in Fv for the latest contamination (ripening stage), about 0.06. It could be concluded that soil contamination at early growth stages would represent high radiological risk for the scenarios studied with an exception to (137)Cs in winter wheat-straw which reflected greater hazard at the latest application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Butyric acid fermentation from pretreated and hydrolysed wheat straw by an adapted Clostridium tyrobutyricum strain.

    PubMed

    Baroi, G N; Baumann, I; Westermann, P; Gavala, H N

    2015-09-01

    Butyric acid is a valuable building-block for the production of chemicals and materials and nowadays it is produced exclusively from petroleum. The aim of this study was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces butyric acid at a high yield and selectivity from lignocellulosic biomasses. Pretreated (by wet explosion) and enzymatically hydrolysed wheat straw (PHWS), rich in C6 and C5 sugars (71.6 and 55.4 g l(-1) of glucose and xylose respectively), was used as substrate. After one year of serial selections, an adapted strain of C. tyrobutyricum was developed. The adapted strain was able to grow in 80% (v v(-1) ) PHWS without addition of yeast extract compared with an initial tolerance to less than 10% PHWS and was able to ferment both glucose and xylose. It is noticeable that the adapted C. tyrobutyricum strain was characterized by a high yield and selectivity to butyric acid. Specifically, the butyric acid yield at 60-80% PHWS lie between 0.37 and 0.46 g g(-1) of sugar, while the selectivity for butyric acid was as high as 0.9-1.0 g g(-1) of acid. Moreover, the strain exhibited a robust response in regards to growth and product profile at pH 6 and 7. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Characteristics and mechanisms of nickel adsorption on biochars produced from wheat straw pellets and rice husk.

    PubMed

    Shen, Zhengtao; Zhang, Yunhui; McMillan, Oliver; Jin, Fei; Al-Tabbaa, Abir

    2017-05-01

    The adsorption characteristics and mechanisms of Ni 2+ on four-standard biochars produced from wheat straw pellets (WSP550, WSP700) and rice husk (RH550, RH700) at 550 and 700 °C, respectively, were investigated. The kinetic results show that the adsorption of Ni 2+ on the biochars reached an equilibrium within 5 min. The increase of the solid to liquid ratio resulted in an increase of Ni 2+ removal percentage but a decrease of the adsorbed amount of Ni 2+ per weight unit of biochar. The Ni 2+ removal percentage increased with the increasing of initial solution pH values at the range of 2-4, was relatively constant at the pH range of 4-8, and significantly increased to ≥98% at pH 9 and stayed constantly at the pH range of 9-10. The calculated maximum adsorption capacities of Ni 2+ for the biochars follow the order of WSP700 > WSP550 > RH700 > RH550. Both cation exchange capacity and pH of biochar can be a good indicator of the maximum adsorption capacity for Ni 2+ showing a positively linear and exponential relationship, respectively. This study also suggests that a carefully controlled standardised production procedure can make it reliable to compare the adsorption capacities between different biochars and investigate the mechanisms involved.

  10. Role of anaerobic fungi in wheat straw degradation and effects of plant feed additives on rumen fermentation parameters in vitro.

    PubMed

    Dagar, S S; Singh, N; Goel, N; Kumar, S; Puniya, A K

    2015-01-01

    In the present study, rumen microbial groups, i.e. total rumen microbes (TRM), total anaerobic fungi (TAF), avicel enriched bacteria (AEB) and neutral detergent fibre enriched bacteria (NEB) were evaluated for wheat straw (WS) degradability and different fermentation parameters in vitro. Highest WS degradation was shown for TRM, followed by TAF, NEB and least by AEB. Similar patterns were observed with total gas production and short chain fatty acid profiles. Overall, TAF emerged as the most potent individual microbial group. In order to enhance the fibrolytic and rumen fermentation potential of TAF, we evaluated 18 plant feed additives in vitro. Among these, six plant additives namely Albizia lebbeck, Alstonia scholaris, Bacopa monnieri, Lawsonia inermis, Psidium guajava and Terminalia arjuna considerably improved WS degradation by TAF. Further evaluation showed A. lebbeck as best feed additive. The study revealed that TAF plays a significant role in WS degradation and their fibrolytic activities can be improved by inclusion of A. lebbeck in fermentation medium. Further studies are warranted to elucidate its active constituents, effect on fungal population and in vivo potential in animal system.

  11. [Effects of tillage practices on root spatial distribution and yield of spring wheat and pea in the dry land farming areas of central Gansu, China].

    PubMed

    Zhang, Ming Jun; Li, Ling Ling; Xie, Jun Hong; Peng, Zheng Kai; Ren, Jin Hu

    2017-12-01

    A field experiment was conducted to explore the mechanism of cultivation measures in affecting crop yield by investigating root distribution in spring wheat-pea rotation based on a long-term conservation tillage practices in a farming region of Gansu. The results showed that with the develo-pment of growth period, the total root length, root surface area of spring wheat and pea showed a consistent trend of increase after initial decrease and reached the maximum at flowering stage. Higher root distribution was found in the 0-10 cm soil layer at seedling and 10-30 cm soil layer at flowering and maturity stages in spring wheat, while in the field pea, higher root distribution was found in the 0-10 cm soil layer at seedling and maturity, and in the 10-30 cm soil layer at flowering stages. No tillage with straw mulching and plastic mulching increased the root length and root surface area. Compared with conventional tillage in spring wheat and field pea, root length increased by 35.9% to 92.6%, and root surface area increased by 43.2% to 162.4%, respectively. No tillage with straw mulching and plastic mulching optimized spring wheat and pea root system distribution, compared with conventional tillage, increased spring wheat and field pea root length and root surface area ratio at 0-10 cm depths at the seedling stage, the root distribution at deeper depths increased significantly at flowering and maturity stages, and no tillage with straw mulching increased root length and root surface area ratio by 3.3% and 9.7% respectively, in 30-80 cm soil layer at the flowering stage. The total root length, root surface area and yield had significantly positive correlation for spring wheat in each growth period, and the total root length and pea yield also had significant positive correlation. No tillage with straw mulching and plastic mulching boosted yield of spring wheat and pea by 23.4%-38.7% compared with the conventional tillage, and the water use efficiency was increased by 13

  12. Sustaining fermentation in high-gravity ethanol production by feeding yeast to a temperature-profiled multifeed simultaneous saccharification and co-fermentation of wheat straw.

    PubMed

    Westman, Johan O; Wang, Ruifei; Novy, Vera; Franzén, Carl Johan

    2017-01-01

    Considerable progress is being made in ethanol production from lignocellulosic feedstocks by fermentation, but negative effects of inhibitors on fermenting microorganisms are still challenging. Feeding preadapted cells has shown positive effects by sustaining fermentation in high-gravity simultaneous saccharification and co-fermentation (SSCF). Loss of cell viability has been reported in several SSCF studies on different substrates and seems to be the main reason for the declining ethanol production toward the end of the process. Here, we investigate how the combination of yeast preadaptation and feeding, cell flocculation, and temperature reduction improves the cell viability in SSCF of steam pretreated wheat straw. More than 50% cell viability was lost during the first 24 h of high-gravity SSCF. No beneficial effects of adding selected nutrients were observed in shake flask SSCF. Ethanol concentrations greater than 50 g L -1 led to significant loss of viability and prevented further fermentation in SSCF. The benefits of feeding preadapted yeast cells were marginal at later stages of SSCF. Yeast flocculation did not improve the viability but simplified cell harvest and improved the feasibility of the cell feeding strategy in demo scale. Cultivation at 30 °C instead of 35 °C increased cell survival significantly on solid media containing ethanol and inhibitors. Similarly, in multifeed SSCF, cells maintained the viability and fermentation capacity when the temperature was reduced from 35 to 30 °C during the process, but hydrolysis yields were compromised. By combining the yeast feeding and temperature change, an ethanol concentration of 65 g L -1 , equivalent to 70% of the theoretical yield, was obtained in multifeed SSCF on pretreated wheat straw. In demo scale, the process with flocculating yeast and temperature profile resulted in 5% (w/w) ethanol, equivalent to 53% of the theoretical yield. Multifeed SSCF was further developed by means of a

  13. Simultaneous bioconversion of barley straw to butanol and product recovery: use of concentrated sugar solution and process integration

    USDA-ARS?s Scientific Manuscript database

    As a result of increased gasoline prices, we focused on the production of butanol which contains more energy than ethanol on per gallon (or kg) basis from cellulosic agricultural biomass such as wheat straw using two different systems: i) separate hydrolysis, fermentation, and recovery (SHFR), and ...

  14. The effects of different types of crop straw on the transformation of pentachlorophenol in flooded paddy soil.

    PubMed

    Lin, Jiajiang; Meng, Jun; He, Yan; Xu, Jianming; Chen, Zuliang; Brookes, Philip C

    2018-02-01

    The incorporation of various types of crop straw to agricultural soils has long been practiced to improve soil fertility. However, the effects of crop straw on the fate of organo-chlorine pesticides in flooded paddy soils are not well understood. The dechlorination of pentachlorophenol (PCP) in four vertical profiles (0-10, 10-20, 20-30, 30-50 mm depth) of two flooded paddy soils, a Plinthudult (Soil 1) and a Tropudult (Soil 2) was investigated following the application of four crop straws (rice, wheat, rape and Chinese milk vetch) to them. In all treatments, PCP dechlorination decreased with increasing soil depth. In the crop straw treatments, PCP was almost completely dechlorinated within 60 days, and rapidly transformed to 2,3,4,5-tetrachlorophenol, and further to 3,4,5-trichlorophenol. Further dechlorination of 3,4,5-trichlorophenol also occurred in all treatments except for the rape straw. It is possible that the NH 4 + and NO 3 - derived from the straw are responsible for the inhibition of the 3,4,5-trichlorophenol dechlorination. The reduction of Fe (III) and SO 4 2- increased following application of the crop straws. The RDA analysis indicated that the Fe (III) reducing bacteria might be involved in the ortho-dechlorination, while SO 4 2- reducing bacteria were involved in para- and meta-dechlorination of PCP. The complete detoxification of PCP depended upon both the crop straw type and soil properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Soil aggregate and organic carbon distribution at dry land soil and paddy soil: the role of different straws returning.

    PubMed

    Huang, Rong; Lan, Muling; Liu, Jiang; Gao, Ming

    2017-12-01

    Agriculture wastes returning to soil is one of common ways to reuse crop straws in China. The returned straws are expected to improve the fertility and structural stability of soil during the degradation of straw it selves. The in situ effect of different straw (wheat, rice, maize, rape, and broad bean) applications for soil aggregate stability and soil organic carbon (SOC) distribution were studied at both dry land soil and paddy soil in this study. Wet sieving procedures were used to separate soil aggregate sizes. Aggregate stability indicators including mean weight diameter, geometric mean diameter, mean weight of specific surface area, and the fractal dimension were used to evaluate soil aggregate stability after the incubation of straws returning. Meanwhile, the variation and distribution of SOC in different-sized aggregates were further studied. Results showed that the application of straws, especially rape straw at dry land soil and rice straw at paddy soil, increased the fractions of macro-aggregate (> 0.25 mm) and micro-aggregate (0.25-0.053 mm). Suggesting the nutrients released from straw degradation promotes the growing of soil aggregates directly and indirectly. The application of different straws increased the SOC content at both soils and the SOC mainly distributed at < 0.53 mm aggregates. However, the contribution of SOC in macro- and micro-aggregates increased. Straw-applied paddy soil have a higher total SOC content but lower SOC contents at > 0.25 and 0.25-0.053 mm aggregates with dry land soil. Rape straw in dry land and rice straw in paddy field could stabilize soil aggregates and increasing SOC contents best.

  16. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    PubMed

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  17. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    PubMed Central

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-01-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge. PMID:26586114

  18. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis.

    PubMed

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-20

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  19. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Hu, Chunsheng; Oenema, Oene

    2015-11-01

    Global crop yields are limited by water and nutrient availability. Soil mulching (with plastic or straw) reduces evaporation, modifies soil temperature and thereby affects crop yields. Reported effects of mulching are sometimes contradictory, likely due to differences in climatic conditions, soil characteristics, crop species, and also water and nitrogen (N) input levels. Here we report on a meta-analysis of the effects of mulching on wheat and maize, using 1310 yield observations from 74 studies conducted in 19 countries. Our results indicate that mulching significantly increased yields, WUE (yield per unit water) and NUE (yield per unit N) by up to 60%, compared with no-mulching. Effects were larger for maize than wheat, and larger for plastic mulching than straw mulching. Interestingly, plastic mulching performed better at relatively low temperature while straw mulching showed the opposite trend. Effects of mulching also tended to decrease with increasing water input. Mulching effects were not related to soil organic matter content. In conclusion, soil mulching can significantly increase maize and wheat yields, WUE and NUE, and thereby may contribute to closing the yield gap between attainable and actual yields, especially in dryland and low nutrient input agriculture. The management of soil mulching requires site-specific knowledge.

  20. Physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions.

    PubMed

    Nitika; Punia, Darshan; Khetarpaul, N

    2008-05-01

    The aim of the investigation was to analyse physico-chemical characteristics, nutrient composition and consumer acceptability of wheat varieties grown under organic and inorganic farming conditions. The seeds of five varieties of wheat (C-306, WH-283, WH-711, WH-896 and WH-912) grown under organic and inorganic farming conditions were ground in a Junior Mill to pass through 60-mesh sieves and were stored in air-tight containers until use. Standard methods were used to estimate the physico-chemical characteristics and nutrient composition. Consumer acceptability was studied by carrying out the organoleptic evaluation of wheat chapatis, a common item in diets of the Indian population. The results of study revealed that inorganically grown wheat varieties had significantly higher 1,000-grain weight and more grain hardness as compared with organically grown wheat varieties, and a non-significant difference was observed in their gluten content, water absorption capacity and hydration capacity. On average, wheat varieties grown under inorganic conditions contained significantly higher protein and crude fibre content as compared with varieties grown under organic conditions. WH-711 variety had maximum protein content. Protein fractions (i.e. albumin, globulin, prolamin and glutelin) were significantly higher in varieties grown under inorganic conditions than those of varieties grown under organic conditions. The variety WH-711 had the highest total soluble sugars and variety WH-912 had the highest starch content. Phytic acid and polyphenol contents were significantly higher in inorganically grown wheat varieties as compared with organically grown wheat varieties. The wheat varieties grown under organic conditions had significantly higher protein and starch digestibility than the wheat grown under inorganic conditions. The data revealed that there were significant differences in total calcium and phosphorus contents of wheat varieties grown under organic and inorganic

  1. Environmental performances of coproducts. Application of Claiming-Based Allocation models to straw and vetiver biorefineries in an Indian context.

    PubMed

    Gnansounou, Edgard; Raman, Jegannathan Kenthorai

    2018-04-24

    Among the renewables, non-food and wastelands based biofuels are essential for the transport sector to achieve country's climate mitigation targets. With the growing interest in biorefineries, setting policy requirements for other coproducts along with biofuels is necessary to improve the products portfolio of biorefinery, increase the bioproducts perception by the consumers and push the technology forward. Towards this context, Claiming-Based allocation models were used in comparative life cycle assessment of multiple products from wheat straw biorefinery and vetiver biorefinery. Vetiver biorefinery shows promising Greenhouse gas emission savings (181-213%) compared to the common crop based lignocellulose (wheat straw) biorefinery. Assistance of Claiming-Based Allocation models favors to find out the affordable allocation limit (0-80%) among the coproducts in order to achieve the individual prospective policy targets. Such models show promising application in multiproduct life cycle assessment studies where appropriate allocation is challenging to achieve the individual products emission subject to policy targets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    NASA Astrophysics Data System (ADS)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  3. Using isotopic tracers to assess the impact of tillage and straw management on the microbial metabolic network in soil

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Forristal, D.; Jones, M. B.; Schwartz, E.; Hungate, B. A.; Dijkstra, P.

    2013-12-01

    By decomposing soil organic matter, microbes gain energy and building blocks for biosynthesis and release CO2 to the atmosphere. Therefore, insight into the effect of management practices on microbial metabolic pathways and C use efficiency (CUE; microbial C produced per substrate C utilized) may help to predict long term changes in soil C stocks. We studied the effects of reduced (RT) and conventional tillage (CT) on the microbial central C metabolic network, using soil samples from a 12-year-old field experiment in an Irish winter wheat cropping system. Each year after harvest, straw was removed from half of the RT and CT plots or incorporated into the soil in the other half, resulting in four treatment combinations. We added 1-13C and 2,3-13C pyruvate and 1-13C and U-13C glucose as metabolic tracer isotopomers to composite soil samples taken at two depths (0-15 cm and 15-30 cm) from each treatment and used the rate of position-specific respired 13CO2 to parameterize a metabolic model. Model outcomes were then used to calculate CUE of the microbial community. We found that the composite samples differed in CUE, but the changes were small, with values ranging between 0.757-0.783 across treatments and soil depth. Increases in CUE were associated with a decrease in tricarboxylic acid cycle and reductive pentose phosphate pathway activity and increased consumption of metabolic intermediates for biosynthesis. Our results indicate that RT and straw incorporation promote soil C storage without substantially changing CUE or any of the microbial metabolic pathways. This suggests that at our site, RT and straw incorporation promote soil C storage mostly through direct effects such as increased soil C input and physical protection from decomposition, rather than by feedback responses of the microbial community.

  4. Effects of different swine manure to wheat straw ratios on antibiotic resistance genes and the microbial community structure during anaerobic digestion.

    PubMed

    Song, Wen; Wang, Xiaojuan; Gu, Jie; Zhang, Sheqi; Yin, Yanan; Li, Yang; Qian, Xun; Sun, Wei

    2017-05-01

    This study explored the effects of different mass ratios of swine manure relative to wheat straw (3:7, 5:5, and 7:3, i.e., control reactors C1, C2, and C3, respectively) on variations in antibiotic resistance genes (ARGs) and the microbial community during anaerobic digestion (AD). The cumulative biogas production volumes were 1711, 3857, and 3226mL in C1, C2, and C3, respectively. After AD, the total relative abundance of ARGs decreased by 4.23 logs in C3, whereas the reductions were only 1.03 and 1.37 logs in C1 and C2, respectively. Network analysis showed that the genera Solibacillus, Enterococcus, Facklamia, Corynebacterium_1, and Acinetobacter were potential hosts of ermB, sul1, and dfrA7. Redundancy analysis showed that the bacterial communities and environmental factors played important roles in the variation in ARGs. Thus, reductions in ARGs should be considered before reusing animal manure treated by AD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Biomethane production and physicochemical characterization of anaerobically digested teff (Eragrostis tef) straw pretreated by sodium hydroxide.

    PubMed

    Chufo, Akiber; Yuan, Hairong; Zou, Dexun; Pang, Yunzhi; Li, Xiujin

    2015-04-01

    The biogas production potential and biomethane content of teff straw through pretreatment by NaOH was investigated. Different NaOH concentrations (1%, 2%, 4% and 6%) were used for each four solid loadings (50, 65, 80 and 95 g/L). The effects of NaOH as pretreatment factor on the biodegradability of teff straw, changes in main compositions and enhancement of anaerobic digestion were analyzed. The result showed that, using 4% NaOH for pretreatment in 80 g/L solid loading produced 40.0% higher total biogas production and 48.1% higher biomethane content than the untreated sample of teff straw. Investigation of changes in chemical compositions and physical microstructure indicated that there was 4.3-22.1% total lignocellulosic compositions removal after three days pretreatment with NaOH. The results further revealed that NaOH pretreatment changed the structural compositions and lignin network, and improved biogas production from teff straw. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Impact of a smelter closedown on metal contents of wheat cultivated in the neighbourhood.

    PubMed

    Douay, Francis; Roussel, Hélène; Pruvot, Christelle; Waterlot, Christophe

    2008-03-01

    The contamination of soils by heavy metals engenders important environmental and sanitary problems in Northern France where a smelter has been located for more than one hundred of years. It has been one of the most important Pb production sites in Europe until its closedown in March 2003. Ore smelting process generated considerable atmospheric emissions of dust. Despite an active environmental strategy, these emissions were still significant in 2002 with up to 17 tonnes of Pb, 32 tonnes of Zn and 1 tonne of Cd. Over the years, the generated deposits have led to an important contamination of the surrounding soils. Previous studies have shown pollutant transfers to plants, which can induce a risk for human and animal health. The objective of this study was to evaluate the consequences of the smelter closedown on the Cd and Pb contents of wheat (grain and straw) cultivated in the area. Paired topsoil and vegetable samples were taken at harvest time at various distances to the smelter. The sample sites were chosen in order to represent a large range of soil metal contamination. Sampling was realised on several wheat harvests between 1997 and 2003. 25 samples were collected before the smelter closedown and 15 after. All ears of about 1 m long of two rows were manually picked and threshed in the lab. Similarly, straw was harvested at the same time. Total metal contents in soil and wheat samples were quantified. A negative correlation between metal concentrations in soil and the distance to the smelter was shown. The wheat grain and straw showed significant Cd and Pb contents. The straw had higher metal contents than the grain. During the smelter activity, the grain contents were up to 0.8 mg kg(-1) DM of Cd and 8 mg kg(-1) DM of Pb. For the straw, maximum contents were 5 mg kg(-1) DM of Cd and 114 mg kg(-1) DM of Pb. After the smelter closedown, we observed a very large decrease of Pb in the grain (82%) and in the straw (91%). A smaller decrease was observed for Cd in

  7. Opportunities for using bio-based fibers for value-added composites

    Treesearch

    Zhiyong Cai; Jerrold E. Winandy

    2006-01-01

    Efficient and economical utilization of various bio-based materials is an effective way to improve forest management, promote long-term sustainability, and restore native ecosystems. However, the dilemma is how to deal with lesser used, undervalued or no-value bio-resources such as small diameter trees, agricultural residues (wheat straw, rice straw, and corn stalk),...

  8. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    PubMed

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  9. Monitoring the impact of straw burning on particulate pollution using satellite and in-situ observations in the North China Plain

    NASA Astrophysics Data System (ADS)

    Zeng, C.

    2015-12-01

    The North China Plain is one of the main grain producing areas of China, but is also a severe straw burning zone. Winter wheat and summer corn harvests in this area usually occur from the beginning of Jun and Oct, respectively. After harvest, farmers usually burn out the remaining straw for convenience. However, straw burning can release a large quantity of air pollutants and can consequently result in a significant deterioration in regional air quality. To monitor the impact of straw burning on particulate pollution, daily MODIS thermal anomaly products (MOD14 and MYD14) were used to identify dates and regions of straw burning. Then the corresponding MODIS AOD products (MOD04 and MYD04) and particulate matter (PM) concentration observations from ground stations were integrated using a geostatistical method. By combining the accurate station-based PM observations and satellite data of well spatial coverage, PM concentration distribution maps were generated. Meanwhile, NCEP reanalysis data were used to obtain the corresponding surface wind pattern maps. Preliminary results show that satellite and station-based observations can indicate the impact of straw burning on PM pollution during harvest time. Air qualities during these times are obviously affected by the straw burning and surface wind field. Moreover, the air quality of the southeast study region is susceptible to the straw burning in adjacent areas due to the characteristic of the terrain.

  10. Pine straw harvesting, fire, and fertilization affect understory vegetation within a Louisiana longleaf pine stand

    Treesearch

    James D. Haywood

    2012-01-01

    Pine straw harvesting can provide an economic benefit to landowners, but the practice may also change the composition of plant communities. This research was initiated in a 34-year-old stand of longleaf pine (Pinus palustris Mill.) established in 1956 to study how pine straw management practices (fertilization, prescribed fire, and straw harvesting) affected plant...

  11. Residual effects of monoammonium phosphate, gypsum and elemental sulfur on cadmium phytoavailability and translocation from soil to wheat in an effluent irrigated field.

    PubMed

    Qayyum, Muhammad Farooq; Rehman, Muhammad Zia Ur; Ali, Shafaqat; Rizwan, Muhammad; Naeem, Asif; Maqsood, Muhammad Aamer; Khalid, Hinnan; Rinklebe, Jörg; Ok, Yong Sik

    2017-05-01

    Cadmium (Cd) accumulation in agricultural soils is one of the major threats to food security. The application of inorganic amendments such as mono-ammonium phosphate (MAP), gypsum and elemental sulfur (S) could alleviate the negative effects of Cd in crops. However, their long-term residual effects on decreasing Cd uptake in latter crops remain unclear. A field that had previously been applied with treatments including control and 0.2, 0.4 and 0.8% by weight of each MAP, gypsum and S, and grown with wheat and rice and thereafter wheat in the rotation was selected for this study. Wheat (Triticum aestivum L.) was grown in the same field as the third crop without further application of amendments to evaluate the residual effects of the amendments on Cd uptake by wheat. Plants were harvested at maturity and grain, and straw yield along with Cd concentration in soil, straw, and grains was determined. The addition of MAP and gypsum significantly increased wheat growth and yield and decreased Cd accumulation in straw and grains compared to control while the reverse was found in S application. Both MAP and gypsum decreased AB-DTPA extractable Cd in soil while S increased the bioavailable Cd in soil. Both MAP and gypsum increased the Cd immobilization in the soil and S decreased Cd immobilization in a dose-additive manner. We conclude that MAP and gypsum had a significant residual effect on decreasing Cd uptake in wheat. The cost-benefit ratio revealed that gypsum is an effective amendment for decreasing Cd concentration in plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management.

    PubMed

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-08

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha -1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  13. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management

    PubMed Central

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-01-01

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38–60 kg N ha−1 from conventional N managements, but declined by 32–71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system. PMID:28176865

  14. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Ju, Xiaotang; Yang, Hao

    2017-02-01

    Nitrate leaching is one of the most important pathways of nitrogen (N) loss which leads to groundwater contamination or surface water eutrophication. Clarifying the rates, controlling factors and characteristics of nitrate leaching is the pre-requisite for proposing effective mitigation strategies. We investigated the effects of interactions among chemical N fertilizer, straw and manure applications on nitrogen leaching in an intensively managed calcareous Fluvo-aquic soil with winter wheat-summer maize cropping rotations on the North China Plain from October 2010 to September 2013 using ceramic suction cups and seepage water calculations based on a long-term field experiment. Annual nitrate leaching reached 38-60 kg N ha-1 from conventional N managements, but declined by 32-71% due to optimum N, compost manure or municipal waste treatments, respectively. Nitrate leaching concentrated in the summer maize season, and fewer leaching events with high amounts are the characteristics of nitrate leaching in this region. Overuse of chemical N fertilizers, high net mineralization and nitrification, together with predominance of rainfall in the summer season with light soil texture are the main controlling factors responsible for the high nitrate leaching loss in this soil-crop-climatic system.

  15. Isolation and Characterization of Lectins Formed by Cerrena unicolor (Higher Basidiomycetes) in Solid-State Fermentation of Sorghum and Wheat Straw.

    PubMed

    Davitashvili, Elene; Kapanadze, Ekaterine; Kachlishvili, Eva; Mikiashvili, Nona A; Elisashvili, Vladimir

    2015-01-01

    The capability of Cerrena unicolor to produce fruiting bodies and lectins was studied in solid-state fermentation of a sorghum and wheat straw mixture. The first primordia appeared on day 48 and reached 6-10 mm; however, no formation of fruiting bodies occurred and these rudiments were harvested on day 55. The protein content in the rudiment extracts was significantly higher, whereas the specific hemagglutinating activity (HA) was sixfold lower as compared with those in extracts from mycelial biomass. Moreover, the specific HA of the 80-day mycelium increased to 16,667 U/mg, exceeding by sixfold that of 55-day-old mycelium. Four protein fractions (160, 105, 67, and 8 kDa) were detected by gel-chromatography of mycelial biomass crude extract; the highest specific HA was revealed in fraction III (26336 U HA/mg). Among sugars tested, galactose was the most potent inhibitor of HA of all protein fractions, with minimal inhibition concentrations of 0.095-0.780 mM. The galactose-specific lectins isolated from the fractions II and III by affinity chromatography ranged from 15 to 116 kDa and differed with kinetic parameters.

  16. Mycological composition in the rhizosphere of winter wheat in different crop production systems

    NASA Astrophysics Data System (ADS)

    Frac, Magdalena; Lipiec, Jerzy; Usowicz, Boguslaw

    2010-05-01

    Fungi play an important role in the soil ecosystem as decomposers of plant residues, releasing nutrients that sustain and stimulate processes of plant growth. Some fungi possess antagonistic properties towards plant pathogens. The structure of plant and soil communities is influenced by the interactions among its component species and also by anthropogenic pressure. In the study of soil fungi, particular attention is given to the rhizosphere. Knowledge of the structure and diversity of the fungal community in the rhizosphere lead to the better understanding of pathogen-antagonist interactions. The aim of this study was to evaluate the mycological composition of the winter wheat rhizosphere in two different crop production systems. The study was based on a field experiment established in 1994 year at the Experimental Station in South-East Poland. The experiment was conducted on grey-brown podzolic soil. In this experiment winter wheat were grown in two crop production systems: ecological and conventional - monoculture. The research of fungi composition was conducted in 15th year of experiment. Rhizosphere was collected two times during growing season, in different development stage: shooting phase and full ripeness phase. Martin medium and the dilutions 10-3 and 10-4 were used to calculate the total number cfu (colony forming units) of fungi occurring in the rhizosphere of winter wheat. The fungi were identified using Czapeka-Doxa medium for Penicillium, potato dextrose agar for all fungi and agar Nirenberga (SNA) for Fusarium. High number of antagonistic fungi (Penicillium sp., Trichoderma sp.) was recorded in the rhizosphere of wheat in ecological system. The presence of these fungi can testify to considerable biological activity, which contributes to the improvement of the phytosanitary condition of the soil. However, the decrease of the antagonistic microorganism number in the crop wheat in monoculture can be responsible for appearance higher number of the

  17. The variability of biomass burning and its influence on regional aerosol properties during the wheat harvest season in North China

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Xin, Jinyuan; Li, Xingru; Wang, Yuesi

    2015-04-01

    The spatial-temporal variation of biomass burning in June during the wheat harvest season in the North China (32-41°N, 111-120°E) and its influence on the regional aerosol optical depth (AOD) and the chemical compositions of size-segregated aerosols in the urban environment were investigated to evaluate the effectiveness of the burn ban policy and the influence on regional pollution. Fire events that occurred in early and middle June accounted for approximately 89% of the events during the month, and fire points located in mid-eastern China (32.5-35.5°N, 114-120°E) comprised 71%. The occurrences exhibit oscillatory changes with a minimum in 2008 (during the Beijing Olympics) and a peak and explosive growth in 2012. Under high relative humidity and south winds, fire emissions from straw burning combined with high urban/industrial emissions to produce intensive regional haze pollution in the North Plain. The formation of secondary inorganic particles was intensified due to the interactions of smoke plumes and urban/industrial pollutants in an urban environment. Higher concentrations and percentages (79%) of sulfate, nitrate, ammonium, and organic carbon in the fine particles under high relative humidity conditions contributed to a deteriorated urban visibility. Therefore, stronger management and a comprehensive ban on wheat straw burning in June are urgently needed, especially during years when the south wind is dominant.

  18. Effects of Branched-chain Amino Acids on In vitro Ruminal Fermentation of Wheat Straw

    PubMed Central

    Zhang, Hui Ling; Chen, Yong; Xu, Xiao Li; Yang, Yu Xia

    2013-01-01

    This study investigates the effects of three branched-chain amino acids (BCAA; valine, leucine, and isoleucine) on the in vitro ruminal fermentation of wheat straw using batch cultures of mixed ruminal microorganisms. BCAA were added to the buffered ruminal fluid at a concentration of 0, 2, 4, 7, or 10 mmol/L. After 72 h of anaerobic incubation, pH, volatile fatty acids (VFA), and ammonia nitrogen (NH3-N) in the ruminal fluid were determined. Dry matter (DM) and neutral detergent fiber (NDF) degradability were calculated after determining the DM and NDF in the original material and in the residue after incubation. The addition of valine, leucine, or isoleucine increased the total VFA yields (p≤0.001). However, the total VFA yields did not increase with the increase of BCAA supplement level. Total branched-chain VFA yields linearly increased as the supplemental amount of BCAA increased (p<0.001). The molar proportions of acetate and propionate decreased, whereas that of butyrate increased with the addition of valine and isoleucine (p<0.05). Moreover, the proportions of propionate and butyrate decreased (p<0.01) with the addition of leucine. Meanwhile, the molar proportions of isobutyrate were increased and linearly decreased (p<0.001) by valine and leucine, respectively. The addition of leucine or isoleucine resulted in a linear (p<0.001) increase in the molar proportions of isovalerate. The degradability of NDF achieved the maximum when valine or isoleucine was added at 2 mmol/L. The results suggest that low concentrations of BCAA (2 mmol/L) allow more efficient regulation of ruminal fermentation in vitro, as indicated by higher VFA yield and NDF degradability. Therefore, the optimum initial dose of BCAA for in vitro ruminal fermentation is 2 mmol/L. PMID:25049818

  19. Microbial Activity and Silica Degradation in Rice Straw

    NASA Astrophysics Data System (ADS)

    Kim, Esther Jin-kyung

    increased. Silicase activity did not change across nitrogen treatments despite a shift in microbial community with varied nitrogen concentration. Samples treated with different nitrogen concentrations had similar levels of diversity, however the microbial community composition differed with added nitrogen. The results demonstrated that adding nitrogen to rice straw during thermophilic decomposition nurtured a more active microbial community and promoted enzyme secretion thus improving the ability to discover enzymes for rice straw deconstruction. These results can inform future experiments for cultivating a unique, thriving compost-derived microbial community that can successfully decompose rice straw. Understanding the silicase activity of microorganisms may alleviate the challenges associated with silica in various feedstocks.

  20. Removal of elemental Mercury from flue gas using wheat straw chars modified by K2FeO4 reagent.

    PubMed

    Zhou, Jianfei; Liu, Yangxian; Pan, Jianfeng

    2017-12-01

    In this article, wheat straw (WS) char, a common agricultural waste and renewable biomass, was pyrolyzed and then modified by K 2 FeO 4 reagent to develop an efficient sorbent for removal of Hg 0 from flue gas. Brunauer-Emmett-Teller, scanning electron microscopy with energy spectrum and X-ray diffraction (XRD) were employed to characterize the sorbents. The effects of K 2 FeO 4 loading, reaction temperature, Hg 0 inlet concentration and concentrations of gas mixtures O 2 , NO and SO 2 in flue gas on Hg 0 removal were investigated in a fixed-bed reactor. The results show that K 2 FeO 4 -impregnation can improve pore structure of WS char and produce new active sites, which significantly enhance Hg 0 removal. Increasing Hg 0 inlet concentration significantly decreases Hg 0 removal efficiency. O 2 in flue gas promotes Hg 0 oxidation by replenishing the oxygen groups on the surface of modified chars. The presence of NO obviously promotes Hg 0 removal since it can oxidize Hg 0 to Hg(NO 3 ) 2 . SO 2 in flue gas significantly decreases Hg 0 removal efficiency due to the competition adsorption between SO 2 and Hg 0 . The increase in reaction temperature has a dual impact on Hg 0 removal.

  1. Biochar to reduce ammonia emissions in gaseous and liquid phase during composting of poultry manure with wheat straw.

    PubMed

    Janczak, Damian; Malińska, Krystyna; Czekała, Wojciech; Cáceres, Rafaela; Lewicki, Andrzej; Dach, Jacek

    2017-08-01

    Composting of poultry manure which is high in N and dense in structure can cause several problems including significant N losses in the form of NH 3 through volatilization. Biochar due to its recalcitrance and sorption properties can be used in composting as a bulking agent and/or amendment. The addition of a bulking agent to high moisture raw materials can assure optimal moisture content and enough air-filled porosity but not necessarily the C/N ratio. Therefore, amendment of low C/N composting mixtures with biochar at low rates can have a positive effect on composting dynamics. This work aimed at evaluating the effect of selected doses of wood derived biochar amendment (0%, 5% and 10%, wet weight) to poultry manure (P) mixed with wheat straw (S) (in the ratio of 1:0.4 on wet weight) on the total ammonia emissions (including gaseous emissions of ammonia and liquid emissions of ammonium in the collected condensate and leachate) during composting. The process was performed in 165L laboratory scale composting reactors for 42days. The addition of 5% and 10% of biochar reduced gaseous ammonia emission by 30% and 44%, respectively. According to the obtained results, the measure of emission through the condensate would be necessary to assess the impact of the total ammonia emission during the composting process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Leaf water potential of spring wheat and field pea under different tillage patterns and its relationships with environmental factors].

    PubMed

    Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun

    2008-07-01

    Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw

  3. Study of Natural Fiber Breakage during Composite Processing

    NASA Astrophysics Data System (ADS)

    Quijano-Solis, Carlos Jafet

    Biofiber-thermoplastic composites have gained considerable importance in the last century. To provide mechanical reinforcement to the polymer, fibers must be larger than a critical aspect ratio (length-to-width ratio). However, biofibers undergo breakage in length or width during processing, affecting their final aspect ratio in the composites. In this study, influence on biofiber breakage by factors related to processing conditions, fiber morphology and the flow type was investigated through: a) experiments using an internal mixer, a twin-screw extruder (TSE) or a capillary rheometer; and b) a Monte Carlo computer simulation. Composites of thermomechanical fibers of aspen or wheat straw mixed with polypropylene were studied. Internal mixer experiments analyzed wheat straw and two batches of aspen fibers, named AL and AS. AL fibers had longer average length. Processing variables included the temperature, rotors speed and fiber concentration. TSE experiments studied AL and AS fiber composites under various screws speeds, temperatures and feeding rates of the polymer and fibers. Capillary rheometers experiments determined AL fiber breakage in shear and elongational flows for composites processed at different concentrations, temperatures, and strain rates. Finally, the internal mixer experimental results where compared to Monte Carlo simulation predictions. The simulation focused on fiber length breakage due to fiber-polymer interactions. Internal mixer results showed that final fiber average length depended almost solely on processing conditions while final fiber average width depended on both processing conditions and initial fiber morphology. In the TSE, processing conditions as well as initial fiber length influenced final average length. TSE results showed that the fiber concentration regime seems to influence the effect of processing variables on fiber breakage. Capillary rheometer experiments demonstrated that biofiber breakage happens in both elongational and

  4. Atmospheric contribution to boron enrichment in aboveground wheat tissues.

    PubMed

    Wang, Cheng; Ji, Junfeng; Chen, Mindong; Zhong, Cong; Yang, Zhongfang; Browne, Patrick

    2017-05-01

    Boron is an essential trace element for all organisms and has both beneficial and harmful biological functions. A particular amount of boron is discharged into the environment every year because of industrial activities; however, the effects of environmental boron emissions on boron accumulation in cereals has not yet been estimated. The present study characterized the accumulation of boron in wheat under different ecological conditions in the Yangtze River Delta (YRD) area. This study aimed to estimate the effects of atmospheric boron that is associated with industrial activities on boron accumulation in wheat. The results showed that the concentrations of boron in aboveground wheat tissues from the highly industrialized region were significantly higher than those from the agriculture-dominated region, even though there was no significant difference in boron content in soils. Using the model based on the translocation coefficients of boron in the soil-wheat system, we estimated that the contribution of atmosphere to boron accumulation in wheat straw in the highly industrialized region exceeded that in the agriculture-dominated region by 36%. In addition, from the environmental implication of the model, it was estimated that the development of boron-utilizing industries had elevated the concentration of boron in aboveground wheat tissues by 28-53%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Microscopic Structural Changes in Paddy Straw Pretreated with Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138.

    PubMed

    Phutela, Urmila Gupta; Sahni, Nidhi

    2013-06-01

    The present study reports the pretreatment of paddy straw by Trichoderma reesei MTCC 164 and Coriolus versicolor MTCC 138 to observe the changes in chemical composition and its correlation with change of surface structure, morphology and porosity of paddy straw. Compared with untreated straw, cellulose decreased by 15.9 and 19.3 % in T. reesei MTCC 164 and C. versicolor MTCC 138 pretreated paddy straw respectively. Lignin content increased by 41.4 % in T. reesei pretreated paddy straw whereas decreased by 19.1 % in C. versicolor pretreated straw. The microscopic structural changes were examined by scanning electron microscopy under reasonable conditions. Results showed that digestibility of paddy straw are increased by treating paddy straw with both the cultures. Both surface area and pore size of treated straw were increased partially due to solubilization of silica components.

  6. A straw-soil co-composting and evaluation for plant substrate in BLSS

    NASA Astrophysics Data System (ADS)

    Cheng, Quanyong; Guo, Shuangsheng; Ai, Weidang; Tang, Yongkang; Qin, Lifeng

    2013-02-01

    Material closure is important for the establishment of Bioregenerative Life Support System, and many studies have focused on transforming candidate plant residues into plant culture medium. For the limitations of using wheat straw compost as substrate for plant cultivation, a straw-soil co-composting technique was studied. The changes of pH, C/N value, germination index, cellulose, lignin and so on were monitored during the co-composting process. The maturity was evaluated by the C/N value and the germination index. The result showed that after 45 days' fermentation, the straw-soil final co-compost with inoculation (T1) became mature, while the co-compost without inoculation (T0) was not mature. In the plant culture test, the T1 substrate could satisfy the needs for lettuce's growth, and the edible biomass yield of lettuce averaged 74.42 g pot-1 at harvest. But the lettuces in T0 substrate showed stress symptoms and have not completed the growth cycle. Moreover, the results of nitrogen (N) transformation experiment showed that about 10.0% and 3.1% N were lost during the T1 co-composting and plant cultivation, respectively, 23.5% N was absorbed by lettuce, and 63.4% N remained in the T1 substrate after cultivation.

  7. Nutritional composition of Pakistani wheat varieties*

    PubMed Central

    Ikhtiar, Khan; Alam, Zeb

    2007-01-01

    Pakistani wheat varieties are grown over a wide agro-climatic range and as such are anticipated to exhibit yield and quality differences. It is therefore necessary to investigate the nutritional status of wheat varieties in terms of biochemical and physiochemical characteristics available for food and nutritional purposes in Pakistan. The result shows that wheat grains of different varieties contain a net protein level of 9.15%~10.27%, 2.15%~2.55% total fats, 1.72%~1.85% dietary fibers, 77.65×10−6~84.25×10−6 of potassium and 7.70×10−6~35.90×10−6 of sodium ions concentration, 0.24×10−6~0.84×10−6 of phosphorus, 1.44%~2.10% ash, 31.108~43.602 g of thousand grain mass (TGM) and 8.38%~9.67% moisture contents. This study is significant in providing an opportunity to explore the available wheat varieties and to further improve their nutritional excellence and also essential for setting nutritional regulations for domestic and export purposes. PMID:17657856

  8. Effects of oxytetracycline on archaeal community, and tetracycline resistance genes in anaerobic co-digestion of pig manure and wheat straw.

    PubMed

    Wang, Xiaojuan; Pan, Hongjia; Gu, Jie; Qian, Xun; Gao, Hua; Qin, Qingjun

    2016-12-01

    In this study, the effects of different concentrations of oxytetracycline (OTC) on biogas production, archaeal community structure, and the levels of tetracycline resistance genes (TRGs) were investigated in the anaerobic co-digestion products of pig manure and wheat straw. PCR denaturing gradient gel electrophoresis analysis and real-time quantitative polymerase chain reaction (RT-qPCR) (PCR) were used to detect the archaeal community structure and the levels of four TRGs: tet(M), tet(Q), tet(W), and tet(C). The results showed that anaerobic co-digestion with OTC at concentrations of 60, 100, and 140 mg/kg (dry weight of pig manure) reduced the cumulative biogas production levels by 9.9%, 10.4%, and 14.1%, respectively, compared with that produced by the control, which lacked the antibiotic. The addition of OTC substantially modified the structure of the archaeal community. Two orders were identified by phylogenetic analysis, that is, Pseudomonadales and Methanomicrobiales, and the methanogen present during anaerobic co-digestion with OTC may have been resistant to OTC. The abundances of tet(Q) and tet(W) genes increased as the OTC concentration increased, whereas the abundances of tet(M) and tet(C) genes decreased as the OTC concentration increased.

  9. Sorption potential of alkaline treated straw and a soil for sulfonylurea herbicide removal from aqueous solutions: An environmental management strategy.

    PubMed

    Cara, Irina-Gabriela; Rusu, Bogdan-George; Raus, Lucian; Jitareanu, Gerard

    2017-11-01

    The adsorption potential of alkaline treated straw (wheat and corn) in mixture with soil, has been investigated for the removal of sulfonylurea molecules from an aqueous solutions. The surface characteristics were investigated by scanning electron microscopy and Fourier Transform Infrared - FTIR, while the adsorbent capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry. Surface analysis of alkaline treated straw samples by scanning electron microscopy - SEM showed the increasing of the surface roughness improving their functional surface activity. An increase (337.22 mg g -1 ) of adsorption capacity of sulfonylurea molecules was obtained for all studied straw. The Langmuir isotherm model was the best model for the mathematical description of the adsorption process indicating the forming of a surface sorption monolayer with a finite number of identical sites. The kinetics of sulfonylurea herbicide followed the pseudo-second order mechanism corresponding to strong chemical interactions. The results sustained that the alkaline treated straw have biosorption characteristics, being suitable adsorbent materials. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Systemic Growth of F. graminearum in Wheat Plants and Related Accumulation of Deoxynivalenol

    PubMed Central

    Moretti, Antonio; Panzarini, Giuseppe; Somma, Stefania; Campagna, Claudio; Ravaglia, Stefano; Logrieco, Antonio F.; Solfrizzo, Michele

    2014-01-01

    Fusarium head blight (FHB) is an important disease of wheat worldwide caused mainly by Fusarium graminearum (syn. Gibberella zeae). This fungus can be highly aggressive and can produce several mycotoxins such as deoxynivalenol (DON), a well known harmful metabolite for humans, animals, and plants. The fungus can survive overwinter on wheat residues and on the soil, and can usually attack the wheat plant at their point of flowering, being able to infect the heads and to contaminate the kernels at the maturity. Contaminated kernels can be sometimes used as seeds for the cultivation of the following year. Poor knowledge on the ability of the strains of F. graminearum occurring on wheat seeds to be transmitted to the plant and to contribute to the final DON contamination of kernels is available. Therefore, this study had the goals of evaluating: (a) the capability of F. graminearum causing FHB of wheat to be transmitted from the seeds or soil to the kernels at maturity and the progress of the fungus within the plant at different growth stages; (b) the levels of DON contamination in both plant tissues and kernels. The study has been carried out for two years in a climatic chamber. The F. gramineraum strain selected for the inoculation was followed within the plant by using Vegetative Compatibility technique, and quantified by Real-Time PCR. Chemical analyses of DON were carried out by using immunoaffinity cleanup and HPLC/UV/DAD. The study showed that F. graminearum originated from seeds or soil can grow systemically in the plant tissues, with the exception of kernels and heads. There seems to be a barrier that inhibits the colonization of the heads by the fungus. High levels of DON and F. graminearum were found in crowns, stems, and straw, whereas low levels of DON and no detectable levels of F. graminearum were found in both heads and kernels. Finally, in all parts of the plant (heads, crowns, and stems at milk and vitreous ripening stages, and straw at vitreous

  11. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    PubMed Central

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-01-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil. PMID:27385598

  12. Novel Alleviation Mechanisms of Aluminum Phytotoxicity via Released Biosilicon from Rice Straw-Derived Biochars

    NASA Astrophysics Data System (ADS)

    Qian, Linbo; Chen, Baoliang; Chen, Mengfang

    2016-07-01

    Replacing biosilicon and biocarbon in soil via biochar amendment is a novel approach for soil amelioration and pollution remediation. The unique roles of silicon (Si)-rich biochar in aluminum (Al) phytotoxicity alleviation have not been discovered. In this study, the alleviation of Al phytotoxicity to wheat plants (root tips cell death) by biochars fabricated from rice straw pyrolyzed at 400 and 700 °C (RS400 and RS700) and the feedstock (RS100) were studied using a slurry system containing typical acidic soils for a 15-day exposure experiment. The distributions of Al and Si in the slurry solution, soil and plant root tissue were monitored by staining methods, chemical extractions and SEM-EDS observations. We found that the biological sourced silicon in biochars served dual roles in Al phytotoxicity alleviation in acidic soil slurry. On one hand, the Si particles reduced the amount of soil exchangeable Al and prevented the migration of Al to the plant. More importantly, the Si released from biochars synchronously absorbed by the plants and coordinated with Al to form Al-Si compounds in the epidermis of wheat roots, which is a new mechanism for Al phytotoxicity alleviation in acidic soil slurry by biochar amendment. In addition, the steady release of Si from the rice straw-derived biochars was a sustainable Si source for aluminosilicate reconstruction in acidic soil.

  13. Biomechanics of Wheat/Barley Straw and Corn Stover

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such amore » manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.« less

  14. Synergistic effect of Aspergillus niger and Trichoderma reesei enzyme sets on the saccharification of wheat straw and sugarcane bagasse.

    PubMed

    van den Brink, Joost; Maitan-Alfenas, Gabriela Piccolo; Zou, Gen; Wang, Chengshu; Zhou, Zhihua; Guimarães, Valéria Monteze; de Vries, Ronald P

    2014-10-01

    Plant-degrading enzymes can be produced by fungi on abundantly available low-cost plant biomass. However, enzymes sets after growth on complex substrates need to be better understood, especially with emphasis on differences between fungal species and the influence of inhibitory compounds in plant substrates, such as monosaccharides. In this study, Aspergillus niger and Trichoderma reesei were evaluated for the production of enzyme sets after growth on two "second generation" substrates: wheat straw (WS) and sugarcane bagasse (SCB). A. niger and T. reesei produced different sets of (hemi-)cellulolytic enzymes after growth on WS and SCB. This was reflected in an overall strong synergistic effect in releasing sugars during saccharification using A. niger and T. reesei enzyme sets. T. reesei produced less hydrolytic enzymes after growth on non-washed SCB. The sensitivity to non-washed plant substrates was not reduced by using CreA/Cre1 mutants of T. reesei and A. niger with a defective carbon catabolite repression. The importance of removing monosaccharides for producing enzymes was further underlined by the decrease in hydrolytic activities with increased glucose concentrations in WS media. This study showed the importance of removing monosaccharides from the enzyme production media and combining T. reesei and A. niger enzyme sets to improve plant biomass saccharification. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Determination of the Airborne Sound Insulation of a Straw Bale Partition Wall

    NASA Astrophysics Data System (ADS)

    Teslík, Jiří; Fabian, Radek; Hrubá, Barbora

    2017-06-01

    This paper describes the results of a scientific project focused on determining of the Airborne Sound Insulation of a peripheral non-load bearing wall made of straw bales expressed by Weighted Sound Reduction Index. Weighted Sound Reduction Index was determined by measuring in the certified acoustic laboratory at the Faculty of Mechanical Engineering at Brno University of Technology. The measured structure of the straw wall was modified in combinations with various materials, so the results include a wide range of possible compositions of the wall. The key modification was application of plaster on both sides of the straw bale wall. This construction as is frequently done in actual straw houses. The additional measurements were performed on the straw wall with several variants of additional wall of slab materials. The airborne sound insulation value has been also measured in separate stages of the construction. Thus it is possible to compare and determinate the effect of the single layers on the airborne sound insulation.

  16. [Characterization of soil humus by FTIR spectroscopic analyses after being inoculated with different microorganisms plus wheat straw].

    PubMed

    Wang, Shuail; Dou, Sen; Liu, Yan-Li; Li, Hui-Min; Cui, Jun-Tao; Zhang, Wei; Wang, Cheng-Yu

    2012-09-01

    The effects of different microbial communities on the structural characteristics of humus from the black soil amended with wheat straw were studied by FTIR Spectroscopy. The results indicated that (1) The structure and amount of functional groups in the water soluble substances (WSS) was tremendously influenced by the tested microorganisms, of which the amino and aryl ether was degraded rapidly in the inoculation process, and in the meantime, the content of hydroxyl groups was significantly reduced. The bacteria was helpful to increasing the amount of aliphatic hydrocarbons, while the other inoculated treatments were contrary. At the end of culture, the phenols and polysaccharides were gradually consumed, but the content of carboxyl groups had an increasing trend. (2) In the aspect of reducing hydroxyl groups of fulvic acid (FA), the role of actinomycetes was the biggest. The fungi had the biggest effect in improving the net generation of FA content. In addition, the fungi was conducive to improve the contents of carboxyl groups and carbohydrates of FA fraction. Except the mixed strains, the other treatments were all beneficial to the degradation of polysaccharide in the FA fraction, whose rate was greater than the decomposition of lipids. (3) The bacteria, actinomycetes and fungi were all helpful to reducing the amount of aliphatic hydrocarbons of HA fraction except the mixed strains. The content of carboxyl was effectively increased by fungi, but the effect of bacteria was contrary. The tested microorganisms could consume and utilize the polysaccharides of HA fraction, which could transform the humic-like fractions from plant residues into the real humus of soil.

  17. Reinforcement Effect of Alkali-Hydrolyzed Wheat Gluten and Shear-Degraded Wheat Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  18. Effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the biochemical methane potential and kinetics of the anaerobic digestion of wheat straw and sugarcane bagasse.

    PubMed

    Bolado-Rodríguez, Silvia; Toquero, Cristina; Martín-Juárez, Judit; Travaini, Rodolfo; García-Encina, Pedro Antonio

    2016-02-01

    The effect of thermal, acid, alkaline and alkaline-peroxide pretreatments on the methane produced by the anaerobic digestion of wheat straw (WS) and sugarcane bagasse (SCB) was studied, using whole slurry and solid fraction. All the pretreatments released formic and acetic acids and phenolic compounds, while 5-hydroxymetilfurfural (HMF) and furfural were generated only by acid pretreatment. A remarkable inhibition was found in most of the whole slurry experiments, except in thermal pretreatment which improved methane production compared to the raw materials (29% for WS and 11% for SCB). The alkaline pretreatment increased biodegradability (around 30%) and methane production rate of the solid fraction of both pretreated substrates. Methane production results were fitted using first order or modified Gompertz equations, or a novel model combining both equations. The model parameters provided information about substrate availability, controlling step and inhibitory effect of compounds generated by each pretreatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation.

    PubMed

    Rehman, Muhammad Zia-ur; Rizwan, Muhammad; Ghafoor, Abdul; Naeem, Asif; Ali, Shafaqat; Sabir, Muhammad; Qayyum, Muhammad Farooq

    2015-11-01

    Cadmium (Cd) toxicity is a widespread problem in crops grown on contaminated soils, and little information is available on the role of inorganic amendments in Cd immobilization, uptake, and tolerance in crops especially under filed conditions. The effect of three amendments, monoammonium phosphate (MAP), gypsum, and elemental sulfur (S), on Cd immobilization in soil and uptake in wheat and rice plants, under rotation, were investigated under field conditions receiving raw city effluent since >20 years and contaminated with Cd. Three levels of each treatment, 0.2, 0.4, and 0.8% by weight, were applied at the start of the experiment, and wheat was sown in the field. After wheat harvesting, rice was sown in the same field without application of amendments. Both crops were harvested at physiological maturity, and data regarding grain yield, straw biomass, Cd concentrations, and uptake in grain and straw, and bioavailable Cd in soil and soil pH were recorded. Both MAP and gypsum application increased grain yield and biomass of wheat and rice, while S application did not increase the yield of both crops. MAP and gypsum amendments decreased gain and straw Cd concentrations and uptake in both crops, while S application increased Cd concentrations in these parts which were correlated with soil bioavailable Cd. We conclude that MAP and gypsum amendments could be used to decrease Cd uptake by plants receiving raw city effluents, and gypsum might be a better amendment for in situ immobilization of Cd due to its low cost and frequent availability.

  20. Ethanol production from agricultural wastes using Saccharomyces cerevisiae.

    PubMed

    Irfan, Muhammad; Nadeem, Muhammad; Syed, Quratualain

    2014-01-01

    The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae.

  1. Ethanol production from agricultural wastes using Sacchromyces cervisae

    PubMed Central

    Irfan, Muhammad; Nadeem, Muhammad; Syed, Quratualain

    2014-01-01

    The main objective of this study was production of ethanol from three lignocellulosic biomasses like sugarcane bagasse, rice straw and wheat straw by Sacchromyces cervisae. All the three substrates were ground to powder form (2 mm) and pretreated with 3%H2O2 + 2% NaOH followed by steaming at 130 °C for 60 min. These substrates were hydrolyzed by commercial cellulase enzyme. The whole fermentation process was carried out in 500 mL Erlenmeyer flask under anaerobic conditions in submerged fermentation at 30 °C for three days of incubation period. FTIR analysis of the substrates indicated significant changes in the alteration of the structure occurred after pretreatment which leads to efficient saccharification. After pretreatment the substrates were hydrolyzed by commercial cellulase enzyme and maximum hydrolysis was observed in sugarcane bagasse (64%) followed by rice straw (40%) and wheat straw (34%). Among all these tested substrates, sugarcane bagasse (77 g/L) produced more ethanol as compared to rice straw (62 g/L) and wheat straw (44 g/L) using medium composition of (%) 0.25 (NH4)2SO4, 0.1 KH2PO4, 0.05 MgSO4, 0.25 Yeast extract by S. cervisae. PMID:25242928

  2. Fibre fortification of wheat bread: impact on mineral composition and bioaccessibility.

    PubMed

    Martins, Zita E; Pinto, Edgar; Almeida, Agostinho A; Pinho, Olívia; Ferreira, Isabel M P L V O

    2017-05-24

    In this work, wheat bread was fortified with fibre enriched extracts recovered from agroindustry by-products, namely, elderberry skin, pulp and seeds (EE); orange peel (OE); pomegranate peel and interior membranes (PE); and spent yeast (YE). The impact of this fortification on the total and bioaccessible mineral composition of wheat breads, estimated mineral daily intake, and the relationship between bioaccessibility and dietary fibre was evaluated. Fortification with OE, EE, and PE improved the content of essential minerals in bread when compared to control bread. The exception was bread fortified with YE, which presented a mineral content similar to control bread, but its mineral bioaccessibility was significantly higher than in all the other bread formulations. The opposite was observed for PE bread, which presented a significant reduction of bioaccessible minerals. We concluded that the origin of the fibre rich extract must be carefully selected, to avoid potential negative impact on mineral bioaccessibility.

  3. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    NASA Astrophysics Data System (ADS)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  4. The Impact of Post-Pretreatment Conditioning on Enzyme Accessibility and Water Interactions in Alkali Pretreated Rice Straw

    NASA Astrophysics Data System (ADS)

    Karuna, Nardrapee

    Rice straw, a high-abundance lignocellulosic residue from rice production has tremendous potential as a feedstock for biofuel production in California. In this study, the impact of post-alkali pretreatment conditioning schemes on enzyme saccharification efficiency was examined, particularly focusing on understanding resulting biomass compositional impacts on water interactions with the biomass and enzyme accessibility to the cellulose fraction. Rice straw was pretreated with sodium hydroxide and subsequently washed by two different conditions: 1) by extensive washing with distilled water to reduce the pH to the optimum for cellulases which is pH 5--6, and 2) immediate pH adjustment to pH 5--6 with hydrochloric acid before extensive washing with distilled water. The two post-pretreatment conditions gave significant differences in ash, acid-insoluble lignin, glucan and xylan compositions. Alkali pretreatment improved cellulase digestibility of rice straw, and water washing improved enzymatic digestibility more than neutralization. Hydrolysis reactions with a purified Trichoderma reesei Cel7A, a reducing-end specific cellulase, demonstrated that the differences in saccharification are likely due to differences in the accessibility of the cellulose fraction to the cellulolytic enzymes. Further analyses were conducted to study the mobility of the water associated with the rice straw samples by measuring T2 relaxation times of the water protons by 1H-Nuclear Magnetic Resonance (NMR) relaxometry. Results showed significant changes in water association with the rice straw due to the pretreatment and due to the two different post-pretreatment conditions. Pretreatment increased the amount of water at the surface of the rice straw samples as indicated by increased amplitude of the shortest T2 time peaks in the relaxation spectra. Moreover, the amount of water in the first T2 pool in the water washed sample was significantly greater than in the neutralized sample. These

  5. Tested R-value for straw bale walls and performance modeling for straw bale homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Commins, T.R.; Stone, N.I.

    1998-07-01

    Since the late 1800's, houses have been built of straw. Contrary to nursery rhymes, these houses have proved sturdy and comfortable and not at all easy to blow down. In the last several years, as people have experimented with new and old building materials and looked for ways to halt rice field stubble burning, there has been a resurgence of homes built with straw. Unfortunately, there has been very little testing to determine the thermal performance of straw bale walls or to discover how these walls affect a home's heating and cooling energy consumption. Reported R-values for straw bale wallsmore » range from R-17 to R-54, depending on the test procedure, the type of straw used and the type of straw bale wall system. This paper reports on a test set-up by the California Energy Commission (Commission) and conducted in a nationally accredited lab, Architectural Testing Inc. (ATI) in Fresno, California. The paper describes the tested straw bale wall assemblies, the testing process, and problems encountered in the construction and testing of the walls. The paper also gives a reasonable R-value to use in calculating thermal performance of straw bale houses and presents findings that show that straw bale construction can decrease the heating and cooling energy usage of a typical house by up to a third over conventional practice.« less

  6. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    PubMed

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  7. 40 CFR 180.560 - Cloquintocet-mexyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-sodium (wheat only), pinoxaden (wheat or barley), clodinafop-propargyl (wheat only), or pyroxsulum (wheat..., hay 0.1 Barley, straw 0.1 Wheat, forage 0.2 Wheat, grain 0.1 Wheat, hay 0.5 Wheat, straw 0.1 (b...

  8. Analyses of biomass burning contribution to aerosol in Zhengzhou during wheat harvest season in 2015

    NASA Astrophysics Data System (ADS)

    Chen, Hongyang; Yin, Shasha; Li, Xiao; Wang, Jia; Zhang, Ruiqin

    2018-07-01

    Ambient PM2.5 samples were collected in suburban area of Zhengzhou, China to investigate the impact of straw open burning on local aerosol during wheat harvest season in 2015. Secondary formation and accumulation processes were found under unfavorable meteorological conditions through the chemical composition analysis in PM2.5. And spatial and temporal variation of the agricultural activities were observed through MODIS fire spots data combined with back trajectory analysis. Results showed elevated levoglucosan was affected directly during biomass burning episodes and transportation periods. In order to estimate the contribution, levoglucosan/K+ combined with levoglucosan/mannosan were analyzed to identify biomass burning sources. And the results showed that levoglucosan were emitted from straw burning mixing with softwood combustion during the study period, emphasizing that wood combustion for households was non-negligible which consists part of the levoglucosan background in Zhengzhou aerosol. Based on emission factors (levoglucosan/OC or levoglucosan/PM2.5) summarized by laboratory simulation experiments, the study period was divided into 7 depending on the former characteristics to estimate the contribution of biomass burning to aerosol, and the average contributions of biomass burning emission to OC and PM2.5 were 46% and 13% relatively, indicating biomass burning have a significant impact on ambient aerosol levels during harvest season.

  9. Coupled effects of straw and nitrogen management on N2O and CH4 emissions of rainfed agriculture in Northwest China

    NASA Astrophysics Data System (ADS)

    Htun, Yin Min; Tong, Yanan; Gao, Pengcheng; Xiaotang, Ju

    2017-05-01

    Straw incorporation is a common agricultural practice, but the additional carbon source may increase greenhouse gas emissions by stimulating microbial activity in soil, particularly when straw is applied at the same time as nitrogen (N) fertilizer. We investigated the coupled effects of straw and N fertilizer on greenhouse gas emissions in a rainfed winter wheat-summer fallow system in Northwest China. Simultaneous applications of straw and N fertilizer increased N2O emissions by up to 88%, net greenhouse gas (NGHG) emission and net greenhouse gas intensity (NGHGI) by over 90%, and the N2O emission factor by over 2-fold. When straw was applied before N fertilizer, the emission factor (0.22%) decreased by approximately one-half compared with that for simultaneous applications (0.45%). In addition, early straw incorporation decreased N2O emissions, NGHG, and NGHGI by 35% (0.62 kg N2O-N ha-1 yr-1), 40% (242 kg CO2-eq ha-1 yr-1), and 38% (42 kg CO2-eq t-1 grain), respectively. We identified the period 30-35 days after N fertilization as a crucial period for evaluating the effectiveness of management practices on N2O emissions. The time between straw and fertilizer applications was negatively related to N2O emission (R2 = 0.8031; p < 0.01) but positively related to soil CH4 uptake (R2 = 0.7662; p < 0.01). Therefore, early straw incorporation can effectively mitigate greenhouse gas emissions by reducing N2O flux and increasing soil CH4 uptake without significantly decreasing grain yield.

  10. Productivity and sustainability of rainfed wheat-soybean system in the North China Plain: results from a long-term experiment and crop modelling

    PubMed Central

    Qin, Wei; Wang, Daozhong; Guo, Xisheng; Yang, Taiming; Oenema, Oene

    2015-01-01

    A quantitative understanding of yield response to water and nutrients is key to improving the productivity and sustainability of rainfed cropping systems. Here, we quantified the effects of rainfall, fertilization (NPK) and soil organic amendments (with straw and manure) on yields of a rainfed wheat-soybean system in the North China Plain (NCP), using 30-years’ field experimental data (1982–2012) and the simulation model-AquaCrop. On average, wheat and soybean yields were 5 and 2.5 times higher in the fertilized treatments than in the unfertilized control (CK), respectively. Yields of fertilized treatments increased and yields of CK decreased over time. NPK + manure increased yields more than NPK alone or NPK + straw. The additional effect of manure is likely due to increased availability of K and micronutrients. Wheat yields were limited by rainfall and can be increased through soil mulching (15%) or irrigation (35%). In conclusion, combined applications of fertilizer NPK and manure were more effective in sustaining high crop yields than recommended fertilizer NPK applications. Manure applications led to strong accumulation of NPK and relatively low NPK use efficiencies. Water deficiency in wheat increased over time due to the steady increase in yields, suggesting that the need for soil mulching increases. PMID:26627707

  11. Pretreatment of rapeseed straw by sodium hydroxide.

    PubMed

    Kang, Kyeong Eop; Jeong, Gwi-Taek; Park, Don-Hee

    2012-06-01

    Pretreatment method for rapeseed straw by sodium hydroxide was investigated for production of bioethanol and biobutanol. Various pretreatment parameters, including temperature, time, and sodium hydroxide concentration were optimized using a statistical method which is a central composite design of response surface methodology. In the case of sodium hydroxide pretreatment, optimal pretreatment conditions were found to be 7.9% sodium hydroxide concentration, 5.5 h of reaction time, and 68.4 °C of reaction temperature. The maximum glucose yield which can be recovered by enzymatic hydrolysis at the optimum conditions was 95.7% and the experimental result was 94.0 ± 4.8%. This experimental result was in agreement with the model prediction. An increase of surface area and pore size in pretreated rapeseed straw by sodium hydroxide pretreatment was observed by scanning electron microscope.

  12. Liquid N and S fertilizer solutions effects on the mass, chemical, and shear strength properties of winter wheat (Triticum aestuvum) residue

    USDA-ARS?s Scientific Manuscript database

    To improve stand establishment in high crop residue situations, the utility of fertilizer to stimulate microbial decomposition of residue has been debated. Field experiments assessed winter wheat (Triticum aestivum) straw decomposition under different fertilizer rates and application timings at thre...

  13. Further studies on Egyptian soil fungi: succession of sugar and osmophilic fungi in soil amended with five organic substrates.

    PubMed

    Shaban, G M

    1996-01-01

    The sugar and osmophilic fungal composition of soils amended with five organic substrates (newspaper, orange peel, bromegrass leaves, wheat straw and wood sawdust) was estimated after 2, 4, 6, 8 and 10 weeks using the dilution plate method on glucose and 50% sucrose Czapek's agar media. Wheat straw was the best substrate for total counts of both sugar and osmophilic fungi followed by newspaper, bromegrass leaves, wood sawdust and orange peel. Wood sawdust supported the highest average counts of total sugar fungi, Fusarium, Mucor, Scopulariopsis, Trichoderma and Trimmatostroma spp.; Newspaper, of Aspergillus (8 spp.), Penicillium (4 spp.) and Chaetomium sp.; bromegrass leaves of Cladosporium sp., Humicola sp. and Sporotrichum sp.; orange peel, of Alternaria sp., Circinella sp. and Stachybotrys sp.; and wheat straw, of Botryotrichum sp. and Myrothecium sp. Bromegrass leaves and orange peel supported the highest average counts of total osmophilic fungi, Aspergillus (10 spp.), Cladosporium sp. Paecillomyces sp. and Rhizopus sp.; and of Stemphylium sp., Trichoderma sp., Humicola sp. and Circinella sp. respectively; wheat straw, of Epicoccum sp., Scopulariopsis sp. and Trichothecium sp.; newspaper, of Penicillium (4 spp.) and Alternaria sp.; and wood sawdust of Curvularia sp. and Fusarium (3 spp.). The best colonizers throughout the experimental periods were Aspergilus and Penicillium spp.

  14. Association between gluten protein composition and breadmaking quality characteristics in historical and modern spring wheat

    USDA-ARS?s Scientific Manuscript database

    Thirty hard red spring wheat cultivars released between 1910 and 2013 were studied to determine the changes in quality characteristics that occurred over time, and to determine their association with protein composition. Significant positive correlations (P = 0.01) were found between release year a...

  15. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    PubMed

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days).

  16. Comparative degradation of [14C]-2,4-dichlorophenoxyacetic acid in wheat and potato after Foliar application and in wheat, radish, lettuce, and apple after soil application.

    PubMed

    Hamburg, A; Puvanesarajah, V; Burnett, T J; Barnekow, D E; Premkumar, N D; Smith, G A

    2001-01-01

    The fate of 2,4-dichlorophenoxyacetic acid (2,4-D) applied foliarly as the 2-ethylhexyl ester (EHE) to wheat and potatoes, to the soil as the dimethylamine (DMA) salt under apple tree canopies, and preplant as the free acid for wheat, lettuce, and radish was studied to evaluate metabolic pathways. Crop fractions analyzed for (14)C residues included wheat forage, straw, and grain; potato vine and tubers; and apple fruit. The primary metabolic pathway for foliar application in wheat is ester hydrolysis followed by the formation of base-labile 2,4-D conjugates. A less significant pathway for 2,4-D in wheat was ring hydroxylation to give NIH-shift products 2,5-dichloro-4-hydroxyphenoxyacetic acid (4-OH-2,5-D), 4-OH-2,3-D, and 5-OH-2,4-D both free and as acid-labile conjugates. The primary metabolic pathway in potato was again ester hydrolysis. 2,4-D acid was further transformed to 4-chlorophenoxyacetic acid and 4-OH-2,5-D. For the soil applications, (14)C residues in the crops were low, and characterization of the (14)C residues indicated association with or incorporation into the biochemical matrix of the tissue. The degradative pathways observed in wheat are similar to those characterized in other intact plant studies but differ from those in studies in wheat cell suspension culture in that no amino acid conjugates were observed.

  17. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins.

    PubMed

    Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro

    2017-02-04

    Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus , could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p -coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin.

  18. Isolation and Characterization of Gramineae and Fabaceae Soda Lignins

    PubMed Central

    Domínguez-Robles, Juan; Sánchez, Rafael; Espinosa, Eduardo; Savy, Davide; Mazzei, Pierluigi; Piccolo, Alessandro; Rodríguez, Alejandro

    2017-01-01

    Some agricultural residues such as wheat or barley straw, as well as certain fast-growing plants like Leucaena leucocephala and Chamaecytisus proliferus, could be used as raw materials for the paper industry as an alternative to traditional plants (eucalyptus, pine, etc.). In the present study, four types of lignin obtained from the spent liquors produced by the pulping processes using the abovementioned feedstocks were isolated and characterized. Lignin samples were acquired through an acid precipitation from these spent liquors. The characterization of the precipitated lignin samples were performed using a Fourier transform infrared spectroscopy (FT-IR) and both liquid- and solid-state nuclear magnetic resonance spectroscopy (NMR) to analyse the chemical structure, and thermogravimetric analysis (TGA) for determining the thermal properties. Additionally, chemical composition of lignin fractions was also measured. Even though they were of different botanical origin, all the studied samples except for wheat straw lignin had a similar chemical composition and thermal behaviour, and identical chemical structure. Wheat straw lignin showed a greater amount of Klason lignin and lower carbohydrate content. Furthermore, this lignin sample showed a higher thermal stability and significantly different cross-peak patterns in the 2D-NMR experiments. The molecular structures corresponding to p-coumarate (PCA), ferulate (FA) and cinnamyl aldehyde end-groups (J) were only detected in wheat isolated lignin. PMID:28165411

  19. Progressive Colonization of Bacteria and Degradation of Rice Straw in the Rumen by Illumina Sequencing

    PubMed Central

    Cheng, Yanfen; Wang, Ying; Li, Yuanfei; Zhang, Yipeng; Liu, Tianyi; Wang, Yu; Sharpton, Thomas J.; Zhu, Weiyun

    2017-01-01

    The aim of this study was to improve the utilization of rice straw as forage in ruminants by investigating the degradation pattern of rice straw in the dairy cow rumen. Ground up rice straw was incubated in situ in the rumens of three Holstein cows over a period of 72 h. The rumen fluid at 0 h and the rice straw at 0.5, 1, 2, 4, 6, 12, 24, 48, and 72 h were collected for analysis of the bacterial community and the degradation of the rice straw. The bacterial community and the carbohydrate-active enzymes in the rumen fluid were analyzed by metagenomics. The diversity of bacteria loosely and tightly attached to the rice straw was investigated by scanning electron microscopy and Miseq sequencing of 16S rRNA genes. The predominant genus in the rumen fluid was Prevotella, followed by Bacteroides, Butyrivibrio, unclassified Desulfobulbaceae, Desulfovibrio, and unclassified Sphingobacteriaceae. The main enzymes were members of the glycosyl hydrolase family, divided into four categories (cellulases, hemicellulases, debranching enzymes, and oligosaccharide-degrading enzymes), with oligosaccharide-degrading enzymes being the most abundant. No significant degradation of rice straw was observed between 0.5 and 6 h, whereas the rice straw was rapidly degraded between 6 and 24 h. The degradation then gradually slowed between 24 and 72 h. A high proportion of unclassified bacteria were attached to the rice straw and that Prevotella, Ruminococcus, and Butyrivibrio were the predominant classified genera in the loosely and tightly attached fractions. The composition of the loosely attached bacterial community remained consistent throughout the incubation, whereas a significant shift in composition was observed in the tightly attached bacterial community after 6 h of incubation. This shift resulted in a significant reduction in numbers of Bacteroidetes and a significant increase in numbers of Firmicutes. In conclusion, the degradation pattern of rice straw in the dairy cow rumen

  20. Batch and semi-continuous anaerobic co-digestion of goose manure with alkali solubilized wheat straw: A case of carbon to nitrogen ratio and organic loading rate regression optimization.

    PubMed

    Hassan, Muhammad; Ding, Weimin; Umar, Muhammad; Rasool, Ghulam

    2017-04-01

    The present study focused on carbon to nitrogen ratio (C/N) and organic loading rate (OLR) optimization of goose manure (GM) and wheat straw (WS). Dealing the anaerobic digestion of poultry manure on industrial scale; the question of optimum C/N (mixing ratio) and OLR (daily feeding concentration) have significant importance still lack in literature. Therefore, Batch and CSTR co-digestion experiments of the GM and WS were carried out at mesophilic condition. The alkali (NaOH) solubilization pretreatment for the WS had greatly enhanced its anaerobic digestibility. The highest methane production was evaluated between the C/N of 20-30 during Batch experimentation while for CSTRs; the second applied OLR of (3g.VS/L.d) was proved as the optimum with maximum methane production capability of 254.65ml/g.VS for reactor B at C/N of 25. The C/N and OLR regression optimization models were developed for their commercial scale usefulness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Effects of cotton straw returning on soil organic carbon, nitrogen, phosphorus and potas-sium contents in soil aggregates].

    PubMed

    Wang, Shuang Lei; Liu, Yan Hui; Song, Xian Liang; Wei, Shao Bin; Li, Jin Pu; Nie, Jun Jun; Qin, Du Lin; Sun, Xue Zhen

    2016-12-01

    To clarify the effects of cotton straw returning on the composition and contents of nu-trients in different particle sizes of aggregates, two treatments with or without cotton straw returning were tested in continuous three years. After three years straw treatments, we collected undisturbed soil within 0-5, 5-10, 10-20 and 20-30 cm soil layers, and to measure the composition, soil organic carbon, nitrogen, phosphorus and potassium contents in different particle sizes of aggregates classified using dry sieving. Returning cotton straw into the field significantly increased particle contents of 2-5 mm and >5 mm aggregates in 0-5 cm soil layer, while the content of <0.25 mm micro-aggregates was decreased. Cotton straw returning significantly improved soil organic carbon, nitrogen, and potassium contents by 19.2%, 14.2% and 17.3%, respectively, compared to no returning control. In 5-10 cm soil layer, cotton straw returning increased the contents of 2-5 mm and >5 mm aggregates, reduced the content of <0.25 mm micro-aggregate, but significantly increased contents of soil organic carbon, available nitrogen and potassium by 19.6%, 12.6% and 23.4%, compared to no straw returning control. In 10-20 cm soil layer, cotton straw returning significantly reduced the content of <0.25 mm micro-aggregates, and significantly enhanced soil organic carbon, nitrogen, and potassium contents by 8.4%, 10.9% and 11.5%, compared to the control. However, in 20-30 cm soil layer, cotton straw returning only increased soil available potassium content by 12.0%, while there were no significant changes in particle size, organic carbon, nitrogen and phosphorus contents. We concluded that cotton straw returning could significantly improve the structure of surface soil by increasing the number of macro-aggregates, contents of organic carbon, available nitrogen and potassium in aggregates, while decreasing micro-aggregate content. The enhancement of the contribution of macro-aggregates to soil fertility

  2. Gluten protein composition in several fractions obtained by shear induced separation of wheat flour.

    PubMed

    van der Zalm, Elizabeth E J; Grabowska, Katarzyna J; Strubel, Maurice; van der Goot, Atze J; Hamer, Rob J; Boom, Remko M

    2010-10-13

    Recently, it was found that applying curvilinear shear flow in a cone-cone shearing device to wheat flour dough induces separation, resulting in a gluten-enriched fraction in the apex of the cone and gluten-depleted fraction at the outer part. This article describes whether fractionation of the various proteineous components occurs during and after separation of Soissons wheat flour. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and size-exclusion high performance liquid chromatography (SE-HPLC) were found to be suitable techniques for this. It is concluded that all protein fractions migrate to the center of the cone as a result of which the composition of the gluten-enriched fraction remains rather similar to that in the original flour. However, the larger glutenin polymer fraction migrated faster, as a result of which the concentration of large polymers was increased with a factor 2.4 compared to that of Soissons flour. The concentration of monomers in the gluten-enriched fraction was decreased to 70% of the original concentration in the original wheat flour.

  3. Rice straw addition as sawdust substitution in oyster mushroom (Pleurotus ostreatus) planted media

    NASA Astrophysics Data System (ADS)

    Utami, Christine Pamardining; Susilawati, Puspita Ratna

    2017-08-01

    Oyster mushroom is favorite by the people because of the high nutrients. The oyster mushroom cultivation usually using sawdust. The availability of sawdust become difficult to find. It makes difficulties of mushroom cultivation. Rice straw as an agricultural waste can be used as planted media of oyster mushroom because they contain much nutrition needed to the mushroom growth. The aims of this research were to analysis the influence of rice straw addition in a baglog as planted media and to analysis the concentration of rice straw addition which can substitute sawdust in planted media of oyster mushroom. This research used 4 treatment of sawdust and rice straw ratio K = 75 % : 0 %, P1 = 60 % : 15 %, P2 = 40 % : 35 %, P3 = 15 % : 60 %. The same material composition of all baglog was bran 20%, chalk 5%, and water 70%. The parameters used in this research were wet weight, dry weight, moisture content and number of the mushroom fruit body. Data analysis was used ANOVA test with 1 factorial. The results of this research based on statistical analysis showed that there was no influence of rice straw addition in a planted media on the oyster mushroomgrowth. 15% : 60% was the concentrationof rice straw additionwhich can substitute the sawdust in planted media of oyster mushroom.

  4. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw

    PubMed Central

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS. PMID:27790187

  5. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields.

    PubMed

    Liu, Gang; Yu, Haiyang; Ma, Jing; Xu, Hua; Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Bioaugmentation with an acetate-type fermentation bacterium Acetobacteroides hydrogenigenes improves methane production from corn straw.

    PubMed

    Zhang, Jie; Guo, Rong-Bo; Qiu, Yan-Ling; Qiao, Jiang-Tao; Yuan, Xian-Zheng; Shi, Xiao-Shuang; Wang, Chuan-Shui

    2015-03-01

    The effect of bioaugmentation with an acetate-type fermentation bacterium in the phylum Bacteroidetes on the anaerobic digestion of corn straw was evaluated by batch experiments. Acetobacteroides hydrogenigenes is a promising strain for bioaugmentation with relatively high growth rate, hydrogen yields and acetate tolerance, which ferments a broad spectrum of pentoses, hexoses and polyoses mainly into acetate and hydrogen. During corn straw digestion, bioaugmentation with A. hydrogenigenes led to 19-23% increase of the methane yield, with maximum of 258.1 mL/g-corn straw achieved by 10% inoculation (control, 209.3 mL/g-corn straw). Analysis of lignocellulosic composition indicated that A. hydrogenigenes could increase removal rates of cellulose and hemicelluloses in corn straw residue by 12% and 5%, respectively. Further experiment verified that the addition of A. hydrogenigenes could improve the methane yields of methyl cellulose and xylan (models for cellulose and hemicelluloses, respectively) by 16.8% and 7.0%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Study of wheat protein based materials

    NASA Astrophysics Data System (ADS)

    Ye, Peng

    wheat gluten/basalt composite and wheat gluten/clay composite materials. Their mechanical properties and biodegradation behaviors were determined.

  8. The use of steam explosion to increase the nutrition available from rice straw.

    PubMed

    Li, Bin; Chen, Kunjie; Gao, Xiang; Zhao, Chao; Shao, Qianjun; Sun, Qian; Li, Hua

    2015-01-01

    In the present study, rice straw was pretreated using steam-explosion (ST) technique to improve the enzymatic hydrolysis of potential reducing sugars for feed utilization. The response surface methodology based on central composite design was used to optimize the effects of steam pressure, pressure retention time, and straw moisture content on the yield of reducing sugar. All the investigated variables had significant effects (P < 0.001) on the reducing sugar yield. The optimum yield of 30.86% was obtained under the following pretreatment conditions: steam pressure, 1.54 MPa; pressure retention time, 140.5 Sec; and straw moisture content, 41.6%. The yield after thermal treatment under the same conditions was approximately 16%. Infrared (IR) radiation analysis showed a decrease in the cellulose IR crystallization index. ST noticeably increases reducing sugars in rice straw, and this technique may also be applicable to other cellulose/lignin sources of biomass. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  9. Degradation of lignocelluloses in rice straw by BMC-9, a composite microbial system.

    PubMed

    Zhao, Hongyan; Yu, Hairu; Yuan, Xufeng; Piao, Renzhe; Li, Hulin; Wang, Xiaofen; Cui, Zongjun

    2014-05-01

    To evaluate the potential utility of pretreatment of raw biomass with a complex microbial system, we investigated the degradation of rice straw by BMC-9, a lignocellulose decomposition strain obtained from a biogas slurry compost environment. The degradation characteristics and corresponding changes in the bacterial community were assessed. The results showed that rapid degradation occurred from day 0 to day 9, with a peak total biomass bacterium concentration of 3.3 × 10(8) copies/ml on day 1. The pH of the fermentation broth declined initially and then increased, and the mass of rice straw decreased steadily. The highest concentrations of volatile fatty acid contents (0.291 mg/l lactic acid, 0.31 mg/l formic acid, 1.93 mg/l acetic acid, and 0.73 mg/l propionic acid) as well as the highest xylanse activity (1.79 U/ml) and carboxymethyl cellulase activity (0.37 U/ml) occurred on day 9. The greatest diversity among the microbial community also occurred on day 9, with the presence of bacteria belonging to Clostridium sp., Bacillus sp., and Geobacillus sp. Together, our results indicate that BMC-9 has a strong ability to rapidly degrade the lignocelluloses of rice straw under relatively inexpensive conditions, and the optimum fermentation time is 9 days.

  10. Comparison of Seven Chemical Pretreatments of Corn Straw for Improving Methane Yield by Anaerobic Digestion

    PubMed Central

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS −1 in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost. PMID:24695485

  11. Comparison of seven chemical pretreatments of corn straw for improving methane yield by anaerobic digestion.

    PubMed

    Song, Zilin; GaiheYang; Liu, Xiaofeng; Yan, Zhiying; Yuan, Yuexiang; Liao, Yinzhang

    2014-01-01

    Agriculture straw is considered a renewable resource that has the potential to contribute greatly to bioenergy supplies. Chemical pretreatment prior to anaerobic digestion can increase the anaerobic digestibility of agriculture straw. The present study investigated the effects of seven chemical pretreatments on the composition and methane yield of corn straw to assess their effectiveness of digestibility. Four acid reagents (H2SO4, HCl, H2O2, and CH3COOH) at concentrations of 1%, 2%, 3%, and 4% (w/w) and three alkaline reagents (NaOH, Ca(OH)2, and NH3·H2O) at concentrations of 4%, 6%, 8%, and 10% (w/w) were used for the pretreatments. All pretreatments were effective in the biodegradation of the lignocellulosic straw structure. The straw, pretreated with 3% H2O2 and 8% Ca(OH)2, acquired the highest methane yield of 216.7 and 206.6 mL CH4 g VS(-1) in the acid and alkaline pretreatments, which are 115.4% and 105.3% greater than the untreated straw. H2O2 and Ca(OH)2 can be considered as the most favorable pretreatment methods for improving the methane yield of straw because of their effectiveness and low cost.

  12. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment.

    PubMed

    Levine, L H; Heyenga, A G; Levine, H G; Choi, J; Davin, L B; Krikorian, A D; Lewis, N G

    2001-07-01

    The microgravity environment encountered during space-flight has long been considered to affect plant growth and developmental processes, including cell wall biopolymer composition and content. As a prelude to studying how microgravity is perceived - and acted upon - by plants, it was first instructive to investigate what gross effects on plant growth and development occurred in microgravity. Thus, wheat seedlings were exposed to microgravity on board the space shuttle Discovery (STS-51) for a 10 day duration, and these specimens were compared with their counterparts grown on Earth under the same conditions (e.g. controls). First, the primary roots of the wheat that developed under both microgravity and 1 g on Earth were examined to assess the role of gravity on cellulose microfibril (CMF) organization and secondary wall thickening patterns. Using a quick freeze/deep etch technique, this revealed that the cell wall CMFs of the space-grown wheat maintained the same organization as their 1 g-grown counterparts. That is, in all instances, CMFs were randomly interwoven with each other in the outermost layers (farthest removed from the plasma membrane), and parallel to each other within the individual strata immediately adjacent to the plasma membranes. The CMF angle in the innermost stratum relative to the immediately adjacent stratum was ca 80 degrees in both the space and Earth-grown plants. Second, all plants grown in microgravity had roots that grew downwards into the agar; they did not display "wandering" and upward growth as previously reported by others. Third, the space-grown wheat also developed normal protoxylem and metaxylem vessel elements with secondary thickening patterns ranging from spiral to regular pit to reticulate thickenings. Fourthly, both the space- and Earth-grown plants were essentially of the same size and height, and their lignin analyses revealed no substantial differences in their amounts and composition regardless of the gravitational

  13. Cell-wall architecture and lignin composition of wheat developed in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Levine, L. H.; Heyenga, A. G.; Levine, H. G.; Choi, J.; Davin, L. B.; Krikorian, A. D.; Lewis, N. G.; Sager, J. C. (Principal Investigator)

    2001-01-01

    The microgravity environment encountered during space-flight has long been considered to affect plant growth and developmental processes, including cell wall biopolymer composition and content. As a prelude to studying how microgravity is perceived - and acted upon - by plants, it was first instructive to investigate what gross effects on plant growth and development occurred in microgravity. Thus, wheat seedlings were exposed to microgravity on board the space shuttle Discovery (STS-51) for a 10 day duration, and these specimens were compared with their counterparts grown on Earth under the same conditions (e.g. controls). First, the primary roots of the wheat that developed under both microgravity and 1 g on Earth were examined to assess the role of gravity on cellulose microfibril (CMF) organization and secondary wall thickening patterns. Using a quick freeze/deep etch technique, this revealed that the cell wall CMFs of the space-grown wheat maintained the same organization as their 1 g-grown counterparts. That is, in all instances, CMFs were randomly interwoven with each other in the outermost layers (farthest removed from the plasma membrane), and parallel to each other within the individual strata immediately adjacent to the plasma membranes. The CMF angle in the innermost stratum relative to the immediately adjacent stratum was ca 80 degrees in both the space and Earth-grown plants. Second, all plants grown in microgravity had roots that grew downwards into the agar; they did not display "wandering" and upward growth as previously reported by others. Third, the space-grown wheat also developed normal protoxylem and metaxylem vessel elements with secondary thickening patterns ranging from spiral to regular pit to reticulate thickenings. Fourthly, both the space- and Earth-grown plants were essentially of the same size and height, and their lignin analyses revealed no substantial differences in their amounts and composition regardless of the gravitational

  14. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation.

    PubMed

    Yin, Chungen; Kaer, Søren K; Rosendahl, Lasse; Hvid, Søren L

    2010-06-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451microm) and coal particles (mean diameter of 110.4microm) are independently fed into the burner through two concentric injection tubes, i.e., the centre and annular tubes, respectively. Multiple simulations are performed, using three meshes, two global reaction mechanisms for homogeneous combustion, two turbulent combustion models, and two models for fuel particle conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion. The baseline CFD models show a good agreement with the measured maps of main species in the reactor. The straw particles, less affected by the swirling secondary air jet due to the large fuel/air jet momentum and large particle response time, travels in a nearly straight line and penetrate through the oxygen-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall burnout of the two fuels is predicted: about 93% for coal char vs. 73% for straw char. As the conclusion, a reliable modelling methodology for pulverized biomass/coal co-firing and some useful co-firing design considerations are suggested. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. [Soil quality assessment under different cropping system and straw management in farmland of arid oasis region].

    PubMed

    Zhang, Peng Peng; Pu, Xiao Zhen; Zhang, Wang Feng

    2018-03-01

    To reveal the regulatory mechanism of agricultural management practices on soil quality, an experiment was carried out to study the different cropping system and straw management on soil organic carbon and fractions and soil enzyme activity in farmland of arid oasis region, which would provide a scientific basic for enhancing agricultural resources utilization and sustainable development. In crop planting planning area, we took the mainly crop (cotton, wheat, maize) as research objects and designed long-term continues cropping and crop rotation experiments. The results showed that the soil organic carbon (SOC), soil microbial biomass C, labile C, water-soluble organic C, and hot-water-soluble organic C content were increased by 3.6%-9.9%, 41.8%-98.9%, 3.3%-17.0%, 11.1%-32.4%, 4.6%-27.5% by crop rotation compared to continues cropping, and 12%-35.9%, 22.4%-49.7%, 30.7%-51.0%, 10.6%-31.9%, 41.0%-96.4% by straw incorporated compared to straw removed, respectively. The soil catalase, dehydrogenase, β-glucosidase, invertase glucose, cellulase glucose activity were increased by 6.4%-10.9%, 6.6%-18.8%, 5.9%-15.3%, 10.0%-27.4%, 28.1%-37.5% by crop rotation compared to continues cropping, and 31.4%-47.5%, 19.9%-46.6%, 13.8%-20.7%, 19.8%-55.6%, 54.1%-70.9% by straw incorporated compared to straw removed, respectively. There were significant positive linear correlations among SOC, labile SOC fractions and soil enzyme. Therefore, we concluded that labile SOC fractions and soil enzyme were effective index for evaluating the change of SOC and soil quality. Based on factor analysis, in arid region, developing agricultural production using cropland management measures, such as straw-incorporated and combined short-term continues cotton and crop rotation, could enhance SOC and labile SOC fractions contents and soil enzyme activity, which could improve soil quality and be conducive to agricultural sustainable development.

  16. Ghg and Aerosol Emission from Fire Pixel during Crop Residue Burning Under Rice and Wheat Cropping Systems in North-West India

    NASA Astrophysics Data System (ADS)

    Acharya, Prasenjit; Sreekesh, S.; Kulshrestha, Umesh

    2016-10-01

    Emission of smoke and aerosol from open field burning of crop residue is a long-standing subject matter of atmospheric pollution. In this study, we proposed a new approach of estimating fuel load in the fire pixels and corresponding emissions of selected GHGs and aerosols i.e. CO2, CO, NO2, SO2, and total particulate matter (TPM) due to burning of crop residue under rice and wheat cropping systems in Punjab in north-west India from 2002 to 2012. In contrasts to the conventional method that uses RPR ratio to estimate the biomass, fuel load in the fire pixels was estimated as a function of enhanced vegetation index (EVI). MODIS fire products were used to detect the fire pixels during harvesting seasons of rice and wheat. Based on the field measurements, fuel load in the fire pixels were modelled as a function of average EVI using second order polynomial regression. Average EVI for rice and wheat crops that were extracted through Fourier transformation were computed from MODIS time series 16 day EVI composites. About 23 % of net shown area (NSA) during rice and 11 % during wheat harvesting seasons are affected by field burning. The computed average fuel loads are 11.32 t/ha (±17.4) during rice and 10.89 t/ha (±8.7) during wheat harvesting seasons. Calculated average total emissions of CO2, CO, NO2, SO2 and TPM were 8108.41, 657.85, 8.10, 4.10, and 133.21 Gg during rice straw burning and 6896.85, 625.09, 1.42, 1.77, and 57.55 Gg during wheat burning. Comparison of estimated values shows better agreement with the previous concurrent estimations. The method, however, shows its efficiency parallel to the conventional method of estimation of fuel load and related pollutant emissions.

  17. Ethanol-acetone pulping of wheat straw. Influence of the cooking and the beating of the pulps on the properties of the resulting paper sheets.

    PubMed

    Jiménez, L; Pérez, I; López, F; Ariza, J; Rodríguez, A

    2002-06-01

    The influence of independent variables in the pulping of wheat straw by use of an ethanol-acetone-water mixture [processing temperature and time, ethanol/(ethanol + acetone) value and (ethanol + acetone)/(ethanol + acetone + water) value] and of the number of PFI beating revolutions to which the pulp was subjected, on the properties of the resulting pulp (yield and Shopper-Riegler index) and of the paper sheets obtained from it (breaking length, stretch, burst index and tear index) was examined. By using a central composite factor design and the BMDP software suite, equations that relate each dependent variable to the different independent variables were obtained that reproduced the experimental results for the dependent variables with errors less than 30% at temperatures, times, ethanol/(ethanol + acetone) value, (ethanol + acetone)/(ethanol + acetone + water) value and numbers of PFI beating revolutions in the ranges 140-180 degrees C, 60-120 min, 25-75%, 35-75% and 0-1750, respectively. Using values of the independent variables over the variation ranges considered provided the following optimum values of the dependent variables: 78.17% (yield), 15.21 degrees SR (Shopper-Riegler index), 5265 m (breaking length), 1.94% (stretch), 2.53 kN/g (burst index) and 4.26 mN m2/g (tear index). Obtaining reasonably good paper sheets (with properties that differed by less than 15% from their optimum values except for the burst index, which was 28% lower) entailed using a temperature of 180 degrees C, an ethanol/(ethanol + acetone) value of 50%, an (ethanol + acetone)/(ethanol + acetone + water) value of 75%, a processing time of 60 min and a number of PFI beating revolutions of 1750. The yield was 32% lower under these conditions, however. A comparison of the results provided by ethanol, acetone and ethanol-acetone pulping revealed that the second and third process-which provided an increased yield were the best choices. On the other hand, if the pulp is to be refined

  18. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    PubMed

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p < 0.05). We also found a high ratio of fungal-to-bacterial PLFAs in black soil and significant variations in the ratio of monounsaturated-to-branched fatty acids with different straw treatments that correlated with SR (p < 0.05). These results indicated that the application of corn straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition. © 2015 WILEY

  19. Bioconversion of Straw into Improved Fodder: Preliminary Treatment of Rice Straw Using Mechanical, Chemical and/or Gamma Irradiation

    PubMed Central

    2006-01-01

    Crude protein (CP) content of mechanically ground rice straw into small particles by an electric grinder and reducing value (RV) and soluble protein (SP) in the culture filtrate were lower than that of the chopped straw into 5~6 cm lengths when both ground and chopped straws were fermented with Aspergillus ochraceus, A. terreus or Trichoderma koningii, at steady conditions. The reduction rate of RV, SP and CP was 22.2, 2.4, 7.3%; 9.1, 4.9, 8.5% or 0.0, 0.0, 3.6% for the three fungi, respectively. Chemical pretreatment of straw by soaking in NH4OH for a day caused significant increase in CP of the fermented straw than the other alkali and acidic pretreatments. Gamma irradiation pretreatment of dry and wet straw with water, specially at higher doses, 100, 200 or 500 kGy, caused significant increase in RV and SP as CP in the fermented straw by any of these fungi. Chemical-physical combination pretreatment of rice straw reduced the applied dose of gamma irradiation required for increasing fermentable ability of fungi from 500 kGy to 10 kGy with approximately the same results. Significant increases in RV and SP of fermented straw generally occurred as the dose of gamma irradiation for pretreated straw, which combined with NH4OH, gradually rose. Whereas, the increase percentage in CP of fermented straw that was pretreated by NH4OH-10 kGy was 12.4%, 15.4% or 8.6% for A. ochraceus, A. terreus or T. koningii, respectively. PMID:24039464

  20. [Effects of grape seed addition in swine manure-wheat straw composting on the compost microbial community and carbon and nitrogen contents].

    PubMed

    Huang, Yi-Mei; Liu, Xue-Ling; Jiang, Ji-Shao; Huang, Hua; Liu, Dong

    2012-08-01

    Taking substrates swine manure and wheat straw (fresh mass ratio 10.5:1) as the control (PMW), a composting experiment was conducted in a self-made aerated static composting bin to study the effects of adding 8% grape seed (treatment PMW + G) on the succession of microbial community and the transformation of carbon and nitrogen in the substrates during the composting. Seven samples were collected from each treatment, according to the temperature of the compost during the 30 d composting period. The microbial population and physiological groups were determined, and the NH4(+)-N, NO3(-)-N, organic N, and organic C concentrations in the compost were measured. Grape seed addition induced a slight increase of bacterial count and a significant increase of actinomycetes count, but decreased the fungal count significantly. Grape seed addition also decreased the ratio of bacteria to actinomycetes and the counts of ammonifiers and denitrifiers, but increased the counts of nitrifiers, N-fixing bacteria, and cellulose-decomposing microorganisms. The contents of NH4(+)-N and organic C decreased, while that of NO3(-)-N increased obviously. The NO3(-)-N content in the compost was positively correlated with the actinomycetes count. During composting, the compost temperature in treatment PMW + G increased more rapidly, and remained steady in thermophilic phase, while the water content changed little, which provided a stable and higher population of actinomycetes and nitrifiers in thermophilic phase, being beneficial to the increase of compost nitrate N.

  1. 40 CFR 180.559 - Clodinafop-propargyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-pyridinyl)oxy]phenoxy]-, (2R)-), in or on wheat, grain at 0.1 ppm ; wheat, forage at 0.1 ppm; wheat, hay at 0.1 ppm; and wheat, straw at 0.50 ppm. Commodity Parts per million Wheat, forage 0.1 Wheat, grain 0.1 Wheat, hay 0.1 Wheat, straw 0.5 (b) Section 18 emergency exemptions. [Reserved] (c) Tolerances...

  2. Citrus pulp and wheat straw silage as an ingredient in lamb diets: effects on growth and carcass and meat quality.

    PubMed

    Scerra, V; Caparra, P; Foti, F; Lanza, M; Priolo, A

    2001-04-01

    Twenty "Merinizzata Italiana" lambs were introduced to two experimental diets. Ten animals (five males and five females, control group) received the traditional diet that is supplied by farmers in southern Italy, which comprised of oat hay ad libitum and commercial concentrate. The second group (the same number of lambs, silage group) received citrus pulp and wheat straw silage ad libitum and 70% of the commercial concentrate supplied to the control group. The animals were slaughtered after 80 days of feeding and carcass and some meat quality parameters were measured. No differences were observed for live weight between treatments, and carcass weights were similar for the two diets, but with obvious differences between sexes. Animals on silage produced carcasses with a better muscular conformation and with a lower fatness score (P<0.05). Subcutaneous fat colour was influenced by sex, being lighter in the female carcasses (P<0.05). Dissection of different anatomical parts showed a higher percentage of lean and a lower proportion of fat in silage samples compared to control ones. Ultimate pH was highly affected by sex being higher in the samples from male lambs (P<0.01), but was unaffected by diet treatment. Diet tended to affect meat shear force value which was lower in the silage samples, although, samples from all the animals were extremely tender. Meat from silage samples had a higher water content (P<0.05). Overall, in our experimental conditions, the use of citrus pulp silage seemed to be economically convenient for producing animals with substantially unmodified carcass and meat quality characteristics.

  3. Formulation and characterization of bread using coconut-pulp flour and wheat flour composite with addition of xanthan-gum

    NASA Astrophysics Data System (ADS)

    Erminawati; Sidik, W.; Listanti, R.; Zulfakar, H.

    2018-01-01

    Coconut-pulp flour is coconut flour made from by-product of coconut-milk based food products. The flour contains no gluten and high fibre, which can be considered as functional potential food. Bread made from composite-flour of coconut-pulp flour and wheat flour was studied for its physic-chemical and sensory characteristics. Addition of hydrocolloid, like xanthan-gum, was aimed to provide viscoelasticity for the dough which is essential for baked product. Composite-flour proportion used in this study was; 10CPF/90WF, 15CPF/85WF and 20CPF/80WF; and xanthan gum to total flour of 0,1% and 0,4%. Variable observed were; crumb-texture, crumb-colour, taste of coconut, preference and flavour; moisture, ash, fiber and soluble-protein contents. The research showed that addition of coconut-pulp flour in the composite-flour decreased specific volume value and increased the bread texture produced. It also increased the bread moisture-content, ash-content, fibre-content and soluble protein-content. Moreover, the xanthan-gum addition resulted in decreased specific-volume value and increased texture and fiber-content of the bread produced. Overall, the sensory characteristic of crumb colour, flavour and panellist preference revealed better than control bread made from wheat flour, however its crumb texture harder compare to control bread made from wheat flour. This study showed that coconut-pulp flour potential to be developed for production of functional food.

  4. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production.

    PubMed

    Kolasa, Marta; Ahring, Birgitte Kiær; Lübeck, Peter Stephensen; Lübeck, Mette

    2014-10-01

    Co-cultivation of fungi may be an excellent system for on-site production of cellulolytic enzymes in a single bioreactor. Enzyme supernatants from mixed cultures of Trichoderma reesei RutC30, with either the novel Aspergillus saccharolyticus AP, Aspergillus carbonarius ITEM 5010 or Aspergillus niger CBS 554.65 cultivated in solid-state fermentation were tested for avicelase, FPase, endoglucanase and beta-glucosidase activity as well as in hydrolysis of pretreated wheat straw. Around 30% more avicelase activity was produced in co-cultivation of T. reesei and A. saccharolyticus than in T. reesei monoculture, suggesting synergistic interaction between those fungi. Fermentation broths of mixed cultures of T. reesei with different Aspergillus strains resulted in approx. 80% efficiency of hydrolysis which was comparable to results obtained using blended supernatants from parallel monocultures. This indicates that co-cultivation of T. reesei with A. saccharolyticus or A. carbonarius could be a competitive alternative for monoculture enzyme production and a cheaper alternative to commercial enzymes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Paint removal using wheat starch blast media

    NASA Astrophysics Data System (ADS)

    Foster, Terry; Oestreich, John

    1993-03-01

    A review of the Wheat Starch Blasting technology is presented. Laboratory evaluations covering Almen Arc testing on bare 2024-T3 aluminum and magnesium, as well as crack detection on 7075-T6 bare aluminum, are discussed. Comparisons with Type V plastic media show lower residual stresses are achieved on aluminum and magnesium with wheat starch media. Dry blasting effects on the detection of cracks confirms better crack visibility with wheat starch media versus Type V or Type II plastic media. Testing of wheat starch media in several composite test programs, including fiberglass, Kevlar, and graphite-epoxy composites, showed no fiber damage. Process developments and production experience at the first U.S. aircraft stripping facility are also reviewed. Corporate and regional aircraft are being stripped in this three nozzle dry blast hanger.

  6. Carbohydrate composition and in vitro digestibility of dry matter and nonstarch polysaccharides in corn, sorghum, and wheat and coproducts from these grains.

    PubMed

    Jaworski, N W; Lærke, H N; Bach Knudsen, K E; Stein, H H

    2015-03-01

    The objectives of this work were to determine carbohydrate composition and in vitro digestibility of DM and nonstarch polysaccharides (NSP) in corn, wheat, and sorghum and coproducts from these grains. In the initial part of this work, the carbohydrate composition of 12 feed ingredients was determined. The 12 ingredients included 3 grains (corn, sorghum, and wheat), 3 coproducts from the dry grind industry (corn distillers dried grains with solubles [DDGS] and 2 sources of sorghum DDGS), 4 coproducts from the wet milling industry (corn gluten meal, corn gluten feed, corn germ meal, and corn bran), and 2 coproducts from the flour milling industry (wheat middlings and wheat bran). Results indicated that grains contained more starch and less NSP compared with grain coproducts. The concentration of soluble NSP was low in all ingredients. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 22, 49, and 29% (DM basis), respectively, of the NSP in corn and corn coproducts and approximately 25, 43, and 32% (DM basis), respectively, of the NSP in sorghum and sorghum DDGS. Cellulose, arabinoxylans, and other hemicelluloses made up approximately 16, 64, and 20% (DM basis), respectively, of the NSP in wheat and wheat coproducts. The concentration of lignin in grains was between 0.8 and 1.8% (DM basis), whereas coproducts contained between 2.2 and 11.5% lignin (DM basis). The in vitro ileal digestibility of NSP was close to zero or negative for all feed ingredients, indicating that pepsin and pancreas enzymes have no effect on in vitro degradation of NSP. A strong negative correlation ( = 0.97) between in vitro ileal digestibility of DM and the concentration of NSP in feed ingredients was observed. In vitro total tract digestibility of NSP ranged from 6.5% in corn bran to 57.3% in corn gluten meal. In conclusion, grains and grain coproducts contain mostly insoluble NSP and arabinoxylans make up the majority of the total NSP fraction. The in vitro

  7. Genoprotective Capacity of Alternatively Cultivated Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), Basidiocarps.

    PubMed

    Cilerdzic, Jasmina; Stajic, Mirjana; Zivkovic, Lada; Vukojevic, Jelena; Bajic, Vladan; Spremo-Potparevic, Biljana

    2016-01-01

    Ganoderma lucidum is traditionally used in Eastern medicine to preserve vitality, promote longevity, and treat disease. It possesses immunomodulatory, antitumor, antimicrobial, and antiaging activities, among others, but one of the most important is its antioxidant property, which is the basis for other effects, because free radicals trigger many diseases. The substrate commonly used for commercial cultivation of G. lucidum is not environmentally friendly nor economically justified, so there is a need to find new alternative substrates. The aim of this study was to analyze the effect of substrate composition on the bioactivity of G. lucidum basidiocarps. G. lucidum was cultivated on 2 different substrates: (1) a mixture of wheat straw, grapevine branches, and wheat bran, and (2) wheat straw. Commercial fruiting bodies, cultivated on oak sawdust, were used as the control. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging ability, total phenols, and flavonoid content were determined spectrophotometrically to define the antioxidative potential of basidiocarp extracts. The comet test was performed to detect the degree of DNA damage in the cells that were exposed to G. lucidum extracts before and after the effect of oxidants. Higher antioxidative potential was observed for the extract of G. lucidum basidiocarps cultivated on wheat straw compared with that from the mixed substrate and especially with commercial ones. The alternatively cultivated basidiocarps also showed stronger antigenotoxic potential compared with commercial ones. The study showed that fruiting bodies produced on wheat straw, one of the most accessible and cheapest crop residues, are more potent antioxidant and antigenotoxic agents than commercially cultivated ones.

  8. Improvement in CH4/CO2 ratio and CH4 yield as related to biomass mix composition during anaerobic co-digestion.

    PubMed

    Poulsen, Tjalfe G; Adelard, Laetitia; Wells, Mona

    2017-03-01

    Sixteen data sets (two of which were measured in this study) with a combined total of 145 measurements of ultimate methane yield (UMY) during mono- and co-digestion of ternary biomass mixtures were used to assess impact of co-digestion on the relative change in UMY (ΔUMY) as a function of biomass mix composition. The data involved 9 biomass materials (brewery spent grains, chicken manure, cow manure, fresh grass clippings, pig manure, primary sewage sludge, vegetable food waste, wheat straw, and rice straw). Results of the assessment shows that co-digestion in 85% of yields positive values of ΔUMY regardless of the biomass materials used, however, a smaller fraction (15%) resulted in negative ΔUMY during co-digestion. The data further indicate that for each set of ternary biomass material mixtures there exists an optimal biomass mix composition at which ΔUMY is at a maximum. Statistical analyses based on the data used here indicate that the maximum value of ΔUMY (ΔUMY max ) is always positive regardless of biomass materials being co-digested. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Phytochemical composition and antioxidant capacity of whole wheat products

    USDA-ARS?s Scientific Manuscript database

    Whole wheat contains an array of phytochemicals. We quantified alkylresorcinols (AR), phenolic acids, phytosterols, and tocols in six whole wheat products and characterized their antioxidant capacity and ability to induce quinone reductase activity (QR). Total AR content ranged from 136.8 to 233.9 m...

  10. Co-pyrolysis of rice straw and polypropylene using fixed-bed pyrolyzer

    NASA Astrophysics Data System (ADS)

    Izzatie, N. I.; Basha, M. H.; Uemura, Y.; Mazlan, M. A.; Hashim, M. S. M.; Amin, N. A. M.; Hamid, M. F.

    2016-11-01

    The present work encompasses the impact of temperature (450, 500, 550, 600 °C) on the properties of pyrolysis oil and on other product yield for the co-pyrolysis of Polypropylene (PP) plastics and rice straw. Co-pyrolysis of PP plastic and rice straw were conducted in a fixed-bed drop type pyrolyzer under an inert condition to attain maximum oil yield. Physically, the pyrolysis oil is dark-brown in colour with free flowing and has a strong acrid smell. Copyrolysis between these typically obtained in maximum pyrolysis oil yields up to 69% by ratio 1:1 at a maximum temperature of 550 °C. From the maximum yield of pyrolysis oil, characterization of pyrolysis product and effect of biomass type of the composition were evaluated. Pyrolysis oil contains a high water content of 66.137 wt.%. Furfural, 2- methylnaphthalene, tetrahydrofuran (THF), toluene and acetaldehyde were the major organic compounds found in pyrolysis oil of rice straw mixed with PP. Bio-char collected from co-pyrolysis of rice straw mixed with PP plastic has high calorific value of 21.190 kJ/g and also carbon content with 59.02 wt.% and could contribute to high heating value. The non-condensable gases consist of hydrogen, carbon monoxide, and methane as the major gas components.

  11. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    PubMed Central

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  12. Soil organic carbon dynamics in wheat-maize cropping systems of north China: application of isotope approach to long-term experiments

    NASA Astrophysics Data System (ADS)

    Wang, J.; Wang, X.; Xu, M.; Zhang, W.

    2013-12-01

    Soil organic carbon (SOC) in agro-ecosystem is largely influencedby agricultural practices such as croppingand fertilization. However, quantifying the contributions of various crops has been lacking. Here, we applied isotopic approachto study SOC dynamics under wheat-maize rotation with variousfertilization treatments atthree long-term experiment sites innorth China. Three treatments were chosen: no fertilizer (control), chemical nitrogen-phosphorus-potassium (NPK) and NPK plus straw (NPKS).Soil samples were collected from0-20, 20-40, 40-60, 60-80 and 80-100cm after 13 and 20 years of treatment, and SOC and its stable 13C compositions were determined. Generally, SOC content significantly decreased with depths, from 8.2 ×1.4 g kg-1 (in 0-20 cm) to 3.3×1.0 g kg-1 (in 80-100 cm) across all treatments and sites. Soil δ13C values at all depths, treatments and sites ranged from -24.2‰ to -21.6‰, averaged -22.8‰, indicating that ~70% of SOC was derived from wheat and previous C3 plant, and ~30% from maize and previous C4 plant.Both SOC and soil δ13C were significantly affected by fertilization managements, especiallyin 0-40 cm where linear relationship occurred between SOC and estimated C input. Overall, the slop of the linear equation, i.e., conversion efficiency, was four times greater for wheat-derived C relative to that for maize residue C. Our study indicated that maize-derived C contributed less to C sequestration in wheat-maize rotation system of north China. Figure 1. Relationships between SOC stock (0-40 cm) and accumulated C input for wheat (C3), maize (C4) and total. Significance is marked with one (P < 0.05), two (P < 0.01) and three (P < 0.001) asterisks.

  13. Experimental atherosclerosis in rabbits fed cholesterol-free diets. Part 7. Interaction of animal or vegetable protein with fiber.

    PubMed

    Kritchevsky, D; Tepper, S A; Williams, D E; Story, J A

    1977-04-01

    Rabbits were maintained for 10 months on a semipurified, cholesterol-free atherogenic regimen. All diets contained sucrose (40%) and hydrogenated coconut oil (14%). The protein (25%) was either casein or soya protein and the fiber (15%) was either wheat straw, alfalfa, or cellulose. Within either protein group the order for induction of cholesteremia was cellulose=wheat straw greater than alfalfa. For atherogenesis, the effect was cellulose greater than wheat straw greater than alfalfa Soya-wheat straw or soya-cellulose diets were less cholesteremic and atherogenic than their casein counterparts. When alfalfa was the fiber, the two types of protein were almost equivalent. Our results show that casein may be more cholesteremic and atherogenic than soya protein under certain conditions (cellulose or wheat straw as fiber) but the addition of alfalfa to the diet renders the two proteins equivalent.

  14. Optimization of methane production in anaerobic co-digestion of poultry litter and wheat straw at different percentages of total solid and volatile solid using a developed response surface model.

    PubMed

    Shen, Jiacheng; Zhu, Jun

    2016-01-01

    Poultry litter (PL) can be good feedstock for biogas production using anaerobic digestion. In this study, methane production from batch co-digestion of PL and wheat straw (WS) was investigated for two factors, i.e., total solid (2%, 5%, and 10%) and volatile solid (0, 25, and 50% of WS), constituting a 3 × 3 experimental design. The results showed that the maximum specific methane volume [197 mL (g VS)(‑1)] was achieved at 50% VS from WS at 5% TS level. It was estimated that the inhibitory threshold of free ammonia was about 289 mg L(--1), beyond which reduction of methanogenic activity by at least 54% was observed. The specific methane volume and COD removal can be expressed using two response surface models (R(2) = 0.9570 and 0.9704, respectively). Analysis of variance of the experimental results indicated that the C/N ratio was the most significant factor influencing the specific methane volume and COD removal in the co-digestion of these two materials.

  15. Effects of aqueous extract of soil-like substrate made from three different materials on seed germination and seedling growth of rice

    NASA Astrophysics Data System (ADS)

    Shao, Lingzhi; Fu, Yuming; Fu, Wenting; Yan, Min; Li, Leyuan; Liu, Hong

    2014-03-01

    Biologically processing rice and wheat straws into soil-like substrate (SLS) and then reusing them in plant cultivation system to achieve waste recycle is very crucially important in Bioregenerative life support system (BLSS). However, rice is a plant with strong allelopathic potential. It is not clear yet that what kinds of raw materials can be processed into proper SLS to grow rice in BLSS. Therefore, in this study, the aqueous extract of SLS made from three different materials including rice straw, wheat straw and rice-wheat straw mixture was utilized to investigate its effects on the seed germination and seedling growth of rice. The gradients of the extract concentrations (soil:water) were 1:3, 1:5, 1:9, and 1:15 with deionized water used as control. The effects of different types of SLS on seed germination and seedling vitality of rice were confirmed by analyzing the germination rate, seedling length, root length, the fresh weight and other indicants. In addition, based on the analysis towards pH, organic matter composition and other factors of the SLS as well as the chlorophyll, hormone content of rice, and the mechanism of the inhibition was speculated in order to explore the preventive methods of the phenomenon. Finally, the feasibility of cultivating rice on SLSs made from the raw materials mentioned above was evaluated and wheat raw was determined as the most appropriate material for growing rice.

  16. The impact of the SSIIa null mutations on grain traits and composition in durum wheat.

    PubMed

    Botticella, Ermelinda; Sestili, Francesco; Ferrazzano, Gianluca; Mantovani, Paola; Cammerata, Alessandro; D'Egidio, Maria Grazia; Lafiandra, Domenico

    2016-09-01

    Starch represents a major nutrient in the human diet providing essentially a source of energy. More recently the modification of its composition has been associated with new functionalities both at the nutritional and technological level. Targeting the major starch biosynthetic enzymes has been shown to be a valuable strategy to manipulate the amylose-amylopectin ratio in reserve starch. In the present work a breeding strategy aiming to produce a set of SSIIa (starch synthases IIa) null durum wheat is described. We have characterized major traits such as seed weight, total starch, amylose, protein and β-glucan content in a set of mutant families derived from the introgression of the SSIIa null trait into Svevo, an elite Italian durum wheat cultivar. A large degree of variability was detected and used to select wheat lines with either improved quality traits or agronomic performances. Semolina of a set of two SSIIa null lines showed new rheological behavior and an increased content of all major dietary fiber components, namely arabinoxylans, β-glucans and resistant starch. Furthermore the investigation of gene expression highlighted important differences in some genes involved in starch and β-glucans biosynthesis.

  17. Yield Responses of Wheat to Mulching Practices in Dryland Farming on the Loess Plateau

    PubMed Central

    Wang, Li-fang; Chen, Juan; Shangguan, Zhou-ping

    2015-01-01

    Improving farming practices of soil and water conservation has profound effects on the yield of wheat (Triticum aestivum L.) in dryland farming regions of the Loess Plateau in China. Mulching has proven to be an effective practice to increase crop yield, and possibly contribute to replenishing groundwater. This evaluation study collected and analyzed the data of 1849 observations published in 38 papers using meta-analysis to investigate effects of the mulching practices on wheat yield in terms of different rainfall and regions in comparison with conventional tillage. The main results of the study follow. The effects of the mulching practices were ranked in the order of RFM (ridge–furrow mulching) > MTMC (mulching with two materials combined) > MOM (mulching with other materials) > WSM (wheat straw mulching) > FM (flat mulching). The effects of the mulching practices at the different levels of rainfall during the wheat growing season were in the order: (< 150 mm) > (> 250 mm) > (150–250 mm). The effects of the mulching practices in the different regions were in the order of Henan > Shanxi > Shaanxi > Gansu. WSM, MTMC and FM performed better in improving wheat yield for rainfall of < 150, 150–250 and > 250 mm during the growing season, respectively. The wheat yield with FM, MTMC, MOM and MOM was higher than those with the other mulching practices in Shaanxi, Gansu, Henan and Shanxi. The wheat yield with RFM was 27.4% higher than that with FM, indicating that RFM was the most effective practice to improve wheat yield among all the practices. These findings have important implications for choosing appropriate crop field management to improve wheat yield. PMID:26020965

  18. Bran characteristics and bread-baking quality of whole grain wheat flour

    USDA-ARS?s Scientific Manuscript database

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  19. Bioconversion of straw into improved fodder: fungal flora decomposing rice straw.

    PubMed

    Helal, G A

    2005-09-01

    The fungal flora decomposing rice straw were investigated all over the soil of Sharkia Province, east of Nile Delta, Egypt, using the nylon net bag technique. Sixty-four straw-decomposing species belonging to 30 genera were isolated by the dilution plate method in ground rice straw-Czapek's agar medium at pH 6. The plates were incubated separately at 5℃, 25℃ and 45℃, respectively. Twenty nine species belonging to 14 genera were isolated at 5℃. The most frequent genus was Penicillium (seven species), and the next frequent genera were Acremonium (three species), Fusarium (three species), Alternaria, Chaetomium, Cladosporium, Mucor, Stachybotrys (two species) and Rhizopus stolonifer. At 25℃, 47 species belonging to 24 genera were isolated. The most frequent genus was Aspergillus (nine species), and the next frequent genera were ranked by Penicillium (five species), Chaetomium (three species), Fusarium (three species). Each of Alternaria, Cladosporium, Mucor, Myrothecium and Trichoderma was represented by two species. At 45℃, 15 species belonging to seven genera were isolated. These were seven species of Aspergillus, two species of Chaetomium and two species of Emericella, while Humicola, Malbranchea, Rhizomucor and Talaromyces were represented by one species respectively. The total counts of fungi the genera, and species per gram of dry straw were significantly affected by incubation temperature and soil analysis (P < 0.05).

  20. Effects of feeding different varieties of faba bean (Vicia faba L.) straws with concentrate supplement on feed intake, digestibility, body weight gain and carcass characteristics of Arsi-Bale sheep.

    PubMed

    Wegi, Teklu; Tolera, Adugna; Wamatu, Jane; Animut, Getachew; Rischkowsky, Barbara

    2017-12-19

    A study was conducted to evaluate the varietal differences among faba bean straws and also to assess the potentials of faba bean straws supplemented with concentrate fed at the rate 70% straws and 30% concentrate mixture on feed intake, digestibility, body weight gain and carcass characteristics of the animals. Forty yearling Arsi-Bale sheep with initial body weight of 19.85+0.29 kg (mean + SD were grouped in a randomized complete block design into eight blocks of five animals each based on their initial body weight. Straws include in the study were from Mosisa (T1M), Walki (T2W), Degaga (T3D), Shallo (T4S) and local (T5L) varieties of faba bean and concentrate (2:1 ratio of wheat bran to "noug" seed cake). The experiment consisted of seven days of digestibility and 90 days of feeding trials followed by evaluation of carcass parameters at the end. Local variety had lower (P<0.05) in grain and straw yield compared to improved varieties but higher in crude protein, metabolizable energy contents and in vitro organic matter digestibility. The apparent digestibility of dry matter and crude protein of sheep fed Walki and Mosisa straws were higher than (P<0.05) straws from Shallo varieties. Sheep fed Walki straw had greater (P<0.05) dry matter intake, average daily gain and feed conversion efficiency than sheep fed local and Shallo straws. Slaughter body weight and empty body weight were higher (P<0.05) for sheep fed Mosisa and Walki straws as compared to sheep fed Shallo straws. Apart from this, the other carcass components were not affected (P>0.05) by variety of the faba bean straws. There is significant varietal differences between faba bean straws both in quality and quantity. Similarly, significant variation observed among sheep in feed intake, digestibility, body weight gain and feed conversion efficiency among sheep fed different straws of faba bean varieties with concentrate supplement. Based on these results, Walki and Mosisa varieties could be recommended as

  1. Effect of rice straw application on microbial community and activity in paddy soil under different water status.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Yao, Huaiying

    2016-03-01

    Rice straw application and flooding are common practices in rice production, both of which can induce changes in the microbial community. This study used soil microcosms to investigate the impact of water status (saturated and nonsaturated) and straw application (10 g kg(-1) soil) on soil microbial composition (phospholipid fatty acid analysis) and activity (MicroResp(™) method). Straw application significantly increased total PLFA amount and individual PLFA components independent of soil moisture level. The amount of soil fungal PLFA was less than Gram-negative, Gram-positive, and actinomycete PLFA, except the drained treatment with rice straw application, which had higher fungal PLFA than actinomycete PLFA at the initial incubation stage. Straw amendment and waterlogging had different effects on microbial community structure and substrate-induced pattern. PLFA profiles were primarily influenced by straw application, whereas soil water status had the greater influence on microbial respiration. Of the variation in PLFA and respiration data, straw accounted for 30.1 and 16.7 %, while soil water status explained 7.5 and 29.1 %, respectively. Our results suggest that (1) the size of microbial communities in paddy soil is more limited by carbon substrate availability rather than by the anaerobic conditions due to waterlogging and (2) that soil water status is more important as a control of fungal growth and microbial community activity.

  2. Comparative Properties of Bamboo and Rice Straw Pellets

    Treesearch

    Xianmiao Liu; Zhijia Liu; Benhua Fei; Zhiyong Cai; Zehui Jiang; Xing' e Liu

    2013-01-01

    Bamboo is a potential major bio-energy resource. Tests were carried out to compare and evaluate the property of bamboo and rice straw pellets, rice straw being the other main source of biomass solid fuel in China. All physical properties of untreated bamboo pellets (UBP), untreated rice straw pellets (URP), carbonized bamboo pellets (CBP), and carbonized rice straw...

  3. Rice straw as a feedstock for biofuels: Availability, recalcitrance, and chemical properties: Rice straw as a feedstock for biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Satlewal, Alok; Agrawal, Ruchi; Bhagia, Samarthya

    The surplus availability of rice straw, its limited usage and environment pollution caused by inefficient burning has fostered research for its valorization to biofuels. This review elucidates the current status of rice straw potential around the globe along with recent advances in revealing the critical factors responsible for its recalcitrance and chemical properties. The role and accumulation of high silica content in rice straw has been elucidated with its impact on enzymatic hydrolysis in a biorefinery environment. The correlation of different pretreatment approaches in modifying the physiochemical properties of rice straw and improving the enzymatic accessibility has also been discussed.more » This study highlights new challenges, resolutions and opportunities for rice straw based biorefineries.« less

  4. Microbial utilization of rice straw and its derived biochar in a paddy soil.

    PubMed

    Pan, Fuxia; Li, Yaying; Chapman, Stephen James; Khan, Sardar; Yao, Huaiying

    2016-07-15

    The application of straw and biochar to soil has received great attention because of their potential benefits such as fertility improvement and carbon (C) sequestration. The abiotic effects of these materials on C and nitrogen (N) cycling in the soil ecosystem have been previously investigated, however, the effects of straw or its derived biochar on the soil microbial community structure and function are not well understood. For this purpose, a short-term incubation experiment was conducted using (13)C-labeled rice straw and its derived biochar ((13)C-labeled biochar) to deepen our understanding about soil microbial community dynamics and function in C sequestration and greenhouse gas emission in the acidic paddy soil amended with these materials. Regarding microbial function, biochar and straw applications increased CO2 emission in the initial stage of incubation and reached the highest level (0.52 and 3.96mgCkg(-1)soilh(-1)) at 1d and 3d after incubation, respectively. Straw amendment significantly (p<0.01) increased respiration rate, total phospholipid fatty acids (PLFAs) and (13)C-PLFA as compared to biochar amendment and the control. The amount and percent of Gram positive bacteria, fungi and actinomycetes were also significantly (p<0.05) higher in (13)C-labeled straw amended soil than the (13)C-labeled biochar amended soil. According to the (13)C data, 23 different PLFAs were derived from straw amended paddy soil, while only 17 PLFAs were derived from biochar amendments. The profile of (13)C-PLFAs derived from straw amendment was significantly (p<0.01) different from biochar amendment. The PLFAs18:1ω7c and cy17:0 (indicators of Gram negative bacteria) showed high relative abundances in the biochar amendment, while 10Me18:0, i17:0 and 18:2ω6,9c (indicators of actinomycetes, Gram positive bacteria and fungi, respectively) showed high relative abundance in the straw amendments. Our results suggest that the function, size and structure of the microbial

  5. Effect of shearing on the reinforcement properties of vital wheat gluten

    USDA-ARS?s Scientific Manuscript database

    The reinforcement properties of vital wheat gluten as a biomaterial filler for a carboxylated styrene-butadiene rubber were examined to assess its effectiveness as a filler for carboxylated styrene-butadiene rubber composites. Composites were formulated using 10-40% vital wheat gluten by mixing aqu...

  6. Influence of Polyvinyl Alcohol (PVA) Addition on Silica Membrane Performance Prepared from Rice Straw

    NASA Astrophysics Data System (ADS)

    Wahyuningsih, S.; Ramelan, A. H.; Wardoyo, D. T.; Ichsan, S.; Kristiawan, Y. R.

    2018-03-01

    The utilization and modification of silica from rice straw as the main ingredient of adsorbent has been studied. The aim of this study was to determine the optimum composition of PVA (polyvinyl alcohol): silica to produce adsorbents with excellent pore characteristics, optimum adsorption efficiency and optimum pH for methyl yellow adsorptions. X-Ray Fluorescence (XRF) analysis results showed that straw ash contains 82.12 % of silica (SiO2). SAA (Surface Area Analyzer) analysis showed optimum composition ratio 5:5 of PVA: silica with surface area of 1.503 m2/g. Besides, based on the pore size distribution of PVA: silica (5:5) showed the narrow pore size distribution with the largest pore cumulative volume of 2.8 x 10-3 cc/g. The optimum pH for Methanyl Yellow adsorption is pH 2 with adsorption capacity = 72.1346%.

  7. Rheological properties and bread quality of frozen yeast-dough with added wheat fiber.

    PubMed

    Adams, Vivian; Ragaee, Sanaa M; Abdel-Aal, El-Sayed M

    2017-01-01

    The rheological characteristics of frozen dough are of great importance in bread-making quality. The effect of addition of commercial wheat aleurone and bran on rheological properties and final bread quality of frozen dough was studied. Wheat aleurone (A) and bran (B) containing 240 g kg -1 and 200 g kg -1 arabinoxylan (AX), respectively, were incorporated into refined wheat flour at 150 g kg -1 substitution level (composite A and B, respectively). Dough samples of composite A and B in addition to two reference dough samples, refined flour (ref A) and whole wheat flour (ref B) were stored at -18°C for 9 weeks. Frozen stored composite dough samples contained higher amounts of bound water, less freezable water and exhibited fewer modifications in gluten network during frozen storage based on data from differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Bread made from composite frozen dough had higher loaf volume compared to ref A or ref B throughout the storage period. The incorporation of wheat fiber into refined wheat flour produced dough with minimum alterations in its rheological properties during 9 weeks of frozen storage compared to refined and 100% wheat flour dough samples. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  8. Manufacturing and process optimization of porous rice straw board

    NASA Astrophysics Data System (ADS)

    Liu, Dejun; Dong, Bing; Bai, Xuewei; Gao, Wei; Gong, Yuanjuan

    2018-03-01

    Development and utilization of straw resources and the production of straw board can dramatically reduce straw waste and environmental pollution associated with straw burning in China. However, the straw board production faces several challenges, such as improving the physical and mechanical properties, as well as eliminating its formaldehyde content. The recent research was to develop a new straw board compound adhesive containing both inorganic (MgSO4, MgCO3, active silicon and ALSiO4) and organic (bean gum and modified Methyl DiphenylDiisocyanate, MDI) gelling materials, to devise a new high frequency straw board hot pressing technique and to optimize the straw board production parameters. The results indicated that the key hot pressing parameters leading to porous straw board with optimal physical and mechanical properties. These parameters are as follows: an adhesive containing a 4:1 ratio of inorganic-to-organic gelled material, the percentage of adhesive in the total mass of preload straw materials is 40%, a hot-pressing temperature in the range of 120 °C to 140 °C, and a high frequency hot pressing for 10 times at a pressure of 30 MPa. Finally, the present work demonstrated that porous straw board fabricated under optimal manufacturing condition is an environmentally friendly and renewable materials, thereby meeting national standard of medium density fiberboard (MDF) with potential applications in the building industry.

  9. Fungal diversity of rice straw for meju fermentation.

    PubMed

    Kim, Dae-Ho; Kim, Seon-Hwa; Kwon, Soon-Wo; Lee, Jong-Kyu; Hong, Seung-Beom

    2013-12-01

    Rice straw is closely associated with meju fermentation and it is generally known that the rice straw provides meju with many kinds of microorganisms. In order to elucidate the origin of meju fungi, the fungal diversity of rice straw was examined. Rice straw was collected from 12 Jang factories where meju are produced, and were incubated under nine different conditions by altering the media (MEA, DRBC, and DG18), and temperature (15°C, 25°C, and 35°C). In total, 937 strains were isolated and identified as belonging to 39 genera and 103 species. Among these, Aspergillus, Cladosporium, Eurotium, Fusarium, and Penicillium were the dominant genera. Fusarium asiaticum (56.3%), Cladosporium cladosporioides (48.6%), Aspergillus tubingensis (37.5%), A. oryzae (31.9%), Eurotium repens (27.1%), and E. chevalieri (25.0%) were frequently isolated from the rice straw obtained from many factories. Twelve genera and 40 species of fungi that were isolated in the rice straw in this study were also isolated from meju. Specifically, A. oryzae, C. cladosporioides, E. chevalieri, E. repens, F. asiaticum, and Penicillium polonicum (11.8%), which are abundant species in meju, were also isolated frequently from rice straw. C. cladosporioides, F. asiaticum, and P. polonicum, which are abundant in the low temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 15°C and 25°C, whereas A. oryzae, E. repens, and E. chevalieri, which are abundant in the high temperature fermentation process of meju fermentation, were frequently isolated from rice straw incubated at 25°C and 35°C. This suggests that the mycobiota of rice straw has a large influence in the mycobiota of meju. The influence of fungi on the rice straw as feed and silage for livestock, and as plant pathogens for rice, are discussed as well.

  10. [Effects of Short-time Conservation Tillage Managements on Greenhouse Gases Emissions from Soybean-Winter Wheat Rotation System].

    PubMed

    Xie, Yan; Chen, Xi; Hu, Zheng-hua; Chen, Shu-tao; Zhang, Han; Ling, Hui; Shen, Shuang-he

    2016-04-15

    Field experiments including one soybean growing season and one winter-wheat growing season were adopted. The experimental field was divided into four equal-area sub-blocks which differed from each other only in tillage managements, which were conventional tillage (T) , no-tillage with no straw cover ( NT) , conventional tillage with straw cover (TS) , and no-tillage with straw cover (NTS). CO₂ and N₂O emission fluxes from soil-crop system were measured by static chamber-gas chromatograph technique. The results showed that: compared with T, in the soybean growing season, NTS significantly increased the cumulative amount of CO₂ (CAC) from soil-soybean system by 27.9% (P = 0.045) during the flowering-podding stage, while NT significantly declined CAC by 28.9% (P = 0.043) during the grain filling-maturity stage. Compared with T, NT significantly declined the cumulative amount of N₂O (CAN) by 28.3% (P = 0.042) during the grain filling-maturity stage. In the winter-wheat growing season, compared with T, TS and NT significantly declined CAC by 24.3% (P = 0.032) and 36.0% (P = 0.041) during the elongation-booting stage, and also declined CAC by 26.8% (P = 0.027) and 33.1% (P = 0.038) during the maturity stage. During the turning-green stage, compared with T treatment, NT, NTS, and TS treatments had no significant effect on CAN, while NTS significant declined CAN by 42.0% (P = 0.035) compared with NT. Our findings suggested that conservation tillage managements had a more significant impact on CO₂ emission than 20 emission from soil-crop system.

  11. Modified Rice Straw as Adsorbent Material to Remove Aflatoxin B1 from Aqueous Media and as a Fiber Source in Fino Bread

    PubMed Central

    Mohamed, Sherif R.; El-Desouky, Tarek A.; Hussein, Ahmed M. S.; Mohamed, Sherif S.; Naguib, Khayria M.

    2016-01-01

    The aims of the current work are in large part the benefit of rice straw to be used as adsorbent material and natural source of fiber in Fino bread. The rice straw was subjected to high temperature for modification process and the chemical composition was carried out and the native rice straw contained about 41.15% cellulose, 20.46% hemicellulose, and 3.91% lignin while modified rice straw has 42.10, 8.65, and 5.81%, respectively. The alkali number was tested and showed an increase in the alkali consumption due to the modification process. The different concentrations of modified rice straw, aflatoxin B1, and pH were tested for removal of aflatoxin B1 from aqueous media and the maximum best removal was at 5% modified rice straw, 5 ng/mL aflatoxin B1, and pH 7. The modified rice straw was added to Fino bread at a level of 5, 10, and 15% and the chemical, rheological, baking quality, staling, and sensory properties were studied. Modified rice straw induced an increase of the shelf life and the produced Fino bread has a better consistency. PMID:26989411

  12. Effects of including NaOH-treated corn straw as a substitute for wheat hay in the ration of lactating cows on performance, digestibility, and rumen microbial profile.

    PubMed

    Jami, E; Shterzer, N; Yosef, E; Nikbachat, M; Miron, J; Mizrahi, I

    2014-03-01

    This study measured the effects of including 5% NaOH-treated corn straw (T-CS) as a substitute for 15% wheat hay in the control total mixed ration (TMR) of lactating cows on performance, digestibility, and rumen microbial profile. Two groups of 21 cows each, similar in initial performance, were fed individually 1 of the 2 TMR examined. Voluntary dry matter intake of cows fed the control TMR was 4.3% higher than that of the T-CS cows, but in vivo dry matter and organic matter digestibilities of both groups were similar. Crude protein digestibility was higher in the control cows but digestibility of neutral detergent fiber polysaccharides (cellulose and hemicelluloses) was higher in the T-CS TMR. This was followed by 4.6% reduction in rumination time of the T-CS group. A slightly higher milk yield was observed in the control cows compared with the T-CS group; however, milk fat and milk protein content were higher in cows fed the T-CS TMR. This was reflected in 1.3% increase in energy-corrected milk yield and 5.34% increase in production efficiency (energy-corrected milk yield/intake) of the T-CS cows compared with the control. Welfare of the cows, as assessed by length of daily recumbence time, was improved by feeding the T-CS TMR relative to the control group. As a whole, the rumen bacterial community was significantly modulated in the T-CS group in the experimental period compared with the preexperimental period, whereas the bacterial community of the control group remained unchanged during this period. Out of the 8 bacterial species that were quantified using real-time PCR, a notable decrease in cellulolytic bacteria was observed in the T-CS group, as well as an increase in lactic acid-utilizing bacteria. These results illustrate the effect of T-CS on the composition of rumen microbiota, which may play a role in improving the performance of the lactating cow. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Reinforcement Effect of Alkali Hydrolyzed Wheat Gluten and Starch in Carboxylated Styrene-Butadiene Composites

    USDA-ARS?s Scientific Manuscript database

    Wheat gluten (WG) and wheat starch (WS) are the protein and carbohydrate obtained from wheat flours. Wheat gluten is not water soluble or dispersible due to its hydrophobic nature. To prepare wheat gluten dispersions, an alkali hydrolysis reaction was carried out to produce a stable aqueous disper...

  14. Chemical composition and functional characteristics of dietary fiber-rich powder obtained from core of maize straw.

    PubMed

    Lv, Jin-Shun; Liu, Xiao-Yan; Zhang, Xiao-Pan; Wang, Lin-Shuang

    2017-07-15

    A novel dietary fiber (MsCDF) based core of maize straw (Core) was prepared by using high boiling solvent of sodium peroxide by high pressure pretreatment (HBSHP). The composition of MsCDF, and several physicochemical properties for MsCDF related to its nutritional quality were investigated. The results revealed that the MsCDF contains high contents total dietary fiber (TDF), soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and two main monosaccharaides, xylose and glucose. Meanwhile, the studies of physicochemical properties of MsCDF indicated that MsCDF performed well water-holding capacity (WHC), oil-holding capacity (OHC), Swelling, solubility (SOL), Glucose dialysis retardation index (GDRI) and adsorption capacity on cholesterol. The results of this study serve as evidence that MsCDF can be used as a functional food additive, Core can be used as a crude material to produce MsCDF and the technology of HBSHP can be used to modify the physico-chemical properties of Core. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Effects of Whole-Grain Rice and Wheat on Composition of Gut Microbiota and Short-Chain Fatty Acids in Rats.

    PubMed

    Han, Fei; Wang, Yong; Han, Yangyang; Zhao, Jianxin; Han, Fenli; Song, Ge; Jiang, Ping; Miao, Haijiang

    2018-05-29

    Diets rich in whole grain (WG) cereals bring lower disease risks compared with refined grain-based diets. We investigated the effects of polished rice (PR), refined wheat (RW), unpolished rice (UPR), and whole wheat (WW) on short-chain fatty acids (SCFAs) and gut microbiota in ileal, cecal, and colonic digesta of normal rats. Animals fed with UPR and WW diets exhibited higher total SCFA in cecal and colonic digesta compared with those fed with PR and RW diets. Wheat diets contributed higher total SCFA than rice diets. In cecal and colonic digesta, animals fed with UPR and WW diets demonstrated higher acetate and butyrate contents than those given PR and RW. Firmicutes were the dominant eumycota in rat ileum digesta (>92% abundance). Cecal and colonic digesta were dominated by Firmicutes, Verrucomicrobia, and Bacteroidetes. UPR and WW affected gut microbiota, decreasing the proportion of Firmicutes to Bacteroidetes. SMB53, Lactobacillus, and Faecalibacterium were the main bacterial genera in ileal digesta. Akkermansia was highest in cecal and colonic digesta. In the colonic digesta of rats, the relative abundance of Akkermansia in rats on wheat diets was higher than that in rats on rice diets ( P < 0.05). Thus, UPR and WW could modulate gut microbiota composition and increase the SCFA concentration. Wheat diet was superior to rice diet in terms of intestinal microbiota adjustment.

  16. Association Mapping in Scandinavian Winter Wheat for Yield, Plant Height, and Traits Important for Second-Generation Bioethanol Production

    PubMed Central

    Bellucci, Andrea; Torp, Anna Maria; Bruun, Sander; Magid, Jakob; Andersen, Sven B.; Rasmussen, Søren K.

    2015-01-01

    A collection of 100 wheat varieties representing more than 100 years of wheat-breeding history in Scandinavia was established in order to identify marker-trait associations for plant height (PH), grain yield (GY), and biomass potential for bioethanol production. The field-grown material showed variations in PH from 54 to 122 cm and in GY from 2 to 6.61 t ha-1. The release of monomeric sugars was determined by high-throughput enzymatic treatment of ligno-cellulosic material and varied between 0.169 and 0.312 g/g dm for glucose (GLU) and 0.146 and 0.283 g/g dm for xylose (XYL). As expected, PH and GY showed to be highly influenced by genetic factors with repeatability (R) equal to 0.75 and 0.53, respectively, while this was reduced for GLU and XYL (R = 0.09 for both). The study of trait correlations showed how old, low-yielding, tall varieties released higher amounts of monomeric sugars after straw enzymatic hydrolysis, showing reduced recalcitrance to bioconversion compared to modern varieties. Ninety-three lines from the collection were genotyped with the DArTseq® genotypic platform and 5525 markers were used for genome-wide association mapping. Six quantitative trait loci (QTLs) for GY, PH, and GLU released from straw were mapped. One QTL for PH was previously reported, while the remaining QTLs constituted new genomic regions linked to trait variation. This paper is one of the first studies in wheat to identify QTLs that are important for bioethanol production based on a genome-wide association approach. PMID:26635859

  17. Cryopreservation of boar semen in mini- and maxi-straws.

    PubMed

    Bwanga, C O; de Braganca, M M; Einarsson, S; Rodriguez-Martinez, H

    1990-10-01

    Split ejaculates from four boars were frozen with a programmable freezing machine, in mini- (0.25 ml) and maxi- (5 ml) plastic straws with an extender at either acidic (6.3) or alkaline (7.4) pH. Glycerol (3%) was used as cryoprotectant. The freezing of the semen was monitored by way of thermocouples placed in the straws. Post-thaw motility and acrosome integrity were evaluated; the latter using phase contrast microscopy, eosin-nigrosin stain and electron microscopy. Post-thaw sperm motility was significantly higher when semen was frozen in mini-straws than in maxi-straws. For the mini-straws, the motility was better when semen was exposed to an acidic environment during freezing, but this beneficial effect of the low extracellular pH was not evident when maxi-straws were thawed. The motility of the spermatozoa diminished significantly during the thermoresistance test (0 h and 2 h time) at 37 degrees C in a similar way for both straws and extracellular pH's. The freezing procedure, no matter the extracellular pH, did not cause major acrosomal damages, but significantly more normal apical ridges were present in the mini-straws than in the maxi-straws. This in vitro evaluation indicated that the freezing method employed was better for mini- than for maxi-straws since the freezing of the 5 ml volumes was not homogeneous, due to the large section area between the surface and the core of the straw.

  18. Amino acid profiles of rumen undegradable protein: a comparison between forages including cereal straws and alfalfa and their respective total mixed rations.

    PubMed

    Wang, B; Jiang, L S; Liu, J X

    2018-06-01

    Optimizing the amino acid (AA) profile of rumen undegradable protein (RUP) can positively affect the amount of milk protein. This study was conducted to improve knowledge regarding the AA profile of rumen undegradable protein from corn stover, rice straw and alfalfa hay as well as the total mixed ratio diets (TMR) based on one of them as forage source [forage-to-concentrate ratio of 45:55 (30% of corn stover (CS), 30% of rice straw (RS), 23% of alfalfa hay (AH) and dry matter basis)]. The other ingredients in the three TMR diets were similar. The RUP of all the forages and diets was estimated by incubation for 16 hr in the rumen of three ruminally cannulated lactating cows. All residues were corrected for microbial colonization, which was necessary in determining the AA composition of RUP from feed samples using in situ method. Compared with their original AA composition, the AA pattern of forages and forage-based diets changed drastically after rumen exposure. In addition, the extent of ruminal degradation of analysed AA was not constant among the forages. The greatest individual AA degradability of alfalfa hay and corn stover was Pro, but was His of rice straw. A remarkable difference was observed between microbial attachment corrected and uncorrected AA profiles of RUP, except for alfalfa hay and His in the three forages and TMR diets. The ruminal AA degradability of cereal straws was altered compared with alfalfa hay but not for the TMR diets. In summary, the AA composition of forages and TMR-based diets changed significantly after ruminal exposure, indicating that the original AA profiles of the feed cannot represent its AA composition of RUP. The AA profile of RUP and ruminal AA degradability for corn stover and rice straw contributed to missing information in the field. © 2017 Blackwell Verlag GmbH.

  19. Effect of Sowing Quantity on Soil Temperature and Yield of Winter Wheat under Straw Strip Mulching in Arid Region of Northwest China

    NASA Astrophysics Data System (ADS)

    Lan, Xuemei; Chai, Yuwei; Li, Rui; Li, Bowen; Cheng, Hongbo; Chang, Lei; Chai, Shouxi

    2018-01-01

    In order to explore the characteristics and relationship between soil temperature and yield of winter wheat, under different sowing quantities conditions of straw mulching conventional drilling in Northwest China, this study took Lantian 26 as material, under the whole corn mulching conventional drilling in Changhe town and Pingxiang town, setting up 3 different seeding quantities of 270 kg/ha (SSMC1), 324 kg/ha (SSMC2) and 405 kg/ha (SSMC3), to study the difference of soil temperature during the growth period of winter wheat and its correlation with yield components. Results showed: the average soil temperature of 0∼25cm in two ecological zones in the whole growth period have a significant change with the increase of sowing quantities; too much seeding had a sharp drop in soil temperature; the highest temperature of SSMC in Changhe town was the middle quantity of SSMC 2; the highest temperature of SSMC in Pingxiang town was the lowest sowing quantity of SSMC1. Diurnal variation of soil temperature at all growth stages showed: with the increase of SSMC, in the morning it increased with the increase of soil depth, noon and evening reducing with the depth of the soil. The average soil temperature of SSMC2 was higher than that of in all the two ecological zones in the whole growth period of SSMC.The maximum day temperature difference of each treatment was at noon. With the increase of SSMC, the yield increase varied with two ecological zones. SSMC of the local conventional sowing quantity of 270kg/ha SSMC1 yield was the highest in Changhe Town. SSMC of the middle sowing quantity SSMC2 of 324kg/ha yield was the highest in Pingxiang town. The difference of grain number per spike was the main cause of yield difference among these 3 treatments. Correlation analysis showed: the correlation among the yield and yield components, growth index and soil temperature varied with different ecological zones; thousand kernel weight and grain number per ear (.964** and.891**) had a

  20. The effect of long or chopped straw on pig behaviour.

    PubMed

    Lahrmann, H P; Oxholm, L C; Steinmetz, H; Nielsen, M B F; D'Eath, R B

    2015-05-01

    In the EU, pigs must have permanent access to manipulable materials such as straw, rope, wood, etc. Long straw can fulfil this function, but can increase labour requirements for cleaning pens, and result in problems with blocked slatted floors and slurry systems. Chopped straw might be more practical, but what is the effect on pigs' behaviour of using chopped straw instead of long straw? Commercial pigs in 1/3 slatted, 2/3 solid pens of 15 pigs were provided with either 100 g/pig per day of long straw (20 pens) or of chopped straw (19 pens). Behavioural observations were made of three focal pigs per pen (one from each of small, medium and large weight tertiles) for one full day between 0600 and 2300 h at each of ~40 and ~80 kg. The time spent rooting/investigating overall (709 s/pig per hour at 40 kg to 533 s/pig per hour at 80 kg), or directed to the straw/solid floor (497 s/pig per hour at 40 kg to 343 s/pig per hour at 80 kg), was not affected by straw length but reduced with age. Time spent investigating other pigs (83 s/pig per hour at 40 kg), the slatted floor (57 s/pig per hour) or pen fixtures (21 s/pig per hour) was not affected by age or straw length. Aggressive behaviour was infrequent, but lasted about twice as long in pens with chopped straw (2.3 s/pig per hour at 40 kg) compared with pens with long straw (1.0 s/pig per hour at 40 kg, P=0.060). There were no significant effects of straw length on tail or ear lesions, but shoulders were significantly more likely to have minor scratches with chopped straw (P=0.031), which may reflect the higher levels of aggression. Smaller pigs showed more rooting/investigatory behaviour, and in particular directed towards the straw/solid floor and the slatted floor than their larger pen-mates. Females exhibited more straw and pen fixture-directed behaviour than males. There were no effects of pig size or sex on behaviour directed towards other pigs. In summary, pigs spent similar amounts of time interacting with straw

  1. Effect of integrating straw into agricultural soils on soil infiltration and evaporation.

    PubMed

    Cao, Jiansheng; Liu, Changming; Zhang, Wanjun; Guo, Yunlong

    2012-01-01

    Soil water movement is a critical consideration for crop yield in straw-integrated fields. This study used an indoor soil column experiment to determine soil infiltration and evaporation characteristics in three forms of direct straw-integrated soils (straw mulching, straw mixing and straw inter-layering). Straw mulching is covering the land surface with straw. Straw mixing is mixing straw with the top 10 cm surface soil. Then straw inter-layering is placing straw at the 20 cm soil depth. There are generally good correlations among the mulch integration methods at p < 0.05, and with average errors/biases <10%. Straw mixing exhibited the best effect in terms of soil infiltration, followed by straw mulching. Due to over-burden weight-compaction effect, straw inter-layering somehow retarded soil infiltration. In terms of soil water evaporation, straw mulching exhibited the best effect. This was followed by straw mixing and then straw inter-layering. Straw inter-layering could have a long-lasting positive effect on soil evaporation as it limited the evaporative consumption of deep soil water. The responses of the direct straw integration modes to soil infiltration and evaporation could lay the basis for developing efficient water-conservation strategies. This is especially useful for water-scarce agricultural regions such as the arid/semi-arid regions of China.

  2. Germination conditions affect selected quality of composite wheat-germinated brown rice flour and bread formulations.

    PubMed

    Charoenthaikij, Phantipha; Jangchud, Kamolwan; Jangchud, Anuvat; Prinyawiwatkul, Witoon; Tungtrakul, Patcharee

    2010-08-01

    Brown rice has been reported to be more nutritious after germination. Germinated brown rice flours (GBRFs) from different steeping conditions (in distilled water [DI, pH 6.8] or in a buffer solution [pH 3] for either 24 or 48 h at 35 degrees C) were evaluated in this study. GBRF obtained from brown rice steeped at pH 3 for 48 h contained the highest amount of free gamma aminobutyric acid (GABA; 67 mg/100 g flour). The composite flour (wheat-GBRF) at a ratio of 70 : 30 exhibited significantly lower peak viscosity (PV) (56.99 - 132.45 RVU) with higher alpha-amylase activity (SN = 696 - 1826) compared with those of wheat flour (control) (PV = 136.46 RVU and SN = 1976). Bread formulations, containing 30% GBRF, had lower loaf volume and greater hardness (P < 0.05) than the wheat bread. However, the hardness of bread containing 30% GBRF (except at pH 6.8 and 24 h) was significantly lower than that of bread containing 30% nongerminated brown rice flour (BRF). Acceptability scores for aroma, taste, and flavor of breads prepared with or without GBRFs (30% substitution) were not significantly different, with the mean score ranging from 6.1 (like slightly) to 7 (like moderately). Among the bread formulations containing GBRF, the one with GBRF prepared after 24 h steeping at pH 3 had a slightly higher (though not significant) overall liking score (6.8). This study demonstrated that it is feasible to substitute wheat flour with up to 30% GBRF in bread formulation without negatively affecting sensory acceptance. Practical Application: Our previous study revealed that flours from germinated brown rice have better nutritional properties, particularly gamma-aminobutyric acid (GABA), than the nongerminated one. This study demonstrated feasibility of incorporating up to 30% germinated brown rice flour in a wheat bread formulation without negatively affecting sensory acceptance. In the current United States market, this type of bread may be sold as frozen bread which would have a

  3. Fermentation of wheat: effects of backslopping different proportions of pre-fermented wheat on the microbial and chemical composition.

    PubMed

    Moran, Colm A; Scholten, Ronald H J; Tricarico, Juan M; Brooks, Peter H; Verstegen, Martin W A

    2006-04-01

    The objective of the study was to examine effect of backslop on the chemical and microbiological characteristics of fermented wheat (FW). Coarsely ground wheat was mixed with water (1:3 wt/wt) and inoculated with 6 log cfu ml(-1) each of an overnight culture of Lactobacillus plantarum and Pediococcus pentosaceus. Four fermentation treatments were conducted in 45 1, closed, PVC containers over 48 hours. Three treatments investigated the benefits of the addition of previously fermented wheat (backslopping, BSL) at different proportions (0.20, 0.33 or 0.42 kg) to freshly prepared wheat. The control treatment contained no addition of BSL. Elimination of coliforms from the FW within 48 h was only achieved through backslopping; where coliform bacteria counts decreased from approximately 6.5 log10 cfu ml(-1) to less than 3 log10 cfu ml(-1). There was no apparent advantage in increasing the backslop proportion above 0.20. However, the exclusion of coliform bacteria required the pH to remain below 4.0 for at a minimum of 24 h. The results of these studies indicate that fermentation of wheat has the potential to reduce the risk of feed-borne colibacillosis and provides a practical alternative to producers that cannot ferment multiple diets or have limited fermentation capacity.

  4. Biocontrol of the toxigenic plant pathogen Fusarium culmorum by soil fauna in an agroecosystem.

    PubMed

    Meyer-Wolfarth, Friederike; Schrader, Stefan; Oldenburg, Elisabeth; Weinert, Joachim; Brunotte, Joachim

    2017-08-01

    In 2011 and 2013, a field experiment was conducted in a winter wheat field at Adenstedt (northern Germany) to investigate biocontrol and interaction effects of important members of the soil food web (Lumbricus terrestris, Annelida; Folsomia candida, Collembola and Aphelenchoides saprophilus, Nematoda) on the phytopathogenic fungus Fusarium culmorum in wheat straw. Therefore, soil fauna was introduced in mesocosms in defined numbers and combinations and exposed to either Fusarium-infected or non-infected wheat straw. L. terrestris was introduced in all faunal treatments and combined either with F. candida or A. saprophilus or both. Mesocosms filled with a Luvisol soil, a cover of different types of wheat straw and respective combinations of faunal species were established outdoors in the topsoil of a winter wheat field after harvest of the crop. After a time span of 4 and 8 weeks, the degree of wheat straw coverage of mesocosms was quantified to assess its attractiveness for the soil fauna. The content of Fusarium biomass in residual wheat straw and soil was determined using a double-antibody sandwich (DAS)-ELISA method. In both experimental years, the infected wheat straw was incorporated more efficiently into the soil than the non-infected control straw due to the presence of L. terrestris in all faunal treatments than the non-infected control straw. In addition, Fusarium biomass was reduced significantly in all treatments after 4 weeks (2011: 95-99%; 2013:15-54%), whereupon the decline of fungal biomass was higher in faunal treatments than in non-faunal treatments and differed significantly from them. In 2011, Fusarium biomass of the faunal treatments was below the quantification limit after 8 weeks. In 2013, a decline of Fusarium biomass was observed, but the highest content of Fusarium biomass was still found in the non-faunal treatments after 8 weeks. In the soil of all treatments, Fusarium biomass was below the quantification limit. The earthworm species

  5. Effect of biological pretreatments in enhancing corn straw biogas production.

    PubMed

    Zhong, Weizhang; Zhang, Zhongzhi; Luo, Yijing; Sun, Shanshan; Qiao, Wei; Xiao, Meng

    2011-12-01

    A biological pretreatment with new complex microbial agents was used to pretreat corn straw at ambient temperature (about 20°C) to improve its biodegradability and anaerobic biogas production. A complex microbial agent dose of 0.01% (w/w) and pretreatment time of 15 days were appropriate for biological pretreatment. These treatment conditions resulted in 33.07% more total biogas yield, 75.57% more methane yield, and 34.6% shorter technical digestion time compared with the untreated sample. Analyses of chemical compositions showed 5.81-25.10% reductions in total lignin, cellulose, and hemicellulose contents, and 27.19-80.71% increases in hot-water extractives; these changes contributed to the enhancement of biogas production. Biological pretreatment could be an effective method for improving biodegradability and enhancing the highly efficient biological conversion of corn straw into bioenergy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Preparation and characterization of a novel graphene/biochar composite for aqueous phenanthrene and mercury removal.

    PubMed

    Tang, Jingchun; Lv, Honghong; Gong, Yanyan; Huang, Yao

    2015-11-01

    A graphene/biochar composite (G/BC) was synthesized via slow pyrolysis of graphene (G) pretreated wheat straw, and tested for the sorption characteristics and mechanisms of representative aqueous contaminants (phenanthrene and mercury). Structure and morphology analysis showed that G was coated on the surface of biochar (BC) mainly through π-π interactions, resulting in a larger surface area, more functional groups, greater thermal stability, and higher removal efficiency of phenanthrene and mercury compared to BC. Pseudo second-order model adequately simulated sorption kinetics, and sorption isotherms of phenanthrene and mercury were simulated well by dual-mode and BET models, respectively. FTIR and SEM analysis suggested that partitioning and surface sorption were dominant mechanisms for phenanthrene sorption, and that surface complexation between mercury and C-O, CC, -OH, and OC-O functional groups was responsible for mercury removal. The results suggested that the G/BC composite is an efficient, economic, and environmentally friendly multifunctional adsorbent for environmental remediation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. 77 FR 59577 - Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or on Various...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-28

    ... pyroxasulfone and its metabolites in or on wheat (grain, straw, forage, and hay). This document corrects a... follows: On page 43565, second column, first full paragraph, item ``13.,'' line 24, correct ``wheat, grain at 0.6 ppm'' to read ``wheat, straw at 0.6 ppm.'' List of Subjects Environmental protection...

  8. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.).

    PubMed

    Gao, Xin; Liu, Tianhong; Yu, Jing; Li, Liqun; Feng, Yi; Li, Xuejun

    2016-04-15

    Glutenin is one of the critical gluten proteins that affect the processing quality of wheat dough. High-molecular-weight glutenin subunits (HMW-GS) affect rheological behavior of wheat dough. This research demonstrated the effects of four variations of HMW-GS composition at the Glu-B1 locus on secondary and micro structures of gluten and rheological properties of wheat dough, using the bread wheat Xinong 1330 and its three near-isogenic lines (NILs). Results indicated that the Amide I bands of the four wheat lines shifted slightly, but the secondary structure, such as content of α-helices, β-sheets, disulfide bands, tryptophan bands and tyrosine bands, differed significantly among the four NILs. The micro structure of gluten in NIL 2 (Bx14+By15) and NIL 3 (Bx17+By18) showed more cross linkage, with two contrasting patterns. Correlation analysis demonstrated that the content of β-sheets and disulfide bonds has a significant relationship with dough stability, which suggests that the secondary structures could be used as predictors of wheat quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Germinated wheat: Phytochemical composition and mixing characteristics

    USDA-ARS?s Scientific Manuscript database

    Germinated grain recently attracts interest due to its beneficial effect on human health. In this research, whole wheat flour samples obtained after three days and five days of germination were analyzed for biochemical components, mixing quality, and effects on human breast cancer cells. Germinati...

  10. 40 CFR 180.439 - Thifensulfuron methyl; tolerances for residues.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... million Barley, grain 0.05 Barley, hay 0.8 Barley, straw 0.10 Canola, seed 0.02 Corn, field, forage 0.10 Corn, field, grain 0.05 Corn, field, stover 0.10 Cotton, gin byproducts 0.02 Cotton, undelinted seed 0... Soybean 0.10 Wheat, forage 2.5 Wheat, grain 0.05 Wheat, hay 0.7 Wheat, straw 0.10 (b) Section 18 emergency...

  11. Aortic sudanophilia an zinc-copper ratios in the liver of vervet monkeys fed different types of dietary fibre.

    PubMed

    Klevay, L M; Mendelsohn, D; Vanderwatt, J J; Davidson, L M; Kritchevsky, D

    1981-04-18

    Vervet monkeys (Cercopithecus aethiops pygerethrus) were fed a semipurified diet containing 40% sucrose, 25% casein, 14% hydrogenated coconut oil and 15% fibre for 6 months. Alfalfa, cellulose, or wheat straw was the source of the fibre. All the diets led to aortic sudanophilia, but the group fed wheat straw had the highest copper level in the liver and the least sudanophilia. The order to severity of the sudanophilia, the ratio of zinc to copper in the fibers, and the ratio of zinc to copper in the liver were: alfalfa-fed group greater than cellulose-fed group greater than wheat straw-fed group. These findings, which may have resulted from the relatively large amount of copper in the wheat straw, are consonant with observations on lipid metabolism in other species.

  12. Optimization of uncatalyzed steam explosion pretreatment of rapeseed straw for biofuel production.

    PubMed

    López-Linares, Juan C; Ballesteros, Ignacio; Tourán, Josefina; Cara, Cristóbal; Castro, Eulogio; Ballesteros, Mercedes; Romero, Inmaculada

    2015-08-01

    Rapeseed straw constitutes an agricultural residue with great potential as feedstock for ethanol production. In this work, uncatalyzed steam explosion was carried out as a pretreatment to increase the enzymatic digestibility of rapeseed straw. Experimental statistical design and response surface methodology were used to evaluate the influence of the temperature (185-215°C) and the process time (2.5-7.5min). According to the rotatable central composite design applied, 215°C and 7.5min were confirmed to be the optimal conditions, considering the maximization of enzymatic hydrolysis yield as optimization criterion. These conditions led to a maximum yield of 72.3%, equivalent to 81% of potential glucose in pretreated solid. Different configurations for bioethanol production from steam exploded rapeseed straw were investigated using the pretreated solid obtained under optimal conditions as a substrate. As a relevant result, concentrations of ethanol as high as 43.6g/L (5.5% by volume) were obtained as a consequence of using 20% (w/v) solid loading, equivalent to 12.4g ethanol/100g biomass. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Overproduction of ligninolytic enzymes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  14. Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars.

    PubMed

    Seki, Masako; Chono, Makiko; Nishimura, Tsutomu; Sato, Mikako; Yoshimura, Yasuhiro; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2013-09-01

    The Ppd-A1 genotype of 240 Japanese wheat cultivars and 40 foreign cultivars was determined using a PCR-based method. Among Japanese cultivars, only 12 cultivars, all of which were Hokkaido winter wheat, carried the Ppd-A1a allele, while this allele was not found in Hokkaido spring wheat cultivars or Tohoku-Kyushu cultivars. Cultivars with a photoperiod-insensitive allele headed 6.9-9.8 days earlier in Kanto and 2.5 days earlier in Hokkaido than photoperiod-sensitive cultivars. The lower effect of photoperiod-insensitive alleles observed in Hokkaido could be due to the longer day-length at the spike formation stage compared with that in Kanto. Pedigree analysis showed that 'Purple Straw' and 'Tohoku 118' were donors of Ppd-A1a and Ppd-D1a in Hokkaido wheat cultivars, respectively. Wheat cultivars recently developed in Hokkaido carry photoperiod-insensitive alleles at a high frequency. For efficient utilization of Ppd-1 alleles in the Hokkaido wheat-breeding program, the effect of Ppd-1 on growth pattern and grain yield should be investigated. Ppd-A1a may be useful as a unique gene source for fine tuning the heading time in the Tohoku-Kyushu region since the effect of Ppd-A1a on photoperiod insensitivity appears to differ from the effect of Ppd-B1a and Ppd-D1a.

  15. Changes in the phenolic composition of pancake fractions made from refined and whole-wheat flour of two wheat varieties

    USDA-ARS?s Scientific Manuscript database

    In this study, we investigated the changes in the levels of phenolic acids during pancake preparation from refined and whole-wheat flours of two wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenolic acids, namely ultrasonic-assisted extrac...

  16. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain.

    PubMed

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-12-19

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: "Primadur", an elite cultivar with high yellow index, and "T1303", an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in "Primadur", with a general decrease in "T1303". Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways.

  17. Effects of Heat Stress on Metabolite Accumulation and Composition, and Nutritional Properties of Durum Wheat Grain

    PubMed Central

    de Leonardis, Anna Maria; Fragasso, Mariagiovanna; Beleggia, Romina; Ficco, Donatella Bianca Maria; de Vita, Pasquale; Mastrangelo, Anna Maria

    2015-01-01

    Durum wheat (Triticum turgidum (L.) subsp. turgidum (L.) convar. durum (Desf.)) is momentous for human nutrition, and environmental stresses can strongly limit the expression of yield potential and affect the qualitative characteristics of the grain. The aim of this study was to determine how heat stress (five days at 37 °C) applied five days after flowering affects the nutritional composition, antioxidant capacity and metabolic profile of the grain of two durum wheat genotypes: “Primadur”, an elite cultivar with high yellow index, and “T1303”, an anthocyanin-rich purple cultivar. Qualitative traits and metabolite evaluation (by gas chromatography linked to mass spectrometry) were carried out on immature (14 days after flowering) and mature seeds. The effects of heat stress were genotype-dependent. Although some metabolites (e.g., sucrose, glycerol) increased in response to heat stress in both genotypes, clear differences were observed. Following the heat stress, there was a general increase in most of the analyzed metabolites in “Primadur”, with a general decrease in “T1303”. Heat shock applied early during seed development produced changes that were observed in immature seeds and also long-term effects that changed the qualitative and quantitative parameters of the mature grain. Therefore, short heat-stress treatments can affect the nutritional value of grain of different genotypes of durum wheat in different ways. PMID:26703576

  18. Ethanol/water pulps from sugar cane straw and their biobleaching with xylanase from Bacillus pumilus.

    PubMed

    Moriya, Regina Y; Gonçalves, Adilson R; Duarte, Marta C T

    2007-04-01

    The influence of independent variables (temperature and time) on the cooking of sugar cane straw with ethanol/water mixtures was studied to determine operating conditions that obtain pulp with high cellulose contents and a low lignin content. An experimental 2(2) design was applied for temperatures of 185 and 215 degrees C, and time of 1 and 2.5 h with the ethanol/water mixture concentration and constant straw-to-solvent ratio. The system was scaled-up at 200 degrees C cooking temperature for 2 h with 50% ethanol-water concentration, and 1:10 (w/v) straw-to-solvent ratio to obtain a pulp with 3.14 cP viscosity, 58.09 kappa-number, and the chemical composition of the pulps were 3.2% pentosan and 31.5% lignin. Xylanase from Bacillus pumilus was then applied at a loading of 5-150 IU/g dry pulp in the sugar cane straw ethanol/water pulp at 50 degrees C for 2 and 20 h. To ethanol/water pulps, the best enzyme dosage was found to be 20 IU/g dry pulp at 20 h, and a high enzyme dosage of 150 IU/g dry pulp did not decrease the kappa-number of the pulp.

  19. The Research and Application of Sustainable Long-release Carbon Material with Agricultural Waste

    NASA Astrophysics Data System (ADS)

    Wen, Z.

    2017-12-01

    (1) The element analysis shown that ten kinds of agricultural wastes containing a certain amount of C, N, H elements, the highest content of C element, and t value ranges from 36.02% 36.02%, and the variation of C, N, H elements content in difference materials was not significant. The TOC concentration of sugar cane was up to 38.66 mg·g-1, and quality ratio was 39‰, significantly lower than C elements content. The released TOC quality of the rest materials were 2.36 2.36 mg·g-1, and the order from high to low were the soybean straw, rice straw, corn straw, rice husk, poplar branches, wheat straw, reeds, corn cob and wood chips respectively. The long-term leaching experiment of selected Optimized agricultural waste showed that the TOC content in leaching solution rise rapidly to peak value and was stable afterwards, with the concentration of 4.59 19.46 mg·g-1. The TOC releasing amount order was same with the short-term leaching experiment. (2) The releasing of nitrate nitrogen in ten kinds of agricultural waste was low (< 0.08mg·g-1), among which corn straw was up to 0.12mg·g-1, and the rest were all below 0.04mg·g-1 without accumulation. Most of the ammonia nitrogen concentration in leachate was lower than 0.3mg·g-1. The kjeldahl nitrogen in the corn straw, soybean straw, rice straw, reed, rice husk, and sugar cane leachate (0.81 1.65mg·g-1) were higher than that of poplar branches, corn cob and wood chips (< 0.30mg·g-1). The organic composition analysis of above carbon source shown that organic acid in leachate was mainly formic acid, acetic acid, oxalic acid, fumaric acid and other small molecule organic acids, and sugars was mainly cellobiose, glucose, fructose and xylose. Substance concentration was higher in sugar cane leachate, and the small molecular organic acid concentration was higher in the corn straw, rice husk and wheat straw leachate. Above all, it can be concluded that the sugar cane, corn straw, rice husk, wheat straw, corn cob, wood were

  20. Development of a new lactic acid bacterial inoculant for fresh rice straw silage.

    PubMed

    Kim, Jong Geun; Ham, Jun Sang; Li, Yu Wei; Park, Hyung Soo; Huh, Chul-Sung; Park, Byung-Chul

    2017-07-01

    Effects of newly isolated Lactobacillus plantarum on the fermentation and chemical composition of fresh rice straw silage was evaluated in this study. Lactic acid bacteria (LAB) from good crop silage were screened by growing them in MRS broth and a minimal medium with low carbohydrate content. Selected LAB (LAB 1821) were Gram-positive, rods, catalase negative, and were identified to be Lactobacillus plantarum based on their biochemical characteristics and a 16S rRNA analysis. Fresh rice straw was ensiled with two isolated LAB (1821 and 1841), two commercial inoculants (HM/F and P1132) and no additive as a control. After 2 months of storage at ambient temperature, rice straw silages treated with additives were well-preserved, the pH values and butyric and acetic acid contents were lower, and the lactic acid content and lactic/acetic acid ratio were higher than those in the control (p<0.05). Acidity (pH) was lowest, and lactic acid highest, in 1821-treated silage (p<0.05). The NH 3 -N content decreased significantly in inoculant-treated silage (p<0.05) and the NH 3 -N content in 1821-treated silage was lowest among the treatments. The dry matter (DM) content of the control silage was lower than that of fresh rice straw (p<0.05), while that of the 1841- and p1174-inoculant-treated silages was significantly higher than that of HM/F-treated silage. Microbial additives did not have any significant (p>0.05) effect on acid detergent fiber or neutral detergent fiber contents. Crude protein (CP) content and in vitro DM digestibility (IVDMD) increased after inoculation of LAB 1821 (p<0.05). LAB 1821 increased the CP, IVDMD, lactic acid content and ratio of lactic acid to acetic acid in rice straw silage and decreased the pH, acetic acid, NH 3 -N, and butyric acid contents. Therefore, adding LAB 1821 improved the fermentation quality and feed value of rice straw silage.

  1. Comprehensive Identification and Bread-Making Quality Evaluation of Common Wheat Somatic Variation Line AS208 on Glutenin Composition

    PubMed Central

    Du, Lipu; Cao, Xinyou; Zhang, Xiaoxiang; Zhou, Yang; Yan, Yueming; Ye, Xingguo

    2016-01-01

    High molecular weight glutenin subunits (HMW-GSs) are important seed storage proteins in wheat (Triticum aestivum) that determine wheat dough elasticity and processing quality. Clarification of the defined effectiveness of HMW-GSs is very important to breeding efforts aimed at improving wheat quality. To date, there have no report on the expression silencing and quality effects of 1Bx20 and 1By20 at the Glu-B1 locus in wheat. A wheat somatic variation line, AS208, in which both 1Bx20 and 1By20 at Glu-B1 locus were silenced, was developed recently in our laboratory. Evaluation of agronomic traits and seed storage proteins by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and reversed-phase high performance liquid chromatography (RP-HPLC) indicated that AS208 was highly similar to its parental cultivar Lunxuan987 (LX987), with the exception that the composition and expression of HMW-GSs was altered. The 1Bx20 and 1By20 in AS208 were further identified to be missing by polymerase chain reaction (PCR) and quantitative real-time RT-PCR (qRT-PCR) assays. Based on the PCR results for HMW-GS genes and their promoters in AS208 compared with LX987, 1Bx20 and 1By20 were speculated to be deleted in AS208 during in vitro culture. Quality analysis of this line with Mixograph, Farinograph, and Extensograph instruments, as well as analysis of bread-making quality traits, demonstrated that the lack of the genes encoding 1Bx20 and 1By20 caused various negative effects on dough processing and bread-making quality traits, including falling number, dough stability time, mixing tolerance index, crude protein values, wet gluten content, bread size, and internal cell structure. AS208 can potentially be used in the functional dissection of other HMW-GSs as a plant material with desirable genetic background, and in biscuit making industry as a high-quality weak gluten wheat source. PMID:26765256

  2. Gasification of rice straw in a fluidized-bed gasifier for syngas application in close-coupled boiler-gasifier systems.

    PubMed

    Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I

    2012-04-01

    The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Bioconversion of Straw Into Improved Fodder: Mycoprotein Production and Cellulolytic Acivity of Rice Straw Decomposing Fungi

    PubMed Central

    2005-01-01

    Sixty two out of the sixty four species of fungal isolates tested could produce both exo-β1,4-gluconase (C1) and endo-β1,4-gluconase (Cx) on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at 25℃ and at 45℃, respectively. Eleven species could grow at both 25℃ and 45℃ while, four species appeared only at 45℃. The most cellulolytic species at 25℃ was Trichoderma koningii producing 1.164 C1 (mg glucose/1 ml culture filtrate/1 hr) and 2.690 Cx on pure cellulose, and 0.889 C1 and 1.810 Cx on rice straw, respectively. At 45℃, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and 45℃ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively. PMID:24049480

  4. Bioconversion of straw into improved fodder: mycoprotein production and cellulolytic acivity of rice straw decomposing fungi.

    PubMed

    Helal, G A

    2005-06-01

    Sixty two out of the sixty four species of fungal isolates tested could produce both exo-β1,4-gluconase (C1) and endo-β1,4-gluconase (Cx) on pure cellulose and rice straw as carbon source in Czapek's medium. Fifty-eight and fifteen species were able to grow at 25℃ and at 45℃, respectively. Eleven species could grow at both 25℃ and 45℃ while, four species appeared only at 45℃. The most cellulolytic species at 25℃ was Trichoderma koningii producing 1.164 C1 (mg glucose/1 ml culture filtrate/1 hr) and 2.690 Cx on pure cellulose, and 0.889 C1 and 1.810 Cx on rice straw, respectively. At 45℃, the most active thermotolerant species were Aspergillus terreus, followed by A. fumigatus. Talaromyces thermophilus was the highest active thermophilic species followed by Malbranchea sulfurea. Most of these species were also active in fermentation of rice straw at 25 and 45℃ (P<0.05). The most active ones were T. koningii, A. ochraceus and A. terreus, which produced 201.5, 193.1 and 188.1 mg crude protein/g dry straw, respectively.

  5. [Proximate analysis of straw by near infrared spectroscopy (NIRS)].

    PubMed

    Huang, Cai-jin; Han, Lu-jia; Liu, Xian; Yang, Zeng-ling

    2009-04-01

    Proximate analysis is one of the routine analysis procedures in utilization of straw for biomass energy use. The present paper studied the applicability of rapid proximate analysis of straw by near infrared spectroscopy (NIRS) technology, in which the authors constructed the first NIRS models to predict volatile matter and fixed carbon contents of straw. NIRS models were developed using Foss 6500 spectrometer with spectra in the range of 1,108-2,492 nm to predict the contents of moisture, ash, volatile matter and fixed carbon in the directly cut straw samples; to predict ash, volatile matter and fixed carbon in the dried milled straw samples. For the models based on directly cut straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.92% and 0.76% for moisture, 0.94% and 0.84% for ash, 0.88% and 0.82% for volatile matter, and 0.75% and 0.65% for fixed carbon, respectively. For the models based on dried milled straw samples, the determination coefficient of independent validation (R2v) and standard error of prediction (SEP) were 0.98% and 0.54% for ash, 0.95% and 0.57% for volatile matter, and 0.78% and 0.61% for fixed carbon, respectively. It was concluded that NIRS models can predict accurately as an alternative analysis method, therefore rapid and simultaneous analysis of multicomponents can be achieved by NIRS technology, decreasing the cost of proximate analysis for straw.

  6. [Effects of rice straw returning on the community structure and diversity of nitrogen-fixing gene (nifH) in paddy soil].

    PubMed

    Zhang, Miao-miao; Liu, Yi; Sheng, Rong; Qin, Hong-ling; Wu, Yan-zheng; Wei, Wen-xue

    2013-08-01

    Taking a long-term fertilization experiment in Taoyuan Agro-ecosystem Research Station under Chinese Academy of Sciences as the platform, and selecting four treatments (no fertilization, CK; rice straw returning, C; nitrogen, phosphorus and potassium fertilization, NPK; and NPK+C) as the objects, soil samples were collected at the tillering, booting and maturing stages of rice, and the abundance, composition and diversity of nifH-containing bacterial community were measured by real-time quantitative PCR and terminal restriction fragment length polymorphism (T-RFLP), aimed to understand the effects of rice straw returning on the nifH-containing bacterial community in paddy soil. Compared with CK, treatments NPK+C and NPK increased the abundance of nifH-containing microorganisms significantly (except at tillering stage), and NPK+C had the highest abundance of nifH-containing microorganisms. Under the effects of long-term fertilization, the composition of nifH gene community in CK differed obviously from that in the other three treatments. The nifH composition had definite difference between C and NPK, but less difference between NPK and NPK+C. Long-term fertilization did not induce significant changes in nifH diversity. Therefore, long-term rice straw returning not only induced the changes of nifH gene community composition, but also resulted in a significant increase in the abundance of nifH-containing community, and hence, the increase of soil nitrogen fixing capacity.

  7. Translations on USSR Science and Technology, Biomedical and Behavioral Sciences, Number 43

    DTIC Science & Technology

    1978-08-15

    resistance to the pathogen of bacterial angular blight is related to their resistance to powdery mildew (A. P. Khar’kova, N. M. Rudenko), powdery ...waste ■ Raw material for hvdrolvsates . Hydrolysate components, % flax & hemp fiber rice straw sun- flower stalks grape vines wheat straw...hydrolysates of rice and wheat straw, sunflower, stalks, grapevine cuttings, spent tanbark, flax and hemp fiber. Chromatographie analysis defined the

  8. Economic benefit analysis of cultivating Pleurotus ostreatus with rape straw

    NASA Astrophysics Data System (ADS)

    Guan, Qinlan; Gong, Mingfu; Tang, Mei

    2018-04-01

    The cultivation of Pleurotus ostreatus with rape straw not only can save the cultivation cost of P. ostreatus, but also can reuse the resources and protect the environment. By adding different proportion of rape straw to the cultivation material of P. ostreatus, the reasonable amount of rape straw was selected and the economic benefit of P. ostreatus cultivated with the optimum amount of rape straw was analyzed. The results showed that adding 10% to 40% rape straw to the cultivation material of P. ostreatus did not affect the yield and biological conversion rate of P. ostreatus, and the ratio of production and investment of the amount of rape straw in the range of 10% to 50% was higher than of cottonseed husk alone as the main material of the formula.

  9. 40 CFR 180.497 - Clofencet; tolerances for residues.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., except rice, sweet corn, wheat, and wild rice; forage 4.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; hay 15.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; stover 1.0 7/14/12 Grain, cereal...

  10. 40 CFR 180.497 - Clofencet; tolerances for residues.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., except rice, sweet corn, wheat, and wild rice; forage 4.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; hay 15.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; stover 1.0 7/14/12 Grain, cereal...

  11. 40 CFR 180.497 - Clofencet; tolerances for residues.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., except rice, sweet corn, wheat, and wild rice; forage 4.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; hay 15.0 7/14/12 Grain, cereal, forage, fodder and straw, group 16, except rice, sweet corn, wheat, and wild rice; stover 1.0 7/14/12 Grain, cereal...

  12. Celluclast and Cellic® CTec2: Saccharification/fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing.

    PubMed

    Rodrigues, Ana Cristina; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, Miguel

    2015-11-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic(®) CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes - cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and β-glucosidase - of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied. The efficiency of hydrolysis with an enzyme load of 10 FPU/g cellulose reached >98% using Cellic(®) CTec2, while for Celluclast a conversion of 52% and 81%, was observed without and with β-glucosidase supplementation, respectively. The decrease of Cellic(®) CTec2 activity observed along the process was related to deactivation of Cel7A rather than of Cel7B and β-glucosidase. The adsorption/desorption profiles during hydrolysis/fermentation revealed that a large fraction of active enzymes remained adsorbed to the solid residue throughout the process. Surprisingly, this was the case of Cel7A and β-glucosidase from Cellic, which remained adsorbed to the solid fraction along the entire process. Alkaline washing was used to recover the enzymes from the solid residue. This method allowed efficient recovery of Celluclast enzymes; however, this may be achieved only when minor amounts of cellulose remain present. Regarding the Cellic formulation, neither the presence of cellulose nor lignin restricted an efficient desorption of the enzymes at alkaline pH. This work shows that the recycling strategy must be customized for each particular formulation, since the enzymes found e.g. in Cellic and Celluclast bear quite different behaviour regarding the solid-liquid distribution, stability and cellulose and lignin affinity. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Evaluation of two local cowpea species for nutrient, antinutrient, and phytochemical compositions and organoleptic attributes of their wheat-based cookies

    PubMed Central

    Ayogu, Rufina N. B.; Nnam, Ngozi M.; Mbah, Mirabel

    2016-01-01

    Background Childhood and adolescent malnutrition is a function of inadequate intake. Cookies are favourite snacks of children and adolescents. Objective This work determined the nutrient, antinutrient, and phytochemical compositions of two local cowpea (oraludi and apama) flours and evaluated the organoleptic properties of their wheat-based cookies. Design The two local cowpea species were processed into flours separately and blended with wheat on a 56-g protein basis. Chemical compositions of the processed cowpea flours were analysed using standard methods. Organoleptic attributes were evaluated with a nine-point Hedonic scale. Statistical analysis, which involved mean and standard deviations, were computed by analysis of variance, and Duncan's new multiple range tests were used to separate and compare group means of sensory evaluation data, with significance accepted at P<0.05. Results The results revealed that oraludi had superior percentage values compared to apama in protein (26.22 and 20.88), fat (7.98 and 6.65), and ash (3.81 and 3.13), while apama proved superior in moisture (9.76 and 7.82), crude fibre (5.49 and 4.91), and carbohydrate (54.09 and 49.26). The values were higher for oraludi than apama in iron (8.62 and 6.49 mg), zinc (1.61 and 0.95 mg), and beta-carotene (223.24 and 190.63 mg) but lower in sodium (34.79 and 56.72 mg), potassium (25.73 and 30.65 mg), phosphorus (13.35 and 18.26 mg), thiamine (5.33 and 9.41 mg), vitamin C (16.63 and 21.09 mg), and vitamin E (0.51 and 0.67 mg). Apama had 0.06 mg phytate, 0.09 mg oxalate, 15.22 mg tannins, 3.59 mg flavonoids, and 0.19 mg saponin. Oraludi had 0.03 mg phytate, 0.32 mg oxalate, 15.94 mg tannins, 3.14 mg flavonoid, and 0.13 mg saponin. Mean scores of general acceptability for wheat:apama (80:20) and wheat:oraludi:apama (60:20:20) cookies (7.71 and 7.41) were superior (P<0.05) to others. Conclusions Oraludi and apama proved nutrient dense. Their use improved the acceptability of some of the wheat

  14. Modeling of cumulative ash curve in hard red spring wheat

    USDA-ARS?s Scientific Manuscript database

    Analysis of cumulative ash curves (CAC) is very important for evaluation of milling quality of wheat and blending different millstreams for specific applications. The aim of this research was to improve analysis of CAC. Five hard red spring wheat genotype composites from two regions were milled on...

  15. Registration of Warhorse wheat

    USDA-ARS?s Scientific Manuscript database

    'Warhorse' (Reg. No. CV-1096, PI 670157) hard red winter (HRW) wheat (Triticum aestivum L.) was developed and released by the Montana Agricultural Experiment Station in September 2013. Warhorse is of unknown pedigree, derived from a composite of three topcrosses made to the same F1 population in 200...

  16. Effects of soil properties on the transfer of cadmium from soil to wheat in the Yangtze River delta region, China--a typical industry-agriculture transition area.

    PubMed

    Wang, Cheng; Ji, Junfeng; Yang, Zhongfang; Chen, Lingxiao; Browne, Patrick; Yu, Ruilian

    2012-08-01

    In order to identify the effects of soil properties on the transfer of Cd from soil to wheat under actual field conditions, 126 pairs of topsoil and wheat samples were collected from the Yangtze River delta region, China. Relevant parameters (Cd, Ca, Mg, Fe, Mn, Zn, N, P, K, S, pH, total organic carbon, and speciation of soil Cd) in soil and wheat tissues were analyzed, and the results were treated by statistical methods. Soil samples (19.8%) and 14.3% of the wheat grain samples exceeded the relevant maximum permissible Cd concentrations in China for agricultural soil and wheat grain, respectively. The major speciations of Cd in soil were exchangeable, bound to carbonates and fulvic and humic acid fraction, and they were readily affected by soil pH, total Ca, Mg, S and P, DTPA-Fe, Ex-Ca, and Ex-Mg. Cadmium showed a strong correlation with Fe, S, and P present in the grain and the soil, whereas there was no significant correlation in the straw or root. Generally, soil pH, Ca, Mg, Mn, P, and slowly available K restricted Cd transfer from soil to wheat, whereas soil S, N, Zn, DTPA-Fe, and total organic carbon enhance Cd uptake by wheat.

  17. Integrated gasification combined cycle using Egyptian Maghara coal-rice straw feedstock.

    PubMed

    Hegazy, A; Ghallab, A O; Ashour, F H

    2017-06-01

    Rice straw is an agricultural waste that causes an annoying problem in Egypt if it is not well exploited. This study focuses on using this waste in power generation by co-gasification of Egyptian Maghara coal and rice straw blends using entrained flow gasifier technology. Aspen Plus was used to conduct a parametric study for investigation of the effect of changing the inputs to the gasifier on the produced gas composition. Three different input parameters, influencing the performance of the gasifier, including the percentage of coal to rice straw in the blend, the fraction of added water to the blend, and the mass percentage of oxygen with respect to the mass of the blend fed to the gasifier were analysed. Two alternative power production schemes (with and without carbon capturing) have been investigated. The obtained optimum feed conditions are: 40% coal in the feed blend, 20% water concentration in the feed slurry, and 80% oxygen with respect to the dry feed blend to the gasifier. For (10 0000 kg per hour) of the feed blend, the power generated was 270.1 MW in the case of non-carbon capturing, while in the case of carbon capturing, 263.52 MW was generated. Although it produces less power, applying carbon capturing techniques means handling less flue gas and thus using smaller gas turbines and results in more environmentally friendly emissions.

  18. Pretreatment of corn straw using the alkaline solution of ionic liquids.

    PubMed

    Liu, Zhen; Li, Longfei; Liu, Cheng; Xu, Airong

    2018-07-01

    In the present work, the pretreatment of corn stalk with the solution of 1-ethyl-3-methylimidazolium acetate ([Emim]Ac) ionic liquid containing NaOH was explored for its lignin removal. The effects of reaction temperature, reaction time, and solid-liquid ratio on the lignin removal efficiency were determined by the response surface methodology (RSM). The pretreatment conditions were optimized by the Box-Behnken design and the comparative study of the composition and structure of corn straw before and after the pretreatment to be: reaction temperature 98.5 °C, reaction time 1.31 h, and solid-liquid ratio 1:8.7. Under the optimized conditions, the cellulose and hemicellulose contents of the corn straw were increased to 85.69% and 9.1%, respectively, and the lignin content was reduced to 2.27% with the lignin removal efficiency up to 87.4%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Estimation and change tendency of rape straw resource in Leshan

    NASA Astrophysics Data System (ADS)

    Guan, Qinlan; Gong, Mingfu

    2018-04-01

    Rape straw in Leshan area are rape stalks, including stems, leaves and pods after removing rapeseed. Leshan area is one of the main rape planting areas in Sichuan Province and rape planting area is large. Each year will produce a lot of rape straw. Based on the analysis of the trend of rapeseed planting area and rapeseed yield from 2008 to 2014, the change trend of rape straw resources in Leshan from 2008 to 2014 was analyzed and the decision-making reference was provided for resource utilization of rape straw. The results showed that the amount of rape straw resources in Leshan was very large, which was more than 100,000 tons per year, which was increasing year by year. By 2014, the amount of rape straw resources in Leshan was close to 200,000 tons.

  20. Molecular cytogenetic characterization and stem rust resistance of five wheat-thinopyrum ponticum partial amphiploids

    USDA-ARS?s Scientific Manuscript database

    Partial amphiploids created by crossing common wheat (Triticum aestivum L.) and Thinopyrum ponticum (Podp.), Barkworth & D. R. Dewey may be resistant to major wheat diseases and are an important intermediate material in wheat breeding. In this study, we examined chromosome composition of five Xiaoy...

  1. Long-Term Monitoring of Rainfed Wheat Yield and Soil Water at the Loess Plateau Reveals Low Water Use Efficiency

    PubMed Central

    Qin, Wei; Chi, Baoliang; Oenema, Oene

    2013-01-01

    Increasing crop yield and water use efficiency (WUE) in dryland farming requires a quantitative understanding of relationships between crop yield and the water balance over many years. Here, we report on a long-term dryland monitoring site at the Loess Plateau, Shanxi, China, where winter wheat was grown for 30 consecutive years and soil water content (0–200 cm) was measured every 10 days. The monitoring data were used to calibrate the AquaCrop model and then to analyse the components of the water balance. There was a strong positive relationship between total available water and mean cereal yield. However, only one-third of the available water was actually used by the winter wheat for crop transpiration. The remaining two-thirds were lost by soil evaporation, of which 40 and 60% was lost during the growing and fallow seasons, respectively. Wheat yields ranged from 0.6 to 3.9 ton/ha and WUE from 0.3 to 0.9 kg/m3. Results of model experiments suggest that minimizing soil evaporation via straw mulch or plastic film covers could potentially double wheat yields and WUE. We conclude that the relatively low wheat yields and low WUE were mainly related to (i) limited rainfall, (ii) low soil water storage during fallow season due to large soil evaporation, and (iii) poor synchronisation of the wheat growing season to the rain season. The model experiments suggest significant potential for increased yields and WUE. PMID:24302987

  2. Iron and manganese oxides modified maize straw to remove tylosin from aqueous solutions.

    PubMed

    Yin, Yongyuan; Guo, Xuetao; Peng, Dan

    2018-08-01

    Maize straw modified by iron and manganese oxides was synthesized via a simple and environmentally friendly method. Three maize straw materials, the original maize straw, maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides, were detected by SEM, BET, XPS, XRD and FTIR. The results showed that maize straw was successfully modified and maize straw modified by iron and manganese oxides has a larger surface area than MS. According to the experimental data, the sorption trend could conform to the pseudo-second-order kinetic model well, and the sorption ability of tylosin on sorbents followed the order of original maize straw < maize straw modified by manganese oxides < maize straw modified by iron and manganese oxides. The study indicated that manganese oxides and iron-manganese oxides could significantly enhance the sorption capacity of original maize straw. The sorption isotherm data of tylosin on original maize straw fit a linear model well, while Freundlich models were more suitable for maize straw modified by manganese oxides and maize straw modified by iron and manganese oxides. The pH, ionic strength and temperature can affect the sorption process. The sorption mechanisms of tylosin on iron and manganese oxides modified maize straw were attribute to the surface complexes, electrostatic interactions, H bonding and hydrophobic interactions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Baking properties and biochemical composition of wheat flour with bran and shorts.

    PubMed

    Kaprelyants, Leonid; Fedosov, Sergey; Zhygunov, Dmytro

    2013-11-01

    Bran, being a by-product of grain grinding, is characterised by a high biological value and is thus widely used in food production. In this study, different streams of bran and shorts from the wheat graded milling process were incorporated into wheat flour at levels of 5, 11, 17 and 23% (w/w) to investigate their influence on the nutritional and baking properties of flour. Bran and shorts streams improved the baking properties of flour blends. The best result in the case of graded flour blends with different bran products was obtained at the 95:5 ratio. The products containing peripheral parts of grain had higher proteolytic enzyme and superoxide dismutase activities and lower trypsin inhibitor content and β-amylase activity compared with graded flour. Streams of wheat milled fractions including peripheral parts of grain increase the content of bioactive substances and dietary fibre in blends with wheat graded flour. © 2013 Society of Chemical Industry.

  4. Influence of Drought and Sowing Time on Protein Composition, Antinutrients, and Mineral Contents of Wheat

    PubMed Central

    Singh, Sondeep; Gupta, Anil K.; Kaur, Narinder

    2012-01-01

    The present study in a two-year experiment investigated the influence of drought and sowing time on protein composition, antinutrients, and mineral contents of wheat whole meal of two genotypes differing in their water requirements. Different thermal conditions prevailing during the grain filling period under different sowing time generated a large effect on the amount of total soluble proteins. Late sown conditions offered higher protein content accompanied by increased albumin-globulin but decreased glutenin content. Fe content was increased to 20–23%; however, tannin decreased to 18–35% under early sown rain-fed conditions as compared to irrigated timely sown conditions in both the genotypes. Activity of trypsin inhibitor was decreased under rain-fed conditions in both genotypes. This study inferred that variable sowing times and irrigation practices can be used for inducing variation in different wheat whole meal quality characteristics. Lower temperature prevailing under early sown rain-fed conditions; resulted in higher protein content. Higher Fe and lower tannin contents were reported under early sown rain-fed conditions however, late sown conditions offered an increase in phytic acid accompanied by decreased micronutrients and glutenin contents. PMID:22629143

  5. Design and performance of a straw tube drift chamber

    NASA Astrophysics Data System (ADS)

    Oh, S. H.; Wesson, D. K.; Cooke, J.; Goshaw, A. T.; Robertson, W. J.; Walker, W. D.

    1991-06-01

    The design and performance of the straw drift chambers used in E735 is reported. The chambers are constructed from 2.5 cm radius aluminized mylar straw tubes with wall thickness less than 0.2 mm. Also, presented are the results of tests with 2 mm radius straw tubes. The small tube has a direct detector application at the Superconducting Super Collider.

  6. Functional and nutritional characteristics of soft wheat grown in no-till and conventional cropping systems

    USDA-ARS?s Scientific Manuscript database

    The effects of no-till vs. conventional farming practices were evaluated on soft wheat functional and nutritional characteristics, including kernel physical properties, whole wheat composition, antioxidant activity and end-product quality. Soft white winter wheat cv. ORCF 102 was evaluated over a tw...

  7. Experimental investigation into fast pyrolysis of biomass using an entrained-flow reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohn, M.; Benham, C.

    1981-02-01

    Pyrolysis experiments were performed using 30 and 90cm entrained-flow reactors, with steam as a carrier gas and two different feedstocks - wheat straw and powdered material drived from municipal solid waste (ECO-II TM). Reactor wall temperature was varied from 700/sup 0/ to 1400/sup 0/C. Gas composition data from the ECO-II tests were comparable to previously reported data but ethylene yield appeared to vary with reactor wall temperature and residence time. The important conclusion from the wheat straw tests is that olefin yields are about one half that obtained from ECO-II. Evidence was found that high olefin yields from ECO-II aremore » due to the presence of plastics in the feedstock. Batch experiments were run on wheat straw using a Pyroprobe/sup TM/. The samples were heated at a high rate (20,000/sup 0/ C/sec) to 1000/sup 0/ and held at 1000/sup 0/C for a variable period of time from 0.05 to 4.95s. For times up to 0.15s volume fractions of ethylene, propylene, and methane increase while that of carbon dioxide decreases. Subsequently, only carbon monoxide and hydrogen are produced. The change may be related to poor thermal contact and suggests caution in using the Pyroprobe.« less

  8. LED Lighting - Modification of Growth, Metabolism, Yield and Flour Composition in Wheat by Spectral Quality and Intensity.

    PubMed

    Monostori, István; Heilmann, Márk; Kocsy, Gábor; Rakszegi, Marianna; Ahres, Mohamed; Altenbach, Susan B; Szalai, Gabriella; Pál, Magda; Toldi, Dávid; Simon-Sarkadi, Livia; Harnos, Noémi; Galiba, Gábor; Darko, Éva

    2018-01-01

    The use of light-emitting diode (LED) technology for plant cultivation under controlled environmental conditions can result in significant reductions in energy consumption. However, there is still a lack of detailed information on the lighting conditions required for optimal growth of different plant species and the effects of light intensity and spectral composition on plant metabolism and nutritional quality. In the present study, wheat plants were grown under six regimens designed to compare the effects of LED and conventional fluorescent lights on growth and development, leaf photosynthesis, thiol and amino acid metabolism as well as grain yield and flour quality of wheat. Benefits of LED light sources over fluorescent lighting were manifested in both yield and quality of wheat. Elevated light intensities made possible with LEDs increased photosynthetic activity, the number of tillers, biomass and yield. At lower light intensities, blue, green and far-red light operated antagonistically during the stem elongation period. High photosynthetic activity was achieved when at least 50% of red light was applied during cultivation. A high proportion of blue light prolonged the juvenile phase, while the shortest flowering time was achieved when the blue to red ratio was around one. Blue and far-red light affected the glutathione- and proline-dependent redox environment in leaves. LEDs, especially in Blue, Pink and Red Low Light (RedLL) regimens improved flour quality by modifying starch and protein content, dough strength and extensibility as demonstrated by the ratios of high to low molecular weight glutenins, ratios of glutenins to gliadins and gluten spread values. These results clearly show that LEDs are efficient for experimental wheat cultivation, and make it possible to optimize the growth conditions and to manipulate metabolism, yield and quality through modification of light quality and quantity.

  9. Heterologous production of cellobiose dehydrogenases from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina and their effect on saccharification of wheat straw.

    PubMed

    Turbe-Doan, Annick; Arfi, Yonathan; Record, Eric; Estrada-Alvarado, Isabel; Levasseur, Anthony

    2013-06-01

    Cellobiose dehydrogenases (CDHs) are extracellular glycosylated haemoflavoenzymes produced by many different wood-degrading and phytopathogenic fungi. Putative cellobiose dehydrogenase genes are recurrently discovered by genome sequencing projects in various phylogenetically distinct fungi. The genomes from the basidiomycete Coprinopsis cinerea and the ascomycete Podospora anserina were screened for candidate cdh genes, and one and three putative gene models were evidenced, respectively. Two putative cdh genes were selected and successfully expressed for the first time in Aspergillus niger. CDH activity was measured for both constructions (CDHcc and CDHpa), and both recombinant CDHs were purified to homogeneity and subsequently characterised. Kinetic constants were determined for several carbohydrates including β-1,4-linked di- and oligosaccharides. Optimal temperature and pH were 60 °C and 5 for CDHcc and 65-70 °C and 6 for CDHpa. Both CDHs showed a broad range of pH stability between 4 and 8. The effect of both CDHs on saccharification of micronized wheat straw by an industrial Trichoderma reesei secretome was determined. The addition of each CDH systematically decreased the release of total reducing sugars, but to different extents and according to the CDH concentration. Analytical methods were carried out to quantify the release of glucose, xylose and gluconic acid. An increase of glucose and xylose was measured at a low CDHcc concentration. At moderated and high CDHcc and CDHpa concentrations, glucose was severely reduced with a concomitant increase of gluconic acid. In conclusion, these results give new insights into the physical and chemical parameters and diversity of basidiomycetous and ascomycetous CDHs. These findings also demonstrated that CDH drastically influenced the saccharification on a natural substrate, and thus, CDH origin, concentration and potential enzymatic partners should be carefully considered in future artificial secretomes for

  10. A comparative study of thermophilic and mesophilic anaerobic co-digestion of food waste and wheat straw: Process stability and microbial community structure shifts.

    PubMed

    Shi, Xuchuan; Guo, Xianglin; Zuo, Jiane; Wang, Yajiao; Zhang, Mengyu

    2018-05-01

    Renewable energy recovery from organic solid waste via anaerobic digestion is a promising way to provide sustainable energy supply and eliminate environmental pollution. However, poor efficiency and operational problems hinder its wide application of anaerobic digestion. The effects of two key parameters, i.e. temperature and substrate characteristics on process stability and microbial community structure were studied using two lab-scale anaerobic reactors under thermophilic and mesophilic conditions. Both the reactors were fed with food waste (FW) and wheat straw (WS). The organic loading rates (OLRs) were maintained at a constant level of 3 kg VS/(m 3 ·d). Five different FW:WS substrate ratios were utilized in different operational phases. The synergetic effects of co-digestion improved the stability and performance of the reactors. When FW was mono-digested, both reactors were unstable. The mesophilic reactor eventually failed due to volatile fatty acid accumulation. The thermophilic reactor had better performance compared to mesophilic one. The biogas production rate of the thermophilic reactor was 4.9-14.8% higher than that of mesophilic reactor throughout the experiment. The shifts in microbial community structures throughout the experiment in both thermophilic and mesophilic reactors were investigated. With increasing FW proportions, bacteria belonging to the phylum Thermotogae became predominant in the thermophilic reactor, while the phylum Bacteroidetes was predominant in the mesophilic reactor. The genus Methanosarcina was the predominant methanogen in the thermophilic reactor, while the genus Methanothrix remained predominant in the mesophilic reactor. The methanogenesis pathway shifted from acetoclastic to hydrogenotrophic when the mesophilic reactor experienced perturbations. Moreover, the population of lignocellulose-degrading microorganisms in the thermophilic reactor was higher than those in mesophilic reactor, which explained the better

  11. The effect of a combined biological and thermo-mechanical pretreatment of wheat straw on energy yields in coupled ethanol and methane generation.

    PubMed

    Theuretzbacher, Franz; Blomqvist, Johanna; Lizasoain, Javier; Klietz, Lena; Potthast, Antje; Horn, Svein Jarle; Nilsen, Paal J; Gronauer, Andreas; Passoth, Volkmar; Bauer, Alexander

    2015-10-01

    Ethanol and biogas are energy carriers that could contribute to a future energy system independent of fossil fuels. Straw is a favorable bioenergy substrate as it does not compete with food or feed production. As straw is very resistant to microbial degradation, it requires a pretreatment to insure efficient conversion to ethanol and/or methane. This study investigates the effect of combining biological pretreatment and steam explosion on ethanol and methane yields in order to improve the coupled generation process. Results show that the temperature of the steam explosion pretreatment has a particularly strong effect on possible ethanol yields, whereas combination with the biological pretreatment showed no difference in overall energy yield. The highest overall energy output was found to be 10.86 MJ kg VS(-1) using a combined biological and steam explosion pretreatment at a temperature of 200°C. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. [Population dynamics of ground carabid beetles and spiders in a wheat field along the wheat-alfalfa interface and their response to alfalfa mowing].

    PubMed

    Liu, Wen-Hui; Hu, Yi-Jun; Hu, Wen-Chao; Hong, Bo; Guan, Xiao-Qing; Ma, Shi-Yu; He, Da-Han

    2014-09-01

    Taking the wheat-alfalfa and wheat-wheat interfaces as model systems, sampling points were set by the method of pitfall trapping in the wheat field at the distances of 3 m, 6 m, 9 m, 12 m, 15 m, 18 m, 21 m, 24 m, and 27 m from the interface. The species composition and abundance of ground carabid beetles and spiders captured in pitfalls were investigated. The results showed that, to some extent there was an edge effect on species diversity and abundance of ground carabid beetles and spiders along the two interfaces. A marked edge effect was observed between 15 m and 18 m along the alfalfa-wheat interface, while no edge effect was found at a distance over 20 m. The edge effect along the wheat-wheat interface was weaker in comparison to the alfalfa-wheat interface. Alfalfa mowing resulted in the migration of a large number of ground carabid beetles and spiders to the adjacent wheat filed. During ten days since mowing, both species and abundance of ground carabid beetles and spiders increased in wheat filed within the distance of 20 m along the alfalfa-wheat interface. The spatial distribution of species diversity of ground beetles and spiders, together with the population abundance of the dominant Chlaenius pallipes and Pardosa astrigera, were depicted, which could directly indicate the migrating process of natural enemy from alfalfa to wheat field.

  13. Bioconversion of rice straw into a soil-like substrate

    NASA Astrophysics Data System (ADS)

    Yu, Chengying; Liu, Hong; Xing, Yidong; Manukovsky, N. S.; Kovalev, V. S.; Gurevich, Yu. L.

    To increase the closure of bioregenerative life support systems (BLSS), the bioconversion of rice straw into a soil-like substrate (SLS) by mushrooms and worms has been studied. The results showed that rice straw could be treated better by aerobic fermentation and succeeding growth of mushrooms Pleurotus ostreatus. In this process the total content of lignocellulose in the straw was removed by 37.74%. Furthermore, 46.68 g (fresh weight) of mushrooms could be produced from 100.0 g (dry weight) of rice straw. During the conversion of rice straw into a starting SLS by mushrooms and worms, the matter loss was 77.31%. The lettuce has been planted in the SLS and the yield when lettuce was cultivated on the SLS (8.77gm-2day-1) was comparable to the yield obtained on the nutrient solution. In addition, the silicon in the SLS ash can reach upto 32% and the circulation of it is expected during the growth of rice.

  14. Microbial composition and diversity are associated with plant performance: a case study on long-term fertilization effect on wheat growth in an Ultisol.

    PubMed

    Li, Lihua; Fan, Fenliang; Song, Alin; Yin, Chang; Cui, Peiyuan; Li, Zhaojun; Liang, Yongchao

    2017-06-01

    The association between microbial communities and plant growth in long-term fertilization system has not been fully studied. In the present study, impacts of long-term fertilization have been determined on the size and activity of soil microbial communities and wheat performance in a red soil (Ultisol) collected from Qiyang Experimental Station, China. For this, different microbial communities originating from long-term fertilized pig manure (M), mineral fertilizer (NPK), pig manure plus mineral fertilizer (MNPK), and no fertilizer (CK) were used as inocula for the Ultisol tested. Changes in total bacterial and fungal community composition and structures using Ion Torrent sequencing were determined. The results show that the biomass of wheat was significantly higher in both sterilized soil inoculated with NPK (SNPK) and sterilized soil inoculated with MNPK (SMNPK) treatments than in other treatments (P < 0.05). The activities of β-1,4-N-acetylglucosaminidase (NAG) and cellobiohydrolase (CBH) were significantly correlated with wheat biomass. Among the microbial communities, the largest Ascomycota phylum in soils was negatively correlated with β-1,4-glucosidase (βG) (P < 0.05). The phylum Basidiomycota was negatively correlated with plant biomass (PB) and tillers per plant (TI) (P < 0.05). Nonmetric multidimensional scaling analysis shows that fungal community was strongly correlated with long-term fertilization strategy, while the bacterial community was strongly correlated with β-1,4-N-acetylglucosaminidase activity. According to the Mantel test, the growth of wheat was affected by fungal community. Taken together, microbial composition and diversity in soils could be a good player in predicting soil fertility and consequently plant growth.

  15. Changes in preferences of gestating heifers fed untreated or ammoniated straw in different flavors.

    PubMed

    Atwood, S B; Provenza, F D; Wiedmeier, R D; Banner, R E

    2001-12-01

    We determined how a food's flavor and digestibility, along with an animal's recent experiences, influenced food preference and intake. In three experiments, pregnant heifers were fed a basal ration (7.75 kg/animal) of alfalfa, barley, corn silage, and a vitamin/mineral supplement from 1500 to 2200. Exp. 1 determined the influence of recent exposure to flavored straw. Animals were divided into two groups (n = 16/group) and fed either untreated or ammoniated straw with digestibilities of 43 and 58%, respectively. Within each group, half of the heifers were fed maple-flavored straw and the other half were fed coconut-flavored straw from 1100 one day to 0900 the next day, with no base ration. We then offered straw in both flavors from 1000 to 1200 for the next 5 d. Animals fed maple-flavored straw for 1 d generally preferred coconut- over maple-flavored straw for the next 5 d, whereas animals previously fed coconut-flavored straw preferred maple-flavored straw (P < 0.001). The change in preference was stronger when animals were fed untreated compared with ammoniated straw. Experiments 2 and 3 determined the influence of offering straw in different flavors, either in sequence (Exp. 2) or simultaneously (Exp. 3). In Exp. 2, we offered heifers (n = 16) straw in three flavors (maple from 0900 to 1100, coconut from 1100 to 1300, and unflavored from 1300 to 1500) and compared their intake with that of heifers (n = 16) offered unflavored straw throughout the day. In Exp. 3, we compared intake of heifers (n = 16) simultaneously offered straw in three flavors (coconut, maple, and unflavored) with that of heifers (n = 16) offered only unflavored straw from 1000 to 1500. In both experiments, straw intake and preference differed between heifers offered straw in a variety of flavors as opposed to only unflavored straw (P < 0.05), but animals fed a variety of flavors did not consistently eat more than those fed only one flavor. During a post-trial preference test, heifers previously

  16. 13C NMR and XPS characterization of anion adsorbent with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse

    NASA Astrophysics Data System (ADS)

    Cao, Wei; Wang, Zhenqian; Zeng, Qingling; Shen, Chunhua

    2016-12-01

    Despite amino groups modified crop straw has been intensively studied as new and low-cost adsorbent for removal of anionic species from water, there is still a lack of clear characterization for amino groups, especially quaternary ammonium groups in the surface of crop straw. In this study, we used 13C NMR and XPS technologies to characterize adsorbents with quaternary ammonium groups prepared from rice straw, corn stalk and sugarcane bagasse. 13C NMR spectra clearly showed the presence of quaternary ammonium groups in lignocelluloses structure of modified crop straw. The increase of nitrogen observed in XPS survey spectra also indicated the existence of quaternary ammonium group in the surface of the adsorbents. The curve fitting of high-resolution XPS N1s and C1s spectra were conducted to probe the composition of nitrogen and carbon contained groups, respectively. The results showed the proportion of quaternary ammonium group significantly increased in the prepared adsorbent's surface that was dominated by methyl/methylene, hydroxyl, quaternary ammonium, ether and carbonyl groups. This study proved that 13C NMR and XPS could be successfully utilized for characterization of quaternary ammonium modified crop straw adsorbents.

  17. Bioavailability of Compounds Susceptible to Enzymatic Oxidation Enhances Growth of Shiitake Medicinal Mushroom (Lentinus edodes) in Solid-State Fermentation with Vineyard Prunings.

    PubMed

    Cabrera, Rosina; López-Peña, Damian; Asaff, Ali; Esqueda, Martín; Valenzuela-Soto, Elisa M

    2018-01-01

    Grapes are widely produced in northwestern Mexico, generating many wood trimmings (vineyard prunings) that have no further local use. This makes vineyard prunings a very attractive alternative for the cultivation of white-rot medicinal mushrooms such as Lentinus edodes. This type of wood can also offer a model for the evaluation of oxidative enzyme production during the fermentation process. We tested the effect of wood from vineyard prunings on the vegetative growth of and production of ligninolytic enzymes in L. edodes in solid-state fermentation and with wheat straw as the control substrate. The specific growth rate of the fungus was 2-fold higher on vineyard pruning culture (μM = 0.95 day-1) than on wheat straw culture (μM = 0.47 day-1). Laccase-specific production was 4 times higher in the vineyard prunings culture than on wheat straw (0.34 and 0.08 mU · mg protein-1 · ppm CO2-1, respectively), and manganese peroxidase production was 3.7 times higher on wheat straw culture than on vineyard prunings (2.21 and 0.60 mU · mg protein-1 · ppm CO2-1, respectively). To explain accurately these differences in growth and ligninolytic enzyme activity, methanol extracts were obtained from each substrate and characterized. Resveratrol and catechins were the main compounds identified in vineyard prunings, whereas epigallocatechin was the only one detected in wheat straw. Compounds susceptible to enzymatic oxidation are more bioavailable in vineyard prunings than in wheat straw, and thus the highest L. edodes growth rate is associated with the presence of these compounds.

  18. Volatile organic compound emissions from straw-amended agricultural soils and their relations to bacterial communities: A laboratory study.

    PubMed

    Zhao, Juan; Wang, Zhe; Wu, Ting; Wang, Xinming; Dai, Wanhong; Zhang, Yujie; Wang, Ran; Zhang, Yonggan; Shi, Chengfei

    2016-07-01

    A laboratory study was conducted to investigate volatile organic compound (VOC) emissions from agricultural soil amended with wheat straw and their associations with bacterial communities for a period of 66days under non-flooded and flooded conditions. The results indicated that ethene, propene, ethanol, i-propanol, 2-butanol, acetaldehyde, acetone, 2-butanone, 2-pentanone and acetophenone were the 10 most abundant VOCs, making up over 90% of the total VOCs released under the two water conditions. The mean emission of total VOCs from the amended soils under the non-flooded condition (5924ng C/(kg·hr)) was significantly higher than that under the flooded condition (2211ng C/(kg·hr)). One "peak emission window" appeared at days 0-44 or 4-44, and over 95% of the VOC emissions occurred during the first month under the two water conditions. Bacterial community analysis using denaturing gradient gel electrophoresis (DGGE) showed that a relative increase of Actinobacteria, Bacteroidetes, Firmicutes and γ-Proteobacteria but a relative decrease of Acidobacteria with time were observed after straw amendments under the two water conditions. Cluster analysis revealed that the soil bacterial communities changed greatly with incubation time, which was in line with the variation of the VOC emissions over the experimental period. Most of the above top 10 VOCs correlated positively with the predominant bacterial species of Bacteroidetes, Firmicutes and Verrucomicrobia but correlated negatively with the dominant bacterial species of Actinobacteria under the two water conditions. These results suggested that bacterial communities might play an important role in VOC emissions from straw-amended agricultural soils. Copyright © 2016. Published by Elsevier B.V.

  19. Bacterial impregnation of mineral fertilizers improves yield and nutrient use efficiency of wheat.

    PubMed

    Ahmad, Shakeel; Imran, Muhammad; Hussain, Sabir; Mahmood, Sajid; Hussain, Azhar; Hasnain, Muhammad

    2017-08-01

    The fertilizer use efficiency (FUE) of agricultural crops is generally low, which results in poor crop yields and low economic benefits to farmers. Among the various approaches used to enhance FUE, impregnation of mineral fertilizers with plant growth-promoting bacteria (PGPB) is attracting worldwide attention. The present study was aimed to improve growth, yield and nutrient use efficiency of wheat by bacterially impregnated mineral fertilizers. Results of the pot study revealed that impregnation of diammonium phosphate (DAP) and urea with PGPB was helpful in enhancing the growth, yield, photosynthetic rate, nitrogen use efficiency (NUE) and phosphorus use efficiency (PUE) of wheat. However, the plants treated with F8 type DAP and urea, prepared by coating a slurry of PGPB (Bacillus sp. strain KAP6) and compost on DAP and urea granules at the rate of 2.0 g 100 g -1 fertilizer, produced better results than other fertilizer treatments. In this treatment, growth parameters including plant height, root length, straw yield and root biomass significantly (P ≤ 0.05) increased from 58.8 to 70.0 cm, 41.2 to 50.0 cm, 19.6 to 24.2 g per pot and 1.8 to 2.2 g per pot, respectively. The same treatment improved grain yield of wheat by 20% compared to unimpregnated DAP and urea (F0). Likewise, the maximum increase in photosynthetic rate, grain NP content, grain NP uptake, NUE and PUE of wheat were also recorded with F8 treatment. The results suggest that the application of bacterially impregnated DAP and urea is highly effective for improving growth, yield and FUE of wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Effect of water washing on the thermal behavior of rice straw.

    PubMed

    Said, N; Bishara, T; García-Maraver, A; Zamorano, M

    2013-11-01

    Rice straw can be used as a renewable fuel for heat and power generation. It is a viable mean of replacing fossil fuels and preventing pollution caused by open burning, especially in the areas where this residual biomass is generated. Nevertheless, the thermal conversion of rice straw can cause some operating problems such as slag formation, which negatively affects thermal conversion systems. So, the main objective of this research is studying the combustion behavior of rice straw samples collected from various regions by applying thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). In addition, the thermal behavior of ashes from rice straw was also analyzed in order to detect their melting points, and ash sintering was detected at different temperatures within the range between 550 and 1000°C. Since washing rice straw with water could reduce the content of undesirable inorganic compounds related to the ash fusibility, samples of washed rice straw were analyzed under combustion conditions to investigate its differences regarding the thermal behavior of rice straw. The results showed that rice straw washing led to a significant improvement in its thermal behavior, since it reduced the ash contents and sintering formation. Copyright © 2013 Elsevier Ltd. All rights reserved.