These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

Regional White Matter and Neuropsychological Functioning across the Adult Lifespan  

E-print Network

white matter were of largest magnitude, followed by temporal lobe (F (6, 579) 3.32, p 0.003). Age-related cognitive decline in several domains. Decline in neuropsychological functioning is, in part, mediated matter, cognition, memory, executive functioning I n an effort to better characterize brain changes

2

A Volumetric Approach to Quantifying Region-to-Region White Matter Connectivity in Diffusion Tensor MRI  

Microsoft Academic Search

In this paper we present a volumetric approach for quantitatively studying white matter connectivity from diffusion tensor\\u000a magnetic resonance imaging (DT-MRI). The proposed method is based on a minimization of path cost between two regions, defined\\u000a as the integral of local costs that are derived from the full tensor data along the path. We solve the minimal path problem\\u000a using

P. Thomas Fletcher; Ran Tao; Won-ki Jeong; Ross T. Whitaker

2007-01-01

3

Regional White Matter Damage Predicts Speech Fluency in Chronic Post-Stroke Aphasia  

PubMed Central

Recently, two different white matter regions that support speech fluency have been identified: the aslant tract and the anterior segment of the arcuate fasciculus (ASAF). The role of the ASAF was demonstrated in patients with post-stroke aphasia, while the role of the aslant tract shown in primary progressive aphasia. Regional white matter integrity appears to be crucial for speech production; however, the degree that each region exerts an independent influence on speech fluency is unclear. Furthermore, it is not yet defined if damage to both white matter regions influences speech in the context of the same neural mechanism (stroke-induced aphasia). This study assessed the relationship between speech fluency and quantitative integrity of the aslant region and the ASAF. It also explored the relationship between speech fluency and other white matter regions underlying classic cortical language areas such as the uncinate fasciculus and the inferior longitudinal fasciculus (ILF). Damage to these regions, except the ILF, was associated with speech fluency, suggesting synergistic association of these regions with speech fluency in post-stroke aphasia. These observations support the theory that speech fluency requires the complex, orchestrated activity between a network of pre-motor, secondary, and tertiary associative cortices, supported in turn by regional white matter integrity. PMID:25368572

Basilakos, Alexandra; Fillmore, Paul T.; Rorden, Chris; Guo, Dazhou; Bonilha, Leonardo; Fridriksson, Julius

2014-01-01

4

Regional white matter microstructure in very preterm infants: predictors and 7 year outcomes.  

PubMed

The aims of this study were to investigate regional white matter microstructural differences between very preterm (VPT) (<30 weeks' gestational age and/or <1250 g) and full term (FT) (?37 weeks' gestational age) infants at term corrected age with diffusion tensor imaging, and to explore perinatal predictors of diffusion measures, and the relationship between regional diffusion measures and neurodevelopmental outcomes at age 7 years in VPT children. Mean (MD) (p = .003), axial (AD) (p = .008), and radial diffusivity (RD) (p = .003) in total white matter were increased in VPT compared with FT infants, with similar fractional anisotropy (FA) in the two groups. There was little evidence that group-wise differences were specific to any of the 8 regions studied for each hemisphere. Perinatal white matter abnormality and intraventricular hemorrhage (grade III or IV) were associated with increased diffusivity in the white matter of VPT infants. Higher white matter diffusivity measures of the inferior occipital and cerebellar region at term-equivalent age were associated with increased risk of impairments in motor and executive function at 7 years in VPT children, but there was little evidence for associations with IQ or memory impairment. In conclusion, myelination is likely disrupted or delayed in VPT infants, especially those with perinatal brain abnormality (BA). Altered diffusivity at term-equivalent age helps explain impaired functioning at 7 years. This study defines the nature of microstructural alterations in VPT infant white matter, assists in understanding the associated risk factors, and is the first study to reveal an important link between inferior occipital and cerebellar white matter disorganization in infancy, and executive and motor functioning 7 years later. PMID:24405815

Thompson, Deanne K; Lee, Katherine J; Egan, Gary F; Warfield, Simon K; Doyle, Lex W; Anderson, Peter J; Inder, Terrie E

2014-03-01

5

Regional White Matter Variation Associated with Domain-specific Metacognitive Accuracy.  

PubMed

The neural mechanisms that mediate metacognitive ability (the capacity to accurately reflect on one's own cognition and experience) remain poorly understood. An important question is whether metacognitive capacity is a domain-general skill supported by a core neuroanatomical substrate or whether regionally specific neural structures underlie accurate reflection in different cognitive domains. Providing preliminary support for the latter possibility, recent findings have shown that individual differences in metacognitive ability in the domains of memory and perception are related to variation in distinct gray matter volume and resting-state functional connectivity. The current investigation sought to build on these findings by evaluating how metacognitive ability in these domains is related to variation in white matter microstructure. We quantified metacognitive ability across memory and perception domains and used diffusion spectrum imaging to examine the relation between high-resolution measurements of white matter microstructure and individual differences in metacognitive accuracy in each domain. We found that metacognitive accuracy for perceptual decisions and memory were uncorrelated across individuals and that metacognitive accuracy in each domain was related to variation in white matter microstructure in distinct brain areas. Metacognitive accuracy for perceptual decisions was associated with increased diffusion anisotropy in white matter underlying the ACC, whereas metacognitive accuracy for memory retrieval was associated with increased diffusion anisotropy in the white matter extending into the inferior parietal lobule. Together, these results extend previous findings linking metacognitive ability in the domains of perception and memory to variation in distinct brain structures and connections. PMID:25313660

Baird, Benjamin; Cieslak, Matthew; Smallwood, Jonathan; Grafton, Scott T; Schooler, Jonathan W

2015-03-01

6

Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus  

Microsoft Academic Search

Summary The mean cerebral blood flow (CBF) has generally been demonstrated to be lower in normal pressure hydrocephalus (NPH) than in normal controls. We investigated the distribution of the regional peri- and paraventricular white matter CBF (WM CBF) in NPH at baseline and during a controlled rise in intracranial pressure (ICP). Twelve patients with idiopathic NPH (mean age 69 years)

Shahan Momjian; Brian K. Owler; Zofia Czosnyka; Marek Czosnyka; Alonso Pena; John D. Pickard

2004-01-01

7

Aging White Matter and Cognition: Differential Effects of Regional Variations in Diffusion Properties on Memory, Executive Functions, and Speed  

ERIC Educational Resources Information Center

Disruption of cerebral white matter has been proposed as an explanation for age-related cognitive declines. However, the role of specific regions in specific cognitive declines remains unclear. We used diffusion tensor imaging to examine the associations between regional microstructural integrity of the white matter and performance on…

Kennedy, Kristen M.; Raz, Naftali

2009-01-01

8

Skeleton-based region competition for automated gray matter and white matter segmentation of human brain MR images  

NASA Astrophysics Data System (ADS)

Image segmentation is an essential process for quantitative analysis. Segmentation of brain tissues in magnetic resonance (MR) images is very important for understanding the structural-functional relationship for various pathological conditions, such as dementia vs. normal brain aging. Different brain regions are responsible for certain functions and may have specific implication for diagnosis. Segmentation may facilitate the analysis of different brain regions to aid in early diagnosis. Region competition has been recently proposed as an effective method for image segmentation by minimizing a generalized Bayes/MDL criterion. However, it is sensitive to initial conditions - the "seeds", therefore an optimal choice of "seeds" is necessary for accurate segmentation. In this paper, we present a new skeleton-based region competition algorithm for automated gray and white matter segmentation. Skeletons can be considered as good "seed regions" since they provide the morphological a priori information, thus guarantee a correct initial condition. Intensity gradient information is also added to the global energy function to achieve a precise boundary localization. This algorithm was applied to perform gray and white matter segmentation using simulated MRI images from a realistic digital brain phantom. Nine different brain regions were manually outlined for evaluation of the performance in these separate regions. The results were compared to the gold-standard measure to calculate the true positive and true negative percentages. In general, this method worked well with a 96% accuracy, although the performance varied in different regions. We conclude that the skeleton-based region competition is an effective method for gray and white matter segmentation.

Chu, Yong; Chen, Ya-Fang; Su, Min-Ying; Nalcioglu, Orhan

2005-04-01

9

Reduced glucose uptake and A? in brain regions with hyperintensities in connected white matter.  

PubMed

Interstitial concentration of amyloid beta (Aß) is positively related to synaptic activity in animal experiments. In humans, Aß deposition in Alzheimer's disease overlaps with cortical regions highly active earlier in life. White matter lesions (WML) disrupt connections between gray matter (GM) regions which in turn changes their activation patterns. Here, we tested if WML are related to Aß accumulation (measured with PiB-PET) and glucose uptake (measured with FDG-PET) in connected GM. WML masks from 72 cognitively normal (age 61.7 ± 9.6 years, 71% women) individuals were obtained from T2-FLAIR. MRI and PET images were normalized into common space, segmented and parcellated into gray matter (GM) regions. The effects of WML on connected GM regions were assessed using the Change in Connectivity (ChaCo) score. Defined for each GM region, ChaCo is the percentage of WM tracts connecting to that region that pass through the WML mask. The regional relationship between ChaCo, glucose uptake and Aß was explored via linear regression. Subcortical regions of the bilateral caudate, putamen, calcarine, insula, thalamus and anterior cingulum had WM connections with the most lesions, followed by frontal, occipital, temporal, parietal and cerebellar regions. Regional analysis revealed that GM with more lesions in connecting WM and thus impaired connectivity had lower FDG-PET (r = 0.20, p<0.05 corrected) and lower PiB uptake (r = 0.28, p<0.05 corrected). Regional regression also revealed that both ChaCo (? = 0.045) and FDG-PET (? = 0.089) were significant predictors of PiB. In conclusion, brain regions with more lesions in connecting WM had lower glucose metabolism and lower Aß deposition. PMID:24999038

Glodzik, L; Kuceyeski, A; Rusinek, H; Tsui, W; Mosconi, L; Li, Y; Osorio, R S; Williams, S; Randall, C; Spector, N; McHugh, P; Murray, J; Pirraglia, E; Vallabhajosula, S; Raj, A; de Leon, M J

2014-10-15

10

White matter dementia  

PubMed Central

White matter dementia (WMD) is a syndrome introduced in 1988 to highlight the potential of cerebral white matter disorders to produce cognitive loss of sufficient severity to qualify as dementia. Neurologists have long understood that such a syndrome can occur, but the dominance of gray matter as the locus of higher function has strongly directed neurobehavioral inquiry to the cerebral cortex while white matter has received less attention. Contemporary neuroimaging has been crucial in enabling the recognition of white matter abnormalities in a host of disorders, and the correlation of these changes with cognitive performance. Comprising about half the brain, white matter is prominently or exclusively involved in well over 100 disorders, in each of which white matter dysfunction can potentially cause or contribute to dementia. Neuropsychological findings from ten categories of white matter disorder lead to a convergence of findings that document remarkable neurobehavioral commonality among the dementias produced. More recently, the syndrome of mild cognitive dysfunction (MCD) has been introduced to expand the concept of WMD by proposing a precursor syndrome related to early white matter neuropathology. WMD and MCD inform the understanding of how white matter contributes to normal and abnormal cognition, and the specific neuroanatomic focus of these syndromes may enhance the diagnosis and treatment of many disabling disorders that do not primarily implicate the cerebral cortex. Forming essential connections within widely distributed neural networks, white matter is critical for rapid and efficient information transfer that complements the information processing of gray matter. As neuroimaging continues to advance, further information on white matter structure can be expected, and behavioral neurology will play a central role in elucidating the functional significance of these emerging data. By emphasizing the contribution of myelinated systems to higher function, the study of white matter and cognition represents investigation of the basic neuroscience of human behavior. PMID:22973423

2012-01-01

11

Regional white matter hyperintensity volume, not hippocampal atrophy, predicts incident Alzheimer disease in the community.  

PubMed

BACKGROUND New-onset Alzheimer disease (AD) is often attributed to degenerative changes in the hippocampus. However, the contribution of regionally distributed small vessel cerebrovascular disease, visualized as white matter hyperintensities (WMHs) on magnetic resonance imaging, remains unclear. OBJECTIVE To determine whether regional WMHs and hippocampal volume predict incident AD in an epidemiological study. DESIGN A longitudinal community-based epidemiological study of older adults from northern Manhattan, New York. SETTING The Washington Heights/Inwood Columbia Aging Project. PARTICIPANTS Between 2005 and 2007, 717 participants without dementia received magnetic resonance imaging scans. A mean (SD) of 40.28 (9.77) months later, 503 returned for follow-up clinical examination and 46 met criteria for incident dementia (45 with AD). Regional WMHs and relative hippocampal volumes were derived. Three Cox proportional hazards models were run to predict incident dementia, controlling for relevant variables. The first included all WMH measurements; the second included relative hippocampal volume; and the third combined the 2 measurements. MAIN OUTCOME MEASURE Incident AD. RESULTS White matter hyperintensity volume in the parietal lobe predicted time to incident dementia (hazard ratio [HR] = 1.194; P = .03). Relative hippocampal volume did not predict incident dementia when considered alone (HR = 0.419; P = .77) or with the WMH measures included in the model (HR = 0.302; P = .70). Including hippocampal volume in the model did not notably alter the predictive utility of parietal lobe WMHs (HR = 1.197; P = .049). CONCLUSIONS The findings highlight the regional specificity of the association of WMHs with AD. It is not clear whether parietal WMHs solely represent a marker for cerebrovascular burden or point to distinct injury compared with other regions. Future work should elucidate pathogenic mechanisms linking WMHs and AD pathology. PMID:22945686

Brickman, Adam M; Provenzano, Frank A; Muraskin, Jordan; Manly, Jennifer J; Blum, Sonja; Apa, Zoltan; Stern, Yaakov; Brown, Truman R; Luchsinger, José A; Mayeux, Richard

2012-12-01

12

Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection  

PubMed Central

Apathy is a relatively common psychiatric syndrome in HIV infection, but little is known about its neural correlates. In the present study, we examined the associations between apathy and diffusion tensor imaging (DTI) indices in key frontal white matter regions in the thalamocorticostriatal circuit that has been implicated in the expression of apathy. Nineteen participants with HIV infection and 19 demographically comparable seronegative comparison subjects completed the Apathy subscale of the Frontal Systems Behavioral Scale as a part of a comprehensive neuropsychiatric research evaluation. When compared to the seronegative participants, the HIV+ group had significantly more frontal white matter abnormalities. Within HIV+ persons, and as predicted, higher ratings of apathy were associated with greater white matter alterations in the anterior corona radiata, genu, and orbital medial prefrontal cortex. The associations between white matter alterations and apathy were independent of depression and were stronger among participants with lower current CD4 counts. All told, these findings indicate that apathy is independently associated with white matter abnormalities in anterior, medial brain regions in persons infected with HIV, particularly in the setting of lower current immune functioning, which may have implications for antiretroviral therapy. PMID:25275424

Kamat, Rujvi; Brown, Gregory G.; Bolden, Khalima; Fennema-Notestine, Christine; Archibald, Sarah; Marcotte, Thomas D.; Letendre, Scott L.; Ellis, Ronald J.; Woods, Steven Paul; Grant, Igor; Heaton, Robert K.

2015-01-01

13

Gray and white matter structures in the midcingulate cortex region contribute to body mass index in Chinese young adults.  

PubMed

Overweight and obesity are rapidly becoming a central public health challenge around the world. Previous studies have suggested that elevated Body Mass Index (BMI) might be associated with structural changes in both gray and white matter, but this association is still not well understood. The present study aimed to investigate the relationship between BMI and brain structure with a relatively large sample of young adults (N = 336) in a small age range (20 ± 1 years). Voxel-based morphometry results showed significant negative correlations between BMI and gray-matter volumes in the midcingulate cortex (MCC), left orbital frontal cortex, and left ventromedial prefrontal cortex. There was also a significant negative correlation between BMI and white matter integrity as indexed by fractional anisotropy in bilateral cingulum. Further tractography analysis showed a significant negative correlation between BMI and the number of fibers passing the MCC region. Regression analysis showed that gray matter and white matter in these regions both contributed to the variance of BMI. These results remained significant even when analysis was restricted to the subjects with normal weights. Finally, we found that decision-making ability (as assessed by the Iowa Gambling Task) mediated the association between the structure of the MCC (a region responsible for impulse control and decision making) and BMI. These results shed light on the structural neural basis of weight variations. PMID:24146133

He, Qinghua; Chen, Chuansheng; Dong, Qi; Xue, Gui; Chen, Chunhui; Lu, Zhong-Lin; Bechara, Antoine

2015-01-01

14

Regional Quantification of White Matter Hyperintensity in Normal Aging, Mild Cognitive Impairment, and Alzheimer’s Disease  

Microsoft Academic Search

Background\\/Aims: A quantitative method was applied to measure the volume of white matter hyperintensity (WMH) in different brain regions of subjects with Alzheimer’s disease (AD), mild cognitive impairment (MCI) and normal healthy age-matched controls, and the relationship between regional WMH and age and cognitive function was investigated. Methods: Fifty-six subjects were included in this study, 27 AD, 15 MCI and

Ya-Fang Chen; Huali Wang; Yong Chu; Yung-Chien Huang; Min-Ying Su

2006-01-01

15

INTERINDIVIDUAL VARIATION IN SERUM CHOLESTEROL IS ASSOCIATED WITH REGIONAL WHITE MATTER TISSUE INTEGRITY IN OLDER ADULTS  

PubMed Central

Prior research has demonstrated links among vascular health and the occurrence of stroke, mild cognitive decline, and dementia in older adults. However, little is known about whether normal variation in vascular indicators may be related to changes in neural tissue integrity. Even less is known about how the brain is affected by cholesterol levels in the normal to moderate risk range, leading up to overt disease pathology. This study examined associations between serum lipid levels and DTI indicators of white matter (WM) structural integrity in a sample of 125 generally healthy older adults aged 43–87 years. Whole-brain voxelwise analysis, controlling for age and gender, revealed low density lipoprotein levels (LDL) as the most robust correlate of regional WM structural integrity of the measured lipids. Higher LDL was associated with decreased WM integrity in right frontal and temporal regions, the superior longitudinal fasciculus and internal/external capsules. Increasing LDL was associated with increased radial and axial diffusivity; however, more widespread statistical effects were found for radial diffusivity. These findings suggest that normal inter-individual variation in lipid levels is associated with compromised regional WM integrity, even in individuals below clinical thresholds for hyperlipidemia. Given the prevalence of cholesterol-associated sequelae in older adults, and mounting evidence suggesting a vascular role in the etiology of dementia, the current data suggest that understanding the relationship between cholesterol and brain tissue microstructure may have important clinical implications for early detection of vascular-related cognitive disorders and optimal regulation of serum lipids to maintain neural health in older adults. PMID:22438182

Williams, Victoria J.; Leritz, Elizabeth C.; Shepel, Juli; McGlinchey, Regina E.; Milberg, William P.; Rudolph, James L.; Lipsitz, Lewis A.; Salat, David H.

2013-01-01

16

Verbal Working Memory Performance Correlates with Regional White Matter Structures in the Frontoparietal Regions  

ERIC Educational Resources Information Center

Working memory is the limited capacity storage system involved in the maintenance and manipulation of information over short periods of time. Previous imaging studies have suggested that the frontoparietal regions are activated during working memory tasks; a putative association between the structure of the frontoparietal regions and working…

Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

2011-01-01

17

White matter of the brain  

MedlinePLUS

White matter is tissue found in the brain. It contains nerve fibers. Many of these nerve fibers (axons) are ... fat called myelin. The myelin gives the white matter it's color. Myelin acts as an insulator. It ...

18

White matter magnetic resonance hyperintensities in dementia of the Alzheimer type: morphological and regional cerebral blood flow correlates.  

PubMed Central

In a prospective MRI study the presence, appearance, volume, and regional cerebral blood flow (rCBF) correlates of periventricular hyperintensities (PVHs) and deep white matter hyperintensities (DWMHs) were examined in 18 patients with probable Alzheimer's disease and in 10 age matched healthy control subjects, all without major cerbrovascular risk factors. The 133Xe inhalation method and the [99mTc]-d,l-hexamethyl-propylene-amine-oxime (HMPAO) technique with single photon emission computed tomography (SPECT) were used to measure rCBF. Rating scores for PVHs were significantly higher in the Alzheimer's disease group (p < 0.01) and correlated significantly with the volume of ventricles (p < 0.05) and with systolic arterial blood pressure (p < 0.01), but not with rCBF. By contrast, there was no significant difference in the rating scores or volumes of DWMHs between the two groups, although three patients had extensive DWMH lesions in the central white matter. In the group of patients with Alzheimer's disease as a whole, the volume of DWMHs correlated well with rCBF in the hippocampal region ( r = -0.72; p < 0.001), but not with frontal, temporal, parietal, or occipital rCBF. Postmortem histopathology of extensive DWMH lesions in one patient with definite Alzheimer's disease showed a partial loss of myelin and astrocytic gliosis, but no ischaemic changes. It is concluded that DWMH lesions may be associated with reduced rCBF in the hippocampal region. The heterogenous topography of neocortical rCBF deficits in Alzheimer's disease could not be explained by deafferentation from underlying white matter hyperintensities and therefore may reflect variations in the topography of cortical abnormalities. Images PMID:7798973

Waldemar, G; Christiansen, P; Larsson, H B; Høgh, P; Laursen, H; Lassen, N A; Paulson, O B

1994-01-01

19

White matter microstructure alterations in bipolar disorder.  

PubMed

Genetic, neuropathological and magnetic resonance imaging findings support the presence of diffuse white matter cytoarchitectural disruption in bipolar disorder. In this study, diffusion-weighted imaging (DWI) was applied to study cortical white matter microstructure organisation in 24 patients with DSM-IV bipolar disorder and 35 matched normal controls. DWI images were obtained using a 1.5 Tesla scanner and apparent diffusion coefficient (ADC) values were determined over regions of interest placed, bilaterally, in the frontal, temporal, parietal, and occipital white matter. Significantly increased ADC values were found in bipolar patients with respect to normal controls in the right temporal lobe, left parietal lobe and bilateral occipital lobes. ADC values did not associate significantly with age or with clinical variables (p>0.05). Diffuse cortical white matter alterations on DWI in bipolar disorder denote widespread disruption of white matter integrity and may be due to altered myelination and/or axonal integrity. PMID:22687164

Bellani, Marcella; Perlini, Cinzia; Ferro, Adele; Cerruti, Stefania; Rambaldelli, Gianluca; Isola, Miriam; Cerini, Roberto; Dusi, Nicola; Andreone, Nicola; Balestrieri, Matteo; Pozzi Mucelli, Roberto; Tansella, Michele; Brambilla, Paolo

2012-01-01

20

White matter microstructure alterations in bipolar disorder  

PubMed Central

Summary Genetic, neuropathological and magnetic resonance imaging findings support the presence of diffuse white matter cytoarchitectural disruption in bipolar disorder. In this study, diffusion-weighted imaging (DWI) was applied to study cortical white matter microstructure organisation in 24 patients with DSM-IV bipolar disorder and 35 matched normal controls. DWI images were obtained using a 1.5 Tesla scanner and apparent diffusion coefficient (ADC) values were determined over regions of interest placed, bilaterally, in the frontal, temporal, parietal, and occipital white matter. Significantly increased ADC values were found in bipolar patients with respect to normal controls in the right temporal lobe, left parietal lobe and bilateral occipital lobes. ADC values did not associate significantly with age or with clinical variables (p>0.05). Diffuse cortical white matter alterations on DWI in bipolar disorder denote widespread disruption of white matter integrity and may be due to altered myelination and/or axonal integrity. PMID:22687164

Bellani, Marcella; Perlini, Cinzia; Ferro, Adele; Cerruti, Stefania; Rambaldelli, Gianluca; Isola, Miriam; Cerini, Roberto; Dusi, Nicola; Andreone, Nicola; Balestrieri, Matteo; Mucelli, Roberto Pozzi; Tansella, Michele; Brambilla, Paolo

2012-01-01

21

White matter injury detection in neonatal MRI  

NASA Astrophysics Data System (ADS)

Early detection of white matter injury in premature newborns can facilitate timely clinical treatments reducing the potential risk of later developmental deficits. It was reported that there were more than 5% premature newborns in British Columbia, Canada, among which 5-10% exhibited major motor deficits and 25-50% exhibited significant developmental and visual deficits. With the advancement of computer assisted detection systems, it is possible to automatically identify white matter injuries, which are found inside the grey matter region of the brain. Atlas registration has been suggested in the literature to distinguish grey matter from the soft tissues inside the skull. However, our subjects are premature newborns delivered at 24 to 32 weeks of gestation. During this period, the grey matter undergoes rapid changes and differs significantly from one to another. Besides, not all detected white spots represent injuries. Additional neighborhood information and expert input are required for verification. In this paper, we propose a white matter feature identification system for premature newborns, which is composed of several steps: (1) Candidate white matter segmentation; (2) Feature extraction from candidates; (3) Validation with data obtained at a later stage on the children; and (4) Feature confirmation for automated detection. The main challenge of this work lies in segmenting white matter injuries from noisy and low resolution data. Our approach integrates image fusion and contrast enhancement together with a fuzzy segmentation technique to achieve promising results. Other applications, such as brain tumor and intra-ventricular haemorrhage detection can also benefit from our approach.

Cheng, Irene; Hajari, Nasim; Firouzmanesh, Amirhossein; Shen, Rui; Miller, Steven; Poskitt, Ken; Basu, Anup

2013-02-01

22

Regional white matter volume and the relation with attentional functioning in survivors of malignant pediatric brain tumors  

NASA Astrophysics Data System (ADS)

Quantitative assessment of MR examinations in 37 survivors of childhood cancer treated with central nervous system prophylaxis revealed that normal appearing white matter (NAWM) volume is associated with attention-related problems, localized specifically in the right prefrontal region. T1-, T2-, and PD-weighted images were segmented and divided into pre-frontal, frontal, parietal/temporal, and parietal/occipital regions for each hemisphere. These eight regions were analyzed in five slices centered at the level of the basal ganglia. The patient's age at diagnosis and time elapsed from diagnosis were used as covariates in the regressions. Attentional measures showed significant deficiency when compared to age and gender normative values. Total, frontal and/or prefrontal NAWM volumes from the range of slices examined were significantly associated with 5 of the 8 attentional measures. The frontal/prefrontal region of the brain is associated with executive functioning tasks and could potentially be spared as much as possible during therapy planning. The results of the present study further support the contention that NAWM is an important substrate for treatment-induced neurocognitive problems among survivors of malignant brain tumors of childhood.

Glass, John O.; Mulhern, Raymond K.; White, Holly A.; Wilkinson, Gina M.; Reddick, Wilburn E.

2003-05-01

23

Analysis of sub-anatomic diffusion tensor imaging indices in white matter regions of Alzheimer with MMSE score.  

PubMed

In this study, an attempt has been made to find the correlation between diffusion tensor imaging (DTI) indices of white matter (WM) regions and mini mental state examination (MMSE) score of Alzheimer patients. Diffusion weighted images are obtained from the ADNI database. These are preprocessed for eddy current correction and removal of non-brain tissue. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (DA) indices are computed over significant regions (Fornix left, Splenium of corpus callosum left, Splenium of corpus callosum right, bilateral genu of the corpus callosum) affected by Alzheimer disease (AD) pathology. The correlation is computed between diffusion indices of the significant regions and MMSE score using linear fit technique so as to find the relation between clinical parameters and the image features. Binary classification has been employed using support vector machine, decision stumps and simple logistic classifiers on the extracted DTI indices along with MMSE score to classify Alzheimer patients from healthy controls. It is observed that distinct values of DTI indices exist for the range of MMSE score. However, there is no strong correlation (Pearson's correlation coefficient 'r' varies from 0.0383 to -0.1924) between the MMSE score and the diffusion indices over the significant regions. Further, the performance evaluation of classifiers shows 94% accuracy using SVM in differentiating AD and control. In isolation clinical and image features can be used for prescreening and diagnosis of AD but no sub anatomic region correlation exist between these features set. The discussion on the correlation of diffusion indices of WM with MMSE score is presented in this study. PMID:24986110

Patil, Ravindra B; Ramakrishnan, S

2014-10-01

24

Reproducibility of an Automated Regional Analysis of White Matter with Diffusion Imaging  

E-print Network

were preprocessed (correction for motion and eddy current artifacts and skull stripping) with FSL [9]. Tensors and fractional anisotropy (FA) were computed and deformed to a population template using DTITK [10 each region by a prototypical position and direction and finds regions by minimizing the sum of squared

Laidlaw, David

25

Canavan Disease: A White Matter Disorder  

ERIC Educational Resources Information Center

Breakdown of oligodendrocyte-neuron interactions in white matter (WM), such as the loss of myelin, results in axonal dysfunction and hence a disruption of information processing between brain regions. The major feature of leukodystrophies is the lack of proper myelin formation during early development or the onset of myelin loss late in life.…

Kumar, Shalini; Mattan, Natalia S.; de Vellis, Jean

2006-01-01

26

SCIENCE MATTERS Hooded Sweatshirt (White)  

NSDL National Science Digital Library

White, heavy duty 9.3 oz. 50/50 blend, double-lined hood and pockets. Sweatshirt is printed with Science Matters logo on front and NSTA logo on back. Available in Adult sizes: Small, Medium, Large, X Large, XX Large.

1900-01-01

27

White matter attenuation and megalencephaly.  

PubMed Central

The computed tomogram of a 6 month old girl with familial megalencephaly showed widespread attenuation throughout the white matter. She continued to be developmentally and neurologically normal. Her scan at age 3 years was normal apart from the megalencephaly. A tentative explanation for this unusual series of events is offered. Images Fig. 1 Fig. 2 PMID:4073939

Robinson, R O

1985-01-01

28

Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease  

Microsoft Academic Search

Gait disturbances are common in the elderly. Cerebral small vessel disease, including white matter lesions and lacunars infarcts, is thought to disrupt white matter tracts that connect important motor regions, hence resulting in gait disturbances. Pathological studies have demonstrated abnormalities in white matter that may appear normal on brain imaging. The loss of integrity in such normal-appearing white matter may

K. F. de Laat; A. M. Tuladhar; A. G. W. van Norden; D. G. Norris; M. P. Zwiers; F. E. de Leeuw

2011-01-01

29

Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: influence of white matter anisotropic conductivity.  

PubMed

We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5-2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms with improved risk/benefit ratio. PMID:22032945

Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F; Lisanby, Sarah H; Peterchev, Angel V

2012-02-01

30

Regional electric field induced by electroconvulsive therapy in a realistic finite element head model: Influence of white matter anisotropic conductivity  

PubMed Central

We present the first computational study investigating the electric field (E-field) strength generated by various electroconvulsive therapy (ECT) electrode configurations in specific brain regions of interest (ROIs) that have putative roles in the therapeutic action and/or adverse side effects of ECT. This study also characterizes the impact of the white matter (WM) conductivity anisotropy on the E-field distribution. A finite element head model incorporating tissue heterogeneity and WM anisotropic conductivity was constructed based on structural magnetic resonance imaging (MRI) and diffusion tensor MRI data. We computed the spatial E-field distributions generated by three standard ECT electrode placements including bilateral (BL), bifrontal (BF), and right unilateral (RUL) and an investigational electrode configuration for focal electrically administered seizure therapy (FEAST). The key results are that (1) the median E-field strength over the whole brain is 3.9, 1.5, 2.3, and 2.6 V/cm for the BL, BF, RUL, and FEAST electrode configurations, respectively, which coupled with the broad spread of the BL E-field suggests a biophysical basis for observations of superior efficacy of BL ECT compared to BF and RUL ECT; (2) in the hippocampi, BL ECT produces a median E-field of 4.8 V/cm that is 1.5–2.8 times stronger than that for the other electrode configurations, consistent with the more pronounced amnestic effects of BL ECT; and (3) neglecting the WM conductivity anisotropy results in E-field strength error up to 18% overall and up to 39% in specific ROIs, motivating the inclusion of the WM conductivity anisotropy in accurate head models. This computational study demonstrates how the realistic finite element head model incorporating tissue conductivity anisotropy provides quantitative insight into the biophysics of ECT, which may shed light on the differential clinical outcomes seen with various forms of ECT, and may guide the development of novel stimulation paradigms with improved risk/benefit ratio. PMID:22032945

Lee, Won Hee; Deng, Zhi-De; Kim, Tae-Seong; Laine, Andrew F.; Lisanby, Sarah H.; Peterchev, Angel V.

2012-01-01

31

Imaging of White Matter Lesions  

Microsoft Academic Search

Magnetic resonance imaging (MRI) is very sensitive for the detection of white matter lesions (WML), which occur even in normal ageing. Intrinsic WML should be separated from physiological changes in the ageing brain, such as periventricular caps and bands, and from dilated Virchow-Robin spaces. Genuine WML are best seen with T2-weighted sequences such as long TR dual-echo spin-echo or FLAIR

Frederik Barkhof; Philip Scheltens

2002-01-01

32

White matter involvement in sporadic Creutzfeldt-Jakob disease  

PubMed Central

Sporadic Creutzfeldt-Jakob disease is considered primarily a disease of grey matter, although the extent of white matter involvement has not been well described. We used diffusion tensor imaging to study the white matter in sporadic Creutzfeldt-Jakob disease compared to healthy control subjects and to correlated magnetic resonance imaging findings with histopathology. Twenty-six patients with sporadic Creutzfeldt-Jakob disease and nine age- and gender-matched healthy control subjects underwent volumetric T1-weighted and diffusion tensor imaging. Six patients had post-mortem brain analysis available for assessment of neuropathological findings associated with prion disease. Parcellation of the subcortical white matter was performed on 3D T1-weighted volumes using Freesurfer. Diffusion tensor imaging maps were calculated and transformed to the 3D-T1 space; the average value for each diffusion metric was calculated in the total white matter and in regional volumes of interest. Tract-based spatial statistics analysis was also performed to investigate the deeper white matter tracts. There was a significant reduction of mean (P = 0.002), axial (P = 0.0003) and radial (P = 0.0134) diffusivities in the total white matter in sporadic Creutzfeldt-Jakob disease. Mean diffusivity was significantly lower in most white matter volumes of interest (P < 0.05, corrected for multiple comparisons), with a generally symmetric pattern of involvement in sporadic Creutzfeldt-Jakob disease. Mean diffusivity reduction reflected concomitant decrease of both axial and radial diffusivity, without appreciable changes in white matter anisotropy. Tract-based spatial statistics analysis showed significant reductions of mean diffusivity within the white matter of patients with sporadic Creutzfeldt-Jakob disease, mainly in the left hemisphere, with a strong trend (P = 0.06) towards reduced mean diffusivity in most of the white matter bilaterally. In contrast, by visual assessment there was no white matter abnormality either on T2-weighted or diffusion-weighted images. Widespread reduction in white matter mean diffusivity, however, was apparent visibly on the quantitative attenuation coefficient maps compared to healthy control subjects. Neuropathological analysis showed diffuse astrocytic gliosis and activated microglia in the white matter, rare prion deposition and subtle subcortical microvacuolization, and patchy foci of demyelination with no evident white matter axonal degeneration. Decreased mean diffusivity on attenuation coefficient maps might be associated with astrocytic gliosis. We show for the first time significant global reduced mean diffusivity within the white matter in sporadic Creutzfeldt-Jakob disease, suggesting possible primary involvement of the white matter, rather than changes secondary to neuronal degeneration/loss. PMID:25367029

Mandelli, Maria Luisa; DeArmond, Stephen J.; Hess, Christopher P.; Vitali, Paolo; Papinutto, Nico; Oehler, Abby; Miller, Bruce L.; Lobach, Irina V.; Bastianello, Stefano; Geschwind, Michael D.; Henry, Roland G.

2014-01-01

33

Astrocytes and Developmental White Matter Disorders  

ERIC Educational Resources Information Center

There is an increasing awareness that the astrocytes in the immature periventricular white matter are vulnerable to ischemia and respond to inflammation. Here we provide a synopsis of the articles that have evaluated the causes and consequences of developmental brain injuries to white matter astrocytes as well as the consequences of several…

Sen, Ellora; Levison, Steven W.

2006-01-01

34

Maturation of normal primate white matter: computed tomographic correlation  

SciTech Connect

Five infant baboons were examined with computed tomography (CT) during the first year of their lives to determine the rate and degree of normal white matter maturation in frontal, occipital, and parietal areas. The increase in CT numbers with age was correlated with gross and histologic specimens. Two phases of maturation were identified: a rapid phase (first 8-12 weeks) and a gradual phase (after 12 weeks). Frontal white matter was the most immature in the immediate postnatal period but it became equal in attenuation to the other regions by 4 weeks of age. Knowledge of white matter maturation rates may be particularly useful in cases of neonatal hypoxia/ischemia where zones of periventricular hypodensity are identified. The failure of such regions to follow a normal rate of maturation may indicate damage to the white matter and have significant prognostic implications.

Quencer, R.M.

1982-09-01

35

The contribution of regional gray/white matter volume in preclinical depression assessed by the Automatic Thoughts Questionnaire: a voxel-based morphometry study.  

PubMed

Negative automatic thought is a characteristic of depression that contributes toward the risk for episodes of depression. Evidence suggests that gray and white matter abnormalities are linked with depression, but little is known about the association between the negative cognitive experience and brain structure in preclinical depression. We examined the correlation between negative thought and gray (GMV)/white matter volume (WMV) in healthy individuals with preclinical depression. The participants were 309 university students with preclinical depression, as measured by their Automatic Thoughts Questionnaire (ATQ) scores. We collected brain MRIs and used voxel-based morphometry to analyze the correlation of regional GMV/WMV with the ATQ scores. The voxel-based morphometry results showed that the GMV of the right parahippocampal gyrus and fusiform gyrus and the WMV of the right superior temporal pole increased with the severity of depression. Furthermore, the corpus callosum volume decreased with the ATQ scores. This study implied that GMV increase and corpus callosum volume reduction may be associated with negative thought in nonclinical individuals, even at a preclinical depressed level. PMID:24999908

Cun, Lingli; Wang, Yanqiu; Zhang, Songyan; Wei, Dongtao; Qiu, Jiang

2014-09-10

36

Frontal white matter microstructure, aggression, and impulsivity in men with schizophrenia: a preliminary study  

Microsoft Academic Search

Background: Aggression and impulsivity may involve altered frontal white matter.Methods: Axial diffusion tensor images were acquired in 14 men with schizophrenia using a pulsed gradient, double spin echo, echo planar imaging method. White matter microstructural measures (fractional anisotropy and trace) were calculated from these data. Regions of interest were placed in frontal white matter on four slices. Impulsivity was measured

Matthew J. Hoptman; Jan Volavka; Glyn Johnson; Elisabeth Weiss; Robert M. Bilder; Kelvin O. Lim

2002-01-01

37

Lower Orbital Frontal White Matter Integrity in Adolescents with Bipolar I Disorder  

ERIC Educational Resources Information Center

Patients with bipolar I disorder demonstrated white matter abnormalities in white matter regions as seen through the use of diffusion tensor imaging. The findings suggest that white matter abnormalities in pediatric bipolar disorder may be useful in constructing neurobiological models of the disorder.

Kafantaris, Vivian; Kingsley, Peter; Ardekani, Babak; Saito, Ema; Lencz, Todd; Lim, Kelvin; Szeszko, Philip

2009-01-01

38

Medial Frontal White and Gray Matter Contributions to General Intelligence  

PubMed Central

The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%–34% of the variance in IQ, in comparison to 11%–16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence. PMID:25551572

Bouix, Sylvain; Kubicki, Marek

2014-01-01

39

Genetics Home Reference: Leukoencephalopathy with vanishing white matter  

MedlinePLUS

... Genetic disorder catalog Conditions > Leukoencephalopathy with vanishing white matter On this page: Description Genetic changes Inheritance Diagnosis ... May 2013 What is leukoencephalopathy with vanishing white matter? Leukoencephalopathy with vanishing white matter is a progressive ...

40

Vesicular release of glutamate from unmyelinated axons in white matter  

Microsoft Academic Search

Directed fusion of transmitter-laden vesicles enables rapid intercellular signaling in the central nervous system and occurs at synapses within gray matter. Here we show that action potentials also induce the release of glutamate from axons in the corpus callosum, a white matter region responsible for interhemispheric communication. Callosal axons release glutamate by vesicular fusion, which induces quantal AMPA receptor–mediated currents

Jennifer L Ziskin; Akiko Nishiyama; Maria Rubio; Masahiro Fukaya; Dwight E Bergles

2007-01-01

41

White matter in learning, cognition and psychiatric disorders  

Microsoft Academic Search

White matter is the brain region underlying the gray matter cortex, composed of neuronal fibers coated with electrical insulation called myelin. Previously of interest in demyelinating diseases such as multiple sclerosis, myelin is attracting new interest as an unexpected contributor to a wide range of psychiatric disorders, including depression and schizophrenia. This is stimu- lating research into myelin involvement in

R. Douglas Fields

2008-01-01

42

Neurotransmitter signaling in white matter.  

PubMed

White matter (WM) tracts are bundles of myelinated axons that provide for rapid communication throughout the CNS and integration in grey matter (GM). The main cells in myelinated tracts are oligodendrocytes and astrocytes, with small populations of microglia and oligodendrocyte precursor cells. The prominence of neurotransmitter signaling in WM, which largely exclude neuronal cell bodies, indicates it must have physiological functions other than neuron-to-neuron communication. A surprising aspect is the diversity of neurotransmitter signaling in WM, with evidence for glutamatergic, purinergic (ATP and adenosine), GABAergic, glycinergic, adrenergic, cholinergic, dopaminergic and serotonergic signaling, acting via a wide range of ionotropic and metabotropic receptors. Both axons and glia are potential sources of neurotransmitters and may express the respective receptors. The physiological functions of neurotransmitter signaling in WM are subject to debate, but glutamate and ATP-mediated signaling have been shown to evoke Ca(2+) signals in glia and modulate axonal conduction. Experimental findings support a model of neurotransmitters being released from axons during action potential propagation acting on glial receptors to regulate the homeostatic functions of astrocytes and myelination by oligodendrocytes. Astrocytes also release neurotransmitters, which act on axonal receptors to strengthen action potential propagation, maintaining signaling along potentially long axon tracts. The co-existence of multiple neurotransmitters in WM tracts suggests they may have diverse functions that are important for information processing. Furthermore, the neurotransmitter signaling phenomena described in WM most likely apply to myelinated axons of the cerebral cortex and GM areas, where they are doubtless important for higher cognitive function. PMID:24753049

Butt, Arthur M; Fern, Robert F; Matute, Carlos

2014-11-01

43

White matter characterization with diffusional kurtosis imaging.  

PubMed

Diffusional kurtosis imaging (DKI) is a clinically feasible extension of diffusion tensor imaging that probes restricted water diffusion in biological tissues using magnetic resonance imaging. Here we provide a physically meaningful interpretation of DKI metrics in white matter regions consisting of more or less parallel aligned fiber bundles by modeling the tissue as two non-exchanging compartments, the intra-axonal space and extra-axonal space. For the b-values typically used in DKI, the diffusion in each compartment is assumed to be anisotropic Gaussian and characterized by a diffusion tensor. The principal parameters of interest for the model include the intra- and extra-axonal diffusion tensors, the axonal water fraction and the tortuosity of the extra-axonal space. A key feature is that these can be determined directly from the diffusion metrics conventionally obtained with DKI. For three healthy young adults, the model parameters are estimated from the DKI metrics and shown to be consistent with literature values. In addition, as a partial validation of this DKI-based approach, we demonstrate good agreement between the DKI-derived axonal water fraction and the slow diffusion water fraction obtained from standard biexponential fitting to high b-value diffusion data. Combining the proposed WM model with DKI provides a convenient method for the clinical assessment of white matter in health and disease and could potentially provide important information on neurodegenerative disorders. PMID:21699989

Fieremans, Els; Jensen, Jens H; Helpern, Joseph A

2011-09-01

44

Cerebral white matter analysis using diffusion imaging  

E-print Network

In this thesis we address the whole-brain tractography segmentation problem. Diffusion magnetic resonance imaging can be used to create a representation of white matter tracts in the brain via a process called tractography. ...

O'Donnell, Lauren Jean

2006-01-01

45

ORIGINAL CONTRIBUTION White Matter Hyperintensities and  

E-print Network

syndrome. The impact of small- vessel cerebrovascular disease, visualized as white mat- terORIGINAL CONTRIBUTION White Matter Hyperintensities and Cerebral Amyloidosis Necessary PIB-positive subjects, those diag- nosed as having AD had greater WMH volume than nor- mal control

46

Clinically relevant intronic splicing enhancer mutation in myelin proteolipid protein leads to progressive microglia and astrocyte activation in white and gray matter regions of the brain  

PubMed Central

Introduction Mutations in proteolipid protein (PLP), the most abundant myelin protein in the CNS, cause the X-linked dysmyelinating leukodystrophies, Pelizaeus-Merzbacher disease (PMD) and spastic paraplegia type 2 (SPG2). Point mutations, deletion, and duplication of the PLP1 gene cause PMD/SPG2 with varying clinical presentation. Deletion of an intronic splicing enhancer (ISEdel) within intron 3 of the PLP1 gene is associated with a mild form of PMD. Clinical and preclinical studies have indicated that mutations in myelin proteins, including PLP, can induce neuroinflammation, but the temporal and spatial onset of the reactive glia response in a clinically relevant mild form of PMD has not been defined. Methods A PLP-ISEdel knockin mouse was used to examine the behavioral and neuroinflammatory consequences of a deletion within intron 3 of the PLP gene, at two time points (two and four months old) early in the pathological progression. Mice were characterized functionally using the open field task, elevated plus maze, and nesting behavior. Quantitative neuropathological analysis was for markers of astrocytes (GFAP), microglia (IBA1, CD68, MHCII) and axons (APP). The Aperio ScanScope was used to generate a digital, high magnification photomicrograph of entire brain sections. These digital slides were used to quantify the immunohistochemical staining in ten different brain regions to assess the regional heterogeneity in the reactive astrocyte and microglial response. Results The PLP-ISEdel mice exhibited behavioral deficits in the open field and nesting behavior at two months, which did not worsen by four months of age. A marker of axonal injury (APP) increased from two months to four months of age. Striking was the robust reactive astrocyte and microglia response which was also progressive. In the two-month-old mice, the astrocyte and microglia reactivity was most apparent in white matter rich regions of the brain. By four months of age the gliosis had become widespread and included both white as well as gray matter regions of the brain. Conclusions Our results indicate, along with other preclinical models of PMD, that an early reactive glia response occurs following mutations in the PLP gene, which may represent a potentially clinically relevant, oligodendrocyte-independent therapeutic target for PMD. PMID:24314267

2013-01-01

47

Profiles of White Matter Tract Pathology in Frontotemporal Dementia  

PubMed Central

Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. PMID:24510641

Mahoney, Colin J; Ridgway, Gerard R; Malone, Ian B; Downey, Laura E; Beck, Jonathan; Kinnunen, Kirsi M; Schmitz, Nicole; Golden, Hannah L; Rohrer, Jonathan D; Schott, Jonathan M; Rossor, Martin N; Ourselin, Sebastien; Mead, Simon; Fox, Nick C; Warren, Jason D

2014-01-01

48

Profiles of white matter tract pathology in frontotemporal dementia.  

PubMed

Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template-based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimer's disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimer's disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimer's disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co-localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. PMID:24510641

Mahoney, Colin J; Ridgway, Gerard R; Malone, Ian B; Downey, Laura E; Beck, Jonathan; Kinnunen, Kirsi M; Schmitz, Nicole; Golden, Hannah L; Rohrer, Jonathan D; Schott, Jonathan M; Rossor, Martin N; Ourselin, Sebastien; Mead, Simon; Fox, Nick C; Warren, Jason D

2014-08-01

49

The Reduction of Regional Cerebral Blood Flow in Normal-Appearing White Matter Is Associated with the Severity of White Matter Lesions in Elderly: A Xeon-CT Study  

PubMed Central

White matter lesions (WMLs) in normal elderly are related to chronic ischemia, and progression of WML occurs mostly in moderate to severe disease. However, the mechanism is uncertain. Thus, we enrolled fifty-six normal elderly patients without large artery disease. The severity of WML on MRI was graded as grade 0, I, II and III using the modified Fazekas scale. Cerebral blood flow (CBF) was measured by Xenon-CT. We found that CBF (mL/100 g/min) within periventricular lesions and in the right and left centrum semiovales were 20.33, 21.27 and 21.03, respectively, in group I; 16.33, 15.55 and 15.91, respectively, in group II; and 14.05, 14.46 and 14.23, respectively, in group III. CBF of normal-appearing white matter (NAWM) around periventricular areas and in the right and left centrum semiovales were 20.79, 22.26 and 22.15, respectively, in group 0; 21.12, 22.17 and 22.25, respectively, in group I; 18.02, 19.45 and 19.62, respectively, in group II; and 16.38, 18.18 and 16.74, respectively, in group III. Significant reductions in CBF were observed not only within lesions but also in NAWM surrounding the lesions. In addition, CBF was reduced significantly within lesions compared to NAWM of the same grade. Furthermore, CBF was reduced significantly in NAWM in grades II and III when compared to grades 0 and I. Our finding indicates that ischemia may play a role in the pathogenesis of WML. Additionally, our finding provides an alternative explanation for finding that the progression of WML occurred more commonly in patients with moderate to severe WML. PMID:25401786

Han, Jinghao; Hong, Zhen

2014-01-01

50

Frontotemporal white matter changes in amyotrophic lateral sclerosis.  

PubMed

Cognitive dysfunction can occur in some patients with amyotrophic lateral sclerosis (ALS) who are not suffering from dementia. The most striking and consistent cognitive deficit has been found using tests of verbal fluency. ALS patients with verbal fluency deficits have shown functional imaging abnormalities predominantly in frontotemporal regions using positron emission tomography (PET). This study used automated volumetric voxel-based analysis of grey and white matter densities of structural magnetic resonance imaging (MRI) scans to explore the underlying pattern of structural cerebral change in nondemented ALS patients with verbal fluency deficits. Two groups of ALS patients, defined by the presence or absence of cognitive impairment on the basis of the Written Verbal Fluency Test (ALSi, cognitively impaired, n=11; ALSu, cognitively unimpaired n=12) were compared with healthy age matched controls (n=12). A comparison of the ALSi group with controls revealed significantly (p<0.002) reduced white matter volume in extensive motor and non-motor regions, including regions corresponding to frontotemporal association fibres. These patients demonstrated a corresponding cognitive profile of executive and memory dysfunction. Less extensive white matter reductions were revealed in the comparison of the ALSu and control groups in regions corresponding to frontal association fibres. White matter volumes were also found to correlate with performance on memory tests. There were no significant reductions in grey matter volume in the comparison of either patient group with controls. The structural white matter abnormalities in frontal and temporal regions revealed here may underlie the cognitive and functional imaging abnormalities previously reported in non-demented ALS patients. The results also suggest that extra-motor structural abnormalities may be present in ALS patients with no evidence of cognitive change. The findings support the hypothesis of a continuum of extra-motor cerebral and cognitive change in this disorder. PMID:15739047

Abrahams, Sharon; Goldstein, Laura H; Suckling, John; Ng, Virginia; Simmons, Andy; Chitnis, Xavier; Atkins, Louise; Williams, Steve C R; Leigh, P N

2005-03-01

51

Long-Term Vision and Non-Vision Dominant Behavioral Deficits in the 2-VO Rats Are Accompanied by Time and Regional Glial Activation in the White Matter  

PubMed Central

The permanent occlusion of common carotid arteries (2-VO) in rats has been shown to induce progressive and long-lasting deficits in cognitive performance, however, whether these aberrant behaviors are attributed to visual dysfunction or cognitive impairment and what are the underlying mechanisms, remain controversial. In the present study, vision dominant (Morris water maze) and non-vision dominant (voice-cued fear conditioning) behavioral tests were assigned to comprehensively evaluate the influence of 2-VO lesion on cognitive behaviors. In the Morris water maze test, escape latencies of 2-VO rats were markedly increased in both hidden and unfixed visible platform tasks, which were accompanied by severe retinal damage. In the voice-cued fear conditioning test, significant reduction in the percentage of freezing behavior was observed at 60 days after 2-VO lesion. Chronic lesion by 2-VO failed to cause noticeable changes in the grey matter, as indicated by intact hippocampal and prefrontal cortical structures, sustained synaptic protein levels and glial cell numbers. In contrast, aberrant arrangement of myelinated axons was observed in the optic tract, but not in the corpus callosum and inner capsule of 2-VO rats. Concurrently, marked astrocyte proliferation and microglia activation in the optic tract occurred at 3 days after 2-VO lesion, and continued for up to 60 days. Differently, robust glial activation was observed in the corpus callosum at 3 days after 2-VO surgery, and then gradually returned to the baseline level at 14 and 60 days. Our study reported for the first time about the effect of 2-VO on the long-term cognitive impairment in the non-vision dominant fear conditioning test, which may be more applicable than the Morris water maze test for assessing 2-VO associated cognitive function. The time and region specific glial activation in the white matter may relate to retinal impairment, even behavioral deficits, in the setting of chronic cerebral hypoperfusion. PMID:24968196

Ruan, Zhi; Lei, Yun; Chen, Yu Ting; Zhang, Hai Yan

2014-01-01

52

Assessment of white matter microstructure in stroke patients using NODDI.  

PubMed

Diffusion weighted imaging (DWI) is widely used to study changes in white matter following stroke. In various studies employing diffusion tensor imaging (DTI) and high angular resolution diffusion imaging (HARDI) modalities, it has been shown that fractional anisotropy (FA), mean diffusivity (MD), and generalized FA (GFA) can be used as measures of white matter tract integrity in stroke patients. However, these measures may be non-specific, as they do not directly delineate changes in tissue microstructure. Multi-compartment models overcome this limitation by modeling DWI data using a set of indices that are directly related to white matter microstructure. One of these models which is gaining popularity, is neurite orientation dispersion and density imaging (NODDI). This model uses conventional single or multi-shell HARDI data to describe fiber orientation dispersion as well as densities of different tissue types in the imaging voxel. In this paper, we apply for the first time the NODDI model to 4-shell HARDI stroke data. By computing NODDI indices over the entire brain in two stroke patients, and comparing tissue regions in ipsilesional and contralesional hemispheres, we demonstrate that NODDI modeling provides specific information on tissue microstructural changes. We also introduce an information theoretic analysis framework to investigate the non-local effects of stroke in the white matter. Our initial results suggest that the NODDI indices might be more specific markers of white matter reorganization following stroke than other measures previously used in studies of stroke recovery. PMID:25570065

Adluru, Ganesh; Gur, Yaniv; Anderson, Jeffrey S; Richards, Lorie G; Adluru, Nagesh; DiBella, Edward V R

2014-08-01

53

Topographic correspondence between white matter hyperintensities and brain atrophy.  

PubMed

White matter hyperintensities (WMHs) are a common finding in normal elderly persons. We studied the biological damage associated with WMHs by assessing the correspondence between WMH location and regional gray matter loss.Voxel-based morphometry of the gray matter was carried out with statistical parametric mapping on high resolution MR images.Neurologically intact persons with mainly anterior (frontal>parieto-occipital; N = 39) and mainly posterior WMHs (parieto- occipital>frontal; N = 14) were compared with a group devoid of WMHs (N = 80). Subjects with mainly frontal WMHs had bilateral frontal (medial, superior, and inferior gyri) atrophy in gray matter, while subjects with mainly posterior WMHs had more diffuse atrophy, involving mainly the frontal but also the right insular region. Our findings suggest that frontal WMHs are associated with frontal gray matter damage while parietooccipital WMHs seem to have a weaker and more diffuse impact on gray matter. PMID:16502217

Rossi, R; Boccardi, M; Sabattoli, F; Galluzzi, S; Alaimo, G; Testa, C; Frisoni, G B

2006-07-01

54

White Matter Hyperintensities and Changes in White Matter Integrity in Patients with Alzheimer’s Disease  

PubMed Central

Purpose White matter hyperintensities (WMHs) are a risk factor for Alzheimer’s disease (AD). This study investigated the relationship between WMHs and white matter changes in AD using diffusion tensor imaging (DTI) and the sensitivity of each DTI index in distinguishing AD with WMHs. Subjects and Methods Forty-four subjects with WMHs were included. Subjects were classified into three groups based on the Scheltens rating scale: 15 AD patients with mild WMHs, 12 AD patients with severe WMHs, and 17 controls with mild WMHs. Fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (DR) and axial diffusivity (DA) were analyzed using the region of interest and Tract-Based Spatial Statistics methods. Sensitivity and specificity of DTI indices in distinguishing AD groups from the controls were evaluated. Results AD patients with mild WMHs exhibited differences from control subjects in most DTI indices in the medial temporal and frontal areas; however, differences in DTI indices from AD patients with mild WMHs and AD patients with severe WMHs were found in the parietal and occipital areas. FA and DR were more sensitive measurements than MD and DA in differentiating AD patients from controls, while MD was a more sensitive measurement in distinguishing AD patients with severe WMHs from those with mild WMHs. Conclusions WMHs may contribute to the white matter changes in AD brains, specifically in temporal and frontal areas. Changes in parietal and occipital lobes may be related to the severity of WMHs. DR may serve as an imaging marker of myelin deficits associated with AD. PMID:21152911

Wang, Liya; Goldstein, Felicia C.; Levey, Allan I.; Lah, James J.; Meltzer, Carolyn C.; Holder, Chad A.; Mao, Hui

2012-01-01

55

An autopsy case of infantile-onset vanishing white matter disease related to an EIF2B2 mutation (V85E) in a hemizygous region  

PubMed Central

We report a rare autopsy case of early infantile-onset vanishing white matter disease, with a submicroscopic deletion of 14q24.3, which included EIF2B2 and a missense mutation of EIF2B2 (V85E) of the remaining allele. The patient was a 4-year-old boy, who was found to have suddenly died during sleep. Physical and mental development began to deteriorate after convulsions at 10 month of age, and did not recover to baseline measurements. At autopsy, the brain showed a marked decrease in volume of white matter, with no typical cystic rarefaction. Histopathologically, the affected white matter showed diffuse loss of myelin fibers, meager astrogliosis with dysmorphic astrocytes, and loss of oligodendrocytes. Proliferative and apoptotic markers were negative for oligodendrocytes in the severely affected area. These findings may be related to the severity of the disease, and might be a feature of the EIF2B2 mutation pattern of the patient. Additionally, unusual fatty infiltration of both ventricles of the heart was found. These findings were suspected as early pathology of arrhythmogenic right ventricular cardiomyopathy due to characteristic gene mutation in the present case. In the present case, the defect EIF2B2 caused by hemizygosity may be related to early onset of the disease and the unusual pathological changes with vulnerability of oligodendrocytes and astrocytes, as well as cardiac abnormalities and sudden unexpected death. PMID:25031760

Hata, Yukiko; Kinoshita, Koshi; Miya, Kazushi; Hirono, Keiichi; Ichida, Fukiko; Yoshida, Koji; Nishida, Naoki

2014-01-01

56

SCIENCE MATTERS (White) Hooded Sweatshirt (Size: Medium)  

NSDL National Science Digital Library

White, heavy duty 9.3 oz. 50/50 blend, double-lined hood and pockets. Sweatshirt is printed with Science Matters logo on front and NSTA logo on back. Available in Adult sizes: Small, Medium, Large, X Large, XX Large.

1900-01-01

57

SCIENCE MATTERS (White) Hooded Sweatshirt (Size: Small)  

NSDL National Science Digital Library

White, heavy duty 9.3 oz. 50/50 blend, double-lined hood and pockets. Sweatshirt is printed with Science Matters logo on front and NSTA logo on back. Available in Adult sizes: Small, Medium, Large, X Large, XX Large.

1900-01-01

58

SCIENCE MATTERS (White) Hooded Sweatshirt (Size: Large)  

NSDL National Science Digital Library

White, heavy duty 9.3 oz. 50/50 blend, double-lined hood and pockets. Sweatshirt is printed with Science Matters logo on front and NSTA logo on back. Available in Adult sizes: Small, Medium, Large, X Large, XX Large.

1900-01-01

59

Significance of White Matter Hyperintensities in MCI  

E-print Network

Blood Pressure Hypertension .5 (1.51) 5/6 27.27(2.45)* .148 (.02) .147 (.01) 34.38 (12.2)* Hypertension 47% 45% 82% Type II Diabetes and maintenance #12;White Matter Changes Compromise Prefrontal Cortex Function in Healthy Elderly Christine Wu

California at Davis, University of

60

White Matter Hyperintensities and Medication Adherence  

Microsoft Academic Search

White matter hyperintensities (WMH) are associated with hypertension, age, and cognitive function, but the association between WMH and medication adherence has not been examined. The intent of this investigation was to consider the potential implications of hypertension-related brain morphological changes on medication adherence and thereby improve understanding of the self-management consequences of hypertension. The associations between WMH, blood pressure, age,

Kathleen C. Insel; Sheryl L. Reminger; Chao-Pin Hsiao

2008-01-01

61

White Matter Abnormalities and Animal Models Examining a Putative Role of Altered White Matter in Schizophrenia  

PubMed Central

Schizophrenia is a severe mental disorder affecting about 1% of the population worldwide. Although the dopamine (DA) hypothesis is still keeping a dominant position in schizophrenia research, new advances have been emerging in recent years, which suggest the implication of white matter abnormalities in schizophrenia. In this paper, we will briefly review some of recent human studies showing white matter abnormalities in schizophrenic brains and altered oligodendrocyte-(OL-) and myelin-related genes in patients with schizophrenia and will consider abnormal behaviors reported in patients with white matter diseases. Following these, we will selectively introduce some animal models examining a putative role of white matter abnormalities in schizophrenia. The emphasis will be put on the cuprizone (CPZ) model. CPZ-fed mice show demyelination and OLs loss, display schizophrenia-related behaviors, and have higher DA levels in the prefrontal cortex. These features suggest that the CPZ model is a novel animal model of schizophrenia. PMID:22937274

Xu, Haiyun; Li, Xin-Min

2011-01-01

62

Abnormal white matter microstructure in children with sensory processing disorders.  

PubMed

Sensory processing disorders (SPD) affect 5-16% of school-aged children and can cause long-term deficits in intellectual and social development. Current theories of SPD implicate primary sensory cortical areas and higher-order multisensory integration (MSI) cortical regions. We investigate the role of white matter microstructural abnormalities in SPD using diffusion tensor imaging (DTI). DTI was acquired in 16 boys, 8-11 years old, with SPD and 24 age-, gender-, handedness- and IQ-matched neurotypical controls. Behavior was characterized using a parent report sensory behavior measure, the Sensory Profile. Fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) were calculated. Tract-based spatial statistics were used to detect significant group differences in white matter integrity and to determine if microstructural parameters were significantly correlated with behavioral measures. Significant decreases in FA and increases in MD and RD were found in the SPD cohort compared to controls, primarily involving posterior white matter including the posterior corpus callosum, posterior corona radiata and posterior thalamic radiations. Strong positive correlations were observed between FA of these posterior tracts and auditory, multisensory, and inattention scores (r = 0.51-0.78; p < 0.001) with strong negative correlations between RD and multisensory and inattention scores (r = - 0.61-0.71; p < 0.001). To our knowledge, this is the first study to demonstrate reduced white matter microstructural integrity in children with SPD. We find that the disrupted white matter microstructure predominantly involves posterior cerebral tracts and correlates strongly with atypical unimodal and multisensory integration behavior. These findings suggest abnormal white matter as a biological basis for SPD and may also distinguish SPD from overlapping clinical conditions such as autism and attention deficit hyperactivity disorder. PMID:24179836

Owen, Julia P; Marco, Elysa J; Desai, Shivani; Fourie, Emily; Harris, Julia; Hill, Susanna S; Arnett, Anne B; Mukherjee, Pratik

2013-01-01

63

White matter abnormalities in adolescents with major depressive disorder.  

PubMed

The purpose of this study was to identify areas of abnormal white matter microstructure in adolescents with Major Depressive Disorder (MDD) using diffusion tensor imaging (DTI). Fractional anisotropy (FA) values representing preferential diffusivity along major tracts were examined using tract-based spatial statistics across the whole brain in adolescents ages 13-19 with MDD (n?=?31) compared with demographically-matched healthy controls (n?=?31). We not only examined frontal lobe tracts that have been most frequently identified as abnormal in previous DTI studies of older depressed patients, but also tested for FA group differences across the whole brain to determine if adolescent depression was related to any other regional white matter abnormality. MDD-diagnosed adolescents had significantly lower FA in many regions concentrated predominantly in the frontal lobe. There also was strong evidence for lower FA in bilateral anterior/posterior limbs of the internal capsules, as well as tracts through the midbrain, left external capsule, right thalamic radiation and left inferior longitudinal fasciculus. Consistent with previous findings in depressed young and elderly adults, the current study found evidence for abnormal microstructure in white matter connections of the frontal lobe in MDD adolescents. There also was strong evidence for FA abnormalities in corpus callosum genu, internal and external capsule tracts, thalamus and midbrain, notable for both the relative magnitude of these effects and absence from most previous white matter studies of depression. These abnormalities might represent important markers of early life-onset depression. PMID:24242685

Bessette, Katie L; Nave, Andrea M; Caprihan, Arvind; Stevens, Michael C

2014-12-01

64

White matter microstructure correlates of mathematical giftedness and intelligence quotient.  

PubMed

Recent functional neuroimaging studies have shown differences in brain activation between mathematically gifted adolescents and controls. The aim of this study was to investigate the relationship between mathematical giftedness, intelligent quotient (IQ), and the microstructure of white matter tracts in a sample composed of math-gifted adolescents and aged-matched controls. Math-gifted subjects were selected through a national program based on detecting enhanced visuospatial abilities and creative thinking. We used diffusion tensor imaging to assess white matter microstructure in neuroanatomical connectivity. The processing included voxel-wise and region of interest-based analyses of the fractional anisotropy (FA), a parameter which is purportedly related to white matter microstructure. In a whole-sample analysis, IQ showed a significant positive correlation with FA, mainly in the corpus callosum, supporting the idea that efficient information transfer between hemispheres is crucial for higher intellectual capabilities. In addition, math-gifted adolescents showed increased FA (adjusted for IQ) in white matter tracts connecting frontal lobes with basal ganglia and parietal regions. The enhanced anatomical connectivity observed in the forceps minor and splenium may underlie the greater fluid reasoning, visuospatial working memory, and creative capabilities of these children. PMID:24038774

Navas-Sánchez, Francisco J; Alemán-Gómez, Yasser; Sánchez-Gonzalez, Javier; Guzmán-De-Villoria, Juan A; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

2014-06-01

65

Diminished white matter integrity in patients with systemic lupus erythematosus  

PubMed Central

Purpose Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease that can affect the central nervous system. Neuropsychiatric symptoms are found in 25–70% of patients. Using diffusion tensor imaging (DTI) various studies have reported changes in white matter integrity in SLE patients with neuropsychiatric symptoms (NPSLE patients). The purpose of this study was to investigate, if regional changes in white matter integrity can also be detected in SLE patients without neuropsychiatric symptoms (non-NPSLE patients). Methods Applying DTI and tract based spatial statistics (TBSS) we investigated 19 NPSLE patients, 19 non-NPSLE and 18 healthy controls. Groups were matched for age and sex. Image pre-processing was performed using FSL, following the TBSS pipeline (eddy current correction, estimation of fractional anisotropy (FA), normalization, skeletonization of the group mean FA image). A general linear model with threshold-free cluster enhancement was used to assess significant differences between the three groups. Results Statistical analyses revealed several regions of decreased prefrontal white matter integrity (decreased FA) in both groups of SLE patients. The changes found in the non-NPSLE patients (as compared to healthy controls) overlapped with those in the NPSLE patients, but were not as pronounced. Conclusions Our data suggest that changes in regional white matter integrity, in terms of a decrease in FA, are present not only in NPSLE patients, but also in non-NPSLE patients, though to a lesser degree. We also demonstrate that the way statistical maps are corrected for multiple comparisons has a profound influence on whether alterations in white matter integrity in non-NPSLE patients are deemed significant. PMID:25161895

Schmidt-Wilcke, Tobias; Cagnoli, Patricia; Wang, Page; Schultz, Thomas; Lotz, Anne; Mccune, William J.; Sundgren, Pia C.

2014-01-01

66

Neuroimaging of White Matter in Aging and Dementia  

Microsoft Academic Search

Clinical neuroscientists have focused increasing attention on white matter connections in the brain and on the effects of aging and disease on these connections. Recent advances in magnetic resonance imaging (MRI) analysis have given researchers new tools for quantifying and visualizing white matter to better relate white matter structure and function. The goals of this article are (a) to acquaint

Paul Malloy; Stephen Correia; Glenn Stebbins; David H. Laidlaw

2007-01-01

67

Origins of R2? and white matter  

PubMed Central

Estimates of the apparent transverse relaxation rate () can be used to quantify important properties of biological tissue. Surprisingly, the mechanism of dependence on tissue orientation is not well understood. The primary goal of this paper was to characterize orientation dependence of in gray and white matter and relate it to independent measurements of two other susceptibility based parameters: the local Larmor frequency shift (fL) and quantitative volume magnetic susceptibility (??). Through this comparative analysis we calculated scaling relations quantifying (reversible contribution to the transverse relaxation rate from local field inhomogeneities) in a voxel given measurements of the local Larmor frequency shift. is a measure of both perturber geometry and density and is related to tissue microstructure. Additionally, two methods (the Generalized Lorentzian model and iterative dipole inversion) for calculating ?? were compared in gray and white matter. The value of ?? derived from fitting the Generalized Lorentzian model was then connected to the observed orientation dependence using image-registered optical density measurements from histochemical staining. Our results demonstrate that the and fL of white and cortical gray matter are well described by a sinusoidal dependence on the orientation of the tissue and a linear dependence on the volume fraction of myelin in the tissue. In deep brain gray matter structures, where there is no obvious symmetry axis, and fL have no orientation dependence but retain a linear dependence on tissue iron concentration and hence ??. PMID:24374633

Rudko, David A.; Klassen, L. Martyn; de Chickera, Sonali N.; Gati, Joseph S.; Dekaban, Gregory A.; Menon, Ravi S.

2014-01-01

68

Diffusion kurtosis imaging discriminates patients with white matter lesions from healthy subjects.  

PubMed

This work illustrates that DKI reveals white matter lesions and also discriminates healthy subjects from patients with white matter lesions. To show this capability, we have investigated DKI images of a healthy subject and a patient with white matter lesions. The analysis was performed both between and within subjects. Regions of Interest (ROIs) for lesion and normal white matter in the patient images are selected manually (for within subject study) and also the corresponding ROIs in the healthy subject are defined (for between subject study). The results of comparing the estimated values for apparent diffusion and kurtosis parameters show that both D(app) and K(app) can distinguish normal and abnormal tissues. K(app) (D(app)) of the normal regions is greater (lower) than that of the abnormal regions. Another investigation over all voxels in the brain shows an important feature of kurtosis in determining white matter lesions. PMID:22254922

Iraji, Armin; Davoodi-Bojd, Esmaeil; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gholam-Ali; Jiang, Quan

2011-01-01

69

Assessing white matter integrity as a function of abstinence duration in former cocaine-dependent individuals  

Microsoft Academic Search

Current cocaine-dependent users show reductions in white matter (WM) integrity, especially in cortical regions associated with cognitive control that have been associated with inhibitory dysfunction. A key question is whether these white matter differences are present following abstinence from drug use. To address this, WM integrity was examined using diffusion tensor imaging (DTI) obtained on 43 cocaine abstinent patients (abstinence

Ryan P. Bell; John J. Foxe; Jay Nierenberg; Matthew J. Hoptman; Hugh Garavan

2011-01-01

70

White Matter Maturation Supports the Development of Reasoning Ability through Its Influence on Processing Speed  

ERIC Educational Resources Information Center

The structure of the human brain changes in several ways throughout childhood and adolescence. Perhaps the most salient of these changes is the strengthening of white matter tracts that enable distal brain regions to communicate with one another more quickly and efficiently. Here, we sought to understand whether and how white matter changes…

Ferrer, Emilio; Whitaker, Kirstie J.; Steele, Joel S.; Green, Chloe T.; Wendelken, Carter; Bunge, Silvia A.

2013-01-01

71

Maternal infection and white matter toxicity  

PubMed Central

Studies examining maternal infection as a risk factor for neurological disorders in the offspring have suggested that altered maternal immune status during pregnancy can be considered as an adverse event in prenatal development. Infection occurring in the mother during the gestational period has been implicated in multiple neurological effects. The current manuscript will consider the issue of immune/inflammatory conditions during prenatal development where adverse outcomes have been linked to maternal systemic infection. The discussions will focus primary on white matter and oligodendrocytes as they have been identified as target processes. This white matter damage occurs in very early preterm infants and in various other human diseases currently being examined for a linkage to maternal or early developmental immune status. The intent is to draw attention to the impact of altered immune status during pregnancy on the offspring for the consideration of such contributing factors to the general assessment of developmental neurotoxicology. PMID:16787664

Harry, G. Jean; Lawler, Cindy; Brunssen, Susan H.

2006-01-01

72

Inflammatory Pathways Link Socioeconomic Inequalities to White Matter Architecture  

PubMed Central

Socioeconomic disadvantage confers risk for aspects of ill health that may be mediated by systemic inflammatory influences on the integrity of distributed brain networks. Following this hypothesis, we tested whether socioeconomic disadvantage related to the structural integrity of white matter tracts connecting brain regions of distributed networks, and whether such a relationship would be mediated by anthropometric, behavioral, and molecular risk factors associated with systemic inflammation. Otherwise healthy adults (N= 155, aged 30–50 years, 78 men) completed protocols assessing multilevel indicators of socioeconomic position (SEP), anthropometric and behavioral measures of adiposity and cigarette smoking, circulating levels of C-reactive protein (CRP), and white matter integrity by diffusion tensor imaging. Mediation modeling was used to test associations between SEP indicators and measures of white matter tract integrity, as well as indirect mediating paths. Measures of tract integrity followed a socioeconomic gradient: individuals completing more schooling, earning higher incomes, and residing in advantaged neighborhoods exhibited increases in white matter fractional anisotropy and decreases in radial diffusivity, relative to disadvantaged individuals. Moreover, analysis of indirect paths showed that adiposity, cigarette smoking, and CRP partially mediated these effects. Socioeconomic inequalities may relate to diverse health disparities via inflammatory pathways impacting the structural integrity of brain networks. PMID:22772650

Gianaros, Peter J.; Marsland, Anna L.; Sheu, Lei K.; Erickson, Kirk I.; Verstynen, Timothy D.

2013-01-01

73

Improved Segmentation of White Matter Tracts with Adaptive Riemannian Metrics  

PubMed Central

We present a novel geodesic approach to segmentation of white matter tracts from diffusion tensor imaging (DTI). Compared to deterministic and stochastic tractography, geodesic approaches treat the geometry of the brain white matter as a manifold, often using the inverse tensor field as a Riemannian metric. The white matter pathways are then inferred from the resulting geodesics, which have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, the choice of Riemannian metric in these methods is ad hoc. A serious drawback of current geodesic methods is that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we propose a method for learning an adaptive Riemannian metric from the DTI data, where the resulting geodesics more closely follow the principal eigenvector of the diffusion tensors even in high-curvature regions. We also develop a way to automatically segment the white matter tracts based on the computed geodesics. We show the robustness of our method on simulated data with different noise levels. We also compare our method with tractography methods and geodesic approaches using other Riemannian metrics and demonstrate that the proposed method results in improved geodesics and segmentations using both synthetic and real DTI data. PMID:24211814

Hao, Xiang; Zygmunt, Kristen; Whitaker, Ross T.; Fletcher, P. Thomas

2014-01-01

74

Developmental Regulation of ?-Amino-3-Hydroxy-5-Methyl-4-Isoxazole-Propionic Acid Receptor Subunit Expression in Forebrain and Relationship to Regional Susceptibility to Hypoxic/Ischemic Injury. I. Rodent Cerebral White Matter and Cortex  

PubMed Central

This is the first part of a two-part study to investigate the cellular distribution and temporal regulation of ?-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) subunits in the developing white matter and cortex in rat (part I) and human (part II). Western blot and immunocytochemistry were used to evaluate the differential expression of AMPAR subunits on glial and neuronal subtypes during the first 3 postnatal weeks in the Long Evans and Sprague Dawley rat strains. In Long Evans rats during the first postnatal week, GluR2-lacking AMPARs were expressed predominantly on white matter cells, including radial glia, premyelinating oligodendrocytes, and subplate neurons, whereas, during the second postnatal week, these AMPARs were highly expressed on cortical neurons, coincident with decreased expression on white matter cells. Immunocytochemical analysis revealed that cell-specific developmental changes in AMPAR expression occurred 2–3 days earlier by chronological age in Sprague Dawley rats compared with Long Evans rats, despite overall similar temporal sequencing. In both white and gray matter, the periods of high GluR2 deficiency correspond to those of regional susceptibility to hypoxic/ischemic injury in each of the two rat strains, supporting prior studies suggesting a critical role for Ca2+-permeable AMPARs in excitotoxic cellular injury and epileptogenesis. The developmental regulation of these receptor subunits strongly suggests that Ca2+ influx through GluR2-lacking AMPARs may play an important role in neuronal and glial development and injury in the immature brain. Moreover, as demonstrated in part II, there are striking similarities between rat and human in the regional and temporal maturational regulation of neuronal and glial AMPAR expression. PMID:16680782

Talos, Delia M.; Fishman, Rachel E.; Park, Hyunkyung; Folkerth, Rebecca D.; Follett, Pamela L.; Volpe, Joseph J.; Jensen, Frances E.

2014-01-01

75

Associations Between White Matter Microstructure and Infants’ Working Memory  

PubMed Central

Working memory emerges in infancy and plays a privileged role in subsequent adaptive cognitive development. The neural networks important for the development of working memory during infancy remain unknown. We used diffusion tensor imaging (DTI) and deterministic fiber tracking to characterize the microstructure of white matter fiber bundles hypothesized to support working memory in 12-month-old infants (n=73). Here we show robust associations between infants’ visuospatial working memory performance and microstructural characteristics of widespread white matter. Significant associations were found for white matter tracts that connect brain regions known to support working memory in older children and adults (genu, anterior and superior thalamic radiations, anterior cingulum, arcuate fasciculus, and the temporal-parietal segment). Better working memory scores were associated with higher FA and lower RD values in these selected white matter tracts. These tract-specific brain-behavior relationships accounted for a significant amount of individual variation above and beyond infants’ gestational age and developmental level, as measured with the Mullen Scales of Early Learning. Working memory was not associated with global measures of brain volume, as expected, and few associations were found between working memory and control white matter tracts. To our knowledge, this study is among the first demonstrations of brain-behavior associations in infants using quantitative tractography. The ability to characterize subtle individual differences in infant brain development associated with complex cognitive functions holds promise for improving our understanding of normative development, biomarkers of risk, experience-dependent learning and neuro-cognitive periods of developmental plasticity. PMID:22989623

Short, Sarah J.; Elison, Jed T.; Goldman, Barbara Davis; Styner, Martin; Gu, Hongbin; Connelly, Mark; Maltbie, Eric; Woolson, Sandra; Lin, Weili; Gerig, Guido; Reznick, J. Steven; Gilmore, John H.

2013-01-01

76

The effects of puberty on white matter development in boys.  

PubMed

Neuroimaging studies demonstrate considerable changes in white matter volume and microstructure during adolescence. Most studies have focused on age-related effects, whilst puberty-related changes are not well understood. Using diffusion tensor imaging and tract-based spatial statistics, we investigated the effects of pubertal status on white matter mean diffusivity (MD) and fractional anisotropy (FA) in 61 males aged 12.7-16.0 years. Participants were grouped into early-mid puberty (?Tanner Stage 3 in pubic hair and gonadal development; n=22) and late-post puberty (?Tanner Stage 4 in pubic hair or gonadal development; n=39). Salivary levels of pubertal hormones (testosterone, DHEA and oestradiol) were also measured. Pubertal stage was significantly related to MD in diverse white matter regions. No relationship was observed between pubertal status and FA. Regression modelling of MD in the significant regions demonstrated that an interaction model incorporating puberty, age and puberty×age best explained our findings. In addition, testosterone was correlated with MD in these pubertally significant regions. No relationship was observed between oestradiol or DHEA and MD. In conclusion, pubertal status was significantly related to MD, but not FA, and this relationship cannot be explained by changes in chronological age alone. PMID:25454416

Menzies, Lara; Goddings, Anne-Lise; Whitaker, Kirstie J; Blakemore, Sarah-Jayne; Viner, Russell M

2015-02-01

77

Whole-brain voxel-based statistical analysis of gray matter and white matter in temporal lobe epilepsy  

Microsoft Academic Search

Volumetric MRI studies based on manual labeling of selected anatomical structures have provided in vivo evidence that brain abnormalities associated with temporal lobe epilepsy (TLE) extend beyond the hippocampus. Voxel-based morphometry (VBM) is a fully automated image analysis technique allowing identification of regional differences in gray matter (GM) and white matter (WM) between groups of subjects without a prior region

N. Bernasconi; S. Duchesne; A. Janke; J. Lerch; D. L. Collins; A. Bernasconi

2004-01-01

78

Episodic memory function is associated with multiple measures of white matter integrity in cognitive aging  

PubMed Central

Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH) and fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI), differ with aging and cerebrovascular disease (CVD) and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals. PMID:22438841

Lockhart, Samuel N.; Mayda, Adriane B. V.; Roach, Alexandra E.; Fletcher, Evan; Carmichael, Owen; Maillard, Pauline; Schwarz, Christopher G.; Yonelinas, Andrew P.; Ranganath, Charan; DeCarli, Charles

2011-01-01

79

Diffusion tensor imaging in studying white matter complexity: A gap junction hypothesis  

PubMed Central

The role of the prefrontal cortex as an executive oversight of posterior brain regions raises the question of the extent to which the anterior regions of the brain interconnect with the posterior regions. The aim of this study is to test the complexity of rostral white matter tracts, which connect anterior and posterior brain regions, in comparison to caudal white matter tracts and the corpus callosum. Diffusion tensor imaging (DTI) is a modality that measures fractional anisotropy (FA). Higher white matter complexity could result in a decrease of FA, possibly through denser intersection of fiber tracts. DTI was used to determine regional FA in 9 healthy bonnet macaques (Macaca radiata). Four regions of interest were included: anterior and posterior limbs of the internal capsule, the occipital lobe white matter, and the corpus callosum. FA of the anterior limbs of the internal capsule was lowest compared to all other regions of interest (Newman-Keuls (N-K); p < 0.0001), whereas FA of the corpus callosum was highest (N-K; p < 0.0001). The posterior limbs of the internal capsule and the occipital white matter were not distinguishable but exhibited intermediate FA in comparison to the former (N-K; p < 0.0001) and the latter (N-K; p < 0.0001). The current study demonstrates that FA, a measure of white matter complexity, can vary markedly as a function of region of interest. Moreover, validation of these findings using neurohistological studies and replication in human samples appears warranted. PMID:20371267

Abdallah, Chadi G.; Tang, Cheuk Y.; Mathew, Sanjay J.; Martinez, Jose; Hof, Patrick R.; Perera, Tarique D.; Shungu, Dikoma C.; Gorman, Jack M.; Coplan, Jeremy D.

2010-01-01

80

Organising white matter in a brain without corpus callosum fibres.  

PubMed

Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles' anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles' organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis. PMID:25282054

Bénézit, Audrey; Hertz-Pannier, Lucie; Dehaene-Lambertz, Ghislaine; Monzalvo, Karla; Germanaud, David; Duclap, Delphine; Guevara, Pamela; Mangin, Jean-François; Poupon, Cyril; Moutard, Marie-Laure; Dubois, Jessica

2014-09-11

81

The generation and validation of white matter connectivity importance maps  

PubMed Central

Both the size and location of injury in the brain influences the type and severity of cognitive or sensorimotor dysfunction. However, even with advances in MR imaging and analysis, the correspondence between lesion location and clinical deficit remains poorly understood. Here, structural and diffusion images from 14 healthy subjects are used to create spatially unbiased white matter connectivity importance maps that quantify the amount of disruption to the overall brain network that would be incurred if that region were compromised. Some regions in the white matter that were identified as highly important by such maps have been implicated in strategic infarct dementia and linked to various attention tasks in previous studies. Validation of the maps is performed by investigating the correlations of the importance maps’ predicted cognitive deficits in a group of 15 traumatic brain injury patients with their cognitive test scores measuring attention and memory. While no correlation was found between amount of white matter injury and cognitive test scores, significant correlations (r > 0.68, p < 0.006) were found when including location information contained in the importance maps. These tools could be used by physicians to improve surgical planning, diagnosis, and assessment of disease severity in a variety of pathologies like multiple sclerosis, trauma, and stroke. PMID:21722739

Kuceyeski, Amy; Maruta, Jun; Niogi, Sumit N.; Ghajar, Jamshid; Raj, Ashish

2011-01-01

82

Aging in deep gray matter and white matter revealed by diffusional kurtosis imaging.  

PubMed

Diffusion tensor imaging has already been extensively used to probe microstructural alterations in white matter tracts, and scarcely, in deep gray matter. However, results in literature regarding age-related degenerative mechanisms in white matter tracts and parametric changes in the putamen are inconsistent. Diffusional kurtosis imaging is a mathematical extension of diffusion tensor imaging, which could more comprehensively mirror microstructure, particularly in isotropic tissues such as gray matter. In this study, we used the diffusional kurtosis imaging method and a white-matter model that provided metrics of explicit neurobiological interpretations in healthy participants (58 in total, aged from 25 to 84 years). Tract-based whole-brain analyses and regions-of-interest (anterior and posterior limbs of the internal capsule, cerebral peduncle, fornix, genu and splenium of corpus callosum, globus pallidus, substantia nigra, red nucleus, putamen, caudate nucleus, and thalamus) analyses were performed to examine parametric differences across regions and correlations with age. In white matter tracts, evidence was found supportive for anterior-posterior gradient and not completely supportive for retrogenesis theory. Age-related degenerations appeared to be broadly driven by axonal loss. Demyelination may also be a major driving mechanism, although confined to the anterior brain. In terms of deep gray matter, higher mean kurtosis and fractional anisotropy in the globus pallidus, substantia nigra, and red nucleus reflected higher microstructural complexity and directionality compared with the putamen, caudate nucleus, and thalamus. In particular, the unique age-related positive correlations for fractional anisotropy, mean kurtosis, and radial kurtosis in the putamen opposite to those in other regions call for further investigation of exact underlying mechanisms. In summary, the results suggested that diffusional kurtosis can provide measurements in a new dimension that were complementary to diffusivity metrics. Kurtosis together with diffusivity can more comprehensively characterize microstructural compositions and age-related changes than diffusivity alone. Combined with proper model, it may also assist in providing neurobiological interpretations of the identified alterations. PMID:24910392

Gong, Nan-Jie; Wong, Chun-Sing; Chan, Chun-Chung; Leung, Lam-Ming; Chu, Yiu-Ching

2014-10-01

83

Imaging white matter in human brainstem.  

PubMed

The human brainstem is critical for the control of many life-sustaining functions, such as consciousness, respiration, sleep, and transfer of sensory and motor information between the brain and the spinal cord. Most of our knowledge about structure and organization of white and gray matter within the brainstem is derived from ex vivo dissection and histology studies. However, these methods cannot be applied to study structural architecture in live human participants. Tractography from diffusion-weighted magnetic resonance imaging (MRI) may provide valuable insights about white matter organization within the brainstem in vivo. However, this method presents technical challenges in vivo due to susceptibility artifacts, functionally dense anatomy, as well as pulsatile and respiratory motion. To investigate the limits of MR tractography, we present results from high angular resolution diffusion imaging of an intact excised human brainstem performed at 11.1?T using isotropic resolution of 0.333, 1, and 2?mm, with the latter reflecting resolution currently used clinically. At the highest resolution, the dense fiber architecture of the brainstem is evident, but the definition of structures degrades as resolution decreases. In particular, the inferred corticopontine/corticospinal tracts (CPT/CST), superior (SCP) and middle cerebellar peduncle (MCP), and medial lemniscus (ML) pathways are clearly discernable and follow known anatomical trajectories at the highest spatial resolution. At lower resolutions, the CST/CPT, SCP, and MCP pathways are artificially enlarged due to inclusion of collinear and crossing fibers not inherent to these three pathways. The inferred ML pathways appear smaller at lower resolutions, indicating insufficient spatial information to successfully resolve smaller fiber pathways. Our results suggest that white matter tractography maps derived from the excised brainstem can be used to guide the study of the brainstem architecture using diffusion MRI in vivo. PMID:23898254

Ford, Anastasia A; Colon-Perez, Luis; Triplett, William T; Gullett, Joseph M; Mareci, Thomas H; Fitzgerald, David B

2013-01-01

84

Pathology Case Study: White Matter Lesions  

NSDL National Science Digital Library

This is a case study presented by the University of Pittsburgh Department of Pathology in which a 22-year-old man, treated years ago for Lyme disease, is showing deep white matter lesions on MRI. Visitors are given both the microscopic and gross descriptions, including images, and are given the opportunity to diagnose the patient. This is an excellent resource for students in the health sciences to familiarize themselves with using patient history and laboratory results to diagnose disease. It is also a helpful site for educators to use to introduce or test student learning in pathology and clinical immunology.

Kelly, Robert; Kohler, Lisa J.

2007-08-30

85

Probing the brain’s white matter with diffusion MRI and a tissue dependent diffusion model   

E-print Network

While diffusion MRI promises an insight into white matter microstructure in vivo, the axonal pathways that connect different brain regions together can only partially be segmented using current methods. Here we present ...

Piatkowski, Jakub Przemyslaw

2014-06-27

86

White Matter Integrity and Cognition in Childhood and Old Age: A Diffusion Tensor MRI Study  

E-print Network

-appearing frontal and occipital periventricular white matter and centrum semiovale (CS) were measured in multiple 5.625 Ã? 5.625 mm (6 Ã? 6 voxels) regions-of-interest. The observer was blind to the cognitive function

Clayden, Jonathan D.

87

MRI-detected white matter lesions: do they really matter?  

PubMed

Despite extensive research over the last decades the clinical significance of white matter lesions (WMLs) is still a matter of debate. Here, we review current knowledge of the correlation between WMLs and cognitive functioning as well as their predictive value for future stroke, dementia, and functional decline in activities of daily living. There is clear evidence that age-related WMLs relate to all of these outcomes on a group level, but the inter-individual variability is high. The association between WMLs and clinical phenotypes exists particularly for early confluent to confluent changes, which are ischaemic in aetiology and progress quickly over time. One reason for the variability of the relationship between WMLs and clinic on an individual level is probably the complexity of the association. Numerous factors such as cognitive reserve, concomitant loss of brain volume, and ultrastructural changes have been identified as mediators between white matter damage and clinical findings, and need to be incorporated in the consideration of WMLs as visible markers of these detrimental processes. PMID:21340713

Schmidt, Reinhold; Grazer, Anja; Enzinger, Christian; Ropele, Stefan; Homayoon, Nina; Pluta-Fuerst, Aga; Schwingenschuh, Petra; Katschnig, Petra; Cavalieri, Margherita; Schmidt, Helena; Langkammer, Christian; Ebner, Franz; Fazekas, Franz

2011-05-01

88

White matter lesions in Parkinson disease  

PubMed Central

Pure vascular parkinsonism without evidence of nigral Lewy body pathology may occur as a distinct clinicopathological entity, but a much more frequent occurrence is the comorbid presence of age-associated white matter lesions (WMLs) in idiopathic Parkinson disease (PD). WMLs are associated with motor and cognitive symptoms in otherwise normal elderly individuals. Comorbid WMLs are, therefore, expected to contribute to clinical symptoms in PD. Studies of WMLs in PD differ with regard to methods of assessment of WML burden and the patient populations selected for analysis, but converging evidence suggests that postural stability and gait motor functions are predominantly affected. WMLs are described to contribute to dementia in Alzheimer disease, and emerging but inconclusive evidence indicates similar effects in PD. In this article, we review the literature addressing the occurrence and impact of WMLs in PD, and suggest that WMLs may exacerbate or contribute to some motor and cognitive deficits associated with PD. We review existing and emerging methods for studying white matter pathology in vivo, and propose future research directions. PMID:21343896

Bohnen, Nicolaas I.; Albin, Roger L.

2013-01-01

89

Computational Representation of White Matter Fiber Orientations  

PubMed Central

We present a new methodology based on directional data clustering to represent white matter fiber orientations in magnetic resonance analyses for high angular resolution diffusion imaging. A probabilistic methodology is proposed for estimating intravoxel principal fiber directions, based on clustering directional data arising from orientation distribution function (ODF) profiles. ODF reconstructions are used to estimate intravoxel fiber directions using mixtures of von Mises-Fisher distributions. The method focuses on clustering data on the unit sphere, where complexity arises from representing ODF profiles as directional data. The proposed method is validated on synthetic simulations, as well as on a real data experiment. Based on experiments, we show that by clustering profile data using mixtures of von Mises-Fisher distributions it is possible to estimate multiple fiber configurations in a more robust manner than currently used approaches, without recourse to regularization or sharpening procedures. The method holds promise to support robust tractographic methodologies and to build realistic models of white matter tracts in the human brain. PMID:24023538

Ferreira da Silva, Adelino R.

2013-01-01

90

Gray and white matter correlates of navigational ability in humans.  

PubMed

Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy. PMID:24038667

Wegman, Joost; Fonteijn, Hubert M; van Ekert, Janneke; Tyborowska, Anna; Jansen, Clemens; Janzen, Gabriele

2014-06-01

91

Neuroimaging of white matter injury, intraventricular and cerebellar hemorrhage.  

PubMed

White matter injury and hemorrhage are common findings in extremely preterm infants. Large hemorrhages and extensive cystic lesions are identified with cranial ultrasound. MRI, which is more sensitive, is especially useful in the identification of small intraventricular hemorrhage; cerebellar hemorrhage; punctate lesion in the white matter and cerebellum; and diffuse, noncystic white matter injury. Imaging sequences such as diffusion-weighted, diffusion tensor, and susceptibility weighted imaging may improve recognition and prediction of outcome. These techniques improve understanding of the underlying pathophysiology of white matter injury and its effects on brain development and neurodevelopmental outcome. PMID:24524447

Benders, Manon J N L; Kersbergen, Karina J; de Vries, Linda S

2014-03-01

92

Histopathological and MRI correlates of perinatal white matter injury.  

E-print Network

??Objective: Although periventricular white matter injury (WMI) is the leading cause of chronic neurological disability and cerebral palsy in survivors of premature birth, the cellular-molecular… (more)

Riddle, Art

2011-01-01

93

White matter abnormalities and neurocognitive correlates in children and adolescents with myotonic dystrophy type 1: A diffusion tensor imaging study  

PubMed Central

Diffusion Tensor Imaging was used to evaluate cerebral white matter in eight patients (ages 10–17) with myotonic dystrophy type 1 (3 congenital-onset, 5 juvenile-onset) compared to eight controls matched for age and sex. Four regions of interest were examined: inferior frontal, superior frontal, supracallosal, and occipital. The myotonic dystrophy group showed white matter abnormalities compared to controls in all regions. All indices of white matter integrity were abnormal: fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. With no evidence of regional variation, correlations between whole cerebrum white matter fractional anisotropy and neurocognitive functioning were examined in the patients. Strong correlations were observed between whole cerebrum fractional anisotropy and full-scale intelligence and a measure of executive functioning. Results indicate that significant white matter abnormality is characteristic of young patients with myotonic dystrophy type 1 and that the white matter abnormality seen with neuroimaging has implications for cognitive functioning. PMID:21169018

Wozniak, Jeffrey R.; Mueller, Bryon A.; Ward, Erin E.; Lim, Kelvin O.; Day, John W.

2011-01-01

94

Pathological Correlates of White Matter Hyperintensities on Magnetic Resonance Imaging.  

PubMed

Background/Aims: We investigated the histopathological correlates of white matter hyperintensities (WMHs) in participants with Alzheimer's disease (AD) or cerebrovascular disease, and in aged controls. Methods: We reviewed 57 participants who had neuropathology and in whom neuroimaging was done. In addition to AD pathology, cortical microinfarcts, lacunes, and cerebral hemorrhages were assessed. Small-vessel disease included arteriolosclerosis and cerebral amyloid angiopathy. Postmortem brain tissue corresponding to regions of WMHs was investigated in 14 participants. The variables included: demyelination of the deep and periventricular white matter (WM), atrophy of the ventricular ependyma, and thickness of blood vessels. Partial Spearman's rank test and linear regression analysis, adjusted for age at the clinical evaluation and the duration to death, were performed. Results: The severity of arteriosclerosis was correlated with the volume of periventricular hyperintensity (PVH) estimated by magnetic resonance imaging. Deep white matter hyperintensity (DWMH) volume was correlated with the presence of cortical microinfarcts and cerebral hemorrhages. The severity of the breakdown of the ventricular lining was correlated with PVHs, and DWMHs correlated with the severity of deep WM demyelination. The diameter of small blood vessels was not associated with WMHs. Conclusion: WMHs are consistent with small-vessel disease and increase the tissue water content. We found no association between WMHs and the thickness of small blood vessels. © 2014 S. Karger AG, Basel. PMID:25401390

Shim, Yong Soo; Yang, Dong-Won; Roe, Catherine M; Coats, Mary A; Benzinger, Tammie L; Xiong, Chengjie; Galvin, James E; Cairns, Nigel J; Morris, John C

2014-11-01

95

White matter in learning, cognition and psychiatric disorders  

PubMed Central

White matter is the brain region underlying the gray matter cortex, composed of neuronal fibers coated with electrical insulation called myelin. Previously of interest in demyelinating diseases such as multiple sclerosis, myelin is attracting new interest as an unexpected contributor to a wide range of psychiatric disorders, including depression and schizophrenia. This is stimulating research into myelin involvement in normal cognitive function, learning and IQ. Myelination continues for decades in the human brain; it is modifiable by experience, and it affects information processing by regulating the velocity and synchrony of impulse conduction between distant cortical regions. Cell-culture studies have identified molecular mechanisms regulating myelination by electrical activity, and myelin also limits the critical period for learning through inhibitory proteins that suppress axon sprouting and synaptogenesis. PMID:18538868

Fields, R. Douglas

2008-01-01

96

Patterns of cerebral white matter damage and cognitive impairment in adolescents born very preterm.  

PubMed

There is increasing evidence about the presence of white matter damage in subjects with a history of premature birth, even in those classified as good outcome because of an apparently normal development. Although intellectual performance is within normal limits in premature children it is significantly decreased compared to paired controls. The purpose of this study was to investigate the relationship between a lower performance intelligence quotient and white matter damage in preterm adolescents. The sample comprised 44 adolescents (mean age+/-S.D.: 14.4+/-1.6 years) born before 32 weeks of gestational age and 43 term-born adolescents (14.5+/-2.1 years). Individual voxel-based morphometry analyses demonstrated that 35/44 (80%) preterm subjects had white matter abnormalities. The centrum semiovale and the posterior periventricular regions were the most frequently affected areas. Correlation analysis showed that in preterms the performance intelligence quotient correlated with the whole-brain white matter volume (r=0.32; P=0.036) but not with grey matter volume. Complementary analysis showed that low scores in the Digit Symbol subtest, a measure of processing speed, in the preterm group correlated with reductions in white matter concentration. These results suggest that white matter damage is highly common and that it persists until adolescence. Hence, diffuse white matter loss may be responsible for performance intelligence quotient and processing speed decrements in subjects with very preterm birth. PMID:18765280

Soria-Pastor, Sara; Gimenez, Monica; Narberhaus, Ana; Falcon, Carles; Botet, Francesc; Bargallo, Nuria; Mercader, Josep Maria; Junque, Carme

2008-11-01

97

Cognitive correlates of white matter growth and stress hormones in female squirrel monkey adults.  

PubMed

Neurobiological studies of stress and cognitive aging seldom consider white matter despite indications that complex brain processes depend on networks and white matter interconnections. Frontal and temporal lobe white matter volumes increase throughout midlife adulthood in humans, and this aspect of aging is thought to enhance distributed brain functions. Here, we examine spatial learning and memory, neuroendocrine responses to psychological stress, and regional volumes of gray and white matter determined by magnetic resonance imaging in 31 female squirrel monkeys between the ages of 5 and 17 years. This period of lifespan development corresponds to the years 18-60 in humans. Older adults responded to stress with greater increases in plasma levels of adrenocorticotropic hormone and modest reductions in glucocorticoid feedback sensitivity relative to young adults. Learning and memory did not differ with age during the initial cognitive test sessions, but older adults more often failed to inhibit the initial learned response after subsequent spatial reversals. Impaired cognitive response inhibition correlated with the expansion of white matter volume statistically controlling for age, stress hormones, gray matter, and CSF volumes. These results indicate that instead of enhancing cognitive control during midlife adulthood, white matter volume expansion contributes to aspects of cognitive decline. Cellular and molecular research combined with brain imaging is needed to determine the basis of white matter growth in adults, elucidate its functions during lifespan development, and provide potential new targets for therapies aimed at maintaining in humans cognitive vitality with aging. PMID:15071114

Lyons, David M; Yang, Chou; Eliez, Stephan; Reiss, Allan L; Schatzberg, Alan F

2004-04-01

98

Exploring Connectivity of the Brain's White Matter with Dynamic Queries  

E-print Network

should enhance our understanding of normal brain function. Such knowledge should also help diagnoseExploring Connectivity of the Brain's White Matter with Dynamic Queries Anthony Sherbondy, David of white matter within the human brain. Combining DTI data with the computational methods of MR

Dougherty, Bob

99

PROGRESSIVE WHITE MATTER ABNORMALITIES IN AUTOSOMAL-DOMINANT  

E-print Network

P4-154 PROGRESSIVE WHITE MATTER ABNORMALITIES IN AUTOSOMAL-DOMINANT ALZHEIMER'S DISEASE: RESULTS, Reisa Sperling8, Stephen Salloway9, Keith Johnson10, Steve Correia11, Peter Schofield12, Nick Fox13 onset AD it is often difficult to separate white matter disease associated with aging and diseases

Thompson, Paul

100

Inflammation in White Matter: Clinical and Pathophysiological Aspects  

ERIC Educational Resources Information Center

While the central nervous system (CNS) is generally thought of as an immunopriviledged site, immune-mediated CNS white matter damage can occur in both the perinatal period and in adults, and can result in severe and persistent neurological deficits. Periventricular leukomalacia (PVL) is an inflammatory white matter disease of premature infants…

Pleasure, David; Soulika, Athena; Singh, Sunit K.; Gallo, Vittorio; Bannerman, Peter

2006-01-01

101

White matter hyperintensities and normal-appearing white matter integrity in the aging brain.  

PubMed

White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10(-9) m(2)s(-1) (area under curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe. PMID:25457555

Maniega, Susana Muñoz; Valdés Hernández, Maria C; Clayden, Jonathan D; Royle, Natalie A; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S; Gow, Alan J; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M

2015-02-01

102

White matter hyperintensities and normal-appearing white matter integrity in the aging brain  

PubMed Central

White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10?9 m2s?1 (area under curve, 0.982; 95% CI, 0.975–0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe. PMID:25457555

Maniega, Susana Muñoz; Valdés Hernández, Maria C.; Clayden, Jonathan D.; Royle, Natalie A.; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S.; Gow, Alan J.; Starr, John M.; Bastin, Mark E.; Deary, Ian J.; Wardlaw, Joanna M.

2015-01-01

103

Influence of anisotropic white matter modeling on EEG source localization.  

PubMed

We study the influence of the anisotropic white matter within the ElectroEncephaloGraphy source localization problem. To this end, we consider three cases of the anisotropic white matter modeled in two concrete cases: by fixed or variable ratio. We extract information about highly anisotropic areas of the white matter from real Diffusion Weighted Imaging data. To validate the compared anisotropic models, we introduce the localization dipole and orientation errors. Obtained results show that the white matter model with a fixed anisotropic ratio leads to values of dipole localization error close to 1cm and may be enough in those cases avoiding localized analysis of neural brain activity. In contrast, modeling based on the anisotropic variable rate assumption becomes important in tasks regarding analysis and localization of deep sources neighboring the white matter tissue. PMID:25571095

Cuartas-Morales, E; Cardenas-Pena, D; Castellanos-Dominguez, G

2014-08-01

104

White matter injury: Ischemic and nonischemic.  

PubMed

Ischemic pathologies of white matter (WM) include a large proportion of stroke and developmental lesions while multiple sclerosis (MS) is the archetype nonischemic pathology. Growing evidence suggests other important diseases including neurodegenerative and psychiatric disorders also involve a significant WM component. Axonal, oligodendroglial, and astroglial damage proceed via distinct mechanisms in ischemic WM and these mechanisms evolve dramatically with maturation. Axons may pass through four developmental stages where the pattern of membrane protein expression influences how the structure responds to ischemia; WM astrocytes pass through at least two and differ significantly in their ischemia tolerance from grey matter astrocytes; oligodendroglia pass through at least three, with the highly ischemia intolerant pre-oligodendrocyte (pre-Oli) stage linking the less sensitive precursor and mature phenotypes. Neurotransmitters play a central role in WM pathology at all ages. Glutamate excitotoxicity in WM has both necrotic and apoptotic components; the latter mediated by intracellular pathways which differ between receptor types. ATP excitotoxicity may be largely mediated by the P2X7 receptor and also has both necrotic and apoptotic components. Interplay between microglia and other cell types is a critical element in the injury process. A growing appreciation of the significance of WM injury for nonischemic neurological disorders is currently stimulating research into mechanisms; with curious similarities being found with those operating during ischemia. A good example is traumatic brain injury, where axonal pathology can proceed via almost identical pathways to those described during acute ischemia. PMID:25043122

Fern, Robert F; Matute, Carlos; Stys, Peter K

2014-11-01

105

Diffusion tensor and magnetization transfer MRI measurements of periventricular white matter hyperintensities in old age  

Microsoft Academic Search

Regions of diffuse periventricular white matter hyperintensities (PVWMH) are a common finding on T2-weighted MRI scans of older subjects, but their aetiology remains unclear. The aim of this study was to characterize differences in water diffusion and magnetization transfer MRI parameters between macroscopically normal-appearing white matter (NAWM) and PVWMH in a cohort of normal older subjects. Forty-two non-demented 83-year olds

Mark E. Bastin; Jonathan D. Clayden; Alison Pattie; Iona F. Gerrish; Joanna M. Wardlaw; Ian J. Deary

2009-01-01

106

Non-Gaussian water diffusion in aging white matter.  

PubMed

Age-associated white matter degeneration has been well documented and is likely an important mechanism contributing to cognitive decline in older adults. Recent work has explored a range of noninvasive neuroimaging procedures to differentially highlight alterations in the tissue microenvironment. Diffusional kurtosis imaging (DKI) is an extension of diffusion tensor imaging (DTI) that accounts for non-Gaussian water diffusion and can reflect alterations in the distribution and diffusion properties of tissue compartments. We used DKI to produce whole-brain voxel-based maps of mean, axial, and radial diffusional kurtoses, quantitative indices of the tissue microstructure's diffusional heterogeneity, in 111 participants ranging from the age of 33 to 91 years. As suggested from prior DTI studies, greater age was associated with alterations in white-matter tissue microstructure, which was reflected by a reduction in all 3 DKI metrics. Prominent effects were found in prefrontal and association white matter compared with relatively preserved primary motor and visual areas. Although DKI metrics co-varied with DTI metrics on a global level, DKI provided unique regional sensitivity to the effects of age not available with DTI. DKI metrics were additionally useful in combination with DTI metrics for the classification of regions according to their multivariate "diffusion footprint", or pattern of relative age effect sizes. It is possible that the specific multivariate patterns of age-associated changes measured are representative of different types of microstructural pathology. These results suggest that DKI provides important complementary indices of brain microstructure for the study of brain aging and neurologic disease. PMID:24378085

Coutu, Jean-Philippe; Chen, J Jean; Rosas, H Diana; Salat, David H

2014-06-01

107

Competing physiological pathways link individual differences in weight and abdominal adiposity to white matter microstructure.  

PubMed

Being overweight or obese is associated with reduced white matter integrity throughout the brain. It is not yet clear which physiological systems mediate the association between inter-individual variation in adiposity and white matter. We tested whether composite indicators of cardiovascular, lipid, glucose, and inflammatory factors would mediate the adiposity-related variation in white matter microstructure, measured with diffusion tensor imaging on a group of neurologically healthy adults (N=155). A composite factor representing adiposity (comprised of body mass index and waist circumference) was associated with smaller fractional anisotropy and greater radial diffusivity throughout the brain, a pattern previously linked to myelin structure changes in non-human animal models. A similar global negative association was found for factors representing inflammation and, to a lesser extent, glucose regulation. In contrast, factors for blood pressure and dyslipidemia had positive associations with white matter in isolated brain regions. Taken together, these competing influences on the diffusion signal were significant mediators linking adiposity to white matter and explained up to fifty-percent of the adiposity-white matter variance. These results provide the first evidence for contrasting physiological pathways, a globally distributed immunity-linked negative component and a more localized vascular-linked positive component, that associate adiposity to individual differences in the microstructure of white matter tracts in otherwise healthy adults. PMID:23639257

Verstynen, Timothy D; Weinstein, Andrea; Erickson, Kirk I; Sheu, Lei K; Marsland, Anna L; Gianaros, Peter J

2013-10-01

108

Disconnected Aging: Cerebral White Matter Integrity and Age-Related Differences in Cognition  

PubMed Central

Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637

Bennett, Ilana J.; Madden, David J.

2013-01-01

109

Overlapping and Distinct Gray and White Matter Abnormalities in Schizophrenia and Bipolar I Disorder  

PubMed Central

Background Schizophrenia and bipolar disorder may share common neurobiological mechanisms, but few studies have directly compared gray and white matter structure in these disorders. We used diffusion-weighted magnetic resonance imaging and a region-of-interest based analysis to identify overlapping and distinct gray and white matter abnormalities in 35 patients with schizophrenia and 20 patients with bipolar I disorder in comparison to 56 healthy volunteers. Methods We examined fractional anisotropy within the white matter and mean diffusivity within the gray matter in 42 regions-of-interest defined on a probabilistic atlas following non-linear registration of the images to atlas space. Results Patients with schizophrenia had significantly lower fractional anisotropy in temporal (superior temporal and parahippocampal) and occipital (superior and middle occipital) white matter compared to patients with bipolar disorder and healthy volunteers. In contrast, both patient groups demonstrated significantly higher mean diffusivity in frontal (inferior frontal and lateral orbitofrontal) and temporal (superior temporal and parahippocampal) gray matter compared to healthy volunteers, but did not differ from each other. Discussion Our study implicates overlapping gray matter frontal and temporal lobe structural alterations in the neurobiology of schizophrenia and bipolar I disorder, but suggests that temporal and occipital lobe white matter deficits may be an additional risk factor for schizophrenia. Our findings may have relevance for future diagnostic classification systems and the identification of susceptibility genes for these disorders. PMID:23796123

Anderson, Dana; Ardekani, Babak A.; Burdick, Katherine E.; Robinson, Delbert G.; John, Majnu; Malhotra, Anil K.; Szeszko, Philip R.

2013-01-01

110

White Matter Microstructure Alterations: A Study of Alcoholics with and without Post-Traumatic Stress Disorder  

PubMed Central

Many brain imaging studies have demonstrated reductions in gray and white matter volumes in alcoholism, with fewer investigators using diffusion tensor imaging (DTI) to examine the integrity of white matter pathways. Among various medical conditions, alcoholism and post-traumatic stress disorder (PTSD) are two comorbid diseases that have similar degenerative effects on the white matter integrity. Therefore, understanding and differentiating these effects would be very important in characterizing alcoholism and PTSD. Alcoholics are known to have neurocognitive deficits in decision-making, particularly in decisions related to emotionally-motivated behavior, while individuals with PTSD have deficits in emotional regulation and enhanced fear response. It is widely believed that these types of abnormalities in both alcoholism and PTSD are related to fronto-limbic dysfunction. In addition, previous studies have shown cortico-limbic fiber degradation through fiber tracking in alcoholism. DTI was used to measure white matter fractional anisotropy (FA), which provides information about tissue microstructure, possibly indicating white matter integrity. We quantitatively investigated the microstructure of white matter through whole brain DTI analysis in healthy volunteers (HV) and alcohol dependent subjects without PTSD (ALC) and with PTSD (ALC+PTSD). These data show significant differences in FA between alcoholics and non-alcoholic HVs, with no significant differences in FA between ALC and ALC+PTSD in any white matter structure. We performed a post-hoc region of interest analysis that allowed us to incorporate multiple covariates into the analysis and found similar results. HV had higher FA in several areas implicated in the reward circuit, emotion, and executive functioning, suggesting that there may be microstructural abnormalities in white matter pathways that contribute to neurocognitive and executive functioning deficits observed in alcoholics. Furthermore, our data do not reveal any differences between ALC and ALC+PTSD, suggesting that the effect of alcohol on white matter microstructure may be more significant than any effect caused by PTSD. PMID:24260518

Durkee, Caitlin A.; Sarlls, Joelle E.; Hommer, Daniel W.; Momenan, Reza

2013-01-01

111

Novel White Matter Tract Integrity Metrics Sensitive to Alzheimer Disease Progression  

PubMed Central

BACKGROUND AND PURPOSE Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. MATERIALS AND METHODS This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. RESULTS With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82–0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r= |0.80–0.82|, P< .001). CONCLUSIONS These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression. PMID:23764722

Fieremans, E.; Benitez, A.; Jensen, J.H.; Falangola, M.F.; Tabesh, A.; Deardorff, R.L.; Spampinato, M.V.S.; Babb, J.S.; Novikov, D.S.; Ferris, S.H.; Helpern, J.A.

2014-01-01

112

NBQX attenuates excitotoxic injury in developing white matter.  

PubMed

The excitatory neurotransmitter glutamate is released from axons and glia under hypoxic/ischemic conditions. In vitro, oligodendrocytes (OLs) express non-NMDA glutamate receptors (GluRs) and are susceptible to GluR-mediated excitotoxicity. We evaluated the role of GluR-mediated OL excitotoxicity in hypoxic/ischemic white matter injury in the developing brain. Hypoxic/ischemic white matter injury is thought to mediate periventricular leukomalacia, an age-dependent white matter lesion seen in preterm infants and a common antecedent to cerebral palsy. Hypoxia/ischemia in rat pups at postnatal day 7 (P7) produced selective white matter lesions and OL death. Furthermore, OLs in pericallosal white matter express non-NMDA GluRs at P7. Unilateral carotid ligation in combination with hypoxia (6% O(2) for 1 hr) resulted in selective, subcortical white matter injury with a marked ipsilateral decrease in immature and myelin basic protein-expressing OLs that was also significantly attenuated by 6-nitro-7-sulfamoylbenzo(f)quinoxaline-2,3-dione (NBQX). Intracerebral AMPA demonstrated greater susceptibility to OL injury at P7 than in younger or older pups, and this was attenuated by systemic pretreatment with the AMPA antagonist NBQX. These results indicate a parallel, maturation-dependent susceptibility of immature OLs to AMPA and hypoxia/ischemia. The protective efficacy of NBQX suggests a role for glutamate receptor-mediated excitotoxic OL injury in immature white matter in vivo. PMID:11125001

Follett, P L; Rosenberg, P A; Volpe, J J; Jensen, F E

2000-12-15

113

Deep White Matter in Huntington's Disease  

PubMed Central

White matter (WM) abnormalities have already been shown in presymptomatic (Pre-HD) and symptomatic HD subjects using Magnetic Resonance Imaging (MRI). In the present study, we examined the microstructure of the long-range large deep WM tracts by applying two different MRI approaches: Diffusion Tensor Imaging (DTI) -based tractography, and T2*weighted (iron sensitive) imaging. We collected Pre-HD subjects (n?=?25), HD patients (n?=?25) and healthy control subjects (n?=?50). Results revealed increased axial (AD) and radial diffusivity (RD) and iron levels in Pre-HD subjects compared to controls. Fractional anisotropy decreased between the Pre-HD and HD phase and AD/RD increased and although impairment was pervasive in HD, degeneration occurred in a pattern in Pre-HD. Furthermore, iron levels dropped for HD patients. As increased iron levels are associated with remyelination, the data suggests that Pre-HD subjects attempt to repair damaged deep WM years before symptoms occur but this process fails with disease progression. PMID:25340651

Phillips, Owen; Squitieri, Ferdinando; Sanchez-Castaneda, Cristina; Elifani, Francesca; Caltagirone, Carlo; Sabatini, Umberto; Di Paola, Margherita

2014-01-01

114

White Matter Hyperintensities and Hypobaric Exposure  

PubMed Central

Objective Demonstrate that occupational exposure to nonhypoxic hypobaria is associated with subcortical white matter hyperintensities (WMHs) on fluid-attenuated inversion recovery magnetic resonance imaging (MRI). Methods Eighty-three altitude chamber personnel (PHY), 105 U-2 pilots (U2P), and 148 age- controlled and health-matched doctorate degree controls (DOC) underwent high-resolution MRI. Subcortical WMH burden was quantified as count and volume of subcortical WMH lesions after transformation of images to the Talairach atlas–based stereo-tactic frame. Results Subcortical WMHs were more prevalent in PHY (volume p = 0.011/count p = 0.019) and U2P (volume p<0.001/count p<0.001) when compared to DOC, whereas PHY were not significantly different than U2P. Interpretation This study provides strong evidence that nonhypoxic hypobaric exposure may induce subcortical WMHs in a young, healthy population lacking other risk factors for WMHs and adds this occupational exposure to other environmentally related potential causes of WMHs. PMID:25164539

McGuire, Stephen A.; Sherman, Paul M.; Wijtenburg, S. Andrea; Rowland, Laura M.; Grogan, Patrick M.; Sladky, John H.; Robinson, Andrew Y.; Kochunov, Peter V.

2014-01-01

115

Multiple white matter tract abnormalities underlie cognitive impairment in RRMS.  

PubMed

Diffusion tensor imaging (DTI) is a sensitive tool for detecting microstructural tissue damage in vivo. In this study, we investigated DTI abnormalities in individuals with relapsing remitting multiple sclerosis (RRMS) and examined the relations between imaging-based measures of white matter injury and cognitive impairment. DTI-derived metrics using tract-based spatial statistics (TBSS) were compared between 37 individuals with RRMS and 20 healthy controls. Cognitive impairment was assessed with three standard tests: the Symbol Digit Modalities Test (SDMT), which measures cognitive processing speed and visual working memory, the Rey Auditory Verbal Learning Test (RAVLT), which examines verbal memory, and the Paced Auditory Serial Addition Test (PASAT), which assesses sustained attention and working memory. Correlations between DTI-metrics and cognition were explored in regions demonstrating significant differences between the RRMS patients and the control group. Lower fractional anisotropy (FA) was found in RRMS participants compared to controls across the tract skeleton (0.40 ± 0.03 vs. 0.43 ± 0.01, p<0.01). In areas of reduced FA, mean diffusivity was increased and was dominated by increased radial diffusivity with no significant change in axial diffusivity, an indication of the role of damage to CNS myelin in MS pathology. In the RRMS group, voxelwise correlations were found between FA reduction and cognitive impairment in cognitively-relevant tracts, predominantly in the posterior thalamic radiation, the sagittal stratum, and the corpus callosum; the strongest correlations were with SDMT measures, with contributions to these associations from both lesion and normal-appearing white matter. Moreover, results using threshold-free cluster enhancement (TFCE) showed more widespread white matter involvement compared to cluster-based thresholding. These findings indicate the important role for DTI in delineating mechanisms underlying MS-associated cognitive impairment and suggest that DTI could play a critical role in monitoring the clinical and cognitive effects of the disease. PMID:22062194

Yu, Hui Jing; Christodoulou, Christopher; Bhise, Vikram; Greenblatt, Daniel; Patel, Yashma; Serafin, Dana; Maletic-Savatic, Mirjana; Krupp, Lauren B; Wagshul, Mark E

2012-02-15

116

Pathophysiology of glia in perinatal white matter injury.  

PubMed

Injury to the preterm brain has a particular predilection for cerebral white matter. White matter injury (WMI) is the most common cause of brain injury in preterm infants and a major cause of chronic neurological morbidity including cerebral palsy. Factors that predispose to WMI include cerebral oxygenation disturbances and maternal-fetal infection. During the acute phase of WMI, pronounced oxidative damage occurs that targets late oligodendrocyte progenitors (pre-OLs). The developmental predilection for WMI to occur during prematurity appears to be related to both the timing of appearance and regional distribution of susceptible pre-OLs that are vulnerable to a variety of chemical mediators including reactive oxygen species, glutamate, cytokines, and adenosine. During the chronic phase of WMI, the white matter displays abberant regeneration and repair responses. Early OL progenitors respond to WMI with a rapid robust proliferative response that results in a several fold regeneration of pre-OLs that fail to terminally differentiate along their normal developmental time course. Pre-OL maturation arrest appears to be related in part to inhibitory factors that derive from reactive astrocytes in chronic lesions. Recent high field magnetic resonance imaging (MRI) data support that three distinct forms of chronic WMI exist, each of which displays unique MRI and histopathological features. These findings suggest the possibility that therapies directed at myelin regeneration and repair could be initiated early after WMI and monitored over time. These new mechanisms of acute and chronic WMI provide access to a variety of new strategies to prevent or promote repair of WMI in premature infants. PMID:24687630

Back, Stephen A; Rosenberg, Paul A

2014-11-01

117

Performances of diffusion kurtosis imaging and diffusion tensor imaging in detecting white matter abnormality in schizophrenia  

PubMed Central

Diffusion kurtosis imaging (DKI) is an extension of diffusion tensor imaging (DTI), exhibiting improved sensitivity and specificity in detecting developmental and pathological changes in neural tissues. However, little attention was paid to the performances of DKI and DTI in detecting white matter abnormality in schizophrenia. In this study, DKI and DTI were performed in 94 schizophrenia patients and 91 sex- and age-matched healthy controls. White matter integrity was assessed by fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK) of DKI and FA, MD, AD and RD of DTI. Group differences in these parameters were compared using tract-based spatial statistics (TBSS) (P < 0.01, corrected). The sensitivities in detecting white matter abnormality in schizophrenia were MK (34%) > AK (20%) > RK (3%) and RD (37%) > FA (24%) > MD (21%) for DKI, and RD (43%) > FA (30%) > MD (21%) for DTI. DKI-derived diffusion parameters (RD, FA and MD) were sensitive to detect abnormality in white matter regions (the corpus callosum and anterior limb of internal capsule) with coherent fiber arrangement; however, the kurtosis parameters (MK and AK) were sensitive to reveal abnormality in white matter regions (the juxtacortical white matter and corona radiata) with complex fiber arrangement. In schizophrenia, the decreased AK suggests axonal damage; however, the increased RD indicates myelin impairment. These findings suggest that diffusion and kurtosis parameters could provide complementary information and they should be jointly used to reveal pathological changes in schizophrenia. PMID:25610778

Zhu, Jiajia; Zhuo, Chuanjun; Qin, Wen; Wang, Di; Ma, Xiaomei; Zhou, Yujing; Yu, Chunshui

2014-01-01

118

Probing white-matter microstructure with higher-order diffusion tensors and susceptibility tensor MRI.  

PubMed

Diffusion MRI has become an invaluable tool for studying white matter microstructure and brain connectivity. The emergence of quantitative susceptibility mapping and susceptibility tensor imaging (STI) has provided another unique tool for assessing the structure of white matter. In the highly ordered white matter structure, diffusion MRI measures hindered water mobility induced by various tissue and cell membranes, while susceptibility sensitizes to the molecular composition and axonal arrangement. Integrating these two methods may produce new insights into the complex physiology of white matter. In this study, we investigated the relationship between diffusion and magnetic susceptibility in the white matter. Experiments were conducted on phantoms and human brains in vivo. Diffusion properties were quantified with the diffusion tensor model and also with the higher order tensor model based on the cumulant expansion. Frequency shift and susceptibility tensor were measured with quantitative susceptibility mapping and susceptibility tensor imaging. These diffusion and susceptibility quantities were compared and correlated in regions of single fiber bundles and regions of multiple fiber orientations. Relationships were established with similarities and differences identified. It is believed that diffusion MRI and susceptibility MRI provide complementary information of the microstructure of white matter. Together, they allow a more complete assessment of healthy and diseased brains. PMID:23507987

Liu, Chunlei; Murphy, Nicole E; Li, Wei

2013-01-01

119

Adaptive Riemannian Metrics for Improved Geodesic Tracking of White Matter  

PubMed Central

We present a new geodesic approach for studying white matter connectivity from diffusion tensor imaging (DTI). Previous approaches have used the inverse diffusion tensor field as a Riemannian metric and constructed white matter tracts as geodesics on the resulting manifold. These geodesics have the desirable property that they tend to follow the main eigenvectors of the tensors, yet still have the flexibility to deviate from these directions when it results in lower costs. While this makes such methods more robust to noise, it also has the serious drawback that geodesics tend to deviate from the major eigenvectors in high-curvature areas in order to achieve the shortest path. In this paper we formulate a modification of the Riemannian metric that results in geodesics adapted to follow the principal eigendirection of the tensor even in high-curvature regions. We show that this correction can be formulated as a simple scalar field modulation of the metric and that the appropriate variational problem results in a Poisson’s equation on the Riemannian manifold. We demonstrate that the proposed method results in improved geodesics using both synthetic and real DTI data. PMID:21761642

Hao, Xiang; Whitaker, Ross T.; Fletcher, P. Thomas

2011-01-01

120

Genetic determinants of white matter integrity in bipolar disorder   

E-print Network

Bipolar disorder is a heritable psychiatric disorder, and several of the genes associated with bipolar disorder and related psychotic disorders are involved in the development and maintenance of white matter in the brain. ...

Sprooten, Emma

2012-06-30

121

RESEARCH Open Access Early white matter changes in CADASIL: evidence  

E-print Network

from a complex mix of genetic and cardiovascular risk factors, the most important of which are age- and hypertension-related cognitive decline and disability. Cerebral white matter changes are a consistent

Paris-Sud XI, Université de

122

Heterogeneity in age-related white matter changes  

Microsoft Academic Search

White matter changes occur endemically in routine magnetic resonance imaging (MRI) scans of elderly persons. MRI appearance\\u000a and histopathological correlates of white matter changes are heterogeneous. Smooth periventricular hyperintensities, including\\u000a caps around the ventricular horns, periventricular lining and halos are likely to be of non-vascular origin. They relate to\\u000a a disruption of the ependymal lining with subependymal widening of the

Reinhold Schmidt; Helena Schmidt; Johannes Haybaeck; Marisa Loitfelder; Serge Weis; Margherita Cavalieri; Stephan Seiler; Christian Enzinger; Stefan Ropele; Timo Erkinjuntti; Leonardo Pantoni; Philip Scheltens; Franz Fazekas; Kurt Jellinger

2011-01-01

123

NBQX Attenuates Excitotoxic Injury in Developing White Matter  

Microsoft Academic Search

The excitatory neurotransmitter glutamate is released from axons and glia under hypoxic\\/ischemic conditions. In vitro, oligoden- drocytes (OLs) express non-NMDA glutamate receptors (GluRs) and are susceptible to GluR-mediated excitotoxicity. We evalu- ated the role of GluR-mediated OL excitotoxicity in hypoxic\\/ ischemic white matter injury in the developing brain. Hypoxic\\/ ischemic white matter injury is thought to mediate periventricular leukomalacia, an

Pamela L. Follett; Paul A. Rosenberg; Joseph J. Volpe; Frances E. Jensen

2000-01-01

124

White matter lesion segmentation using robust parameter estimation algorithms  

NASA Astrophysics Data System (ADS)

White matter lesions are common brain abnormalities. In this paper, we introduce an automatic algorithm for segmentation of white matter lesions from brain MRI images. The intensities of each tissue is assumed to be Gaussian distributed, whose parameters (mean vector and covariance matrix) are estimated using a tissue distribution model. And then a measure is defined to indicate in how much content a voxel belongs to the lesions. Experimental results demonstrate that our algorithm works well.

Yang, Faguo; Zhu, Litao; Jiang, Tianzi

2003-05-01

125

White matter microstructure is associated with cognitive control in children  

PubMed Central

Cognitive control, which involves the ability to pay attention and suppress interference, is important for learning and achievement during childhood. The white matter tracts related to control during childhood are not well known. We examined the relationship between white matter microstructure and cognitive control in 61 children aged 7 to 9 years using diffusion tensor imaging (DTI). This technique enables an in vivo characterization of microstructural properties of white matter based on properties of diffusion. Such properties include fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, measures thought to reflect specific biological properties of white matter integrity. Our results suggest that children with higher estimates of white matter integrity in the corona radiata, superior longitudinal fasciculus, posterior thalamic radiation, and cerebral peduncle, were more accurate during incongruent (>><>>, <<><<) and neutral (-->--, --<--) trials of a task of cognitive control. Importantly, less interference during the task (i.e., incongruent and neutral difference scores) was associated with greater white matter microstructure in the posterior thalamic radiation and cerebral peduncle. Fiber tracts in a frontal-parietal-striatal-motor circuit seem to play a role in cognitive control in children. PMID:23714226

Chaddock-Heyman, Laura; Erickson, Kirk I.; Voss, Michelle W.; Powers, John P.; Knecht, Anya M.; Hillman, Charles H.; Kramer, Arthur F.

2013-01-01

126

Minocycline protects the immature white matter against hyperoxia.  

PubMed

Poor neurological outcome in preterm infants is associated with periventricular white matter damage and hypomyelination, often caused by perinatal inflammation, hypoxia-ischemia, and hyperoxia. Minocycline has been demonstrated in animal models to protect the immature brain against inflammation and hypoxia-ischemia by microglial inhibition. Here we studied the effect of minocycline on white matter damage caused by hyperoxia. To mimic the 3- to 4-fold increase of oxygen tension caused by preterm birth, we have used the hyperoxia model in neonatal rats providing 24h exposure to 4-fold increased oxygen concentration (80% instead of 21% O2) from P6 to P7. We analyzed whether minocycline prevents activation of microglia and damage of oligodendroglial precursor cell development, and whether acute treatment of hyperoxia-exposed rats with minocycline improves long term white matter integrity. Minocycline administration during exposure to hyperoxia resulted in decreased apoptotic cell death and in improved proliferation and maturation of oligodendroglial precursor cells (OPC). Minocycline blocked changes in microglial morphology and IL-1? release induced by hyperoxia. In primary microglial cell cultures, minocycline inhibited cytokine release while in mono-cultures of OPCs, it improved survival and proliferation. Long term impairment of white matter diffusivity in MRI/DTI in P30 and P60 animals after neonatal hyperoxia was attenuated by minocycline. Minocycline protects white matter development against oxygen toxicity through direct protection of oligodendroglia and by microglial inhibition. This study moreover demonstrates long term benefits of minocycline on white matter integrity. PMID:24491957

Schmitz, Thomas; Krabbe, Grietje; Weikert, Georg; Scheuer, Till; Matheus, Friederike; Wang, Yan; Mueller, Susanne; Kettenmann, Helmut; Matyash, Vitali; Bührer, Christoph; Endesfelder, Stefanie

2014-04-01

127

Abnormal gray matter and white matter volume in 'Internet gaming addicts'.  

PubMed

Internet gaming addiction (IGA) is usually defined as the inability of an individual to control his/her use of the Internet with serious negative consequences. It is becoming a prevalent mental health concern around the world. To understand whether Internet gaming addiction contributes to cerebral structural changes, the present study examined the brain gray matter density and white matter density changes in participants suffering IGA using voxel-based morphometric analysis. Compared with the healthy controls (N=36, 22.2 ± 3.13 years), IGA participants (N=35, 22.28 ± 2.54 years) showed significant lower gray matter density in the bilateral inferior frontal gyrus, left cingulate gyrus, insula, right precuneus, and right hippocampus (all p<0.05). IGA participants also showed significant lower white matter density in the inferior frontal gyrus, insula, amygdala, and anterior cingulate than healthy controls (all p<0.05). Previous studies suggest that these brain regions are involved in decision-making, behavioral inhibition and emotional regulation. Current findings might provide insight in understanding the biological underpinnings of IGA. PMID:25260201

Lin, Xiao; Dong, Guangheng; Wang, Qiandong; Du, Xiaoxia

2015-01-01

128

DCDC2 polymorphism is associated with left temporoparietal gray and white matter structures during development.  

PubMed

Three genes, DYX1C1, DCDC2, and KIAA0319, have been previously associated with dyslexia, neuronal migration, and ciliary function. Three polymorphisms within these genes, rs3743204 (DYX1C1), rs793842 (DCDC2), and rs6935076 (KIAA0319) have also been linked to normal variability of left temporoparietal white matter volume connecting the middle temporal cortex to the angular and supramarginal gyri. Here, we assessed whether these polymorphisms are also related to the cortical thickness of the associated regions during childhood development using a longitudinal dataset of 76 randomly selected children and young adults who were scanned up to three times each, 2 years apart. rs793842 in DCDC2 was significantly associated with the thickness of left angular and supramarginal gyri as well as the left lateral occipital cortex. The cortex was significantly thicker for T-allele carriers, who also had lower white matter volume and lower reading comprehension scores. There was a negative correlation between white matter volume and cortical thickness, but only white matter volume predicted reading comprehension 2 years after scanning. These results show how normal variability in reading comprehension is related to gene, white matter volume, and cortical thickness in the inferior parietal lobe. Possibly, the variability of gray and white matter structures could both be related to the role of DCDC2 in ciliary function, which affects both neuronal migration and axonal outgrowth. PMID:25339756

Darki, Fahimeh; Peyrard-Janvid, Myriam; Matsson, Hans; Kere, Juha; Klingberg, Torkel

2014-10-22

129

Neonatal White Matter Abnormalities an Important Predictor of Neurocognitive Outcome for Very Preterm Children  

PubMed Central

Background Cerebral white matter abnormalities on term MRI are a strong predictor of motor disability in children born very preterm. However, their contribution to cognitive impairment is less certain. Objective Examine relationships between the presence and severity of cerebral white matter abnormalities on neonatal MRI and a range of neurocognitive outcomes assessed at ages 4 and 6 years. Design/Methods The study sample consisted of a regionally representative cohort of 104 very preterm (?32 weeks gestation) infants born from 1998–2000 and a comparison group of 107 full-term infants. At term equivalent, all preterm infants underwent a structural MRI scan that was analyzed qualitatively for the presence and severity of cerebral white matter abnormalities, including cysts, signal abnormalities, loss of white matter volume, ventriculomegaly, and corpus callosal thinning/myelination. At corrected ages 4 and 6 years, all children underwent a comprehensive neurodevelopmental assessment that included measures of general intellectual ability, language development, and executive functioning. Results At 4 and 6 years, very preterm children without cerebral white matter abnormalities showed no apparent neurocognitive impairments relative to their full-term peers on any of the domain specific measures of intelligence, language, and executive functioning. In contrast, children born very preterm with mild and moderate-to-severe white matter abnormalities were characterized by performance impairments across all measures and time points, with more severe cerebral abnormalities being associated with increased risks of cognitive impairment. These associations persisted after adjustment for gender, neonatal medical risk factors, and family social risk. Conclusions Findings highlight the importance of cerebral white matter connectivity for later intact cognitive functioning amongst children born very preterm. Preterm born children without cerebral white matter abnormalities on their term MRI appear to be spared many of the cognitive impairments commonly associated with preterm birth. Further follow-up will be important to assess whether this finding persists into the school years. PMID:23284800

Woodward, Lianne J.; Clark, Caron A. C.; Bora, Samudragupta; Inder, Terrie E.

2012-01-01

130

Genetic White Matter Fiber Tractography with Global Optimization  

PubMed Central

Diffusion tensor imaging(DTI) tractography is a novel technique that can delineate the trajectories between cortical region of the human brain non-invasively. In this paper, a novel DTI based white matter fiber tractography using genetic algorithm is presented. Adapting the concepts from evolutionary biology which include selection, recombination and mutation, globally optimized fiber pathways are generated iteratively. Global optimality of the fiber tracts is evaluated using Bayes decision rule, which simultaneously considers both the fiber geometric smoothness and consistency with the tensor field. This global optimality assigns the tracking fibers great immunity to random image noise and other local image artifacts, thus avoiding the detrimental effects of cumulative noise on fiber tracking. Experiments with synthetic and in vivo human DTI data have demonstrated the feasibility and robustness of this new fiber tracking technique, and an improved performance over commonly used probabilistic fiber tracking. PMID:19666052

Wu, Xi; Xu, Qing; Xu, Lei; Zhou, Jiliu; Anderson, Adam W.; Ding, Zhaohua

2012-01-01

131

Chronic Kidney Disease Is Associated With White Matter Hyperintensity Volume  

PubMed Central

Background and Purpose White matter hyperintensities have been associated with increased risk of stroke, cognitive decline, and dementia. Chronic kidney disease is a risk factor for vascular disease and has been associated with inflammation and endothelial dysfunction, which have been implicated in the pathogenesis of white matter hyperintensities. Few studies have explored the relationship between chronic kidney disease and white matter hyperintensities. Methods The Northern Manhattan Study is a prospective, community-based cohort of which a subset of stroke-free participants underwent MRIs. MRIs were analyzed quantitatively for white matter hyperintensities volume, which was log-transformed to yield a normal distribution (log-white matter hyperintensity volume). Kidney function was modeled using serum creatinine, the Cockcroft-Gault formula for creatinine clearance, and the Modification of Diet in Renal Disease formula for estimated glomerular filtration rate. Creatinine clearance and estimated glomerular filtration rate were trichotomized to 15 to 60 mL/min, 60 to 90 mL/min, and >90 mL/min (reference). Linear regression was used to measure the association between kidney function and log-white matter hyperintensity volume adjusting for age, gender, race–ethnicity, education, cardiac disease, diabetes, homocysteine, and hypertension. Results Baseline data were available on 615 subjects (mean age 70 years, 60% women, 18% whites, 21% blacks, 62% Hispanics). In multivariate analysis, creatinine clearance 15 to 60 mL/min was associated with increased log-white matter hyperintensity volume (? 0.322; 95% CI, 0.095 to 0.550) as was estimated glomerular filtration rate 15 to 60 mL/min (? 0.322; 95% CI, 0.080 to 0.564). Serum creatinine, per 1-mg/dL increase, was also positively associated with log-white matter hyperintensity volume (? 1.479; 95% CI, 1.067 to 2.050). Conclusions The association between moderate–severe chronic kidney disease and white matter hyperintensity volume highlights the growing importance of kidney disease as a possible determinant of cerebrovascular disease and/or as a marker of microangiopathy. PMID:17962588

Khatri, Minesh; Wright, Clinton B.; Nickolas, Thomas L.; Yoshita, Mitsuhiro; Paik, Myunghee C.; Kranwinkel, Grace; Sacco, Ralph L.; DeCarli, Charles

2010-01-01

132

Brain white matter microstructure alterations in adolescent rhesus monkeys exposed to early life stress: associations with high cortisol during infancy  

PubMed Central

Background Early adverse experiences, especially those involving disruption of the mother-infant relationship, are detrimental for proper socioemotional development in primates. Humans with histories of childhood maltreatment are at high risk for developing psychopathologies including depression, anxiety, substance abuse, and behavioral disorders. However, the underlying neurodevelopmental alterations are not well understood. Here we used a nonhuman primate animal model of infant maltreatment to study the long-term effects of this early life stress on brain white matter integrity during adolescence, its behavioral correlates, and the relationship with early levels of stress hormones. Methods Diffusion tensor imaging and tract based spatial statistics were used to investigate white matter integrity in 9 maltreated and 10 control animals during adolescence. Basal plasma cortisol levels collected at one month of age (when abuse rates were highest) were correlated with white matter integrity in regions with group differences. Total aggression was also measured and correlated with white matter integrity. Results We found significant reductions in white matter structural integrity (measured as fractional anisotropy) in the corpus callosum, occipital white matter, external medullary lamina, as well as in the brainstem of adolescent rhesus monkeys that experienced maternal infant maltreatment. In most regions showing fractional anisotropy reductions, opposite effects were detected in radial diffusivity, without changes in axial diffusivity, suggesting that the alterations in tract integrity likely involve reduced myelin. Moreover, in most regions showing reduced white matter integrity, this was associated with elevated plasma cortisol levels early in life, which was significantly higher in maltreated than in control infants. Reduced fractional anisotropy in occipital white matter was also associated with increased social aggression. Conclusions These findings highlight the long-term impact of infant maltreatment on brain white matter structural integrity, particularly in tracts involved in visual processing, emotional regulation, and somatosensory and motor integration. They also suggest a relationship between elevations in stress hormones detected in maltreated animals during infancy and long-term brain white matter structural effects. PMID:24289263

2013-01-01

133

Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults  

PubMed Central

Results from recent studies suggest that chronic cigarette smoking is associated with increased white matter volume in the brain as determined by in vivo neuroimaging. We used diffusion tensor imaging to examine the microstructural integrity of the white matter in 10 chronic smokers and 10 nonsmokers. All individuals were healthy, without histories of medical or psychiatric illness. Fractional anisotropy (FA) and trace were measured in the genu, body, and splenium of the corpus callosum. FA provides a measure of directional versus nondirectional water diffusion, whereas trace provides a measure of nondirectional water diffusion. Lower FA and higher trace values are considered to reflect less brain integrity. Voxel-based morphometry was used to define volumes in each of these regions of the corpus callosum. Chronic smokers exhibited significantly higher FA in the body and whole corpus callosum and a strong trend for higher FA in the splenium compared with nonsmokers. FA did not differ between groups in the genu, and neither trace nor white matter volumes differed between groups in any of the regions of interest. When subdivided by Fagerström score (low vs. high), the low Fagerström group exhibited significantly higher FA in the body of the corpus callosum compared with the high Fagerström group and the nonsmokers. These results suggest that, among healthy adults, lower exposure to cigarette smoking is associated with increased microstructural integrity of the white matter compared with either no exposure or higher exposure. Additional studies are needed to further explore differences in white matter integrity between smokers and nonsmokers. PMID:18188754

Paul, Robert H.; Grieve, Stuart M.; Niaura, Raymond; David, Sean P.; Laidlaw, David H.; Cohen, Ronald; Sweet, Lawrence; Taylor, George; Clark, C. Richard; Pogun, Sakire; Gordon, Evian

2008-01-01

134

Strategic white matter tracts for processing speed deficits in age-related small vessel disease  

PubMed Central

Objective: Cerebral small vessel disease is the most common cause of vascular cognitive impairment and typically manifests with slowed processing speed. We investigated the impact of lesion location on processing speed in age-related small vessel disease. Methods: A total of 584 community-dwelling elderly underwent brain MRI followed by segmentation of white matter hyperintensities. Processing speed was determined by the timed measure of the Trail Making Test part B. The impact of the location of white matter hyperintensities was assessed by voxel-based lesion-symptom mapping and graph-based statistical models on regional lesion volumes in major white matter tracts. Results: Voxel-based lesion-symptom mapping identified multiple voxel clusters where the presence of white matter hyperintensities was associated with slower performance on the Trail Making Test part B. Clusters were located bilaterally in the forceps minor and anterior thalamic radiation. Region of interest–based Bayesian network analyses on lesion volumes within major white matter tracts depicted the same tracts as direct predictors for an impaired Trail Making Test part B performance. Conclusions: Our findings highlight damage to frontal interhemispheric and thalamic projection fiber tracts harboring frontal-subcortical neuronal circuits as a predictor for processing speed performance in age-related small vessel disease. PMID:24793184

Duering, Marco; Gesierich, Benno; Seiler, Stephan; Pirpamer, Lukas; Gonik, Mariya; Hofer, Edith; Jouvent, Eric; Duchesnay, Edouard; Chabriat, Hugues; Ropele, Stefan; Schmidt, Reinhold

2014-01-01

135

Comparison of grey matter volume and thickness for analysing cortical changes in chronic schizophrenia: A matter of surface area, grey/white matter intensity contrast, and curvature.  

PubMed

Grey matter volume and cortical thickness are the two most widely used measures for detecting grey matter morphometric changes in various diseases such as schizophrenia. However, these two measures only share partial overlapping regions in identifying morphometric changes. Few studies have investigated the contributions of the potential factors to the differences of grey matter volume and cortical thickness. To investigate this question, 3T magnetic resonance images from 22 patients with schizophrenia and 20 well-matched healthy controls were chosen for analyses. Grey matter volume and cortical thickness were measured by VBM and Freesurfer. Grey matter volume results were then rendered onto the surface template of Freesurfer to compare the differences from cortical thickness in anatomical locations. Discrepancy regions of the grey matter volume and thickness where grey matter volume significantly decreased but without corresponding evidence of cortical thinning involved the rostral middle frontal, precentral, lateral occipital and superior frontal gyri. Subsequent region-of-interest analysis demonstrated that changes in surface area, grey/white matter intensity contrast and curvature accounted for the discrepancies. Our results suggest that the differences between grey matter volume and thickness could be jointly driven by surface area, grey/white matter intensity contrast and curvature. PMID:25595222

Kong, Li; Herold, Christina J; Zöllner, Frank; Salat, David H; Lässer, Marc M; Schmid, Lena A; Fellhauer, Iven; Thomann, Philipp A; Essig, Marco; Schad, Lothar R; Erickson, Kirk I; Schröder, Johannes

2015-02-28

136

Prolonged febrile seizures cause reversible reductions in white matter integrity.  

PubMed

Prolonged febrile seizures (PFS) are the commonest cause of childhood status epilepticus and are believed to carry a risk of neuronal damage, in particular to the mesial temporal lobe. This study was designed to determine: i) the effect of prolonged febrile seizures on white matter and ii) the temporal evolution of any changes seen. 33 children were recruited 1 month following PFS and underwent diffusion tensor imaging (DTI) with repeat imaging at 6 and 12 months after the original episode of PFS. 18 age-matched healthy control subjects underwent similar investigations at a single time point. Tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) between patients and controls on a voxel-wise basis within the white matter skeleton. Widespread reductions in FA along multiple white matter tracts were found at 1 and 6 months post-PFS, but these had resolved at 12 months. At one month post-PFS the main changes seen were reductions in AD but at 6 months these had predominantly changed to increases in RD. These widespread white matter changes have not previously been noted following PFS. There are many possible explanations, but one plausible hypothesis is that this represents a temporary halting of normal white matter development caused by the seizure, that then resumes and normalises in the majority of children. PMID:24273734

Yoong, M; Seunarine, K; Martinos, M; Chin, R F; Clark, C A; Scott, R C

2013-01-01

137

Prolonged febrile seizures cause reversible reductions in white matter integrity?  

PubMed Central

Prolonged febrile seizures (PFS) are the commonest cause of childhood status epilepticus and are believed to carry a risk of neuronal damage, in particular to the mesial temporal lobe. This study was designed to determine: i) the effect of prolonged febrile seizures on white matter and ii) the temporal evolution of any changes seen. 33 children were recruited 1 month following PFS and underwent diffusion tensor imaging (DTI) with repeat imaging at 6 and 12 months after the original episode of PFS. 18 age-matched healthy control subjects underwent similar investigations at a single time point. Tract-based spatial statistics (TBSS) was used to compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) between patients and controls on a voxel-wise basis within the white matter skeleton. Widespread reductions in FA along multiple white matter tracts were found at 1 and 6 months post-PFS, but these had resolved at 12 months. At one month post-PFS the main changes seen were reductions in AD but at 6 months these had predominantly changed to increases in RD. These widespread white matter changes have not previously been noted following PFS. There are many possible explanations, but one plausible hypothesis is that this represents a temporary halting of normal white matter development caused by the seizure, that then resumes and normalises in the majority of children. PMID:24273734

Yoong, M.; Seunarine, K.; Martinos, M.; Chin, R.F.; Clark, C.A.; Scott, R.C.

2013-01-01

138

NMDA receptor antibodies associated with distinct white matter syndromes  

PubMed Central

Objective: To report the clinical and radiologic findings of children with NMDA receptor (NMDAR) antibodies and white matter disorders. Method: Ten children with significant white matter involvement, with or without anti-NMDAR encephalitis, were identified from 46 consecutive NMDAR antibody–positive pediatric patients. Clinical and neuroimaging features were reviewed and the treatment and outcomes of the neurologic syndromes evaluated. Results: Three distinct clinicoradiologic phenotypes were recognized: brainstem encephalitis (n = 3), leukoencephalopathy following herpes simplex virus encephalitis (HSVE) (n = 2), and acquired demyelination syndromes (ADS) (n = 5); 3 of the 5 with ADS had myelin oligodendrocyte glycoprotein as well as NMDAR antibodies. Typical NMDAR antibody encephalitis was seen in 3 patients remote from the first neurologic syndrome (2 brainstem, 1 post-HSVE). Six of the 7 patients (85%) who were treated acutely, during the original presentation with white matter involvement, improved following immunotherapy with steroids, IV immunoglobulin, and plasma exchange, either individually or in combination. Two patients had escalation of immunotherapy at relapse resulting in clinical improvement. The time course of clinical features, treatments, and recoveries correlated broadly with available serum antibody titers. Conclusion: Clinicoradiologic evidence of white matter involvement, often distinct, was identified in 22% of children with NMDAR antibodies and appears immunotherapy responsive, particularly when treated in the acute phase of neurologic presentation. When observed, this clinical improvement is often mirrored by reduction in NMDAR antibody levels, suggesting that these antibodies may mediate the white matter disease. PMID:25340058

Hacohen, Yael; Absoud, Michael; Hemingway, Cheryl; Jacobson, Leslie; Lin, Jean-Pierre; Pike, Mike; Pullaperuma, Sunil; Siddiqui, Ata; Wassmer, Evangeline; Waters, Patrick; Irani, Sarosh R.; Buckley, Camilla

2014-01-01

139

Relations between white matter maturation and reaction time in childhood.  

PubMed

White matter matures with age and is important for the efficient transmission of neuronal signals. Consequently, white matter growth may underlie the development of cognitive processes important for learning, including the speed of information processing. To dissect the relationship between white matter structure and information processing speed, we administered a reaction time task (finger abduction in response to visual cue) to 27 typically developing, right-handed children aged 4 to 13. Magnetoencephalography and Diffusion Tensor Imaging were used to delineate white matter connections implicated in visual-motor information processing. Fractional anisotropy (FA) and radial diffusivity (RD) of the optic radiation in the left hemisphere, and FA and mean diffusivity (MD) of the optic radiation in the right hemisphere changed significantly with age. MD and RD decreased with age in the right inferior fronto-occipital fasciculus, and bilaterally in the cortico-spinal tracts. No age-related changes were evident in the inferior longitudinal fasciculus. FA of the cortico-spinal tract in the left hemisphere and MD of the inferior fronto-occipital fasciculus of the right hemisphere contributed uniquely beyond the effect of age in accounting for reaction time performance of the right hand. Our findings support the role of white matter maturation in the development of information processing speed. PMID:24168858

Scantlebury, Nadia; Cunningham, Todd; Dockstader, Colleen; Laughlin, Suzanne; Gaetz, William; Rockel, Conrad; Dickson, Jolynn; Mabbott, Donald

2014-01-01

140

White matter integrity and cognitive performance in children with prenatal methamphetamine exposure.  

PubMed

There is emerging evidence on the harmful effects of prenatal methamphetamine (MA) exposure on the structure and function of the developing brain. However, few studies have assessed white matter structural integrity in the presence of prenatal MA exposure, and results are inconsistent. This investigation thus used diffusion tensor imaging (DTI) to investigate white matter microstructure and cognitive performance in a group of prenatal MA exposed (or MA) children and controls of similar age. Seventeen MA children and 15 healthy controls (aged 6-7 years) underwent DTI and assessment of motor function and general cognitive ability. Whole brain analyses of white matter structure were performed using FSL's tract-based spatial statistics comparing fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AD). Mean diffusion values were extracted from white matter regions shown to differ across groups to determine whether variations in FA predicted cognitive performance. Analyses were controlled for maternal nicotine use. MA children showed significantly lower FA as well as higher MD, RD and AD in tracts that traverse striatal, limbic and frontal regions. Abnormal FA levels in MA children were significantly associated with poorer motor coordination and general cognitive ability sub-items that relate to aspects of executive function. Our findings suggest that, consistent with previous studies in older children, there are disruptions of white matter microstructural integrity in striatal, limbic and frontal regions of young MA exposed children, with prominent cognitive implications. Future longitudinal studies may clarify how prenatal MA exposure affects white matter structural connectivity at different stages of brain maturation. PMID:25446763

Roos, Annerine; Kwiatkowski, Maja A; Fouche, Jean-Paul; Narr, Katherine L; Thomas, Kevin G F; Stein, Dan J; Donald, Kirsty A

2015-02-15

141

ADAPTIVE CUTS FOR EXTRACTING SPECIFIC WHITE MATTER TRACTS  

PubMed Central

Extracting specific white matter tracts (e.g., uncinate fasciculus) from whole brain tractography has numerous applications in studying individual differences in white matter. Typically specific tracts are extracted manually, following replicable protocols which can be prohibitively expensive for large scale studies. A tract clustering framework is a suitable computational framework but from a neuroanatomical point of view, one of the key challenges is that it is very hard to design a universal similarity function for different types of white matter tracts (e.g., projection, association, commissural tracts). In this paper, we propose an adaptive cuts framework in which, using normalized cuts motivated objective function, we adaptively learn tract-tract similarity for each specific tract class using atlas based training data. Using the learnt similarity function we train an ensemble of binary support vector machines to extract specific tracts from unlabeled whole-brain tractography sets. PMID:24163723

Adluru, Nagesh; Singh, Vikas; Alexander, Andrew L.

2013-01-01

142

Genetic variation in homocysteine metabolism, cognition, and white matter lesions.  

PubMed

Several studies have shown an association between homocysteine concentration and cognitive performance or cerebral white matter lesions. However, variations in genes encoding for enzymes and other proteins that play a role in homocysteine metabolism have hardly been evaluated in relation to these outcome measures. In the population-based Rotterdam Scan Study, we examined the association of seven polymorphisms of genes involved in homocysteine metabolism (MTHFR 677C>T, MTHFR 1298A>C, RFC 80G>A, TC 776C>G, MTR 2756A>G, MTRR 66A>G, and CBS 844ins68) with plasma total homocysteine, cognitive performance, and cerebral white matter lesions among 1011 non-demented elderly participants. Of all the studied polymorphisms, only MTHFR 677C>T was associated with homocysteine concentration. No significant relationship was observed for any of the polymorphisms with cognitive performance or severity of cerebral white matter lesions. PMID:19019492

de Lau, Lonneke M L; van Meurs, Joyce B J; Uitterlinden, André G; Smith, A David; Refsum, Helga; Johnston, Carole; Breteler, Monique M B

2010-11-01

143

Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People  

ERIC Educational Resources Information Center

This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…

Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi

2011-01-01

144

Occult White Matter Damage Contributes to Intellectual Disability in Tuberous Sclerosis Complex  

ERIC Educational Resources Information Center

Whether patients with tuberous sclerosis complex (TSC) have brain normal-appearing white matter (NAWM) damage and whether such damage contributes to their intellectual disability were examined in 15 TSC patients and 15 gender- and age-matched healthy controls using diffusion tensor imaging (DTI). Histogram and region of interest (ROI) analyses of…

Yu, Chunshui; Lin, Fuchun; Zhao, Li; Ye, Jing; Qin, Wen

2009-01-01

145

Diffusion tensor imaging reveals white matter microstructure correlations with auditory processing ability  

PubMed Central

Objective Correlation of white matter microstructure with various cognitive processing tasks and with overall intelligence has been previously demonstrated. We investigate the correlation of white matter microstructure with various higher-order auditory processing tasks, including interpretation of speech-in-noise, recognition of low-pass frequency filtered words, and interpretation of time-compressed sentences at two different values of compression. These tests are typically used to diagnose auditory processing disorder (APD) in children. Our hypothesis is that correlations between white matter microstructure in tracts connecting the temporal, frontal, and parietal lobes, as well as callosal pathways, will be seen. Previous functional imaging studies have shown correlations between activation in temporal, frontal and parietal regions from higher-order auditory processing tasks. Additionally, we hypothesize that the regions displaying correlations will vary according to the task, as each task uses a different set of skills. Design Diffusion tensor imaging (DTI) data was acquired in a cohort of 17 normal-hearing children ages 9-11. Fractional anisotropy (FA), a measure of white matter fiber tract integrity and organization was computed and correlated on a voxelwise basis with performance on the auditory processing tasks, controlling for age, sex, and full-scale IQ. Results Divergent correlations of white matter FA depending on the particular auditory processing task were found. Positive correlations were found between FA and speech-in-noise in white matter adjoining prefrontal areas, and between FA and filtered words in the corpus callosum. Regions exhibiting correlations with time-compressed sentences varied depending on the degree of compression: the greater degree of compression (with the greatest difficulty) resulted in correlations in white matter adjoining prefrontal (dorsal and ventral) while the smaller degree of compression (with less difficulty) resulted in correlations in white matter adjoining audio-visual association areas and the posterior cingulate. Only the time-compressed sentences with the lowest degree of compression resulted in positive correlations in the centrum semiovale; all the other tasks resulted in negative correlations. Conclusion The dependence of performance on higher-order auditory processing tasks on brain anatomical connectivity was seen in normal-hearing children ages 9-11. Results support a previously hypothesized dual-stream (dorsal and ventral) model of auditory processing, and that higher-order processing tasks rely less on the dorsal stream related to articulatory networks, and more on the ventral stream related to semantic comprehension. Results also show that the regions correlating with auditory processing vary according to the specific task, indicating that the neurological bases for the various tests used to diagnose APD in children may be partially independent. PMID:21063207

Schmithorst, Vincent J.; Holland, Scott K.; Plante, Elena

2010-01-01

146

Scalable brain network construction on white matter fibers  

NASA Astrophysics Data System (ADS)

DTI offers a unique opportunity to characterize the structural connectivity of the human brain non-invasively by tracing white matter fiber tracts. Whole brain tractography studies routinely generate up to half million tracts per brain, which serves as edges in an extremely large 3D graph with up to half million edges. Currently there is no agreed-upon method for constructing the brain structural network graphs out of large number of white matter tracts. In this paper, we present a scalable iterative framework called the ?-neighbor method for building a network graph and apply it to testing abnormal connectivity in autism.

Chung, Moo K.; Adluru, Nagesh; Dalton, Kim M.; Alexander, Andrew L.; Davidson, Richard J.

2011-03-01

147

Mechanisms of white matter change induced by meditation training  

PubMed Central

Training can induce changes in specific brain networks and changes in brain state. In both cases it has been found that the efficiency of white matter as measured by diffusion tensor imaging is increased, often after only a few hours of training. In this paper we consider a plausible molecular mechanism for how state change produced by meditation might lead to white matter change. According to this hypothesis frontal theta induced by meditation produces a molecular cascade that increases myelin and improves connectivity. PMID:25386155

Posner, Michael I.; Tang, Yi-Yuan; Lynch, Gary

2014-01-01

148

COMT genotype affects prefrontal white matter pathways in children and adolescents  

PubMed Central

Diffusion tensor imaging is widely used to evaluate the development of white matter. Information about how alterations in major neurotransmitter systems, such as the dopamine (DA) system, influence this development in healthy children, however, is lacking. Catechol-O-metyltransferase (COMT) is the major enzyme responsible for DA degradation in prefrontal brain structures, for which there is a corresponding genetic polymorphism (val158met) that confers either a more or less efficient version of this enzyme. The result of this common genetic variation is that children may have more or less available synaptic DA in prefrontal brain regions. In the present study we examined the relation between diffusion properties of frontal white matter structures and the COMT val158met polymorphism in 40 children ages 9–15. We found that the val allele was associated with significantly elevated fractional anisotropy values and reduced axial and radial diffusivities. These results indicate that the development of white matter in healthy children is related to COMT genotype and that alterations in white matter may be related to the differential availability of prefrontal DA. This investigation paves the way for further studies of how common functional variants in the genome might influence the development of brain white matter. PMID:20083203

Thomason, Moriah E.; Dougherty, Robert F.; Colich, Natalie L.; Perry, Lee M.; Rykhlevskaia, Elena I.; Louro, Hugo M.; Hallmayer, Joachim F.; Waugh, Christian E.; Bammer, Roland; Glover, Gary H.; Gotlib, Ian H.

2010-01-01

149

A Role for White Matter Abnormalities in the Pathophysiology of Bipolar Disorder  

PubMed Central

Bipolar disorder is a chronically disabling psychiatric disorder characterized by manic states that is often interspersed with periods of depression whose neurobiology remains largely unknown. There is, however, increasing evidence that white matter (WM) abnormalities may play an important role in the neurobiology of the disorder. In this review we critically evaluate evidence for WM abnormalities in bipolar disorder obtained from neuroimaging, neuropathological, and genetic research. Increased rates of white matter hyperintensities, regional volumetric abnormalities, abnormal water diffusion along prefrontal-subcortical tracts, fewer oligodendrocytes in prefrontal WM, and alterations in the expression of myelin-and oligodendrocyte-related genes are among the most consistent findings. Abnormalities converge in the prefrontal WM and, in particular, tracts that connect prefrontal regions and subcortical gray matter structures known to be involved in emotion. Taken together, the evidence supports and clarifies a model of bipolar disorder that involves disconnectivity in regions implicated in emotion generation and regulation. PMID:19896972

Mahon, Katie; Burdick, Katherine E.; Szeszko, Philip R.

2010-01-01

150

White matter abnormalities in schizophrenia and schizotypal personality disorder.  

PubMed

Prior diffusion tensor imaging (DTI) studies examining schizotypal personality disorder (SPD) and schizophrenia, separately have shown that compared with healthy controls (HCs), patients show frontotemporal white matter (WM) abnormalities. This is the first DTI study to directly compare WM tract coherence with tractography and fractional anisotropy (FA) across the schizophrenia spectrum in a large sample of demographically matched HCs (n = 55), medication-naive SPD patients (n = 49), and unmedicated/never-medicated schizophrenia patients (n = 22) to determine whether (a) frontal-striatal-temporal WM tract abnormalities in schizophrenia are similar to, or distinct from those observed in SPD; and (b) WM tract abnormalities are associated with clinical symptom severity indicating a common underlying pathology across the spectrum. Compared with both the HC and SPD groups, schizophrenia patients showed WM abnormalities, as indexed by lower FA in the temporal lobe (inferior longitudinal fasciculus) and cingulum regions. SPD patients showed lower FA in the corpus callosum genu compared with the HC group, but this regional abnormality was more widespread in schizophrenia patients. Across the schizophrenia spectrum, greater WM disruptions were associated with greater symptom severity. Overall, frontal-striatal-temporal WM dysconnectivity is attenuated in SPD compared with schizophrenia patients and may mitigate the emergence of psychosis. PMID:24962608

Lener, Marc S; Wong, Edmund; Tang, Cheuk Y; Byne, William; Goldstein, Kim E; Blair, Nicholas J; Haznedar, M Mehmet; New, Antonia S; Chemerinski, Eran; Chu, King-Wai; Rimsky, Liza S; Siever, Larry J; Koenigsberg, Harold W; Hazlett, Erin A

2015-01-01

151

Spatial Patterns of Whole Brain Grey and White Matter Injury in Patients with Occult Spastic Diplegic Cerebral Palsy  

PubMed Central

Spastic diplegic cerebral palsy(SDCP)is a common type of cerebral palsy (CP), which presents as a group of motor-impairment syndromes. Previous conventional MRI studies have reported abnormal structural changes in SDCP, such as periventricular leucomalacia. However, there are roughly 27.8% SDCP patients presenting normal appearance in conventional MRI, which were considered as occult SDCP. In this study, sixteen patients with occult SDCP and 16 age- and sex-matched healthy control subjects were collected and the data were acquired on a 3T MR system. We applied voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis to investigate whole brain grey and white matter injury in occult SDCP. By using VBM method, the grey matter volume reduction was revealed in the bilateral basal ganglia regions, thalamus, insula, and left cerebral peduncle, whereas the white matter atrophy was found to be located in the posterior part of corpus callosum and right posterior corona radiata in the occult SDCP patients. By using TBSS, reduced fractional anisotropy (FA) values were detected in multiple white matter regions, including bilateral white matter tracts in prefrontal lobe, temporal lobe, internal and external capsule, corpus callosum, cingulum, thalamus, brainstem and cerebellum. Additionally, several regions of white matter tracts injury were found to be significantly correlated with motor dysfunction. These results collectively revealed the spatial patterns of whole brain grey and white matter injury in occult SDCP. PMID:24964139

Wang, Hong; Duan, Shaofeng; Zhang, Zan; Dai, Guanghui; Ma, Qiaozhi; Shan, Baoci; Ma, Lin

2014-01-01

152

Coronary Heart Disease and Cortical Thickness, Gray Matter and White Matter Lesion Volumes on MRI  

PubMed Central

Coronary heart disease (CHD) has been linked with cognitive decline and dementia in several studies. CHD is strongly associated with blood pressure, but it is not clear how blood pressure levels or changes in blood pressure over time affect the relation between CHD and dementia-related pathology. The aim of this study was to investigate relations between CHD and cortical thickness, gray matter volume and white matter lesion (WML) volume on MRI, considering CHD duration and blood pressure levels from midlife to three decades later. The study population included 69 elderly at risk of dementia who participated in the Cardiovascular Risk Factors, Aging and Dementia (CAIDE) study. CAIDE participants were examined in midlife, re-examined 21 years later, and then after additionally 7 years (in total up to 30 years follow-up). MRIs from the second re-examination were used to calculate cortical thickness, gray matter and WML volume. CHD diagnoses were obtained from the Finnish Hospital Discharge Register. Linear regression analyses were adjusted for age, sex, follow-up time and scanner type, and additionally total intracranial volume in GM volume analyses. Adding diabetes, cholesterol or smoking to the models did not influence the results. CHD was associated with lower thickness in multiple regions, and lower total gray matter volume, particularly in people with longer disease duration (>10 years). Associations between CHD, cortical thickness and gray matter volume were strongest in people with CHD and hypertension in midlife, and those with CHD and declining blood pressure after midlife. No association was found between CHD and WML volumes. Based on these results, long-term CHD seems to have detrimental effects on brain gray matter tissue, and these effects are influenced by blood pressure levels and their changes over time. PMID:25302686

Vuorinen, Miika; Damangir, Soheil; Niskanen, Eini; Miralbell, Julia; Rusanen, Minna; Spulber, Gabriela; Soininen, Hilkka; Kivipelto, Miia; Solomon, Alina

2014-01-01

153

STUDY PROTOCOL Open Access Multimodal neuroimaging of frontal white matter  

E-print Network

phase schizophrenia: the impact of early adolescent cannabis use Denise Bernier1* , Jacob Cookey1 is to assess the impact of early adolescent onset of regular cannabis use on brain white matter tissue with schizophrenia. The ultimate goal is to determine the liability of early adolescent use of cannabis on brain

154

Cerebral White Matter Hyperintensities Predict Functional Stroke Outcome  

Microsoft Academic Search

Background: Growing evidence suggests that white matter hyperintensities (WMHs) are implicated in stroke recurrence and mortality, and their location can be a critical factor. This study evaluated the impact of periventricular WMHs (PVWMHs) and subcortical WMHs (SWMHs) on poststroke functional outcomes. Methods: Brain MRI was performed on 187 acute ischemic stroke patients (57.8% male; mean age = 64.3 years) recruited

Li-Min Liou; Chien-Fu Chen; Yuh-Cherng Guo; Hsiu-Ling Cheng; Hui-Lin Lee; Jui-Sheng Hsu; Ruey-Tay Lin; Hsiu-Fen Lin

2010-01-01

155

White Matter Damage and Cognitive Impairment after Traumatic Brain Injury  

ERIC Educational Resources Information Center

White matter disruption is an important determinant of cognitive impairment after brain injury, but conventional neuroimaging underestimates its extent. In contrast, diffusion tensor imaging provides a validated and sensitive way of identifying the impact of axonal injury. The relationship between cognitive impairment after traumatic brain injury…

Kinnunen, Kirsi Maria; Greenwood, Richard; Powell, Jane Hilary; Leech, Robert; Hawkins, Peter Charlie; Bonnelle, Valerie; Patel, Maneesh Chandrakant; Counsell, Serena Jane; Sharp, David James

2011-01-01

156

White dwarf stars as strange quark matter detectors  

Microsoft Academic Search

We show that the presence of a strange matter core inside a white dwarf (WD) star produces a drastic change in the spectrum of non-radial oscillations in the range of periods corresponding to gravity modes. The distinctive, observable signal for such a core is a very short period spacing between consecutive modes, far shorter than in the case of pulsating

O G Benvenuto

2005-01-01

157

A Method for Clustering White Matter Fiber Tracts  

E-print Network

in conditions, such as schizophrenia, Alzheimer disease, multiple sclerosis, brain tumor, and so forth.2,3 DTI for visualizing white matter fiber tracts in vivo, diffusion tensor tractography has found only limited neuropsychiatric disorders can now be tested. Diffusion tensor imaging (DTI) is one of the first methods that made

158

SCIENCE MATTERS (White) Hooded Sweatshirt (Size: XX Large)  

NSDL National Science Digital Library

White, heavy duty 9.3 oz. 50/50 blend, double-lined hood and pockets. Sweatshirt is printed with Science Matters logo on front and NSTA logo on back. Available in Adult sizes: Small, Medium, Large, X Large, XX Large.

1900-01-01

159

SCIENCE MATTERS (White) Hooded Sweatshirt (Size: X Large)  

NSDL National Science Digital Library

White, heavy duty 9.3 oz. 50/50 blend, double-lined hood and pockets. Sweatshirt is printed with Science Matters logo on front and NSTA logo on back. Available in Adult sizes: Small, Medium, Large, X Large, XX Large.

1900-01-01

160

Bilirubin and its oxidation products damage brain white matter.  

PubMed

Brain injury after intracerebral hemorrhage (ICH) occurs in cortex and white matter and may be mediated by blood breakdown products, including hemoglobin and heme. Effects of blood breakdown products, bilirubin and bilirubin oxidation products, have not been widely investigated in adult brain. Here, we first determined the effect of bilirubin and its oxidation products on the structure and function of white matter in vitro using brain slices. Subsequently, we determined whether these compounds have an effect on the structure and function of white matter in vivo. In all, 0.5?mmol/L bilirubin treatment significantly damaged both the function and the structure of myelinated axons but not the unmyelinated axons in brain slices. Toxicity of bilirubin in vitro was prevented by dimethyl sulfoxide. Bilirubin oxidation products (BOXes) may be responsible for the toxicity of bilirubin. In in vivo experiments, unmyelinated axons were found more susceptible to damage from bilirubin injection. These results suggest that unmyelinated axons may have a major role in white-matter damage in vivo. Since bilirubin and BOXes appear in a delayed manner after ICH, preventing their toxic effects may be worth investigating therapeutically. Dimethyl sulfoxide or its structurally related derivatives may have a potential therapeutic value at antagonizing axonal damage after hemorrhagic stroke. PMID:25160671

Lakovic, Katarina; Ai, Jinglu; D'Abbondanza, Josephine; Tariq, Asma; Sabri, Mohammed; Alarfaj, Abdullah K; Vasdev, Punarjot; Macdonald, Robert Loch

2014-11-01

161

Neurocognitive Correlates of White Matter Quality in Adolescent Substance Users  

ERIC Educational Resources Information Center

Background: Progressive myelination during adolescence implicates an increased vulnerability to neurotoxic substances and enduring neurocognitive consequences. This study examined the cognitive manifestations of altered white matter microstructure in chronic marijuana and alcohol-using (MJ + ALC) adolescents. Methods: Thirty-six MJ + ALC…

Bava, Sunita; Jacobus, Joanna; Mahmood, Omar; Yang, Tony T.; Tapert, Susan F.

2010-01-01

162

Early gray-matter and white-matter concentration in infancy predict later language skills: A whole brain voxel-based morphometry study  

PubMed Central

Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children’s language scores at 12 months. Early gray-matter concentration in the right cerebellum, early white-matter concentration in the right cerebellum, and early white-matter concentration in the left posterior limb of the internal capsule (PLIC)/cerebral peduncle were positively and strongly associated with infants’ receptive language ability at 12 months. Early gray-matter concentration in the right hippocampus was positively and strongly correlated with infants’ expressive language ability at 12 months. Our results suggest that the cerebellum, PLIC/cerebral peduncle, and the hippocampus may be associated with early language development. Potential links between these structural predictors and infants’ linguistic functions are discussed. PMID:23274797

Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia

2012-01-01

163

Differences in Function and Structure of the Capillary Endothelium in Gray Matter, White Matter and a Circumventricular Organ of Rat Brain  

Microsoft Academic Search

Physiological and morphometric studies were conducted on the microvascular endothelium of four individual cerebral structures having different neural activities – the inferior colliculus, sensorimotor cortex (both gray matter regions), genu of the corpus callosum (white matter), and the subfornical organ (a circumventricular organ) of rats. The physiological data, obtained by quantitative autoradiography, produced new findings: (1) the rate of blood-to-tissue

Paul M. Gross; Nadine M. Sposito; Susan E. Pettersen; Joseph D. Fenstermacher

1986-01-01

164

Early Gray-Matter and White-Matter Concentration in Infancy Predict Later Language Skills: A Whole Brain Voxel-Based Morphometry Study  

ERIC Educational Resources Information Center

Magnetic Resonance Imaging (MRI) brain scans were obtained from 19 infants at 7 months. Expressive and receptive language performance was assessed at 12 months. Voxel-based morphometry (VBM) identified brain regions where gray-matter and white-matter concentrations at 7 months correlated significantly with children's language scores at 12 months.…

Can, Dilara Deniz; Richards, Todd; Kuhl, Patricia K.

2013-01-01

165

Constrained by our connections: white matter's key role in interindividual variability in visual working memory capacity.  

PubMed

Visual working memory (VWM) plays an essential role in many perceptual and higher-order cognitive processes. Despite its reliance on a broad network of brain regions, VWM has a capacity limited to a few objects. This capacity varies substantially across individuals and relates closely to measures of overall cognitive function (Luck and Vogel, 2013). The mechanisms underlying these properties are not completely understood, although the amplitude of neural signal oscillations (Vogel and Machizawa, 2004) and brain activation in specific cortical regions (Todd and Marois, 2004) have been implicated. Variability in VWM performance may also reflect variability in white matter structural properties. However, data based primarily on diffusion tensor imaging approaches remain inconclusive. Here, we investigate the relationship between white matter and VWM capacity in human subjects using an advanced diffusion imaging technique, diffusion kurtosis imaging. Diffusion kurtosis imaging provides several novel quantitative white mater metrics, among them the axonal water fraction (f(axon)), an index of axonal density and caliber. Our results show that 59% of individual variability in VWM capacity may be explained by variations in f(axon) within a widely distributed network of white matter tracts. Increased f(axon) associates with increased VWM capacity. An additional 12% in VWM capacity variance may be explained by diffusion properties of the extra-axonal space. These data demonstrate, for the first time, the key role of white matter in limiting VWM capacity in the healthy adult brain and suggest that white matter may represent an important therapeutic target in disorders of impaired VWM and cognition. PMID:25378158

Golestani, Ali M; Miles, Laura; Babb, James; Castellanos, F Xavier; Malaspina, Dolores; Lazar, Mariana

2014-11-01

166

The Properties of Matter in White Dwarfs and Neutron Stars  

E-print Network

White dwarfs and neutron stars are stellar objects with masses comparable to that of our sun. However, as the endpoint stages of stellar evolution, these objects do not sustain any thermonuclear burning and therefore can no longer support the gravitational load of their own mass by generating thermal pressure. Rather, matter in their interiors is compressed to much higher densities than commonly found in normal stars, and pressure is created by degenerate fermion kinetic energy and particle interactions. As a result, white dwarfs and neutron stars offer unique cosmic laboratories for studying matter at very high densities. In this review we discuss the basic properties of condensed matter at extreme densities and summarize the extent to which these properties can be examined by observations of compact objects.

Shmuel Balberg; Stuart L. Shapiro

2000-04-24

167

Multiple White Matter Volume Reductions in Patients with Panic Disorder: Relationships between Orbitofrontal Gyrus Volume and Symptom Severity and Social Dysfunction  

PubMed Central

Numerous brain regions are believed to be involved in the neuropathology of panic disorder (PD) including fronto-limbic regions, thalamus, brain stem, and cerebellum. However, while several previous studies have demonstrated volumetric gray matter reductions in these brain regions, there have been no studies evaluating volumetric white matter changes in the fiber bundles connecting these regions. In addition, although patients with PD typically exhibit social, interpersonal and occupational dysfunction, the neuropathologies underlying these dysfunctions remain unclear. A voxel-based morphometry study was conducted to evaluate differences in regional white matter volume between 40 patients with PD and 40 healthy control subjects (HC). Correlation analyses were performed between the regional white matter volumes and patients' scores on the Panic Disorder Severity Scale (PDSS) and the Global Assessment of Functioning (GAF). Patients with PD demonstrated significant volumetric reductions in widespread white matter regions including fronto-limbic, thalamo-cortical and cerebellar pathways (p<0.05, FDR corrected). Furthermore, there was a significant negative relationship between right orbitofrontal gyrus (OFG) white matter volume and the severity of patients' clinical symptoms, as assessed with the PDSS. A significant positive relationship was also observed between patients' right OFG volumes and their scores on the GAF. Our results suggest that volumetric reductions in widespread white matter regions may play an important role in the pathology of PD. In particular, our results suggest that structural white matter abnormalities in the right OFG may contribute to the social, personal and occupational dysfunction typically experienced by patients with PD. PMID:24663245

Konishi, Jun; Asami, Takeshi; Hayano, Fumi; Yoshimi, Asuka; Hayasaka, Shunsuke; Fukushima, Hiroshi; Whitford, Thomas J.; Inoue, Tomio; Hirayasu, Yoshio

2014-01-01

168

White matter correlates of cognitive domains in normal aging with diffusion tensor imaging  

PubMed Central

The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25–82 years), we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory) with white matter integrity, as measured by diffusion tensor imaging (DTI) fiber tracking in the temporal lobe projections [uncinate fasciculus (UF), fornix, cingulum, inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF)]. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA) in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest (ROI) for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity. PMID:23493587

Sasson, Efrat; Doniger, Glen M.; Pasternak, Ofer; Tarrasch, Ricardo; Assaf, Yaniv

2013-01-01

169

White matter tract integrity and intelligence in patients with mental retardation and healthy adults  

E-print Network

White matter tract integrity and intelligence in patients with mental retardation and healthy of brain white matter tracts and intelligence in patients with mental retardation (MR) and healthy adults; Fractional anisotropy; Mental retardation; Intelligence Introduction Researchers have long attempted

Jiang,Tianzi

170

White matter impairment in chronic heroin dependence: a quantitative DTI study.  

PubMed

Exposure to addictive drugs has been associated with disrupted brain white matter integrity. A few studies have examined the white matter deficits in heroin users; however, the results were influenced by the use of substitution drugs such as methadone and buprenorphine. The present study assessed the alteration in white matter integrity and heroin-related neuropathology in heroin dependents who had not received any replacement therapy using quantitative diffusion tensor imaging (DTI). The study comprised 17 heroin-dependent (HD) subjects and 15 matched healthy controls (HC). Fractional anisotropy (FA) and eigenvalues (??, ?||) of white matter in the whole brain were measured and compared using a voxel-based analysis. The correlation between DTI measurements in identified regions and history of heroin exposure was tested by partial correlation analysis. Compared with HCs, HD subjects displayed decreased FA in the bilateral frontal lobe sub-gyrus, cingulate gyrus, medial frontal gyrus, extra-nuclear, left temporal lobe sub-gyrus and right superior frontal gyrus. Among these regions, the HD group had significantly increased ?? in the bilateral frontal lobe sub-gyrus, cingulate gyrus and extra-nuclear relative to the HC group. There were no group differences in ?||. In addition, there were no significant correlations between duration of heroin use or accumulated dosage and FA or ?? values. In conclusion, chronic heroin-dependent subjects had widespread disruption of white matter structural connectivity located mainly in anterior and superior regions of the brain. Damage to myelin other than axons was the primary pathological feature in the brain of the heroin user. PMID:23895765

Li, Wei; Li, Qiang; Zhu, Jia; Qin, Yue; Zheng, Ying; Chang, Haifeng; Zhang, Dongsheng; Wang, Hanyue; Wang, Lina; Wang, Yarong; Wang, Wei

2013-09-19

171

White matter changes compromise prefrontal cortex function in healthy elderly individuals.  

PubMed

Changes in memory function in elderly individuals are often attributed to dysfunction of the prefrontal cortex (PFC). One mechanism for this dysfunction may be disruption of white matter tracts that connect the PFC with its anatomical targets. Here, we tested the hypothesis that white matter degeneration is associated with reduced prefrontal activation. We used white matter hyperintensities (WMH), a magnetic resonance imaging (MRI) finding associated with cerebrovascular disease in elderly individuals, as a marker for white matter degeneration. Specifically, we used structural MRI to quantify the extent of WMH in a group of cognitively normal elderly individuals and tested whether these measures were predictive of the magnitude of prefrontal activity (fMRI) observed during performance of an episodic retrieval task and a verbal working memory task. We also examined the effects of WMH located in the dorsolateral frontal regions with the hypothesis that dorsal PFC WMH would be strongly associated with not only PFC function, but also with areas that are anatomically and functionally linked to the PFC in a task-dependent manner. Results showed that increases in both global and regional dorsal PFC WMH volume were associated with decreases in PFC activity. In addition, dorsal PFC WMH volume was associated with decreased activity in medial temporal and anterior cingulate regions during episodic retrieval and decreased activity in the posterior parietal and anterior cingulate cortex during working memory performance. These results suggest that disruption of white matter tracts, especially within the PFC, may be a mechanism for age-related changes in memory functioning. PMID:16513006

Nordahl, Christine Wu; Ranganath, Charan; Yonelinas, Andrew P; Decarli, Charles; Fletcher, Evan; Jagust, William J

2006-03-01

172

White Matter in Aging and Cognition: A Cross-sectional Study of Microstructure in Adults Aged Eighteen to Eighty-Three  

PubMed Central

Structural brain change and concomitant cognitive decline are the seemingly unavoidable escorts of aging. Despite accumulating studies detailing the effects of age on the brain and cognition, the relationship between white matter features and cognitive function in aging have only recently received attention and remain incompletely understood. White matter microstructure can be measured with diffusion tensor imaging (DTI), but whether DTI can provide unique information on brain aging that is not explained by white matter volume is not known. In the current study, the relationship between white matter microstructure, age and neuropsychological function was assessed using DTI in a statistical framework that employed white matter volume as a voxel-wise covariate in a sample of 120 healthy adults across a broad age range (18–83). Memory function and executive function were modestly correlated with the DTI measures while processing speed showed the greatest extent of correlation. The results suggest that age-related white matter alterations underlie age-related declines in cognitive function. Mean diffusivity and fractional anisotropy in several white matter brain regions exhibited a non-linear relationship with age, while white matter volume showed a primarily linear relationship with age. The complex relationships between cognition, white matter microstructure, and white matter volume still require further investigation. PMID:20446132

Bendlin, Barbara B.; Fitzgerald, Michele E.; Ries, Michele L.; Xu, Guofan; Kastman, Erik K.; Thiel, Brent W.; Rowley, Howard A.; Lazar, Mariana; Alexander, Andrew L.; Johnson, Sterling C.

2010-01-01

173

White Matter Ischemic Changes in Hyperacute Ischemic Stroke  

PubMed Central

Background and Purpose— The purpose of this study was to evaluate changes in fractional anisotropy (FA), as measured by diffusion tensor imaging, of white matter (WM) infarction and hypoperfusion in patients with acute ischemic stroke using a quantitative voxel-based analysis. Methods— In this prospective study, diffusion tensor imaging and dynamic susceptibility contrast perfusion sequences were acquired in 21 patients with acute ischemic stroke who presented within 6 hours of symptom onset. The coregistered FA, apparent diffusion coefficient, and dynamic susceptibility contrast time to maximum (Tmax) maps were used for voxel-based quantification using a region of interest approach in the ipsilateral affected side and in the homologous contralateral WM. The regions of WM infarction versus hypoperfusion were segmented using a threshold method. Data were analyzed by regression and ANOVA. Results— There was an overall significant mean difference (P<0.001) for the apparent diffusion coefficient, Tmax, and FA values between the normal, hypoperfused, and infarcted WM. The mean±SD of FA was significantly higher (P<0.001) in hypoperfused WM (0.397±0.019) and lower (P<0.001) in infarcted WM (0.313±0.037) when compared with normal WM (0.360±0.020). Regression tree analysis of hypoperfused WM showed the largest mean FA difference at Tmax above versus below 5.4 s with a mean difference of 0.033 (P=0.0096). Conclusions— Diffusion tensor imaging-FA was decreased in regions of WM infarction and increased in hypoperfused WM in patients with hyperacute acute ischemic stroke. The significantly increased FA values in the hypoperfused WM with Tmax?5.4 s are suggestive of early ischemic microstructural changes. PMID:25523053

Trouard, Theodore P; Lafleur, Scott R.; Krupinski, Elizabeth A.; Salamon, Noriko; Kidwell, Chelsea S.

2015-01-01

174

Vanishing White Matter Disease: A Review with Focus on Its Genetics  

ERIC Educational Resources Information Center

Leukoencephalopathy with vanishing white matter (VWM) is an autosomal recessive brain disorder, most often with a childhood onset. Magnetic resonance imaging and spectroscopy indicate that, with time, increasing amounts of cerebral white matter vanish and are replaced by fluid. Autopsy confirms white matter rarefaction and cystic degeneration. The…

Pronk, Jan C.; van Kollenburg, Barbara; Scheper, Gert C.; van der Knaap, Marjo S.

2006-01-01

175

An error analysis of white matter tractography methods: synthetic diffusion tensor field simulations  

Microsoft Academic Search

White matter tractography using diffusion tensor MR images is a promising method for estimating the pathways of white matter tracts in the human brain. The success of this method ultimately depends upon the accuracy of the white matter tractography algorithms. In this study, a Monte Carlo simulation was used to investigate the impact of SNR, tensor anisotropy, and diffusion tensor

Mariana Lazar; Andrew L. Alexander

2003-01-01

176

Retinal nerve fibre layer thickness correlates with brain white matter damage in multiple sclerosis: A combined optical coherence tomography and diffusion tensor imaging study.  

PubMed

We investigated the association of retinal nerve fibre layer thickness (RNFL) with white matter damage assessed by diffusion tensor imaging (DTI). Forty-four MS patients and 30 healthy subjects underwent optical coherence tomography. DTI was analysed with a voxel-based whole brain and region-based analysis of optic radiation, corpus callosum and further white matter. Correlations between RNFL, fractional anisotropy (FA) and other DTI-based parameters were assessed in patients and controls. RNFL correlated with optic radiation FA, but also with corpus callosum and remaining white matter FA. Our findings demonstrate that RNFL changes indicate white matter damage exceeding the visual pathway. PMID:24842962

Scheel, Michael; Finke, Carsten; Oberwahrenbrock, Timm; Freing, Alina; Pech, Luisa-Maria; Schlichting, Jeremias; Sömmer, Carina; Wuerfel, Jens; Paul, Friedemann; Brandt, Alexander U

2014-12-01

177

DTI-measured white matter abnormalities in adolescents with Conduct Disorder.  

PubMed

Emerging research suggests that antisocial behavior in youth is linked to abnormal brain white matter microstructure, but the extent of such anatomical connectivity abnormalities remain largely untested because previous Conduct Disorder (CD) studies typically have selectively focused on specific frontotemporal tracts. This study aimed to replicate and extend previous frontotemporal diffusion tensor imaging (DTI) findings to determine whether noncomorbid CD adolescents have white matter microstructural abnormalities in major white matter tracts across the whole brain. Seventeen CD-diagnosed adolescents recruited from the community were compared to a group of 24 non-CD youth which did not differ in average age (12-18) or gender proportion. Tract-based spatial statistics (TBSS) fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD) measurements were compared between groups using FSL nonparametric two-sample t test, clusterwise whole-brain corrected, p < .05. CD FA and AD deficits were widespread, but unrelated to gender, verbal ability, or CD age of onset. CD adolescents had significantly lower FA and AD values in frontal lobe and temporal lobe regions, including frontal lobe anterior/superior corona radiata, and inferior longitudinal and fronto-occipital fasciculi passing through the temporal lobe. The magnitude of several CD FA deficits was associated with number of CD symptoms. Because AD, but not RD, differed between study groups, abnormalities of axonal microstructure in CD rather than myelination are suggested. This study provides evidence that adolescent antisocial disorder is linked to abnormal white matter microstructure in more than just the uncinate fasciculus as identified in previous DTI studies, or frontotemporal brain structures as suggested by functional neuroimaging studies. Instead, neurobiological risk specific to antisociality in adolescence is linked to microstructural abnormality in numerous long-range white matter connections among many diverse different brain regions. PMID:24139595

Haney-Caron, Emily; Caprihan, Arvind; Stevens, Michael C

2014-01-01

178

Links between white matter microstructure and cortisol reactivity to stress in early childhood: Evidence for moderation by parenting  

PubMed Central

Activity of the hypothalamic–pituitary–adrenal axis (measured via cortisol reactivity) may be a biological marker of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates of early cortisol reactivity are not well known, although these would potentially inform broader models of mechanisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined links between white matter architecture and young girls' cortisol reactivity and whether early caregiving moderated these links. We recruited 45 6-year-old girls based on whether they had previously shown high or low cortisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy (FA) of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standardized parent–child interaction task. Significant associations were found between FA in white matter regions adjacent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps < .001). Further, positive early caregiving moderated the effect of high cortisol reactivity on white matter FA (all ps ? .05), with high stress reactive girls who received greater parent positive affect showing white matter structure more similar to that of low stress reactive girls. Results show associations between white matter integrity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support for the notion that parenting may moderate associations. PMID:25379418

Sheikh, Haroon I.; Joanisse, Marc F.; Mackrell, Sarah M.; Kryski, Katie R.; Smith, Heather J.; Singh, Shiva M.; Hayden, Elizabeth P.

2014-01-01

179

Rearrangement of chromosome 14q with associated white matter disease.  

PubMed

We report the case of a 29-month-old boy with spasticity and periventricular white matter changes on magnetic resonance imaging in whom a complex rearrangement consisting of a de novo duplication of 14q32.31q32.33 and deletion of 14q32.33 was identified by array-based comparative genomic hybridization. Our case replicates some of the previous features associated with chromosome 14q duplication and deletion while expanding its clinical spectrum with pyramidal tract dysfunction signs and neuroimaging features. Genomic lesions should be considered in cases of leukodystrophies, and genome-wide studies such as array-based comparative genomic hybridization could be considered in the assessment of undefined white matter disorders. PMID:21763953

Ramaswamy, Vijay; Jacob, François Dominique; Bolduc, François V

2011-08-01

180

Multivariate pattern analysis of DTI reveals differential white matter in individuals with obsessive-compulsive disorder  

PubMed Central

Diffusion tensor imaging (DTI) studies have revealed group differences in white matter between patients with obsessive-compulsive disorder (OCD) and healthy controls. However, the results of these studies were based on average differences between the two groups, and therefore had limited clinical applicability. The objective of this study was to investigate whether fractional anisotropy (FA) of white matter can be used to discriminate between patients with OCD and healthy controls at the level of the individual. DTI data were acquired from 28 OCD patients and 28 demographically matched healthy controls, scanned using a 3T MRI system. Differences in FA values of white matter between OCD and healthy controls were examined using a multivariate pattern classification technique known as support vector machine (SVM). SVM applied to FA images correctly identified OCD patients with a sensitivity of 86% and a specificity of 82% resulting in a statistically significant accuracy of 84% (P ? 0.001). This discrimination was based on a distributed network including bilateral prefrontal and temporal regions, inferior fronto-occipital fasciculus, superior fronto-parietal fasciculus, splenium of corpus callosum and left middle cingulum bundle. The present study demonstrates subtle and spatially distributed white matter abnormalities in individuals with OCD, and provides preliminary support for the suggestion that that these could be used to aid the identification of individuals with OCD in clinical practice. Hum Brain Mapp 35:2643–2651, 2014. © 2013 Wiley Periodicals, Inc. PMID:24048702

Li, Fei; Huang, Xiaoqi; Tang, Wanjie; Yang, Yanchun; Li, Bin; Kemp, Graham J; Mechelli, Andrea; Gong, Qiyong

2014-01-01

181

Alterations of White Matter Integrity Related to the Season of Birth in Schizophrenia: A DTI Study  

PubMed Central

In schizophrenia there is a consistent epidemiological finding of a birth excess in winter and spring. Season of birth is thought to act as a proxy indicator for harmful environmental factors during foetal maturation. There is evidence that prenatal exposure to harmful environmental factors may trigger pathologic processes in the neurodevelopment, which subsequently increase the risk of schizophrenia. Since brain white matter alterations have repeatedly been found in schizophrenia, the objective of this study was to investigate whether white matter integrity was related to the season of birth in patients with schizophrenia. Thirty-four patients with schizophrenia and 33 healthy controls underwent diffusion tensor imaging. Differences in the fractional anisotropy maps of schizophrenia patients and healthy controls born in different seasons were analysed with tract-based spatial statistics. A significant main effect of season of birth and an interaction of group and season of birth showed that patients born in summer had significantly lower fractional anisotropy in widespread white matter regions than those born in the remainder of the year. Additionally, later age of schizophrenia onset was found in patients born in winter months. The current findings indicate a relationship of season of birth and white matter alterations in schizophrenia and consequently support the neurodevelopmental hypothesis of early pathological mechanisms in schizophrenia. PMID:24086548

Giezendanner, Stéphanie; Walther, Sebastian; Razavi, Nadja; Van Swam, Claudia; Fisler, Melanie Sarah; Soravia, Leila Maria; Andreotti, Jennifer; Schwab, Simon; Jann, Kay; Wiest, Roland; Horn, Helge; Müller, Thomas Jörg; Dierks, Thomas; Federspiel, Andrea

2013-01-01

182

Individual Differences in Expert Motor Coordination Associated with White Matter Microstructure in the Cerebellum  

PubMed Central

Recent investigations into the neural basis of elite sporting performance have focused on whether cortical activity might characterize individual differences in ability. However, very little is understood about how changes in brain structure might contribute to individual differences in expert motor control. We compared the behavior and brain structure of healthy controls with a group of karate black belts, an expert group who are able to perform rapid, complex movements that require years of training. Using 3D motion tracking, we investigated whether the ability to control ballistic arm movements was associated with differences in white matter microstructure. We found that karate experts are better able than novices to coordinate the timing of inter-segmental joint velocities. Diffusion tensor imaging revealed significant differences between the groups in the microstructure of white matter in the superior cerebellar peduncles (SCPs) and primary motor cortex—brain regions that are critical to the voluntary control of movement. Motor coordination, the amount of experience, and the age at which training began were all associated with individual differences in white matter integrity in the cerebellum within the karate groups. These findings suggest a role for the white matter pathways of the SCPs in motor expertise. PMID:22892425

Roberts, R.E.; Bain, P.G.; Day, B.L.; Husain, M.

2013-01-01

183

Common genetic variants and gene expression associated with white matter microstructure in the human brain.  

PubMed

Identifying genes that contribute to white matter microstructure should provide insights into the neurobiological processes that regulate white matter development, plasticity and pathology. We detected five significant SNPs using genome-wide association analysis on a global measure of fractional anisotropy in 776 individuals from large extended pedigrees. Genetic correlations and genome-wide association results indicated that the genetic signal was largely homogeneous across white matter regions. Using RNA transcripts derived from lymphocytes in the same individuals, we identified two genes (GNA13 and CCDC91) that are likely to be cis-regulated by top SNPs, and whose expression levels were also genetically correlated with fractional anisotropy. A transcript of HTR7 was phenotypically associated with FA, and was associated with an intronic genome-wide significant SNP. These results encourage further research in the mechanisms by which GNA13, HTR7 and CCDC91 influence brain structure, and emphasize a role for g-protein signaling in the development and maintenance of white matter microstructure in health and disease. PMID:24736177

Sprooten, Emma; Knowles, Emma E; McKay, D Reese; Göring, Harald H; Curran, Joanne E; Kent, Jack W; Carless, Melanie A; Dyer, Thomas D; Drigalenko, Eugene I; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Kochunov, Peter; Blangero, John; Glahn, David C

2014-08-15

184

Effects of prenatal alcohol exposure on the development of white matter volume and change in executive function  

PubMed Central

Prenatal alcohol exposure can cause a wide range of deficits in executive function that persist throughout life, but little is known about how changes in brain structure relate to cognition in affected individuals. In the current study, we predicted that the rate of white matter volumetric development would be atypical in children with fetal alcohol spectrum disorders (FASD) when compared to typically developing children, and that the rate of change in cognitive function would relate to differential white matter development between groups. Data were available for 103 subjects [49 with FASD, 54 controls, age range 6–17, mean age = 11.83] with 153 total observations. Groups were age-matched. Participants underwent structural magnetic resonance imaging (MRI) and an executive function (EF) battery. Using white matter volumes measured bilaterally for frontal and parietal regions and the corpus callosum, change was predicted by modeling the effects of age, intracranial volume, sex, and interactions with exposure status and EF measures. While both groups showed regional increases in white matter volumes and improvement in cognitive performance over time, there were significant effects of exposure status on age-related relationships between white matter increases and EF measures. Specifically, individuals with FASD consistently showed a positive relationship between improved cognitive function and increased white matter volume over time, while no such relationships were seen in controls. These novel results relating improved cognitive function with increased white matter volume in FASD suggest that better cognitive outcomes could be possible for FASD subjects through interventions that enhance white matter plasticity. PMID:24918069

Gautam, P.; Nuñez, S.C.; Narr, K.L.; Kan, E.C.; Sowell, E.R.

2014-01-01

185

Diffusion Tensor Magnetic Resonance Imaging Finding of Discrepant Fractional Anisotropy Between the Frontal and Parietal Lobes After Whole-Brain Irradiation in Childhood Medulloblastoma Survivors: Reflection of Regional White Matter Radiosensitivity?  

SciTech Connect

Purpose: To test the hypothesis that fractional anisotropy (FA) is more severely reduced in white matter of the frontal lobe compared with the parietal lobe after receiving the same whole-brain irradiation dose in a cohort of childhood medulloblastoma survivors. Methods and Materials: Twenty-two medulloblastoma survivors (15 male, mean [{+-} SD] age = 12.1 {+-} 4.6 years) and the same number of control subjects (15 male, aged 12.0 {+-} 4.2 years) were recruited for diffusion tensor magnetic resonance imaging scans. Using an automated tissue classification method and the Talairach Daemon atlas, FA values of frontal and parietal lobes receiving the same radiation dose, and the ratio between them were quantified and denoted as FFA, PFA, and FA{sub f/p}, respectively. The Mann-Whitney U test was used to test for significant differences of FFA, PFA, and FA{sub f/p} between medulloblastoma survivors and control subjects. Results: Frontal lobe and parietal lobe white matter FA were found to be significantly less in medulloblastoma survivors compared with control subjects (frontal p = 0.001, parietal p = 0.026). Moreover, these differences were found to be discrepant, with the frontal lobe having a significantly larger difference in FA compared with the parietal lobe. The FA{sub f/p} of control and medulloblastoma survivors was 1.110 and 1.082, respectively (p = 0.029). Conclusion: Discrepant FA changes after the same irradiation dose suggest radiosensitivity of the frontal lobe white matter compared with the parietal lobe. Special efforts to address the potentially vulnerable frontal lobe after treatment with whole-brain radiation may be needed so as to balance disease control and treatment-related morbidity.

Qiu Deqiang [Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong (China); Kwong, Dora [Department of Clinical Oncology, Queen Mary Hospital, University of Hong Kong, Hong Kong (China); Chan, Godfrey [Department of Pediatric and Adolescent Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong (China); Leung, Lucullus [Department of Oncology, Princess Margaret Hospital, Hong Kong (China); Khong, P.-L. [Department of Diagnostic Radiology, Queen Mary Hospital, University of Hong Kong, Hong Kong (China)], E-mail: plkhong@hkucc.hku.hk

2007-11-01

186

Local White Matter Geometry Indices from Diffusion Tensor Gradients  

Microsoft Academic Search

We introduce a framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields.\\u000a The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of\\u000a tensor eigenvectors. The resulting eigenframe-centered representation makes it possible to define scalar

Peter Savadjiev; Gordon L. Kindlmann; Sylvain Bouix; Martha Elizabeth Shenton; Carl-fredrik Westin

2009-01-01

187

White matter correlates of sensory processing in autism spectrum disorders  

PubMed Central

Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451

Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.

2014-01-01

188

Anisotropy Creases Delineate White Matter Structure in Diffusion Tensor MRI  

Microsoft Academic Search

Current methods for extracting models of white matter architecture from diffusion tensor MRI are generally based on fiber\\u000a tractography. For some purposes a compelling alternative may be found in analyzing the first and second derivatives of diffusion\\u000a anisotropy. Anisotropy creases are ridges and valleys of locally extremal anisotropy, where the gradient of anisotropy is orthogonal to one or more eigenvectors

Gordon L. Kindlmann; Xavier Tricoche; Carl-fredrik Westin

2006-01-01

189

Pathogenesis of cerebral white matter injury of prematurity  

PubMed Central

Cerebral white matter injury, characterised by loss of premyelinating oligodendrocytes (pre-OLs), is the most common form of injury to the preterm brain and is associated with a high risk of neurodevelopmental impairment. The unique cerebrovascular anatomy and physiology of the premature baby underlies the exquisite sensitivity of white matter to the abnormal milieu of preterm extrauterine life, in particular ischaemia and inflammation. These two upstream mechanisms can coexist and amplify their effects, leading to activation of two principal downstream mechanisms: excitotoxicity and free radical attack. Upstream mechanisms trigger generation of reactive oxygen and nitrogen species. The pre-OL is intrinsically vulnerable to free radical attack due to immaturity of antioxidant enzyme systems and iron accumulation. Ischaemia and inflammation trigger glutamate receptor-mediated injury leading to maturation-dependent cell death and loss of cellular processes. This review looks at recent evidence for pathogenetic mechanisms in white matter injury with emphasis on targets for prevention and treatment of injury. PMID:18296574

Khwaja, O; Volpe, J J

2008-01-01

190

White matter microstructural organization and gait stability in older adults  

PubMed Central

Understanding age-related decline in gait stability and the role of alterations in brain structure is crucial. Here, we studied the relationship between white matter microstructural organization using Diffusion Tensor Imaging (DTI) and advanced gait stability measures in 15 healthy young adults (range 18–30 years) and 25 healthy older adults (range 62–82 years). Among the different gait stability measures, only stride time and the maximum Lyapunov exponent (which quantifies how well participants are able to attenuate small perturbations) were found to decline with age. White matter microstructural organization (FA) was lower throughout the brain in older adults. We found a strong correlation between FA in the left anterior thalamic radiation and left corticospinal tract on the one hand, and step width and safety margin (indicative of how close participants are to falling over) on the other. These findings suggest that white matter FA in tracts connecting subcortical and prefrontal areas is associated with the implementation of an effective stabilization strategy during gait. PMID:24959139

Bruijn, Sjoerd M.; Van Impe, Annouchka; Duysens, Jacques; Swinnen, Stephan P.

2014-01-01

191

Shaping of white matter composition by biophysical scaling constraints  

PubMed Central

The brains of large mammals have lower rates of metabolism than those of small mammals, but the functional consequences of this scaling are not well understood. An attractive target for analysis is axons, whose size, speed and energy consumption are straightforwardly related. Here we show that from shrews to whales, the composition of white matter shifts from compact, slow-conducting, and energetically expensive unmyelinated axons to large, fast-conducting, and energetically inexpensive myelinated axons. The fastest axons have conduction times of 1–5 milliseconds across the neocortex and less than 1 millisecond from the eye to the brain, suggesting that in select sets of communicating fibers, large brains reduce transmission delays and metabolic firing costs at the expense of increased volume. Delays and potential imprecision in cross-brain conduction times are especially great in unmyelinated axons, which may transmit information via firing rate rather than precise spike timing. In neocortex, axon size distributions can account for the scaling of per-volume metabolic rate and suggest a maximum supportable firing rate, averaged across all axons, of 7 ± 2 Hz. Axon size distributions also account for the scaling of white matter volume with respect to brain size. The heterogeneous white matter composition found in large brains thus reflects a metabolically constrained trade-off that reduces both volume and conduction time. PMID:18400904

Wang, Samuel S.-H.; Shultz, Jennifer R.; Burish, Mark J.; Harrison, Kimberly H.; Hof, Patrick R.; Towns, Lex C.; Wagers, Matthew W.; Wyatt, Krysta D.

2009-01-01

192

Perinatal Clinical Antecedents of White Matter Microstructural Abnormalities on Diffusion Tensor Imaging in Extremely Preterm Infants  

PubMed Central

Objective To identify perinatal clinical antecedents of white matter microstructural abnormalities in extremely preterm infants. Methods A prospective cohort of extremely preterm infants (N?=?86) and healthy term controls (N?=?16) underwent diffusion tensor imaging (DTI) at term equivalent age. Region of interest-based measures of white matter microstructure - fractional anisotropy and mean diffusivity - were quantified in seven vulnerable cerebral regions and group differences assessed. In the preterm cohort, multivariable linear regression analyses were conducted to identify independent clinical factors associated with microstructural abnormalities. Results Preterm infants had a mean (standard deviation) gestational age of 26.1 (1.7) weeks and birth weight of 824 (182) grams. Compared to term controls, the preterm cohort exhibited widespread microstructural abnormalities in 9 of 14 regional measures. Chorioamnionitis, necrotizing enterocolitis, white matter injury on cranial ultrasound, and increasing duration of mechanical ventilation were adversely correlated with regional microstructure. Conversely, antenatal steroids, female sex, longer duration of caffeine therapy, and greater duration of human milk use were independent favorable factors. White matter injury on cranial ultrasound was associated with a five weeks or greater delayed maturation of the corpus callosum; every additional 10 days of human milk use were associated with a three weeks or greater advanced maturation of the corpus callosum. Conclusions Diffusion tensor imaging is sensitive in detecting the widespread cerebral delayed maturation and/or damage increasingly observed in extremely preterm infants. In our cohort, it also aided identification of several previously known or suspected perinatal clinical antecedents of brain injury, aberrant development, and neurodevelopmental impairments. PMID:24009724

Pogribna, Ulana; Yu, Xintian; Burson, Katrina; Zhou, Yuxiang; Lasky, Robert E.; Narayana, Ponnada A.; Parikh, Nehal A.

2013-01-01

193

White Matter Abnormalities and Structural Hippocampal Disconnections in Amnestic Mild Cognitive Impairment and Alzheimer’s Disease  

PubMed Central

The purpose of this project was to evaluate white matter degeneration and its impact on hippocampal structural connectivity in patients with amnestic mild cognitive impairment, non-amnestic mild cognitive impairment and Alzheimer’s disease. We estimated white matter fractional anisotropy, mean diffusivity and hippocampal structural connectivity in two independent cohorts. The ADNI cohort included 108 subjects [25 cognitively normal, 21 amnestic mild cognitive impairment, 47 non-amnestic mild cognitive impairment and 15 Alzheimer’s disease]. A second cohort included 34 subjects [15 cognitively normal and 19 amnestic mild cognitive impairment] recruited in Montreal. All subjects underwent clinical and neuropsychological assessment in addition to diffusion and T1 MRI. Individual fractional anisotropy and mean diffusivity maps were generated using FSL-DTIfit. In addition, hippocampal structural connectivity maps expressing the probability of connectivity between the hippocampus and cortex were generated using a pipeline based on FSL-probtrackX. Voxel-based group comparison statistics of fractional anisotropy, mean diffusivity and hippocampal structural connectivity were estimated using Tract-Based Spatial Statistics. The proportion of abnormal to total white matter volume was estimated using the total volume of the white matter skeleton. We found that in both cohorts, amnestic mild cognitive impairment patients had 27-29% white matter volume showing higher mean diffusivity but no significant fractional anisotropy abnormalities. No fractional anisotropy or mean diffusivity differences were observed between non-amnestic mild cognitive impairment patients and cognitively normal subjects. Alzheimer’s disease patients had 66.3% of normalized white matter volume with increased mean diffusivity and 54.3% of the white matter had reduced fractional anisotropy. Reduced structural connectivity was found in the hippocampal connections to temporal, inferior parietal, posterior cingulate and frontal regions only in the Alzheimer’s group. The severity of white matter degeneration appears to be higher in advanced clinical stages, supporting the construct that these abnormalities are part of the pathophysiological processes of Alzheimer’s disease. PMID:24086371

Rowley, Jared; Fonov, Vladimir; Wu, Ona; Eskildsen, Simon Fristed; Schoemaker, Dorothee; Wu, Liyong; Mohades, Sara; Shin, Monica; Sziklas, Viviane; Cheewakriengkrai, Laksanun; Shmuel, Amir; Dagher, Alain; Gauthier, Serge; Rosa-Neto, Pedro

2013-01-01

194

Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance  

ERIC Educational Resources Information Center

Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white

Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.

2009-01-01

195

Neurofeedback training induces changes in white and gray matter.  

PubMed

The main objective of this structural magnetic resonance imaging (MRI) study was to investigate, using diffusion tensor imaging, whether a neurofeedback training (NFT) protocol designed to improve sustained attention might induce structural changes in white matter (WM) pathways, purportedly implicated in this cognitive ability. Another goal was to examine whether gray matter (GM) volume (GMV) might be altered following NFT in frontal and parietal cortical areas connected by these WM fiber pathways. Healthy university students were randomly assigned to an experimental group (EXP), a sham group, or a control group. Participants in the EXP group were trained to enhance the amplitude of their ?1 waves at F4 and P4. Measures of attentional performance and MRI data were acquired one week before (Time 1) and one week after (Time 2) NFT. Higher scores on visual and auditory sustained attention were noted in the EXP group at Time 2 (relative to Time 1). As for structural MRI data, increased fractional anisotropy was measured in WM pathways implicated in sustained attention, and GMV increases were detected in cerebral structures involved in this type of attention. After 50 years of research in the field of neurofeedback, our study constitutes the first empirical demonstration that NFT can lead to microstructural changes in white and gray matter. PMID:23536382

Ghaziri, Jimmy; Tucholka, Alan; Larue, Vanessa; Blanchette-Sylvestre, Myriam; Reyburn, Gabrielle; Gilbert, Guillaume; Lévesque, Johanne; Beauregard, Mario

2013-10-01

196

Diffusion properties of major white matter tracts in young, typically developing children.  

PubMed

Brain development occurs rapidly during the first few years of life involving region-specific changes in both gray matter and white matter. Due to the inherent difficulties in acquiring magnetic resonance imaging data in young children, little is known about the properties of white matter in typically developing toddlers. In the context of an ongoing study of young children with autism spectrum disorder, we collected diffusion-weighted imaging data during natural nocturnal sleep in a sample of young (mean age=35months) typically developing male and female (n=41 and 25, respectively) children. Axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy were measured at 99 points along the length of 18 major brain tracts. Influences of hemisphere, age, sex, and handedness were examined. We find that diffusion properties vary significantly along the length of the majority of tracks. We also identify hemispheric and sex differences in diffusion properties in several tracts. Finally, we find the relationship between age and diffusion parameters changes along the tract length illustrating variability in age-related white-matter development at the tract level. PMID:24269274

Johnson, Ryan T; Yeatman, Jason D; Wandell, Brian A; Buonocore, Michael H; Amaral, David G; Nordahl, Christine Wu

2013-11-21

197

White matter tractography in early psychosis: clinical and neurocognitive associations  

PubMed Central

Background While many diffusion tensor imaging (DTI) investigations have noted disruptions to white matter integrity in individuals with chronic psychotic disorders, fewer studies have been conducted in young people at the early stages of disease onset. Using whole tract reconstruction techniques, the aim of this study was to identify the white matter pathology associated with the common clinical symptoms and executive function impairments observed in young people with psychosis. Methods We obtained MRI scans from young people with psychosis and healthy controls. Eighteen major white matter tracts were reconstructed to determine group differences in fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) and then were subsequently correlated with symptomatology and neurocognitive performance. Results Our study included 42 young people with psychosis (mean age 23 yr) and 45 healthy controls (mean age 25 yr). Compared with the control group, the psychosis group had reduced FA and AD in the left inferior longitudinal fasciculus (ILF) and forceps major indicative of axonal disorganization, reduction and/or loss. These changes were associated with worse overall psychiatric symptom severity, increases in positive and negative symptoms, and worse current levels of depression. The psychosis group also showed FA reductions in the left superior longitudinal fasciculus that were associated with impaired neurocognitive performance in attention and semantic fluency. Limitations Our analysis grouped 4 subcategories of psychosis together, and a larger follow-up study comparing affective and nonaffective psychoses is warranted. Conclusion Our findings suggest that impaired axonal coherence in the left ILF and forceps major underpin psychiatric symptoms in young people in the early stages of psychosis. PMID:25111788

Hatton, Sean N.; Lagopoulos, Jim; Hermens, Daniel F.; Hickie, Ian B.; Scott, Elizabeth; Bennett, Maxwell R.

2014-01-01

198

Segregation of the Brain into Gray and White Matter: A Design Minimizing Conduction Delays  

PubMed Central

A ubiquitous feature of the vertebrate anatomy is the segregation of the brain into white and gray matter. Assuming that evolution maximized brain functionality, what is the reason for such segregation? To answer this question, we posit that brain functionality requires high interconnectivity and short conduction delays. Based on this assumption we searched for the optimal brain architecture by comparing different candidate designs. We found that the optimal design depends on the number of neurons, interneuronal connectivity, and axon diameter. In particular, the requirement to connect neurons with many fast axons drives the segregation of the brain into white and gray matter. These results provide a possible explanation for the structure of various regions of the vertebrate brain, such as the mammalian neocortex and neostriatum, the avian telencephalon, and the spinal cord. PMID:16389299

Wen, Quan; Chklovskii, Dmitri B

2005-01-01

199

Gray and white matter density changes in monozygotic and same-sex dizygotic twins discordant for schizophrenia using voxel-based morphometry  

Microsoft Academic Search

Global gray matter brain tissue volume decreases in schizophrenia have been associated to disease-related (possibly nongenetic) factors. Global white matter brain tissue volume decreases were related to genetic risk factors for the disease. However, which focal gray and white matter brain regions best reflect the genetic and environmental risk factors in the brains of patients with schizophrenia remains unresolved. 1.5-T

Hilleke E. Hulshoff Pol; Hugo G. Schnack; René C. W. Mandl; Rachel G. H. Brans; Neeltje E. M. van Haren; Wim F. C. Baaré; Clarine J. van Oel; D. Louis Collins; Alan C. Evans; René S. Kahn

2006-01-01

200

Longitudinal relaxographic imaging of white matter hyperintensities in the elderly  

PubMed Central

Background Incidental white matter hyperintensities (WMHs) are common findings on T2-weighted magnetic resonance images of the aged brain and have been associated with cognitive decline. While a variety of pathogenic mechanisms have been proposed, the origin of WMHs and the extent to which lesions in the deep and periventricular white matter reflect distinct etiologies remains unclear. Our aim was to quantify the fractional blood volume (vb) of small WMHs in vivo using a novel magnetic resonance imaging (MRI) approach and examine the contribution of blood–brain barrier disturbances to WMH formation in the deep and periventricular white matter. Methods Twenty-three elderly volunteers (aged 59–82 years) underwent 7 Tesla relaxographic imaging and fluid-attenuated inversion recovery (FLAIR) MRI. Maps of longitudinal relaxation rate constant (R1) were prepared before contrast reagent (CR) injection and throughout CR washout. Voxelwise estimates of vb were determined by fitting temporal changes in R1 values to a two-site model that incorporates the effects of transendothelial water exchange. Average vb values in deep and periventricular WMHs were determined after semi-automated segmentation of FLAIR images. Ventricular permeability was estimated from the change in CSF R1 values during CR washout. Results In the absence of CR, the total water fraction in both deep and periventricular WMHs was increased compared to normal appearing white matter (NAWM). The vb of deep WMHs was 1.8?±?0.6 mL/100 g and was significantly reduced compared to NAWM (2.4?±?0.8 mL/100 g). In contrast, the vb of periventricular WMHs was unchanged compared to NAWM, decreased with ventricular volume and showed a positive association with ventricular permeability. Conclusions Hyperintensities in the deep WM appear to be driven by vascular compromise, while those in the periventricular WM are most likely the result of a compromised ependyma in which the small vessels remain relatively intact. These findings support varying contributions of blood–brain barrier and brain-CSF interface disturbances in the pathophysiology of deep and periventricular WMHs in the aged human brain. PMID:25379172

2014-01-01

201

White matter integrity of the whole brain is disrupted in rst-episode schizophrenia  

E-print Network

White matter integrity of the whole brain is disrupted in ¢rst-episode schizophrenia Yihui Haoa; revised 8 November 2005; accepted 9 November 2005 Di¡usion tensor imaging studies in schizophrenia have matter integrity.We have examined whether white matter is abnormal in ¢rst-episode schizophrenia by using

Jiang,Tianzi

202

Sentence processing and verbal working memory in a white-matter-disconnection patient.  

PubMed

The Arcuate Fasciculus/Superior Longitudinal Fasciculus (AF/SLF) is the white-matter bundle that connects posterior superior temporal and inferior frontal cortex. Its causal functional role in sentence processing and verbal working memory is currently under debate. While impairments of sentence processing and verbal working memory often co-occur in patients suffering from AF/SLF damage, it is unclear whether these impairments result from shared white-matter damage to the verbal-working-memory network. The present study sought to specify the behavioral consequences of focal AF/SLF damage for sentence processing and verbal working memory, which were assessed in a single patient suffering from a cleft-like lesion spanning the deep left superior temporal gyrus, sparing most surrounding gray matter. While tractography suggests that the ventral fronto-temporal white-matter bundle is intact in this patient, the AF/SLF was not visible to tractography. In line with the hypothesis that the AF/SLF is causally involved in sentence processing, the patient?s performance was selectively impaired on sentences that jointly involve both complex word orders and long word-storage intervals. However, the patient was unimpaired on sentences that only involved long word-storage intervals without involving complex word orders. On the contrary, the patient performed generally worse than a control group across standard verbal-working-memory tests. We conclude that the AF/SLF not only plays a causal role in sentence processing, linking regions of the left dorsal inferior frontal gyrus to the temporo-parietal region, but moreover plays a crucial role in verbal working memory, linking regions of the left ventral inferior frontal gyrus to the left temporo-parietal region. Together, the specific sentence-processing impairment and the more general verbal-working-memory impairment may imply that the AF/SLF subserves both sentence processing and verbal working memory, possibly pointing to the AF and SLF respectively supporting each. PMID:24953959

Meyer, Lars; Cunitz, Katrin; Obleser, Jonas; Friederici, Angela D

2014-08-01

203

Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults: a diffusion tensor imaging study.  

PubMed

Results from recent studies suggest that chronic cigarette smoking is associated with increased white matter volume in the brain as determined by in vivo neuroimaging. We used diffusion tensor imaging to examine the microstructural integrity of the white matter in 10 chronic smokers and 10 nonsmokers. All individuals were healthy, without histories of medical or psychiatric illness. Fractional anisotropy (FA) and trace were measured in the genu, body, and splenium of the corpus callosum. FA provides a measure of directional versus nondirectional water diffusion, whereas trace provides a measure of nondirectional water diffusion. Lower FA and higher trace values are considered to reflect less brain integrity. Voxel-based morphometry was used to define volumes in each of these regions of the corpus callosum. Chronic smokers exhibited significantly higher FA in the body and whole corpus callosum and a strong trend for higher FA in the splenium compared with nonsmokers. FA did not differ between groups in the genu, and neither trace nor white matter volumes differed between groups in any of the regions of interest. When subdivided by Fagerström score (low vs. high), the low Fagerström group exhibited significantly higher FA in the body of the corpus callosum compared with the high Fagerström group and the nonsmokers. These results suggest that, among healthy adults, lower exposure to cigarette smoking is associated with increased microstructural integrity of the white matter compared with either no exposure or higher exposure. Additional studies are needed to further explore differences in white matter integrity between smokers and nonsmokers. PMID:18188754

Paul, Robert H; Grieve, Stuart M; Niaura, Raymond; David, Sean P; Laidlaw, David H; Cohen, Ronald; Sweet, Lawrence; Taylor, George; Clark, Richard C; Pogun, Sakire; Gordon, Evian

2008-01-01

204

Transient decrease in cerebral white matter diffusivity on MR imaging in human herpes virus-6 encephalopathy  

Microsoft Academic Search

We report a 16-month-old boy with human herpes virus-6 (HHV-6) encephalopathy showing transient abnormalities of the cerebral white matter on magnetic resonance imaging. Diffusion-weighted imaging (DWI) demonstrated diffuse high signal intensity in the bilateral cerebral white matter areas. The signal changes on DWI subsequently resolved, and cerebral atrophy resulted. The transient decrease in the cerebral white matter diffusivity seen in

Manami Akasaka; Makoto Sasaki; Shigeru Ehara; Atsushi Kamei; Shoichi Chida

2005-01-01

205

Targeting of White Matter Tracts With Transcranial Magnetic Stimulation  

PubMed Central

Background TMS activations of white matter depend not only on the distance from the coil, but also on the orientation of the axons relative to the TMS-induced electric field, and especially on axonal bends that create strong local field gradient maxima. Therefore, tractography contains potentially useful information for TMS targeting. Objective/methods Here, we utilized 1-mm resolution diffusion and structural T1-weighted MRI to construct large-scale tractography models, and localized TMS white matter activations in motor cortex using electromagnetic forward modeling in a boundary element model (BEM). Results As expected, in sulcal walls, pyramidal cell axonal bends created preferred sites of activation that were not found in gyral crowns. The model agreed with the well-known coil orientation sensitivity of motor cortex, and also suggested unexpected activation distributions emerging from the E-field and tract configurations. We further propose a novel method for computing the optimal coil location and orientation to maximally stimulate a pre-determined axonal bundle. Conclusions Diffusion MRI tractography with electromagnetic modeling may improve spatial specificity and efficacy of TMS. PMID:24220599

Nummenmaa, Aapo; McNab, Jennifer A.; Savadjiev, Peter; Okada, Yoshio; Hämäläinen, Matti S.; Wang, Ruopeng; Wald, Lawrence L.; Pascual-Leone, Alvaro; Wedeen, Van J.; Raij, Tommi

2014-01-01

206

Reduced anterior internal capsule white matter integrity in primary insomnia.  

PubMed

Chronic insomnia is one of the most prevalent central nervous system diseases, however, its neurobiology is poorly understood. Up to now, nothing is known about the integrity of white matter tracts in insomnia patients. In this study, diffusion tensor imaging (DTI) was used in a well-characterized sample of primary insomnia (PI) patients and good sleeper controls to fill this void. Voxelwise between-group comparisons of fractional anisotropy (FA) were performed in 24 PI patients (10 males; 14 females; 42.7 ± 14.5 years) and 35 healthy good sleepers (15 males; 20 females; 40.1 ± 9.1 years) with age and sex as covariates. PI patients showed reduced FA values within the right anterior internal capsule and a trend for reduced FA values in the left anterior internal capsule. The results suggest that insomnia is associated with a reduced integrity of white matter tracts in the anterior internal capsule indicating that disturbed fronto-subcortical connectivity may be a cause or consequence of the disorder. PMID:25050429

Spiegelhalder, Kai; Regen, Wolfram; Prem, Martin; Baglioni, Chiara; Nissen, Christoph; Feige, Bernd; Schnell, Susanne; Kiselev, Valerij G; Hennig, Jürgen; Riemann, Dieter

2014-07-01

207

Vanishing White Matter Disease in a Spanish Population  

PubMed Central

Vanishing white matter (VWM) leukoencephalopathy is one of the most prevalent hereditary white matter diseases. It has been associated with mutations in genes encoding eukaryotic translation initiation factor (eIF2B). We have compiled a list of all the patients diagnosed with VWM in Spain; we found 21 children. The first clinical manifestation in all of them was spasticity, with severe ataxia in six patients, hemiparesis in one child, and dystonic movements in another. They suffered from progressive cognitive deterioration and nine of them had epilepsy too. In four children, we observed optic atrophy and three also had progressive macrocephaly, which is not common in VWM disease. The first two cases were diagnosed before the 1980s. Therefore, they were diagnosed by necropsy studies. The last 16 patients were diagnosed according to genetics: we found mutations in the genes eIF2B5 (13 cases), eIF2B3 (2 cases), and eIF2B4 (1 case). In our report, the second mutation in frequency was c.318A>T; patients with this mutation all followed a slow chronic course, both in homozygous and heterozygous states. Previously, there were no other reports to confirm this fact. We also found some mutations not described in previous reports: c.1090C>T in eIF2B4, c.314A>G in eIF2B5, and c.877C>T in eIF2B5. PMID:25089094

Turón-Viñas, Eulàlia; Pineda, Mercè; Cusí, Victòria; López-Laso, Eduardo; del Pozo, Rebeca Losada; Gutiérrez-Solana, Luis González; Moreno, David Conejo; Sierra-Córcoles, Concha; Olabarrieta-Hoyos, Naiara; Madruga-Garrido, Marcos; Aguirre-Rodríguez, Javier; González-Álvarez, Verónica; O’Callaghan, Mar; Muchart, Jordi; Armstrong-Moron, Judith

2014-01-01

208

White matter changes linked to visual recovery after nerve decompression  

PubMed Central

The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884

Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.

2015-01-01

209

White matter abnormalities associated with military PTSD in the context of blast TBI.  

PubMed

Mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) are common among recent military veterans and involve substantial symptom overlap, making clinical distinction and effective intervention difficult. Emerging evidence of cerebral white matter abnormalities associated with mTBI may provide a biological measure to inform diagnosis and treatment, but the potentially confounding effects between PTSD and mTBI have largely gone unexamined. We collected diffusion imaging data from 133 recently-deployed American service members who developed PTSD and/or sustained mTBI, or had neither condition. Effects of PTSD and mTBI on traditional tensor-based measures of cerebral white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]) were compared in anatomical regions of interest and individual voxels throughout the brain. Generalized FA (GFA), which allows for multiple fiber orientations per voxel, was also included to improve sensitivity in white matter areas containing crossing or diverging axon bundles. PTSD was consistently associated with high GFA in select brain regions, greater likelihood of regions and voxels with abnormally low MD, and a greater number of voxels with abnormally high FA, while mTBI was associated with fewer high MD regions. Overall, PTSD was associated with more restricted diffusion (low MD) and greater anisotropy (high GFA) in regions of crossing/diverging fibers poorly characterized by a single tensor (FA), suggesting that interstitial fibers may be involved. Contrary to earlier results in a sample without PTSD, mTBI was not associated with anisotropy abnormalities, perhaps indicating the cooccurrence of PTSD and mTBI requires special consideration with regard to structural brain connectivity. Hum Brain Mapp 36:1053-1064, 2015. © 2014 Wiley Periodicals, Inc. PMID:25387950

Davenport, Nicholas D; Lim, Kelvin O; Sponheim, Scott R

2015-03-01

210

Current Concepts of Analysis of Cerebral White Matter Hyperintensities on Magnetic Resonance Imaging  

E-print Network

are consistently associated with age, hypertension, and other cardiovascular risk factors.1 Indivi- duals individuals.4 White matter hyperintensities also impact the cognitive function of otherwise healthy elderly

California at Davis, University of

211

EEG functional connectivity is partially predicted by underlying white matter connectivity.  

PubMed

Over the past decade, networks have become a leading model to illustrate both the anatomical relationships (structural networks) and the coupling of dynamic physiology (functional networks) linking separate brain regions. The relationship between these two levels of description remains incompletely understood and an area of intense research interest. In particular, it is unclear how cortical currents relate to underlying brain structural architecture. In addition, although theory suggests that brain communication is highly frequency dependent, how structural connections influence overlying functional connectivity in different frequency bands has not been previously explored. Here we relate functional networks inferred from statistical associations between source imaging of EEG activity and underlying cortico-cortical structural brain connectivity determined by probabilistic white matter tractography. We evaluate spontaneous fluctuating cortical brain activity over a long time scale (minutes) and relate inferred functional networks to underlying structural connectivity for broadband signals, as well as in seven distinct frequency bands. We find that cortical networks derived from source EEG estimates partially reflect both direct and indirect underlying white matter connectivity in all frequency bands evaluated. In addition, we find that when structural support is absent, functional connectivity is significantly reduced for high frequency bands compared to low frequency bands. The association between cortical currents and underlying white matter connectivity highlights the obligatory interdependence of functional and structural networks in the human brain. The increased dependence on structural support for the coupling of higher frequency brain rhythms provides new evidence for how underlying anatomy directly shapes emergent brain dynamics at fast time scales. PMID:25534110

Chu, C J; Tanaka, N; Diaz, J; Edlow, B L; Wu, O; Hämäläinen, M; Stufflebeam, S; Cash, S S; Kramer, M A

2015-03-01

212

In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer's disease.  

PubMed

Noninvasive diagnostic tests for Alzheimer's disease (AD) are limited. Postmortem diagnosis is based on density and distribution of neurofibrillary tangles (NFTs) and amyloid-rich neuritic plaques. In preclinical stages of AD, the cells of origin for the perforant pathway within the entorhinal cortex are among the first to display NFTs, indicating its compromise in early stages of AD. We used diffusion tensor imaging (DTI) to assess the integrity of the parahippocampal white matter in mild cognitive impairment (MCI) and AD, as a first step in developing a noninvasive tool for early diagnosis. Subjects with AD (N = 9), MCI (N = 8), or no cognitive impairment (NCI; N = 20) underwent DTI-MRI. Fractional anisotropy (FA) and mean (MD) and radial (RD) diffusivity measured from the parahippocampal white matter in AD and NCI subjects differed greatly. Discriminant analysis in the MCI cases assigned statistical membership of 38% of MCI subjects to the AD group. Preliminary data 1 year later showed that all MCI cases assigned to the AD group either met the diagnostic criteria for probable AD or showed significant cognitive decline. Voxelwise analysis in the parahippocampal white matter revealed a progressive change in the DTI patterns in MCI and AD subjects: whereas converted MCI cases showed structural changes restricted to the anterior portions of this region, in AD the pathology was generalized along the entire anterior-posterior axis. The use of DTI for in vivo assessment of the parahippocampal white matter may be useful for identifying individuals with MCI at highest risk for conversion to AD and for assessing disease progression. PMID:23839862

Solodkin, Ana; Chen, E Elinor; Van Hoesen, Gary W; Heimer, Lennart; Shereen, Ahmed; Kruggel, Frithjof; Mastrianni, James

2013-12-15

213

White matter integrity and its association with affective and interpersonal symptoms in borderline personality disorder  

PubMed Central

Background Borderline personality disorder (BPD) is a severe psychiatric disorder involving a range of symptoms including marked affective instability and disturbances in interpersonal interactions. Neuroimaging studies are beginning to provide evidence of altered processing in fronto-limbic network deficits in the disorder, however, few studies directly examine structural connections within this circuitry together with their relation to proposed causative processes and clinical features. Methods In the current study, we investigated whether individuals with BPD (n = 20) have deficits in white matter integrity compared to a matched group of healthy controls (n = 18) using diffusion tensor MRI (DTI). We hypothesized that the BPD group would have decreased fractional anisotropy (FA), a measure of white matter integrity, compared to the controls in white matter tracts connecting frontal and limbic regions, primarily the cingulum, fornix and uncinate fasciculus. We also investigated the extent to which any such deficits related to childhood adversity, as measured by the childhood trauma questionnaire, and symptom severity as measured by the Zanarini rating scale for BPD. Results We report decreased white matter integrity in BPD versus controls in the cingulum and fornix. There were no significant relationships between FA and measures of childhood trauma. There were, however, significant associations between FA in the cingulum and clinical symptoms of anger, and in the fornix with affective instability, and measures of avoidance of abandonment from the Zanarini rating scale. Conclusions We report deficits within fronto-limbic connections in individuals with BPD. Abnormalities within the fornix and cingulum were related to severity of symptoms and highlight the importance of these tracts in the pathogenesis of the disorder.

Whalley, Heather C.; Nickson, Thomas; Pope, Merrick; Nicol, Katie; Romaniuk, Liana; Bastin, Mark E.; Semple, Scott I.; McIntosh, Andrew M.; Hall, Jeremy

2015-01-01

214

A Voxel-Based Method for the Statistical Analysis of Gray and White Matter Density Applied to Schizophrenia  

Microsoft Academic Search

We describe a novel technique for characterizing regional cerebral gray and white matter differences in structural magnetic resonance images by the application of methods derived from functional imaging. The technique involves automatic scalp-editing of images followed by segmentation, smoothing, and spatial normalization to a symmetrical template brain in stereotactic Talairach space. The basic idea is (i) to convert structural magnetic

I. C. Wright; P. K. McGuire; J.-B. Poline; J. M. Travere; R. M. Murray; C. D. Frith; R. S. J. Frackowiak; K. J. Friston

1995-01-01

215

BRAIN ACTIVITY DURING BLADDER FILLING IS RELATED TO WHITE MATTER STRUCTURAL CHANGES IN OLDER WOMEN WITH URINARY INCONTINENCE  

PubMed Central

Evidence from longitudinal studies in community-dwelling elderly links complaints of urgency and urinary incontinence with structural white matter changes known as white matter hyperintensities (WMH). How WMH might lead to incontinence remains unknown, since information about how they relate to neural circuits involved in continence control is lacking. The aim of this study was to investigate the role of WMH in altered brain activity in older women with urgency incontinence. In a cross-sectional study, we measured WMH, globally and in specific white matter tracts, and correlated them with regional brain activity measured by fMRI (combined with simultaneous urodynamic monitoring) during bladder filling and reported 'urgency'. We postulated that increase in global WMH burden would be associated with changes (either attenuation or reinforcement) in responses to bladder filling in brain regions involved in bladder control. Secondly, we proposed that such apparent effects of global WMH burden might be specifically related to the burden in a few critical white matter pathways. The results showed that regional activations (e.g. medial/superior frontal gyrus adjacent to dorsal ACG) and deactivations (e.g. perigenual ACG adjacent to ventromedial prefrontal cortex) became more prominent with increased global WMH burden, suggesting that activity aimed at suppressing urgency was augmented. Secondary analyses confirmed that the apparent effect of global WMH burden might reflect the presence of WMH in specific pathways (anterior thalamic radiation and superior longitudinal fasciculus), thus affecting connections between key regions and suggesting possible mechanisms involved in continence control. PMID:20302947

Tadic, Stasa D.; Griffiths, Derek; Murrin, Andrew; Schaefer, Werner; Aizenstein, Howard J.; Resnick, Neil M.

2010-01-01

216

Differential vulnerability of gray matter and white matter to intrauterine growth restriction in preterm infants at 12 months corrected age.  

PubMed

Intrauterine growth restriction (IUGR) is associated with a high risk of abnormal neurodevelopment. Underlying neuroanatomical substrates are partially documented. We hypothesized that at 12 months preterm infants would evidence specific white-matter microstructure alterations and gray-matter differences induced by severe IUGR. Twenty preterm infants with IUGR (26-34 weeks of gestation) were compared with 20 term-born infants and 20 appropriate for gestational age preterm infants of similar gestational age. Preterm groups showed no evidence of brain abnormalities. At 12 months, infants were scanned sleeping naturally. Gray-matter volumes were studied with voxel-based morphometry. White-matter microstructure was examined using tract-based spatial statistics. The relationship between diffusivity indices in white matter, gray matter volumes, and perinatal data was also investigated. Gray-matter decrements attributable to IUGR comprised amygdala, basal ganglia, thalamus and insula bilaterally, left occipital and parietal lobes, and right perirolandic area. Gray-matter volumes positively correlated with birth weight exclusively. Preterm infants had reduced FA in the corpus callosum, and increased FA in the anterior corona radiata. Additionally, IUGR infants had increased FA in the forceps minor, internal and external capsules, uncinate and fronto-occipital white matter tracts. Increased axial diffusivity was observed in several white matter tracts. Fractional anisotropy positively correlated with birth weight and gestational age at birth. These data suggest that IUGR differentially affects gray and white matter development preferentially affecting gray matter. At 12 months IUGR is associated with a specific set of structural gray-matter decrements. White matter follows an unusual developmental pattern, and is apparently affected by IUGR and prematurity combined. PMID:24361462

Padilla, Nelly; Junqué, Carme; Figueras, Francesc; Sanz-Cortes, Magdalena; Bargalló, Núria; Arranz, Angela; Donaire, Antonio; Figueras, Josep; Gratacos, Eduard

2014-01-30

217

Computerized evaluation method of white matter hyperintensities related to subcortical vascular dementia in brain MR images  

NASA Astrophysics Data System (ADS)

We have developed a computerized evaluation method of white matter hyperintensity (WMH) regions for the diagnosis of vascular dementia (VaD) based on magnetic resonance (MR) images, and implemented the proposed method as a graphical interface program. The WMH regions were segmented using either a region growing technique or a level set method, one of which was selected by using a support vector machine. We applied the proposed method to MR images acquired from 10 patients with a diagnosis of VaD. The mean similarity index between WMH regions determined by a manual method and the proposed method was 78.2+/-11.0%. The proposed method could effectively assist neuroradiologists in evaluating WMH regions.

Arimura, Hidetaka; Kawata, Yasuo; Yamashita, Yasuo; Magome, Taiki; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu; Tsuchiya, Kazuhiro

2010-03-01

218

Endothelial Function and White Matter Hyperintensities in Older Adults With Cardiovascular Disease  

PubMed Central

Background and Purpose The presence of white matter hyperintensities on brain MRI is common among elderly individuals. Previous research suggests that cardiovascular risk factors are associated with increased white matter hyperintensities. Examining the role of direct physiological measures of vascular function will help to clarify the vascular mechanisms related to white matter hyperintensities. The aim of the present study was to examine the association between endothelial-dependent and endothelial-independent vasodilatation and white matter hyperintensity volume. Methods Twenty-five older adults with a range of cardiovascular diseases underwent brain MRI and completed assessments of blood vessel integrity using endothelial-dependent and independent flow-mediated dilation of the brachial artery. A semi-automated pixel-based method was used to quantify total brain volume and white matter hyperintensity volume, with white matter hyperintensity volume corrected for total brain volume. The association between measures of flow-mediated dilation and log-transformed white matter hyperintensities was examined. Results Correlation analysis revealed that endothelial-dependent vasodilatation was significantly and inversely associated with white matter hyperintensity volume. In contrast, endothelial-independent vasodilatation was not associated with white matter hyperintensities. Neither endothelial-dependent nor endothelial-independent vasodilatation was associated with total brain volume. Conclusions These data provide preliminary evidence that the integrity of the vascular endothelium is associated with white matter hyperintensities in older adults with cardiovascular disease. Impaired vascular function may be one mechanism that contributes to the development of white matter hyperintensities in the brain. Additional longitudinal research combining measures of vessel function, neuroimaging and cognition will be helpful in clarifying this potential mechanism. PMID:17204686

Hoth, Karin F.; Tate, David F.; Poppas, Athena; Forman, Daniel E.; Gunstad, John; Moser, David J.; Paul, Robert H.; Jefferson, Angela L.; Haley, Andreana P.; Cohen, Ronald A.

2009-01-01

219

Cerebral grey, white matter and csf in never-medicated, first-episode schizophrenia.  

PubMed

We report the first voxel-based morphometric (VBM) study to examine cerebral grey and white matter and cerebrospinal fluid (CSF) using computational morphometry in never-medicated, first-episode psychosis (FEP). Region-of-interest (ROI) analysis was also performed blind to group membership. 26 never-medicated individuals with FEP (23 with DSM-IV schizophrenia) and 38 healthy controls had MRI brain scans. Groups were balanced for age, sex, handedness, ethnicity, paternal socio-economic status, and height. Healthy controls were recruited from the local community by advertisement. Grey matter, white matter, and CSF: global brain volume ratios were significantly smaller in patients. Patients had significantly less grey matter volume in L and R caudate nuclei, cingulate gyri, parahippocampal gyri, superior temporal gyri, cerebellum and R thalamus, prefrontal cortex. They also had significantly less white matter volume in the R anterior limb of the internal capsule fronto-occipital fasciculus and L and R fornices, and significantly greater CSF volume especially in the R lateral ventricle. Excluding the 3 subjects with brief psychotic disorder did not alter our results. Our data suggest that fronto-temporal and subcortical-limbic circuits are morphologically abnormal in never-medicated, schizophrenia. ROI analysis comparing the schizophrenia group (n=23) with the healthy controls (n=38) confirmed caudate volumes were significantly smaller bilaterally by 11%, and lateral ventricular volume was significantly larger on the right by 26% in the patients. Caudate nuclei and lateral ventricular volume measurements were uncorrelated (Pearson correlation coefficient 0.30, p=0.10), ruling out the possibility of segmentation artefact. Ratio of lateral ventricle to caudate volume was bilaterally significantly increased (p<0.005, 2-tailed), which could represent an early biomarker in first-episode, never-medicated schizophrenia. PMID:17098398

Chua, Siew E; Cheung, Charlton; Cheung, Vinci; Tsang, Jack T K; Chen, Eric Y H; Wong, Jason C H; Cheung, Jason P Y; Yip, Lawrance; Tai, Kin-Shing; Suckling, John; McAlonan, Gráinne M

2007-01-01

220

White Matter Integrity Correlates of Implicit Sequence Learning in Healthy Aging  

PubMed Central

Previous research has identified subcortical (caudate, putamen, hippocampus) and cortical (dorsolateral prefrontal cortex, DLPFC; frontal motor areas) regions involved in implicit sequence learning, with mixed findings for whether these neural substrates differ with aging. The present study used diffusion tensor imaging (DTI) tractography to reconstruct white matter connections between the known gray matter substrates, and integrity of these tracts was related to learning in the alternating serial reaction time task (ASRT) in younger and healthy older adults. Both age groups showed significant sequence learning (better performance to predictable, frequently occurring versus less frequent events), with an age-related difference in the late learning stage. Caudate-DLPFC and hippocampus-DLPFC tract integrity were related to ASRT sequence learning, and these brain-behavior relationships did not differ significantly between age groups. Additionally, age-related decreases in caudate-DLPFC tract integrity mediated age-related differences in late stage sequence learning. Together, these findings complement studies of gray matter substrates underlying implicit sequence learning, and provide evidence for similar white matter integrity-sequence learning relationships in younger and healthy older adults. PMID:20452099

Bennett, Ilana J.; Madden, David J.; Vaidya, Chandan J.; Howard, James H.; Howard, Darlene V.

2010-01-01

221

Systemic inflammation, intraventricular hemorrhage, and white matter injury  

PubMed Central

To see if the systemic inflammation profile of 123 infants born before the 28th week of gestation who had intraventricular hemorrhage (IVH) without white matter injury (WMI) differed from that of 68 peers who had both IVH and WMI, we compared both groups to 677 peers who had neither. Cranial ultrasound scans were read independently by multiple readers until concordance. The concentrations of 25 proteins were measured with multiplex arrays using an electrochemiluminescence system. Infants who had IVH and WMI were more likely than others to have elevated concentrations of CRP and IL-8 on days 1, 7, and 14, and elevated concentrations of SAA and TNF-alpha on 2 of these days. IVH should probably be viewed as two entities, IVH unaccompanied by WMI, and IVH accompanied by WMI. Each entity is associated with inflammation, but IVH accompanied by WMI has a stronger inflammatory signal than IVH unaccompanied by WMI. PMID:23112243

LEVITON, Alan; ALLRED, Elizabeth N.; DAMMANN, Olaf; ENGELKE, Stephen; FICHOROVA, Raina N.; HIRTZ, Deborah; KUBAN, Karl C. K.; MENT, Laura R.; O'SHEA, T. Michael; PANETH, Nigel; SHAH, Bhavesh; SCHREIBER, Michael D.

2014-01-01

222

Multi-parametric evaluation of the white matter maturation.  

PubMed

In vivo evaluation of the brain white matter maturation is still a challenging task with no existing gold standards. In this article we propose an original approach to evaluate the early maturation of the white matter bundles, which is based on comparison of infant and adult groups using the Mahalanobis distance computed from four complementary MRI parameters: quantitative qT1 and qT2 relaxation times, longitudinal ?? and transverse ?? diffusivities from diffusion tensor imaging. Such multi-parametric approach is expected to better describe maturational asynchrony than conventional univariate approaches because it takes into account complementary dependencies of the parameters on different maturational processes, notably the decrease in water content and the myelination. Our approach was tested on 17 healthy infants (aged 3- to 21-week old) for 18 different bundles. It finely confirmed maturational asynchrony across the bundles: the spino-thalamic tract, the optic radiations, the cortico-spinal tract and the fornix have the most advanced maturation, while the superior longitudinal and arcuate fasciculi, the anterior limb of the internal capsule and the external capsule have the most delayed maturation. Furthermore, this approach was more reliable than univariate approaches as it revealed more maturational relationships between the bundles and did not violate a priori assumptions on the temporal order of the bundle maturation. Mahalanobis distances decreased exponentially with age in all bundles, with the only difference between them explained by different onsets of maturation. Estimation of these relative delays confirmed that the most dramatic changes occur during the first post-natal year. PMID:25183543

Kulikova, S; Hertz-Pannier, L; Dehaene-Lambertz, G; Buzmakov, A; Poupon, C; Dubois, J

2014-09-01

223

Detection of white matter lesions in cerebral small vessel disease  

NASA Astrophysics Data System (ADS)

White matter lesions (WML) are diffuse white matter abnormalities commonly found in older subjects and are important indicators of stroke, multiple sclerosis, dementia and other disorders. We present an automated WML detection method and evaluate it on a dataset of small vessel disease (SVD) patients. In early SVD, small WMLs are expected to be of importance for the prediction of disease progression. Commonly used WML segmentation methods tend to ignore small WMLs and are mostly validated on the basis of total lesion load or a Dice coefficient for all detected WMLs. Therefore, in this paper, we present a method that is designed to detect individual lesions, large or small, and we validate the detection performance of our system with FROC (free-response ROC) analysis. For the automated detection, we use supervised classification making use of multimodal voxel based features from different magnetic resonance imaging (MRI) sequences, including intensities, tissue probabilities, voxel locations and distances, neighborhood textures and others. After preprocessing, including co-registration, brain extraction, bias correction, intensity normalization, and nonlinear registration, ventricle segmentation is performed and features are calculated for each brain voxel. A gentle-boost classifier is trained using these features from 50 manually annotated subjects to give each voxel a probability of being a lesion voxel. We perform ROC analysis to illustrate the benefits of using additional features to the commonly used voxel intensities; significantly increasing the area under the curve (Az) from 0.81 to 0.96 (p<0.05). We perform the FROC analysis by testing our classifier on 50 previously unseen subjects and compare the results with manual annotations performed by two experts. Using the first annotator results as our reference, the second annotator performs at a sensitivity of 0.90 with an average of 41 false positives per subject while our automated method reached the same level of sensitivity at approximately 180 false positives per subject.

Riad, Medhat M.; Platel, Bram; de Leeuw, Frank-Erik; Karssemeijer, Nico

2013-02-01

224

CAFFEINE, COGNITIVE FUNCTIONING AND WHITE MATTER LESIONS IN THE ELDERLY: ESTABLISHING CAUSALITY FROM EPIDEMIOLOGICAL EVIDENCE  

E-print Network

Ritchie 1 CAFFEINE, COGNITIVE FUNCTIONING AND WHITE MATTER LESIONS IN THE ELDERLY: ESTABLISHING of interest. Running title : caffeine and white matter lesions inserm-00457699,version1-19Feb2010 Author for a causal relationship between caffeine consumption and cognitive deterioration in the elderly. Methods

Paris-Sud XI, Université de

225

Early detection of microstructural white matter changes associated with arterial pulsatility  

PubMed Central

Increased cerebral blood flow pulsatility is common in vascular dementia and is associated with macrostructural damage to cerebral white matter or leukoaraiosis (LA). In this study, we examine whether cerebral blood flow pulsatility is associated with macrostructural and microstructural changes in cerebral white matter in older adults with no or mild LA and no evidence of dementia. Diffusion Tensor Imaging was used to measure fractional anisotropy (FA), an index of the microstructural integrity of white matter, and radial diffusivity (RaD), a measure sensitive to the integrity of myelin. When controlling for age, increased arterial pulsation was associated with deterioration in both measures of white matter microstructure but not LA severity. A stepwise multiple linear regression model revealed that arterial pulsatility index was the strongest predictor of FA (R = 0.483, adjusted R2 = 0.220), followed by LA severity, but not age. These findings suggest that arterial pulsatility may provide insight into age-related reduction in white matter FA. Specifically, increased arterial pulsatility may increase perivascular shear stress and lead to accumulation of damage to perivascular oligodendrocytes, resulting in microstructural changes in white matter and contributing to proliferation of LA over time. Changes in cerebral blood flow pulsatility may therefore provide a sensitive index of white matter health that could facilitate the early detection of risk for perivascular white matter damage and the assessment of the effectiveness of preventative treatment targeted at reducing pulsatility. PMID:24302906

Jolly, Todd A. D.; Bateman, Grant A.; Levi, Christopher R.; Parsons, Mark W.; Michie, Patricia T.; Karayanidis, Frini

2013-01-01

226

White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism  

ERIC Educational Resources Information Center

The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…

Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria

2010-01-01

227

Growth of White Matter in the Adolescent Brain: Myelin or Axon?  

ERIC Educational Resources Information Center

White matter occupies almost half of the human brain. It contains axons connecting spatially segregated modules and, as such, it is essential for the smooth flow of information in functional networks. Structural maturation of white matter continues during adolescence, as reflected in age-related changes in its volume, as well as in its…

Paus, Tomas

2010-01-01

228

Superresolution in MRI: Application to Human White Matter Fiber Tract Visualization by Diffusion  

E-print Network

imaging in vivo stand to benefit in partic- ular because the necessity of obtaining high-resolution scans words: high-resolution MRI; echo-planar imaging; white matter tractography in vivo; brain conductivity resolution. Detailed two-dimensional white matter fiber tract maps of the human brain resulting from

Yeshurun, Hezy

229

High Angular Resolution Diffusion Imaging Reveals Intravoxel White Matter Fiber Heterogeneity  

E-print Network

High Angular Resolution Diffusion Imaging Reveals Intravoxel White Matter Fiber Heterogeneity David fibers (10). Using high angular resolution, high b-value diffusion gradient sampling, we were able1* Magnetic resonance (MR) diffusion tensor imaging (DTI) can resolve the white matter fiber

Duncan, James S.

230

High-Resolution Line Scan Diffusion Tensor MR Imaging of White Matter Fiber Tract Anatomy  

E-print Network

High-Resolution Line Scan Diffusion Tensor MR Imaging of White Matter Fiber Tract Anatomy Hatsuho fiber direction. We present findings of normal white matter fiber tract anatomy at high resolution scan diffusion tensor imaging at high resolution. Near large bone structures, line scan produces images

231

High-Resolution Line Scan Diffusion Tensor MR Imaging of White Matter Fiber Tract Anatomy  

Microsoft Academic Search

BACKGROUND AND PURPOSE: MR diffusion tensor imaging permits detailed visualization of white matter fiber tracts. This technique, unlike T2-weighted imaging, also provides infor- mation about fiber direction. We present findings of normal white matter fiber tract anatomy at high resolution obtained by using line scan diffusion tensor imaging. METHODS: Diffusion tensor images in axial, coronal, and sagittal sections covering the

Hatsuho Mamata; Yoshiaki Mamata; Carl-Fredrik Westin; Martha E. Shenton; Ron Kikinis; Ferenc A. Jolesz; Stephan E. Maier

232

Tractography reveals diffuse white matter abnormalities in Myotonic Dystrophy Type 1.  

PubMed

Cerebral involvement in Myotonic Dystrophy Type 1 (DM1) is well-established but not well characterized. This study applied new Diffusion Tensor Imaging (DTI) tractography to characterize white matter disturbance in adults with DM1. Forty-five participants with DM1 and 44 control participants had MRIs on a Siemens 3T TIM Trio scanner. Data were processed with TRActs Constrained by UnderLying Anatomy (TRACULA) and 7 tracts were evaluated. Bilateral disturbances in white matter integrity were seen in all tracts in participants with DM1 compared to controls. There were no right-left hemisphere differences. The resulting DTI metrics were correlated with cognitive functioning, particularly working memory and processing speed. Motor speed was not significantly correlated with white matter microstructural integrity and, thus, was not the core explanation for the working memory and processing speed findings. White matter integrity was correlated with important clinical variables including the muscular impairment rating scale (MIRS). CTG repeat length was moderately associated with white matter status in corticospinal tract and cingulum. Sleepiness (Epworth Sleepiness Scale) was moderately associated with white matter status in the superior longitudinal fasciculus and cingulum. Overall, the results add to an emerging literature showing widespread white matter disturbances in both early-onset and adult-onset DM1. Results suggest that further investigation of white matter pathology is warranted in DM1 and that non-invasive measures such as DTI have a potentially important clinical value in characterizing the status of individuals with DM1. PMID:24768314

Wozniak, Jeffrey R; Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura S; Day, John W

2014-06-15

233

Depressive Symptoms in Adolescents: Associations with White Matter Volume and Marijuana Use  

ERIC Educational Resources Information Center

Background: Depressed mood has been associated with decreased white matter and reduced hippocampal volumes. However, the relationship between brain structure and mood may be unique among adolescents who use marijuana heavily. The goal of this study was to examine the relationship between white matter and hippocampal volumes and depressive symptoms…

Medina, Krista Lisdahl; Nagel, Bonnie J.; Park, Ann; McQueeny, Tim; Tapert, Susan F.

2007-01-01

234

Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly  

Technology Transfer Automated Retrieval System (TEKTRAN)

Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

235

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Exploring Connectivity of the Brain's White Matter  

E-print Network

these white matter connections in human brains. Knowledge about these white matter connections should enhance our understanding of normal brain function. Such knowledge should also help diagnose certainIEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Exploring Connectivity of the Brain

Stanford University

236

A developmental study of the structural integrity of white matter in autism  

E-print Network

A developmental study of the structural integrity of white matter in autism Timothy A. Keller in Autism (CPEA) Grant HD35469 from the National Institute of Child Health and Human Development. Received in the organization of white matter in a large sample of male participants with autism and controls between the ages

237

Genetics of microstructure of cerebral white matter using diffusion tensor imaging P. Kochunov a,b,  

E-print Network

Genetics of microstructure of cerebral white matter using diffusion tensor imaging P. Kochunov a , R. Duggirala b , P.T. Fox a , J. Blangero b a Research Imaging Center, University of Texas Health January 2010 Available online 29 January 2010 Keywords: White matter Diffusion tensor imaging DTI

Thompson, Paul

238

Regularization of MR Diffusion Tensor Maps for Tracking Brain White Matter Bundles  

Microsoft Academic Search

We propose a new way for tracking brain white matter fiber bundles in diffusion tensor maps. Diffusion maps provide information about mobility of water protons in different directions. Assuming that diffusion is more important along axons, this information could lead to the direction of fiber bundles in white matter. Nevertheless, protocoles for diffusion image acquisition suffer from low resolutions and

Cyril Poupon; Jean-francois Mangin; Vincent Frouin; Jean Régis; Fabrice Poupon; M. Pachot-clouard; Denis Le Bihan; Isabelle Bloch

1998-01-01

239

White Matter Changes Compromise Prefrontal Cortex Function in Healthy Elderly Individuals  

E-print Network

White Matter Changes Compromise Prefrontal Cortex Function in Healthy Elderly Individuals Christine , and William J. Jagust2 Abstract & Changes in memory function in elderly individuals are often attributed in elderly individuals, as a marker for white matter degeneration. Specifically, we used structural MRI

California at Davis, University of

240

White Matter Changes on CT and MRI: An Overview of Visual Rating Scales  

Microsoft Academic Search

Since the recognition of white matter changes on CT (leukoaraiosis), rating scales for the location and severity of white matter changes have been developed, mainly for research purposes, to investigate factors such as the relation with cognition, risk factors, and pathology. The main purpose of rating scales is to provide scores that can be used in statistical analyses. The development

Philip Scheltens; Timo Erkinjunti; Didier Leys; Lars-Olaf Wahlund; Domenico Inzitari; Theodoro del Ser; Florence Pasquier; Frederik Barkhof; Riita Mäntylä; John Bowler; Anders Wallin; Joseph Ghika; Franz Fazekas; Leonardo Pantoni

1998-01-01

241

Adrenomedullin Deficiency and Aging Exacerbate Ischemic White Matter Injury after Prolonged Cerebral Hypoperfusion in Mice  

PubMed Central

Adrenomedullin was originally isolated from pheochromocytoma cells and reduces insulin resistance by decreasing oxidative stress. White matter lesions induced by aging and hyperglycemia play a crucial role in cognitive impairment in poststroke patients. Here, we examine whether adrenomedullin deficiency and aging exacerbate ischemic white matter injury after prolonged cerebral hypoperfusion. Adrenomedullin heterozygous, wild-type young/aged mice were subjected to prolonged hypoperfusion. Prolonged cerebral hypoperfusion followed by immunohistochemical analysis was used to evaluate white matter injury. After prolonged hypoperfusion, white matter damage progressed in a time-dependent manner in AM+/? group compared with the wild-type group. The number of oligodendrocyte progenitor cells gradually increased after prolonged hypoperfusion, whereas oligodendrocytes decreased following a transient increase, but the ratio of increase was mild in the AM+/? group (P < 0.05). Oxidative stress was detected in oligodendrocytes, with a larger increase in the AM+/? group (P < 0.05). Aged mice showed the same tendency, but white matter damage was worse, especially in the aged AM+/? group. Our results demonstrated that white matter injury was increased in adrenomedullin deficiency, which induced oxidative stress. White matter injury was more exacerbated because of hyperglycemia in aged AM+/? group. Adrenomedullin may be an important target in the control of ischemic white matter injury. PMID:25028667

Mitome-Mishima, Yumiko; Miyamoto, Nobukazu; Tanaka, Ryota; Shimosawa, Tatsuo; Oishi, Hidenori; Arai, Hajime; Hattori, Nobutaka; Urabe, Takao

2014-01-01

242

Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder  

ERIC Educational Resources Information Center

Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…

Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel

2011-01-01

243

Altered White Matter Microstructure in Children with Attention-Deficit/Hyperactivity Disorder  

ERIC Educational Resources Information Center

Objective: Identification of biomarkers is a priority for attention-deficit/hyperactivity disorder (ADHD). Studies have documented macrostructural brain alterations in ADHD, but few have examined white matter microstructure, particularly in preadolescent children. Given dramatic white matter maturation across childhood, microstructural differences…

Nagel, Bonnie J.; Bathula, Deepti; Herting, Megan; Schmitt, Colleen; Kroenke, Christopher D.; Fair, Damien; Nigg, Joel T.

2011-01-01

244

Lobar Brain Hemorrhages and White Matter Changes: Clinical, Radiological and Laboratorial Profiles  

Microsoft Academic Search

Background: White matter changes have several histopathologic correlates including cerebral amyloid angiopathy (CAA). The aim of this study was to characterize the clinical, laboratorial and neuroradiological profile of a CAA-related lobar hemorrhages case series. Methods: A cohort of 50 consecutive patients with cerebral lobar hemorrhages was studied and clinical, radiological data and ApoE polymorphisms were analyzed. White matter changes were

Luís F. Maia; Cristiana Vasconcelos; Susana Seixas; Rui Magalhães; Manuel Correia

2006-01-01

245

Obesity Associated Cerebral Gray and White Matter Alterations Are Interrelated in the Female Brain  

PubMed Central

Obesity is known to affect the brain's gray matter (GM) and white matter (WM) structure but the interrelationship of such changes remains unclear. Here we used T1-weighted magnetic resonance imaging (MRI) in combination with voxel-based morphometry (VBM) and diffusion-tensor imaging (DTI) with tract-based spatial statistics (TBSS) to assess the relationship between obesity-associated alterations of gray matter density (GMD) and anisotropic water diffusion in WM, respectively. In a small cohort of lean to obese women, we confirmed previous reports of obesity-associated alterations of GMD in brain regions involved in executive control (i.e., dorsolateral prefrontal cortex, DLPFC) and habit learning (i.e., dorsal striatum). Gray matter density alterations of the DLPFC were negatively correlated with radial diffusivity in the entire corpus callosum. Within the genu of the corpus callosum we found a positive correlation with axial diffusivity. In posterior region and inferior areas of the body of the corpus callosum, axial diffusivity correlated negatively with altered GMD in the dorsal striatum. These findings suggest that, in women, obesity-related alterations of GMD in brain regions involved in executive control and habit learning might relate to alterations of associated WM fiber bundles within the corpus callosum. PMID:25494174

Möller, Harald E.; Anwander, Alfred; Lepsien, Jöran; Schroeter, Matthias L.; Villringer, Arno; Pleger, Burkhard

2014-01-01

246

CHARACTERIZING WHITE MATTER CONNECTIVITY IN MAJOR DEPRESSIVE DISORDER: AUTOMATED FIBER QUANTIFICATION AND MAXIMUM DENSITY PATHS  

PubMed Central

Diffusion-weighted imaging allows for in vivo assessment of white matter structure, which can be used to assess aberrations associated with disease. Several new methods permit the automated assessment of important white matter characteristics. In the current study we used Automated Fiber Quantification (AFQ) to assess differences between depressed and nondepressed individuals in 18 major white matter tracts. We then used the Maximum Density Path (MDP) method to further characterize group differences identified with AFQ. The results of the AFQ analyses indicated that fractional anisotropy (FA; an index of white matter integrity) along bilateral corticospinal tracts (CST) was higher in depressed than in nondepressed individuals. MDP analyses revealed that white matter anomalies were restricted to four subregions that included the corona radiata and the internal and external capsules. These results provide further evidence that MDD is associated with abnormalities in cortical-to-subcortical connectivity.

Sacchet, Matthew D.; Prasad, Gautam; Foland-Ross, Lara C.; Joshi, Shantanu H.; Hamilton, J. Paul; Thompson, Paul M.; Gotlib, Ian H.

2014-01-01

247

White matter tract signatures of the progressive aphasias  

PubMed Central

The primary progressive aphasias (PPA) are a heterogeneous group of language-led neurodegenerative diseases resulting from large-scale brain network degeneration. White matter (WM) pathways bind networks together, and might therefore hold information about PPA pathogenesis. Here we used diffusion tensor imaging and tract-based spatial statistics to compare WM tract changes between PPA syndromes and with respect to Alzheimer's disease and healthy controls in 33 patients with PPA (13 nonfluent/agrammatic PPA); 10 logopenic variant PPA; and 10 semantic variant PPA. Nonfluent/agrammatic PPA was associated with predominantly left-sided and anterior tract alterations including uncinate fasciculus (UF) and subcortical projections; semantic variant PPA with bilateral alterations in inferior longitudinal fasciculus and UF; and logopenic variant PPA with bilateral but predominantly left-sided alterations in inferior longitudinal fasciculus, UF, superior longitudinal fasciculus, and subcortical projections. Tract alterations were more extensive than gray matter alterations, and the extent of alteration across tracts and PPA syndromes varied between diffusivity metrics. These WM signatures of PPA syndromes illustrate the selective vulnerability of brain language networks in these diseases and might have some pathologic specificity. PMID:23312804

Mahoney, Colin J.; Malone, Ian B.; Ridgway, Gerard R.; Buckley, Aisling H.; Downey, Laura E.; Golden, Hannah L.; Ryan, Natalie S.; Ourselin, Sebastien; Schott, Jonathan M.; Rossor, Martin N.; Fox, Nick C.; Warren, Jason D.

2013-01-01

248

Role of white-matter pathways in coordinating alpha oscillations in resting visual cortex.  

PubMed

In the absence of cognitive tasks and external stimuli, strong rhythmic fluctuations with a frequency ?10Hz emerge from posterior regions of human neocortex. These posterior ?-oscillations can be recorded throughout the visual cortex and are particularly strong in the calcarine sulcus, where the primary visual cortex is located. The mechanisms and anatomical pathways through which local \\alpha-oscillations are coordinated however, are not fully understood. In this study, we used a combination of magnetoencephalography (MEG), diffusion tensor imaging (DTI), and biophysical modeling to assess the role of white-matter pathways in coordinating cortical ?-oscillations. Our findings suggest that primary visual cortex plays a special role in coordinating ?-oscillations in higher-order visual regions. Specifically, the amplitudes of ?-sources throughout visual cortex could be explained by propagation of ?-oscillations from primary visual cortex through white-matter pathways. In particular, ?-amplitudes within visual cortex correlated with both the anatomical and functional connection strengths to primary visual cortex. These findings reinforce the notion of posterior ?-oscillations as intrinsic oscillations of the visual system. We speculate that they might reflect a default-mode of the visual system during which higher-order visual regions are rhythmically primed for expected visual stimuli by ?-oscillations in primary visual cortex. PMID:25449741

Hindriks, R; Woolrich, M; Luckhoo, H; Joensson, M; Mohseni, H; Kringelbach, M L; Deco, G

2015-02-01

249

White matter atrophy and cognitive dysfunctions in neuromyelitis optica.  

PubMed

Neuromyelitis optica (NMO) is an inflammatory disease of central nervous system characterized by optic neuritis and longitudinally extensive acute transverse myelitis. NMO patients have cognitive dysfunctions but other clinical symptoms of brain origin are rare. In the present study, we aimed to investigate cognitive functions and brain volume in NMO. The study population consisted of 28 patients with NMO and 28 healthy control subjects matched for age, sex and educational level. We applied a French translation of the Brief Repeatable Battery (BRB-N) to the NMO patients. Using SIENAx for global brain volume (Grey Matter, GM; White Matter, WM; and whole brain) and VBM for focal brain volume (GM and WM), NMO patients and controls were compared. Voxel-level correlations between diminished brain concentration and cognitive performance for each tests were performed. Focal and global brain volume of NMO patients with and without cognitive impairment were also compared. Fifteen NMO patients (54%) had cognitive impairment with memory, executive function, attention and speed of information processing deficits. Global and focal brain atrophy of WM but not Grey Matter (GM) was found in the NMO patients group. The focal WM atrophy included the optic chiasm, pons, cerebellum, the corpus callosum and parts of the frontal, temporal and parietal lobes, including superior longitudinal fascicle. Visual memory, verbal memory, speed of information processing, short-term memory and executive functions were correlated to focal WM volumes. The comparison of patients with, to patients without cognitive impairment showed a clear decrease of global and focal WM, including brainstem, corticospinal tracts, corpus callosum but also superior and inferior longitudinal fascicles. Cognitive impairment in NMO patients is correlated to the decreased of global and focal WM volume of the brain. Further studies are needed to better understand the precise origin of cognitive impairment in NMO patients, particularly in the WM. PMID:22509264

Blanc, Frederic; Noblet, Vincent; Jung, Barbara; Rousseau, François; Renard, Felix; Bourre, Bertrand; Longato, Nadine; Cremel, Nadjette; Di Bitonto, Laure; Kleitz, Catherine; Collongues, Nicolas; Foucher, Jack; Kremer, Stephane; Armspach, Jean-Paul; de Seze, Jerome

2012-01-01

250

Age-related differences in white matter integrity and cognitive function are related to APOE status  

PubMed Central

While an extensive literature is now available on age-related differences in white matter integrity measured by diffusion MRI, relatively little is known about the relationships between diffusion and cognitive functions in older adults. Even less is known about whether these relationships are influenced by the apolipoprotein (APOE) ?4 allele, despite growing evidence that ?4 increases cognitive impairment in older adults. The purpose of the present study was to examine these relationships in a group of community-dwelling cognitively normal older adults. Data were obtained from a sample of 126 individuals (ages 52–92) that included 32 ?4 heterozygotes, 6 ?4 homozygotes, and 88 non-carriers. Two measures of diffusion, the apparent diffusion coefficient (ADC) and fractional anisotropy (FA), were obtained from six brain regions – frontal white matter, lateral parietal white matter, the centrum semiovale, the genu and splenium of the corpus callosum, and the temporal stem white matter – and were used to predict composite scores of cognitive function in two domains, executive function and memory function. Results indicated that ADC and FA differed with increasing age in all six brain regions, and these differences were significantly greater for ?4 carriers compared to noncarriers. Importantly, after controlling for age, diffusion measures predicted cognitive function in a region-specific way that was also influenced by ?4 status. Regardless of APOE status, frontal ADC and FA independently predicted executive function scores for all participants, while temporal lobe ADC additionally predicted executive function for ?4 carriers, but not noncarriers. Memory scores were predicted by temporal lobe ADC but not frontal diffusion for all participants, and this relationship was significantly stronger in ?4 carriers compared to noncarriers. Taken together, age and temporal lobe ADC accounted for a striking 53% of the variance in memory scores within the ?4 carrier group. The results provide further evidence that APOE ?4 has a significant impact on the trajectory of age-related cognitive functioning in older adults. Possible mechanisms are discussed that could account for the associations between ?4, diffusion, and cognitive function, including the influence of ?4 on neural repair, oxidative stress, and the health of myelin-producing oligodendroglia. PMID:20804847

Ryan, Lee; Walther, Katrin; Bendlin, Barbara B.; Lue, Lih-Fen; Walker, Douglas G.; Glisky, Elizabeth L.

2010-01-01

251

Quantifying Cerebellum Grey Matter and White Matter Perfusion Using Pulsed Arterial Spin Labeling  

PubMed Central

To facilitate quantification of cerebellum cerebral blood flow (CBF), studies were performed to systematically optimize arterial spin labeling (ASL) parameters for measuring cerebellum perfusion, segment cerebellum to obtain separate CBF values for grey matter (GM) and white matter (WM), and compare FAIR ASST to PICORE. Cerebellum GM and WM CBF were measured with optimized ASL parameters using FAIR ASST and PICORE in five subjects. Influence of volume averaging in voxels on cerebellar grey and white matter boundaries was minimized by high-probability threshold masks. Cerebellar CBF values determined by FAIR ASST were 43.8 ± 5.1?mL/100?g/min for GM and 27.6 ± 4.5?mL/100?g/min for WM. Quantitative perfusion studies indicated that CBF in cerebellum GM is 1.6 times greater than that in cerebellum WM. Compared to PICORE, FAIR ASST produced similar CBF estimations but less subtraction error and lower temporal, spatial, and intersubject variability. These are important advantages for detecting group and/or condition differences in CBF values. PMID:24949416

Li, Xiufeng; Sarkar, Subhendra N.; Purdy, David E.; Briggs, Richard W.

2014-01-01

252

Microstructural White Matter Changes Underlying Cognitive and Behavioural Impairment in ALS – An In Vivo Study Using DTI  

PubMed Central

Background A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients. Methods We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures. Results Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts. Conclusion In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients. PMID:25501028

Kasper, Elisabeth; Schuster, Christina; Machts, Judith; Kaufmann, Joern; Bittner, Daniel; Vielhaber, Stefan; Benecke, Reiner; Teipel, Stefan; Prudlo, Johannes

2014-01-01

253

Edaravone, a Free Radical Scavenger, Mitigates Both Gray and White Matter Damages after Global Cerebral Ischemia in Rats  

PubMed Central

Recent studies have shown that similar to cerebral gray matter (mainly composed of neuronal perikarya), white matter (composed of axons and glias) is vulnerable to ischemia. Edaravone, a free radical scavenger, has neuroprotective effects against focal cerebral ischemia even in humans. In this study, we investigated the time course and the severity of both gray and white matter damage following global cerebral ischemia by cardiac arrest, and examined whether edaravone protected the gray and the white matter. Male Sprague-Dawley rats were used. Global cerebral ischemia was induced by 5 minutes of cardiac arrest and resuscitation (CAR). Edaravone, 3 mg/kg, was administered intravenously either immediately or 60 minutes after CAR. The morphological damage was assessed by cresyl violet staining. The microtubule-associated protein 2 (a maker of neuronal perikarya and dendrites), the ? amyloid precursor protein (the accumulation of which is a maker of axonal damage), and the ionized calcium binding adaptor molecule 1 (a marker of microglia) were stained for immunohistochemical analysis. Significant neuronal perikaryal damage and marked microglial activation were observed in the hippocampal CA1 region with little axonal damage one week after CAR. Two weeks after CAR, the perikaryal damage and microglial activation were unchanged, but obvious axonal damage occurred. Administration of edaravone 60 minutes after CAR significantly mitigated the perikaryal damage, the axonal damage, and the microglial activation. Our results show that axonal damage develops slower than perikaryal damage and that edaravone can protect both gray and white matter after CAR in rats. PMID:19410562

Kubo, Kozue; Nakao, Shinichi; Jomura, Sachiko; Sakamoto, Sachiyo; Miyamoto, Etsuko; Xu, Yan; Tomimoto, Hidekazu; Inada, Takefumi; Shingu, Koh

2012-01-01

254

GRIN2B Gene and Associated Brain Cortical White Matter Changes in Bipolar Disorder: A Preliminary Combined Platform Investigation  

PubMed Central

Abnormalities in glutamate signaling and glutamate toxicity are thought to be important in the pathophysiology of bipolar disorder (BD). Whilst previous studies have found brain white matter changes in BD, there is paucity of data about how glutamatergic genes affect brain white matter integrity in BD. Based on extant neuroimaging data, we hypothesized that GRIN2B risk allele is associated with reductions of brain white matter integrity in the frontal, parietal, temporal, and occipital regions and cingulate gyrus in BD. Fourteen patients with BD and 22 healthy controls matched in terms of age, gender and handedness were genotyped using blood samples and underwent diffusion tensor imaging. Compared to G allele, brain FA values were significantly lower in BD patients with risk T allele in left frontal region (P = 0.001), right frontal region (P = 0.002), left parietal region (P = 0.001), left occipital region (P = 0.001), right occipital region (P < 0.001), and left cingulate gyrus (P = 0.001). Further elucidation of the interactions between different glutamate genes and their relationships with such structural, functional brain substrates will enhance our understanding of the link between dysregulated glutamatergic neurotransmission and neuroimaging endophenotypes in BD. PMID:24490167

Thng, Christopher Ren Zhi; Zhang, Yi Bin; Nowinski, Wieslaw Lucjan; Low, Chian Ming

2013-01-01

255

Anatomical Abnormalities in Gray and White Matter of the Cortical Surface in Persons with Schizophrenia  

PubMed Central

Background Although schizophrenia has been associated with abnormalities in brain anatomy, imaging studies have not fully determined the nature and relative contributions of gray matter (GM) and white matter (WM) disturbances underlying these findings. We sought to determine the pattern and distribution of these GM and WM abnormalities. Furthermore, we aimed to clarify the contribution of abnormalities in cortical thickness and cortical surface area to the reduced GM volumes reported in schizophrenia. Methods We recruited 76 persons with schizophrenia and 57 healthy controls from the community and obtained measures of cortical and WM surface areas, of local volumes along the brain and WM surfaces, and of cortical thickness. Results We detected reduced local volumes in patients along corresponding locations of the brain and WM surfaces in addition to bilateral greater thickness of perisylvian cortices and thinner cortex in the superior frontal and cingulate gyri. Total cortical and WM surface areas were reduced. Patients with worse performance on the serial-position task, a measure of working memory, had a higher burden of WM abnormalities. Conclusions Reduced local volumes along the surface of the brain mirrored the locations of abnormalities along the surface of the underlying WM, rather than of abnormalities of cortical thickness. Moreover, anatomical features of white matter, but not cortical thickness, correlated with measures of working memory. We propose that reductions in WM and smaller total cortical surface area could be central anatomical abnormalities in schizophrenia, driving, at least partially, the reduced regional GM volumes often observed in this illness. PMID:23418459

Colibazzi, Tiziano; Wexler, Bruce E.; Bansal, Ravi; Hao, Xuejun; Liu, Jun; Sanchez-Peña, Juan; Corcoran, Cheryl; Lieberman, Jeffrey A.; Peterson, Bradley S.

2013-01-01

256

Normal Pressure Hydrocephalus: Vascular White Matter Changes on MR Images Must Not Exclude Patients from Shunt Surgery  

Microsoft Academic Search

BACKGROUND AND PURPOSE: White matter changes such as periventricular hyperin- tensity (PVH) and deep white matter hyperintensity (DWMH) are associated with both peri- ventricular edema and ischemic white matter degeneration. Their diagnostic and predictive value in normal pressure hydrocephalus (NPH) is unclear. To identify prognostically important changes, we classified PVH and DWMH at MR imaging in a large series of

Mats Tullberg; Christer Jensen; Sven Ekholm; Carsten Wikkelsø

2001-01-01

257

Amniotic fluid inflammatory cytokines (interleukin-6, interleukin-1?, and tumor necrosis factor-?), neonatal brain white matter lesions, and cerebral palsy  

Microsoft Academic Search

OBJECTIVE: Ultrasonographically detectable neonatal brain white matter lesions are the most important identifiable risk factor for cerebral palsy. Inflammatory cytokines released during the course of intrauterine infections have been implicated in the genesis of brain white matter lesions and subsequent cerebral palsy. This study was undertaken to determine whether fetuses who subsequently were diagnosed to have periventricular brain white matter

Bo Hyun Yoon; Jong Kwan Jun; Roberto Romero; Kyo Hoon Park; Ricardo Gomez; Jung-Hwan Choi

1997-01-01

258

Blood-Brain Barrier Permeability of Normal Appearing White Matter in Relapsing-Remitting Multiple Sclerosis  

PubMed Central

Background Multiple sclerosis (MS) affects the integrity of the blood-brain barrier (BBB). Contrast-enhanced T1 weighted magnetic resonance imaging (MRI) is widely used to characterize location and extent of BBB disruptions in focal MS lesions. We employed quantitative T1 measurements before and after the intravenous injection of a paramagnetic contrast agent to assess BBB permeability in the normal appearing white matter (NAWM) in patients with relapsing-remitting MS (RR-MS). Methodology/Principal Findings Fifty-nine patients (38 females) with RR-MS undergoing immunomodulatory treatment and nine healthy controls (4 females) underwent quantitative T1 measurements at 3 tesla before and after injection of a paramagnetic contrast agent (0.2 mmol/kg Gd-DTPA). Mean T1 values were calculated for NAWM in patients and total cerebral white matter in healthy subjects for the T1 measurements before and after injection of Gd-DTPA. The pre-injection baseline T1 of NAWM (945±55 [SD] ms) was prolonged in RR-MS relative to healthy controls (903±23 ms, p?=?0.028). Gd-DTPA injection shortened T1 to a similar extent in both groups. Mean T1 of NAWM was 866±47 ms in the NAWM of RR-MS patients and 824±13 ms in the white matter of healthy controls. The regional variability of T1 values expressed as the coefficient of variation (CV) was comparable between the two groups at baseline, but not after injection of the contrast agent. After intravenous Gd-DTPA injection, T1 values in NAWM were more variable in RR-MS patients (CV?=?0.198±0.046) compared to cerebral white matter of healthy controls (CV?=?0.166±0.018, p?=?0.046). Conclusions/Significance We found no evidence of a global BBB disruption within the NAWM of RR-MS patients undergoing immunomodulatory treatment. However, the increased variation of T1 values in NAWM after intravenous Gd-DTPA injection points to an increased regional inhomogeneity of BBB function in NAWM in relapsing-remitting MS. PMID:23441184

Lund, Henrik; Krakauer, Martin; Skimminge, Arnold; Sellebjerg, Finn; Garde, Ellen; Siebner, Hartwig R.; Paulson, Olaf B.; Hesse, Dan; Hanson, Lars G.

2013-01-01

259

Grey and white matter abnormalities are associated with impaired spatial working memory ability in first-episode schizophrenia.  

PubMed

Spatial working memory (SWM) dysfunction has been suggested as a trait marker of schizophrenia and implicates a diffuse network involving prefrontal, temporal and parietal cortices. However, structural abnormalities in both grey and white matter in relation to SWM deficits are largely unexplored. The current magnetic resonance imaging (MRI) study examined this relationship in a sample of young first-episode schizophrenia (FES) patients using a whole-brain voxel-based method. SWM ability of 21 FES patients and 41 comparable controls was assessed by the CANTAB SWM task. Using an automated morphometric analysis of brain MRI scans, we assessed the relationship between SWM abilities and both grey matter volume and white matter density in both groups. Our findings demonstrated the different directionality of the association between SWM errors and grey matter volume in left frontal regions and white matter tracts connecting these regions with temporal and occipital areas between FES patients and controls. This suggests that the substrate underpinning the normal variability in SWM function in healthy individuals may be abnormal in FES, and that the normal neurodevelopmental processes that drive the development of SWM networks are disrupted in schizophrenia. PMID:19837566

Cocchi, Luca; Walterfang, Mark; Testa, Renée; Wood, Stephen J; Seal, Marc L; Suckling, John; Takahashi, Tsutomu; Proffitt, Tina-Marie; Brewer, Warrick J; Adamson, Christopher; Soulsby, Bridget; Velakoulis, Dennis; McGorry, Patrick D; Pantelis, Christos

2009-12-01

260

White Matter Hyperintensities and Dynamics of Postural Control  

PubMed Central

Background White matter hyperintensities (WMHs) on MRI have been associated with age, cardiovascular risk factors, and falls in the elderly. This study evaluated the relationship between WMHs and dynamics of postural control in older adults without history of falls. Methods We studied 76 community living subjects without history of falls (age 64.5±7.3 yrs). Brain and WMHs volume calculations and clinical rating were done on FLAIR and MP-RAGE MR images on 3 Tesla. Balance was assessed from the center of pressure displacement using the force platform during 3 minutes of quiet standing using traditional and dynamic measures (using stabilogram-diffusion analysis). Gait speed was measured from 12 minute walk. Results Age-adjusted periventricular and focal WMHs were associated with changes in certain dynamic balance measures, including reduced range of postural sway in anteroposterior direction (fronto-temporal WMHs, p=0.045; parieto-occipital WMHs, p=0.009) and more irregular longterm mediolateral fluctuations (p=0.046). Normal walking speed was not affected by WMHs. Conclusions Periventricul and focal WMHs affect long-term dynamics of postural control, which requires engagement of feedback mechanisms, and may contribute to mobility decline in the elderly. PMID:19250785

Novak, Vera; Haertle, Mareile; Zhao, Peng; Hu, Kun; Munshi, Medha; Novak, Peter; Abduljalil, Amir; Alsop, David

2009-01-01

261

[Age-related white matter lesions (leukoaraiosis): an update].  

PubMed

Leukoaraiosis (age-related white matter hyperintensities) is the most frequently seen lesion on brain magnetic resonance (MR) images. This lesion is a subject of much current interest, because a number of multicenter studies have revealed that it is associated with various disturbances and poor prognoses. Leukoaraiosis corresponds to various pathologies, including demyelination, apoptosis, edema, dilated perivascular spaces, axonal damage, gliosis, and infarcts. Also noted in leukoaraiosis are changes in small vessels, such as fibrohyalinosis and venous collagenosis. The main cause of leukoaraiosis is thought to be chronic ischemia; other causes include edema and breakdown of the blood-brain barrier. Major risk factors for leukoaraiosis are age and hypertension. Disturbances that are related to leukoaraiosis include stroke, dementia, cognitive impairment, gait disturbance, fall, and depression. Leukoaraiosis is also a risk factor for death. Technologies, such as automatic volumetry, tissue segmentation, diffusion tensor imaging, magnetization tensor imaging, diffusion kurtosis imaging, and ultra-high field MR imaging may provide further insights into leukoaraiosis. PMID:23832982

Miki, Yukio; Sakamoto, Shinichi

2013-07-01

262

Bilateral white matter abnormality in children with frontal lobe epilepsy  

PubMed Central

Summary In frontal lobe epilepsy (FLE), interictal discharges and seizures are more likely to spread to contralateral hemisphere and become secondarily generalized. The aim of this study was to assess white matter (WM) integrity in children with FLE using diffusion tensor imaging (DTI). Children with FLE and normal MRI, and healthy controls with no neurological or psychiatric disorders underwent DTI on 3 T MRI. Whole brain fractional anisotropy (FA) and mean diffusivity (MD) maps were compared between right and left FLE with controls. 43 children with FLE, consisting of 28 left and 15 right FLE, and 44 healthy controls were recruited. Patients with left FLE had significant FA reductions in left (p = 0.002) and right (p = 0.003 and p = 0.034) superior longitudinal fasciculi (SLF), genu/body (p = 0.0002) and splenium (p = 0.011) of corpus callosum. Patients with right FLE had significant FA reductions in left (p = 0.016) and right (p = 0.033) SLF, genu (p = 0.001) and body of corpus callosum (p = 0.001 and p = 0.008), and significant MD elevation in right thalamus (p = 0.032). There was no significant association between FA or MD and clinical seizure parameters. The abnormal WM both ipsilateral and contralateral to seizure focus may be due to seizure activity or abnormal brain development. PMID:24380759

Widjaja, Elysa; Kis, Antonella; Go, Cristina; Snead, O. Carter; Smith, Mary Lou

2014-01-01

263

White matter degeneration in schizophrenia: a comparative diffusion tensor analysis  

NASA Astrophysics Data System (ADS)

Schizophrenia is a serious and disabling mental disorder. Diffusion tensor imaging (DTI) studies performed on schizophrenia have demonstrated white matter degeneration either due to loss of myelination or deterioration of fiber tracts although the areas where the changes occur are variable across studies. Most of the population based studies analyze the changes in schizophrenia using scalar indices computed from the diffusion tensor such as fractional anisotropy (FA) and relative anisotropy (RA). The scalar measures may not capture the complete information from the diffusion tensor. In this paper we have applied the RADTI method on a group of 9 controls and 9 patients with schizophrenia. The RADTI method converts the tensors to log-Euclidean space where a linear regression model is applied and hypothesis testing is performed between the control and patient groups. Results show that there is a significant difference in the anisotropy between patients and controls especially in the parts of forceps minor, superior corona radiata, anterior limb of internal capsule and genu of corpus callosum. To check if the tensor analysis gives a better idea of the changes in anisotropy, we compared the results with voxelwise FA analysis as well as voxelwise geodesic anisotropy (GA) analysis.

Ingalhalikar, Madhura A.; Andreasen, Nancy C.; Kim, Jinsuh; Alexander, Andrew L.; Magnotta, Vincent A.

2010-03-01

264

Diffusion Tensor Imaging in PSEN1-Related Spastic Paraparesis Reveals Widespread White Matter Abnormalities  

PubMed Central

Objective: To investigate white matter changes in familial Alzheimer's disease (FAD) patients with spastic paraparesis (SP) using diffusion tensor imaging (DTI). Background: Though FAD due to PSEN1 mutations typically recapitulates late onset AD, it can have unusual clinical features including SP. SP is seen with specific PSEN1 mutations and is frequently associated with “cotton wool” amyloid plaques. The pathophysiology underlying SP in FAD is not well understood, though disproportionate degeneration of the corticospinal tracts has been implicated. Design/Methods: We compared white matter integrity in two persons with the A431E PSEN1 mutation with early and severe SP to that of 8 symptomatic PSEN1 mutation carriers without SP from DTI images obtained on a 3T Siemens Trio scanner using 64 direction EPI sequence. Fractional Anisotropy (FA) images were generated using FSL Diffusion Toolbox. FA images were then processed using FSL Tract Based Spatial Statistics toolbox to obtain group level voxel-based statistical maps. Results: The patients with SP were men, mean age of 48, duration of illness of 5.5 years, and CDR SOB scores of 8.5. The 8 subjects without SP (5 men) had various PSEN1 mutations, mean age of 54 years, illness duration of 4.6 years, and CDR SOB scores of 6.1 (all P-values > .05). Using the false discovery rate to correct for multiple comparisons, significantly lower FA were seen in subjects with SP in widespread areas including in the orbitofrontal region, corpus callosum, bilateral precentral gyri, and the anterior limb of the right internal capsule. The reverse contrast revealed no areas in which persons without SP had lower FA relative to those with SP. Conclusions: SP is the most evident clinical manifestation of widespread FA decreases in persons with the A431E PSEN1 mutation, suggesting it may be mediated by a generalized effect of this mutation on white matter.

Braskie, Meredith N; Alger, Jeffry; Bordelon, Yvette M; Wharton, David; Ringman, John M

2014-01-01

265

Genetics of microstructure of cerebral white matter using diffusion tensor imaging  

PubMed Central

We analyzed the degree of genetic control over intersubject variability in the microstructure of cerebral white matter (WM) using diffusion tensor imaging (DTI). We performed heritability, genetic correlation and quantitative trait loci (QTL) analyses for the whole-brain and 10 major cerebral WM tracts. Average measurements for fractional anisotropy (FA), radial (L?) and axial (L||) diffusivities served as quantitative traits. These analyses were done in 467 healthy individuals (182 males/285 females; average age 47.9±13.5 years; age range:19–85 years), recruited from randomly-ascertained pedigrees of extended families. Significant heritability was observed for FA (h2=.52±.11;p=10?7) and L?(h2=.37±.14; p=0.001), while L|| measurements were not significantly heritable (h2=.09±.12; p=.20). Genetic correlation analysis indicated that the FA and L? shared 46% of the genetic variance. Tract-wise analysis revealed a regionally diverse pattern of genetic control, which was unrelated to ontogenic factors, such as tract-wise age-of-peak FA values and rates of age-related change in FA. QTL analysis indicated linkages for whole-brain average FA (LOD=2.36) at the marker D15S816on chromosome 15q25, and for L?(LOD=2.24) near the marker D3S1754 on the chromosome 3q27. These sites have been reported to have significant co-inheritance with two psychiatric disorders (major depression and obsessive-compulsive disorder) in which patients show characteristic alterations in cerebral WM. Our findings suggest that the microstructure of cerebral white matter is under a strong genetic control and further studies in healthy as well as patients with brain-related illnesses are imperative to identify the genes that may influence cerebral white matter. PMID:20117221

Kochunov, P.; Glahn, D.C.; Lancaster, J.L.; Winkler, A.M.; Smith, S.; Thompson, P.M.; Almasy, L.; Duggirala, R.; Fox, P.T.; Blangero, J.

2010-01-01

266

Delay discounting behavior and white matter microstructure abnormalities in youth with a family history of alcoholism  

PubMed Central

Background Youth with family history of alcohol abuse have a greater risk of developing an alcohol use disorder (AUD). Brain and behavior differences may underlie this increased vulnerability. The current study examined delay discounting behavior and white matter microstructure in youth at high-risk for alcohol abuse, as determined by a family history of alcoholism (FH+), and youth without such family history (FH?). Methods Thirty-three healthy youth (FH+ = 15, FH? = 18), ages 11 to 15 years, completed a delay discounting task and underwent diffusion tensor imaging (DTI). Tract Based Spatial Statistics (Smith et al., 2006), as well as follow-up region-of-interest analyses, were performed in order to compare fractional anisotropy (FA) between FH+ and FH? youth. Results FH+ youth showed a trend toward increased discounting behavior and had significantly slower reaction times on the delay discounting paradigm compared to FH? youth. Group differences in FA were seen in several white matter tracts. Furthermore, lower FA in the left inferior longitudinal fasciculus and the right optic radiation statistically mediated the relationship between FH status and slower reaction times on the delay discounting task. Conclusion Youth with a family history of substance abuse have disrupted white matter microstructure, which likely contributes to less efficient cortical processing, and may act as an intrinsic risk-factor contributing to an increased susceptibility of developing AUD. In addition, FHP youth showed a trend toward greater impulsive decision making, possibly representing an inherent personal characteristic that may facilitate substance use onset and abuse in high-risk youth. PMID:20586754

Herting, Megan M.; Schwartz, Daniel; Mitchell, Suzanne H.; Nagel, Bonnie J.

2011-01-01

267

Multiple Sclerosis Normal-Appearing White Matter: Pathology-Imaging Correlations  

PubMed Central

Objective To determine the pathologic basis of subtle abnormalities in magnetization transfer ratio (MTR) and diffusion tensor imaging (DTI) parameters observed in normal-appearing white matter (NAWM) in multiple sclerosis (MS) brains. Methods Brain tissues were obtained through a rapid post-mortem protocol that included in situ MRI. Four types of MRI-defined regions of interest (ROIs) were analyzed: (1) Regions that were abnormal on all images (“T2T1MTR lesions”); (2) NAWM regions with slightly-abnormal MTR located close to white matter lesions (“sa-WM Close”); (3) NAWM regions with slightly-abnormal MTR located far from lesions (“sa-WM Far”); and (4) NAWM regions with normal MTR (“NAWM”). Immunohistochemical analysis for each ROI comprised immunostaining for myelin, axonal markers, activated microglia/macrophages, astrocytes, plasma proteins and blood vessels. Results Forty-eight ROIs from four secondary progressive MS brains were analyzed. Sa-WM Close ROIs were associated with significantly more axonal swellings. There were more enlarged MHCII(+) microglia and macrophages detected in sa-WM Far, sa-WM Close, and T2T1MTR lesions than in NAWM. Across all ROIs, MTR and DTI measures were moderately correlated with myelin density, axonal area and axonal counts. Excluding T2T1MTR lesions from analysis revealed that MTR and DTI measures in non-lesional WM were correlated with activated microglia, but not with axonal or myelin integrity. Interpretation The pathologic substrates for MRI abnormalities in NAWM vary based on distance from focal WM lesions. Close to WM lesions, axonal pathology and microglial activation may explain subtle MRI changes. Distant from lesions, microglial activation associated with proximity to cortical lesions might underlie MRI abnormalities. PMID:22162059

Moll, Natalia M.; Rietsch, Anna M.; Thomas, Smitha; Ransohoff, Amy J.; Lee, Jar-Chi; Fox, Robert; Chang, Ansi; Ransohoff, Richard M.; Fisher, Elizabeth

2011-01-01

268

Sequential relationships between grey matter and white matter atrophy and brain metabolic abnormalities in early Alzheimer's disease  

E-print Network

abnormalities in early Alzheimer's disease Nicolas Villain, PhD1 , Marine Fouquet, MSc1 , Jean-Claude Baron, MD3 Alzheimer's disease Keywords: Alzheimers disease, MRI/fMRI, PET imaging, white matter, hippocampus-matter tract disruption are well-described early macroscopic events in Alzheimers disease. The relationships

Boyer, Edmond

269

Quantitative and visual analysis of white matter integrity using diffusion tensor imaging  

NASA Astrophysics Data System (ADS)

A new fiber tract-oriented quantitative and visual analysis scheme using diffusion tensor imaging (DTI) is developed to study the regional micro structural white matter changes along major fiber bundles which may not be effectively revealed by existing methods due to the curved spatial nature of neuronal paths. Our technique is based on DTI tractography and geodesic path mapping, which establishes correspondences to allow cross-subject evaluation of diffusion properties by parameterizing the fiber pathways as a function of geodesic distance. A novel isonodes visualization scheme is proposed to render regional statistical features along the fiber pathways. Assessment of the technique reveals specific anatomical locations along the genu of the corpus callosum paths with significant diffusion property changes in the amnestic mild cognitive impairment subjects. The experimental results show that this approach is promising and may provide a sensitive technique to study the integrity of neuronal connectivity in human brain.

Liang, Xuwei; Zhuang, Qi; Cao, Ning; Zhang, Jun

2009-02-01

270

Vascular incontinence: incontinence in the elderly due to ischemic white matter changes  

PubMed Central

This review article introduces the new concept of vascular incontinence, a disorder of bladder control resulting from cerebral white matter disease (WMD). The concept is based on the original observation in 1999 of a correlation between the severity of leukoareosis or WMD, urinary symptoms, gait disorder and cognitive impairment. Over the last 20 years, the realization that WMD is not a benign incidental finding in the elderly has become generally accepted and several studies have pointed to an association between geriatric syndromes and this type of pathology. The main brunt of WMD is in the frontal regions, a region recognized to be crucial for bladder control. Other disorders should be excluded, both neurological and urological, such as normal-pressure hydrocephalus, progressive supranuclear palsy, etc., and prostatic hyperplasia, physical stress incontinence, nocturnal polyuria, etc. Treatment involves management of small vessel disease risk factors and anticholinergic drugs that do not easily penetrate the blood brain barrier to improve bladder control. PMID:23139851

Sakakibara, Ryuji; Panicker, Jalesh; Fowler, Clare J; Tateno, Fuyuki; Kishi, Masahiko; Tsuyuzaki, Yohei; Ogawa, Emina; Uchiyama, Tomoyuki; Yamamoto, Tatsuya

2012-01-01

271

White matter pathway supporting phonological encoding in speech production: a multi-modal imaging study of brain damage patients.  

PubMed

In speech production, an important step before motor programming is the retrieval and encoding of the phonological elements of target words. It has been proposed that phonological encoding is supported by multiple regions in the left frontal, temporal and parietal regions and their underlying white matter, especially the left arcuate fasciculus (AF) or superior longitudinal fasciculus (SLF). It is unclear, however, whether the effects of AF/SLF are indeed related to phonological encoding for output and whether there are other white matter tracts that also contribute to this process. We comprehensively investigated the anatomical connectivity supporting phonological encoding in production by studying the relationship between the integrity of all major white matter tracts across the entire brain and phonological encoding deficits in a group of 69 patients with brain damage. The integrity of each white matter tract was measured both by the percentage of damaged voxels (structural imaging) and the mean fractional anisotropy value (diffusion tensor imaging). The phonological encoding deficits were assessed by various measures in two oral production tasks that involve phonological encoding: the percentage of nonword (phonological) errors in oral picture naming and the accuracy of word reading aloud with word comprehension ability regressed out. We found that the integrity of the left SLF in both the structural and diffusion tensor imaging measures consistently predicted the severity of phonological encoding impairment in the two phonological production tasks. Such effects of the left SLF on phonological production remained significant when a range of potential confounding factors were considered through partial correlation, including total lesion volume, demographic factors, lesions on phonological-relevant grey matter regions, or effects originating from the phonological perception or semantic processes. Our results therefore conclusively demonstrate the central role of the left SLF in phonological encoding in speech production. PMID:25359657

Han, Zaizhu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Bi, Yanchao

2014-10-31

272

Diffusion kurtosis imaging with tract-based spatial statistics reveals white matter alterations in preschool children.  

PubMed

Diffusion kurtosis imaging (DKI), an extension of diffusion tensor imaging (DTI), provides a practical method to describe non-Gaussian water diffusion in neural tissues. The sensitivity of DKI to detect the subtle changes in several chosen brain structures has been studied. However, intuitive and holistic methods to validate the merits of DKI remain to be explored. In this paper, tract-based spatial statistics (TBSS) was used to demonstrate white matter alterations in both DKI and DTI parameters in preschool children (1-6 years; n=10). Correlation analysis was also performed in multiple regions of interest (ROIs). Fractional anisotropy, mean kurtosis, axial kurtosis and radial kurtosis increased with age, while mean diffusivity and radial diffusivity decreased significantly with age. Fractional anisotropy of kurtosis and axial diffusivity were found to be less sensitive to the changes with age. These preliminary findings indicated that TBSS could be used to detect subtle changes of DKI parameters on the white matter tract. Kurtosis parameters, except fractional anisotropy of kurtosis, demonstrated higher sensitivity than DTI parameters. TBSS may be a convenient method to yield higher sensitivity of DKI. PMID:23366383

Li, Xianjun; Gao, Jie; Hou, Xin; Chan, Kevin C; Ding, Abby; Sun, Qinli; Wan, Mingxi; Wu, Ed X; Yang, Jian

2012-01-01

273

Novel homozygous DEAF1 variant suspected in causing white matter disease, intellectual disability, and microcephaly.  

PubMed

DEAF1 encodes a transcriptional binding factor and is a regulator of serotonin receptor 1A. Its protein has a significant expression in the neurons of different brain regions and is involved in early embryonic development. In addition, its role in neural tube development is evident from the knockout mouse as many homozygotes have exencephaly. Heterozygous mutations of this gene have been linked to intellectual disability in addition to the gene's involvement in major depression, suicidal tendencies, and panic disorder. In this clinical report, we describe two children from a consanguineous family with intellectual disability, microcephaly, and hypotonia. The brain MRI of both patients showed bilateral and symmetrical white matter abnormalities, and one of the patients had a seizure disorder. Using whole exome sequencing combined with homozygosity mapping, a homozygous p.R226W (c.676C>T) mutation in DEAF1 was found in both patients. Furthermore, sequencing analysis confirmed complete segregation in tested family members and absence of the mutation in control cohort (n = 650). The mutation is located in a highly conserved structural domain that mediates DNA binding and therefore regulates transcriptional activity of its target molecules. This study indicates, for the first time to our knowledge, a hereditary role of DEAF1 in white matter abnormalities, microcephaly and syndromic intellectual disability. PMID:24668509

Faqeih, Eissa A; Al-Owain, Mohammed; Colak, Dilek; Kenana, Rosan; Al-Yafee, Yusra; Al-Dosary, Mazhor; Al-Saman, Abdulaziz; Albalawi, Fadwa; Al-Sarar, Dalia; Domiaty, Dalia; Daghestani, Maha; Kaya, Namik

2014-06-01

274

Strength of default mode resting-state connectivity relates to white matter integrity in children.  

PubMed

A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9-13-year-old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging. We identified resting-state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC-PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure-function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set-switching neuropsychological measures. PMID:21676094

Gordon, Evan M; Lee, Philip S; Maisog, Jose M; Foss-Feig, Jennifer; Billington, Michael E; Vanmeter, John; Vaidya, Chandan J

2011-07-01

275

Microembolism Induces Anhedonia but No Detectable Changes in White Matter Integrity in Aged Rats  

PubMed Central

Microvascular disease leads to alterations of cerebral vasculature including the formation of microembolic (ME) strokes. Though ME are associated with changes in mood and the severity and progression of cognitive decline, the effect of ME strokes on cerebral microstructure and its relationship to behavioral endpoints is unknown. Here, we used adult and aged male rats to test the hypotheses that ME lesions result in subtle changes to white and gray matter integrity as detected by high-throughput diffusion tensor imaging (DTI) and that these structural disruptions correspond to behavioral deficits. Two weeks post-surgery, aged animals showed depressive-like behaviors in the sucrose consumption test in the absence of altered cerebral diffusivity as assessed by ex-vivo DTI. Furthermore, DTI indices did not correlate with the degree of behavioral disruption in aged animals or in a subset of animals with observed tissue cavitation and subtle DTI alterations. Together, data suggest that behavioral deficits are not the result of damage to brain regions or white matter tracts, rather the activity of other systems may underlie functional disruption and recovery. PMID:24811070

Nemeth, Christina L.; Gutman, David A.; Majeed, Waqas; Keilholz, Shella D.; Neigh, Gretchen N.

2014-01-01

276

White matter correlates of cognitive dysfunction after mild traumatic brain injury  

PubMed Central

Objective: To relate neurophysiologic changes after mild/moderate traumatic brain injury to cognitive deficit in a longitudinal diffusion tensor imaging investigation. Methods: Fifty-three patients were scanned an average of 6 days postinjury (range = 1–14 days). Twenty-three patients were rescanned 1 year later. Thirty-three matched control subjects were recruited. At the time of scanning, participants completed cognitive testing. Tract-Based Spatial Statistics was used to conduct voxel-wise analysis on diffusion changes and to explore regressions between diffusion metrics and cognitive performance. Results: Acutely, increased axial diffusivity drove a fractional anisotropy (FA) increase, while decreased radial diffusivity drove a negative regression between FA and Verbal Letter Fluency across widespread white matter regions, but particularly in the ascending fibers of the corpus callosum. Raised FA is hypothesized to be caused by astrogliosis and compaction of axonal neurofilament, which would also affect cognitive functioning. Chronically, FA was decreased, suggesting myelin sheath disintegration, but still regressed negatively with Verbal Letter Fluency in the anterior forceps. Conclusions: Acute mild/moderate traumatic brain injury is characterized by increased tissue FA, which represents a clear neurobiological link between cognitive dysfunction and white matter injury after mild/moderate injury. PMID:25031282

Cowie, Christopher J.A.; He, Jiabao; Peel, Anna; Wood, Joshua; Aribisala, Benjamin S.; Mitchell, Patrick; Mendelow, A. David; Smith, Fiona E.; Millar, David; Kelly, Tom; Blamire, Andrew M.

2014-01-01

277

A Diffusion-Tensor-Based White Matter Atlas for Rhesus Macaques  

PubMed Central

Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques. PMID:25203614

Zakszewski, Elizabeth; Adluru, Nagesh; Tromp, Do P. M.; Kalin, Ned; Alexander, Andrew L.

2014-01-01

278

Strength of default mode resting state connectivity relates to white matter integrity in children  

PubMed Central

A default mode network of brain regions is known to demonstrate coordinated activity during the resting state. While the default mode network is well characterized in adults, few investigations have focused upon its development. We scanned 9–13 year old children with diffusion tensor imaging and resting-state functional magnetic resonance imaging. We identified resting state networks using Independent Component Analysis and tested whether the functional connectivity between the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) depends upon the maturation of the underlying cingulum white matter tract. To determine the generalizability of this relationship, we also tested whether functional connectivity depends on white matter maturity between bilateral lateral prefrontal cortex (lateral PFC) within the executive control network. We found a positive relationship between mPFC-PCC connectivity and fractional anisotropy of the cingulum bundle; this positive relationship was moderated by the age of the subjects such that it was stronger in older children. By contrast, no such structure-function relationship emerged between right and left lateral PFC. However, functional and structural connectivity of this tract related positively with cognitive speed, fluency, and set-switching neuropsychological measures. PMID:21676094

Gordon, Evan M.; Lee, Philip S.; Maisog, Jose M.; Foss-Feig, Jennifer; Billington, Michael E.; VanMeter, John; Vaidya, Chandan J.

2010-01-01

279

A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features  

E-print Network

tensor MRI Amyotrophic lateral sclerosis a b s t r a c t Diffusion tensor imaging plays a key role in our in quantifying white matter atrophy in Amyotrophic Lateral Sclerosis, a severe neurodegenerative disease of motor

Utah, University of

280

J Alzheimers Dis . Author manuscript Caffeine, cognitive functioning, and white matter lesions in the elderly  

E-print Network

J Alzheimers Dis . Author manuscript Page /1 6 Caffeine, cognitive functioning, and white matter Objective The present study examines the epidemiological evidence for a causal relationship between caffeine examining cognitive functioning, caffeine consumption, magnetic resonance imaging volumetrics and other

Paris-Sud XI, Université de

281

Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies  

E-print Network

Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter ...

Cai, Shanqing

282

White matter hyperintensities and amyloid are independently associated with entorhinal cortex volume among individuals with mild  

E-print Network

White matter hyperintensities and amyloid are independently associated with entorhinal cortex of Alzheimer's disease (AD) pathogenesis emphasize the role of b-amyloid (Ab), tau deposition-weighted magnetic resonance imaging scans. We examined the association between entorhinal cortex volume

283

White matter diffusion alterations in normal women at risk of Alzheimer's disease.  

PubMed

Increased white matter mean diffusivity and decreased fractional anisotropy (FA) has been observed in subjects diagnosed with mild cognitive impairment (MCI) and Alzheimer's disease (AD). We sought to determine whether similar alterations of white matter occur in normal individuals at risk of AD. Diffusion tensor images were acquired in 42 cognitively normal right-handed women with both a family history of dementia and at least one apolipoprotein E4 allele. These were compared with images from 23 normal women without either AD risk factor. Group analyses were performed using tract-based spatial statistics. Reduced FA was observed in the fronto-occipital and inferior temporal fasciculi (particularly posteriorly), the splenium of the corpus callosum, subcallosal white matter and the cingulum bundle. These findings demonstrate that specific white matter pathways are altered in normal women at increased risk of AD years before the expected onset of cognitive symptoms. PMID:18801597

Smith, Charles D; Chebrolu, Himachandra; Andersen, Anders H; Powell, David A; Lovell, Mark A; Xiong, Shuling; Gold, Brian T

2010-07-01

284

Effects of DTI spatial normalization on white matter tract reconstructions  

PubMed Central

Major white matter (WM) pathways in the brain can be reconstructed in vivo using tractography on diffusion tensor imaging (DTI) data. Performing tractography using the native DTI data is often considered to produce more faithful results than performing it using the spatially normalized DTI obtained using highly non-linear transformations. However, tractography in the normalized DTI is playing an increasingly important role in population analyses of the WM. In particular, the emerging tract specific analyses (TSA) can benefit from tractography in the normalized DTI for statistical parametric mapping in specific WM pathways. It is well known that the preservation of tensor orientations at the individual voxel level is enforced in tensor based registrations. However small reorientation errors at individual voxel level can accumulate and could potentially affect the tractography results adversely. To our knowledge, there has been no study investigating the effects of normalization on consistency of tractography that demands non-local preservation of tensor orientations which is not explicitly enforced in typical DTI spatial normalization routines. This study aims to evaluate and compare tract reconstructions obtained using normalized DTI against those obtained using native DTI. Although tractography results have been used to measure and influence the quality of spatial normalization, the presented study addresses a distinct question: whether non-linear spatial normalization preserves even long-range anatomical connections obtained using tractography for accurate reconstructions of pathways. Our results demonstrate that spatial normalization of DTI data does preserve tract reconstructions of major WM pathways and does not alter the variance (individual differences) of their macro and microstructural properties. This suggests one can extract quantitative and shape properties efficiently from the tractography data in the normalized DTI for performing population statistics on major WM pathways. PMID:24163728

Adluru, Nagesh; Zhang, Hui; Tromp, Do P. M.; Alexander, Andrew L.

2013-01-01

285

Gray and white matter reduction in hyposmic subjects--A voxel-based morphometry study.  

PubMed

The absence of olfactory input causes structural brain remodelling in humans. Mainly, the olfactory bulb and cortical olfactory areas are involved in this process. The aim of our study was to investigate volume changes of the gray and white matter in a group of subjects with an impaired but not complete loss of olfaction (hyposmia). Magnetic resonance images of hyposmic subjects and an age- and sex-matched control group were acquired on a 3T scanner. Voxel-based morphometry (VBM) was performed using VBM8 toolbox and SPM8 in a Matlab environment. The analysis revealed significant gray matter volume loss in the insular cortex, anterior cingulate cortex, orbitofrontal cortex, cerebellum, fusiform gyrus, precuneus, middle temporal gyrus and piriform cortex. In the VBM white matter analysis areas of volume loss were found underneath the insular cortex, in the cerebellum and middle frontal gyrus. All areas of white matter atrophy were spatially connected to areas of gray matter volume loss except the middle frontal gyrus alterations. No significant gray or white matter volume increases could be observed. The pattern of gray matter alterations was similar to that known from anosmic subjects with a lower extent. To our knowledge, we report here for the first time on white matter volume alterations in patients with olfactory deficit. PMID:20553879

Bitter, Thomas; Brüderle, Johanna; Gudziol, Hilmar; Burmeister, Hartmut Peter; Gaser, Christian; Guntinas-Lichius, Orlando

2010-08-01

286

Etiology of Cortical and White Matter Lesions in Cyclosporin-A and FK-506 Neurotoxicity  

Microsoft Academic Search

BACKGROUND AND PURPOSE: The etiology of the neurotoxicity associated with cyclo- sporin-A (CsA) and FK-506 treatment is not fully understood. At our institution, we noticed a distinct, abrupt change in the imaging characteristics of CsA and FK-506 neurotoxicity, which consisted of a shift in lesion morphology from a white matter abnormality to a mixed cortical and white matter pattern. The

Walter S. Bartynski; Zella Zeigler; Michael P. Spearman; Luke Lin; Richard K. Shadduck; John Lister

2001-01-01

287

Does Hook Choice Matter? Effects of Three Circle Hook Models on Postrelease Survival of White Marlin  

E-print Network

Does Hook Choice Matter? Effects of Three Circle Hook Models on Postrelease Survival of White hooks with natural baits resulted in a highly significant increase in white marlin postrelease survival relative to the use of straight-shank (J-type) hooks with natural baits. However, several models of circle

Newman, Michael C.

288

White-etching matter in bearing steel Part 2: Distinguishing cause and eect in bearing steel  

E-print Network

White-etching matter in bearing steel Part 2: Distinguishing cause and eect in bearing steel of Cambridge, U.K Abstract The premature failure of large bearings of the type used in wind turbines, possibly as reported observations on real bearings. Evidence suggests that the formation mechanism of the white

Cambridge, University of

289

Long-Term Intermittent Hypoxia Elevates Cobalt Levels in the Brain and Injures White Matter in Adult Mice  

PubMed Central

Study Objectives: Exposure to the variable oxygenation patterns in obstructive sleep apnea (OSA) causes oxidative stress within the brain. We hypothesized that this stress is associated with increased levels of redox-active metals and white matter injury. Design: Participants were randomly allocated to a control or experimental group (single independent variable). Setting: University animal house. Participants: Adult male C57BL/6J mice. Interventions: To model OSA, mice were exposed to long-term intermittent hypoxia (LTIH) for 10 hours/day for 8 weeks or sham intermittent hypoxia (SIH). Measurements and Results: Laser ablation-inductively coupled plasma-mass spectrometry was used to quantitatively map the distribution of the trace elements cobalt, copper, iron, and zinc in forebrain sections. Control mice contained 62 ± 7 ng cobalt/g wet weight, whereas LTIH mice contained 5600 ± 600 ng cobalt/g wet weight (P < 0.0001). Other elements were unchanged between conditions. Cobalt was concentrated within white matter regions of the brain, including the corpus callosum. Compared to that of control mice, the corpus callosum of LTIH mice had significantly more endoplasmic reticulum stress, fewer myelin-associated proteins, disorganized myelin sheaths, and more degenerated axon profiles. Because cobalt is an essential component of vitamin B12, serum methylmalonic acid (MMA) levels were measured. LTIH mice had low MMA levels (P < 0.0001), indicative of increased B12 activity. Conclusions: Long-term intermittent hypoxia increases brain cobalt, predominantly in the white matter. The increased cobalt is associated with endoplasmic reticulum stress, myelin loss, and axonal injury. Low plasma methylmalonic acid levels are associated with white matter injury in long-term intermittent hypoxia and possibly in obstructive sleep apnea. Citation: Veasey SC; Lear J; Zhu Y; Grinspan JB; Hare DJ; Wang S; Bunch D; Doble PA; Robinson SR. Long-term intermittent hypoxia elevates cobalt levels in the brain and injures white matter in adult mice. SLEEP 2013;36(10):1471-1481. PMID:24082306

Veasey, Sigrid C.; Lear, Jessica; Zhu, Yan; Grinspan, Judith B.; Hare, Dominic J.; Wang, SiHe; Bunch, Dustin; Doble, Philip A.; Robinson, Stephen R.

2013-01-01

290

Periodic lateralized epileptiform discharges (PLEDs) in cerebral lupus correlated with white-matter lesions in brain MRI and reduced cerebral blood flow in SPECT.  

PubMed

This is a case report on an uncommon correlation between periodic lateralized epileptiform discharges (PLEDs) and white-matter lesions in cerebral lupus, and with a reduced cerebral blood flow (CBF) in single-photon emission computed tomography (SPECT). A 47-year-old woman with a long-term history of systemic lupus erythematosus (SLE) presented with a seizure followed by frontal lobe dysfunction clinically. An electroencephalogram (EEG) showed bilateral independent PLEDs in the frontal region. A magnetic resonance image of the brain showed white-matter changes in the frontal periventricular region. Cerebral angiogram did not reveal any evidence of vasculitis. A cerebral SPECT with tracer injected during the EEG showing PLEDs showed a reduction in CBF in the frontal regions. Clinical recovery was observed with intravenous immunoglobulin. This case shows that PLEDs can be seen with white-matter changes in SLE. PMID:23358870

Aye, S M M; Lim, K S; Ramli, N M; Tan, C T

2013-04-01

291

Altered White Matter Integrity in the Congenital and Late Blind People  

PubMed Central

The blind subjects have experienced a series of brain structural and functional alterations due to the visual deprivation. It remains unclear as to whether white matter changes differ between blind subjects with visual deprivation before and after a critical developmental period. The present study offered a direct comparison in changes of white matter fractional anisotropy (FA) between congenital blind (CB) and late blind (LB) individuals. Twenty CB, 21 LB (blindness onset after 18 years old), and 40 sight control (SC) subjects were recruited. Both the tract-based spatial statistics (TBSS) and voxel-based analysis (VBA) showed lower FA in the bilateral optic radiations in both blind groups, suggesting that the loss of white matter integrity was the prominent hallmark in the blind people. The LB group showed more extensive white matter impairment than the CB group, indicating the mechanisms of white matter FA changes are different between the CB and LB groups. Using a loose threshold, a trend of an increased FA was found in the bilateral corticospinal tracts in the LB but with a smaller spatial extent relative to the CB. These results suggest that white matter FA changes in the blind subjects are the reflection of multiple mechanisms, including the axonal degeneration, deafferentation, and plasticity. PMID:23710371

Wang, Dawei; Qin, Wen; Liu, Yong; Zhang, Yunting; Jiang, Tianzi; Yu, Chunshui

2013-01-01

292

Effects of White Matter Injury on Resting State fMRI Measures in Prematurely Born Infants  

PubMed Central

The cerebral white matter is vulnerable to injury in very preterm infants (born prior to 30 weeks gestation), resulting in a spectrum of lesions. These range from severe forms, including cystic periventricular leukomalacia and periventricular hemorrhagic infarction, to minor focal punctate lesions. Moderate to severe white matter injury in preterm infants has been shown to predict later neurodevelopmental disability, although outcomes can vary widely in infants with qualitatively comparable lesions. Resting state functional connectivity magnetic resonance imaging has been increasingly utilized in neurodevelopmental investigations and may provide complementary information regarding the impact of white matter injury on the developing brain. We performed resting state functional connectivity magnetic resonance imaging at term equivalent postmenstrual age in fourteen preterm infants with moderate to severe white matter injury secondary to periventricular hemorrhagic infarction. In these subjects, resting state networks were identifiable throughout the brain. Patterns of aberrant functional connectivity were observed and depended upon injury severity. Comparisons were performed against data obtained from prematurely-born infants with mild white matter injury and healthy, term-born infants and demonstrated group differences. These results reveal structural-functional correlates of preterm white matter injury and carry implications for future investigations of neurodevelopmental disability. PMID:23874510

Smyser, Christopher D.; Snyder, Abraham Z.; Shimony, Joshua S.; Blazey, Tyler M.; Inder, Terrie E.; Neil, Jeffrey J.

2013-01-01

293

A tract-specific framework for white matter morphometry combining macroscopic and microscopic tract features  

PubMed Central

Diffusion tensor imaging plays a key role in our understanding of white matter both in normal populations and in populations with brain disorders. Existing techniques focus primarily on using diffusivity-based quantities derived from diffusion tensor as surrogate measures of microstructural tissue properties of white matter. In this paper, we describe a novel tract-specific framework that enables the examination of white matter morphometry at both the macroscopic and microscopic scales. The framework leverages the skeleton-based modeling of sheet-like white matter fasciculi using the continuous medial representation, which gives a natural definition of thickness and supports its comparison across subjects. The thickness measure provides a macroscopic characterization of white matter fasciculi that complements existing analysis of microstructural features. The utility of the framework is demonstrated in quantifying white matter atrophy in Amyotrophic Lateral Sclerosis, a severe neurodegenerative disease of motor neurons. We show that, compared to using microscopic features alone, combining the macroscopic and microscopic features gives a more complete characterization of the disease. PMID:20547469

Zhang, Hui; Awatea, Suyash P; Das, Sandhitsu R; Woo, John H; Melhem, Elias R; Gee, James C; Yushkevich, Paul A

2010-01-01

294

White matter integrity is associated with alcohol cue reactivity in heavy drinkers  

PubMed Central

Neuroimaging studies have shown that white matter damage accompanies excessive alcohol use, but the functional correlates of alcohol-related white matter disruption remain unknown. This study applied tract-based spatial statistics (TBSS) to diffusion tensor imaging (DTI) data from 332 heavy drinkers (mean age = 31.2 ± 9.4; 31% female) to obtain averaged fractional anisotropy (FA) values of 18 white matter tracts. Statistical analyses examined correlations of FA values with blood-oxygenation-level-dependent (BOLD) response to an alcohol taste cue, measured with functional magnetic resonance imaging (fMRI). FA values of nine white matter tracts (anterior corona radiata, body of corpus callosum, cingulate gyrus, external capsule, fornix, inferior frontooccipital fasciculus, posterior corona radiata, retrolenticular limb of internal capsule, and superior longitudinal fasciculus) were significantly, negatively correlated with BOLD activation in medial frontal gyrus, parahippocampal gyrus, fusiform gyrus, cingulum, thalamus, caudate, putamen, insula, and cerebellum. The inverse relation between white matter integrity and functional activation during the alcohol taste cue provides support for the hypothesis that lower white matter integrity in frontoparietal and corticolimbic networks is a factor in loss of control over alcohol consumption. PMID:24683509

Monnig, Mollie A; Thayer, Rachel E; Caprihan, Arvind; Claus, Eric D; Yeo, Ronald A; Calhoun, Vince D; Hutchison, Kent E

2014-01-01

295

Vestibular Loss and Balance Training Cause Similar Changes in Human Cerebral White Matter Fractional Anisotropy  

PubMed Central

Patients with bilateral vestibular loss suffer from severe balance deficits during normal everyday movements. Ballet dancers, figure skaters, or slackliners, in contrast, are extraordinarily well trained in maintaining balance for the extreme balance situations that they are exposed to. Both training and disease can lead to changes in the diffusion properties of white matter that are related to skill level or disease progression respectively. In this study, we used diffusion tensor imaging (DTI) to compare white matter diffusivity between these two study groups and their age- and sex-matched controls. We found that vestibular patients and balance-trained subjects show a reduction of fractional anisotropy in similar white matter tracts, due to a relative increase in radial diffusivity (perpendicular to the main diffusion direction). Reduced fractional anisotropy was not only found in sensory and motor areas, but in a widespread network including long-range connections, limbic and association pathways. The reduced fractional anisotropy did not correlate with any cognitive, disease-related or skill-related factors. The similarity in FA between the two study groups, together with the absence of a relationship between skill or disease factors and white matter changes, suggests a common mechanism for these white matter differences. We propose that both study groups must exert increased effort to meet their respective usual balance requirements. Since balance training has been shown to effectively reduce the symptoms of vestibular failure, the changes in white matter shown here may represent a neuronal mechanism for rehabilitation. PMID:24776524

Hummel, Nadine; Hüfner, Katharina; Stephan, Thomas; Linn, Jennifer; Kremmyda, Olympia; Brandt, Thomas; Flanagin, Virginia L.

2014-01-01

296

White matter hypoperfusion and damage in dementia: post-mortem assessment.  

PubMed

Neuroimaging has revealed a range of white matter abnormalities that are common in dementia, some that predict cognitive decline. The abnormalities may result from structural diseases of the cerebral vasculature, such as arteriolosclerosis and amyloid angiopathy, but can also be caused by nonstructural vascular abnormalities (eg, of vascular contractility or permeability), neurovascular instability or extracranial cardiac or vascular disease. Conventional histopathological assessment of the white matter has tended to conflate morphological vascular abnormalities with changes that reflect altered interstitial fluid dynamics or white matter ischemic damage, even though the latter may be of extracranial or nonstructural etiology. However, histopathology is being supplemented by biochemical approaches, including the measurement of proteins involved in the molecular responses to brain ischemia, myelin proteins differentially susceptible to ischemic damage, vessel-associated proteins that allow rapid measurement of microvessel density, markers of blood-brain barrier dysfunction and axonal injury, and mediators of white matter damage. By combining neuroimaging with histopathology and biochemical analysis, we can provide reproducible, quantitative data on the severity of white matter damage, and information on its etiology and pathogenesis. Together these have the potential to inform and improve treatment, particularly in forms of dementia to which white matter hypoperfusion makes a significant contribution. PMID:25521180

Love, Seth; Miners, J Scott

2015-01-01

297

Nociceptin/orphanin FQ exacerbates excitotoxic white-matter lesions in the murine neonatal brain  

PubMed Central

Intracerebral administration of the excitotoxin ibotenate to newborn mice induces white-matter lesions, mimicking brain lesions that occur in human preterm infants. Nociceptin (NC), also called orphanin FQ, is the endogenous ligand of the opioid receptor-like 1 (ORL1) receptor and does not bind classical high-affinity opioid receptors. In the present study, administration of NC exacerbated ibotenate-induced white-matter lesions while coadministration of ibotenate with either of two NC antagonists reduced excitotoxic white-matter lesions by up to 64%. Neither ibotenate plus endomorphin I (a selective ? receptor agonist), nor ibotenate plus naloxone (a classical opioid receptor antagonist) modulated the excitotoxic lesion. Pretreatment with antisense oligonucleotides targeting the NC precursor peptide mRNA significantly reduced ibotenate-induced white-matter damage. Finally, high doses of fentanyl, which stimulates both classical ? opioid receptors and ORL1, exacerbated excitotoxic white-matter lesion. This toxic effect was blocked by inhibiting ORL1 but not classical opioid receptors. Together, these findings show that endogenous or exogenous stimulation of the ORL1 receptor can be neurotoxic and that blocking NC signaling protects the white matter against excitotoxic challenge. These data point to potential new avenues for neuroprotection in human preterm infants at high risk of brain lesions. PMID:11181645

Laudenbach, Vincent; Calo, Girolamo; Guerrini, Remo; Lamboley, Géraldine; Benoist, Jean-François; Evrard, Philippe; Gressens, Pierre

2001-01-01

298

Modality-spanning deficits in attention-deficit/hyperactivity disorder in functional networks, gray matter, and white matter.  

PubMed

Previous neuroimaging investigations in attention-deficit/hyperactivity disorder (ADHD) have separately identified distributed structural and functional deficits, but interconnections between these deficits have not been explored. To unite these modalities in a common model, we used joint independent component analysis, a multivariate, multimodal method that identifies cohesive components that span modalities. Based on recent network models of ADHD, we hypothesized that altered relationships between large-scale networks, in particular, default mode network (DMN) and task-positive networks (TPNs), would co-occur with structural abnormalities in cognitive regulation regions. For 756 human participants in the ADHD-200 sample, we produced gray and white matter volume maps with voxel-based morphometry, as well as whole-brain functional connectomes. Joint independent component analysis was performed, and the resulting transmodal components were tested for differential expression in ADHD versus healthy controls. Four components showed greater expression in ADHD. Consistent with our a priori hypothesis, we observed reduced DMN-TPN segregation co-occurring with structural abnormalities in dorsolateral prefrontal cortex and anterior cingulate cortex, two important cognitive control regions. We also observed altered intranetwork connectivity in DMN, dorsal attention network, and visual network, with co-occurring distributed structural deficits. There was strong evidence of spatial correspondence across modalities: For all four components, the impact of the respective component on gray matter at a region strongly predicted the impact on functional connectivity at that region. Overall, our results demonstrate that ADHD involves multiple, cohesive modality spanning deficits, each one of which exhibits strong spatial overlap in the pattern of structural and functional alterations. PMID:25505309

Kessler, Daniel; Angstadt, Michael; Welsh, Robert C; Sripada, Chandra

2014-12-10

299

Reconstruction of White Matter Tracts via Repeated Deterministic Streamline Tracking – Initial Experience  

PubMed Central

Diffusion Tensor Imaging (DTI) and fiber tractography are established methods to reconstruct major white matter tracts in the human brain in-vivo. Particularly in the context of neurosurgical procedures, reliable information about the course of fiber bundles is important to minimize postoperative deficits while maximizing the tumor resection volume. Since routinely used deterministic streamline tractography approaches often underestimate the spatial extent of white matter tracts, a novel approach to improve fiber segmentation is presented here, considering clinical time constraints. Therefore, fiber tracking visualization is enhanced with statistical information from multiple tracking applications to determine uncertainty in reconstruction based on clinical DTI data. After initial deterministic fiber tracking and centerline calculation, new seed regions are generated along the result’s midline. Tracking is applied to all new seed regions afterwards, varying in number and applied offset. The number of fibers passing each voxel is computed to model different levels of fiber bundle membership. Experimental results using an artificial data set of an anatomical software phantom are presented, using the Dice Similarity Coefficient (DSC) as a measure of segmentation quality. Different parameter combinations were classified to be superior to others providing significantly improved results with DSCs of 81.02%±4.12%, 81.32%±4.22% and 80.99%±3.81% for different levels of added noise in comparison to the deterministic fiber tracking procedure using the two-ROI approach with average DSCs of 65.08%±5.31%, 64.73%±6.02% and 65.91%±6.42%. Whole brain tractography based on the seed volume generated by the calculated seeds delivers average DSCs of 67.12%±0.86%, 75.10%±0.28% and 72.91%±0.15%, original whole brain tractography delivers DSCs of 67.16%, 75.03% and 75.54%, using initial ROIs as combined include regions, which is clearly improved by the repeated fiber tractography method. PMID:23671656

Bauer, Miriam H. A.; Kuhnt, Daniela; Barbieri, Sebastiano; Klein, Jan; Becker, Andreas; Freisleben, Bernd; Hahn, Horst K.; Nimsky, Christopher

2013-01-01

300

Concordance of white matter and gray matter abnormalities in autism spectrum disorders: a voxel-based meta-analysis study.  

PubMed

There are at least two fundamental unanswered questions in the literature on autism spectrum disorders (ASD): Are abnormalities in white (WM) and gray matter (GM) consistent with one another? Are WM morphometric alterations consistent with alterations in the GM of regions connected by these abnormal WM bundles and vice versa? The aim of this work is to bridge this gap. After selecting voxel-based morphometry and diffusion tensor imaging studies comparing autistic and normally developing groups of subjects, we conducted an activation likelihood estimation (ALE) meta-analysis to estimate consistent brain alterations in ASD. Multidimensional scaling was used to test the similarity of the results. The ALE results were then analyzed to identify the regions of concordance between GM and WM areas. We found statistically significant topological relationships between GM and WM abnormalities in ASD. The most numerous were negative concordances, found bilaterally but with a higher prevalence in the right hemisphere. Positive concordances were found in the left hemisphere. Discordances reflected the spatial distribution of negative concordances. Thus, a different hemispheric contribution emerged, possibly related to pathogenetic factors affecting the right hemisphere during early developmental stages. Besides, WM fiber tracts linking the brain structures involved in social cognition showed abnormalities, and most of them had a negative concordance with the connected GM regions. We interpreted the results in terms of altered brain networks and their role in the pervasive symptoms dramatically impairing communication and social skills in ASD patients. PMID:23894001

Cauda, Franco; Costa, Tommaso; Palermo, Sara; D'Agata, Federico; Diano, Matteo; Bianco, Francesca; Duca, Sergio; Keller, Roberto

2014-05-01

301

Combining Fiber Dissection, Plastination, and Tractography for Neuroanatomical Education: Revealing the Cerebellar Nuclei and Their White Matter Connections  

ERIC Educational Resources Information Center

In recent years, there has been a growing interest in white matter anatomy of the human brain. With advances in brain imaging techniques, the significance of white matter integrity for brain function has been demonstrated in various neurological and psychiatric disorders. As the demand for interpretation of clinical and imaging data on white

Arnts, Hisse; Kleinnijenhuis, Michiel; Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; van Cappellen van Walsum, Anne-Marie

2014-01-01

302

White Matter Lesions and Brain Gray Matter Volume in Cognitively Normal Elders  

PubMed Central

Objectives Cerebral white matter lesions (WMLs) reflect small vessel disease, are common in elderly individuals and are associated with cognitive impairment. We sought to determine the relationships between WMLs, age, gray matter (GM) volume, and cognition in the Cardiovascular Health Study (CHS). Methods From the CHS we selected 740 cognitively normal controls with a 1.5 T MRI scan of the brain and a detailed diagnostic evaluation. WML severity was determined using a standardized visual rating system. GM volumes were analyzed using voxel-based morphometry implemented in the Statistical Parametric Mapping software. Results WMLs were inversely correlated with GM volume, with the greatest volume loss in the frontal cortex. Age related atrophy was observed in the hippocampus and posterior cingulate cortex. Regression analyses revealed links among age, APOE*4 allele, hypertension, WMLs, GM volume, and digit symbol substitution test scores. Conclusions Both advancing age and hypertension predict higher WML load, which is itself associated with GM atrophy. Longitudinal data are needed to confirm the temporal sequence of events leading to a decline in cognitive function. PMID:21943959

Raji, Cyrus A.; Lopez, Oscar L.; Kuller, Lewis H.; Carmichael, Owen T.; Longstreth, W. T.; Gach, H. Michael; Boardman, John; Bernick, Charles B.; Thompson, Paul M.; Becker, James T.

2011-01-01

303

A Geometry-Based Particle Filtering Approach to White Matter Tractography  

PubMed Central

We introduce a fibre tractography framework based on a particle filter which estimates a local geometrical model of the underlying white matter tract, formulated as a `streamline flow' using generalized helicoids. The method is not dependent on the diffusion model, and is applicable to diffusion tensor (DT) data as well as to high angular resolution reconstructions. The geometrical model allows for a robust inference of local tract geometry, which, in the context of the causal filter estimation, guides tractography through regions with partial volume effects. We validate the method on synthetic data and present results on two types in vivo data: diffusion tensors and a spherical harmonic reconstruction of the fibre orientation distribution function (fODF). PMID:20879320

Savadjiev, Peter; Rathi, Yogesh; Malcolm, James G.; Shenton, Martha E.; Westin, Carl-Fredrik

2011-01-01

304

Diffusion tensor imaging reveals widespread white matter abnormalities in children and adolescents with myotonic dystrophy type 1.  

PubMed

Diffusion tensor imaging was used to evaluate cerebral white matter in 16 patients (ages 9-18) with myotonic dystrophy type 1 compared to 15 matched controls. Patients with myotonic dystrophy showed abnormalities in mean diffusivity compared to controls in frontal, temporal, parietal, and occipital white matter and in all individual tracts examined. Whole cerebrum mean diffusivity was 8.6 % higher overall in patients with myotonic dystrophy compared to controls. Whole cerebrum fractional anisotropy was also abnormal (10.8 % low overall) in all regions and tracts except corticospinal tracts. Follow-up analysis of parallel and perpendicular diffusivity suggests possible relative preservation of myelin in corticospinal tracts. Correlations between Wechsler working memory performance and mean diffusivity were strong for all regions. Frontal and temporal fractional anisotropy were correlated with working memory as well. Results are consistent with earlier studies demonstrating that significant white matter disturbances are characteristic in young patients with myotonic dystrophy and that these abnormalities are associated with the degree of working memory impairment seen in this disease. PMID:23192171

Wozniak, Jeffrey R; Mueller, Bryon A; Bell, Christopher J; Muetzel, Ryan L; Lim, Kelvin O; Day, John W

2013-04-01

305

Grey and White Matter Correlates of Recent and Remote Autobiographical Memory Retrieval – Insights from the Dementias  

PubMed Central

The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events. PMID:25396740

Irish, Muireann; Hornberger, Michael; El Wahsh, Shadi; Lam, Bonnie Y. K.; Lah, Suncica; Miller, Laurie; Hsieh, Sharpley; Hodges, John R.; Piguet, Olivier

2014-01-01

306

Voxel-Based MRI Intensitometry Reveals Extent of Cerebral White Matter Pathology in Amyotrophic Lateral Sclerosis  

PubMed Central

Amyotrophic lateral sclerosis (ALS) is characterized by progressive loss of upper and lower motor neurons. Advanced MRI techniques such as diffusion tensor imaging have shown great potential in capturing a common white matter pathology. However the sensitivity is variable and diffusion tensor imaging is not yet applicable to the routine clinical environment. Voxel-based morphometry (VBM) has revealed grey matter changes in ALS, but the bias-reducing algorithms inherent to traditional VBM are not optimized for the assessment of the white matter changes. We have developed a novel approach to white matter analysis, namely voxel-based intensitometry (VBI). High resolution T1-weighted MRI was acquired at 1.5 Tesla in 30 ALS patients and 37 age-matched healthy controls. VBI analysis at the group level revealed widespread white matter intensity increases in the corticospinal tracts, corpus callosum, sub-central, frontal and occipital white matter tracts and cerebellum. VBI results correlated with disease severity (ALSFRS-R) and patterns of cerebral involvement differed between bulbar- and limb-onset. VBI would be easily translatable to the routine clinical environment, and once optimized for individual analysis offers significant biomarker potential in ALS. PMID:25133577

Gaser, Christian; Turner, Martin R.; Tietz, Florian; Ilse, Benjamin; Bokemeyer, Martin; Witte, Otto W.; Grosskreutz, Julian

2014-01-01

307

Persistent Homological Sparse Network Approach to Detecting White Matter Abnormality in Maltreated Children: MRI and DTI Multimodal Study  

PubMed Central

We present a novel persistent homological sparse network analysis framework for characterizing white matter abnormalities in tensor-based morphometry (TBM) in magnetic resonance imaging (MRI). Traditionally TBM is used in quantifying tissue volume change in each voxel in a massive univariate fashion. However, this obvious approach cannot be used in testing, for instance, if the change in one voxel is related to other voxels. To address this limitation of univariate-TBM, we propose a new persistent homological approach to testing more complex relational hypotheses across brain regions. The proposed methods are applied to characterize abnormal white matter in maltreated children. The results are further validated using fractional anisotropy (FA) values in diffusion tensor imaging (DTI). PMID:24505679

Chung, Moo K.; Hanson, Jamie L.; Lee, Hyekyoung; Adluru, Nagesh; Alexander, Andrew L.; Davidson, Richard J.; Pollak, Seth D.

2014-01-01

308

Community Influences on White Racial Attitudes: What Matters and Why?  

PubMed Central

Tracing the roots of racial attitudes in historical events and individual biographies has been a longstanding goal of race relations scholars. Recent years have seen a new development in racial attitude research: Local community context has entered the spotlight as a potential influence on racial views. The race composition of the locality has been the most common focus; evidence from earlier decades suggests that white Americans are more likely to hold anti-black attitudes if they live in areas where the African American population is relatively large. However, an influential 2000 article argued that the socioeconomic composition of the white community is a more powerful influence on white attitudes: In low-SES locales, “stress-inducing” deprivations and hardships in whites’ own lives purportedly lead them to disparage blacks. The study reported here re-assesses this “scapegoating” claim, using data from the 1998–2002 General Social Surveys linked to 2000 census information about communities. Across many dimensions of racial attitudes, there is pronounced influence of both local racial proportions and college completion rates among white residents. However, the economic dimension of SES exerts negligible influence on white racial attitudes, suggesting that local processes other than scapegoating must be at work. PMID:21910274

Taylor, Marylee C.; Mateyka, Peter J.

2014-01-01

309

Cognitive State following Stroke: The Predominant Role of Preexisting White Matter Lesions  

PubMed Central

Background and purpose Stroke is a major cause of cognitive impairment and dementia in adults, however the role of the ischemic lesions themselves, on top of other risk factors known in the elderly, remains controversial. This study used structural equation modeling to determine the respective impact of the new ischemic lesions' volume, preexisting white matter lesions and white matter integrity on post stroke cognitive state. Methods Consecutive first ever mild to moderate stroke or transient ischemic attack patients recruited into the ongoing prospective TABASCO study underwent magnetic resonance imaging scans within seven days of stroke onset and were cognitively assessed one year after the event using a computerized neuropsychological battery. The volumes of both ischemic lesions and preexisting white matter lesions and the integrity of the normal appearing white matter tissue were measured and their contribution to cognitive state was assessed using structural equation modeling path analysis taking into account demographic parameters. Two models were hypothesized, differing by the role of ischemic lesions' volume. Results Structural equation modeling analysis of 142 patients confirmed the predominant role of white matter lesion volume (standardized path coefficient ??=??0.231) and normal appearing white matter integrity (??=??0.176) on the global cognitive score, while ischemic lesions' volume showed no such effect (??=?0.038). The model excluding the ischemic lesion presented better fit to the data (comparative fit index 0.9 versus 0.092). Conclusions Mild to moderate stroke patients with preexisting white matter lesions are more vulnerable to cognitive impairment regardless of their new ischemic lesions. Thus, these patients can serve as a target group for studies on cognitive rehabilitation and neuro-protective therapies which may, in turn, slow their cognitive deterioration. PMID:25153800

Kliper, Efrat; Ben Assayag, Einor; Tarrasch, Ricardo; Artzi, Moran; Korczyn, Amos D.; Shenhar-Tsarfaty, Shani; Aizenstein, Orna; Hallevi, Hen; Mike, Anat; Shopin, Ludmila; Bornstein, Natan M.; Bashat, Dafna Ben

2014-01-01

310

Relation between variants in the neurotrophin receptor gene, NTRK3, and white matter integrity in healthy young adults  

PubMed Central

The NTRK3 gene (also known as TRKC) encodes a high affinity receptor for the neurotrophin 3?-nucleotidase (NT3), which is implicated in oligodendrocyte and myelin development. We previously found that white matter integrity in young adults related to genetic variants in genes encoding neurotrophins and their receptors. This underscores the importance of neurotrophins for white matter development. NTRK3 variants are putative risk factors for schizophrenia, bipolar disorder, and obsessive-compulsive disorder hoarding, suggesting that some NTRK3 variants may affect the brain. To test this, we scanned 392 healthy adult twins and their siblings (mean age, 23.6 ± 2.2 years; range: 20-29 years) with 105-gradient 4-Tesla diffusion tensor imaging (DTI). We identified 18 single nucleotide polymorphisms (SNPs) in the NTRK3 gene that have been associated with neuropsychiatric disorders. We used a multi-SNP model, adjusting for family relatedness, age, and sex, to relate these variants to voxelwise fractional anisotropy (FA) – a DTI measure of white matter integrity. FA was optimally predicted (based on the highest false discovery rate critical p), by five SNPs (rs1017412, rs2114252, rs16941261, rs3784406, and rs7176429; overall FDR critical p = 0.028). Gene effects were widespread and included the corpus callosum genu and inferior longitudinal fasciculus - regions implicated in several neuropsychiatric disorders and previously associated with other neurotrophin-related genetic variants in an overlapping sample of subjects. NTRK3 genetic variants, and neurotrophins more generally, may influence white matter integrity in brain regions implicated in neuropsychiatric disorders. PMID:23727532

Braskie, Meredith N; Kohannim, Omid; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Toga, Arthur W; Ringman, John M; Montgomery, Grant W; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

2014-01-01

311

High-throughput, automated quantification of white matter neurons in mild malformation of cortical development in epilepsy  

PubMed Central

Introduction In epilepsy, the diagnosis of mild Malformation of Cortical Development type II (mMCD II) predominantly relies on the histopathological assessment of heterotopic neurons in the white matter. The exact diagnostic criteria for mMCD II are still ill-defined, mainly because findings from previous studies were contradictory due to small sample size, and the use of different stains and quantitative systems. Advance in technology leading to the development of whole slide imaging with high-throughput, automated quantitative analysis (WSA) may overcome these differences, and may provide objective, rapid, and reliable quantitation of white matter neurons in epilepsy. This study quantified the density of NeuN immunopositive neurons in the white matter of up to 142 epilepsy and control cases using WSA. Quantitative data from WSA was compared to two other systems, semi-automated quantitation, and the widely accepted method of stereology, to assess the reliability and quality of results from WSA. Results All quantitative systems showed a higher density of white matter neurons in epilepsy cases compared to controls (P?=?0.002). We found that, in particular, WSA with user-defined region of interest (manual) was superior in terms of larger sampled size, ease of use, time consumption, and accuracy in region selection and cell recognition compared to other methods. Using results from WSA manual, we proposed a threshold value for the classification of mMCD II, where 78% of patients now classified with mMCD II were seizure-free at the second post-operatively follow up. Conclusion This study confirms the potential role of WSA in future quantitative diagnostic histology, especially for the histopathological diagnosis of mMCD. PMID:24927775

2014-01-01

312

Relation between variants in the neurotrophin receptor gene, NTRK3, and white matter integrity in healthy young adults.  

PubMed

The NTRK3 gene (also known as TRKC) encodes a high affinity receptor for the neurotrophin 3'-nucleotidase (NT3), which is implicated in oligodendrocyte and myelin development. We previously found that white matter integrity in young adults is related to common variants in genes encoding neurotrophins and their receptors. This underscores the importance of neurotrophins for white matter development. NTRK3 variants are putative risk factors for schizophrenia, bipolar disorder, and obsessive-compulsive disorder hoarding, suggesting that some NTRK3 variants may affect the brain. To test this, we scanned 392 healthy adult twins and their siblings (mean age, 23.6 ± 2.2 years; range: 20-29 years) with 105-gradient 4-Tesla diffusion tensor imaging (DTI). We identified 18 single nucleotide polymorphisms (SNPs) in the NTRK3 gene that have been associated with neuropsychiatric disorders. We used a multi-SNP model, adjusting for family relatedness, age, and sex, to relate these variants to voxelwise fractional anisotropy (FA) - a DTI measure of white matter integrity. FA was optimally predicted (based on the highest false discovery rate critical p), by five SNPs (rs1017412, rs2114252, rs16941261, rs3784406, and rs7176429; overall FDR critical p=0.028). Gene effects were widespread and included the corpus callosum genu and inferior longitudinal fasciculus - regions implicated in several neuropsychiatric disorders and previously associated with other neurotrophin-related genetic variants in an overlapping sample of subjects. NTRK3 genetic variants, and neurotrophins more generally, may influence white matter integrity in brain regions implicated in neuropsychiatric disorders. PMID:23727532

Braskie, Meredith N; Kohannim, Omid; Jahanshad, Neda; Chiang, Ming-Chang; Barysheva, Marina; Toga, Arthur W; Ringman, John M; Montgomery, Grant W; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Thompson, Paul M

2013-11-15

313

Microstructural White Matter Changes, Not Hippocampal Atrophy, Detect Early Amnestic Mild Cognitive Impairment  

PubMed Central

Background Alzheimer’s disease (AD) is generally considered to be characterized by pathology in gray matter of the brain, but convergent evidence suggests that white matter degradation also plays a vital role in its pathogenesis. The evolution of white matter deterioration and its relationship with gray matter atrophy remains elusive in amnestic mild cognitive impairment (aMCI), a prodromal stage of AD. Methods We studied 155 cognitively normal (CN) and 27 ‘late’ aMCI individuals with stable diagnosis over 2 years, and 39 ‘early’ aMCI individuals who had converted from CN to aMCI at 2-year follow up. Diffusion tensor imaging (DTI) tractography was used to reconstruct six white matter tracts three limbic tracts critical for episodic memory function - the fornix, the parahippocampal cingulum, and the uncinate fasciculus; two cortico-cortical association fiber tracts - superior longitudinal fasciculus and inferior longitudinal fasciculus; and one projection fiber tract - corticospinal tract. Microstructural integrity as measured by fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD) and axial diffusivity (AxD) was assessed for these tracts. Results Compared with CN, late aMCI had lower white matter integrity in the fornix, the parahippocampal cingulum, and the uncinate fasciculus, while early aMCI showed white matter damage in the fornix. In addition, fornical measures were correlated with hippocampal atrophy in late aMCI, whereas abnormality of the fornix in early aMCI occurred in the absence of hippocampal atrophy and did not correlate with hippocampal volumes. Conclusions Limbic white matter tracts are preferentially affected in the early stages of cognitive dysfunction. Microstructural degradation of the fornix preceding hippocampal atrophy may serve as a novel imaging marker for aMCI at an early stage. PMID:23516569

Zhuang, Lin; Sachdev, Perminder S.; Trollor, Julian N.; Reppermund, Simone; Kochan, Nicole A.; Brodaty, Henry; Wen, Wei

2013-01-01

314

Unique Transcriptome Patterns of the White and Grey Matter Corroborate Structural and Functional Heterogeneity in the Human Frontal Lobe  

PubMed Central

The human frontal lobe has undergone accelerated evolution, leading to the development of unique human features such as language and self-reflection. Cortical grey matter and underlying white matter reflect distinct cellular compositions in the frontal lobe. Surprisingly little is known about the transcriptomal landscape of these distinct regions. Here, for the first time, we report a detailed transcriptomal profile of the frontal grey (GM) and white matter (WM) with resolution to alternatively spliced isoforms obtained using the RNA-Seq approach. We observed more vigorous transcriptome activity in GM compared to WM, presumably because of the presence of cellular bodies of neurons in the GM and RNA associated with the nucleus and perinuclear space. Among the top differentially expressed genes, we also identified a number of long intergenic non-coding RNAs (lincRNAs), specifically expressed in white matter, such as LINC00162. Furthermore, along with confirmation of expression of known markers for neurons and oligodendrocytes, we identified a number of genes and splicing isoforms that are exclusively expressed in GM or WM with examples of GABRB2 and PAK2 transcripts, respectively. Pathway analysis identified distinct physiological and biochemical processes specific to grey and white matter samples with a prevalence of synaptic processes in GM and myelination regulation and axonogenesis in the WM. Our study also revealed that expression of many genes, for example, the GPR123, is characterized by isoform switching, depending in which structure the gene is expressed. Our report clearly shows that GM and WM have perhaps surprisingly divergent transcriptome profiles, reflecting distinct roles in brain physiology. Further, this study provides the first reference data set for a normal human frontal lobe, which will be useful in comparative transcriptome studies of cerebral disorders, in particular, neurodegenerative diseases. PMID:24194939

Mills, James D.; Kavanagh, Tomas; Kim, Woojin S.; Chen, Bei Jun; Kawahara, Yoshihiro; Halliday, Glenda M.; Janitz, Michael

2013-01-01

315

Widespread decreased grey and white matter in paediatric obsessive-compulsive disorder (OCD): a voxel-based morphometric MRI study.  

PubMed

Obsessive-compulsive disorder (OCD) is a chronic, relapsing anxiety disorder. To date, neuroimaging investigations of OCD have been variable and few studies have examined paediatric populations. Eight children with OCD and 12 typically developing children matched for age, gender, handedness and performance IQ underwent a high resolution T1-weighted structural magnetic resonance imaging (MRI) scan. A voxel-based morphometry (VBM) protocol (using DARTEL) compared the brains of the paediatric OCD children with those of typically developing children. Overall, children with OCD demonstrated significantly lower intra-cranial volume (ICV) and grey- and white-matter volumes. ICV was significantly reduced (?9%) in the OCD group compared with the typically developing group. The VBM analysis demonstrated lower volumes in widespread grey matter in bilateral frontal, cingulate, temporal-parietal, occipital-frontal and right precuneus regions for OCD. Lower white matter volume was found bilaterally in the cingulate and occipital cortex, right frontal and parietal and left temporal regions, and the corpus callosum. In summary, this study provides further evidence of brain dysmorphology in paediatric OCD patients. In addition to fronto-striatal-thalamic neural networks, abnormalities in other brain regions, such as the parietal lobe and corpus callosum, were demonstrated. These brain regions may play an additional role in the pathophysiology of OCD. PMID:23701704

Chen, Jian; Silk, Tim; Seal, Marc; Dally, Karen; Vance, Alasdair

2013-07-30

316

Relating anatomical and social connectivity: white matter microstructure predicts emotional empathy.  

PubMed

Understanding cues to the internal states of others involves a widely distributed network of brain regions. Although white matter (WM) connections are likely crucial for communication between these regions, the role of anatomical connectivity in empathic processing remains unexplored. The present study tested for a relationship between anatomical connectivity and empathy by assessing the WM microstructural correlates of affective empathy, which promotes interpersonal understanding through emotional reactions, and cognitive empathy, which does so via perspective taking. Associations between fractional anisotropy (FA) and the emotional (empathic concern, EC) and cognitive (perspective taking, PT) dimensions of empathy as assessed by the Interpersonal Reactivity Index were examined. EC was positively associated with FA in tracts providing communicative pathways within the limbic system, between perception and action-related regions, and between perception and affect-related regions, independently of individual differences in age, gender, and other dimensions of interpersonal reactivity. These findings provide a neuroanatomical basis for the rapid, privileged processing of emotional sensory information and the automatic elicitation of responses to the affective displays of others. PMID:23162046

Parkinson, Carolyn; Wheatley, Thalia

2014-03-01

317

Hemispheric Asymmetry in White Matter Connectivity of the Temporoparietal Junction with the Insula and Prefrontal Cortex  

PubMed Central

The temporoparietal junction (TPJ) is a key node in the brain's ventral attention network (VAN) that is involved in spatial awareness and detection of salient sensory stimuli, including pain. The anatomical basis of this network's right-lateralized organization is poorly understood. Here we used diffusion-weighted MRI and probabilistic tractography to compare the strength of white matter connections emanating from the right versus left TPJ to target regions in both hemispheres. Symmetry of structural connectivity was evaluated for connections between TPJ and target regions that are key cortical nodes in the right VAN (insula and inferior frontal gyrus) as well as target regions that are involved in salience and/or pain (putamen, cingulate cortex, thalamus). We found a rightward asymmetry in connectivity strength between the TPJ and insula in healthy human subjects who were scanned with two different sets of diffusion-weighted MRI acquisition parameters. This rightward asymmetry in TPJ-insula connectivity was stronger in females than in males. There was also a leftward asymmetry in connectivity strength between the TPJ and inferior frontal gyrus, consistent with previously described lateralization of language pathways. The rightward lateralization of the pathway between the TPJ and insula supports previous findings on the roles of these regions in stimulus-driven attention, sensory awareness, interoception and pain. The findings also have implications for our understanding of acute and chronic pains and stroke-induced spatial hemineglect. PMID:22536413

Kucyi, Aaron; Moayedi, Massieh; Weissman-Fogel, Irit; Hodaie, Mojgan; Davis, Karen D.

2012-01-01

318

Diffusion imaging of cerebral white matter in persons who stutter: evidence for network-level anomalies  

PubMed Central

Deficits in brain white matter have been a main focus of recent neuroimaging studies on stuttering. However, no prior study has examined brain connectivity on the global level of the cerebral cortex in persons who stutter (PWS). In the current study, we analyzed the results from probabilistic tractography between regions comprising the cortical speech network. An anatomical parcellation scheme was used to define 28 speech production-related ROIs in each hemisphere. We used network-based statistic (NBS) and graph theory to analyze the connectivity patterns obtained from tractography. At the network-level, the probabilistic corticocortical connectivity from the PWS group were significantly weaker than that from persons with fluent speech (PFS). NBS analysis revealed significant components in the bilateral speech networks with negative correlations with stuttering severity. To facilitate comparison with previous studies, we also performed tract-based spatial statistics (TBSS) and regional fractional anisotropy (FA) averaging. Results from tractography, TBSS and regional FA averaging jointly highlight the importance of several regions in the left peri-Rolandic sensorimotor and premotor areas, most notably the left ventral premotor cortex (vPMC) and middle primary motor cortex, in the neuroanatomical basis of stuttering. PMID:24611042

Cai, Shanqing; Tourville, Jason A.; Beal, Deryk S.; Perkell, Joseph S.; Guenther, Frank H.; Ghosh, Satrajit S.

2013-01-01

319

Identification of Neonatal White Matter on DTI: Influence of More Inclusive Thresholds for Atlas Segmentation  

PubMed Central

Purpose Semi-automated diffusion tensor imaging (DTI) analysis of white matter (WM) microstructure offers a clinically feasible technique to assess neonatal brain development and provide early prognosis, but is limited by variable methods and insufficient evidence regarding optimal parameters. The purpose of this research was to investigate the influence of threshold values on semi-automated, atlas-based brain segmentation in very-low-birth-weight (VLBW) preterm infants at near-term age. Materials and Methods DTI scans were analyzed from 45 VLBW preterm neonates at near-term-age with no brain abnormalities evident on MRI. Brain regions were selected with a neonatal brain atlas and threshold values: trace <0.006 mm2/s, fractional anisotropy (FA)>0.15, FA>0.20, and FA>0.25. Relative regional volumes, FA, axial diffusivity (AD), and radial diffusivity (RD) were compared for twelve WM regions. Results Near-term brain regions demonstrated differential effects from segmentation with the three FA thresholds. Regional DTI values and volumes selected in the PLIC, CereP, and RLC varied the least with the application of different FA thresholds. Overall, application of higher FA thresholds significantly reduced brain region volume selected, increased variability, and resulted in higher FA and lower RD values. The lower threshold FA>0.15 selected 78±21% of original volumes segmented by the atlas, compared to 38±12% using threshold FA>0.25. Conclusion Results indicate substantial and differential effects of atlas-based DTI threshold parameters on regional volume and diffusion scalars. A lower, more inclusive FA threshold than typically applied for adults is suggested for consistent analysis of WM regions in neonates. PMID:25506943

Vassar, Rachel L.; Barnea-Goraly, Naama; Rose, Jessica

2014-01-01

320

Catechol-O-Methyltransferase Val158Met Polymorphism on the Relationship between White Matter Hyperintensity and Cognition in Healthy People  

PubMed Central

Background White matter lesions can be easily observed on T2-weighted MR images, and are termed white matter hyperintensities (WMH). Their presence may be correlated with cognitive impairment; however, the relationship between regional WMH volume and catechol-O-methyltransferase (COMT) Val158Met polymorphism in healthy populations remains unclear. Methods We recruited 315 ethnic Chinese adults with a mean age of 54.9±21.8 years (range: 21–89 y) to examine the genetic effect of COMT on regional WMH and the manner in which they interact to affect cognitive function in a healthy adult population. Cognitive tests, structural MRI scans, and genotyping of COMT were conducted for each participant. Results Negative correlations between the Digit Span Forward (DSF) score and frontal WMH volumes (r?=??.123, P?=?.032, uncorrected) were noted. For the genetic effect of COMT, no significant difference in cognitive performance was observed among 3 genotypic groups. However, differences in WMH volumes over the subcortical region (P?=?.016, uncorrected), whole brain (P?=?.047, uncorrected), and a trend over the frontal region (P?=?.050, uncorrected) were observed among 3 COMT genotypic groups. Met homozygotes and Met/Val heterozygotes exhibited larger WMH volumes in these brain regions than the Val homozygotes. Furthermore, a correlation between the DSF and regional WMH volume was observed only in Met homozygotes. The effect size (cohen’s f) revealed a small effect. Conclusions The results indicate that COMT might modulate WMH volumes and the effects of WMH on cognition. PMID:24551149

Liu, Mu-En; Huang, Chu-Chung; Yang, Albert C.; Tu, Pei-Chi; Yeh, Heng-Liang; Hong, Chen-Jee; Liou, Ying-Jay; Chen, Jin-Fan; Chou, Kun-Hsien; Lin, Ching-Po; Tsai, Shih-Jen

2014-01-01

321

Associations between White Matter Microstructure and Cognitive Performance in Old and Very Old Age  

PubMed Central

Increasing age is associated with deficits in a wide range of cognitive domains as well as with structural brain changes. Recent studies using diffusion tensor imaging (DTI) have shown that microstructural integrity of white matter is associated with cognitive performance in elderly persons, especially on tests that rely on perceptual speed. We used structural equation modeling to investigate associations between white matter microstructure and cognitive functions in a population-based sample of elderly persons (age ? 60 years), free of dementia, stroke, and neurological disorders (n = 253). Participants underwent a magnetic resonance imaging scan, from which mean fractional anisotropy (FA) and mean diffusivity (MD) of seven white matter tracts were quantified. Cognitive functioning was analyzed according to performance in five task domains (perceptual speed, episodic memory, semantic memory, letter fluency, and category fluency). After controlling for age, FA and MD were exclusively related to perceptual speed. When further stratifying the sample into two age groups, the associations were reliable in the old-old (?78 years) only. This relationship between white matter microstructure and perceptual speed remained significant after excluding persons in a preclinical dementia phase. The observed pattern of results suggests that microstructural white matter integrity may be especially important to perceptual speed among very old adults. PMID:24282593

Laukka, Erika J.; Lövdén, Martin; Kalpouzos, Grégoria; Li, Tie-Qiang; Jonsson, Tomas; Wahlund, Lars-Olof; Fratiglioni, Laura; Bäckman, Lars

2013-01-01

322

Cognitive Processing Speed in Older Adults: Relationship with White Matter Integrity  

PubMed Central

Cognitive processing slows with age. We sought to determine the importance of white matter integrity, assessed by diffusion tensor imaging (DTI), at influencing cognitive processing speed among normal older adults, assessed using a novel battery of computerized, non-verbal, choice reaction time tasks. We studied 131 cognitively normal adults aged 55–87 using a cross-sectional design. Each participant underwent our test battery, as well as MRI with DTI. We carried out cross-subject comparisons using tract-based spatial statistics. As expected, reaction time slowed significantly with age. In diffuse areas of frontal and parietal white matter, especially the anterior corpus callosum, fractional anisotropy values correlated negatively with reaction time. The genu and body of the corpus callosum, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus were among the areas most involved. This relationship was not explained by gray or white matter atrophy or by white matter lesion volume. In a statistical mediation analysis, loss of white matter integrity mediated the relationship between age and cognitive processing speed. PMID:23185621

Kerchner, Geoffrey A.; Racine, Caroline A.; Hale, Sandra; Wilheim, Reva; Laluz, Victor; Miller, Bruce L.; Kramer, Joel H.

2012-01-01

323

Independent component analysis of DTI data reveals white matter covariances in Alzheimer's disease  

NASA Astrophysics Data System (ADS)

Alzheimer's disease (AD) is a progressive neurodegenerative disease with the clinical symptom of the continuous deterioration of cognitive and memory functions. Multiple diffusion tensor imaging (DTI) indices such as fractional anisotropy (FA) and mean diffusivity (MD) can successfully explain the white matter damages in AD patients. However, most studies focused on the univariate measures (voxel-based analysis) to examine the differences between AD patients and normal controls (NCs). In this investigation, we applied a multivariate independent component analysis (ICA) to investigate the white matter covariances based on FA measurement from DTI data in 35 AD patients and 45 NCs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. We found that six independent components (ICs) showed significant FA reductions in white matter covariances in AD compared with NC, including the genu and splenium of corpus callosum (IC-1 and IC-2), middle temporal gyral of temporal lobe (IC-3), sub-gyral of frontal lobe (IC-4 and IC-5) and sub-gyral of parietal lobe (IC-6). Our findings revealed covariant white matter loss in AD patients and suggest that the unsupervised data-driven ICA method is effective to explore the changes of FA in AD. This study assists us in understanding the mechanism of white matter covariant reductions in the development of AD.

Ouyang, Xin; Sun, Xiaoyu; Guo, Ting; Sun, Qiaoyue; Chen, Kewei; Yao, Li; Wu, Xia; Guo, Xiaojuan

2014-03-01

324

Periventricular white matter injury in the premature infant is followed by reduced cerebral cortical gray matter volume at term  

Microsoft Academic Search

Periventricular white matter injury, i.e., periventricular leukomalacia (PVL), the dominant form of brain injury in the premature infant, is the major neuropathological substrate associated with the motor and cognitive deficits observed later in such infants. The nature of the relationship of this lesion to the subsequent cognitive deficits is unclear, but such deficits raise the possibility of cerebral cortical neuronal

Terrie E. Inder; Petra S. Huppi; Simon Warfield; Ron Kikinis; Gary P. Zientara; Patrick D. Barnes; Ferenc Jolesz; Joseph J. Volpe

1999-01-01

325

White matter integrity as a predictor of response to treatment in first episode psychosis.  

PubMed

The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response. PMID:24253201

Reis Marques, Tiago; Taylor, Heather; Chaddock, Chris; Dell'acqua, Flavio; Handley, Rowena; Reinders, A A T Simone; Mondelli, Valeria; Bonaccorso, Stefania; Diforti, Marta; Simmons, Andrew; David, Anthony S; Murray, Robin M; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola

2014-01-01

326

Axonal dysfunction in the deep white matter in Machado-Joseph disease.  

PubMed

We evaluated spectroscopy findings at the deep white matter in Machado-Joseph disease (MJD). We obtained brain MRI and single-voxel proton MR spectroscopy (MRS) over the superior-posterior region of the left hemisphere at the level of the corpus callosum in 40 patients (44.6 +/- 2.3 years-old) and 27 controls (31.4 +/- 3.6 years). Four patients were excluded due to poor quality spectra. We observed a decrease in signal intensity of N-acetylaspartate relative to creatine-phosphocreatine signal (NAA/Cr) in MJD compared to control [1.63 +/- 0.41 (1.15-2.76) versus 1.97 +/- .51 (1.50-2.92); U test = 219.0; P < .001]. No statistical difference was observed in choline-containing compounds relative to creatine (Cho/Cr). There was no significant correlation between NAA/Cr and clinical and genetic variables. Due to the younger age of the control group, we performed a secondary analysis in a subgroup of 15 MJD patients matched by age to 15 controls. Matching was performed blindly to MRS results and subject identification, except for age and sex. A statistically significant difference was observed in NAA/Cr ratios (U test = 44.0; P= .004), as well as Cho/Cr levels (U test = 53.0; P= .014). We conclude that the metabolic abnormalities observed in the deep white matter in MJD suggest extensive neuronal and axonal dysfunction in these patients. PMID:18482370

D'Abreu, Anelyssa; França, Marcondes; Appenzeller, Simone; Lopes-Cendes, Iscia; Cendes, Fernando

2009-01-01

327

Automatic identification of gray and white matter components in polarized light imaging.  

PubMed

Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging. PMID:21875673

Dammers, Jürgen; Breuer, Lukas; Axer, Markus; Kleiner, Melanie; Eiben, Björn; Grässel, David; Dickscheid, Timo; Zilles, Karl; Amunts, Katrin; Shah, N Joni; Pietrzyk, Uwe

2012-01-16

328

The structural plasticity of white matter networks following anterior temporal lobe resection  

PubMed Central

Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy patients before and a mean of 4.5 months after anterior temporal lobe resection. The whole-brain analysis technique tract-based spatial statistics was used to compare pre- and postoperative data in the left and right temporal lobe epilepsy groups separately. We observed widespread, significant, mean 7%, decreases in fractional anisotropy in white matter networks connected to the area of resection, following both left and right temporal lobe resections. However, we also observed a widespread, mean 8%, increase in fractional anisotropy after left anterior temporal lobe resection in the ipsilateral external capsule and posterior limb of the internal capsule, and corona radiata. These findings were confirmed on analysis of the native clusters and hand drawn regions of interest. Postoperative tractography seeded from this area suggests that this cluster is part of the ventro-medial language network. The mean pre- and postoperative fractional anisotropy and parallel diffusivity in this cluster were significantly correlated with postoperative verbal fluency and naming test scores. In addition, the percentage change in parallel diffusivity in this cluster was correlated with the percentage change in verbal fluency after anterior temporal lobe resection, such that the bigger the increase in parallel diffusivity, the smaller the fall in language proficiency after surgery. We suggest that the findings of increased fractional anisotropy in this ventro-medial language network represent structural reorganization in response to the anterior temporal lobe resection, which may damage the more susceptible dorso-lateral language pathway. These findings have important implications for our understanding of brain injury and rehabilitation, and may also prove useful in the prediction and minimization of postoperative language deficits. PMID:20826432

Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.

2010-01-01

329

Correlations between DTI and FLAIR images reveal the relationships of microscopic and macroscopic white matter degeneration in elderly subjects  

NASA Astrophysics Data System (ADS)

Fluid attenuated inversion recovery (FLAIR) detects the T2 prolongation in whiter matter lesions (WML) measured on a macroscopic scale, whereas diffusion tensor imaging (DTI) more specifically detects the white matter (WM) integrity alterations as measured by water diffusion on a microscopic scale. Both techniques have been widely used to evaluate WM changes associated with aging, dementia and cerebral vascular disease, however, the relationship between white matter lesions (FLAIR) and changes of DTI remains largely unknown. We addressed this issue using a voxel based correlation analysis between DTI and FLAIR images acquired from 33 elderly subjects at 4T. The WML volume and intensity were correlated the fraction anisotropy (FA) or mean diffusivity (MD) across all the subjects on a voxelwise basis. Our results revealed that significant DTI-WML correlations occur at regions overlapping the major WML distributions with moderate intensity, and that no significant correlations were detected in periventricular regions where the FLAIR intensities are particularly high. We investigated WM degeneration as a continuum from normal WM to cerebrospinal fluid (CSF) using a two-compartment WM model. The simulation results indicated that the FLAIR intensity of WML reaches a maximum when the lesion severity is around 0.7, which is the same point where correlations between DTI and WML disappear. Based on these findings, WM degeneration in elderly subjects may be better characterized by using regional DTI-WML correlations in different stages of WM degeneration. DTI and FLAIR, taken together improve specificity for characterization of WM degeneration than each measure alone.

Zhan, W.; Zhang, Y.; Lorenzen, P.; Mueller, S. G.; Schuff, N.; Weiner, M. W.

2008-03-01

330

Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties  

PubMed Central

Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE) models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties and on the precise depiction of the tissues’ microstructure (microscopic level). Moreover, since the axonal microstructure for specific regions of the brain white matter is locally oriented, the stress, and strain fields are highly anisotropic and axon orientation dependent. Additionally, mechanical strain has been identified as the proximal cause of axonal injury, which further demonstrates the importance of this multi-scale relationship. In this study, our previously developed FE and kinematic axonal models are coupled and applied to a pseudo 3-dimensional representative volume element of central nervous system white matter to investigate the multi-scale mechanical behavior. An inverse FE procedure was developed to identify material parameters of spinal cord white matter by combining the results of uniaxial testing with FE modeling. A satisfactory balance between simulation and experiment was achieved via optimization by minimizing the squared error between the simulated and experimental force-stretch curve. The combination of experimental testing and FE analysis provides a useful analysis tool for soft biological tissues in general, and specifically enables evaluations of the axonal response to tissue-level loading and subsequent predictions of axonal damage. PMID:25152875

Pan, Yi; Sullivan, Daniel; Shreiber, David I.; Pelegri, Assimina A.

2013-01-01

331

Early musical training and white-matter plasticity in the corpus callosum: evidence for a sensitive period.  

PubMed

Training during a sensitive period in development may have greater effects on brain structure and behavior than training later in life. Musicians are an excellent model for investigating sensitive periods because training starts early and can be quantified. Previous studies suggested that early training might be related to greater amounts of white matter in the corpus callosum, but did not control for length of training or identify behavioral correlates of structural change. The current study compared white-matter organization using diffusion tensor imaging in early- and late-trained musicians matched for years of training and experience. We found that early-trained musicians had greater connectivity in the posterior midbody/isthmus of the corpus callosum and that fractional anisotropy in this region was related to age of onset of training and sensorimotor synchronization performance. We propose that training before the age of 7 years results in changes in white-matter connectivity that may serve as a scaffold upon which ongoing experience can build. PMID:23325263

Steele, Christopher J; Bailey, Jennifer A; Zatorre, Robert J; Penhune, Virginia B

2013-01-16

332

Mechanisms of Injury to White Matter Adjacent to a Large Intraventricular Hemorrhage in the Preterm Brain  

PubMed Central

The purpose of this article is to investigate the hyperechoic lesion seen adjacent to a lateral ventricle that contains blood but is not distended. The literature on ependymal barrier dysfunction was reviewed in search of mechanisms of injury to the white matter adjacent to an intraventricular hemorrhage. The clinical literature on the clinical diagnosis of periventricular hemorrhagic infarction was also reviewed to find out how frequently this diagnosis was made. Support was found for the possibility that the ventricular wall does not always function as an efficient barrier, allowing ventricular contents to gain access to the white matter where they cause damage. Hemorrhagic infarction may not be the only or the most frequent mechanism of white matter damage adjacent to a large intraventricular hemorrhage. PMID:20232402

Adler, Ira; Batton, Dan; Betz, Bradford; Bezinque, Steven; Ecklund, Kirsten; Junewick, Joseph; McCauley, Roy; Miller, Cindy; Seibert, Joanna; Specter, Barbara; Westra, Sjirk

2010-01-01

333

Automatic clustering and population analysis of white matter tracts using maximum density paths.  

PubMed

We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches. PMID:24747738

Prasad, Gautam; Joshi, Shantanu H; Jahanshad, Neda; Villalon-Reina, Julio; Aganj, Iman; Lenglet, Christophe; Sapiro, Guillermo; McMahon, Katie L; de Zubicaray, Greig I; Martin, Nicholas G; Wright, Margaret J; Toga, Arthur W; Thompson, Paul M

2014-08-15

334

White matter in the older brain is more plastic than in the younger brain.  

PubMed

Visual perceptual learning (VPL) with younger subjects is associated with changes in functional activation of the early visual cortex. Although overall brain properties decline with age, it is unclear whether these declines are associated with visual perceptual learning. Here we use diffusion tensor imaging to test whether changes in white matter are involved in VPL for older adults. After training on a texture discrimination task for three daily sessions, both older and younger subjects show performance improvements. While the older subjects show significant changes in fractional anisotropy (FA) in the white matter beneath the early visual cortex after training, no significant change in FA is observed for younger subjects. These results suggest that the mechanism for VPL in older individuals is considerably different from that in younger individuals and that VPL of older individuals involves reorganization of white matter. PMID:25407566

Yotsumoto, Yuko; Chang, Li-Hung; Ni, Rui; Pierce, Russell; Andersen, George J; Watanabe, Takeo; Sasaki, Yuka

2014-01-01

335

Bound Pool Fractions Complement Diffusion Measures to Describe White Matter Micro and Macrostructure  

PubMed Central

Diffusion imaging and bound pool fraction (BPF) mapping are two quantitative magnetic resonance imaging techniques that measure microstructural features of the white matter of the brain. Diffusion imaging provides a quantitative measure of the diffusivity of water in tissue. BPF mapping is a quantitative magnetization transfer (qMT) technique that estimates the proportion of exchanging protons bound to macromolecules, such as those found in myelin, and is thus a more direct measure of myelin content than diffusion. In this work, we combine BPF estimates of macromolecular content with measurements of diffusivity within human white matter tracts. Within the white matter, the correlation between BPFs and diffusivity measures such as fractional anisotropy and radial diffusivity was modest, suggesting that diffusion tensor imaging and bound pool fractions are complementary techniques. We found that several major tracts have high BPF, suggesting a higher density of myelin in these tracts. We interpret these results in the context of a quantitative tissue model. PMID:20828622

Stikov, Nikola; Perry, Lee M.; Mezer, Aviv; Rykhlevskaia, Elena; Wandell, Brian A.; Pauly, John M.; Dougherty, Robert F.

2010-01-01

336

Aging Effects on Recollection and Familiarity: The Role of White Matter Hyperintensities  

PubMed Central

Previous studies have indicated that aging is associated with declines in recollection whereas familiarity-based recognition is left largely unaffected. The brain changes underlying these recollection declines are yet not well understood. In the current study we examined the role of white matter integrity as measured by white matter hyperintensities (WMH) on age-related changes in recollection and familiarity. Recognition was measured using a remember/know procedure (Experiment 1) and a source-memory process-dissociation procedure (Experiment 2). Robust age related declines in recollection were observed, but there was no evidence that white matter damage was related to the observed memory declines. Although future studies with larger samples will be necessary to fully characterize the role of WMH in normal age-related declines in different types of memory, the results suggest that declines in recollection are not strongly related to the brain changes indexed by WMHs. PMID:20175007

Parks, Colleen M.; Decarli, Charles; Jacoby, Larry L.; Yonelinas, Andrew P.

2010-01-01

337

Microstructural Integrity of Early- vs. Late-Myelinating White Matter Tracts in Medial Temporal Lobe Epilepsy  

PubMed Central

Purpose Patients with medial temporal lobe epilepsy (MTLE) exhibit structural brain damage involving gray (GM) and white matter (WM). The mechanisms underlying tissue loss in MTLE are unclear and may be associated with a combination of seizure excitotoxicity and WM vulnerability. The goal of this study was to investigate whether late-myelinating WM tracts are more vulnerable to injury in MTLE compared with early-myelinating tracts. Methods Diffusional kurtosis imaging scans were obtained from 25 patients with MTLE and from 36 matched healthy controls. Diffusion measures from regions of interest (ROIs) for both late- and early-myelinating WM tracts were analyzed. Regional Z-scores were computed with respect to normal controls to compare WM in early-myelinating tracts versus late-myelinating tracts. Key Findings We observed that late-myelinating tracts exhibited a larger decrease in mean, axial and radial kurtosis compared with early-myelinating tracts. We also observed that the change in radial kurtosis was more pronounced in late-myelinating tracts ipsilateral to the side of seizure onset. Significance These results suggest a developmentally based preferential susceptibility of late-myelinating WM tracts to damage in MTLE. Brain injury in epilepsy may be due to the pathological effects of seizures in combination with regional WM vulnerability. PMID:24032670

Lee, Chu-Yu; Tabesh, Ali; Benitez, Andreana; Helpern, Joseph A; Jensen, Jens H; Bonilha, Leonardo

2013-01-01

338

Increased PK11195-PET binding in normal-appearing white matter in clinically isolated syndrome.  

PubMed

The most accurate predictor of the subsequent development of multiple sclerosis in clinically isolated syndrome is the presence of lesions at magnetic resonance imaging. We used in vivo positron emission tomography with (11)C-(R)-PK11195, a biomarker of activated microglia, to investigate the normal-appearing white matter and grey matter of subjects with clinically isolated syndrome to explore its role in the development of multiple sclerosis. Eighteen clinically isolated syndrome and eight healthy control subjects were recruited. Baseline assessment included: history, neurological examination, expanded disability status scale, magnetic resonance imaging and PK11195-positron emission tomography scans. All assessments except the PK11195-positron emission tomography scan were repeated over 2 years. SUPERPK methodology was used to measure the binding potential relative to the non-specific volume, BPND. We show a global increase of normal-appearing white matter PK11195 BPND in clinically isolated syndrome subjects compared with healthy controls (P = 0.014). Clinically isolated syndrome subjects with T2 magnetic resonance imaging lesions had higher PK11195 BPND in normal-appearing white matter (P = 0.009) and their normal-appearing white matter PK11195 BPND correlated with the Expanded Disability Status Scale (P = 0.007; r = 0.672). At 2 years those who developed dissemination in space or multiple sclerosis, had higher PK11195 BPND in normal-appearing white matter at baseline (P = 0.007 and P = 0.048, respectively). Central grey matter PK11195 BPND was increased in subjects with clinically isolated syndrome compared to healthy controls but no difference was found in cortical grey matter PK11195 BPND. Microglial activation in clinically isolated syndrome normal-appearing white matter is diffusely increased compared with healthy control subjects and is further increased in those who have magnetic resonance imaging lesions. Furthermore microglial activation in clinically isolated syndrome normal-appearing white matter is also higher in those subjects who developed multiple sclerosis at 2 years. Our finding, if replicated in a larger study, could be of prognostic value and aid early treatment decisions in clinically isolated syndrome. PMID:25416179

Giannetti, Paolo; Politis, Marios; Su, Paul; Turkheimer, Federico E; Malik, Omar; Keihaninejad, Shiva; Wu, Kit; Waldman, Adam; Reynolds, Richard; Nicholas, Richard; Piccini, Paola

2015-01-01

339

White matter imaging contributes to the multimodal diagnosis of frontotemporal lobar degeneration  

PubMed Central

Objective: To evaluate the distribution of white matter (WM) disease in frontotemporal lobar degeneration (FTLD) and Alzheimer disease (AD) and to evaluate the relative usefulness of WM and gray matter (GM) for distinguishing these conditions in vivo. Methods: Patients were classified as having FTLD (n = 50) or AD (n = 42) using autopsy-validated CSF values of total-tau:?-amyloid (t-tau:A?1–42) ratios. Patients underwent WM diffusion tensor imaging (DTI) and volumetric MRI of GM. We employed tract-specific analyses of WM fractional anisotropy (FA) and whole-brain GM density analyses. Individual patient classification was performed using receiver operator characteristic (ROC) curves with FA, GM, and a combination of the 2 modalities. Results: Regional FA and GM were significantly reduced in FTLD and AD relative to healthy seniors. Direct comparisons revealed significantly reduced FA in the corpus callosum in FTLD relative to AD. GM analyses revealed reductions in anterior temporal cortex for FTLD relative to AD, and in posterior cingulate and precuneus for AD relative to FTLD. ROC curves revealed that a multimodal combination of WM and GM provide optimal classification (area under the curve = 0.938), with 87% sensitivity and 83% specificity. Conclusions: FTLD and AD have significant WM and GM defects. A combination of DTI and volumetric MRI modalities provides a quantitative method for distinguishing FTLD and AD in vivo. PMID:22592372

Brun, C.; Siddiqui, S.; Churgin, M.; Libon, D.; Yushkevich, P.; Zhang, H.; Boller, A.; Gee, J.; Grossman, M.

2012-01-01

340

Increased apparent diffusion coefficients on MRI linked with matrix metalloproteinases and edema in white matter after bilateral carotid artery occlusion in rats  

Microsoft Academic Search

White matter (WM) injury after bilateral common carotid artery occlusion (BCAO) in rat is associated with disruption of the blood–brain barrier (BBB) by matrix metalloproteinases (MMPs). We hypothesized that WM injury as seen on magnetic resonance imaging (MRI) would correlate with regions of increased MMP activity. MRI was performed 3 days after BCAO surgery in rats. Apparent diffusion coefficients (ADC)

Rohit Sood; Yi Yang; Saeid Taheri; Eduardo Candelario-Jalil; Eduardo Y Estrada; Espen J Walker; Jeffrey Thompson; Gary A Rosenberg

2009-01-01

341

Measurement of Cerebral White Matter Perfusion Using Pseudocontinuous Arterial Spin Labeling 3T Magnetic Resonance Imaging – an Experimental and Theoretical Investigation of Feasibility  

PubMed Central

Purpose This study was aimed to experimentally and numerically investigate the feasibility of measuring cerebral white matter perfusion using pseudocontinuous arterial spin labeling (PCASL) 3T magnetic resonance imaging (MRI) at a relatively fine resolution to mitigate partial volume effect from gray matter. Materials and Methods The Institutional Research Ethics Committee approved this study. On a clinical 3T MR system, ten healthy volunteers (5 females, 5 males, age = 28±3 years) were scanned after providing written informed consent. PCASL imaging was performed with varied combinations of labeling duration (? = 1000, 1500, 2000, and 2500 ms) and post-labeling delay (PLD = 1000, 1400, 1800, and 2200 ms), at a spatial resolution (1.56x1.56x5 mm3) finer than commonly used (3.5x3.5 mm2, 5-8 mm in thickness). Computer simulations were performed to calculate the achievable perfusion-weighted signal-to-noise ratio at varied ?, PLD, and transit delay. Results Based on experimental and numerical data, the optimal ? and PLD were found to be 2000 ms and 1500-1800 ms, respectively, yielding adequate SNR (~2) to support perfusion measurement in the majority (~60%) of white matter. The measurement variability was about 9% in a one-week interval. The measured white matter perfusion and perfusion ratio of gray matter to white matter were 15.8-27.5 ml/100ml/min and 1.8-4.0, respectively, depending on spatial resolution as well as the amount of deep white matter included. Conclusion PCASL 3T MRI is able to measure perfusion in the majority of cerebral white matter at an adequate signal-to-noise ratio by using appropriate tagging duration and post-labeling delay. Although pixel-wise comparison may not be possible, region-of-interest based flow quantification is feasible. PMID:24324822

Wu, Wen-Chau; Lin, Shu-Chi; Wang, Danny J.; Chen, Kuan-Lin; Li, Ying-Ding

2013-01-01

342

Intra-individual variability in information processing speed reflects white matter microstructure in multiple sclerosis?  

PubMed Central

Slowed information processing speed is commonly reported in persons with multiple sclerosis (MS), and is typically investigated using clinical neuropsychological tests, which provide sensitive indices of mean-level information processing speed. However, recent studies have demonstrated that within-person variability or intra-individual variability (IIV) in information processing speed may be a more sensitive indicator of neurologic status than mean-level performance on clinical tests. We evaluated the neural basis of increased IIV in mildly affected relapsing–remitting MS patients by characterizing the relation between IIV (controlling for mean-level performance) and white matter integrity using diffusion tensor imaging (DTI). Twenty women with relapsing–remitting MS and 20 matched control participants completed the Computerized Test of Information Processing (CTIP), from which both mean response time and IIV were calculated. Other clinical measures of information processing speed were also collected. Relations between IIV on the CTIP and DTI metrics of white matter microstructure were evaluated using tract-based spatial statistics. We observed slower and more variable responses on the CTIP in MS patients relative to controls. Significant relations between white matter microstructure and IIV were observed for MS patients. Increased IIV was associated with reduced integrity in more white matter tracts than was slowed information processing speed as measured by either mean CTIP response time or other neuropsychological test scores. Thus, despite the common use of mean-level performance as an index of cognitive dysfunction in MS, IIV may be more sensitive to the overall burden of white matter disease at the microstructural level. Furthermore, our study highlights the potential value of considering within-person fluctuations, in addition to mean-level performance, for uncovering brain–behavior relationships in neurologic disorders with widespread white matter pathology. PMID:24179840

Mazerolle, Erin L.; Wojtowicz, Magdalena A.; Omisade, Antonina; Fisk, John D.

2013-01-01

343

Executive Dysfunction and Left Frontal White Matter Hyperintensities Are Correlated with Neuropsychiatric Symptoms in Stroke Patients with Confluent White Matter Hyperintensities  

Microsoft Academic Search

Background\\/Aims: This study aimed to determine the clinical and neuroimaging correlates of the presence of neuropsychiatric symptoms in stroke patients with age-related confluent white matter hyperintensities (WMH). Methods: The Neuropsychiatric Inventory was utilized to detect the presence of 12 symptoms. Multivariate logistic regression models were used to identify clinical and neuroimaging correlates of the presence of symptoms. Results: Seventy-seven stroke

Vincent C. T. Mok; Adrian Wong; Kelvin Wong; Winnie C. W. Chu; Yunyun Xiong; Anne Y. Y. Chan; Timothy C. Y. Kwok; Xintao Hu; W. K. Lee; Wai-kwong Tang; Ka-sing Lawrence Wong; Stephen Wong

2010-01-01

344

Towards improved animal models of neonatal white matter injury associated with cerebral palsy  

PubMed Central

Newborn neurological injuries are the leading cause of intellectual and motor disabilities that are associated with cerebral palsy. Cerebral white matter injury is a common feature in hypoxic-ischemic encephalopathy (HIE), which affects full-term infants, and in periventricular leukomalacia (PVL), which affects preterm infants. This article discusses recent efforts to model neonatal white matter injury using mammalian systems. We emphasize that a comprehensive understanding of oligodendrocyte development and physiology is crucial for obtaining new insights into the pathobiology of HIE and PVL as well as for the generation of more sophisticated and faithful animal models. PMID:21030421

Silbereis, John C.; Huang, Eric J.; Back, Stephen A.; Rowitch, David H.

2010-01-01

345

Mineral composition of the suspended particulate matter in the White Sea  

NASA Astrophysics Data System (ADS)

The mineral composition of the suspended particulate matter (SPM) was studied for the White Sea area. The comparative analysis of the composition of the marine SMP and the SPM of the rivers of the White Sea catchment area was performed, including the Severnaya Dvina River, one of the major sources of the terrigenous suspended matter to the sea. The research of such kind is faced with numerous methodological difficulties, which slows down the study process. Data on the mineral composition of the SPM are scarce. Applying the method of X-ray powder diffractometry, we assessed the bulk mineral composition of the SPM with special regard to its clay fraction.

Kravchishina, M. D.; Dara, O. M.

2014-05-01

346

Axon-glia Synapses Are Highly Vulnerable to White Matter Injury in the Developing Brain  

PubMed Central

The biology of cerebral white matter injury is woefully understudied, in part due to the difficulty to reliably model this type of injury in rodents. Periventricular leukomalacia (PVL) is the predominant form of brain injury and the most common cause of cerebral palsy in premature infants. PVL is characterized by predominant white matter injury. No specific therapy for PVL is presently available because the pathogenesis is not well understood. Here we report that two types of mouse PVL models have been created by hypoxia-ischemia with or without systemic co-administration of lipopolysaccharide (LPS). LPS co-administration exacerbated hypoxic-ischemic white matter injury and led to enhanced microglial activation and astrogliosis. Drug trials with the anti-inflammatory agent minocycline, the anti-excitotoxic agent NBQX and the antioxidant agent edaravone showed various degrees of protection in the two models, indicating that excitotoxic, oxidative and inflammatory forms of injury are involved in the pathogenesis of injury to immature white matter. We then applied immune-electron microscopy to reveal fine structural changes in the injured white matter, and found that synapses between axons and oligodendroglial precursor cells (OPCs) are quickly and profoundly damaged. Hypoxia-ischemia caused a drastic decrease in the number of postsynaptic densities associated with the glutamatergic axon-OPC synapses defined by the expression of vesicular glutamate transporters, vGluT1 and vGluT2, on axon terminals that formed contacts with OPCs in the periventricular white matter, resulted in selective shrinkage of the postsynaptic OPCs contacted by vGluT2 labeled synapses, and led to excitotoxicity mediated by GluR2-lacking, Ca2+-permeable AMPA receptors. Taken together, the present study provides novel mechanistic insights into the pathogenesis of PVL, and reveals that axon-glia synapses are highly vulnerable to white matter injury in the developing brain. More broadly, the study of white matter development and injury has general implications for a variety of neurological diseases including PVL, stroke, spinal cord injury and multiple sclerosis. PMID:21812016

Shen, Yan; Liu, Xiao-Bo; Pleasure, David E.; Deng, Wenbin

2011-01-01

347

Iron efflux from oligodendrocytes is differentially regulated in gray and white matter.  

PubMed

Accumulation of iron occurs in the CNS in several neurodegenerative diseases. Iron is essential for life but also has the ability to generate toxic free radicals if not properly handled. Iron homeostasis at the cellular level is therefore important to maintain proper cellular function, and its dysregulation can contribute to neurodegenerative diseases. Iron export, a key mechanism to maintain proper levels in cells, occurs via ferroportin, a ubiquitously expressed transmembrane protein that partners with a ferroxidase. A membrane-bound form of the ferroxidase ceruloplasmin is expressed by astrocytes in the CNS and regulates iron efflux. We now show that oligodendrocytes use another ferroxidase, called hephaestin, which was first identified in enterocytes in the gut. Mice with mutations in the hephaestin gene (sex-linked anemia mice) show iron accumulation in oligodendrocytes in the gray matter, but not in the white matter, and exhibit motor deficits. This was accompanied by a marked reduction in the levels of the paranodal proteins contactin-associated protein 1 (Caspr) and reticulon-4 (Nogo A). We show that the sparing of iron accumulation in white matter oligodendrocytes in sex-linked anemia mice is due to compensatory upregulation of ceruloplasmin in these cells. This was further confirmed in ceruloplasmin/hephaestin double-mutant mice, which show iron accumulation in both gray and white matter oligodendrocytes. These data indicate that gray and white matter oligodendrocytes can use different iron efflux mechanisms to maintain iron homeostasis. Dysregulation of such efflux mechanisms leads to iron accumulation in the CNS. PMID:21917813

Schulz, Katrin; Vulpe, Chris D; Harris, Leah Z; David, Samuel

2011-09-14

348

Quantitative MRI assessments of white matter in children treated for acute lymphoblastic leukemia  

NASA Astrophysics Data System (ADS)

The purpose of this study was to use objective quantitative MR imaging methods to prospectively assess changes in the physiological structure of white matter during the temporal evolution of leukoencephalopathy (LE) in children treated for acute lymphoblastic leukemia. The longitudinal incidence, extent (proportion of white matter affect), and intensity (elevation of T1 and T2 relaxation rates) of LE was evaluated for 44 children. A combined imaging set consisting of T1, T2, PD, and FLAIR MR images and white matter, gray matter and CSF a priori maps from a spatially normalized atlas were analyzed with a neural network segmentation based on a Kohonen Self-Organizing Map (SOM). Quantitative T1 and T2 relaxation maps were generated using a nonlinear parametric optimization procedure to fit the corresponding multi-exponential models. A Cox proportional regression was performed to estimate the effect of intravenous methotrexate (IV-MTX) exposure on the development of LE followed by a generalized linear model to predict the probability of LE in new patients. Additional T-tests of independent samples were performed to assess differences in quantitative measures of extent and intensity at four different points in therapy. Higher doses and more courses of IV-MTX placed patients at a higher risk of developing LE and were associated with more intense changes affecting more of the white matter volume; many of the changes resolved after completion of therapy. The impact of these changes on neurocognitive functioning and quality of life in survivors remains to be determined.

Reddick, Wilburn E.; Glass, John O.; Helton, Kathleen J.; Li, Chin-Shang; Pui, Ching-Hon

2005-04-01

349

White matter development in children with benign childhood epilepsy with centro-temporal spikes.  

PubMed

Benign childhood epilepsy with centro-temporal spikes (BCECTS) is a unique form of non-lesional age-dependent epilepsy with rare seizures, focal electroencepalographic abnormalities affecting the same well delineated cortical region in most patients, and frequent mild to moderate cognitive dysfunctions. In this condition, it is hypothesized that interictal electroencepalographic discharges might interfere with local brain maturation, resulting in altered cognition. Diffusion tensor imaging allows testing of this hypothesis by investigating the white matter microstructure, and has previously proved sensitive to epilepsy-related alterations of fractional anisotropy and diffusivity. However, no diffusion tensor imaging study has yet been performed with a focus on BCECTS. We investigated 25 children suffering from BCECTS and 25 age-matched control subjects using diffusion tensor imaging, 3D-T1 magnetic resonance imaging, and a battery of neuropsychological tests including Conner's scale and Wechsler Intelligence Scale for Children (fourth revision). Electroencephalography was also performed in all patients within 2 months of the magnetic resonance imaging assessment. Parametric maps of fractional anisotropy, mean-, radial-, and axial diffusivity were extracted from diffusion tensor imaging data. Patients were compared with control subjects using voxel-based statistics and family-wise error correction for multiple comparisons. Each patient was also compared to control subjects. Fractional anisotropy and diffusivity images were correlated to neuropsychological and clinical variables. Group analysis showed significantly reduced fractional anisotropy and increased diffusivity in patients compared with control subjects, predominantly over the left pre- and postcentral gyri and ipsilateral to the electroencephalographic focus. At the individual level, regions of significant differences were observed in 10 patients (40%) for anisotropy (eight reduced fractional anisotropy, one increased fractional anisotropy, one both), and 17 (56%) for diffusivity (13 increased, one reduced, three both). There were significant negative correlations between fractional anisotropy maps and duration of epilepsy in the precentral gyri, bilaterally, and in the left postcentral gyrus. Accordingly, 9 of 12 patients (75%) with duration of epilepsy>12 months showed significantly reduced fractional anisotropy versus none of the 13 patients with duration of epilepsy?12 months. Diffusivity maps positively correlated with duration of epilepsy in the cuneus. Children with BCECTS demonstrate alterations in the microstructure of the white matter, undetectable with conventional magnetic resonance imaging, predominating over the regions displaying chronic interictal epileptiform discharges. The association observed between diffusion tensor imaging changes, duration of epilepsy and cognitive performance appears compatible with the hypothesis that interictal epileptic activity alters brain maturation, which could in turn lead to cognitive dysfunction. However, such cross-sectional association does not demonstrate causality, and other hitherto unidentified factors could represent the common cause to part or all of the observed findings. PMID:24598359

Ciumas, Carolina; Saignavongs, Mani; Ilski, Faustine; Herbillon, Vania; Laurent, Agathe; Lothe, Amelie; Heckemann, Rolf A; de Bellescize, Julitta; Panagiotakaki, Eleni; Hannoun, Salem; Marinier, Dominique Sappey; Montavont, Alexandra; Ostrowsky-Coste, Karine; Bedoin, Nathalie; Ryvlin, Philippe

2014-04-01

350

White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in Alzheimer's disease.  

PubMed

Post-mortem and imaging studies have observed that white matter (WM) degenerates in a pattern inverse to myelin development, suggesting preferential regional vulnerabilities influencing cognitive decline in AD. This study applied novel WM tract integrity (WMTI) metrics derived from diffusional kurtosis imaging (DKI) to examine WM tissue properties in AD within this framework. Using data from amnestic mild cognitive impairment (aMCI, n = 12), AD (n = 14), and normal control (NC; n = 15) subjects, mixed models revealed interaction effects: specific WMTI metrics of axonal density and myelin integrity (i.e. axonal water fraction, radial extra-axonal diffusivity) in late-myelinating tracts (i.e. superior and inferior longitudinal fasciculi) changed in the course of disease, but were stable in the initial stages for early-myelinating tracts (i.e. posterior limb of the internal capsule, cerebral peduncles). WMTI metrics in late-myelinating tracts correlated with semantic verbal fluency, a cognitive function known to decline in AD. These findings corroborate the preferential vulnerability of late-myelinating tracts, and illustrate an application of WMTI metrics to characterizing the regional course of WM changes in AD. PMID:24319654

Benitez, Andreana; Fieremans, Els; Jensen, Jens H; Falangola, Maria F; Tabesh, Ali; Ferris, Steven H; Helpern, Joseph A

2014-01-01

351

White matter tract integrity metrics reflect the vulnerability of late-myelinating tracts in Alzheimer's disease?  

PubMed Central

Post-mortem and imaging studies have observed that white matter (WM) degenerates in a pattern inverse to myelin development, suggesting preferential regional vulnerabilities influencing cognitive decline in AD. This study applied novel WM tract integrity (WMTI) metrics derived from diffusional kurtosis imaging (DKI) to examine WM tissue properties in AD within this framework. Using data from amnestic mild cognitive impairment (aMCI, n = 12), AD (n = 14), and normal control (NC; n = 15) subjects, mixed models revealed interaction effects: specific WMTI metrics of axonal density and myelin integrity (i.e. axonal water fraction, radial extra-axonal diffusivity) in late-myelinating tracts (i.e. superior and inferior longitudinal fasciculi) changed in the course of disease, but were stable in the initial stages for early-myelinating tracts (i.e. posterior limb of the internal capsule, cerebral peduncles). WMTI metrics in late-myelinating tracts correlated with semantic verbal fluency, a cognitive function known to decline in AD. These findings corroborate the preferential vulnerability of late-myelinating tracts, and illustrate an application of WMTI metrics to characterizing the regional course of WM changes in AD. PMID:24319654

Benitez, Andreana; Fieremans, Els; Jensen, Jens H.; Falangola, Maria F.; Tabesh, Ali; Ferris, Steven H.; Helpern, Joseph A.

2013-01-01

352

Reduced Frontal Cortex Efficiency is Associated with Lower White Matter Integrity in Aging.  

PubMed

Increased frontal cortex activation during cognitive task performance is common in aging but remains poorly understood. Here we explored patterns of age-related frontal brain activations under multiple task performance conditions and their relationship to white matter (WM) microstructure. Groups of younger (N = 28) and older (N = 33) participants completed a task-switching paradigm while functional magnetic resonance imaging (fMRI) was performed, and rested while diffusion tensor imaging was performed. Results from fMRI analyses indicated age-related increases in frontal brain activations under conditions of poorer performance in the older group (the nonswitch and switch conditions) and for a contrast in which behavioral performance was equated (older group nonswitch condition vs. younger group switch condition). Within the older adult group, higher frontal activation was associated with poorer behavioral performance under all task conditions. In 2 regions in right frontal cortex, blood oxygen level-dependent (BOLD) magnitudes were negatively correlated with WM integrity in tracts connecting these structures with other task-relevant frontoparietal and striatal regions. Our results link age-related declines in the efficiency of frontal cortex functioning with lower WM integrity in aging. PMID:23960206

Zhu, Zude; Johnson, Nathan F; Kim, Chobok; Gold, Brian T

2015-01-01

353

Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging.  

PubMed

It has long been recognized that the diffusion tensor model is inappropriate to characterize complex fiber architecture, causing tensor-derived measures such as the primary eigenvector and fractional anisotropy to be unreliable or misleading in these regions. There is however still debate about the impact of this problem in practice. A recent study using a Bayesian automatic relevance detection (ARD) multicompartment model suggested that a third of white matter (WM) voxels contain crossing fibers, a value that, whilst already significant, is likely to be an underestimate. The aim of this study is to provide more robust estimates of the proportion of affected voxels, the number of fiber orientations within each WM voxel, and the impact on tensor-derived analyses, using large, high-quality diffusion-weighted data sets, with reconstruction parameters optimized specifically for this task. Two reconstruction algorithms were used: constrained spherical deconvolution (CSD), and the ARD method used in the previous study. We estimate the proportion of WM voxels containing crossing fibers to be ~90% (using CSD) and 63% (using ARD). Both these values are much higher than previously reported, strongly suggesting that the diffusion tensor model is inadequate in the vast majority of WM regions. This has serious implications for downstream processing applications that depend on this model, particularly tractography, and the interpretation of anisotropy and radial/axial diffusivity measures. PMID:22611035

Jeurissen, Ben; Leemans, Alexander; Tournier, Jacques-Donald; Jones, Derek K; Sijbers, Jan

2013-11-01

354

Reduced cerebral blood flow and white matter hyperintensities predict poor sleep in heart failure  

PubMed Central

Background Poor sleep is common in heart failure (HF), though mechanisms of sleep difficulties are not well understood. Adverse brain changes among regions important for sleep have been demonstrated in patients with HF. Cerebral hypoperfusion, a correlate of sleep quality, is also prevalent in HF and a likely contributor to white matter hyperintensities (WMH). However, no study to date has examined the effects of cerebral blood flow, WMH, and brain volume on sleep quality in HF. Methods Fifty-three HF patients completed the Pittsburgh Sleep Quality Index and underwent brain magnetic resonance imaging to quantify brain and WMH volume. Transcranial Doppler ultrasonography assessed cerebral blood flow velocity of the middle cerebral artery (CBF-V of the MCA). Results 75.5% of HF patients reported impaired sleep. Regression analyses adjusting for medical and demographic factors showed decreased CBF-V of the MCA and greater WMH volume were associated with poor sleep quality. No such pattern emerged on total brain or regional volume indices. Conclusions Decreased cerebral perfusion and greater WMH may contribute to sleep difficulties in HF. Future studies are needed to confirm these findings and clarify the effects of cerebral blood flow and WMH on sleep in healthy and patient samples. PMID:24171759

2013-01-01

355

Cognitive Control and White Matter Callosal Microstructure in Methamphetamine Dependent Subjects: A DTI Study  

PubMed Central

Background Methamphetamine (MA) abuse causes damage to structures within the human cerebrum, with particular susceptibility to white matter (WM). Abnormalities have been reported in anterior regions with less evidence of changes in posterior regions. MA abusers have also shown deficits on attention tests that measure response conflict and cognitive control. Methods We examined cognitive control using a computerized measure of the Stroop selective attention task and indices of WM microstructure obtained from diffusion tensor imaging (DTI) in the callosal genu and splenium of 37 currently abstinent MA abusers and 17 non-substance abusing controls. Measurements of Fractional Anisotropy (FA), apparent diffusion coefficient (ADC) of callosal fibers and diffusion tensor eigenvalues were obtained in all subjects. Results The MA abusers exhibited greater Stroop reaction time interference (i.e., reduced cognitive control) [p=.04] compared to controls. After correcting for multiple comparisons, FA within the genu correlated significantly with measures of cognitive control in the MA abusers [p=.04, bonferroni corrected] but not in controls [p=.26]. Group differences in genu, but not splenium, FA were trend significant [p=.09]. Conclusions MA abuse appears to alter anterior callosal WM microstructure with less evidence of change within posterior callosal WM microstructure. DTI indices within the genu, but not splenium, correlated with measures of cognitive control in chronic MA abusers. PMID:18814867

Salo, Ruth; Nordahl, Thomas E; Buonocore, Michael H; Natsuaki, Yutaka; Waters, Christy; Moore, Charles D; Galloway, Gantt P; Leamon, Martin H

2009-01-01

356

Four-month enriched environment prevents myelinated fiber loss in the white matter during normal aging of male rats.  

PubMed

White matter degenerates with normal aging and accordingly results in declines in multiple brain functions. Previous neuroimaging studies have implied that the white matter is plastic by experiences and contributory to the experience-dependent recovery of brain functions. However, it is not clear how and how far enriched environment (EE) plays a role in the white matter remodeling. Male rats exhibit earlier and severer age-related damages in the white matter and its myelinated fibers than female rats; therefore, in this current study, 24 middle-aged (14-month-old) and 24 old-aged (24-month-old) male SD rats were randomly assigned to an EE or standard environment (SE) for 4 months prior to Morris water maze tests. Five rats from each group were then randomly sampled for stereological assessment of the white matter. Results revealed that EE could somewhat induce improvement of spatial learning and significantly increase the white matter volume, the myelinated fiber volume and the myelinated fiber length during normal aging. The EE-induced improvement of spatial learning ability was significantly correlated with the EE-induced increase of the white matter and its myelinated fibers. We suggested that exposure to an EE could delay the progress of age-related changes in the white matter and the effect could extend to old age. PMID:24553809

Yang, Shu; Lu, Wei; Zhou, De-Shan; Tang, Yong

2014-02-20

357

Cerebral White Matter — Historical Evolution of Facts and Notions Concerning the Organization of the Fiber Pathways of the Brain  

Microsoft Academic Search

Gross and microscopic studies by early investigators led the cerebral white matter from being regarded as an amorphous mass to an intricately organized system of fasciculi that facilitate the highest expression of cerebral activity. Here we pay homage to the anatomists whose observations resulted in the evolution of ideas about the cerebral white matter. We also draw attention to limitations

Jeremy D. Schmahmann; Deepak N. Pandya

2007-01-01

358

Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging  

Microsoft Academic Search

A NOVEL MRI METHODdiffusion tensor imaging—was used to compare the integrity of several white matter fibre tracts in patients with probable Alzheimer's disease. Relative to normal controls, patients with probable Alzheimer's disease showed a highly significant reduction in the integrity of the association white matter fibre tracts, such as the splenium of the corpus callosum, superior longitudinal fasciculus, and cingulum.

Stephen E Rose; Fang Chen; Jonathan B Chalk; Fernando O Zelaya; Wendy E Strugnell; Mark Benson; James Semple; David M Doddrell

2000-01-01

359

Elevated levels of a glycoprotein antigen (P-80) in gray and white matter of brain from victims of multiple sclerosis  

Microsoft Academic Search

The levels of a glycoprotein reactive with monoclonal antibody (MAb) 44D10 in white and gray matter from brains of victims of several neurological diseases, including Multiple Sclerosis, Alzheimer's, Parkinson's and Huntington's diseases, were compared to that of normal individuals. The concentration of antigen reactive with MAb 44D10 was elevated in both gray and white matter of all MS brains examined,

Tony F. Cruz; Elizabeth J. Quackenbush; Michelle Letarte; Mario A. Moscarello

1986-01-01

360

White Matter Compromise of Callosal and Subcortical Fiber Tracts in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study  

ERIC Educational Resources Information Center

Objective: Autism spectrum disorder (ASD) is increasingly viewed as a disorder of functional networks, highlighting the importance of investigating white matter and interregional connectivity. We used diffusion tensor imaging (DTI) to examine white matter integrity for the whole brain and for corpus callosum, internal capsule, and middle…

Shukla, Dinesh K.; Keehn, Brandon; Lincoln, Alan J.; Muller, Ralph-Axel

2010-01-01

361

Systematic network lesioning reveals the core white matter scaffold of the human brain  

PubMed Central

Brain connectivity loss due to traumatic brain injury, stroke or multiple sclerosis can have serious consequences on life quality and a measurable impact upon neural and cognitive function. Though brain network properties are known to be affected disproportionately by injuries to certain gray matter regions, the manner in which white matter (WM) insults affect such properties remains poorly understood. Here, network-theoretic analysis allows us to identify the existence of a macroscopic neural connectivity core in the adult human brain which is particularly sensitive to network lesioning. The systematic lesion analysis of brain connectivity matrices from diffusion neuroimaging over a large sample (N = 110) reveals that the global vulnerability of brain networks can be predicated upon the extent to which injuries disrupt this connectivity core, which is found to be quite distinct from the set of connections between rich club nodes in the brain. Thus, in addition to connectivity within the rich club, the brain as a network also contains a distinct core scaffold of network edges consisting of WM connections whose damage dramatically lowers the integrative properties of brain networks. This pattern of core WM fasciculi whose injury results in major alterations to overall network integrity presents new avenues for clinical outcome prediction following brain injury by relating lesion locations to connectivity core disruption and implications for recovery. The findings of this study contribute substantially to current understanding of the human WM connectome, its sensitivity to injury, and clarify a long-standing debate regarding the relative prominence of gray vs. WM regions in the context of brain structure and connectomic architecture. PMID:24574993

Irimia, Andrei; Van Horn, John D.

2013-01-01

362

White Matter Microstructure in Superior Longitudinal Fasciculus Associated with Spatial Working Memory Performance in Children  

ERIC Educational Resources Information Center

During childhood and adolescence, ongoing white matter maturation in the fronto-parietal cortices and connecting fiber tracts is measurable with diffusion-weighted imaging. Important questions remain, however, about the links between these changes and developing cognitive functions. Spatial working memory (SWM) performance improves significantly…

Vestergaard, Martin; Madsen, Kathrine Skak; Baare, William F. C.; Skimminge, Arnold; Ejersbo, Lisser Rye; Ramsoy, Thomas Z.; Gerlach, Christian; Akeson, Per; Paulson, Olaf B.; Jernigan, Terry L.

2011-01-01

363

Renin-Angiotensin System Genetic Polymorphisms and Cerebral White Matter Lesions in Essential Hypertension  

Microsoft Academic Search

It has been reported that both the DD genotype of the angiotensin converting enzyme (ACE) gene and the presence of cerebral white matter lesions (WML) may represent risk factors for the development of stroke. The present study investigates a possible association between 3 different genetic polymorphisms of the renin-angiotensin system and the presence of WML in 60 never-treated essential hypertensive

Cristina Sierra; Antonio Coca; Elisenda Gómez-Angelats; Esteban Poch; Javier Sobrino; Alejandro de la Sierra

364

White Matter Hyperintensities and Their Associations with Suicidality in Psychiatrically Hospitalized Children and Adolescents.  

ERIC Educational Resources Information Center

Objective: Increasingly, researchers and clinicians are recognizing that there may be biological markers associated with increased risk of suicide. The objective of this study was to compare white matter hyperintensities in psychiatrically hospitalized children and youth with and without a history of suicide attempt while controlling for other…

Ehrlich, Stefan; Noam, Gil G.; Lyoo, In Kyoon; Kwon, Bae J.; Clark, Megan A.; Renshaw, Perry F.

2004-01-01

365

Imaging axonal damage of normal-appearing white matter in multiple sclerosis  

Microsoft Academic Search

Summary The current study was designed to determine the relative distribution of decreases of N-acetylaspartate (NAA), a marker of axonal damage, between lesions and normal- appearing white matter of patients with established multiple sclerosis and to test for associations between changes in the ratio of NAA to creatine\\/phosphocreatine (NAA : Cr) in those compartments and changes in disability. Data were

L. Fu; P. M. Matthews; N. De Stefano; K. J. Worsley; S. Narayanan; G. S. Francis; J. P. Antel; C. Wolfson; D. L. Arnold

1998-01-01

366

SILENT MRI WHITE MATTER LESIONS IN PATIENTS WITH CIS SUGGESTIVE OF MULTIPLE SCLEROSIS  

E-print Network

SILENT MRI WHITE MATTER LESIONS IN PATIENTS WITH CIS SUGGESTIVE OF MULTIPLE SCLEROSIS 0 1 2 3 4 5 6 7 8 9 OCB SC TOTAL ABNL Brain MRI ABNL SC MRI Suarez-Zambrano GA, Ramirez J , Avila M, Brandt D clear abnormalities on the brain MRI suggestive of demyelination. We found abnormalities in the cord

Lichtarge, Olivier

367

Clinical prediction of fall risk and white matter abnormalities: a diffusion tensor imaging study  

Technology Transfer Automated Retrieval System (TEKTRAN)

The Tinetti scale is a simple clinical tool designed to predict risk of falling by focusing on gait and stance impairment in elderly persons. Gait impairment is also associated with white matter (WM) abnormalities. Objective: To test the hypothesis that elderly subjects at risk for falling, as deter...

368

White Matter Lesions and Encephalopathy in Patients Treated For Primary Central Nervous System Lymphoma  

Microsoft Academic Search

A retrospective analysis of the clinical presentations and neuroimaging characteristics of 33 patients with a primary central nervous system lymphoma (PCNL) who received cranial radiotherapy was performed to assess incidence of and risk factors for radiation-induced encephalopathy. CT and MRI scans were revised by a neurologist and a radiologist in conference. White matter abnormalities before and after radiotherapy on the

M. W. M. Wassenberg; J. E. C. Bromberg; Th. D. Witkamp; C. H. J. Terhaard; M. J. B. Taphoorn

2001-01-01

369

Increased White Matter Gyral Depth in Dyslexia: Implications for Corticocortical Connectivity  

ERIC Educational Resources Information Center

Recent studies provide credence to the minicolumnar origin of several developmental conditions, including dyslexia. Characteristics of minicolumnopathies include abnormalities in how the cortex expands and folds. This study examines the depth of the gyral white matter measured in an MRI series of 15 dyslexic adult men and eleven age-matched…

Casanova, Manuel F.; El-Baz, Ayman S.; Giedd, Jay; Rumsey, Judith M.; Switala, Andrew E.

2010-01-01

370

To appear: IEEE Conference on Visualization, October 2007 Interactive Visualization of Volumetric White Matter Connectivity in  

E-print Network

To appear: IEEE Conference on Visualization, October 2007 Interactive Visualization of Volumetric--In this paper we present a method to compute and visualize volumetric white matter connectivity in diffusion and to visualize the optimal volumetric path between them at an interactive rate. We demonstrate the proposed

Jeong, Won-Ki

371

Late Oligodendrocyte Progenitors Coincide with the Developmental Window of Vulnerability for Human Perinatal White Matter Injury  

Microsoft Academic Search

Hypoxic-ischemic injury to the periventricular cerebral white matter (periventricular leukomalacia (PVL)) results in cerebral palsy and is the leading cause of brain injury in premature infants. The principal feature of PVL is a chronic disturbance of myelination and suggests that oligodendrocyte (OL) lineage progression is disrupted by ischemic injury. We determined the OL lineage stages at risk for injury during

Stephen A. Back; Ning Ling Luo; Natalya S. Borenstein; Joel M. Levine; Joseph J. Volpe; Hannah C. Kinney

2001-01-01

372

Sex differences in the IQ-white matter microstructure relationship: A DTI study  

PubMed Central

Sex differences in the relationship between general intelligence and brain structure are a topic of increasing research interest. Early studies focused mainly on gray and white matter differences using voxel-based morphometry, while more recent studies investigated neural fiber tracts using diffusion tensor imaging (DTI) to analyze the white matter microstructure. In this study we used tract-based spatial statistics (TBSS) on DTI to test how intelligence is associated with brain diffusion indices and to see whether this relationship differs between men and women. 63 Men and women divided into groups of lower and higher intelligence were selected. Whole-brain DTI scans were analyzed using TBSS calculating maps of fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). The results reveal that the white matter microstructure differs between individuals as a function of intelligence and sex. In men, higher intelligence was related to higher FA and lower RD in the corpus callosum. In women, in contrast, intelligence was not related to the white matter microstructure. The higher values of FA and lower values of RD suggest that intelligence is associated with higher myelination and/or a higher number of axons particularly in men. This microstructural difference in the corpus callosum may increase cognitive functioning by reducing inter-hemispheric transfer time and thus account for more efficient brain functioning in men. PMID:25238623

Dunst, Beate; Benedek, Mathias; Koschutnig, Karl; Jauk, Emanuel; Neubauer, Aljoscha C.

2014-01-01

373

Regularization of Diffusion-Based Direction Maps for the Tracking of Brain White Matter Fascicles  

Microsoft Academic Search

Magnetic resonance diffusion tensor imaging (DTI) provides information about fiber local directions in brain white matter. This paper addresses inference of the connectivity induced by fascicles made up of numerous fibers from such diffusion data. The usual fascicle tracking idea, which consists of following locally the direction of highest diffusion, is prone to erroneous forks because of problems induced by

C. Poupon; C. A. Clark; V. Frouin; J. Régis; I. Bloch; D. Le Bihan; J.-F. Mangin

2000-01-01

374

Early Neglect Is Associated with Alterations in White Matter Integrity and Cognitive Functioning  

ERIC Educational Resources Information Center

Cognitive deficits have been reported in children who experienced early neglect, especially children raised in institutionalized settings. Previous research suggests that early neglect may differentially affect the directional organization of white matter in the prefrontal cortex (PFC). This may be one mechanism to explain cognitive deficits…

Hanson, Jamie L.; Adluru, Nagesh; Chung, Moo K.; Alexander, Andrew L.; Davidson, Richard J.; Pollak, Seth D.

2013-01-01

375

The impact of periventricular white matter lesions in patients with bipolar disorder type I.  

PubMed

Introduction White matter hyperintensities (WMHs) are one the most common neuroimaging findings in patients with bipolar disorder (BD). It has been suggested that WMHs are associated with impaired insight in schizophrenia and schizoaffective patients; however, the relationship between insight and WMHs in BD type I has not been directly investigated. PMID:24411553

Serafini, Gianluca; Pompili, Maurizio; Innamorati, Marco; Girardi, Nicoletta; Strusi, Leonardo; Amore, Mario; Sher, Leo; Gonda, Xenia; Rihmer, Zoltan; Girardi, Paolo

2014-01-10

376

Current concepts of analysis of cerebral white matter hyperintensities on magnetic resonance imaging.  

PubMed

Cerebrovascular disease is common and associated with cognitive deficits and increased risk for dementia. Until recently, only limited attention has focused on advances in imaging techniques to better define and quantify the spectrum of asymptomatic cerebrovascular disease commonly seen on magnetic resonance imaging, such as abnormal white matter signals. Abnormal signals in cerebral white matter, although nonspecific, are increased in prevalence and severity in association with aging and cerebrovascular risk factors among older individuals. The ubiquitous occurrence of these abnormal white matter signals commonly referred to as white matter hyperintensities (WMHs) and the association with cerebrovascular risk and cognitive impairment among older individuals make scientific evaluation of WMHs an important and much needed avenue of research. In this section, we review current methods of WMH analysis. Strengths and limitation of both quantitative and qualitative methods are discussed initially, followed by a brief review of current magnetic resonance imaging segmentation and mapping techniques that make it possible to assess the anatomical location of WMHs. We conclude by discussing future analytic methods designed to better understand the pathophysiology and cognitive consequences of WMHs. PMID:17088690

Yoshita, Mitsuhiro; Fletcher, Evan; DeCarli, Charles

2005-12-01

377

Computing White Matter Fiber Orientations in High Angular Resolution Diffusion-Weighted MRI  

E-print Network

Computing White Matter Fiber Orientations in High Angular Resolution Diffusion-Weighted MRI Ning is characterized by Gaussian diffusion process. High angular resolution diffusion imaging (HARDI) adds are recovered in separate steps. Keywords: high angular resolution diffusion imaging (HARDI), apparent diffusion

Zhang, Jun

378

Detection of crossing white matter fibers with high-order tensors and rank-k decompositions  

E-print Network

Detection of crossing white matter fibers with high-order tensors and rank-k decompositions resolution diffusion imaging (HARDI), is the estimation of a positive-semidefinite orientation distri- bution detection as it enables one to reach the full fiber separation resolution of the estimation technique. We

Utah, University of

379

Accelerated maturation of white matter in young children with autism: A high b value DWI study  

Microsoft Academic Search

The goal of this work was to study white matter maturation in young children with autism following previous reports of increased cerebral volume during early development, as well as arguments for abnormal neural growth patterns and regulation at this critical developmental period. We applied diffusion tensor imaging (DTI) and high b value diffusion-weighted imaging (DWI) to young children diagnosed with

Dafna Ben Bashat; Vered Kronfeld-Duenias; Ditza A. Zachor; Perla M. Ekstein; Talma Hendler; Ricardo Tarrasch; Ariela Even; Yonata Levy; Liat Ben Sira

2007-01-01

380

Hybrid Visualization for White Matter Tracts using Triangle Strips and Point Sprites  

Microsoft Academic Search

Diffusion tensor imaging is of high value in neurosurgery, providing information about the location of white matter tracts in the human brain. For their reconstruction, streamline techniques commonly referred to as fiber tracking model the underlying fiber structures and have therefore gained interest. To meet the requirements of surgical planning and to overcome the visual limitations of line representations, a

Dorit Merhof; Markus Sonntag; Frank Enders; Christopher Nimsky; Peter Hastreiter; Guenther Greiner

2006-01-01

381

Novel image processing techniques to better understand white matter disruption in multiple sclerosis  

Microsoft Academic Search

In Multiple Sclerosis (MS) patients, conventional magnetic resonance imaging (MRI) shows a pattern of white matter (WM) disruption but may also overlook some WM damage. Diffusion tensor MRI (DT-MRI) can provide important in-vivo information about fiber direction that is not provided by conventional MRI. The geometry of diffusion tensors can quantitatively characterize the local structure in tissues. The integration of

Daniel Goldberg-Zimring; Simon K. Warfield

2006-01-01

382

Delineating white matter structure in diffusion tensor MRI with anisotropy creases  

Microsoft Academic Search

Geometric models of white matter architecture play an increasing role in neuroscientific applications of diffusion tensor imaging, and the most popular method for building them is fiber tractography. For some analysis tasks, however, a compelling alternative may be found in the first and second derivatives of diffusion anisotropy. We extend to tensor fields the notion from classical computer vision of

Gordon L. Kindlmann; Xavier Tricoche; Carl-Fredrik Westin

2007-01-01

383

The white matter of the human cerebrum: Part I The occipital lobe by Heinrich Sachs  

PubMed Central

This is the first complete translation of Heinrich Sachs' outstanding white matter atlas dedicated to the occipital lobe. This work is accompanied by a prologue by Prof Carl Wernicke who for many years was Sachs' mentor in Breslau and enthusiastically supported his work. PMID:25527430

Forkel, Stephanie J.; Mahmood, Sajedha; Vergani, Francesco; Catani, Marco

2015-01-01

384

Abnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder and  

E-print Network

of myelin integrity have been reported in obsessive-compulsive disorder (OCD) using multi- parameter mapsAbnormalities of White Matter Microstructure in Unmedicated Obsessive-Compulsive Disorder Obsessive-Compulsive Disorder and Changes after Medication. PLoS ONE 7(4): e35889. doi:10.1371/journal

385

Cerebral White Matter Changes and Geriatric Syndromes: Is There a Link?  

Microsoft Academic Search

Cerebral white matter lesions (WMLs), also called ''leukoaraiosis,'' are