Science.gov

Sample records for white rock creek

  1. 77 FR 1720 - Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... National Park Service Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock... the White-tailed Deer Management Plan (Plan), Rock Creek Park, Washington, DC The Plan will support... FEIS and Plan evaluates four alternatives for managing white- tailed deer in the park. The...

  2. Water-quality trends in White Rock Creek Basin from 1912-1994 identified using sediment cores from White Rock Lake Reservoir, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1997-01-01

    Historical trends in selected water-quality variables from 1912 to 1994 in White Rock Creek Basin were identified by dated sediment cores from White Rock Lake. White Rock Lake is a 4.4-km2 reservoir filled in 1912 and located on the north side of Dallas, Texas, with a drainage area of 259 km2. Agriculture dominated land use in White Rock Creek Basin before about 1950. By 1990, 72% of the basin was urban. Sediment cores were dated using cesium-137 and core lithology. Major element concentrations changed, and sedimentation rates and percentage of clay-sized particles in sediments decreased beginning in about 1952 in response to the change in land use. Lead concentrations, normalized with respect to aluminum, were six times larger in sediment deposited in about 1978 than in pre-1952 sediment. Following the introduction of unleaded gasoline in the 1970s, normalized lead concentrations in sediment declined and stabilized at about two and one-half times the pre-1952 level. Normalized zinc and arsenic concentrations increased 66 and 76%, respectively, from before 1952 to 1994. No organochlorine compounds were detected in sediments deposited prior to about 1940. Concentrations of polychlorinated biphenyls (PCB) and DDE (a metabolite of DDT) increased rapidly beginning in the 1940s and peaked in the 1960s at 21 and 20 ??g kg-1, respectively, which is coincident with their peak use in the United States. Concentrations of both declined about an order of magnitude from the 1960s to the 1990s to 3.0 and 2.0 ??g kg-1, respectively. Chlordane and dieldrin concentrations increased during the 1970s and 1980s. The largest chlordane concentration was 8.0 ??g kg-1 and occurred in a sediment sample deposited in about 1990. The largest dieldrin concentration was 0.7 ??g kg-1 and occurred in the most recent sample deposited in the early 1990s. Agricultural use of chlordane and dieldrin was restricted in the 1970s; however, both were used as termiticides, and urban use of chlordane continued at least until 1990. Recent use of dieldrin and aldrin, which degrades to dieldrin, has not been reported; however, increasing trends in dieldrin since the 1970s suggest recent urban use could have occurred.

  3. Chemical and ecological health of white sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003?04

    USGS Publications Warehouse

    Miller, C.V.; Weyers, H.S.; Blazer, V.S.; Freeman, M.E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded thresholdor chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  4. Chemical and Ecological Health of White Sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003-04

    USGS Publications Warehouse

    Miller, Cherie V.; Weyers, Holly S.; Blazer, Vicki; Freeman, Mary E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded threshold or chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  5. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  6. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake. Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical 'ashes to ashes, dust to dust' story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark. Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away. One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography.

  7. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  8. Metasedimentary Rocks at the Apple Creek Formation

    USGS scientist Art Bookstrom looks at puzzling sedimentary structures in metasedimentary rocks of the Apple Creek Formation, near the Jackass prospect, near Iron Creek, in the southeastern part of the Idaho cobalt belt, in east-central Idaho....

  9. 63. SURVEY OF RESERVOIR SITE ON LITTLE ROCK CREEK FOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. SURVEY OF RESERVOIR SITE ON LITTLE ROCK CREEK FOR PALMDALE WATER CO., J.B. LIPPINCOTT ENGINEERING OFFICES; OCTOBER, 1915. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  10. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also has a higher spatial resolution that enables CRISM to see smaller exposures of these minerals, if they occur. If White Rock is an evaporative lacustrine or lake deposit, CRISM has the best chance of detecting telltale mineralogical signatures. The images above reveal what CRISM found.

    The top panel in the montage above shows the location of the CRISM image on a mosaic of Pollack Crater taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). White Rock actually appears dark in the THEMIS mosaic due to a low daytime temperature, because its light color leads to less heating by the Sun. The middle-left image is an infrared, false color image that reveals White Rock's reddish hue. The middle-right image shows the signatures of different minerals that are present. CRISM found that White Rock is composed of accumulated dust perhaps with some fine-grained olivine (an igneous mineral), surrounded by basaltic sand containing olivine and dark-colored pyroxene. The lower two images were constructed by draping CRISM images over topography and exaggerating the vertical scale to better illustrate White Rock's topography. White Rock still appears not to contain evaporite, but instead to be composed of accumulated dust and sand.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  11. WHITE MOUNTAINS AND BIRCH CREEK ROADLESS AREAS, CALIFORNIA AND NEVADA.

    USGS Publications Warehouse

    Diggles, Michael F.; Schmauch, Steven W.

    1984-01-01

    The mineral survey of the White Mountains and Birch Creek Roadless Areas in California and Nevada indicates that there is probable and substantiated resource potential for gold, silver, lead, copper, zinc, tungsten, and mercury as well as barite and pyrophyllite. Pumice resources occur in several areas in the White Mountains Roadless Area. There is little promise for the occurrence of energy resources in the areas. Metasedimentary rocks in Jeffrey Mine Canyon along the range front of the White Mountains Roadless Area contain known rutile occurrences at the site of the Champion mine. Geochemical studies and (or) a drilling program could help define the possibility of a titanium resource.

  12. 5. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Downstream face of Rock Creek Diversion Dam, looking west (Diversion into Irrigation District canal) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  13. 3. Upstream face of Rock Creek Diversion Dam, closeup of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Upstream face of Rock Creek Diversion Dam, close-up of gates, looking southeast - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  14. 2. Upstream face of Rock Creek Diversion Dam, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Upstream face of Rock Creek Diversion Dam, looking east (Canal slide gates to left, Rock Creek diversion gate to right in raised position) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  15. 6. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Downstream face of Rock Creek Diversion Dam, looking west (Gate raised to cut off flow to Rock Creek, weir section to left of photo) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  16. 20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DISTANT HELICOPTER VIEW TO SOUTHEAST UP LITTLE ROCK CREEK CANYON, WITH DAM AND RESERVOIR AT RIGHT CENTER. PALMDALE-LITTLEROCK DITCH, MARKED BY DENSE VEGETATION, CROSSES ROAD AT LOWER CENTER - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  17. 4. Downstream face of Rock Creek Diversion Dam, looking west ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Downstream face of Rock Creek Diversion Dam, looking west (Irrigation District canal to right, creek gate and weir to left) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  18. 'White Rock' of Pollack Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 January 2004 The famous 'White Rock' of Pollack Crater has been known for three decades; it was originally found in images acquired by the Mariner 9 spacecraft in 1972. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) close-up view, obtained in October 2003, shows some of the light-toned, wind-eroded sedimentary rock that makes up 'White Rock.' It is not actually white, except when viewed in a processed, grayscale image (in color, it is more of a light butterscotch to pinkish material). The sediment that comprises 'White Rock' was deposited in Pollack Crater a long time ago, perhaps billions of years ago; the material was later eroded by wind. Dark, windblown ripples are present throughout the scene. This picture is located near 8.2oS, 335.1oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  19. 1. Upstream face of Rock Creek Diversion Dam, looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Upstream face of Rock Creek Diversion Dam, looking east (Overflow weir right, diversion section into Irrigation District Canal to left) - Bitter Root Irrigation Project, Rock Creek Diversion Dam, One mile east of Como Dam, west of U.S. Highway 93, Darby, Ravalli County, MT

  20. ROCK CREEK, IDAHO WATER QUALITY STATUS REPORT, 1970-1984

    EPA Science Inventory

    The study was designed to determine the characteristics and amounts of industrial and municipal wastes discharged to Rock Creek, Idaho (17040212) and subsequently into the Snake River and to evaluate the effects of these wastes on the biota and water quality of Rock Creek. Indus...

  1. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  2. 115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    115. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; WEST VIEW OF SIPHON CROSSING ROCK CREEK. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  3. 3. NORTHEASTERN VIEW OF THE ROCK CREEK AND POTOMAC PARKWAY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTHEASTERN VIEW OF THE ROCK CREEK AND POTOMAC PARKWAY RAMP. VIEW TAKEN FROM NORTHERN RAILING OF MEMORIAL BRIDGE. - Arlington Memorial Bridge, Boundary Channel Extension, Spanning Mount Vernon Memorial Highway & Boundary Channel, Washington, District of Columbia, DC

  4. Floodplain and wetlands assessment of the White Oak Creek Embayment

    SciTech Connect

    Not Available

    1991-07-01

    This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

  5. ROCK CREEK RURAL CLEAN WATER PROGRAM, 1988 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Implementation of the Rock Creek (17040212) rural clean water program began in 1980, following a Section 208 planning study. Contracting phases concluded on September 30, 1986. Best Management Practices (BMP) implementation phase began in 1980. As of 1 Oct 88, 38% of the contr...

  6. 114. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    114. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW, WEST OF INLET SIDE. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  7. 112. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    112. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OUTLET SIDE, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  8. 93. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    93. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY SOUTH OF KIMBERLY, IDAHO; OVERALL NORTHEAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  9. 110. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    110. ROCK CREEK SIPHON, LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY, IDAHO; INLET SIDE WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  10. 111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW OF SIPHON, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  11. 113. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    113. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; CLOSE-UP OF INLET SIDE OF SIPHON, NORTHWEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  12. 116. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    116. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; CLOSE-UP OF OUTLET, DIVERSION SPILL IN BACKGROUND, WEST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  13. 2. CONTEXTUAL VIEW OF WHITE ROCK ROAD, VIEW OF PROJECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXTUAL VIEW OF WHITE ROCK ROAD, VIEW OF PROJECT AREA LOOKING TOWARD ELEVATED INTERSECTION OF LATROBE ROAD; VIEW TO SOUTHWEST. - Placerville Road, White Rock Road between Clarksville & White Rock, El Dorado Hills, El Dorado County, CA

  14. 1. CONTEXTUAL VIEW OF WHITE ROCK ROAD, VIEW OF PROJECT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. CONTEXTUAL VIEW OF WHITE ROCK ROAD, VIEW OF PROJECT AREA WITH INTERSECTION OF LATROBE ROAD SEEN IN UPPER LEFT; VIEW TO NORTHEAST. - Placerville Road, White Rock Road between Clarksville & White Rock, El Dorado Hills, El Dorado County, CA

  15. Rock Creek methane from Multiple Coal Seams Completion Project. Topical report. Rock Creek coalbed methane data summary, December 1990

    SciTech Connect

    Dobscha, F.X.; Headley, A.L.; Lambert, S.W.; Lanier, J.B.; Robb, J.C.

    1990-12-01

    The Multiple Coal Seams Completion Project is a joint venture, investigating the drilling, completion, testing, stimulation, and production procedures for the economic production of methane from multiple coal seams. The report summarizes research conducted at Rock Creek to date. Much geologic and reservoir characterization of the project site has been performed to provide a basis for stimulation design, production analysis and reservoir testing. Geologic characterization included stratigraphic and structural evaluation along with coal cleat, rock joint, seam thickness, coal methane content, coal chemistry and coal petrography studies. Extensive reservoir data has been collected from permeability testing, hydrologic testing, stress testing, production and pressure monitoring, and a gas and water analysis program. Stimulation design and post testment diagnostics have been performed to optimize stimulation designs.

  16. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM, 1987 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Goals of the Rock Creek, Idaho (17040212) Rural Clean Water Program are to significantly reduce the amount of sediment, sediment related pollutants, and animal waste discharging into Rock Creek. Weekly water quality sampling was done through the irrigation season (April - Octobe...

  17. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    SciTech Connect

    Borders, D.M.; Hyndman, D.W.; Huff, D.D.

    1987-01-01

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs.

  18. 9. VIEW OF WHITE ROCK ROAD INDICATING CULVERT LOCATION (SEE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW OF WHITE ROCK ROAD INDICATING CULVERT LOCATION (SEE ROAD ANGLE POINT ON RIGHT) WITH LATROBE RD, INTERSECTION IN DISTANCE (LEFT OF CENTER); VIEW TO NORTHEAST. - Placerville Road, White Rock Road between Clarksville & White Rock, El Dorado Hills, El Dorado County, CA

  19. 3. VIEW OF WHITE ROCK ROAD FROM THE INTERSECTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW OF WHITE ROCK ROAD FROM THE INTERSECTION OF HIDDEN RIVER WAY (LEFT FOREGROUND) TOWARD ELEVATED INTERSECTION WITH LATROBE ROAD (AT RIGHT HORIZON); VIEW TO SOUTHWEST. - Placerville Road, White Rock Road between Clarksville & White Rock, El Dorado Hills, El Dorado County, CA

  20. Uranium-bearing coal and carbonaceous rocks in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George Winfred

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Early Cretaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, Idaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  1. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM COMPREHENSIVE WATER QUALITY MONITORING ANNUAL REPORT 1989

    EPA Science Inventory

    This report documents progress on for the Rock Creek Rural Clean Water Program, Twin Falls County, Idaho (17040212), initiated in 1981. Results through 1988 suggest that Best Management Practices (BMPs) implemented under the program have improved water quality in the creek. BMP...

  2. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  3. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...The White River National Forest is preparing an Environmental Impact Statement (EIS) to consider and disclose the anticipated environmental effects of implementing projects from Beaver Creek Resort's 2010 Master Development Plan (MIDP). These projects are designed to enhance and sustain Beaver Creek's ability to provide a world class venue for Alpine ski events--a key goal of the...

  4. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon

    SciTech Connect

    Jones, L.J.; Erickson, M.S.; Fey, D.L.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon.

  5. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  6. 75 FR 55539 - Crooked Creek Reservoir Repair; White River National Forest, Eagle County, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... Repair project on the Sopris Ranger District of the White River National Forest was published in the Federal Register (86 FR 24215). The Forest Service has decided to cancel the preparation of this EIS. The...; ] DEPARTMENT OF AGRICULTURE Forest Service Crooked Creek Reservoir Repair; White River National Forest,...

  7. Rock Creek Methane from Multiple-Coal-Seams Completion Project. Semiannual report, July 1987-December 1987

    SciTech Connect

    Beavers, C.D.; Dobscha, F.X.; Green, C.D.; Lambert, S.W.; Boyer, C.M.

    1988-03-01

    Phase I of the Rock Creek Methane from Multiple Coal Seams Completion Project is a multiyear joint venture investigating the combination of drilling, completion, stimulation, and production parameters required for the viable economic production of methane from shallow, multiple coal seams. Project activities at the Rock Creek site in 1987 focused on well drilling and completion, with special emphasis on wellbore acess and hydraulic stimulation. Data on drawdown analysis of the Mary Lee coal group, and testing limited-entry applications to multiseam simulation are included.

  8. Rock creek methane from multiple coal seams completion project: Rock Creek coalbed methane completion project data summary update. Topical report, December 1990-February 1995

    SciTech Connect

    Ellard, J.; Lambert, S.W.; Litzinger, L.A.; Saulsberry, J.L.; Steidl, P.F.

    1995-12-01

    The report provides a summary of the data collected from 12 production wells and 17 monitor wells that were present at the Rock Creek Project. Well testing, reservoir evaluation, experimental fracturing treatments, diagnostic testing, and production testing were conducted to optimize stimulation methods for multiple thin coal seams. Much geologic and reservoir characterization of the project site has been performed to provide a basis for stimulation design, production analysis and reservoir testing. Geologic characterization included stratigraphic and structural evaluation along with coal cleat, rock joint, seam thickness, coal methane content, coal chemistry and coal petrography studies. The report summarizes the data collected over the 10 year life of the project.

  9. Mars' "White Rock" Feature Lacks Evidence of an Aqueous Origin

    NASA Technical Reports Server (NTRS)

    Ruff, S. W.; Christensen, P. R.; Clark, R. N.; Kieffer, H. H.; Malin, M. C.; Bandfield, J. L.; Jakosky, B. M.; Lane, M. D.; Mellon, M. T.; Presley, M. A.

    2000-01-01

    The Thermal Emission Spectrometer on board the Mars Global Surveyor has observed "White Rock" and the data do not indicate the presence of evaporite minerals. We suggest it is a deposit of compacted or weakly cemented aeolian sediment.

  10. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  11. Portland Community College, Rock Creek: A Community Based Educational Shopping Center.

    ERIC Educational Resources Information Center

    De Bernardis, Amo

    An overview is presented of Portland Community College's plans to create the Rock Creek campus, scheduled to open in January 1976. The physical environment is considered to be an important factor in a student's cultural and aesthetic experience, and all facilities have been designed with this in mind. The philosophy guiding campus planning is one…

  12. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    USGS Publications Warehouse

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  13. ROCK CREEK, POWER COUNTY, IDAHO. WATER QUALITY STATUS REPORT, 1977-1979

    EPA Science Inventory

    A survey was conducted on Rock Creek, Power County, Idaho (17040209) to assess the levels of transported sediment, various chemical and physical parameters, and macroinvertebrate fauna during base and peak flow periods. The survey was initiated in October 1977 and sampling was c...

  14. 76 FR 56394 - Kootenai National Forest, Sanders, County, MT; Rock Creek Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Company, and USFWS, (CV 05-107-M-DWM and CV 08-028-M-DWM consolidated) May 4, 2010 opinion. In that opinion the Court found deficiencies in the 2001 Rock Creek Project FEIS. The court remanded the FEIS back... action or its impacts in order ensure appropriate analysis of the proposed mining project. DATES:...

  15. Altered tuffaceous rocks of the Green River Formation in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Griggs, Roy Lee

    1968-01-01

    More than 50 ash-fall tuff beds which have altered to analcitized or feldspathized rocks have been found in the upper 500-600 feet of the Parachute Creek Member of the Green River Formation in the Piceance Creek Basin of northwestern Colorado. Similarly altered water-washed tuff occurs as tongues in the uppermost part of this member, and forms most of the lower 400-600 feet of the overlying Evacuation Creek Member of the Green River Formation. 'The altered ash-fall beds of the Parachute Creek Member are all thin and show a characteristic pattern of alteration. Most beds range in thickness from a fraction of an inch to a few inches. One bed reaches a maximum thickness of 5 feet, and, unlike the other beds, is composed of several successive ash falls. The pattern of alteration changes from the outer part to the center of the basin. Most beds in the outer part of the basin contain about 50 to 65 percent analcite,with the interstices between the crystals filled mainly by microlites of feldspar, opal, and quartz, and small amounts of carbonate. At the center of the basin .essentially all the beds -are composed of microlites of feldspar, opal, and quartz, and small amounts of carbonate. The tongues of water-washed tuff in the uppermost part of the Parachute Creek Member and the similar rocks composing the lower 400-600 feet of the Evacuation Creek Mewber are feldspathized rocks composed mainly of microlites of feldspar, opal, and quartz, varying amounts of carbonate, and in some specimens tiny subrounded crystals of analcite. The general trend in alteration of the tuffaceous rocks from analcitization near the margin to feidspathization near the center of the Piceance Creek Basin is believed to have taken place at shallow depth during diagenesis , as indicated by field observations and laboratory work. It is believed that during sedimentation and diagenesis the waters of the central part of the basin were more alkaline and following the breakdown of the original tuffaceous glass to a colloidal gel during diagenesis analcitized rocks crystallized near the basin margin and feldspathized rocks crystallized near the center of the basin.

  16. Adoption in rock and white-tailed ptarmigan

    USGS Publications Warehouse

    Wong, M.M.L.; Fedy, B.C.; Wilson, S.; Martin, K.M.

    2009-01-01

    Reports of adoption in birds are widespread, but few studies report rates of adoption or possible mechanisms for this phenomenon, particularly in the Order Galliformes. We report incidents of adoption in Rock Ptarmigan (Lagopus muta) and White-tailed Ptarmigan (L. leucura) from two sites in western Canada. Adoption rates for White-tailed Ptarmigan on Vancouver Island, British Columbia, and the Ruby Ranges, Yukon Territory were 13% (n = 16 broods) and 4% (n = 27), respectively, while rates for Rock Ptarmigan were 14% (n = 29) in the Ruby Ranges. Low brood densities may result in lower rates of adoption for ptarmigan. ?? 2009 The Wilson Ornithological Society.

  17. Rock Creek methane from Multiple Coal Seams Completion Project. Annual report, January 1989-December 1989

    SciTech Connect

    Dodscha, F.X.; Headley, A.L.; Lambert, S.W.; Lanier, J.B.; Robb, J.C.

    1990-12-01

    The Multiple Coal Seams Completion Project is a joint venture developing drilling, completion, testing, stimulation, and production procedures for economic production of methane from multiple coal seams. During the report period, much well testing was conducted. Slug tests and injection tests were performed on Wells P6 and P7 in addition to slug tests on several offsite wells. Hydrological testing of Well P4 indicates there is communication between the Black Creek and Mary Lee Coal Groups. A drawdown study of the field and a mass balance analysis indicate about 10 percent of the gas within the area of drawdown has been produced. Production summaries of gas and water production is stable or declining for all of the wells. Production is good from Well P5 that was completed in the rock above the bottom seams in both the Mary Lee and Black Creek Groups. The sand packed rock interval has screened out coal fines and proppant which are normally produced during dewatering. This has allowed Well P5 to be pumped for 530 consecutive days with no pump problems. Treatment of water produced from the wells has been modified to adjust for the increasing proportion of water from the Black Creek Group with a higher TDS and iron levels.

  18. Extent and bioavailability of trace metal contamination due to acid rock drainage in Pennask Creek, British Columbia, Canada

    NASA Astrophysics Data System (ADS)

    Walls, L. D.; Li, L. Y.; Hall, K. J.

    2010-05-01

    Pennask Creek is one of the most important rainbow trout producing streams in British Columbia (BC). Much of the Pennask Creek watershed is located within a BC Parks Protected Area, which was set aside to protect the spawning and rearing habitat of this wild rainbow trout population. Construction of Highway 97C, which bisects the Pennask Creek watershed, resulted in the exposure of a highly pyritic rock formation, which began releasing acid rock drainage and causing metals to be leached into Highway Creek, a tributary of Pennask Creek. Previous studies commissioned by the BC Ministry of Transportation and Infrastructure indicate that Highway Creek yields fewer invertebrates and elevated levels of some metals in the water when compared with downstream sites in Pennask Creek. This study examines the impacts of this acid rock drainage and metal leaching by determining the extent of trace metal contamination in the water and sediments of the Pennask Creek watershed and determining the bioavailability of these trace metals. Preliminary results indicate concentrations of Al, Cu, and Zn in the water as well as levels of total As, Cu, Fe, Ni, and Zn in the sediments that are above the BC Water and Sediment Quality Guidelines for the Protection of Aquatic Life. The highest level of trace metal contamination is found in Highway Creek, downstream of Highway 97C, with concentrations generally returning to near background levels downstream of the confluence with Pennask Creek. Levels of Cu in the water and Zn in the sediments appear to be of greatest concern in areas furthest from the highway.

  19. Post-rock-avalanche dam outburst flood sedimentation in Ram Creek, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Harrison, Lisa M.; Dunning, Stuart A.; Woodward, John; Davies, Timothy R. H.

    2015-07-01

    Rock avalanches are common in mountainous regions that are tectonically active. They are capable of forming natural dams of uncertain persistence that have significant impacts on the river system over wide spatial scales and possibly over geological time scales. Here we combine field data and digital elevation model (DEM) analysis to show the response of Ram Creek, New Zealand, to 28 years of sediment dispersion following the 1968 emplacement of a co-seismic, rock-avalanche dam that breached catastrophically in 1981. The results show a system that has not attained equilibrium, being unable to move the quantity of dam-derived sediments, and will likely not attain equilibrium before the next major sediment input; it is in a state of persistent disturbance where localised reworking dominates. Erosion in Ram Creek is focussed on lateral bevelling and bedrock gorge widening rather than vertical incision to keep pace with tectonic uplift. Importantly for studies of tectonic geomorphology, this widening - which if sustained will form a strath terrace - does not represent a period of reduced uplift. Stream metrics (concavity and steepness) are unable to differentiate the identified rock-avalanche-induced knickpoint from tectonic and lithological knickpoints.

  20. Multidimensional Computational Fluid Dynamics Modeling of the Dispersion of White Oak Creek Contaminants in the Clinch River

    SciTech Connect

    Platfoot, J.H.; Wendel, M.W.; Williams, P.T.

    1996-10-01

    This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.

  1. Occurrence and Distribution of Organic Wastewater Compounds in Rock Creek Park, Washington, D.C., 2007-08

    USGS Publications Warehouse

    Phelan, Daniel J.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey, and the National Park Service Police Aviation Group, conducted a high-resolution, low-altitude aerial thermal infrared survey of the Washington, D.C. section of Rock Creek Basin within the Park boundaries to identify specific locations where warm water was discharging from seeps or pipes to the creek. Twenty-three stream sites in Rock Creek Park were selected based on the thermal infrared images. Sites were sampled during the summers of 2007 and 2008 for the analysis of organic wastewater compounds to verify potential sources of sewage and other anthropogenic wastewater. Two sets of stormwater samples were collected, on June 27-28 and September 6, 2008, at the Rock Creek at Joyce Road water-quality station using an automated sampler that began sampling when a specified stage threshold value was exceeded. Passive-sampler devices that accumulate organic chemicals over the duration of deployment were placed in July 2008 at the five locations that had the greatest number of detections of organic wastewater compounds from the June 2007 base-flow sampling. During the 2007 base-flow synoptic sampling, there were ubiquitous low-level detections of dissolved organic wastewater indicator compounds such as DEET, caffeine, HHCB, and organophosphate flame retardants at more than half of the 23 sites sampled in Rock Creek Park. Concentrations of DEET and caffeine in the tributaries to Rock Creek were variable, but in the main stem of Rock Creek, the concentrations were constant throughout the length of the creek, which likely reflects a distributed source. Organophosphate flame retardants in the main stem of Rock Creek were detected at estimated concentrations of 0.2 micrograms per liter or less, and generally did not increase with distance downstream. Overall, concentrations of most wastewater indicators in whole-water samples in the Park were similar to the concentrations found at the upstream sampling station at the Maryland/District of Columbia boundary. Polycyclic aromatic hydrocarbons were the dominant organic compounds found in the stormwater samples at the Joyce Road station. Polycyclic aromatic hydrocarbons were consistently found in higher concentrations either in sediment or in whole-water samples than in the dissolved samples collected during base-flow conditions at the 23 synoptic sites, or in the Joyce Road station stormwater samples.

  2. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  3. Analyses of geochemical samples and descriptions of rock samples, Adams Gap and Shinbone Creek Roadless Areas, Clay County, Alabama

    USGS Publications Warehouse

    Erickson, M.S.; Hanley, J.T.; Kelley, D.L.; Sherlock, L.J.

    1983-01-01

    Semiquantitative spectrographic analyses for 31 elements on 105 rocks, 47 stream-sediment, and 70 soil samples from the Adams Gap and Shinbone Creek Roadless Areas and vicinity, Talladega National Forest, Clay County, Alabama are reported here in detail. Atomic-absorption analyses for zinc in all samples and for gold in 5 selected rock samples are also reported. Localities for all sables are given in Universal Transverse Mercator (UTM) coordinates. A brief description of each rock sample is included. Rocks analyzed include quartzite, phyllite, vein quartz, and schist.

  4. 76 FR 10938 - Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock Creek Junction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... a proposed highway project, Sunrise Project, I-205 to Rock Creek Junction, Clackamas County, Oregon... final agency actions subject to 23 U.S.C. 139(l)(1). A claim seeking judicial review of the Federal... taken final agency action subject to 23 U.S.C. 139(l)(1) by issuing a Record of Decision for...

  5. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  6. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon

    SciTech Connect

    Johnes, Erickson, M.S.; Fey, D.L.; Kennedy, K.R.; Gent, C.A.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon.

  7. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed-sediment assessment. In addition to the water-quality and sediment-quality assessments, a Rosgen stream-channel classification was performed on a 900-foot-long segment of Rock Creek. In the synoptic water-quality assessment, two pesticides were found to be above published criteria for the protection of aquatic life. In the temporal water-quality assessment, four pesticides were found to be above published criteria for the protection of aquatic life. In the bed-sediment assessment, 8 trace elements, 14 polycyclic aromatic hydrocarbons, 6 pesticides, and 1 phthalate compound were found to be above published criteria for the protection of aquatic life. In the Rosgen classification, a comparison to a previous classification for this segment showed an increase in sands and other fine-grained sediments in the creek bed.

  8. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  9. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  10. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  11. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the King Hill Creek Wilderness Study Area, Elmore County, Idaho

    SciTech Connect

    Erickson, M.S.; King, H.D.; Bradley, L.; Gent, C.

    1989-01-01

    A U.S. Geological report is presented detailing analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the King Hill Creek Wilderness Study Area, Elmore County, Idaho.

  12. Rock magnetic properties of a soil developed on an alluvial deposit at Buttermilk Creek, Texas, USA

    NASA Astrophysics Data System (ADS)

    Lindquist, Anna K.; Feinberg, Joshua M.; Waters, Michael R.

    2011-12-01

    The evolution of magnetization within a floodplain soil begins with initial deposition of magnetic particles during sedimentation and continues via subsequent alteration and growth of iron-bearing compounds by pedogenic and biologic processes. Measurements of soil magnetic properties capture information about the developmental history of the soil and are a convenient method by which to investigate environmental change and pedogenesis. Using a range of magnetic measurements, a comprehensive scenario for soil development was constructed for floodplain sediments at the Debra L. Friedkin site, an important archeological site near Buttermilk Creek, Texas. Floodplain deposits have traditionally been avoided for soil magnetism studies because it is thought that the episodic input of sediment would form soils characterized by discrete sedimentary units rather than a continuous record of pedogenesis. We demonstrate that alluvial deposits can sometimes carry a straightforwardly interpretable magnetic signal similar to those typically seen in loess deposits. Smooth variation of rock magnetic parameters as a function of depth also leads us to conclude that the soil at this site is largely undisturbed and that the age of lithic artifacts found within the soil may be interpreted within stratigraphic context.

  13. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  14. Rock-Eval pyrolysis and vitrinite reflectance results from the Sheep Creek 1 well, Susitna basin, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.

    2014-01-01

    We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.

  15. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the early 1960s during peak weapons testing fallout for this isotope was 360 TU. One meltwater sample from the rock glacier was analyzed for 35S with a measured concentration of 5.4??1.0 millibecquerel per liter (mBeq/l). Modern precipitation in the Rocky Mountains contains 35S from 10 to 40 mBeq/L. The ??18O results in meltwater from the Galena Creek rock glacier (-17.40??0.1 to -17.98??0.1 per mil) are similar to results for modern precipitation in the Rocky Mountains. Comparison of these isotopic concentrations from the two glaciers suggest that the meltwater at the Galena Creek site is composed mostly of melted snow and rain that percolates through the rock debris that covers the glacier. Additionally, this water from the rock debris is much younger (less than two years) than the reported age of about 2000 years for the subsurface ice at the mid-glacier coring site. Thus the meltwater from the Galena Creek rock glacier is composed primarily of melted surface snow and rain water rather than melted glacier ice, supporting previous estimates of slow ablation rates beneath the surface debris of the rock glacier.

  16. Surface radiological investigations at two creek receiving runoff from White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1994-02-01

    A surface radiological investigation was conducted intermittently from August 1992 July 1993 at two creeks receiving runoff from White Wing Scrap Yard. In this report, the two creeks (both unnamed tributaries of Bear Creek) are, referred to as the east creek and the west creek based on their respective locations relative to White Wing Scrap Yard. The radiological survey of accessible areas at the east creek revealed no detectable gamma exposure rates above typical background levels (8 to 12 {mu}R/h). The very slight elevations in gamma and beta-gamma levels found along the creek were generally associated with outcroppings of shale and typical of naturally occurring radionuclides present in such material. No radiological anomalies were associated with an oily sheen observed on the water at three locations, three 55-gal metal drums in or near the creek, a small pile of metal debris near the creek, or several enclosures used in a 1969 study of animal excretion rates. Radionuclide analysis of three soil samples collected at the east creek demonstrated typical of {sup 60}Co, {sup 137}Cs, gross alpha activity, gross beta activity, and {sup 40}K.

  17. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Uranium-thorium-lead systematics of an Archean granite from the Owl Creek Mountains, Wyoming

    SciTech Connect

    Stuckless, J.S.; Nkomo, I.T.; Butt, K.A.

    1986-01-01

    Isotopic analyses of apparently unaltered whole-rock samples of a granite from the Owl Creek Mountains, Wyo., yield a lead-lead isochron age of 2730 {plus minus} 35 Ma, which is somewhat older than the age obtained by the rubidium-strontium whole-rock method. Thorium-lead data for the same samples deviate markedly from an isochronal relation; however, calculated initial {sup 208}Pb/{sup 204}Pb ratios correlate with whole-rock {delta}{sup 18}O values and lead to the conclusion that the {sup 232}Th-{sup 208}Pb data are not colinear because of an originally heterogeneous granitic magma. Relationships in the {sup 207}Pb/{sup 235}U-{sup 206}Pb/{sup 238}U system show that uranium was mobilized during early Laramide time or shortly before, such that most surface and shallow drill-core samples lost 60-80 percent of their uranium, and some fractured, deeper drill-core samples gained from 50 to 10,000 percent uranium. Fission-track maps show that much uranium is located along edges and cleavages of biotite and magnetic where it is readily accessible to oxidizing ground water. Furthermore, qualitative comparisons of uranium distribution in samples with excess radiogenic lead and in samples with approximately equilibrium amounts of uranium and lead suggest that the latter contain more uranium in these readily accessible sites. Unlike other granites that have uranium distributions and isotopic systematics similar to those observed in this study, the granite of the Owl Creek Mountains is not associated with economic uranium deposits.

  18. Food of white perch, rock bass and yellow perch in eastern Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; Busch, Wolf-Dieter N.; Griswold, Bernard L.; Schneider, Clifford P.; Wolfert, David R.

    1981-01-01

    The contents of stomachs from 1,485 white perch, 218 rock bass and 1,399 yellow perch collected in eastern Lake Ontario from May to October in 1972 and in May 1973 were examined. All three species fed primarily on amphipods, but they also ate chironomids and trichopterans regularly. Rock bass ate more trichopterans than chironomids, whereas white perch and yellow perch ate more chironomids. Snails and crayfish were significant items in the diet of rock bass, but occurred infrequently in stomachs of white perch and yellow perch. White perch and yellow perch frequently ate fish eggs during early summer, but rock bass seldom ate fish eggs. Fish were important in the diets of white perch longer than 300 millimeters and rock bass and yellow perch longer than 200 millimeters. Similarities in the diets of fish 1 year old or older suggest that the potential for competition between white perch and yellow perch is greater than that between rock bass and either white perch or yellow perch.

  19. Comagmatic contact relationships between the Rock Creek Gabbro and Round Valley Peak granodiorite, central Sierra Nevada, CA

    SciTech Connect

    Christensen, C.C.; Bown, C.J. . School of Natural Science)

    1993-03-01

    The Rock Creek Gabbro (RCG) in Little Lakes Valley, near Tom's Place, CA abuts three granodiorites with distinctive contact characteristics. Against within a cm in most places. The contact with Round Valley Peak (RVP) on the north, however, is a zone at least 3 km wide and records a mode of mafic magmatic enclave formation. A northward traverse of the zone begins 300--400 m within the RCG with progressively lighter, though still uniform rock. Next is a 100--200m wide jumble of sharp-edged angular 10--30m gabbroic xenoliths, variable in grainsize and plastic deformation and interspersed with stretched partially disaggregated enclaves in normal RVP granodiorite. Xenoliths are essentially absent from the RVP from here north; stretched enclaves with very consistent strikes paralleling (within 20[degree]) the mapped RCG-RVP contact and high angle dips (70--90[degree]), occur singly and in dense swarms and fall from 4% to 0.5% of outcrop area in the remaining traverse. Rock Creek gabbros including xenoliths at the contact cluster chemically with RVP enclaves on all major and trace element plots, suggesting a common parentage; some of each group show evidence of plagioclase flotation. Trace element data (esp. Zr/Nb) suggests that fractional crystallization dominates mixing in the evolution of the gabbroic/enclave magma.

  20. Mixing Model Analysis of Suspended Sediment and Particulate Organic Carbon Sources in White Clay Creek, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Marquard, J.; Pizzuto, J. E.; Newbold, J. D.

    2013-12-01

    Material exports from watersheds have consequences to upstream catchment elemental budgets, downstream ecosystem processes and water resources management. Despite this importance, quantifying exports of all major and trace elements associated with suspended sediments is challenging due to the highly episodic nature of that export. Constraining sediment sources using various mixing model approaches is further complicated by the diversity of potential sources. In this study, we leveraged the infrastructure of the Christina River Basin Critical Zone Observatory (CRB-CZO) to collect large volume (200 L) samples from 17 storms, including some of the biggest storms of the decade (i.e. Hurricane Irene and Sandy), and 95 potential source soils and sediments within the White Clay Creek watershed, a third-order watershed in southeastern Pennsylvania. On all samples we analyzed major and minor elements, rare earth elements, and radioisotopes in order to determine the erosional source category of stream suspended material, such that differences in the chemical composition of source materials can be used in a multivariate statistical model to predict the chemical composition of suspended sediment. For example, 137Cs is higher in surface and near-surface terrestrial soils and low in streambanks, deeper soils, road cuts, and road dust. Elemental chromium is much higher in road dust than any other source. We integrate sediment fingerprinting analyses common in geomorphological studies of mineral suspended material with biological and ecological characterizations of particulate organic carbon. Through this combination, we determine particle source, a necessary first step to calculating the amount of excess carbon that has complexed with particles during erosion and transit through the watershed. This interdisciplinary project is conducted as one of many studies in the CRB-CZO and directly contributes to the overall research focus of this CZO: to quantify the net carbon sink or source due to mineral production, weathering, erosion and deposition as materials are transported and transformed across geophysical boundaries within a dynamic watershed.

  1. Selenium and Other Elements in Water and Adjacent Rock and Sediment of Toll Gate Creek, Aurora, Arapahoe County, Colorado, December 2003 through March 2004

    USGS Publications Warehouse

    Herring, J.R.; Walton-Day, Katherine

    2007-01-01

    Streamwater and solid samples (rock, unconsolidated sediment, stream sediment, and efflorescent material) in the Toll Gate Creek watershed, Colorado, were collected and analyzed for major and trace elements to determine trace-element concentrations and stream loads from December 2003 through March 2004, a period of seasonally low flow. Special emphasis was given to selenium (Se) concentrations because historic Se concentrations exceeded current (2004) stream standards. The goal of the project was to assess the distribution of Se concentration and loads in Toll Gate Creek and to determine the potential for rock and unconsolidated sediment in the basin to be sources of Se to the streamwater. Streamwater samples and discharge measurements were collected during December 2003 and March 2004 along Toll Gate Creek and its two primary tributaries - West Toll Gate Creek and East Toll Gate Creek. During both sampling periods, discharge ranged from 2.5 liters per second to 138 liters per second in the watershed. Discharge was greater in March 2004 than December 2003, but both periods represent low flow in Toll Gate Creek, and results of this study should not be extended to periods of higher flow. Discharge decreased moving downstream in East Toll Gate Creek but increased moving downstream along West Toll Gate Creek and the main stem of Toll Gate Creek, indicating that these two streams gain flow from ground water. Se concentrations in streamwater samples ranged from 7 to 70 micrograms per liter, were elevated in the upstream-most samples, and were greater than the State stream standard of 4.6 micrograms per liter. Se loads ranged from 6 grams per day to 250 grams per day, decreased in a downstream direction along East Toll Gate Creek, and increased in a downstream direction along West Toll Gate Creek and Toll Gate Creek. The largest Se-load increases occurred between two sampling locations on West Toll Gate Creek during both sampling periods and between the two sampling locations on the main stem of Toll Gate Creek during the December 2003 sampling. These load increases may indicate that sources of Se exist between these two locations; however, Se loading along West Toll Gate Creek and Toll Gate Creek primarily was characterized by gradual downstream increases in load. Linear regressions between Se load and discharge for both sampling periods had large, significant values of r2 (r2 > 0.96, p < 0.0001) because increases in Se load (per unit of flow increase) were generally constant. This relation is evidence for a constant addition of water having a relatively constant Se concentration over much of the length of Toll Gate Creek, a result which is consistent with a ground-water source for the Se loads. Rock outcroppings along the stream were highly weathered, and Se concentrations in rock and other solid samples ranged from below detection (1 part per million) to 25 parts per million. One sample of efflorescence (a surface encrustation produced by evaporation) had the greatest selenium concentration of all solid samples, was composed of thenardite (sodium sulfate), gypsum (calcium sulfate) and minor halite (sodium chloride), and released all of its Se during a 30-minute water-leaching procedure. Calculations indicate there was an insufficient amount of this material present throughout the watershed to account for the observed Se load in the stream. However, this material likely indicates zones of ground-water discharge that contain Se. This report did not identify an unequivocal source of Se in Toll Gate Creek. However, multiple lines of evidence indicate that ground-water discharge supplies Se to Toll Gate Creek: (1) the occurrence of elevated Se concentrations in the stream throughout the watershed and in the headwater regions, upstream from industrial sources; (2) the progressive increase in Se loads moving downstream, which indicates a continuous input of Se along the stream rather than input from point sources; (3) the occurr

  2. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  3. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  4. A Long-term Reach-Scale Monitoring Network for Riparian Evapotranspiration, Rock Creek, Kansas

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Solis, J. A.; Whittemore, D. O.; Butler, J. J.; Reboulet, E.; Knobbe, S.; Dealy, M.

    2011-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impact on water management and conservation. In narrow riparian zones, typical of much of the subhumid to semi-arid U.S., direct measurement of RET by eddy correlation is precluded by the limited fetch distance of riparian vegetation. Alternative approaches based on water balance analyses have a long history, but their accuracy is not well understood. Factors such as heterogeneity in soil properties and root distributions, and sparse measurements, introduce uncertainties in RET estimates. As part of a larger effort aimed at improving understanding of basin-wide RET using scaling theories, we installed a continuous monitoring system for water balance estimation at the scale of a single (~100 m long) reach along Rock Creek in the Whitewater Basin in central Kansas. The distinguishing features of this site include a vadose zone with fine-grained soils underlain by a phreatic zone of coarse gravel embedded in clay, overlying karst bedrock. Across the width (~40 m) of the riparian zone, we installed one transect of four wells screened at the bottom of the alluvium (6-7 m depth), each accompanied by a soil moisture profiler with capacitance sensors at 4 vertical levels above the local water-table elevation (~2.5 m depth) and a shallow well screened just below the water table. All wells were instrumented with pressure transducers for monitoring water levels. Additional sets of all sensors were installed at the upstream and downstream ends of the study reach. Initial results from the monitoring network suggest significant complexities in the behavior of the subsurface system at the site, including a high degree of heterogeneity. All deep wells show a rapid response to streamflow variations and nearby pumping. However, the shallow water-table wells do not respond rapidly to either. Both the shallow wells and soil moisture sensors record diurnal fluctuations in response to RET during the growing season. The soil moisture sensors at depths less than 1 m respond rapidly to precipitation events. The piezometric head in the bedrock and deep alluvial wells is about 0.5 m higher than in the shallow wells, suggesting upward flow across a clay unit that comprises the lower 3-4 m of the alluvium. The hydrology of the system suggests that recharge of soil moisture by precipitation could often be more important than stream-aquifer interaction as a supply of RET. A distributed temperature sensing (DTS) system installed to investigate the spatial variability of groundwater-surface water interaction revealed isolated locations of groundwater seepage into the stream under low flow conditions. These preliminary observations suggest that the bedrock and lower alluvium act like a confined aquifer that is well connected to the stream, while the shallow alluvium acts like an unconfined aquifer recharged by both precipitation and upward leakage from the confined system, and depleted by RET. We also present results from a simplified numerical model to illustrate the controls on water balance.

  5. Ross basin, upper Cement Creek in Watershed above North Fork Cement Creek

    Western view toward the Red Mountains near Silverton, Colorado, taken just upstream from the North Fork Cement Creek drainage in 2006. The photo illustrates acidic drainage (red drainage at right) and less acidic drainage (white drainage at left of photo) that originates from altered rocks and mine...

  6. Overview of shallow gas production from Eagle-equipment rocks south and east of Cedar Creek Anticline

    SciTech Connect

    Shurr, G.W.

    1996-06-01

    Shallow gas has been produced for more than fifty years from Eagle-equivalent Cretaceous sandstones on Cedar Creek Anticline in eastern Montana. In the last two decades four fields have been developed off the south and east flanks of the anticline: (1) West Short Pine Hills and (2) Cady Creek in Harding County, SD; (3) Gaslight in Fallon County, MT; and (4) Little Missouri in Bowman County, ND. Paleogeographic reconstructions indicate that the reservoir rocks in all four fields were deposited near an outer shelf margin more than 200 mi (322 km) east of the strandline. West Short Pine Hills and Cady Creek Fields are located within a sandstone sheet up to 15 ft (4.6 m) thick. Gaslight Field is near the margin of the sheet and has thinner sandstones. In Little Missouri Field the reservoir is primarily interbedded siltstone and shale. Regional lineament zones mapped on satellite images influenced Cretaceous deposition and were also the sites of post-depositional deformation. The South Dakota gas fields are located within a tectonic block well away from bounding lineament zones. Gaslight is within a northeast-trending lineament zone and Little Missouri is at the intersection of lineament zones trending north-east and northwest. Production in Little Missouri Field is clearly influenced by structure. Values of initial production and marker-bed elevation show a strong correlation. Wells with large IP values are found along the crest of a small anticline and show steeper decline curves than wells with small IP values at the margins of the structure. In contrast, IP values show little correlation with structural altitude in the gas fields of South Dakota and Montana.

  7. Roof-rock contamination of Taylor Creek Rhyolite, New Mexico, as recorded in hornblende phenocrysts and biotite xenocrysts

    USGS Publications Warehouse

    Wittke, J.H.; Duffield, W.A.; Jones, C.

    1996-01-01

    The Taylor Creek Rhyolite, a group of coeval, mid-Tertiary, silica-rich rhyolite lava domes in southwestern New Mexico, is notable for recording bulk-rock evidence of minor, yet easily measurable, contamination of its source magma reservoir resulting from assimilation of Proterozoic roof rock. Most of the evidence is recorded in trace element concentrations and 87Sr/86Sri ratios, which are far different in unconlaminated magma and roof rocks. Hornblende phenocrysts and biotite xenocrysts also record the effects of contamination. Electron microprobe analyses show that all hornblende grains are zoned to Mg-rich and Fe- and Mn-poor rims. Rim MgO content is typically about 10 wt% greater than core MgO content. Other hornblende constituents are not measurably variable. Biotite xenocrysts, trace mineral constituents, are present only in the domes that are most contaminated, as judged by bulk-rock variations in trace element concentrations and 87Sr/ 86Sri. Biotite grains are invariably partly to almost completely altered. Microprobe analyses of the cores of the least-altered grains show that large variations in Fe and Mg and that biotite contains 2-20 times as much Mg as fresh biotite phenocrysts in other silica-rich rhyolite lavas. Fe and Mg are negatively correlated in hornblende and biotite, consistent with mixing two end-member compositions. The mass ratio of contaminant to magma was probably less than 1:100, and major constituents, including Al, were not measurably affected in hornblende. Al-in-hornblende barometry yields essentially a constant calculated pressure of about 1.5 kbar, which is consistent with the interpretation that all contamination occurred in a boundary zone about 300 m thick at the top of the magma reservoir.

  8. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  9. Sampling and Analysis Plan for White Oak Creek Watershed Remedial Investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-05-01

    This Sampling and Analysis (SAP) presents the project requirements for proposed soil sampling to support the White Oak Creek Remedial Investigation/Feasibility Study at Oak Ridge National Laboratory. During the Data Quality Objectives process for the project, it was determined that limited surface soils sampling is need to supplement the historical environmental characterization database. The primary driver for the additional sampling is the need to identify potential human health and ecological risks at various sites that have not yet proceeded through a remedial investigation. These sites include Waste Area Grouping (WAG)3, WAG 4, WAG 7, and WAG 9. WAG 4 efforts are limited to nonradiological characterization since recent seep characterization activities at the WAG have defined the radiological problem there.

  10. Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments

    SciTech Connect

    Thorne, B.J.

    1991-09-01

    Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

  11. 65. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    65. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: UPSTREAM ELEVATION, SHEET 3; APRIL, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  12. 69. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    69. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: REINFORCEMENT SHEET, SHEET 5; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. 64. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: PLAN VIEW, SHEET 2; APRIL, 1918. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  14. 66. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    66. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: DIMENSION SHEET, SECTION THROUGH CROWN, SHEET 6, APRIL, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  15. 67. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    67. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: OUTLET GATES, CROWN SECTION, UPSTREAM ELEVATION AND DOWNSTREAM ELEVATION SHEET, SHEET 7; APRIL, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  16. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  17. Conservation practice effectiveness in the irrigated Upper Snake/Rock Creek watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Upper Snake-Rock (USR) Conservation Effects Assessment Project (CEAP) was initiated in 2005 to determine the effectiveness of conservation practices in an irrigated watershed. Our objectives were to determine water and salt balances and water quality effects of using sprinkler rather than furrow...

  18. Technical background information for the ORNL environmental and safety report. Volume 2. A description of the aquatic ecology of the White Oak Creek Watershed and the Clinch River below Melton Hill Dam

    SciTech Connect

    Loar, J.M.; Solomon, J.A.; Cada, G.F.

    1981-10-01

    In order to characterize the aquatic communities in the vicinity of Oak Ridge National Laboratory (ORNL), a biological sampling program was initiated in March 1979 and continued until June 1980. The periphyton, benthic macroinvertebrate, and fish communities were sampled at four sites in White Oak Creek watershed above White Oak Lake. In addition to these communities, phytoplankton, zooplankton, and ichthyoplankton were routinely collected at sites in White Oak Lake, White Oak Creek embayment below the dam, and in the Clinch River above and below the confluence with White Oak Creek. Also, muscle tissue of several fish species, including sauger and striped bass from the Clinch River, was analyzed for seven trace elements (Cd, Cr, Cu, Pb, Hg, Ni, and Zn). Data on the taxonomic composition, abundance, and temporal distribution of each community are presented for each of three study areas: upper White Oak Creek watershed, White Oak Lake, and the Clinch River (including White Oak Creek embayment). The spatial distribution of major taxonomic groups in each area was examined using analysis of variance techniques and dissimilarity indices. Results obtained from this study are compared with those of previous surveys of White Oak Creek when equivalent sampling methodologies were used. Attempts were also made to document changes that have occurred since the 1950-1953 survey.

  19. Geochemical and stable isotope variations in baseflow from an urbanized watershed: White Rock Creek, Dallas, Texas

    SciTech Connect

    Hercod, D.J.; Gregory, R.T.; Brady, P.V. |

    1995-03-01

    Public concerns about surface water quality and its impact on health issues have put a premium on the ability to predict surface and groundwater quality in urban areas. The movement of toxins and nutrients in urban areas is largely controlled by interactions with soil and aquifer minerals along hydrologic pathways. Despite progress in theoretical modeling of the effects of these interactions on water chemistry, it is presently impossible to predict overall trends in urban water quality. Determining the controls on stream water chemistry is problematic due to the interplay between different hydrologic reservoirs which cannot be easily observed or measured. Natural tracers, such as dissolved ions and isotopes, provide an indirect method for observing subsurface interactions and are useful for time series analysis of stream water composition. Ionic species are generally nonconservative components because of chemical reactions and are thus useful for discerning the overall discharge chemistry affected by the relationship.

  20. Radiocarbon and cation-radio ages for rock varnish on Tioga and Tahoe marainal boulders of Pine Creek, eastern Sierra Nevada, California, and their paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.; Turrin, Brent D.; Jull, A. J. Timothy; Linick, Timothy W.; Donahue, Douglas J.

    1987-07-01

    Accelerator mass spectrometry 14C analyses of organic matter extracted from rock varnishes on morainal boulders yield limiting minimum ages for three crests of the Tioga glaciation. At Pine Creek in the eastern Sierra Nevada, varnish started to form on boulders of the outermost Tioga moraine before 19,000 yr B.P., and varnish originated on the innermost Tioga moraine before 13,200 yr B.P. Comparisons with lake-level, paleohydrological, paleoecological, colluvial, and rock varnish micromorphological data indicate that central-eastern California and western Nevada experienced a moisture-effective period during the late Pleistocene but after the Tioga maximum, and perhaps as Tioga glaciers receded from the mouth of Pine Creek canyon. Varnishes on Tahoeage morainal boulders at Pine Creek have cation-ratio ages of about 143,000-156,000 yr B.P., suggesting that the Tahoe glaciation should not be correlated with oxygen-isotope stage 4 in the early Wisconsin, but rather with stage 6. Varnishes on morainal boulders of an older glaciation at Pine Creek are dated by cation ratio at about 182,000-187,000 yr B.P.

  1. Analytical results for 56 rock, 46 stream-sediment and soil, and 22 panned-concentrate samples from the Welcome Creek Wilderness Study Area, Granite County, Montana

    USGS Publications Warehouse

    Campbell, W.L.; Lee, G.K.; Antweiler, J.C.; Hopkins, R.T.

    1983-01-01

    Fifty-six rock, 46 stream-sediment, and 22 panned-concentrate samples were collected from the Welcome Creek Wilderness, Granite County, Montana, during the summers of 1979 and 1980. All samples were analyzed for 31 elements by a six-step semiquantitative emission spectrographic method (Grimes and Marranzino, 1968). All panned concentrate and other selected samples were analyzed for gold by an atomic absorption procedure (Thompson and others, 1968). All rock and stream-sediment samples were also analyzed for Ag, Bi, Cd, Cu, Pb, Sb, and Zn by a partial-digestion procedure (Viets and others, 1979). Sample analyses and locations are presented in this report.

  2. Stoping & Screen Formation In The Wooley Creek Batholith And Andalshatten Pluton: Complex Pluton - Host Rock Interactions During Magma Emplacement

    NASA Astrophysics Data System (ADS)

    Yoshinobu, A. S.; Hargrove, B.

    2010-12-01

    The presence of xenoliths in plutons is often assumed to either be due to stoping or the formation of screens. Stoped blocks are defined as having undergone significant translation, rotation, and/or internal deformation while incorporated in the magma, while screens are considered to be relatively in situ. However, there remains much controversy as to 1) the relative spatial distribution of xenoliths/screens in plutons; 2) the degree to which xenoliths/screens may or may not have moved within the magma; 3) the extent of melting and assimilation xenoliths undergo; and 4) the mechanism by which xenoliths and screens are incorporated into plutons. We describe field and structural relations from the tilted Wooley Creek batholith (WCb) and the mid-crustal Andalshatten pluton (AHp). Both intrusions preserve xenoliths/screens of a variety of lithologies that correspond to the host rocks. The WCb is a 158-155 MA tilted intrusion emplaced into a series of accreted terranes in the Marble Mountains Wilderness, Klamath Mountains, CA. Previous work has demonstrated that the WCb is complexly zoned, and can be divided into three distinct structural units: a structurally deep unit ranging from gabbro to tonalite, a structurally shallow unit ranging from diorite to granite, and an intermediate unit of intensely deformed quartz diorite and tonalite. Numerous xenoliths of metric to centimetric scale occur in this intermediate zone, as well as in proximity to the pluton roof as exposed along the southern contact. While many of these xenoliths have internal structures that are discordant to those found in the host rock, others seem to maintain concordance with the regional bedding, and are identified as screens. In nearly all cases, xenoliths appear partially migmatitic, and veining of the host magma into them is common. The 442 Ma AHp is a large, predominantly granodioritic pluton in the Bindal Batholith. It intrudes four lithologically distinct and structurally complex nappes of the Helgeland Nappe Complex in Norway. Although fairly homogeneous, the pluton consists of at least four distinct pulses of magma including gneissic granodiorite, megacrystic granodiorite, diorite, and leucogranite. The spatial distribution of the xenoliths/screens is systematic and coincident with west-to-east lithologic and structural variation in the host rocks. Kilometer-scale screens show no evidence of deformation within the magma, while subkilometric xenoliths contain internal fabric which is oblique or orthogonal to fabrics in the large screens and surrounding host rocks and commonly display plastic deformation. Extensive mapping of the pluton indicates that: 1) magma was emplaced in sheet-like pulses that may have been several kilometers wide; 2) emplacement of sheets isolated the largest screens from the host rocks; 3) stoping and lateral/downward ductile displacement of host rocks occurred to facilitate space for the pluton; 4) magmatic fabric formation likely occurred after emplacement of the diorite, relatively late in the emplacement process.

  3. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  4. Pesticides in groundwater in the Anacostia River and Rock Creek watersheds in Washington, D.C., 2005 and 2008

    USGS Publications Warehouse

    Koterba, Michael T.; Dieter, Cheryl A.; Miller, Cherie V.

    2010-01-01

    The U.S. Geological Survey (USGS), in cooperation with the District Department of the Environment, conducted a groundwater-quality investigation to (a) determine the presence, concentrations, and distribution of selected pesticides in groundwater, and (b) assess the presence of pesticides in groundwater in relation to selected landscape, hydrogeologic, and groundwater-quality characteristics in the shallow groundwater underlying the Anacostia River and Rock Creek watersheds in Washington, D.C. With one exception, well depths were 100 feet or less below land surface. The USGS obtained or compiled ancillary data and information on land use (2001), subsurface sediments, and groundwater samples from 17 wells in the lower Anacostia River watershed from September through December 2005, and from 14 wells in the lower Anacostia River and lower Rock Creek watersheds from August through September 2008. Twenty-seven pesticide compounds, reflecting at least 19 different types of pesticides, were detected in the groundwater samples obtained in 2005 and 2008. No fungicides were detected. In relation to the pesticides detected, degradate compounds were as or more likely to be detected than applied (parent) compounds. The detected pesticides chiefly reflected herbicides commonly used in urban settings for non-specific weed control or insecticides used for nonspecific haustellate insects (insects with specialized mouthparts for sucking liquid) or termite-specific control. Detected pesticides included a combination of pesticides currently (2008) in use, banned or under highly restricted use, and some that had replaced the banned or restricted-use pesticides. The presence of banned and restricted-use pesticides illustrates their continued persistence and resistance to complete degradation in the environment. The presence of the replacement pesticides indicates the susceptibility of the surficial aquifer to contamination irrespective of the changes in the pesticides used. A preliminary review of the data collected in 2005 and 2008 indicated that differences in the surficial geology, land use (as a surrogate for pesticide use), and above-average precipitation for most of 2004 through 2008, as well as differences in the number and performance of USGS laboratory methods used, could have led to more pesticides detected in groundwater samples collected in 2008 than in groundwater samples collected in 2005. Thus, although data from both years of collection were used for interpretive analysis, emphasis was placed on the analysis of the data obtained in 2008. The presence of pesticides in shallow groundwater (less than approximately 100 ft (feet), or 30 m (meters), below land surface) indicated at least the upper surficial aquifer in Washington, D.C. was susceptible to contamination. One or more herbicides or insecticides were detected in groundwater samples collected from 50 percent of the shallow wells sampled in 2005, and from 62 percent of the shallow wells sampled in 2008. Differences among types of pesticides in shallow groundwater were apparent. The most frequently detected class of herbicides was the s-triazine compounds-atrazine, simazine, or prometon, or the atrazine-degradate compounds-2-chloro-4-ethylamino-6-amino-s-triazine (desethylatrazine or CIAT) and 2-chloro-4-isopropylamino-6-amino-s-triazine (hydroxyatrazine or OIET). The next most frequently detected classes of herbicides were the chloroacetanilides, including metolachlor and acetochlor, and the ureic herbicides, including diuron (and degradate, 3,4-dichloroaniline), fluometuron, metsulfuron methyl, sulfameturon, bromacil, and tebuthiuron. Insecticides also were detected, but less frequently than herbicides, with one or more insecticides present in groundwater samples from 38 percent of shallow wells sampled in 2008. Detected insecticides included parent or degradate compounds commonly used for either nonspecific or haustellate (sucking) insects, including chlorpyri

  5. Long-term water quality and biological responses to multiple best management practices in Rock Creek, Idaho

    USGS Publications Warehouse

    Maret, T.R.; MacCoy, D.E.; Carlisle, D.M.

    2008-01-01

    Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long-term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate-nitrite (NN) were estimated using a regression model with time-series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow-adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post-implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus antipodarum), which approached densities of 100,000 per m 2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate assemblages. ?? 2008 American Water Resources Association.

  6. Landslides and other mass movements near TA-33, northern White Rock Canyon, New Mexico. Final report

    SciTech Connect

    Dethier, D.P.

    1993-09-01

    Massive slump complexes and at least two rock avalanches flank the eastern rim of the Pajarito Plateau along northern White Rock Canyon, north of TA-33. Landslides failed along mechanically weak rocks in the Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and lacustrine units. The landslides are mainly of early or middle Pleistocene age. The toe area of at least,one slump complex has been active in the late Pleistocene, damming White Rock Canyon near the mouth of Water Canyon. Lacustrine sediment that filled this lake, or series of lakes, to an elevation of at least 1710 m is preserved at a number of upstream sites, including a deposit near the Buckman townsite that exposes 30 m of lacustrine sediment. Charcoal collected at several sites has been submitted for {sup 14}C dating. Landslides, however, probably do not represent a significant short-term threat to the material disposal areas at TA-33. Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa shows no signs of incipient failure, and past periods of slide activity were responses to rapid downcutting of the Rio Grande and climate change, probably over periods of several decades, at least. Rockfall and headward erosion of gullies do not represent significant decadal hazards on canyon rims near TA-33. Gully migration near MDA-K is a potential threat, but the gullies were not examined in detail. A system of north-trending faults, at least one of which displays Pleistocene activity, bisects the TA-33 mesa. If these faults are capable of producing significant seismic shaking, generalizations about landslide and rockfall hazards must be reevaluated.

  7. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  8. 81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PHOTOCOPY OF PHOTOGRAPH SHOWING NEW CREEK CHANNEL UNDER CONSTRUCTION AT P STREET BEND, FROM 1940 REPORT ON PROPOSED DEVELOPMENT OF ROCK CREEK AND POTOMAC PARKWAY, SECTION II (ROCK CREEK AND POTOMAC PARKWAY FILE, HISTORY DEPARTMENT ARCHIVES, NATIONAL PARK SERVICE, WASHINGTON, DC). - Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  9. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S.

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  10. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    SciTech Connect

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR.

  11. Hydrogeology and simulation of ground-water flow in the thick regolith-fractured crystalline rock aquifer system of Indian Creek basin, North Carolina

    USGS Publications Warehouse

    Daniel, Charles C.; Smith, Douglas G.; Eimers, Jo Leslie

    1997-01-01

    The Indian Creek Basin in the southwestern Piedmont of North Carolina is one of five type areas studied as part of the Appalachian Valleys-Piedmont Regional Aquifer-System analysis. Detailed studies of selected type areas were used to quantify ground-water flow characteristics in various conceptual hydrogeologic terranes. The conceptual hydrogeologic terranes are considered representative of ground-water conditions beneath large areas of the three physiographic provinces--Valley and Ridge, Blue Ridge, and Piedmont--that compose the Appalachian Valleys-Piedmont Regional Aquifer-System Analysis area. The Appalachian Valleys-Piedmont Regional Aquifer-System Analysis study area extends over approximately 142,000 square miles in 11 states and the District of Columbia in the Appalachian highlands of the Eastern United States. The Indian Creek type area is typical of ground-water conditions in a single hydrogeologic terrane that underlies perhaps as much as 40 percent of the Piedmont physiographic province. The hydrogeologic terrane of the Indian Creek model area is one of massive and foliated crystalline rocks mantled by thick regolith. The area lies almost entirely within the Inner Piedmont geologic belt. Five hydrogeologic units occupy major portions of the model area, but statistical tests on well yields, specific capacities, and other hydrologic characteristics show that the five hydrogeologic units can be treated as one unit for purposes of modeling ground-water flow. The 146-square-mile Indian Creek model area includes the Indian Creek Basin, which has a surface drainage area of about 69 square miles. The Indian Creek Basin lies in parts of Catawba, Lincoln, and Gaston Counties, North Carolina. The larger model area is based on boundary conditions established for digital simulation of ground-water flow within the smaller Indian Creek Basin. The ground-water flow model of the Indian Creek Basin is based on the U.S. Geological Survey?s modular finite-difference ground-water flow model. The model area is divided into a uniformly spaced grid having 196 rows and 140 columns. The grid spacing is 500 feet. The model grid is oriented to coincide with fabric elements such that rows are oriented parallel to fractures (N. 72? E.) and columns are oriented parallel to foliation (N. 18? W.). The model is discretized vertically into 11 layers; the top layer represents the soil and saprolite of the regolith, and the lower 10 layers represent bedrock. The base of the model is 850 feet below land surface. The top bedrock layer, which is only 25 feet thick, represents the transition zone between saprolite and unweathered bedrock. The assignment of different values of transmissivity to the bedrock according to the topographic setting of model cells and depth results in inherent lateral and vertical anisotropy in the model with zones of high transmissivity in bedrock coinciding with valleys and draws, and zones of low transmissivity in bedrock coinciding with hills and ridges. Lateral anisotropy tends to be most pronounced in the north-northwest to south-southeast direction. Transmissivities decrease nonlineraly with depth. At 850 feet, depending on topographic setting, transmissivities have decreased to about 1 to 4 percent of the value of transmissivity immediately below the regolith-bedrock interface. The model boundaries are, for the most part, specified-flux boundaries that coincide with streams that surround the Indian Creek Basin. The area of active model nodes within the boundaries is about 146 square miles and has about 17,400 active cells. The numerical model is designed not as a predictive tool, but as an interpretive one. The model is designed to help gain insight into flow-system dynamics. Predictive capabilities of the numerical model are limited by the constraints placed on the flow system by specified fluxes and recharge distribution. Results of steady-state analyses that simulate long-term, average annual conditi

  12. Forceful emplacement of the Eureka Valley-Joshua Flat-Beer Creek composite pluton into a structural basin in eastern California; internal structure and wall rock deformation

    NASA Astrophysics Data System (ADS)

    Morgan, Sven; Law, Richard; de Saint Blanquat, Michel

    2013-11-01

    Anisotropy of Magnetic Susceptibility parameters have been analyzed at 311 locations in the Eureka Valley-Joshua Flat-Beer Creek (EJB) pluton of eastern California. The large amount of data has allowed for the AMS parameters to be contoured using techniques that both reveal map-scale trends and emphasize small-scale differences. The contour maps suggest that magnetic susceptibility is dominantly controlled by composition of the magma but may also be affected by emplacement-related strain as the magma chamber inflated and forced the wall rocks outward. Pluton construction involved two major pulses of different composition magmas that were emplaced sequentially but with overlapping periods of crystallization. The magmas initially intruded as sill-like bodies into a structural basin. The magnetic foliation of the pluton cuts across internal magmatic contacts on the map scale and is parallel to local contacts between the pluton and surrounding metasedimentary wall rocks. The magnetic fabric is similar in orientation and symmetry to intense flattening strains recorded in the aureole rocks. The metasedimentary wall rocks have been shortened between 60 and 70% and this strain magnitude is approximately equal on the west, south, and east margins of the pluton. Strain in the wall rocks is dominantly flattening and concentrated into a narrow (1 km wide) inner aureole. Mapping of bedding/cleavage intersection lineations south of the pluton indicates that the magma made room for itself by translating the wall rocks outward and rotating the already inward dipping wall rocks of the structural basin to sub-vertical. Stretching of the inner aureole around an expanding magma chamber was responsible for the intense shortening. Limited data on the Marble Canyon pluton to the south of the EJB pluton indicates a very similar emplacement process.

  13. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  14. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  15. Approach view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  16. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking south - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  17. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  18. Detail perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the North Fork Butter Creek Bridge, view looking southwest - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  19. Elevation view of the North Fork Butter Creek Bridge, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the North Fork Butter Creek Bridge, view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  20. General perspective view of the North Fork Butter Creek Bridge, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the North Fork Butter Creek Bridge, view looking north - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  1. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  2. 2. 1994 AERIAL PERSPECTIVE OF BISHOP CREEK WITH OWENS VALLEY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. 1994 AERIAL PERSPECTIVE OF BISHOP CREEK WITH OWENS VALLEY AND WHITE MOUNTAINS IN BACKGROUND, SOUTH LAKE IN FOREGROUND. VIEW TO NORTHEAST - Bishop Creek Hydroelectric System, Bishop Creek, Bishop, Inyo County, CA

  3. Diel use of a saltwater creek by white-tip reef sharks Triaenodon obesus (Carcharhiniformes: Carcharhinidae) in Academy Bay, Galapagos Islands.

    PubMed

    Peñiaherrera, César; Hearn, Alex R; Kuhn, Angela

    2012-06-01

    White-tip reef sharks are common inhabitants of the shallow waters surrounding the Galapagos Islands, where several known aggregation sites have become touristic attractions. With the aim to describe site fidelity and residency patterns of the white-tip reef sharks in a saltwater creek, we used the ultrasonic telemetry method. The study was undertaken in a saltwater channel South of Academy Bay, Santa Cruz Island, from May 2008-September 2009. A total of nine transmitters were attached to sharks and ultrasonic receivers were deployed at the inner and outside areas of the creek. From the total of fitted sharks, four lost their transmitters. The results obtained with the remaining sharks showed an elevated use of the inner area of the channel during the day, with more use of the external area during the night. However, none of the sharks were detected at the site every day, suggesting that they may have a number of preferred sites within their home range. More studies are needed to detail the home range and habitat use of this species, and to guide its protection level in the Academy Bay area. PMID:23894942

  4. Effects of storm runoff on water quality in the White River and Fall Creek, Indianapolis, Indiana, June through October 1986 and 1987

    SciTech Connect

    Martin, J.D.; Craig, R.A. )

    1990-01-01

    Four continuous, flow-through water-quality monitors were installed upstream from, in, and downstream from Indianapolis on the White River and near the mouth of Fall Creek in Indianapolis to monitor water quality, especially dissolved oxygen, during periods of base flow and storm runoff. Streamflow, dissolved-oxygen concentration, specific conductance, pH, and water temperature were measured at 15-minute intervals from June through October 1986 at the four sites and from June through October 1987 at two sites. Photosynthesis caused the large fluctuations and supersaturation of dissolved oxygen, and indicates that the White River is more productive than Fall Creek. Water quality during base flow is the typical condition against which water quality during storm runoff is compared. A rapid increase in streamflow indicates the beginning of a period of storm runoff and is associated with a decrease in specific conductance and pH and, dissolved oxygen or temperature. Concentrations of dissolved oxygen often decreased during storm runoff, especially during the initial rise in the hydrograph. Storm runoff consistently diminished or eliminated daily cycles of dissolved oxygen. Minimum concentrations during 12 low dissolved-oxygen periods of storm runoff. Minimum concentrations during twelve low dissolved-oxygen periods ranged from 1.0 to 3.9 mg/L and had a median concentration of 2.8 mg/L. Durations of low dissolved-oxygen concentrations ranged from .75 to 83.75 hours and had median durations of five hrs. Minimum concentrations during five low dissolved-oxygen periods at Fall Creek ranged from 2.0 to 3.4 mg/L and had a median concentration of 2.7 mg/L. Duration of low dissolved-oxygen concentrations ranged from 1.75 to 33.75 hrs and had a median duration of 7 hrs.

  5. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Bruneau River, Jarbidge River, and Sheep Creek West Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Bradley, L.A.; Gent, C.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Bruneau River, Jarbidge River, and Sheep Creek West Wilderness Study Areas, Owyhee County, Idaho.

  6. Audiomagnetotelluric data to characterize the Revett-type copper-silver deposits at Rock Creek in the Cabinet Mountains Wilderness, Montana

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2011-01-01

    The Revett-type deposits at Rock Creek are part of the concealed stratabound copper-silver deposits located in the Cabinet Mountains Wilderness of Montana. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. Geologic, geochemical, geophysical, and mineral resources data are being evaluated with existing and new mineral deposit models to predict the possibility and probability of undiscovered deposits in covered terranes. To help characterize the size, resistivity, and depth of the mineral deposit concealed beneath thick overburden, a regional southwest-northeast audiomagnetotelluric sounding profile was acquired. Further studies will attempt to determine if induced polarization parameters can be extracted from the magnetotelluric data to determine the size of the mineralized area. The purpose of this report is to release the audiomagnetotelluric sounding data collected along that southwest-northeast profile. No interpretation of the data is included.

  7. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2 (sub-group of OIB). Published ages of crustal amphibolite xenoliths from the Prairie Creek lamproite are Proterozoic (~1.32- 1.47 Ga), in keeping with isotopic evidence for crustal assimilation, including Tdm = 1.3-1.7 Ga. Published ages of lamproite (~106 Ma) indicate that these magmas intruded first, whereas carbonatites and other alkalic magmas were later (~102 to ~89 Ma). Asthenospheric upwelling first melted lithospheric mantle and crust, producing lamproitic magmas; asthenospheric magmas followed as swelling of the lithosphere ensued.

  8. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the measured data. Comparisons of the model and data from drillholes show good but not perfect agreement. ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  9. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    SciTech Connect

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

  10. Petrology of Apollo 15 black-and-white rocks 15445 and 15455 - Fragments of the Imbrium impact melt sheet

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Bower, J. F.

    1977-01-01

    The paper describes two macroscopically similar black-and-white rocks, 15445 and 15455, which were collected from the rim of Spur Crater on the Apennine Front. The two Apollo 15 rocks are very similar in chemistry and clast population, but the matrix of 15455 is finer grained than that of 15445. The 15445 sample contains a lithic clast assemblage of plutonic/metamorphic spinel troctolite, troctolite, norite, and anorthosite, and its fine-grained vesicular black coherent matrix consists of a melt-bonded aggregate of small mineral clasts which are mainly olivine, plagioclase, and pink spinel. The two rocks are distinct from any other large samples from the Apollo 15 site. It is suggested that the rocks are samples of an impact melt sheet which forms a bedrock unit of the Apennine Front, and that this melt sheet did not form in a local small-scale event but was produced during the Imbrium impact event.

  11. Yosemite Creek

    In this image, Yosemite Creek may be seen just below the base of Yosemite Falls. Yosemite Creek is a 31.2 mile long creek in Yosemite National Park. It eventually joins with the Merced River in Yosemite Valley....

  12. In situ oxygen isotope analysis of monazite as a monitor of fluid infiltration during contact metamorphism: Birch Creek Pluton aureole, White Mountains, eastern California

    NASA Astrophysics Data System (ADS)

    Ayers, John C.; Loflin, Miranda; Miller, Calvin F.; Barton, Mark D.; Coath, Christopher D.

    2006-08-01

    Monazite from the hydrothermal aureole of the Cretaceous two-mica Birch Creek Pluton in the White Mountains of eastern California records the infiltration of magmatic fluids into the metasedimentary Early Cambrian Deep Spring Formation. Monazite in the Birch Creek Pluton displays concentric, euhedral magmatic zoning, δ18O = 8.7 ± 0.2‰, and Th-Pb magmatic ages of 78.0 ± 0.7 Ma. The middle Deep Spring Formation ˜0.5 km east of the contact underwent moderate- to low-temperature alteration by F-rich magmatic fluids; monazite displays patchy zoning but has similar δ18O values (8.7 ± 0.4‰) and Th-Pb ages (78.3 ± 1.6 Ma) to monazite in the Birch Creek Pluton. In contrast, monazite from the upper Deep Spring Formation ˜0.6 km west of the contact and outside the mapped hydrothermal zone shows concentric zoning, δ18O = 5.2 ± 0.3‰, and partially reset detrital ages from 583 to 1069 Ma. Deep Spring Formation monazite within the hydrothermal alteration zone dissolved and reprecipitated during magmatic fluid infiltration, whereas monazite outside the zone was unaffected. In contrast, Deep Spring zircon within the hydrothermal alteration zone preserved its magmatic zoning and Cambrian Precambrian U-Pb ages. Zircon can reliably date events prior to hydrothermal activity, whereas monazite, being more susceptible to alteration by fluids, is useful for mapping the extent and timing of fluid infiltration events.

  13. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  14. Clinoptilolite and associated authigenic minerals in Miocene tuffaceous rocks in the Goose Creek Basin, Cassia County, Idaho

    SciTech Connect

    Brownfield, M.E.; Hildebrand, R.T.

    1985-01-01

    Miocene tuffaceous fluviolacustrine deposits in the southeastern part of the Goose Creek basin contain a variety of authigenic minerals, including clinoptilolite, smectite, pyrite, gypsum, and calcite. Clinoptilolite is the primary mineral in the diagenetically altered rhyolitic vitric tuffs in the study area. These zeolitic tuffs locally attain thicknesses of as much as 30 meters. Examinations of samples of the altered tuff beds using the scanning electron microscope reveal that the clinoptilolite usually occurs as clean, well-formed tabular crystals about 0.005 mm across in a matrix of smectite. Prismatic clinoptilolite crystals, as much as 0.06 mm long, are present in the larger vugs. During the Miocene, thick beds of air-fall rhyolitic vitric volcanic ash accumulated in the Goose Creek basin in a coalescing fluviolacustrine depositional setting. In the southeastern part of the basin, the volcanic ash was deposited in a lacustrine fan delta, where it was partly reworked and interbedded with sandstone and siltstone. Diagenetic alteration of the ash beds proceeded in an open hydrologic system. Solution and hydrolysis by ground water initially altered the glass shards to form smectite and silica gel. Clinoptilolite subsequently precipitated on the altered shard surfaces. The paragenesis of pyrite, gypsum, and calcite in the zeolitic tuffs is uncertain.

  15. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  16. Maintenance action readiness assessment plan for White Oak Creek and Melton Branch Weir Stilling Pool cleanout at Oak Ridge National Laboratory

    SciTech Connect

    1995-08-01

    This Readiness Assessment Plan has been prepared to document operational readiness for the following maintenance action: (1) removal of sediment from the White Oak Creek and Melton Branch Weir Stilling Pools and (2) disposal of the radiologically contaminated sediment in another location upstream of the weirs in an area previously contaminated by stream overflow from Melton Branch in Waste Area Grouping 2 (WAG) at Oak Ridge National Laboratory. This project is being performed as a maintenance action rather than an action under the Comprehensive Environmental Response, Compensation, and Liability Act because the risk to human health and environment is well below the US Environmental Protection Agency`s level of concern. The decision to proceed as a maintenance action was documented by an interim action proposed plan, which is included in the administrative record. The administrative record is available for review at the US Department of Energy Information Resource Center, 105 Broadway Avenue, Oak Ridge, Tennessee 37830.

  17. Observation of induced fractures intercepted by mining in the Warrior Basin, Alabama. Topical report. Rock Creek methane from multiple coal seams completion project

    SciTech Connect

    Steidl, P.F.

    1991-12-01

    This report summarizes research and inspection of induced fractures that have been intercepted by mining. Induced fractures from 13 wells intercepted by mining were inspected at the Jim Walter Resources' (JWR) No. 4 and 5 Mines in Tuscaloosa County, and the Oak Grove Mine in Jefferson County, Alabama. In this area the Mary Lee and Blue Creek coalbeds average 1.3 ft and 4 to 5.5 ft, respectively at depths of about 2,000 ft at the JWR mines and 1,000 ft in the Oak Grove Mine. These seams are usually separated by 2 to 10 ft of rock parting. The wells were completed open hole from 1982 to 1986. Hydraulic fracture treatments were used to stimulate production. Some expected results include: in general, the fractures followed the coal face cleat direction; they were vertical, and were sandpacked close to the wall. Other observations include the following: (1) most of the fractures and proppant were present in the parting and roof rock, (2) results were similar in the JWR and Oak Grove Mines even though there is 1,000 ft less overburden at the Oake Grove Mine, and (3) no horizontal fractures were observed in the study; though other stimulations have propagated horizontal fractures at Oak Grove.

  18. 40Ar/39Ar Data for White Mica, Biotite, and K-Feldspar Samples from Low-Grade Metamorphic Rocks in the Westminster Terrane and Adjacent Rocks, Maryland

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan

    2008-01-01

    This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.

  19. Viking High-Resolution Topography and Mars '01 Site Selection: Application to the White Rock Area

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; Kirk, Randolph L.; Mackinnon, D. J.; Howington-Kraus, E.

    1999-06-01

    Definition of the local topography of the Mars '01 Lander site is crucial for assessment of lander safety and rover trafficability. According to Golombek et al., steep surface slopes may (1) cause retro-rockets to be fired too early or late for a safe landing, (2) the landing site slope needs to be < 1deg to ensure lander stability, and (3) a nearly level site is better for power generation of both the lander and the rover and for rover trafficability. Presently available datasets are largely inadequate to determine surface slope at scales pertinent to landing-site issues. Ideally, a topographic model of the entire landing site at meter-scale resolution would permit the best assessment of the pertinent topographic issues. MOLA data, while providing highly accurate vertical measurements, are inadequate to address slopes along paths of less than several hundred meters, because of along-track data spacings of hundreds of meters and horizontal errors in positioning of 500 to 2000 m. The capability to produce stereotopography from MOC image pairs is not yet in hand, nor can we necessarily expect a suitable number of stereo image pairs to be acquired. However, for a limited number of sites, high-resolution Viking stereo imaging is available at tens of meters horizontal resolution, capable of covering landing-ellipse sized areas. Although we would not necessarily suggest that the chosen Mars '01 Lander site should be located where good Viking stereotopography is available, an assessment of typical surface slopes at these scales for a range of surface types may be quite valuable in landing-site selection. Thus this study has a two-fold application: (1) to support the proposal of White Rock as a candidate Mars '01 Lander site, and (2) to evaluate how Viking high resolution stereotopography may be of value in the overall Mars '01 Lander site selection process.

  20. Yuccas in Pine Creek Canyon

    The Mojave Desert, home to drought-tolerant plants like yuccas, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Cany...

  1. Development of a digital model of ground-water flow in deeply weathered crystalline rock, Indian Creek area, North Carolina

    SciTech Connect

    Daniel, C.C. III; Eimers, J.L. )

    1994-03-01

    The digital ground-water model of the regolith-bedrock aquifer system in the Indian Creek area is based on the US Geological Survey's modular finite-difference ground-water flow model (MODFLOW). Use of MODFLOW assumes porous media equivalence; however, special approaches have been used to account for non-uniform fracture distribution. The model is divided into a uniformly spaced grid having 196 rows, 140 columns, and a 500-foot spacing. Rows are oriented parallel to fractures (N 72 E) and columns are oriented parallel to foliation (N 18 W). The area represented by active model cells is 146 square miles and has about 17,400 cells. The model has 11 layers of different thickness; the top layer represents the regolith and the lower 10 layers represent bedrock. The regolith-bedrock contact is at a uniform depth of 50 feet. The base of the model is 850 feet below land surface. Hydraulic properties of regolith are based on diffusivity calculated from streamflow recession and are assumed to be areally constant. The steady-state model simulates recharge to, flow through, and discharge from the regolith-bedrock aquifer system. The mass balance between inflow and outflow differs by less than 1%. Along select sections, computed travel times from drainage divides to streams range from less than 4 years in the regolith to as much as 300 years for flow passing through the bottom layer of bedrock. The volume of ground water that flows through the bottom layer is only about 2% of the flow through the regolith.

  2. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock.

    PubMed

    Fukuda, Wakao; Chino, Yohzo; Araki, Shigeo; Kondo, Yuka; Imanaka, Hiroyuki; Kanai, Tamotsu; Atomi, Haruyuki; Imanaka, Tadayuki

    2014-06-01

    A Gram-stain-negative, non-spore-forming, aerobic, oligotrophic bacterium (strain 262-7(T)) was isolated from a crack of white rock collected in the Skallen region of Antarctica. Strain 262-7(T) grew at temperatures between -4 and 30 °C, with optimal growth at 25 °C. The pH range for growth was between pH 6.0 and 9.0, with optimal growth at approximately pH 7.0. The NaCl concentration range allowing growth was between 0.0 and 1.0%, with an optimum of 0.5%. Strain 262-7(T) showed an unprecedented range of morphological diversity in response to growth conditions. Cells grown in liquid medium were circular or ovoid with smooth surfaces in the lag phase. In the exponential phase, ovoid cells with short projections were observed. Cells in the stationary phase possessed long tentacle-like projections intertwined intricately. By contrast, cells grown on agar plate medium or in liquid media containing organic compounds at low concentration exhibited short- and long-rod-shaped morphology. These projections and morphological variations clearly differ from those of previously described bacteria. Ubiquinone 10 was the major respiratory quinone. The major fatty acids were C(17 : 1)ω6c (28.2%), C(16 : 1)ω7c (22.6%), C(18 : 1)ω7c (12.9%) and C(15 : 0) 2-OH (12.3%). The G+C content of genomic DNA was 68.0 mol%. Carotenoids were detected from the cells. Comparative analyses of 16S rRNA gene sequences indicated that strain 262-7(T) belongs to the family Sphingomonadaceae, and that 262-7(T) should be distinguished from known genera in the family Sphingomonadaceae. According to the phylogenetic position, physiological characteristics and unique morphology variations, strain 262-7(T) should be classified as a representative of a novel genus of the family Sphingomonadaceae. Here, a novel genus and species with the name Polymorphobacter multimanifer gen. nov., sp. nov. is proposed (type strain 262-7(T) = JCM 18140(T) = ATCC BAA-2413(T)). The novel species was named after its morphological diversity and formation of unique projections. PMID:24651306

  3. Aquia Creek Sandstone

    This Aquia Creek Sandstone originated from a quarry about 40 miles south of Washington, D.C., in Stafford County, Va. This type of stone was used in the construction of many of D.C.'s most famous landmarks, including the White House and the U.S. Capitol building....

  4. 80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED SHEET 5; SEPTEMBER, 1922. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  5. PALMDALE WATER COMPANY, LITTLE ROCK DAM: REINFORCEMENT, SECTION THROUGH ARCH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PALMDALE WATER COMPANY, LITTLE ROCK DAM: REINFORCEMENT, SECTION THROUGH ARCH RING, AMENDED SHEET 6; SEPTEMBER, 1922. Palmdale Water District files - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  6. 81. PALMDALE WATER COMPANY, LITTLE ROCK DAM: REINFORCEMENT, SECTION THROUGH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    81. PALMDALE WATER COMPANY, LITTLE ROCK DAM: REINFORCEMENT, SECTION THROUGH ARCH RING, AMENDED SHEET 6; SEPTEMBER, 1922. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  7. Plymouth Rock Landed on Us: Malcolm X's Whiteness Theory as a Basis for Alternative Literacy

    ERIC Educational Resources Information Center

    Miller, Keith D.

    2004-01-01

    Using Burkean theory, I claim that Malcolm X brilliantly exposed the rhetoric and epistemology of whiteness as he rejected the African American jeremiad--a dominant form of African American oratory for more than 150 years. Whiteness theory served as the basis for Malcolm X's alternative literacy, which raises important questions that literacy…

  8. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  9. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  10. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  11. Whiteness.

    PubMed

    Altman, Neil

    2006-01-01

    This paper seeks to make meaning of the experience of being white in the United States at this point in history. The self-awareness of white people is limited by a blind spot around the meaning and impact of being white in a multiracial society. Using psychoanalytic and literary methodology, the author seeks to cast light with which to explore this blind spot. Everyday experiences are used to illustrate the widely pervasive impact of race in the lives of white people, and a clinical vignette illustrates how race might show up in a white-on-white psychotherapy. Enactments within this paper are noted when they are evident to the author PMID:16482960

  12. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  13. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    USGS Publications Warehouse

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  14. My Rock: Black Women Attending Graduate School at a Southern Predominantly White University

    ERIC Educational Resources Information Center

    Alexander, Quentin R.; Bodenhorn, Nancy

    2015-01-01

    Participants in this phenomenological study were 11 Black women who received an undergraduate degree from a historically Black college or university and were currently attending graduate school at a southern predominantly White university. This study investigated the adjustment experiences of these women to life on a southern predominantly White…

  15. Quantifying Geomorphic Change to a Point Bar in Response to High Flow Events Using Terrestrial LiDAR, White Clay Creek, Delaware

    NASA Astrophysics Data System (ADS)

    Orefice, M. J.; O'Neal, M. A.; Pizzuto, J. E.

    2014-12-01

    Light Detection And Ranging (LiDAR) can accurately measure three dimensional surfaces for quantifying fluvial erosion and deposition. Point bars are topographic features that form on the convex bank of a meander. While point bars are considered to be formed by depositional processes, they display features such as chute channels and scour holes that suggest that erosion (due to high flow events) may significantly influence point bar evolution. Through the use of Terrestrial Laser Scanning (TLS), we observed how a point bar on the White Clay Creek near Newark, Delaware responded to a flood event with a return period of 5-50 years. Pre-flood and post-flood LiDAR scans were completed in April and May of 2014. Scans were referenced to a common coordinate system, vegetation points were removed, and two 0.10 m resolution gridded Digital Elevation Models (DEMs) were created. A DEM of Difference (DoD) was created by subtracting the pre-flood DEM from the post-flood DEM. Total deposition was 43.58 m3 and total erosion was 79.15 m3, with a net volumetric change of -35.57 m3 over an area of 630.32 m2. Erosion was dominant on the surface of the scroll bar and on the upstream end of the point bar. The pre-flood surface had a large chute channel adjacent to the scroll bar that was filled in during the storm, particularly on the downstream end. Deposits from the storm also extended the point bar into the river channel on the downstream end of the study site. Our results suggest that 1) sediment deposited on point bars is eroded frequently by flood events; and 2) TLS can provide useful estimates of erosion and deposition. If TLS surveys are repeated through time, sediment residence times in point bars can be quantified. This information is useful for creating accurate sediment budgets and for remediating contamination issues.

  16. Development of a large volume of eruptible mush in the upper Wooley Creek batholith, Klamath Mountains, California: evidence from bulk rock, mineral analyses and textural observations

    NASA Astrophysics Data System (ADS)

    Coint, N.; Barnes, C. G.; Barnes, M. A.; Yoshinobu, A. S.

    2012-12-01

    The modalities of development of large volumes of mush in the middle to upper crust capable of erupting have been debated over the past few years. The existence of crystal-rich ignimbrites in the volcanic record indicate that eruptive products do not necessarily correspond to evacuation of the residual magma but that the mush itself can be drained during eruptive events. In this study we present a plutonic example of a large magma batch that evolved by fractional crystallization at a hundred km3 scale: the upper zone of the Wooley Creek batholith (WCb). The WCb is an intrusive complex emplaced over less than 3 m.y. (Kevin Chamberlain, personal communication). The upper zone grades upward from quartz diorite (53 wt% SiO2) to granite (70 wt% SiO2). Hornblende from the central and upper zone have rare earth element patterns that are parallel to one another and with REE concentrations and negative Eu anomalies that decrease from core to rim. The similarities of hornblende REE patterns throughout both the central and upper zones of the system (160 km2 of exposed area) suggest that hornblende crystallized from a magma batch of fairly homogeneous composition. Thus, upward changes in bulk composition between rocks at the bottom and the top of this unit result from varying mineral proportions, with more subhedral plagioclase and hornblende at the bottom and more anhedral to euhedral quartz and interstitial to poikilitic K-feldspar at the top. Two possible explanations are considered: 1) more felsic batches of magma were emplaced at the top of the system and more mafic ones were restricted to the bottom, 2) the upper zone acquired its upward compositional zoning through melt percolation, with the less dense felsic melt ponding at the roof of the system. In the first case, the similarity of hornblende REE patterns throughout the upper zone cannot be explained. Therefore, we favor the second explanation, which is also supported by the lack of sharp contacts in the upper zone. Individual magma batches in the central zone contain hornblende of similar composition as in the upper zone and are interpreted as a preserved part of the feeder system of the latter. Therefore the magma in both the central and upper WCb was already fairly homogeneous when it arrived at the level of emplacement. Dacitic to rhyodacitic roof dikes with30-40% phenocrysts of hornblende and plagioclase with compositions similar to those found in the central and upper zones indicate that the mush was once eruptible. The presence of quartz phenocrysts, which are only found in the uppermost portion of the upper zone, show that 'eruption' occurred after the development of the broad zoning of the upper zone and after more evolved melt had collected at the top of an underlying mush. This study introduces new tools to study magmatic reservoir evolution. The combination of bulk rock and mineral data allows assessment of the extent of mineral-melt separation and identification of the composition of a potential parental magma(s). These data can ideally be used to delimit the size of magma batches and constrain the scale of their chemical/physical connectivity.

  17. Topographic view of the North Fork Butter Creek Bridge (located ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the North Fork Butter Creek Bridge (located center of frame), view looking west - North Fork Butter Creek Bridge, Spanning North Fork Butter Creek Bridge at Milepost 76.63 on Heppner Highway (Oregon Route 74), Pilot Rock, Umatilla County, OR

  18. Hell Creek

    The Hell Creek and underlying Fox Hills Formations are present at the land surface along the margins of the Williston Basin, but otherwise are the deepest bedrock aquifers that are commonly used in the basin....

  19. Bridalveil Creek

    In this image, Bridalveil Creek is seen flowing just beneath the base of Bridalveil Fall. The waterfall is 617 ft (188 m) in height and is one of the most well-known of Yosemite National Park's waterfalls....

  20. Hydrogeologic and geochemical characterization of groundwater resources in Deep Creek Valley and adjacent areas, Juab and Tooele Counties, Utah, and Elko and White Pine Counties, Nevada

    USGS Publications Warehouse

    Gardner, Philip M.; Masbruch, Melissa D.

    2015-01-01

    Water-level altitude contours and groundwater ages indicate the potential for a long flow path from southwest to northeast between northern Spring and Deep Creek Valleys through Tippett Valley. Although information gathered during this study is insufficient to conclude whether or not groundwater travels along this interbasin flow path, dissolved sulfate and chloride data indicate that a small fraction of the lower altitude, northern Deep Creek Valley discharge may be sourced from these areas. Despite the uncertainty due to limited data collection points, a hydraulic connection between northern Spring Valley, Tippett Valley, and Deep Creek Valley appears likely, and potential regional effects resulting from future groundwater withdrawals in northern Spring Valley warrant ongoing monitoring of groundwater levels across this area.

  1. GEE CREEK WILDERNESS, TENNESSEE.

    USGS Publications Warehouse

    Epstein, Jack B.; Gazdik, Gertrude C.

    1984-01-01

    On the basis of geologic, geochemical, and mine and prospect surveys, it was determined that the Gee Creek Wilderness, Tennessee has little promise for the occurrence of mineral resources. Iron ore was formerly mined, but the deposits are small, have a high phosphorous content, and are inaccessible. Shale, suitable for brick or lightweight aggregate, and sandstone, which could be utilized for crushed stone or sand, are found in the area, but are also found in areas closer to potential markets. The geologic setting precludes the presence of oil and gas resources in the surface rocks, but the possibility of finding natural gas at depth below the rocks exposed in the area cannot be discounted. Geophysical exploration would be necessary to define the local structure in rocks at depth to properly evaluate the potential of the area for gas.

  2. A land-use and water-quality history of White Rock Lake Reservoir, Dallas, Texas, based on paleolimnological analyses

    USGS Publications Warehouse

    Platt, Bradbury J.; Van Metre, P.C.

    1997-01-01

    White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.

  3. Sunset in Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  4. Sunset over Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  5. Manzanita in Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  6. Yucca in Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  7. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  8. Spring Database for the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Pavelko, Michael T.

    2007-01-01

    A database containing nearly 3,400 springs was developed for the Basin and Range carbonate-rock aquifer system study area in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The spring database provides a foundation for field verification of springs in the study area. Attributes in the database include location, geographic and general geologic settings, and available discharge and temperature data for each spring.

  9. Sailing to White Boat

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a composite red-green-blue image of the rock called White Boat. It is the first rock target that Spirit drove to after finishing a series of investigations on the rock Adirondack. White Boat stood out to scientists due to its light color and more tabular shape compared to the dark, rounded rocks that surround it.

  10. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  11. Geologic Map of the Upper Wolf Island Creek Watershed, Reidsville Area, Rockingham County, North Carolina

    USGS Publications Warehouse

    Horton, J. Wright, Jr.; Geddes, Donald J., Jr.

    2006-01-01

    This geologic map provides a foundation for hydrogeologic investigations in the Reidsville area of Rockingham County, north-central North Carolina. The 16-mi2 area within the Southeast Eden and Reidsville 7.5-min quadrangles includes the watershed of Wolf Island Creek and its tributary, Carroll Creek, upstream of their confluence. Layered metamorphic rocks in this area of the Milton terrane, here informally named the Chinqua-Penn metamorphic suite, include a heterogeneous mica gneiss and schist unit that contains interlayers and lenses of white-mica schist, felsic gneiss, amphibolite, and ultramafic rock; a felsic gneiss that contains interlayers of amphibolite, white-mica schist, and minor ultramafic lenses; and a migmatitic biotite gneiss. Crushed stone is produced from an active quarry in the felsic gneiss. Igneous intrusive rocks include a mafic-ultramafic assemblage that may have originated as mafic intrusive bodies containing ultramafic cumulates, a foliated two-mica granite informally named the granite of Reidsville, and unmetamorphosed Jurassic diabase dikes. The newly recognized Carroll Creek shear zone strikes roughly east-west and separates heterogeneous mica gneiss and schist to the north from structurally overlying felsic gneiss to the south. Regional amphibolite-facies metamorphism accompanied polyphase ductile deformation in the metamorphic rocks. Two phases of isoclinal to tight folding and related penetrative deformation, described as D1 and D2, were followed by phases of high-strain mylonitic deformation in shear zones and late gentle to open folding. Later brittle deformation produced minor faults, steep joints, foliation-parallel parting, and sheeting joints. The metamorphic and igneous rocks are mantled by saprolite and residual soil derived from weathering of the underlying bedrock, and unconsolidated Quaternary alluvium occupies the flood plains of Wolf Island Creek and its tributaries. The geologic map delineates lithologic and structural features that may act as barriers or conduits for ground-water flow. It provides a hydrogeologic framework for the upper Wolf Island Creek drainage basin, including coreholes and ground-water monitoring wells along two transects. Collaborative hydrogeologic investigations by the North Carolina Department of Environment and Natural Resources and the U.S. Geological Survey are in progress to increase understanding of the influence of geological features on ground-water quality, availability, and transport in an area representative of large areas in the west-central Piedmont.

  12. Structural analysis of mylonitic rocks in the Cougar Creek Complex, Oregon-Idaho using the porphyroclast hyperbolic distribution method, and potential use of SC'-type extensional shear bands as quantitative vorticity indicators

    NASA Astrophysics Data System (ADS)

    Kurz, Gene A.; Northrup, Clyde J.

    2008-08-01

    Mylonitic rocks of the Cougar Creek Complex of northeastern Oregon and west-central Idaho provide an opportunity to document the deformational structures produced during general non-coaxial shear within quartz-feldspar mylonites and to explore the potential role of SC'-type extensional shear bands in vorticity analysis. Well-developed feldspar porphyroclasts within six mylonite zones were utilized to estimate bulk kinematic vorticity ( Wk) using the porphyroclast hyperbolic distribution (PHD) method. Wk values for the Cougar Creek mylonites range from Wk = 0.26 to Wk = 0.37. Synthetic and antithetic shear band inclinations were measured relative to observed shear zone boundaries within five mylonite zones with estimated Wk values and compared to the non-coaxial flow field geometries and eigenvector orientations. In each mylonite zone, synthetic SC'-type shear band populations exhibit a range of inclination with maximum inclination lying approximately parallel to the acute bisector (AB) of the eigenvectors. Similarly, antithetic shear band populations show a range of inclination near the obtuse bisector (OB) of the eigenvectors. We infer that SC'-type extensional shear bands form initially parallel to AB and OB and rotate towards the flow plane with progressive deformation, decreasing their inclination relative to the shear zone boundary. AB and OB have significance in the strain field in that they represent orientations of maximum angular strain rate. Thus, planes perpendicular to AB and OB are mechanically favorable for small zones of localized simple shear (shear bands) within the heterogeneous bulk strain of the mylonite. Orientation analysis of populations of SC'-type shear bands may provide a direct, quantitative means of estimating Wk.

  13. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    USGS Publications Warehouse

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using the U.S. Geological Survey model LOADEST with hourly time steps of turbidity, flow, and time. Yields of all four parameters were within ranges found in other urbanized watersheds in Chesapeake Bay. Annual yields for all four watersheds over the period of study were estimated for suspended sediment (65,500 – 166,000 kilograms per year per square kilometer; kg/yr/km2), total nitrogen (465 - 911 kg/yr/km2), total phosphorus (36 - 113 kg/yr/km2), and E. coli bacteria (6.0 – 38 x 1012 colony forming units/yr/km2). The length of record was not sufficient to determine trends for any of the water-quality parameters; within confidence intervals of the models, results were similar to loads determined by previous studies for the Northeast and Northwest Branch stations of the Anacostia River.

  14. Rock Creek methane from Multiple Coal Seams Completion Project - geologic and reservoir characterization for the Multiple Coal Seams Completion Project. Volume 2. Topical report, March 1983-December 1986

    SciTech Connect

    Boyer, C.M.; Briscoe, F.H.; Camp, B.S.; Koenig, R.A.; Malone, P.G.

    1986-12-01

    Commercialization of coalbed methane, especially in the eastern United States, has been primarily limited to gas production from a single coal seam per well. The Multi-Seam project is a multi-year joint venture investigating the combination of drilling, completion, stimulation, and production parameters required for the viable economic production of methane from shallow, multiple coal seams. Extensive geologic and reservoir characterization was performed during the early stages of the project to set the framework for evaluation of planned completion and production tests. Geologic evaluation included stratigraphic and structural evaluation, especially coal cleat, rock joint, coal seam gas content, coal chemistry, and coal petrography. Reservoir evaluation included single- and two-phase hydrologic testing of the coal seam reservoirs using single and multiple well configurations and in-situ state-of-stress testing of the target coal seams and the boundary rock.

  15. Rock Creek methane from Multiple Coal Seams Completion Project - geologic and reservoir characterization for the Multiple Coal Seams Completion Project. Volume 1. Topical report, March 1983-December 1986

    SciTech Connect

    Boyer, C.M.; Briscoe, F.H.; Camp, B.S.; Koenig, R.A.; Malone, P.G.

    1986-12-01

    Commercialization of coalbed methane, especially in the eastern United States, has been primarily limited to gas production from a single coal seam per well. The Multi-Seam project is a multi-year joint venture investigating the combination of drilling, completion, stimulation, and production parameters required for the viable economic production of methane from shallow, multiple coal seams. Extensive geologic and reservoir characterization was performed during the early stages of the project to set the framework for evaluation of planned completion and production tests. Geologic evaluation included stratigraphic and structural evaluation, especially coal cleat, rock joint, coal-seam gas content, coal chemistry, and coal petrography. Reservoir evaluation included single- and two-phase hydrologic testing of the coal seam reservoirs using single- and multiple-well configurations and in-situ state-of-stress testing of the target coal seams and the boundary rock.

  16. Loblolly Pines in Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  17. Barrel Cactus in Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  18. Sunset Panorama in Pine Creek Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  19. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  20. St. Vrain Creek

    St. Vrain Creek below Boulder Creek at Hwy 119 near Longmont, CO; Bob Brandle, Cory Stephens, Matt Nicotra, and Kevin Scofield measure discharge and install temporary streamgage replacing nearby damaged streamgage....

  1. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  2. Altitude and Configuration of the Potentiometric Surface in the Upper White Clay Creek and Lower West Branch Brandywine Creek Basins including Portions of Penn, London Grove, New Garden, Londonderry, West Marlborough, Highland, and East Fallowfield Townships and West Grove, Avondale, Modena, and South Coatesville boroughs, Chester County, Pennsylvania, May through July 2006

    USGS Publications Warehouse

    Hale, Lindsay B.

    2007-01-01

    INTRODUCTION Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county. These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements. For this study, the potentiometric surface was mapped for an area in south-central Chester County. The northern part of the map includes portions of Highland, East Fallowfield, Londonderry, and West Marlborough Townships and South Coatesville and Modena Boroughs. The southern part of the map includes portions of Londonderry, West Marlborough, Penn, London Grove, and New Garden Townships and West Grove and Avondale Boroughs. The study area is mostly underlain by metamorphic rocks of the Glenarm Supergroup including Peters Creek Schist, Octoraro Phyllite, Wissahickon Schist, Cockeysville Mrable, and Setters Quartzite; and by pegmatite, mafic gneiss, felsic gneiss, and diabase. Ground water is obtained from these bedrock formations by wells that intercept fractures. The altitude and configuration of the potentiometric surface was contoured from water levels measured on different dates in available wells during May through July 2006 and from the altitude of springs and perennial streams. Topography was used as a guide for contouring so that the altitude of the potentiometric surface was inferred nowhere to be higher than the land surface. The potentiometric surface shown on this map is an approximation of the water table. The altitude of the actual potentiometric surface may differ from the water table, especially in areas where wells are completed in a semi-confined zone or have long open intervals that reflect the composite hydraulic head of multiple water-yielding fractures. A composite head may differ from the potentiometric-surface altitude, particularly beneath hilltops and valleys where vertical hydraulic gradients are significant.

  3. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystalli

  4. 6. DETAIL VIEW OF COURSING, SOUTH ELEVATION. LARGER ROCKS ARE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. DETAIL VIEW OF COURSING, SOUTH ELEVATION. LARGER ROCKS ARE SCRABBLED TO GIVE THE APPEARANCE OF A FINISHED SURFACE, LOOKING NORTH - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  5. Late Middle Eocence Nanny Creek calc-alkaline volcanic field, NE Nevada and NW Utah: Age, extent, and implications for Eocene tectonics

    SciTech Connect

    Thorman, C.H.; Brooks, W.E.; Snee, L.W.; Potter, C.J.; Dubiel, R.J.; Ketner, K.B. )

    1993-04-01

    Eighteen new [sup 40]Ar/[sup 39]Ar dates indicate that widespread rhyolitic to andesitic calc-alkaline volcanic rocks in NE Nevada and NW Utah are part of a distinct eruptive sequence that is late Middle Eocene in age, considerably older than previously believed. Most of the rocks were erupted at 41--39 Ma. The presently recognized extent of the field spans 11 ranges from near Elko on the west to the Silver Island Mts on the east and from 20 miles north of Wells to the southern Deep Creek Range. The authors informally designate this the Nanny Creek volcanic field, the type area being Nanny Creek, in the northern Pequop Mts, where compositional and stratigraphic features of the field are clearly displayed. Typically, the base of the sequence includes one or more rhyolite ash-flow tuffs and (or) dacite flows; sources for the tuffs probably were outside the study area as they all appear to be outflow-facies rocks. The similarities in age, chemistry, and mode of occurrence of these rocks throughout their extent indicate that they are all part of the same eruptive sequence. The widespread occurrence of ash-flows in the lower part of the eruptive cycle suggests that the region initially was one of moderate to low relief. The central part of the field rests with angular discordance on Devonian to Triassic rocks, whereas the western and eastern parts rest with angular discordance on lower Eocene rocks (Elko and White Sage basinal rocks, respectively). Ostracode-bearing limestones at several localities in the central part of the field are parallel to the overlying volcanics rocks; the authors interpret the limestones to be correlative with the Elko and White Sage and the limestone/volcanic contact to be a disconformity that is correlative with the angular unconformities to the east and west. These relationships identify a widespread pre-late Middle Eocene deformational event during which the Elko and White Sage basins, but not the intervening area, were deformed.

  6. Oxygen Isotopes and the Cooling History of the Mount Barcroft Area, Central White Mountains, Easternmost California

    NASA Astrophysics Data System (ADS)

    Ernst, W. G.; Rumble, D.

    2001-12-01

    The White-Inyo Range + Owens Valley marks the western limit of the Basin and Range province, directly east of the Sierra Nevada. At Mount Barcroft, mid-Mesozoic, alkaline, bimodal White Mountain Peak metavolcanic + metaclastic rocks on the N are separated from Lower Cambrian siliciclastic + carbonate metasedimentary strata on the S by the NE-trending Middle Jurassic Barcroft mafic granodioritic pluton. It consists of mineralogically/chemically intergradational gabbro/diorite, granodiorite, metadiorite, and alaskite. Eastward, the section is intruded by the Late Cretaceous, ternary-minimum McAfee Creek Granite. Ignoring altered dikes, bulk-rock analyses of plutonic rocks indicate that metaluminous, I-type rocks of the Barcroft comagmatic suite possess an av(12) d18O value of 7.5. Slightly peraluminous, apparently S-type granitic rocks sensu stricto of the McAfee Creek series have an av(8) d18O value of 8.6. Evidence is lacking for large-scale bulk-rock interaction with near-surface waters, suggesting intermediate crustal depths of intrusion and cooling for these plutons. Coexisting Barcroft minerals exhibit consistent oxygen isotopic partitioning from high to low d18O in the sequence quartz > plagioclase > K-feldspar >> amphibole = biotite. Wall-rock quartz and biotite are richer in 18O than analogous phases in the plutonic rocks, and show slightly greater fractionations than igneous counterparts. Along its borders, late-stage exchange with heated aqueous fluids, derived from recrystallized wall rocks due to emplacement of the Middle Jurassic magma, increased 18O/16O ratios of dikes, and some Barcroft igneous plagioclase and subsolidus tremolite-actinolite. Oxygen isotope geothermometry for Barcroft quartz-amphibole and quartz-biotite pairs yields broadly similar temperatures; the combined average of 13 pairs is 519oC. A single quartz-biotite pair analyzed from a Lower Cambrian quartzite within the inner metamorphic aureole of the Barcroft pluton yields a temperature of 511oC, in agreement with values based on wall-rock metamorphic parageneses. Barcroft quartz, feldspars, biotite, and clinoamphiboles were subjected to exchange with deuteric fluid, and re-equilibrated under subsolidus conditions. Quartz-plagioclase pairs from two Barcroft granodiorites possess similar temperatures of 519 and 515oC, so also re-equilibrated at subsolidus temperatures. Areal distributions for quartz-plagioclase, quartz-clinoamphibole, and quartz-biotite pairs reveal that annealing temperatures are lowest in axial portions of the Barcroft granodioritic pluton. Late Cretaceous emplacement of the McAfee Creek Granite had little effect on d18O values of Barcroft minerals and bulk rocks.

  7. 5. Laurel Creek Road, revetment wall and creek. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Laurel Creek Road, revetment wall and creek. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  8. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek... No.: 9690-109. c. Date Filed: June 19, 2012. d. Applicants: Eagle Creek Hydropower, LLC; Eagle Creek... President-- Operations, Eagle Creek Hydropower, LLC, Eagle Creek Water Resources, LLC, Eagle Creek...

  9. Greigite (Fe3S4) as an indicator of drought - The 1912-1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Van Metre, P.; Tuttle, M.; Callender, E.; Goldin, A.

    1999-01-01

    Combined magnetic and geochemical studies were conducted on sediments from White Rock Lake, a reservoir in suburban Dallas (USA), to investigate how land use has affected sediment and water quality since the reservoir was filled in 1912. The chronology of a 167-cm-long core is constrained by the recognition of the pre-reservoir surface and by 137Cs results. In the reservoir sediments, magnetic susceptibility (MS) and isothermal remanent magnetization (IRM) are largely carried by detrital titanomagnetite that originally formed in igneous rocks. Titanomagnetite and associated hematite are the dominant iron oxides in a sample from the surficial deposit in the watershed but are absent in the underlying Austin Chalk. Therefore, these minerals were transported by wind into the watershed. After about 1960, systematic decreases in Ti, Fe, and Al suggest diminished input of detrital Fe-Ti oxides from the surficial deposits. MS and IRM remain constant over this interval, however, implying compensation by an increase in strongly magnetic material derived from human activity. Anthropogenic magnetite in rust and ferrite spherules (from fly ash?) are more common in sediment deposited after about 1970 than before and may account for the constant magnetization despite the implied decrease in detrital Fe-Ti oxides. An unexpected finding is the presence of authigenic greigite (Fe3S4), the abundance of which is at least partly controlled by climate. Greigite is common in sediments that predate about 1975, with zones of concentration indicated by relatively high IRM/MS. High greigite contents in sediment deposited during the early to mid-1950s and during the mid-1930s correspond to several-year periods of below-average precipitation and drought from historical records. Relatively long water-residence times in the reservoir during these periods may have led to elevated levels of sulfate available for bacterial sulfate reduction. The sulfate was probably derived via the oxidation of pyrite that is common in the underlying Austin Chalk. These results provide a basis for the paleoenvironmental interpretation of greigite occurrence in older lake sediments. The results also indicate that greigite formed rapidly and imply that it can be preserved in the amounts produced over a short time span (in this lake, only a few years). This finding thus suggests that, in some lacustrine settings, greigite is capable of recording paleomagnetic secular variation.

  10. Guardians of Tradition and Handmaidens to Change: Women's Roles in Creek Economic and Social Life during the Eighteenth Century.

    ERIC Educational Resources Information Center

    Braund, Kathryn E. Holland

    1990-01-01

    Argues that, during the eighteenth century, Creek women were central elements in both cultural preservation and adaptation to white ways. Discusses the deerskin trade, matrilineal customs, male and female roles, sexuality, marriage, intermarriage between Creek women and white traders, and the role of mixed bloods as cultural intermediaries. (SV)

  11. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  12. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided

  13. 10. DETAIL OF AREATYPICAL FENCE LINE WITH HISTORIC ROCK FENCE; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. DETAIL OF AREA-TYPICAL FENCE LINE WITH HISTORIC ROCK FENCE; VIEW ALONG WHITE ROCK ROAD EAST OF HIDDEN RIVER WAY; VIEW TO SOUTHWEST. - Placerville Road, White Rock Road between Clarksville & White Rock, El Dorado Hills, El Dorado County, CA

  14. Irrigated Acreage Within the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welborn, Toby L.; Moreo, Michael T.

    2007-01-01

    Accurate delineations of irrigated acreage are needed for the development of water-use estimates and in determining water-budget calculations for the Basin and Range carbonate-rock aquifer system (BARCAS) study. Irrigated acreage is estimated routinely for only a few basins in the study area. Satellite imagery from the Landsat Thematic Mapper and Enhanced Thematic Mapper platforms were used to delineate irrigated acreage on a field-by-field basis for the entire study area. Six hundred and forty-three fields were delineated. The water source, irrigation system, crop type, and field activity for 2005 were identified and verified through field reconnaissance. These data were integrated in a geodatabase and analyzed to develop estimates of irrigated acreage for the 2000, 2002, and 2005 growing seasons by hydrographic area and subbasin. Estimated average annual potential evapotranspiration and average annual precipitation also were estimated for each field.The geodatabase was analyzed to determine the spatial distribution of field locations, the total amount of irrigated acreage by potential irrigation water source, by irrigation system, and by crop type. Irrigated acreage in 2005 totaled nearly 32,000 acres ranging from less than 200 acres in Butte, Cave, Jakes, Long, and Tippett Valleys to 9,300 acres in Snake Valley. Irrigated acreage increased about 20 percent between 2000 and 2005 and increased the most in Snake and White River Valleys. Ground-water supplies as much as 80 percent of irrigation water during dry years. Almost 90 percent of the irrigated acreage was planted with alfalfa.

  15. Hot Springs Creek

    USGS scientist Jennifer Lewicki measures the discharge along a tributary to Hot Springs Creek, Akutan Island, Alaska. Steam (upper left) rises from 3 high-temperature springs that discharge into the tributary....

  16. The Silver Creek Preserve

    Before The Nature Conservancy established the Silver Creek Preserve, the watershed had been degraded by years of livestock grazing and overfishing. Preserve managers have been concerned about sedimentation, increasing stream temperatures, and invasive species. To measure the effectiveness of their ...

  17. Electrofishing on Lookout Creek

    USGS scientists electrofishing on the Lookout Creek near the Blue River, OR. The fish they collected were analyzed for mercury content and added to the data base that the National Fish Mercury Model is based on. ...

  18. Sunset over Red Rock Canyon

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  19. LOST COVE AND HARPER CREEK ROADLESS AREAS, NORTH CAROLINA.

    USGS Publications Warehouse

    Griffitts, W.R.; Crandall, T.M.

    1984-01-01

    An investigation indicated that a part of the Lost Cove and Harper Creek Roadless Areas, North Carolina has a probable mineral-resource potential for uranium, niobium, and beryllium. The study areas lie within the Blue Ridge physiographic province and are predominantly underlain by Precambrian plutonic and metasedimentary rocks of low metamorphic grade. The uranium occurs in vein-type deposits and in supergene-enriched foliated rocks. The geologic setting precludes the presence of fossil fuel resources.

  20. CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.

    USGS Publications Warehouse

    Slack, John F.; Behum, Paul T.

    1984-01-01

    A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.

  1. BUCKS LAKE AND CHIPS CREEK ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Sorensen, Martin L.; Linne, J. Mitchell

    1984-01-01

    The results of a mineral-resource assessment of the Bucks Lake and Chips Creek Roadless Areas, California indicate several areas with mineral-resource potential. The presence or absence of these potentially auriferous deposits can best be determined by drilling through the relatively thin cover of volcanic rocks.

  2. Prophet of War: Josiah Francis and the Creek War.

    ERIC Educational Resources Information Center

    Owsley, Frank L., Jr.

    1985-01-01

    Chronicles the life of Josiah Francis, renowned Creek Prophet and leader. Describes his rise to power in the War of 1812 and his subsequent history as ardent advocate of war against the White man. Characterizes him as a charismatic and intelligent, if sometimes foolish, leader. (JHZ)

  3. Regional significance of recurrent faulting and intracanyon volcanism at Oak Creek Canyon, southern Colorado Palteau, Arizona

    SciTech Connect

    Holm, R.F. ); Cloud, R.A. )

    1990-10-01

    Measured sections of late Miocene basalt lava flows, Tertiary gravel, and Paleozoic strata are the basis for stratigraphic reconstructions that provide evidence for pre- and post-volcanic movements on the Oak Creek fault, and for the existence of a prevolcanic ancestral Oak Creek Canyon, Arizona. Recurrent faulting, recording Laramide compression and Basin and Range extension, suggests probable control by an ancestral Oak Creek fault that would belong to a regional system of basement faults hat have controlled Colorado Plateau structures in Phanerozoic rocks. Locally derived Tertiary gravel and overlying lavas filled a canyon eroded in Paleozoic strata along the Oak Creek fault. Southward flow of ancestral Oak Creek, indicated y the lithology and geomorphic position of the gravel, valley reconstruction, and lava vents to the north, northeast, or east, requires that the regional drainage reversal on the southern Colorado Plateau occurred before late Miocene time in the Oak Creek area.

  4. Beaver Creek Wilderness, Kentucky

    SciTech Connect

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied in 1980 by the USGS and USBM. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8.31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  5. BEAVER CREEK WILDERNESS, KENTUCKY.

    USGS Publications Warehouse

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8. 31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  6. Occurrence of uranium-bearing coal, carbonaceous shale, and carbonaceous limestone in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George W.

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Upper Crestaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, IDaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of the Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  7. Early riparian wells along Oil Creek, Northwest Pennsylvania

    SciTech Connect

    Pees, S.T.

    1995-09-01

    The early oil booms beginning in the 1860`s in Northwest Pennsylvania saw a multitude of derricks crowding the narrow flats of Oil Creek between Titusville and Oil City. Oil Creek is a shallow watercourse with gravel bars and islands. At low water one can wade it without wetting the kneecaps. In wet seasons the stream can quickly become a torrent, flooding its banks. In winter it can pile high with jagged ice blocks creating crystal mountains, especially at its mouth where it empties into the Allegheny River at Oil City. Well spacing in the bottoms finally became so close that some oil men headed for the gravel bars an small islands. Others drilled directly in the creek. The objectives were the Upper Devonian Venango Group sandstones, particularly the Third sand, at depths of only 450-550 feet (137-168 m). Early initial production rates of the best wells were 1000, 3000, even 4000 barrels per day. This was the incentive. Piles of rocks and logs were made for some wells on floodable land along Oil Creek. The jacks and well heads stood high above the flats on these artificial mounds. Protective V walls of wood or concrete were made for creek and bank wells. The V pointed upstream and the wooden separator tank was nuzzled inside it. Another approach was a pier built out into the creek to support drilling. Some of these silent reminders of earlier days are still out there.

  8. Panther Creek Energy Facility

    SciTech Connect

    Gawel, R.

    1995-12-31

    The Panther Creek Facility was developed by Panther Creek Partners. The resource recovery facility is designed to use the anthracite mining refuse (culm) left over from decades of coal mining in the region. Employing state-of-the-art circulating fluidized bed (CFB) boiler technology, the facility is able to efficiently burn the low BTU, high ash refuse in an environmentally safe and acceptable manner. Over time the facility will consume the black piles of culm from the surrounding area. High pressure, superheated steam from the circulating fluidized bed boiler drives a turbine generator that produces 94,389 kilowatts of electric power for use in the plant and for sale to Metropolitan Edison Company. The plant is designed to operate 24 hours per day, seven days per week and generates enough electricity to meet the needs of 32,000 homes. Air pollution emissions are controlled by state-of-the art systems utilizing limestone injection and staged combustion with a patented thermal nitrogen oxide emission control system and fabric filter (baghouse) system. The Panther Creek Facility is connected to the Metropolitan Edison Company electrical system in Hamburg, Pennsylvania by a 31-mile long 115 kilovolt transmission line. Near Hamburg, the Panther Creek Hill Road Substation reduces the voltage to 69 kilovolts for delivery to Metropolitan Edison Company through approximately one-half mile of 69 transmission line.

  9. The Paint Creek Project.

    ERIC Educational Resources Information Center

    Northrop, David; Vonck, Beth

    1998-01-01

    Describes a summer program project designed and conducted by a mixed-age group of elementary children. Students collected data to determine whether a local stream was polluted, and interpretations of the data varied. An informational video about the project and the creek was produced. (PVD)

  10. Warm Springs Creek, Idaho

    Warm Springs Creek is a tributary of the Big Wood River in south-central Idaho. It is one of eight sites at which the USGS is conducting an ecological assessment during the summer of 2014. Study results will be published in 2015....

  11. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  12. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  13. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    USGS Publications Warehouse

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  14. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  15. Geochemical Data for Stream-Sediment, Surface-Water, Rock, and Vegetation Samples from Red Mountain (Dry Creek), an Unmined Volcanogenic Massive Sulfide Deposit in the Bonnifield District, Alaska Range, East-Central Alaska

    USGS Publications Warehouse

    Giles, Stuart A.; Eppinger, Robert G.; Granitto, Matthew; Zelenak, Philip P.; Adams, Monique G.; Anthony, Michael W.; Briggs, Paul H.; Gough, Larry P.; Hageman, Philip L.; Hammarstrom, Jane M.; Horton, John D.; Sutley, Stephan J.; Theodorakos, Peter M.; Wolf, Ruth E.

    2007-01-01

    North-central and northeast Nevada contains numerous large plutons and smaller stocks but also contains many small, shallowly emplaced intrusive bodies, including dikes, sills, and intrusive lava dome complexes. Decades of geologic investigations in the study area demonstrate that many ore deposits, representing diverse ore deposit types, are spatially, and probably temporally and genetically, associated with these igneous intrusions. However, despite the number and importance of igneous instrusions in the study area, no synthesis of geochemical data available for these rocks has been completed. This report presents a synthesis of composition and age data for these rocks. The product represents the first phases of an effort to evaluate the time-space-compositional evolution of Mesozoic and Cenozoic magmatism in the study area and identify genetic associations between magmatism and mineralizing processes in this region.

  16. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite gneiss, granite gneiss and pegmatite, granodiorite, and quartz diorite and associated hornblendite are metamorphosed during this period. The second period of folding appears to have been the reflection at depth of faulting nearer the surface; it resulted in crushing as well as some folding of the already folded rocks into terrace and monoclinal folds that plunge gently east-northeast. The biotite-muscovite granite, which is the youngest major Precambrian rock unit, is both concordant (phacolithic) and crosscutting along the older fold system and has been fractured by the younger fold system.

  17. Mineralogy and diagenesis of low-permeability sandstones of Late Cretaceous age, Piceance Creek Basin, northwestern Colorado

    USGS Publications Warehouse

    Hansley, Paula L.; Johnson, Ronald C.

    1980-01-01

    This report presents preliminary results of a mineralogic and diagenetic study of some low-permeability sandstones from measured surface sections and cores obtained from drill holes in the Piceance Creek Basin of northwestern Colorado. A documentation of the mineralogy and diagenetic history will aid in the exploration for natural gas and in the development of recovery technology in these low-permability sandstones. These sandstones are in the nonmarine upper part of the Mesaverde Formation (or Group) of Late Cretaceous age and are separated from overlying lower Tertiary rocks by a major regional unconformity. Attention is focused on the sandstone units of the Ohio Creek Member, which directly underlies the unconformity; however, comparisons between the mineralogy of the Ohio Creek strata and that of the underlying sandstone units are made whenever possible. The Ohio Creek is a member of the Hunter Canyon Formation (Mesaverde Group) in the southwestern part of the basin, and the Mesaverde Formation in the southern and central parts of the basin. The detrital mineralogy is fairly constant throughout all of these nonrnarine Cretaceous sandstone units; however, in the southeastern part of the basin, there is an increase in percentage of feldspar, quartzite, and igneous rock fragments in sandstones of the Ohio Creek Member directly underlying the unconformity. In the southwestern part of the basin, sandstones of the Ohio Creek Member are very weathered and are almost-entirely comprised of quartz, chert, and kaolinite. A complex diagenetic history, partly related to the overlying unconformity, appears to be responsible for transforming these sandstones into potential gas reservoirs. The general diagenetic sequence for the entire Upper Cretaceous interval studied is interpreted to be (early to late): early(?) calcite cement, chlorite, quartz overgrowths, calcite cement, secondary porosity, analcime (surface only), kaolinite and illite, and late carbonate cements. Authigenic high-iron chlorite, which occurs on grain rims and in pore throats, is primarily responsible for the low-permeability of the subsurface sandstones of the Ohio Creek Member in the center of the basin. Kaolinite is the most abundant pore-filling authigenic clay in these sandstones, from the southwestern part of the basin and is responsible for their distinctive white-weathering color in outcrop. In the sandstones below the Ohio Creek Member, however, chlorite and kaolinite occur locally, and authigenic calcite and illite are more abundant. The occurrence and distribution of secondary porosity is one of the most important aspects of the diagenetic history of these sandstones. It is present as moldic intra- and intergranular porosity, as well as microporosity among authigenic clay pariicles. Although present locally in most sandstone units, secondary porosity is particularly common in the uppermost sandstone units and is interpreted to have formed primarily asa result ofweathering during the time represented by the Cretaceous-Tertiary unconformity.

  18. CANEY CREEK WILDERNESS, ARKANSAS.

    USGS Publications Warehouse

    Ericksen, George E.; Dunn, Maynard L., Jr.

    1984-01-01

    Metallic and nonmetallic mineral resources identified in the Caney Creek Wilderness, Arkansas, include many small manganese deposits in areas of novaculite, tripoli, shale, and slate. Small amounts of hand-sorted manganese-oxide ore have been recovered from several of the manganese deposits during sporadic mining activity. Additional manganese resources remain in the known deposits, but the amount in any given deposit is small.

  19. 40Ar/39Ar age-spectrum data for hornblende, biotite, white mica, and K-feldspar samples from metamorphic rocks in the Great Smoky Mountains of North Carolina and Tennessee

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan

    2011-01-01

    This report contains reduced 40Ar/39Ar data of hornblende, biotite, white mica and (or) sericite, and potassium-feldspar mineral separates and phyllite groundmass samples from metamorphic rocks of the Great Smoky Mountains in North Carolina and Tennessee. Included in this report are information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by users unfamiliar with argon isotopic data in the use of these results. No geological meaning is implied for any of the apparent ages presented below, and many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context. All the samples in this report were collected in and around the Great Smoky Mountain National Park in western North Carolina and eastern Tennessee.

  20. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  1. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.

  2. Flooding in the South Platte River and Fountain Creek Basins in eastern Colorado, September 9–18, 2013

    USGS Publications Warehouse

    Kimbrough, Robert A.; Holmes, Jr., Robert R.

    2015-01-01

    Flooding in the Fountain Creek Basin was primarily contained to Fountain Creek from southern Colorado Springs to its confluence with the Arkansas River in Pueblo, in lower Monument Creek, and in several mountain tributaries. New record peak streamflows occurred at four mountain tributary streamgages having at least 10 years of record; Bear Creek, Cheyenne Creek, Rock Creek, and Little Fountain Creek. Five streamgages with at least 10 years of record in a 32-mile reach of Fountain Creek extending from Colorado Springs to Piñon had peak streamflows in the top five for the period of record. A peak of 15,300 ft3/s at Fountain Creek near Fountain was the highest streamflow recorded in the Fountain Creek Basin during the September 2013 event and ranks the third highest peak in 46 years. Near the mouth of the basin, a peak of 11,800 ft3/s in Pueblo was only the thirteenth highest annual peak in 74 years. A new Colorado record for daily rainfall of 11.85 inches was recorded at a USGS rain gage in the Little Fountain Creek Basin on September 12, 2013.

  3. Mineralogical and geochemical characteristics of the Archaean LCT pegmatite deposit Cattlin Creek, Ravensthorpe, Western Australia

    NASA Astrophysics Data System (ADS)

    Bauer, Matthias; Dittrich, Thomas; Seifert, Thomas; Schulz, Bernhard

    2014-05-01

    The LCT (lithium-cesium-tantalum) pegmatite Cattlin Creek is located about 550 km ESE of Perth, Western Australia. The complex-type, rare-element pegmatite is hosted in metamorphic rocks of the Archaean Ravensthorpe greenstone belt, which constitutes of the southern edge of the Southern Cross Terranes of the Yilgarn Craton. The deposit is currently mined for both lithium and tantalum by Galaxy Resources Limited since 2010. The pegmatitic melt intruded in a weak structural zone of crossing thrust faults and formed several pegmatite sills, of which the surface nearest mineralized pegmatite body is up to 21 m thick. The Cattlin Creek pegmatite is characterized by an extreme fractionation that resulted in the enrichment of rare elements like Li, Cs, Rb, Sn and Ta, as well as the formation of a vertical zonation expressed by distinct mineral assemblages. The border zone comprises a fine-grained mineral assemblage consisting of albite, quartz, muscovite that merges into a medium-grained wall zone and pegmatitic-textured intermediate zones. Those zones are manifested by the occurrence of megacrystic spodumene crystals with grain sizes ranging from a couple of centimeters up to several metres. The core zone represents the most fractionated part of the pegmatite and consists of lepidolite, cleavelandite, and quartz. It also exhibits the highest concentrations of Cs (0.5 wt.%), Li (0.4 wt.%), Rb (3 wt.%), Ta (0.3 wt.%) and F (4 wt.%). This zone was probably formed in the very last crystallization stage of the pegmatite and its minerals replaced earlier crystallized mineral assemblages. Moreover, the core zone hosts subordinate extremely Cs-enriched (up to 13 wt.% Cs2O) mineral species of beryl. The chemical composition of this beryl resamples that of the extreme rare beryl-variety pezzotaite. Other observed subordinate, minor and accessory minerals comprise tourmaline, garnet, cassiterite, apatite, (mangano-) columbite, tantalite, microlite (Bi-bearing), gahnite, fluorite, sphalerite, zircon, and uranitnite. The mineral composition of micas and the Nb-Ta minerals columbite and tantalite where also used to determine the degree of fractionation within the different zones of the Cattlin Creek pegmatite. The mineral composition of white micas clearly points out a fractionation trend from lithian muscovite composition within the border zone via mixed composition in the intermediate zone towards lepidolite and polylithionite composition within the core zone. A similar trend is shown by the Nb-Ta mineral compositions, the border and intermediate zone is dominated by ferrocolumbite and manganocolumbite, whereas in the core zone only manganotantalite is present. Further geochronological and isotopical investigations studies will help to understand the regional geological framework and provenance history of the Cattlin Creek pegmatite in more detail.

  4. USGS Scientist Taking Measurements Along Bear Creek

    USGS Scientist Taking Measurements Along Bear Creek - Photo taken by Heidi Koontz, USGS Communications, Friday, Sept. 13. USGS scientist Ben Glass conducting current profiler measurements along Bear Creek near Bear Creek Lake in Morrison, Colo....

  5. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  6. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect

    Nelson, W.J. )

    1991-06-01

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  7. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  8. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  9. 6. West elevation of Drift Creek Bridge, view looking east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. West elevation of Drift Creek Bridge, view looking east from new alignment of Drift Creek Road - Drift Creek Bridge, Spanning Drift Creek on Drift Creek County Road, Lincoln City, Lincoln County, OR

  10. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H., Jr.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  11. Assessment of Hydrology, Water Quality, and Trace Elements in Selected Placer-Mined Creeks in the Birch Creek Watershed near Central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase, less than 10 milligrams per liter, in median suspended-sediment concentration for either basin. During low-flow conditions in 2004 and 2005, previously mined areas investigated on Harrison Creek and on Frying Pan Creek did not contribute substantial suspended sediments to sample sites downstream from the mined areas. No substantial mining-related water- or sediment-quality problems were detected at any of the sites investigated in the upper Birch Creek watershed during low-flow conditions. Average annual streamflow and precipitation were near normal in 2002 and 2003. Drought conditions, extreme forest fire impact, and low annual streamflow set apart the 2004 and 2005 summer seasons. Daily mean streamflow for upper Birch Creek varied throughout the period of record-from maximums of about 1,000 cubic feet per second to minimums of about 20 cubic feet per second. Streamflow increased and decreased rapidly in response to rainfall and rapid snowmelt events because the steep slopes, thin soil cover, and permafrost areas in the watershed have little capacity to retain runoff. Median suspended-sediment concentrations for the 115 paired samples from Frying Pan Creek and 101 paired samples from Harrison Creek were less than the 20 milligrams per liter total maximum daily load. The total maximum daily load was set by the U.S. Environmental Protection Agency for the upper Birch Creek basin in 1996. Suspended-sediment paired-sample data were collected using automated samplers in 2004 and 2005, primarily during low-flow conditions. Suspended-sediment concentrations in grab samples from miscellaneous sites ranged from less than 1 milligram per liter during low-flow conditions to 1,386 milligrams per liter during a high-flow event on upper Birch Creek. Streambed-sediment samples were collected at six sites on Harrison Creek, two sites on Frying Pan Creek, and one site on upper Birch Creek. Trace-element concentrations of mercury, lead, and zinc in streambed sedimen

  12. ADAMS GAP AND SHINBONE CREEK ROADLESS AREAS, ALABAMA.

    USGS Publications Warehouse

    Klein, T.L.; Harrison, Donald K.

    1984-01-01

    The Adams Gap and Shinbone Creek Roadless Areas in Alabama were evaluated for their mineral potential. The only resource within the established boundary of the roadless area is quartzite suitable for crushed rock or refractory-grade aggregate. The quartzite contains deleterious impurities and is found in abundance outside the areas. Natural gas or petroleum may exist at depth. Detailed seismic studies and deep drilling tests are needed before a reasonable estimate of hydrocarbon potential can be made.

  13. Chollas in Pine Creek Canyon

    The Mojave Desert, home to drought-tolerant plants like Cholla cacti, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Roc...

  14. Deep Creek Road Banded Siltite

    Outcrop of the banded siltite unit of the Apple Creek Formation of the Lemhi Group, in the Lemhi sub-basin of the Mesoproterozoic Belt Basin. This exposure is along the Deep Creek road, southeast of the Blackbird cobalt-copper mine area, in the Salmon River Mountains of east-central Idaho. USGS inte...

  15. Tectonic significance of Currant Creek formation, north-central Utah

    SciTech Connect

    Isby, J.S.; Picard, M.D.

    1984-07-01

    The Currant Creek Formation is composed of conglomerate, sandstone, and fine-grained clastic rocks that crop out along the northwestern margin of the Uinta basin in north-central Utah. Lateral gradations in grain size define proximal, medial, and distal parts of coalescing alluvial-fan deposits that prograded eastward from the active Sevier-Laramide orogenic belt during Maestrichtian through Paleocene (.) time. Paleocurrent directions indicate a dominant southerly transport direction and a minor easterly component. Strong east and southeasterly directions, measured in imbricated clasts and in sand lenses in conglomerate, indicate multiple source areas for the detritus. Source of the coarse-grained detritus in the Currant Creek Formation was the Charleston thrust sheet. Conglomeratic clasts are composed of Precambrian and Cambrian quartzite, chert derived from Cambrian and Mississippian carbonate beds, and Pennsylvanian sandstone. These rocks are exposed in the upper plate of the Charleston thrust near Deer Creek Reservoir, Mount Timpanogos, and Strawberry Reservoir. At Big and Little Cottonwood Canyons, the same rocks are exposed in the lower plate.

  16. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  17. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  18. Mapping Evapotranspiration Units in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Smith, J. LaRue; Laczniak, Randell J.; Moreo, Michael T.; Welborn, Toby L.

    2007-01-01

    Accurate estimates of ground-water discharge are crucial in the development of a water budget for the Basin and Range carbonate-rock aquifer system study area. One common method used throughout the southwestern United States is to estimate ground-water discharge from evapotranspiration (ET). ET is a process by which water from the Earth's surface is transferred to the atmosphere. The volume of water lost to the atmosphere by ET can be computed as the product of the ET rate and the acreage of vegetation, open water, and moist soil through which ET occurs. The procedure used in the study groups areas of similar vegetation, water, and soil conditions into different ET units, assigns an average annual ET rate to each unit, and computes annual ET from each ET unit within the outer extent of potential areas of ground-water discharge. Data sets and the procedures used to delineate the ET-unit map used to estimate ground-water discharge from the study area and a qualitative assessment of the accuracy of the map are described in this report.

  19. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry... Land Management Plan (NTRLMP) for the 4,933 acres of TVA-managed public land on Beaver Creek, Clear... the Watauga River. Beaver Creek and Clear Creek reservoirs are on tributaries within the South...

  20. Four Generations of Poarch Creek History

    ERIC Educational Resources Information Center

    Martin, Karla Susanne

    2011-01-01

    The Poarch Band of Creek Indians are a segment of the original Creek Nation that avoided removal and remained in Alabama. This dissertation is a qualitative study designed to record oral histories of Poarch Creek people. Together the tribe and I collected and recorded oral histories from four generations of four Poarch Creek families. In addition,…

  1. Correlation of Twin Creek limestone with Arapien shale in Arapien embayment, Utah - preliminary appraisal

    SciTech Connect

    Sprinkel, D.A.; Waanders, G.L.

    1984-07-01

    Striking and important stratigraphic patterns have emerged as a result of recent work during which members of the Twin Creek Limestone were correlated with the Arapien Shale, all of Middle Jurassic age. These correlations, determined first on the basis of electric and lithologic logs, are supported by recent palynologic work. Three distinct dinoflagellate assemblages, assigned to the Bajocian(.), Bathonian, and Callovian stages, form the paleontologic basis for these correlations. The Bajocian(.) assemblage is found in rocks of the Sliderock and Rich Members of the Twin Creek Limestone. The Bathonian assemblage is found in units of the Boundary Ridge and Watton Canyon Members of the Twin Creek, and also in units of the lower Arapien Shale (lower Leeds Creek Member of the Twin Creek of Wyoming). The Callovian assemblage is found in rocks of the upper Arapien (upper Leeds Creek and Giraffe Creek Members of the Twin Creek of Wyoming). Isopach maps, based on these correlations, indicate that most of central Utah was the site of a large marine embayment - the Arapien embayment -that was flanked on the west, south, and east by highlands. The maps also suggest that the ancestral Uinta Mountains, a submerged feature, affected sedimentation as early as Bajocian time, and became a significant barrier from the late Bathonian through Callovian. In central Utah, marine carbonates were deposited in the Arapien embayment during deposition of the Gypsum Spring through Watton Canyon Members of the Twin Creek Limestone. During deposition of the Arapien Shale, a major northward regression occurred; the embayment shrank to form a smaller basin - the Arapien basin - that lay directly south of the ancestral Uinta Mountains. Most of the Arapien Shale is shallow-water deposits that formed in the basin under hypersaline conditions.

  2. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  3. Panther Creek Upstream of Big Deer Creek, central Idaho

    Panther Creek was severely damaged by heavy metals released from mining and milling activities at the former Blackbird Mine. USGS and other scientists compiled a 30-year record of recovery of the stream’s fish and macroinvertebrate populations....

  4. 1. OVERALL VIEW OF WHITE MILLER LAKE AND UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF WHITE MILLER LAKE AND UPSTREAM FACE OF DAM, LOOKING NORTH - High Mountain Dams in Upalco Unit, White Miller Lake Dam, Ashley National Forest, 6.9 miles North of Swift Creek Campground, Mountain Home, Duchesne County, UT

  5. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    SciTech Connect

    Morgan, C.D.; Chidsey, T.C. )

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structural noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.

  6. Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.

    1979-01-01

    A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata. In fresh rock, bluish-white opaline-like silica (chalcedonic quartz) fills microfractures, and is believed to have originated by diagenetic mobilization of opaline silica from radiolarian tests and sponge spicules. As revealed by microscopic study, the Gibellini facies originally consisted of siliceous muds, slimes, and oozes high in organic constituents. The organic matter is amorphous flaky and stringy sapropel, and probably includes remains of bacteria, phytoplankton, zooplankton, and minor higher plants. Recognizable organic remnants include radiolarian tests, sponge spicules, conodonts, brachiopod shells, algae, and humic debris. Diagnostic radiolarians indicate a Late Devonian age for the Gibellini facies of the Woodruff Formation. Some pyrite is disseminated through the rock and may be primary (syngenetic) but significant pyrite and marcasite occur in chalcedonic quartz veinlets and appear to be diagenetic. In fresh rock, black solid bitumen and liquid oil fill voids and microfractures. These early phase hydrocarbons probably were released during diagenesis from complex nonhydrocarbon molecular structures originating from living organisms, and formed without any major thermal degradation of the kerogen. Gas chromatographic analysis of the saturated hydrocarbon fraction indicates a very complex mixture dominated by branched and cyclic compounds. Conodont and palynomorph color alteration, vitrinite reflectance, and other organic geochemical data suggest that the organic matter in the rock is thermally immature and has not been subjected to temperatures greater than 60?C since deposition in Devonian time. All of these characteristics are consistent with the interpretation of a relatively low temperature and a shallow-burial history for the Gibellini facies on ridge 7129.

  7. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  8. 1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. DEADWOOD CREEK BRIDGE FACING SOUTHWEST. MOUNT RAINIER AND EMMONS GLACIER VISIBLE IN BACKGROUND. - Deadwood Creek Bridge, Spanning Deadwood Creek on Mather Memorial Parkway, Longmire, Pierce County, WA

  9. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  10. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  11. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  12. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    USGS Publications Warehouse

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    This report describes the geography, geology, and ground-water resources of that part of the Frenchman Creek basin upstream from Palisade, Nebr., an area of about 4,900 square miles. The basin includes all of Phillips County, Colo., and Chase County, Nebr., and parts of Logan, Sedgwick, Washington, and Yuma Counties, Colo., and Dundy, Hayes, Hitchcock, and Perkins Counties, Nebr. The land surface ranges from nearly flat to rolling; choppy hills and interdune saddles are common in the areas of dune sand, and steep bluffs and gullies cut the edges of the relatively flat loess plateaus. Most of the basin is drained by tributaries of Frenchman Creek, but parts of the sandhills are undrained. Farming and livestock raising are the principal industries. Irrigation with ground water has expanded rapidly since 1934. The rocks exposed in the basin are largely unconsolidated and range in age from Pliocene to Recent. They comprise the Ogallala formation (Pliocene), the Sanborn formation (Pleistocene and Recent?), dune sand (Pleistocene and Recent), and alluvium (Recent). The rocks underlying the Ogallala are the Pierre shale (Late Cretaceous) and the White River group (Oligocene). The Pierre shale is relatively impermeable and yields little or no water to wells. The White River group also is relatively impermeable and yields little or no water to wells; however, small to moderate quantities of water possibly may be obtained from wells that penetrate fractured or 'porous' zones in the upper part of the White River group or permeable channel deposits within the group. The Ogallala formation is the main aquifer in the basin and yields moderate to large quantities of water to wells. The Sanborn formation and the dune sand generally lie above the water table, but in areas of high water table the dune sand yields small quantities of water to wells for domestic and stock supplies. The alluvium, which includes the low terrace deposits bordering the major streams, yields small to large quantities of water to wells. The ground-water reservoir is recharged only from precipitation on the basin. Of the average annual precipitation of 19.5 inches, about 0.9 inch infiltrates to the water table, thereby contributing about 220,000 acre-feet of water annually to the ground-water reservoir. About 81 million acre-feet of water that could drain under gravity, and thus theoretically is available to wells, is held in groundwater storage in the basin. Water is discharged from the ground-water reservoir by wells, evaporation and transpiration, springs, seepage into streams, and movement into adjacent areas to the east and southeast. Most of the domestic, stock, and irrigation water supplies and all the public supplies are pumped from wells. During 1953, 96 wells were used to irrigate 10,000 acres of land with 19,000 acre-feet of water. About 34,000 acre-feet of water is evaporated and transpired annually in the valleys of the main streams and in areas of shallow water table in the sandhills. From the projection of base-flow measurements made during 1952, it was estimated that the average annual flow of Frenchman Creek into the reservoir above Enders Dam is about 57,000 acre-feet. By similar determinations, the average annual flow of Frenchman Creek at the gaging station at Palisade, Nebr., about 22 miles downstream from Enders Dam, is about 76,000 acre-feet, and the flow of Stinking Water Creek at the gaging station near Palisade is about 22,000 acre-feet. The combined flow of Frenchman and Stinking Water Creeks at their confluence near Palisade thus is about 98,000 acre-feet per year. About 90,000 acre-feet of ground water is estimated to move eastward each year across the Colorado-Nebraska State line within the basin. Additional irrigation wells that will tap the Ogallala formation and the alluvium in the major valleys undoubtedly will be drilled. On the basis of current estimates of future irrigation.withdrawals, it is concluded that by the

  13. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  14. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  15. 76 FR 42124 - Henwood Associates, Inc.; White Mountain Ranch, LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... Energy Regulatory Commission Henwood Associates, Inc.; White Mountain Ranch, LLC; Notice of Transfer of... been transferred to White Mountain Ranch, LLC. The project is located on the Millner Creek Water System...\\ Henwood Associates, Inc., 16 FERC ] 62,075 (1981). White Mountain Ranch, LLC, located at 30130...

  16. Technical background information for the environmental and safety report, Volume 4: White Oak Lake and Dam

    SciTech Connect

    Oakes, T.W.; Kelly, B.A.; Ohnesorge, W.F.; Eldridge, J.S.; Bird, J.C.; Shank, K.E.; Tsakeres, F.S.

    1982-03-01

    This report has been prepared to provide background information on White Oak Lake for the Oak Ridge National Laboratory Environmental and Safety Report. The paper presents the history of White Oak Dam and Lake and describes the hydrological conditions of the White Oak Creek watershed. Past and present sediment and water data are included; pathway analyses are described in detail.

  17. Texture analysis for mapping Tamarix parviflora using aerial photographs along the Cache Creek, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural color photographs were used to detect the coverage of tamarix parviflora and other vegetation along a 40 km portion of Cache Creek in Northern California in 2001. Color aerial photos were digitized and georeferenced. Eight types of ground cover (tamarix patches, crops, roads, rocks, water bo...

  18. The Elk Creek Carbonatite, Southeast Nebraska-An Overview

    SciTech Connect

    Carlson, M. P. Treves, S. B.

    2005-03-15

    A framework geophysical program in southeastern Nebraska during 1970 identified a near-circular feature having gravity relief of about 8 mgal and a magnetic anomaly of about 800 gammas. Analysis of the geophysical data provided a model of a cylindrical mass of indefinite length with a radius of 5500 ft (1676 m) and beveled at the basement surface at about 600 ft (183 m). At the approximate depth at which Precambrian rocks were expected, the initial test hole (2-B-71) encountered an iron-rich weathered zone overlying carbonate-rich rock. The carbonate rocks consist essentially of dolomite, calcite, and ankerite and lesser amounts of hematite, chlorite, phlogopite, barite, serpentine, pyrochlore, and quartz and contain barium, strontium, and rare earths. Total REE, P2O5, and 87Sr/86Sr ratios confirm the carbonatite identification. Texturally, the rocks range from fragmental to contorted to massive. Associated with the carbonatite are lesser amounts of basalt, lamprophyre, and syenite. Additional exploratory drilling has provided about 80,000 ft (24,384 m) of rock record and has penetrated about 3400 ft (1038 m) of carbonatite. The carbonatite is overlain by marine sediments of Pennsylvanian (Missourian) age. The surrounding Precambrian basement rocks are low-to medium-grade metamorphic gneiss and schist of island arc origin and granitic plutons. The Elk Creek carbonatite is located near the boundary between the Penokean orogen created at about 1.84 Ga (billion years) and the Dawes terrane (1.78 Ga) of the Central Plains orogen. This boundary strongly influenced the geometry of both the Midcontinent Rift System (1.1 Ga) and the Nemaha uplift (0.3 Ga). It is assumed that the emplacement of the Elk Creek carbonatite (0.5 Ga) was influenced similarly by the pre-existing tectonic sutures.

  19. Metal concentrations and sources in the Miller Creek watershed, Park County, Montana, August 2000

    USGS Publications Warehouse

    Cleasby, Thomas E.; Nimick, David A.

    2002-01-01

    Miller Creek is a tributary of Soda Butte Creek in south-central Montana near the northeast corner of Yellowstone National Park. Surface-water and streambed-sediment samples were collected from streams and seeps throughout the Miller Creek watershed during low-flow conditions on August 28-31, 2000, to characterize metal concentrations and identify possible sources contributing metal to Miller Creek. Most water in Miller Creek appears to be unaffected by mining disturbances or natural weathering of mineralized rocks, although such effects are common elsewhere in the New World Mining District. Values for pH were near neutral to basic. Total-recoverable copper, lead, and zinc concentrations were low, relative to State of Montana water-quality standards, with many concentrations less than the analytical minimum reporting levels. Metal concentrations in Miller Creek during this study ranged from 1 to 6 micrograms per liter (?g/L) for total-recoverable copper, <1 to 5 ?g/L for total-recoverable lead, and <1 to 26 ?g/L for total-recoverable zinc. Concentrations of cadmium, copper, lead, and zinc in all samples from Miller Creek were less than the chronic aquatic-life criteria, except for one total-recoverable lead value (5 ?g/L) just downstream from the Black Warrior Mine inflow. Leachable lead and zinc concentrations in streambed-sediment samples collected during this study were highest at the Black Warrior Mine inflow. Leachable concentrations at this site were about 20 times greater for lead and 11 times greater for zinc than concentrations in the streambed-sediment sample collected from Miller Creek upstream from this inflow. However, these elevated concentrations had little effect on the leachable metal concentrations in the streambed-sediment sample collected downstream from the Black Warrior Mine inflow. Metal loading to Miller Creek during this low-flow study was relatively small. Three small left-bank inflows having elevated copper concentrations entered Miller Creek near the middle of the study reach and their combined total-recoverable copper load accounted for about 96 percent of the copper load in Miller Creek. Small loads of lead (about 2 micrograms per second) entered Miller Creek from the Black Warrior Mine inflow and a right bank inflow. None of the loads entering Miller Creek had an appreciable effect on mainstem metal concentrations. In addition, substantial differences between mining related areas and areas influenced by local geology could not be determined.

  20. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  1. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    SciTech Connect

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring.

  2. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  3. Shallow Early Cretaceous oil production in Wind Creek/Tomcat Creek area, Crook County, Wyoming

    SciTech Connect

    Randall, A.G.

    1986-08-01

    Over 1.5 million bbl of oil have been produced from the Early Cretaceous Fall River and Lakota Formations on the east side of the Powder River basin in the Wind Creek/Tomcat Creek area, Crook County, Wyoming. Producing depths range from 42 ft at the Barton Ranch field to over 2528 ft at an unnamed field. The gravity of the gas-free oil ranges from 17/sup 0/ API at Barton Ranch to over 49/sup 0/ API in the deeper reservoir rocks located at an unnamed oil field. Oil has been trapped in Lakota channel sandstones and Fall River nearshore sandstones on the Black Hills monocline within a catchment area located on the northeast side of the large northeast-southwest-trending Gillette arch. Currently, the oldest producible oil on or east of the central Black Hills monocline is Early Cretaceous in age. This oil is the highest structural, active, primary production along the west-central flank of the Black Hills uplift. Two Permian-Pennsylvanian fields are located structurally higher, but one is a thermal tertiary project and the other has been abandoned.

  4. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have changed its name to Salmon Creek Hydroelectric Company, LLC for...

  5. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida, shall open on signal, except that from 8 a.m. to 4 p.m., the draw...

  6. PECONIC ESTUARY PROGRAM TIDAL CREEK STUDY

    EPA Science Inventory

    EEA evaluated ten tidal creeks throughout the Peconic Estuary representing a wide range of watershed variables. Primary focus was directed towards the collection and analysis of the macrobenthic invertebrate communities of these ten tidal creeks. Analysis of the macrobenthic comm...

  7. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    USGS Publications Warehouse

    Warwick, P.D.; Crowley, S.S.; Ruppert, L.F.; Pontolillo, J.

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we found that Be and Cd were poorly associated with ash yield, indicating a possible organic affinity, and that Ni, Se, Hg, U, and Pb cluster with most of the rare-earth elements. (3) The dominance of the crypto-eugelinite maceral subgroup over the crypto-humotelinite subgroup suggests that all Gibbons Creek lignites were subjected to peat-forming conditions (either biogenic or chemical) conducive to the degradation of wood cellular material into matrix gels, or that original plant material was not very woody and was prone to formation of matrix gels. The latter idea is supported by pollen studies of Gibbons Creek lignite beds; results indicate that the peat was derived in part from marsh plants low in wood tissue. (4) The occurrence of siliceous sponge spicules in the lower benches of the 3500 bed suggests the original peat in this part of the bed was deposited in standing, fresh water. (5) The petrographic data indicate that the upper sample interval of the 3500 bed contains more inertinite (3%) than the other samples studied. Increases in inertinite content in the upper part of the 3500 bed may have been associated with alteration of the peat by acids derived from the volcanic ash or could have been caused by fire, oxidation and drying, or biologic alteration of the peat in the paleo-mire. ?? 1997 Elsevier Science B.V.

  8. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  9. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  10. Nekton use of intertidal creek edges in low salinity salt marshes of the Yangtze River estuary along a stream-order gradient

    NASA Astrophysics Data System (ADS)

    Jin, Binsong; Qin, Haiming; Xu, Wang; Wu, Jihua; Zhong, Junsheng; Lei, Guangchun; Chen, Jiakuan; Fu, Cuizhang

    2010-07-01

    Non-vegetated creek edges were investigated to explore spatial nekton use patterns in a low salinity intertidal salt marsh creek network of the Yangtze River estuary along a stream-order gradient with four creek orders. Non-vegetated creek edges were arbitrarily defined as the approximately 3 m extending from the creek bank (the marsh-creek interface) into open water. Nekton was sampled using seine nets during daytime high slack water during spring tides for two or three days each in May through July 2008. Twenty-three nekton species (16 fishes and 7 crustaceans) were caught during the study. Fishes were dominated by gobies ( Mugilogobius abei, Periophthalmus magnuspinnatus, Periophthalmus modestus, Synechogobius ommaturus), mullets ( Chelon haematocheilus, Liza affinis) and Chinese sea bass ( Lateolabrax maculatus). Crustaceans were dominated by mud crab ( Helice tientsinensis) and white prawn ( Exopalaemon carinicauda). Rank abundance curves revealed higher evenness of nekton assemblages in lower-order creeks compared to higher-order creeks. Fish abundance tended to increase with increasing creek order. Crustacean abundance was higher in the first-third order creeks than in the fourth-order creek. Dominant nekton species displayed various trends in abundance and length-frequency distributions along the stream-order gradient. The spatial separation of nekton assemblages between the first-third order creeks and the fourth-order creek could be attributed to geomorphological factors (distance to mouth and cross-sectional area). These findings indicate that both lower- and higher-order creek edges play important yet different roles for nekton species and life history stages in salt marshes.

  11. CLOUD PEAK CONTIGUOUS, ROCK CREEK, PINEY CREEK, AND LITTLE GOOSE ROADLESS AREAS, WYOMING.

    USGS Publications Warehouse

    Segerstrom, Kenneth; Brown, Don S.

    1984-01-01

    On the basis of mineral surveys, study areas surrounding the Cloud Peak Primitive Area in northern Wyoming offer little promise for the occurrence of mineral or energy resources. The geologic setting precludes the existence of deposits of organic fuels. Nonmetallic commodities, such as feldspar, limestone, building stone, clay, sand, and gravel are present, but these materials are readily available nearby in large quantities in more accessible areas.

  12. Stable isotope study of water-rock interaction and ore formation, Bayhorse base and precious metal district, Idaho

    USGS Publications Warehouse

    Seal, R.R., II; Rye, R.O.

    1992-01-01

    Whole-rock ??18O and ??D values from the Garden Creek Phyllite define an isotopically depleted zone (60 km2) around the Nevada Mountain stock and are the result of high-temperature interactions with ancient meteoric waters at water/rock ratios ranging from 0.002 to 0.09. Comparison of the ore fluid ??18OH2O and ??DH2O values with hypothetical waters equilibrated with the Garden Creek Phyllite indicates that the hydrothermal fluids must have also interacted with the basal dolomite of Bayhorse Creek, which underlies the phyllite. The ?? 13CCO2 values for the hydrothermal fluids also record a transition from early water/rock interactions that were dominated by the Garden Creek Phyllite to later interactions that were influenced significantly by the basal dolomite of Bayhorse Creek. The range of ??34S values may be interpreted as either a heterogeneous sedimentary source or mixed sedimentary-magmatic sources. -from Authors

  13. Grizzly Bear Creek Flooding May 2015, SD

    Grizzly Bear Creek in Keystone, SD, on May 24, 2015. USGS streamgage 06403850 (Grizzly Bear Creek near Keystone, SD) showed the creek was more than one-half foot above flood stage on May 24. This streamgage is operated in cooperation with the METWARN (Rapid City/Pennington County Emer...

  14. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  15. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  16. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  17. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  18. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  19. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  20. Little Rock Split as Historic Date Nears

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2007-01-01

    Fifty years ago, nine black students walked through the doors of Little Rock Central High School, guarded by U.S. Army and National Guard troops dispatched to protect them from angry white residents protesting integration. Now, Arkansas is inviting the world to turn its eyes to Little Rock--this time, to see how far the city has come since those…

  1. ALLEGHENY FRONT AND HICKORY CREEK ROADLESS AREAS, PENNSYLVANIA.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Girol, Vaughn P.

    1984-01-01

    On the basis of a mineral-resource survey the Allegheny Front and Hickory Creek Roadless Areas, Pennsylvania, have a substantiated potential for oil resources, a probable potential for gas resources, and little likelihood for the occurrence of coal and metallic mineral resources. The oil and gas in the Upper Devonian rocks are found in stratigraphic traps, that commonly are not evident from surface indications. The only sure method to determine if the Upper Devonian sandstones contain oil or gas at a specific site is to drill through the sequence and test the more favorable zones.

  2. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  3. Geologic controls of uranium mineralization in the Tallahassee Creek uranium district, Fremont County, Colorado.

    USGS Publications Warehouse

    Dickinson, K.A.

    1981-01-01

    Two important orebodies have been defined by drilling in the Tallahassee Creek uranium district, Fremont County, Colorado, namely the Hansen and the Picnic Tree. Host rocks are respectively the upper Eocene Echo park Alluvium, and the lower Oligocene Tallahassee Creek Conglomerate. Average ore grade is about 0.08% U3O8. The principal source rock is the lower Oligocene Wall Mountain Tuff. Leaching and transportation of the uranium occurred in alkaline oxidizing ground water that developed during alteration of the ash in a semi-arid environment. The uranium was transported in the groundwater and deposited in a reducing environment controlled by carbonaceous material and associated pyrite. Localization of the ore was controlled by groundwater flow conditions and by the distribution of organic matter in the host rock. -from Author

  4. Temperature, size, and depth of the magma reservoir for the Taylor Creek Rhyolite, New Mexico

    USGS Publications Warehouse

    Duffield, W.A.; du Bray, E.A.

    1990-01-01

    The 55 km3 mid-Tertiary Taylor Creek Rhyolite in southwestern New Mexico consists of 20 lava domes and flows. This rhyolite is metaluminous to weakly peraluminous. Compositional zonation in feldspar phenocrysts is very minor and nonsystematic. The compositions of each feldspar species vary little throughout the suite of analyzed samples. This chemical homogeneity of phenocrysts reflects similar whole-rock homogeneity and suggests that the lavas were tapped from a single large reservoir of magma. Ages of sanidine phenocrysts determined using 40Ar/39Ar indicate that the Taylor Creek Rhyolite lavas were emplaced during a period of less than 0.42 my. and possibly less than 0.13 m.y., which is consistent with the single-reservoir scenario. Two-feldspar geothermometry suggests that Taylor Creek Rhyolite phenocrysts crystallized at about 775??C, at an assumed pressure of 2 kbar. Fe-Ti-oxide geothermometry suggests phenocryst growth at about 800??C. Experimental studies suggest that quartz and potassium-feldspar crystals that grow from H2O-undersaturated granitic magmas should exhibit resorption texture, a texture ubiquitous to Taylor Creek Rhyolite quartz and sanidine phenocrysts. We tentatively conclude that the Taylor Creek Rhyolite magma was H2O undersaturated and subliquidus at an unspecified pressure greater than 0.5 kbar during phenocryst growth and that Taylor Creek Rhyolite pyroclastic deposits formed because volatile saturation developed during the ascent of magma to sites of eruption. -from Authors

  5. Trace metals in surface water and stream sediments of Healy and Lignite Creek Basins, Alaska

    SciTech Connect

    Parks, B.

    1983-01-01

    Coal has been strip-mined in the Healy and Lignite Creek basins of the Nenana coal field. Trace metals concentrations are low in Healy Creek, but are higher in the Lignite Creek basin. Concentrations of trace metals increase as Healy Creek and Sanderson Creek (in the Lignite basin) flow past mined areas, but effects of coal mining cannot be distinguished from those due to a change in lithology or coal outcrop burning. Metals are typically concentrated on the suspended sediment. The source of the trace metals on sediment and in the water is probably the fine-grained Tertiary rock of the coal-bearing group. Local coals do not contain high levels of trace metals. Concentrations of dissolved and suspended trace metals in water and total-recoverable trace metals in the bed material do not present an environmental hazard in the Healy and Lignite Creek basins at this time. Mining does not appear to have had any appreciable effect on the quality of ground water in the basins. 14 references, 8 tables.

  6. Trace metals in surface water and stream sediments of Healy and Lignite Creek basins, Alaska

    SciTech Connect

    Parks, B.

    1983-01-01

    Coal has been strip-mined in the Healy and Lignite Creek basins of the Nenana coal field. Trace metals concentrations were low in Healy Creek, but were higher in the Lignite Creek basin. Concentrations of trace metals increased as Healy Creek and Sanderson Creek flow past mined areas, but effects of coal mining could not be distinguished from those due to a change in lithology or coal outcrop burning. Metals are typically concentrated on the suspended sediment. The source of the trace metals on sediment and in the water is probably the fine-grained Tertiary rock of the coal-bearing group. Local coals do not contain high levels of trace metals. Concentrations of dissolved and suspended trace metals in water and total-recoverable trace metals in the bed material do not present an environmental hazard in the Healy and Lignite Creek basins at this time. Mining does not appear to have had any appreciable effect on the quality of groundwater in the basins. 14 refs., 13 figs., 8 tabs.

  7. Cement Creek Following Storm Event

    Cement Creek following storm event in July, 2004. Note the orange discoloration of the stream derived from weathering of bedrocks and from mined areas. This type of event happens frequently in the Animas Watershed near Silverton, Colorado. View is to the south, with Kendall Mountain in the distance....

  8. OXYGEN AERATION AT NEWTOWN CREEK

    EPA Science Inventory

    A successful initial feasibility investigation of oxygen aeration at the 0.11-cu m/sec (2.5-mgd) municipal wastewater treatment plant in Batavia, New York, prompted a larger demonstration at New York City's 13.6-cu m/sec (310-mgd) Newtown Creek Plant. A 34-mo evaluation was perfo...

  9. Parachute Creek Shale Oil Program

    SciTech Connect

    Not Available

    1981-01-01

    This pamphlet describes Union Oil's shale oil project in the Parachute Creek area of Garfield County, Colorado. The oil shale is estimated to contain 1.6 billion barrels of recoverable oil in the high Mahogany zone alone. Primarily a public relations publication, the report presented contains general information on the history of the project and Union Oil's future plans. (JMT)

  10. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals

  11. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  12. Reconstructing the Shock Wave From the Wolfe Creek Meteorite Impact.

    NASA Astrophysics Data System (ADS)

    Heine, C.; O'Neill, C. J.

    2003-12-01

    The Wolfe Creek meteorite crater is an 800m diameter impact structure located in the Tanami Desert near Hall's Creek, Western Australia. The crater formed <300000 years ago, and is the 2nd largest crater from which fragments of the impacting meteorite (a medium octahedrite) have been recovered. We present the results of new ground based geophysical (magnetics and gravity) surveys conducted over the structure in July-August, 2003. The results highlight the simple structure of the crater under the infilling sediments, and track the extent of deformation and the ejecta blanket under the encroaching sanddunes. The variations in the dip of the foliations around the crater rim confirm that the crater approached from East-Northeast, as deduced from the ejecta distribution, and provide constraints on the kinetic energy and angle of the impactor. We also use the distribution of shocked quartz in the target rock (Devonian sandstones) to reconstruct the shock loading conditions of the impact using the Grieve and Robertson (1976) criterion. We also use a Simplified Arbitrary Langrangian-Eulerian hydrocode (SALE 2) to simulate the propagation of shock waves through a material described by a Tillotson equation of state. Using the deformational and PT constraints of the Wolfe-Creek crater, we can estimate the partitioning of kinetic energy as a result of this medium-size impact.

  13. Steel Creek water quality: L Lake/Steel Creek Biological Monitoring Program, November 1985--December 1987

    SciTech Connect

    Chimney, M.J.; Nagle, J.H.

    1988-03-01

    The objective of this portion of the L-Lake/Steel Creek Biological Monitoring Program is to document the current status of water quality in the Steel Creek system, assess the overall impact of L-Reactor operation and L-Lake on Steel Creek water quality, determine whether ecologically important alterations in the water quality of Steel Creek have occurred, and compare Steel Creek water quality with other southeastern lotic systems. This report covers the period November 1985 through December 1987. The impoundment and discharge from L-Lake has had an impact on the water quality of Steel Creek through the introduction of Savannah River water into Steel Creek. Flow velocity throughout Steel Creek was related to the discharge volume at the L-Lake dam. This relationship was most evident at the creek corridor and channel stations.

  14. Geology of the Atkinson Creek quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    McKay, E.J.

    1953-01-01

    The Atkinson Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that rangein age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Bath". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstone of favorable composition.

  15. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  16. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  17. 2. EASTERN VIEW OF WATERGATE AT CENTER AND THE ROCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EASTERN VIEW OF WATERGATE AT CENTER AND THE ROCK CREEK AND POTOMAC PARKWAY RAMP AT LEFT. VIEW TAKEN FROM NORTHERN RAILING OF MEMORIAL BRIDGE. - Arlington Memorial Bridge, Boundary Channel Extension, Spanning Mount Vernon Memorial Highway & Boundary Channel, Washington, District of Columbia, DC

  18. "Sweet Little (White) Girls"? Sex and Fantasy across the Color Line and the Contestation of Patriarchal White Supremacy

    ERIC Educational Resources Information Center

    Godfrey, Phoebe

    2004-01-01

    The presence of the Little Rock Nine at Little Rock's Central High in September 1957 as a result of "Brown vs. the Board of Education" evoked anger, fear, and even panic among some parts of the white community, and many white women and girls responded with near hysteria. This article seeks to answer why. What was it about integration that provoked…

  19. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  20. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  1. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  2. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  3. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    SciTech Connect

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

    1980-06-30

    Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

  4. Otter Creek Wilderness, West Virginia

    SciTech Connect

    Warlow, R.C.; Behum, P.T.

    1984-01-01

    A mineral-resource survey of the Otter Creek Wilderness conducted in 1978 resulted in the determination of demonstrated coal resources estimated to total about 24 million short tons in beds more than 28 in. thick and an additional 62 million short tons of coal in beds between 14 and 28 in. thick. There is little promise for the occurrence of mineral or other energy resources in the area.

  5. Analyses and description of geochemical samples, Mill Creek Wilderness Study Area, Giles County, Virginia

    USGS Publications Warehouse

    Mei, Leung; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.

  6. Geologic map of the Redwood Creek drainage basin, Humboldt County, California

    USGS Publications Warehouse

    Harden, Deborah Reid; Kelsey, H.M.; Morrison, S.D.; Stephens, T.A.

    1982-01-01

    A 1:62,500-scale geologic map with 14 rock stratigraphic units and an accompanying explanatory text are used to describe the geology of the Redwood Creek drainage basin of northwestern California. A large part of Redwood National Park is located in the downstream part of this actively eroding drainage basin. The bedrock consists primarily of Mesozoic sedimentary and metamorphic rocks. The structurally complex Franciscan assemblage of rocks underlies most of the basin, but rocks of the Klammath Mountain tectonic province occurs in a small eastern part of the basin. Most major boundaries between Mesozoic rock units are north-northwest trending faults parallel to the regional structural trend. Extensive areas of surficial coastal plain sediments, landslide deposits, stream terrace deposits and modern alluvium are also present; these areas help identify loci of vigorous recent erosion. (USGS)

  7. Geologic controls of uranium mineralization in the Tallahassee Creek uranium district, Fremont County, Colorado

    SciTech Connect

    Dickinson, K.A.

    1981-10-01

    Two important orebodies have been defined by drilling in the Tallahassee Creek uranium district, Fremont County, Colorado. They are the Hansen orebody, which contains about 12 million kg of U/sub 3/O/sub 8/, and the Picnic Tree orebody, which contains about 1 million kg of U/sub 3/O/sub 8/. Host rock for the Hansen is the upper Eocene Echo Park Alluvium, and host rock for the Picnic Tree is the lower Oligocene Tallahassee Creek onglomerate. Average ore grade for both deposits is about 0.08 percent U/sub 3/O/sub 8/. The principal source rock for the uranium depsoits is the lower Oligocene Wall Mountain Tuff, although a younger volcanic rock, the Oligocene Thirtynine Mile Andesite, and Precambrian granitic rocks probably also contributed some uranium. Leaching and transportation of the uranium occurred in alkaline oxidizing ground water that developed during alteration of the ash in a semi-arid environment. The uranium was transported in the ground water to favorable sites where it was deposited in a reducing environment controlled by carbonaceous material and associated pyrite. Localization of the ore was controlled by ground-water flow conditions and by the distribution of organic matter in the host rock. Ground-water flow, which was apparently to the southeast in Echo Park Alluvium that is confined in the Echo Park graben, was impeded by a fault that offsets the southern end of the graben. This offset prevented efficient discharge into the ancestral Arkansas River drainage, and protected chemically reducing areas from destruction by the influx of large amounts of oxidizing ground water. The location of orebodies in the Echo Park Alluvium also may be related to areas where overlying rocks of low permeability were breached by erosion during deposition of the fluvial Tallahassee Creek Conglomerate allowing localized entry of uranium-bearing water.

  8. Do suspended sediment and bedload move progressively from the summit to the sea along Magela Creek, northern Australia?

    NASA Astrophysics Data System (ADS)

    Erskine, W. D.; Saynor, M. J.; Turner, K.; Whiteside, T.; Boyden, J.; Evans, K. G.

    2015-03-01

    Soil erosion rates on plots of waste rock at Ranger uranium mine and basin sediment yields have been measured for over 30 years in Magela Creek in northern Australia. Soil erosion rates on chlorite schist waste rock are higher than for mica schist and weathering is also much faster. Sediment yields are low but are further reduced by sediment trapping effects of flood plains, floodouts, billabongs and extensive wetlands. Suspended sediment yields exceed bedload yields in this deeply weathered, tropical landscape, but the amount of sand transported greatly exceeds that of silt and clay. Nevertheless, sand is totally stored above the topographic base level. Longitudinal continuity of sediment transport is not maintained. As a result, suspended sediment and bedload do not move progressively from the summit to the sea along Magela Creek and lower Magela Creek wetlands trap about 90.5% of the total sediment load input.

  9. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements, discharges ranged from 82 cubic feet per second (ft3/s) at Black Gore Creek near Minturn (U.S. Geological Survey station number 09066000) to 724 ft3/s at Gore Creek at mouth near Minturn (U.S. Geological Survey station number 09066510), whereas during the September traveltime measurements, discharges ranged from 3.6 ft3/s at Black Gore Creek near Minturn to 62 ft3/s at Gore Creek at mouth near Minturn. Cumulative traveltimes for the peak dye concentration during the May traveltime measurements ranged from 3.45 hours (site 1 to site 3) in Black Gore Creek to 2.50 hours (site 8 to site 12) in Gore Creek, whereas cumulative traveltimes for the peak dye concentration during the September traveltime measurements ranged from 15.33 hours (site 1 to site 3) in Black Gore Creek to 8.65 hours (site 8 to site 12) in Gore Creek. During the September dye injections, beaver dams on Black Gore Creek, between site 1 and the confluence with Gore Creek, substantially delayed movement of the rhodamine WT. Estimated traveltimes were developed using relations established from linear-regression methods of relating measured peak traveltime to discharge during those measurements, which were obtained at Black Gore Creek near Minturn and Gore Creek at mouth near Minturn. Resulting estimated peak traveltimes for Black Gore Creek (sites 1 to 5) ranged from 5.4 to 0.4 hour for 20 to 200 ft3/s and for Gore Creek (sites 5 to 12), 5.5 to 0.3 hour for 20 to 800 ft3/s. Longitudinal-dispersion coefficients that were calculated for selected stream reaches ranged from 17.2 square feet per second at 4 ft3/s between sites 2 and 3 to 650 square feet per second at 144 ft3/s between sites 7 and 8. Longitudinal-dispersion coefficients are necessary variables for future stream-contaminant modeling in the Gore Creek watershed.

  10. DEEP CREEK AND MUD CREEK, TWIN FALLS, IDAHO. WATER QUALITY STATUS REPORT, 1986

    EPA Science Inventory

    Deep Creek and Mud Creek are located in Twin Falls County near Buhl, Idaho (17040212). From April through October, these creeks convey irrigation drainage water from the western part of the Twin Falls irrigation tract to the Snake River. During 1986, water quality surveys were ...

  11. LIGHTNING CREEK, PACK RIVER, AND SAND CREEK, BONNER COUNTY, IDAHO - WATER QUALITY SUMMARY, 1978

    EPA Science Inventory

    In Water Year 1978, water quality studies were conducted on Lightning Creek, Pack River, and Sand Creek in Bonner County, Idaho (17010214, 17010213) to determine the present status of the streams. Water quality in Lightning Creek was generally very high. No violations of standa...

  12. CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTHWEST Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTHWEST - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  13. CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTH Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTH - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  14. CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTH Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTH - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  15. CLOVER CREEK BRIDGE, SOUTH ELEVATION DETAIL, FACING NORTH NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, SOUTH ELEVATION DETAIL, FACING NORTH NORTHEAST - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  16. CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTHWEST Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTHWEST - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  17. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  18. 1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING SOUTHWEST - Presidio Water Treatment Plant, Lobos Creek Inlet Structure, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  19. Coop Creek Bridge with Checkerboard Mesa in background, historic photograph, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Co-op Creek Bridge with Checkerboard Mesa in background, historic photograph, no date, Zion National Park collection - Zion-Mount Carmel Highway, Co-op Creek Bridge, Spanning Co-op Creek, Springdale, Washington County, UT

  20. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  1. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  2. 2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW SHOWING SIMPSON CREEK BRIDGE WITH BRIDGEPORT LAMP AND CHIMNEY COMPANY IN BACKGROUND. - Bridgeport Lamp Chimney Company, Simpson Creek Bridge, Spanning Simpson Creek, State Route 58 vicinity, Bridgeport, Harrison County, WV

  3. 5. General perspective view of Neawanna Creek Bridge, showing articulated ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. General perspective view of Neawanna Creek Bridge, showing articulated fascia walls - Neawanna Creek Bridge, Spanning Neawanna Creek at Milepoint 19.72 on U.S. 101 (Oregon Coast Highway), Seaside, Clatsop County, OR

  4. 6. General perspective view of Neawanna Creek Bridge, showing bushhammered, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General perspective view of Neawanna Creek Bridge, showing bush-hammered, recessed panels in fascia wall - Neawanna Creek Bridge, Spanning Neawanna Creek at Milepoint 19.72 on U.S. 101 (Oregon Coast Highway), Seaside, Clatsop County, OR

  5. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  6. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  7. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  8. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  9. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  10. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  11. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  12. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  13. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  14. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  15. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  16. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  17. White Toenails

    MedlinePlus

    ... body, causing protein to be deposited within the nail bed. A fungal infection that affects the outermost layer of the toenail may cause a bright white discoloration of the toenail. A white area close to the nail fold (the lunula) varies in size from one ...

  18. Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.

    PubMed

    Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju

    2012-01-01

    An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life. PMID:21818559

  19. Reconnaissance investigation of the Lisburne Group in the Cobblestone Creek area, Chandler Lake quadrangle, Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.

    2015-01-01

    A reconnaissance investigation of the Carboniferous Lisburne Group in the Cobblestone Creek area, Chandler Lake Quadrangle, yields insights into its resource potential and regional relations. Locally porous vuggy dolostone with hydrocarbon reservoir potential occurs in the lower Lisburne in the three most southerly of five thrust sheets, and contains traces of dead oil in two of these sheets. The dolostones are coarse crystalline, commonly cross-bedded, and at least in part of Osagean (late Early Mississippian) age; they have pelmatozoan grainstone protoliths that likely formed in sand shoals of the midramp to inner ramp. Similar, coeval porous dolostones occur in the Lisburne from Skimo Creek to Itkillik Lake, ~70 km west and 10 km east of the Cobblestone Creek area, respectively. We also examined the uppermost Lisburne Group at several localities in the Cobblestone Creek area, mainly in the northernmost thrust sheet where the rocks are as young as Morrowan (Early Pennsylvanian). Cobblestone sections contain more supportstone than equivalent strata at Skimo Creek, and overlying Permian successions also differ between the two areas. These lithologic contrasts may reflect different rates of tectonically controlled subsidence, and (or) changes in sediment input, along the late Paleozoic continental margin.

  20. Research Rocks

    Dr. Alex Andronikov, a geologist from the University of Michigan Department of Geological Science, and Kelley Brumley, a geologist from Stanford University, sort through rocks that were dredged from the Arctic Ocean floor Sept. 9, 2009, aboard the Coast Guard Cutter Healy.The dredging is part of the...

  1. Stillwater Rocks

    Rocks from the Stillwater Mine are brought to the USGS in Denver, Colorado, where they are ground before entering the plasma melter at Zybek Advanced Products. __________ The USGS has created man-made moon dirt, or regolith, to help NASA prepare for upcoming moon explorations. Four tons of the sim...

  2. Rock Grinding

    Rocks from the Stillwater Mine are brought to the USGS in Denver, Colorado, where they are sledged and ground before entering the plasma melter at Zybek Advanced Products. __________ The USGS has created man-made moon dirt, or regolith, to help NASA prepare for upcoming moon explorations. Four ton...

  3. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  4. Illite/smectite diagenesis and hydrocarbon generation in Cretaceous Mowry and Skull Creek Shales of northern Rocky Mountains-Great Plains region

    SciTech Connect

    Burtner, R.L.; Warner, M.A.

    1983-03-01

    The Lower Cretaceous Mowry and Skull Creek Shales and their equivalents are among the major source rocks in the northern Rocky Mountains-Great Plains region. They are the major source of hydrocarbons in the Lower Cretaceous Muddy Sandstone of the Powder River basin. This sandstone has a geographic distribution similar to that of the Mowry and much of the Skull Creek. Illite/smectite mixed-layer clay in the Mowry and Skull Creek Shales of eastern Montana and western North Dakota is unaltered. No significant amounts of hydrocarbons have ever been found in the Muddy Sandstone of this area. Hydrocarbons in the Muddy Sandstone occur within or immediately adjacent to areas in which the smectite component of the illite/smectite in the Mowry and Skull Creek Shales has undergone alteration to illite during burial diagenesis. Anomalous decreases in the total organic carbon content of the Mowry and Skull Creek Shales lie within areas of illite/smectite alteration and coincide with the deeper parts of structural basins which developed after deposition of the Mowry and Skull Creek. These regional variations in illite/smectite alteration and total organic carbon content reflect thermal maturation and are not provenance controlled. They are useful indicators of areas where the potential source rocks have been subjected to temperatures adequate to generate hydrocarbons. The degree of illite/smectite diagenesis in the Mowry and Skull Creek of the northern Rocky Mountains-Great Plains region is thus of exploration significance in the search of hydrocarbons in this area.

  5. Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  6. 2. CONTEXTUAL ELEVATION VIEW OF BRIDGE OVERLOOKING PLEASANTS VALLEY CREEK; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEXTUAL ELEVATION VIEW OF BRIDGE OVERLOOKING PLEASANTS VALLEY CREEK; VIEW TO EAST. - Pleasants Valley Road Bridge, Spanning Pleasants Creek at Pleasants Valley Road, Vacaville, Solano County, CA

  7. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Yakama Indian Nation, Annual Report 2002-2003.

    SciTech Connect

    Morris, Gregory

    2003-05-01

    This document represents the FY2002 BPA contract Statement of Work for the Yakama Nation (YN) portion of the project entitled 'Assessment of current and potential salmonid production in Rattlesnake Creek associated with restoration efforts'. The purpose of the project is to complete detailed surveys of water quality, fish populations, habitat conditions and riparian health in the Rattlesnake Creek sub-basin of the White Salmon River in south central Washington. Results of the surveys will be used to establish Rattlesnake Creek sub-basin baseline environmental factors prior to anticipated removal of Condit Dam in 2006 and enable cost-effective formulation of future watershed restoration strategies.

  8. Geology of crystalline rocks of northern Fiordland: details of the granulite facies Western Fiordland Orthogneiss and associated rock units

    USGS Publications Warehouse

    Bradshaw, J.Y.

    1990-01-01

    A c. 700 km2 area of northern Fiordland (South Island, New Zealand) is described in which Early Cretaceous high-pressure metamorphic rocks and virtually unmetamorphosed plutonic rocks occur. The dominant rocks are orthogneisses developed from synmetamorphic basic-intermediate intrusive complexes, the youngest and most widespread of which is the Early Cretaceous Western Fiordland Orthogneiss (WFO). The latter has undergone granulite facies metamorphism and occurs throughout much of western Fiordland. WFO was emplaced synkinematically in a subduction-related magmatic arc. A collisional event during or immediately following magma emplacement resulted in crustal thickening equivalent to onloading of a 20 km thick section over rocks already buried at mid-crustal depths. This event was responsible for peak load pressures of c. 12-13 kbar. The steeply dipping Surprise Creek Fault juxtaposes high-pressure metamorphic rocks of western and central Fiordland against virtually unmetamorphosed gabbroic rocks of the Early Cretaceous Darran Complex. -from Author

  9. Hydrologic data for urban studies in the Dallas, Texas, metropolitan area, 1978

    USGS Publications Warehouse

    Hampton, B.B.; Wood, C.M.

    1980-01-01

    This report contains rainfall and runoff data collected during the 1978 water year for drainage basins of Joes Creek, Bachman Branch, Turtle Creek, Coombs Creek, Cedar Creek, White Rock Creek, Elam Creek, Fivemile Creek, Newton Creek, Whites Branch, Prairie Creek, Tenmile Creek, Duck Creek, and South Mesquite Creek in the Dallas, Texas metropolitan area. The information will be useful in determining the extent to which progressive urbanization will affect the yield and mode of occurrence of storm runoff. Detailed rainfall-runoff computations are presented for ten storm periods during the 1978 water year. (USGS)

  10. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  11. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  12. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0,...

  13. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 0.4,...

  14. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 0.4,...

  15. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 0.4,...

  16. 33 CFR 117.571 - Spa Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Spa Creek. 117.571 Section 117.571 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.571 Spa Creek. The S181 bridge, mile 4.0,...

  17. TOXICITY PERSISTENCE IN PRICKLY PEAR CREEK, MONTANA

    EPA Science Inventory

    Instream toxicity tests using the larval fathead minnow Pimephales promelas and the cladoceran Ceriodaphnia reticulata were conducted on Prickly Pear Creek, Montana waters to study toxicity persistence in a stream. The toxicity source was Spring Creek, a tributary of Prickly Pear...

  18. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  19. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  20. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  1. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  2. 33 CFR 117.268 - Billy's Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Billy's Creek. 117.268 Section 117.268 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.268 Billy's Creek. The draw of the...

  3. 33 CFR 117.283 - Dunns Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Dunns Creek. 117.283 Section 117.283 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.283 Dunns Creek. The draw of the US17 bridge,...

  4. 33 CFR 117.268 - Billy's Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Billy's Creek. 117.268 Section 117.268 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.268 Billy's Creek. The draw of the...

  5. 33 CFR 117.283 - Dunns Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Dunns Creek. 117.283 Section 117.283 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.283 Dunns Creek. The draw of the US17 bridge,...

  6. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  7. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  8. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  9. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  10. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  11. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  12. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  13. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  14. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  15. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  16. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  17. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  18. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  19. Flooding on Hidewood Creek near Estelline, SD

    Localized flooding on Hidewood Creek near Estelline, SD, on June 23, 2013. Severe storms during June 21-22, 2013, in eastern South Dakota resulted in high flows in several streams across the area. The peak discharge on Hidewood Creek (streamgage 06479640) from this storm event was about 4,...

  20. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  1. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  2. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  3. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  4. 33 CFR 117.725 - Manantico Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Manantico Creek. 117.725 Section 117.725 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.725 Manantico Creek. The draw of...

  5. 33 CFR 117.701 - Alloway Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Alloway Creek. 117.701 Section 117.701 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.701 Alloway Creek. (a) The draws...

  6. 33 CFR 117.750 - Schellenger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Schellenger Creek. 117.750 Section 117.750 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.750 Schellenger Creek. The draw...

  7. 33 CFR 117.761 - Woodbridge Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Woodbridge Creek. 117.761 Section 117.761 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.761 Woodbridge Creek. The draws...

  8. 33 CFR 117.732 - Nacote Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Nacote Creek. 117.732 Section 117.732 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.732 Nacote Creek. (a) The Route 9 bridge,...

  9. 33 CFR 117.738 - Overpeck Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Overpeck Creek. 117.738 Section 117.738 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.738 Overpeck Creek. (a) The draws...

  10. 33 CFR 117.737 - Oldmans Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Oldmans Creek. 117.737 Section 117.737 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.737 Oldmans Creek. The draws of...

  11. 33 CFR 117.715 - Debbies Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Debbies Creek. 117.715 Section 117.715 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.715 Debbies Creek. (a) The draw...

  12. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... purposes of part 4 of this chapter, Swan Creek is a term of viticultural significance. (b) Approved Maps. The appropriate maps for determining the boundaries of the Swan Creek viticultural area are three United States Geological Survey (USGS) 1:100,000 scale topographic maps. They are titled: (1)...

  13. 33 CFR 117.231 - Brandywine Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Brandywine Creek. 117.231 Section 117.231 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.231 Brandywine Creek. The draw of...

  14. 33 CFR 117.234 - Cedar Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Cedar Creek. 117.234 Section 117.234 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Delaware § 117.234 Cedar Creek. The SR 36 Bridge, mile 0.5...

  15. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  16. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  17. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  18. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  19. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  20. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  1. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system in this part of the Beaverhead Mountains. Paleozoic, Mesozoic, and Cenozoic rocks are present in the Hawley Creek area. Fold axes and thrust faults have a dominant northwest trend. These thrusts and folds are probably associated with the northeast-oriented stress field that existed in Late Cretaceous time. Evidence of younger, high-angle normal and reverse faults in the area also exists.

  2. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the contact between quartzite and granite where the alluvial and glacial deposits are thin. Consequently, the potential for depletion of discharge at Cave Springs from ground-water pumping in Snake Valley east of the park is less than if the source of water was from alluvial and glacial deposits or carbonate rocks, which would be more directly connected to downstream pumping sites in Snake Valley.

  3. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  4. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  5. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  6. Geophysical Investigations of the Smoke Creek Desert and their Geologic Implications, Northwest Nevada and Northeast California

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Tilden, Janet E.

    2006-01-01

    The Smoke Creek Desert is a large basin about 100 km (60 mi) north of Reno near the California-Nevada border, situated along the northernmost parts of the Walker Lane Belt, a physiographic region defined by diverse topographic expression consisting of northweststriking topographic features and strike-slip faulting. Because geologic and geophysical framework studies play an important role in understanding the hydrogeology of the Smoke Creek Desert, a geophysical effort was undertaken to help determine basin geometry, infer structural features, and estimate depth to basement. In the northernmost parts of the Smoke Creek Desert basin, along Squaw Creek Valley, geophysical data indicate that the basin is shallow and that granitic rocks are buried at shallow depths throughout the valley. These granitic rocks are faulted and fractured and presumably permeable, and thus may influence ground-water resources in this area. The Smoke Creek Desert basin itself is composed of three large oval sub-basins, all of which reach depths to basement of up to about 2 km (1.2 mi). In the central and southern parts of the Smoke Creek Desert basin, magnetic anomalies form three separate and narrow EW-striking features. These features consist of high-amplitude short-wavelength magnetic anomalies and probably reflect Tertiary basalt buried at shallow depth. In the central part of the Smoke Creek Desert basin a prominent EW-striking gravity and magnetic prominence extends from the western margin of the basin to the central part of the basin. Along this ridge, probably composed of Tertiary basalt, overlying unconsolidated basin-fill deposits are relatively thin (< 400 m). The central part of the Smoke Creek Desert basin is also characterized by the Mid-valley fault, a continuous geologic and geophysical feature striking NS and at least 18-km long, possibly connecting with faults mapped in the Terraced Hills and continuing southward to Pyramid Lake. The Mid-valley fault may represent a lateral (east-west) barrier to ground-water flow. In addition, the Mid-valley fault may also be a conduit for along-strike (north-south) ground-water flow, channeling flow to the southernmost parts of the basin and the discharge areas north of Sand Pass.

  7. Vanishing White Matter Disease

    MedlinePlus

    ... Disease Vanishing White Matter Disease What is Vanishing White Matter Disease? Vanishing White Matter Disease (VWM) is inherited in ... information about this). Other Clinical Names for Vanishing White Matter Disease Other clinical names of Vanishing White Matter Disease ...

  8. Geology of the lower Yellow Creek area, northwestern Colorado

    SciTech Connect

    Hail, W.J. Jr.

    1990-01-01

    The geology and resources of the lower Yellow Creek area, an area at the northwestern margin of the Piceance Creek basin comprising of four 7.5-minute quadrangles, are described. Subsurface face rocks penetrated by drill holes range in age from Pennsylvania to Cretaceous. Measured sections show the Mancos Shale and the Castlegate Sandstone, Iles Formation, and Williams Fork Formation of the Mesaverde Group of Late Cretaceous age and the Fort Union, Wasatch, Green River, and Uinta formations of Tertiary age. Surficial deposits of Quaternary age include terrace gravels, alluvium, and landslides. Fold axes and faults in the area trend northwesterly. The southern part of the area contains major oil-shale resources. Coal-bearing zones in the Williams Fork and Iles formations contain considerable coal. The coal-resources potential is limited, however, by nonpersistence of the thicker coal beds. Small amounts of gas have been produced from shallow, lenticular Tertiary sandstones. Large, but very lowgrade uranium resources are present in the Fort Union Formation.

  9. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Snake Creek, Islamorada, FL AGENCY... of Snake Creek Bridge, mile 0.5, across Snake Creek, in Islamorada, Florida. The regulation is set... Sheriff's Office has requested a temporary modification to the operating schedule of Snake Creek Bridge...

  10. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  11. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  12. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Dry Creek Valley. 9.64... Creek Valley. (a) Name. The name of the viticultural area described in this section is “Dry Creek Valley.” (b) Approved maps. The appropriate maps for determining the boundaries of the Dry Creek...

  13. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Dry Creek Valley. 9.64... Creek Valley. (a) Name. The name of the viticultural area described in this section is “Dry Creek Valley.” (b) Approved maps. The appropriate maps for determining the boundaries of the Dry Creek...

  14. 27 CFR 9.64 - Dry Creek Valley.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Dry Creek Valley. 9.64... Creek Valley. (a) Name. The name of the viticultural area described in this section is “Dry Creek Valley.” (b) Approved maps. The appropriate maps for determining the boundaries of the Dry Creek...

  15. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  16. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  17. LOST CREEK ROADLESS AREA, CALIFORNIA.

    USGS Publications Warehouse

    Muffler, L.J. Patrick; Campbell, Harry W.

    1984-01-01

    Geologic and mineral-resource investigations identified no mineral-resource potential in the Lost Creek Roadless Area, California. Sand and gravel have been mined from alluvial flood-plain deposits less than 1 mi outside the roadless area; these deposits are likely to extend into the roadless area beneath a Holocene basalt flow that may be as much as 40 ft thick. An oil and gas lease application which includes the eastern portion of the roadless area is pending. Abundant basalt in the area can be crushed and used as aggregate, but similar deposits of volcanic cinders or sand and gravel in more favorable locations are available outside the roadless area closer to major markets. No indication of coal or geothermal energy resources was identified.

  18. Jacobs Creek bioaccumulation report, 1979 and 1980

    SciTech Connect

    Koch, L.M.; Harned, R.D.

    1981-04-01

    In conjunction with TVA's monitoring of biota in Jacobs Creek (TVA 1981), which receives fly ash pond effluent from Paradise Steam-Electric Plant and is a tributary to the Green River, fish flesh samples were collected for metals analyses. Following pH adjustment of the Paradise fly ash pond, it was anticipated aquatic communities in the lower portion of Jacobs Creek would begin to recover. Development of a fishery in this area was expected as recovery progressed. A potential avenue for metals transfer to humans would be established through consumption of fish from Jacobs Creek. Therefore, concentrations of metals in fish flesh were analyzed.

  19. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  20. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  1. Flood of August 27-28, 1977, West Cache Creek and Blue Beaver Creek, southwestern Oklahoma

    USGS Publications Warehouse

    Corley, Robert K.; Huntzinger, Thomas L.

    1979-01-01

    This report documents a major storm which occurred August 27-28, 1977, in southwest Oklahoma near the communities of Cache and Faxon, OK. Blue Beaver Creek and West Cache Creek and their tributaries experienced extensive flooding that caused an estimated $1 million in damages. Reported rainfall amounts of 8 to 12 inches in 6 hours indicate the storm had a frequency in excess of the 100-year rainfall. Peak discharges on Blue Beaver Creek near Cache and West Cache Creek near Faxon were 13,500 cubic feet per second and 45,700 cubic feet per second respectively. The estimated flood frequency was in excess of 100 years on Blue Beaver Creek and in excess of 50 years on West Cache Creek. Unit runoff on small basins were in excess of 2000 cubic feet per second per square mile. Surveyed highwater marks were used to map the flooded area. (USGS)

  2. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  3. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  4. Rock mechanics. Second edition

    SciTech Connect

    Jumikis, A.R.

    1983-01-01

    Rock Mechanics, 2nd Edition deals with rock as an engineering construction material-a material with which, upon which, and within which civil engineers build structures. It thus pertains to hydraulic structures engineering; to highway, railway, canal, foundation, and tunnel engineering; and to all kinds of rock earthworks and to substructures in rock. Major changes in this new edition include: rock classification, rock types and description, rock testing equipment, rock properties, stability effects of discontinuity and gouge, grouting, gunite and shotcrete, and Lugeon's water test. This new edition also covers rock bolting and prestressing, pressure-grouted soil anchors, and rock slope stabilization.

  5. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  6. Dry Creek Wilderness study area, Arkansas

    SciTech Connect

    Haley, B.R.; Stroud, R.B.

    1984-01-01

    A mineral evaluation study of the Dry Creek Wilderness Study Area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities.

  7. Salt Marshes along Little Mosquito Creek

    Salt marshes along Little Mosquito Creek of Chincoteague Island. The salt marshes that make up Chincoteague Island are important habitat for migrating waterfowl. In addition, they serve an important role in protecting inland ecosystems and communities from oceanic storms....

  8. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of the Metro-North Commuter railroad bridge, mile 0.0 at New Hamburg, need not be opened for the passage...

  9. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of the Metro-North Commuter railroad bridge, mile 0.0 at New Hamburg, need not be opened for the passage...

  10. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of the Metro-North Commuter railroad bridge, mile 0.0 at New Hamburg, need not be opened for the passage...

  11. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of the Metro-North Commuter railroad bridge, mile 0.0 at New Hamburg, need not be opened for the passage...

  12. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of the Metro-North Commuter railroad bridge, mile 0.0 at New Hamburg, need not be opened for the passage...

  13. 33 CFR 117.736 - Oceanport Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.736 Oceanport Creek. The drawspan for the New Jersey Transit Rail Operations Drawbridge, mile 8.4 near Oceanport, must open on signal...

  14. Evaluation of thrusting and folding of the Deadman Creek Thrust Fault, Sangre de Cristo range, Saguache County, Colorado

    NASA Astrophysics Data System (ADS)

    Weigel, Jacob F., II

    The Deadman Creek Thrust Fault was mapped in a structural window on the west side of the Sangre de Cristo Range. The study area, located in southern Colorado, is a two square mile area halfway between the town of Crestone and the Great Sand Dunes National Park. The Deadman Creek Thrust Fault is the center of this study because it delineates the fold structure in the structural window. The fault is a northeast-directed low-angle thrust folded by subsequent additional compression. This study was directed at understanding the motion of the Deadman Creek Thrust Fault as affected by subsequent folding, and the driving mechanism behind the folding of the Pole Creek Anticline as part of a broader study of Laramide thrust faulting in the range. This study aids in the interpretation of the geologic structure of the San Luis Valley, which is being studied by staff of the United States Geological Survey (USGS), to understand Rio Grande Rift basin evolution by focusing on rift and pre-rift tectonic activity. It also provides a geologic interpretation for the Saguache County Forest Service, Great Sand Dunes National Park, and its visitors. The Sangre de Cristo Mountain Range has undergone tectonic events in the Proterozoic, Pennsylvanian (Ancestral Rocky Mountains), Cretaceous-Tertiary (Laramide Orogeny) and mid-Tertiary (Rio Grande Rift). During the Laramide Orogeny the Deadman Creek Thrust Fault emplaced Proterozoic gneiss over Paleozoic sedimentary rocks and Proterozoic granodiorite in the area. Continued deformation resulted in folding of the fault to form the Pole Creek Anticline. The direction of motion of both the fault and fold is northeastward. A self-consistent net of cross-sections and stereonet plots generated from existing and new field data show that the anticline is an overturned isoclinal fold in Pole Creek Canyon, which shows an increasing inter-limb angle and a more vertical axial surface northwestward toward Deadman Creek Canyon. Southwest-directed apparent normal fault motion reflects out-of-syncline thrust faulting primarily on the forelimb of the anticline, which has subsequently been overturned by further tightening of the anticline. The driving force of the anticline is inferred to be a propagating reverse fault breaking toward the surface and causing the Deadman Creek Thrust Fault to fold, forming the Pole Creek Anticline. This fault appears to have a complex geometry that causes the fold axis to change orientation in two locations within the study area. Furthermore, diverse fault motions indicated in stereonet plots suggest a complex deformation system in these massive rock units. A syncline (Alpine Gulch Syncline) to the southwest of the Pole Creek Anticline becomes more open to the southeast. The driving force for the Alpine Gulch Syncline is not understood, but may also have affected the Pole Creek Anticline. Additional complexities include two minor faults north of the Pole Creek Canyon mouth, an inferred fault in Pole Creek Canyon, and a second inferred fault in Deadman Creek Canyon. These complexities make structural interpretation challenging.

  15. White Tern

    The White Tern is one of eight seabird species whose population density and susceptibility to sea-level rise was studied on the French Frigate Shoals' Tern Island by biologists with the USGS Pacific Island Ecosystems Research Center's Northwestern Hawaiian Islands Climate Change Project.  ...

  16. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  17. 6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ROCK CLUSTER GARDEN REMINISCENT OF RYOAN-JI TEMPLE GARDEN IN KYOTO - Kykuit, Japanese Gardens, 200 Lake Road, Pocantico Hills, Westchester County, NY

  18. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Underwood Conservation District, Annual Report 2002-2003.

    SciTech Connect

    White, Jim

    2004-02-01

    This project addresses existing habitat conditions, fish population status, and restoration priority sites within the Rattlesnake Creek watershed, a sub-basin of the White Salmon River. Our partners in this project are the United States Geological Service (USGS), and the Yakama Indian Nation (YIN). Underwood Conservation District (UCD) is involved in the project via accomplishment of water quality monitoring, sampling for stable isotopes, and characterization of the watershed geomorphology. These work items are part of an effort to characterize the stream and riparian habitat conditions in Rattlesnake Creek, to help guide habitat and fish restoration work. Water chemistry and temperature information is being collected both on Rattlesnake Creek, and on other tributaries and the main stem of the White Salmon River. Information on the entire system enables us to compare results obtained from Rattlesnake Creek with the rest of the White Salmon system. Water chemistry and temperature data have been collected in a manner that is comparable with data gathered in previous years. The results from data gathered in the 2001-2002 performance period are reported in appendix A at the end of this 2002-2003 report. Additional work being conducted as part of this study includes; an estimate of salmonid population abundance (YIN and USGS); a determination of fish species composition, distribution, and life history (YIN and USGS), and a determination of existing kinds, distribution, and severity of fish diseases (YIN and USGS). The overall objective is to utilize the above information to prioritize restoration efforts in Rattlesnake Creek.

  19. Sandstone petrology and diagenesis of lower Tuscaloosa Formation reservoirs in McComb and Little Creek field areas, southwest Mississippi

    SciTech Connect

    Hamlin, K.H.; Cameron, C.P.

    1987-09-01

    Two major depositional facies characterize producing lower Tuscaloosa Formation (Upper Cretaceous) sandstone reservoirs in the McComb-Little Creek field areas: a lower fluvial sequence (Denkman sand) topped by nearshore marine deposits (McComb sand). Petrographic studies reveal that the sandstones of both fields were deposited as very fine to medium-grained quartzarenites and quartz litharenites. Petrographic and x-ray diffraction analyses of the clay mineral content of the sandstones indicate that most of the clays are authigenic and comprise a suite which includes chlorite, kaolinite, mixed-layer illite/smectite, and illite. Mixed-layer illite/smectite appears to be considerably more abundant in the McComb reservoir sandstones than at Little Creek. The reservoir sandstones in the McComb and Little Creek fields are highlighted by good secondary porosity (3-27%, average 19%) developed through dissolution of rock fragments and carbonate cements.

  20. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  1. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  2. Health assessment for Clear Creek/Central City, Clear Creek and Gilpin Counties, Colorado, Region 8. CERCLIS No. COD980717557. Final report

    SciTech Connect

    Not Available

    1988-07-11

    Clear Creek/Central City is a National Priorities List site located within the communities of Idaho Springs, Central City and Black Hawk, Colorado. The site consists of abandoned mill tailings and waste-rock piles with numerous open mining tunnels and shafts. Site contaminants consist of a variety of heavy metals, sulfur, radionuclides, and acid-mine discharges. The site is of public health concern because of the risk to human health caused by probable human exposure to hazardous substances at levels that may result in adverse human health effects over time.

  3. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Comments and Motions To Intervene On February 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro...' Contact: Transferor: Mr. Joseph Klimaszewski, AER NY- Gen, LLC, P.O. Box 876, East Aurora, NY 14052,...

  4. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Federal Register notice dated March 27, 2009 (74 FR 13967). There will be no change to radioactive... no significant impact [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27... COMMISSION Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental...

  5. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  6. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  7. Post-Supereruption (18-19 Ma) Magmatic Reactivation Beneath the Silver Creek Caldera, Black Mountains, AZ

    NASA Astrophysics Data System (ADS)

    Mcdowell, S.; Miller, C. F.; Ferguson, C.

    2011-12-01

    The Silver Creek caldera, southern Black Mountains, AZ, is the source of the supereruption that produced the Miocene (18.8 Ma) Peach Spring Tuff (PST), an extensive ignimbrite found throughout much of northwestern Arizona, southern Nevada, and southeastern California. The caldera's eastern margin is intruded by a slightly younger (18.5 +/- 0.5 Ma), ~30 km2 complex of epizonal, intermediate to felsic plutonic rocks. Because it is the largest known suite of intrusive rocks associated with the Peach Spring supereruption and contiguous (~19.5-17.5 Ma) volcanic activity in the Black Mountains, the Silver Creek intrusive complex provides a valuable record of processes operating in the shallow crust in the aftermath of a major eruption and during a period of intense volcanic activity. Rocks in the Silver Creek intrusive complex have historically been divided into two units, the Moss porphyry and the Times porphyry, though the complex exhibits textural and compositional complexity that belies a simple two-unit classification scheme. Field observations and geochemical analysis indicate that the northern portion of the Silver Creek suite comprises porphyries and coarse-grained rocks with ~62 to ~68 wt. % SiO2 ("Moss porphyry"). Rounded, 2-10 cm enclaves (59 wt. % SiO2) with crenulate margins are sparse overall but locally abundant in this portion of the complex. The southern part of the complex consists of leucogranitic porphyry and coarse-grained granite with >70 wt. % SiO2 ("Times porphyry"). At the east/west-trending Times/Moss contact zone along Silver Creek, the coarse-grained component of the Times contains < 0.5-2 m-diameter, fine-grained enclaves with crenulate margins and compositions similar to that of the intermediate Moss to the north. Mafic, intermediate, and felsic porphyritic dikes crosscut the entire complex. Major and trace element compositions of the Silver Creek intrusive complex define a coherent and continuous array extending from the most mafic enclaves to the most silicic Times, consistent with their representing a broadly cogenetic suite. Our preliminary data reveal that the Times units are geochemically similar to rhyolitic pumice in PST outflow, while the Moss is geochemically comparable to voluminous trachydacite lava and tuff that erupted shortly before the PST. The geochemical and age data, combined with field evidence for mafic reheating and magma mixing, suggest that the Silver Creek intrusive complex records rapid reinvigoration of the magmatic system that fed the PST supereruption and its volcanic predecessors in the Black Mountains.

  8. Distribution of gold, tellurium, silver, and mercury in part of the Cripple Creek district, Colorado

    USGS Publications Warehouse

    Gott, Garland Bayard; McCarthy, J.H.; Van Sickle, G.H.; McHugh, J.B.

    1967-01-01

    Geochemical exploration studies were undertaken in the Cripple Creek district to test the possibility that large low-grade gold deposits might be found. Surface rock samples taken throughout the district indicate that the volcanic rocks between the productive veins contain an average of about 0.6 ppm (part per million) gold. In an area above 3,800 feet long and 500 feet wide near the Cresson mine in the south-central part of the district, scattered surface samples show that the rocks contain an average of 2.5 ppm gold, equivalent to $2.50 per ton. Inasmuch as veins that contain more than 2.5 ppm may also exist in the area, systematic sampling by trenching and drilling is warranted.

  9. The oxygen isotope composition of granitoid and sedimentary rocks of the southern Snake Range, Nevada

    USGS Publications Warehouse

    Lee, D.E.; Friedman, I.; Gleason, J.D.

    1982-01-01

    Six diverse intrusive igneous types are exposed as discrete outcrops within an area of 900 km2 in the southern Snake Range, White Pine County, Nevada. The previously recognized variety among these igneous types is reflected in the wide range of ??18O values (-1.1 to 13.4 permil) found in these rocks. This range of ??18O values probably results from differences in source material and post-crystallization history of the different intrusive types. The Jurassic intrusive of the Snake Creek-Williams Canyon area represents the chemical equivalent of a large part of a differentiation sequence, with the entire range of composition (63-76 percent SiO2) exposed over a horizontal distance of about five km. The rather regular increase of ??18O values from the most mafic to the most felsic parts of this pluton, together with ??18O values determined for constituent minerals recovered from five of the samples, supports a fractional crystallization model. The high ??18O values found (10.2-12.2 permil) indicate that the magma likely was derived from or assimilated sedimentary materials. Nine samples of the Cretaceous two-mica granite of the Pole Canyon-Can Young Canyon area have ??18O values in the range 10.6-12.1 permil. These high ??18O values, an initial87Sr/86Sr ratio of 0.7165, and the presence of muscovite along with an accessory mineral suite limited to monazite, apatite, zircon, and an allanite-like mineral, characterize this intrusive mass as an S-type granite. It probably formed through anatexis of late Precambrian pelitic rocks. The granitoid rock exposed in the Young Canyon-Kious Basin area is Tertiary (32 m.y.). Most of this intrusive has been cataclastically deformed as a result of late (18 m.y.) movement on the overlying Snake Range decollement. The undeformed portion of this intrusive has ??18O values of 8.7-10.0 permil. However, the deformed portion of this intrusive has ??18O values as low as -1.1 permil, apparently resulting from isotopic exchange between this rock and ground water at the time of cataclasis. Although the igneous types exposed in the southern Snake Range differ petrologically and range in age from Jurassic to Tertiary, most have relatively high ??18O values compared with other granitoid rocks of the Basin-Range Province. ?? 1982 Springer-Verlag.

  10. Blasting of the Twin Creek`s highwall failure

    SciTech Connect

    Gray, C.J.; Bachmann, J.A.

    1996-12-01

    On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

  11. Swift Creek Hydroelectric Project rehabilitation, Swift Creek Power Company, Inc

    SciTech Connect

    Not Available

    1992-10-01

    The purpose of this report is to re-evaluate and update the original environmental analysis of the Swift Crook Hydroelectric Project rehabilitation. That analysis and the decision to allow the proponent toproceed with the project as described in the EA alternatives 3, 4, and 5 was completed an May 8, 1981. Since that decision, no action has been taken and no special-use permit has ever been issued. The Bridger-Trton National Forest completed a Forest Plan in March of 1990 which sets current direction for all lands within the Forest and new and significant issues pertaining to the amount of water to be bypassed have been raised by the public in response to this proposed project. The original proponent, Lower Valley Power and Light, sold the project and existing facilities to Swift Crack Power Company Inc. in 1984. Swift Crock Power Company has submitted a proposal to rehabilitate the existing power generation facility in Swift Creek Canyon, which will involve some significant construction and alteration of the river corridor. Theyhave also submitted an application for relicense to the Federal Energy Regulatory Commission who has asked for the Forest Service to comment on the application and to submit recommended conditions for approval (4e requirements). The proposed rehabilitation of existing facilities includes replacement of the existing damaged penstock (pipe) with a new, larger one; dredging two existing reservoirs and removal, refurbishment, and reinstallation of the turbines and generators in the two powerhouses with relocation and reconstruction of the lower powerhouse that is located on privately owned land below the Forest boundary.

  12. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  13. Multispectral analysis of limestone, dolomite, and granite, Mill Creek, Oklahoma

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Watson, K.

    1970-01-01

    Spectral reflectance and thermal emission data were collected at the Mill Creek, Oklahoma test site during NASA missions 132 and 133 in June 1970. The data were collected by three aircraft flown several times during the diurnal cycle at altitudes of 150 to 17,000 m above mean terrain. Reflectance of the main rock types (limestone, dolomite, and granite) was determined from the data collected using a 12-channel multispectral scanner during mission 133 and from thermal infrared images recorded during mission 132 on an RS-7 scanner from 17,000 m above terrain. A preliminary rock recognition map was generated automatically using data collected from 900 m above terrain. The discrimination provided by the map is reasonably accurate. Misidentification occurred in areas of unusually high dolomite reflectivity. High altitude thermal infrared (10 to 12 micrometers) images show regional folds and faults distinguished by the presence of thermally contrasting materials. Linear and curvilinear structural features two to three times smaller than the nominal 17 m resolution could be detected.

  14. Mineral resources of the Spring Creek Canyon Wilderness Study Area, Iron County, Utah

    SciTech Connect

    Van Loenen, R.E.; Blank, H.R. Jr.; Sable, E.G.; Lee, G.K.; Cook, K.L.; Zelten, J.E.

    1989-01-01

    In 1986 and 1987 the US Geological Survey and the US Bureau of Mines appraised the mineral resources and the mineral resource potential of the Spring Creek Canyon Wilderness Study Area in southwestern Utah. This study area contains principally Mesozoic sedimentary rocks exposed along the Hurricane Fault and in canyons adjacent to Zion National Park. Inferred subeconomic resources of common variety sand, sandstone, and limestone occur in this study area. The Spring Creek Canyon Wilderness Study Area has a moderate potential for undiscovered resources of oil and gas in small fields. This study area has a low potential for all metals (including copper, silver, and uranium) and geothermal resources. There is no potential for coal or gypsum.

  15. GEOLOGIC AND GEOCHEMICAL INVESTIGATIONS OF THE MEAGER CREEK GEOTHERMAL SYSTEM, BRITISH COLUMBIA, CANADA

    SciTech Connect

    Moore, J.N.; Adams, M.C.; Stauder, J.J.

    1985-01-22

    Meager Creek is perhaps the most intensely explored geothermal system occurring in the Cascade and Garibaldi Volcanic Belts. This paper describes the results of new lithologic, petrographic, X-ray, isotopic, and geochemical investigations of core and cuttings from the Meager Creek wells. The data demonstrate that alteration related to the present geothermal system is superimposed on basement rocks which were metamorphosed and intruded by dioritic stocks prior to the onset of volcanism. The geothermal alteration developed mainly after emplacement of hypabyssal dikes associated with Meager Mountain volcanism and is characterized by mineral assemblages consisting primarily of sheet silicates, quartz, carbonate, hematite, iron oxides, pyrite, and minor epidote, potassium feldspar, actinolite and biotite. Permeabilities within the upper portions of the reservoir are low, reflecting filling of the fracture systems by carbonate. Petrographic observations suggest that sealing of the fractures accompanied hydrothermal brecciation and boiling of the fluids.

  16. In stream habitat and stock restoration for salmon otter creek barrier bypass subproject. Restoration project 94139-b1. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Wedemeyer, K.; Gillikin, D.

    1995-05-01

    In 1994, two barrier falls on Otter Creek, Bay of Isles, Knight Island, Prince William Sound were modified to provide upstream passage to adult pink salmon (Onchorhynchus gorbuscha). The falls were modified by using wire basket gabions, rock drills and wooden weir structures. In addition, an existing set of Alaska steeppasses were maintained and slightly modified for efficient passage of salmon.

  17. Hydrologic characteristics of Bear Creek near Silver Hill and Buffalo River near St. Joe, Arkansas, 1999-2000

    USGS Publications Warehouse

    Petersen, Jim C.; Haggard, Brian E.; Green, W. Reed

    2002-01-01

    The Buffalo River and its tributary Bear Creek are in the White River Basin in the Ozark Plateaus in north-central Arkansas. Analysis of streamflow measurements and water-quality samples at a site on Bear Creek and a site on the Buffalo River in Searcy County, Arkansas, quantify differences between the two sites during calendar years 1999 and 2000. Streamflow and water quality also vary seasonally at each site. Mean annual streamflow was substantially larger at the Buffalo River site (836 and 719 cubic feet per second in 1999 and 2000) than at the Bear Creek site (56 and 63 cubic feet per second). However, during times of low flow, discharge of Bear Creek comprises a larger proportion of the flow of the Buffalo River. Concentrations of nutrients, fecal-indicator bacteria, dissolved organic carbon, and suspended sediment generally were greater in samples from Bear Creek than in samples from the Buffalo River. Statistically significant differences were detected in concentrations of nitrite plus nitrate, total nitrogen, dissolved phosphorus, orthophosphorus, total phosphorus, fecal coliform bacteria, and suspended sediment. Loads varied between sites, hydrologic conditions, seasons, and years. Loads were substantially higher for the Buffalo River than for Bear Creek (as would be expected because of the Buffalo?s higher streamflow). Loads contributed by surface runoff usually comprised more than 85 percent of the annual load. Constituent yields (loads divided by drainage area) were much more similar between sites than were loads. Flow-weighted concentrations and dissolved constituent yields generally were greater for Bear Creek than yields for the Buffalo River and flowweighted concentrations yields were higher than typical flow-weighted concentrations and yields in undeveloped basins, but lower than flow-weighted concentrations and yields at a site in a more developed basin.

  18. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1 with lesser effects in Pattern 2. These early observations did not continue to develop. The oil production for both patterns remained fairly constant to the rates established by the restart of waterflooding. The water production declined but stabilized in both patterns. The stabilization of the oil at prepolymer rates and water production at the lower rates can be attributed to the polymer injection, but the effect was not as great as originally predicted. The sweep improvement for the patterns appeared to be negatively impacted by extended shutdowns in the injection and production systems. Such problems as those experienced in this project can be expected when long-term polymer injection is started in old waterflood fields. To prevent these problems, new injection and production tubulars and pumps would be required at a cost prohibitive to the present, independent operators. Unless the future results from the continued waterflood show positive effects of the long-term polymer injection, it appears that the batch-type polymer treatment may have more promise than the long-term treatment and should be more cost effective.

  19. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  20. Lithofacies, Age, and Sequence Stratigraphy of the Carboniferous Lisburne Group in the Skimo Creek Area, Central Brooks Range

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.; Harris, Anita G.

    2008-01-01

    The Lisburne Group, a mainly Carboniferous carbonate succession that is widely distributed across northern Alaska, contains notable amounts of oil and gas at Prudhoe Bay. Detailed studies of the Lisburne in the Skimo Creek area, central Brooks Range, delineate its lithofacies, age, conodont biofacies, depositional environments, and sequence stratigraphy and provide new data on its hydrocarbon source-rock and reservoir potential, as well as its thermal history, in this area. We have studied the Lisburne Group in two thrust sheets of the Endicott Mountains allochthon, herein called the Skimo and Tiglukpuk thrust sheets. The southern, Skimo Creek section, which is >900 m thick, is composed largely of even-bedded to nodular lime mudstone and wackestone intercalated with intervals of thin- to thick-bedded bioclastic packstone and grainstone. Some parts of the section are partially to completely dolomitized and (or) replaced by chert. A distinctive, 30-m-thick zone of black, organic-rich shale, lime mudstone, and phosphorite is exposed 170 m below the top of the Lisburne. The uppermost 40 m of section is also distinctive and made up of dark shale, lime mudstone, spiculite, and glauconitic grainstone. The northern, Tiglukpuk Creek section, which is similar to the Skimo Creek section but only ~760 m thick, includes more packstone and grainstone and less organic-rich shale. Analyses of conodonts and foraminifers indicate that both sections range in age from late Early Mississippian (Osagean) through Early Pennsylvanian (early Morrowan) and document a hiatus of at least 15 m.y. at the contact between the Lisburne and the overlying Siksikpuk Formation. No evidence of subaerial exposure was observed along this contact, which may represent a submarine erosional surface. Lithofacies and biofacies imply that the Lisburne Group in the study area was deposited mainly in midramp to outer-ramp settings. Deepest water strata are mud rich and formed below storm or fair-weather wave base on the outer ramp to outer midramp; shallowest facies are storm, sand-wave, and shoal deposits of the inner midramp to inner ramp. A relatively diverse, open-marine fauna occurs throughout much of the Lisburne in the study area, but some beds also contain clasts typical of more restricted, shallow-water environments that were likely transported seaward by storms and currents. Radiolarians are abundant in the shale and phosphorite unit at Skimo Creek and also occur in equivalent strata at Tiglukpuk Creek; high gamma-ray response and elevated total organic-carbon contents (max 5?8 weight percent) also characterize this unit at Skimo Creek. Lithologic, faunal, and geochemical data all suggest that these rocks formed mainly in an outer-ramp to basinal setting with low sedimentation rates, high productivity, and poorly oxygenated bottom water. Shale and mudstone at the top of the Lisburne Group accumulated in a similarly sediment starved, mainly outer ramp environment but lack comparable evidence for high nutrient and low oxygen levels during deposition. Vertical shifts in rock types and faunas delineate numerous parasequences and six probable third-order sequences in the study area; the same sequences are also recognized in the Lisburne Group to the east. Transgressive-system tracts in these sequences generally fine upward, whereas highstand-system tracts coarsen upward. Sequences in the Tiglukpuk Creek section are mostly thinner, contain thinner and more numerous parasequences, and accumulated in somewhat shallower settings than those in the Skimo Creek section. These differences reflect the more seaward position and, thus, increased accommodation space of the Skimo Creek section relative to the Tiglukpuk Creek section during deposition. Organic-rich calcareous shale in the shale and phosphorite unit has a cumulative thickness of at least 15 m and a lateral extent of >50 km; this lithology is the best potential hydrocarbon source rock in the Lisburne Group

  1. Diverging Histories of the Liberty Creek and Iceberg Lake Blueschist Bodies, south central Alaska

    NASA Astrophysics Data System (ADS)

    Day, E. M.; Pavlis, T. L.; Amato, J. M.

    2011-12-01

    New studies of the Liberty Creek and Iceberg Lake blueschist bodies of south central Alaska indicate that despite structural similarities, these blueschist bodies are derived from a different protolith and were metamorphosed to blueschist facies at distinctly different times. Both blueschists are located just south of the Border Ranges Fault (BRF) within outcrop belts of the McHugh Complex, a low-grade mélange assemblage that is now known from detrital zircon studies to consist of two distinct assemblages: a Jurassic to Earliest Cretaceous assemblage and a Late Cretaceous assemblage. The BRF is a megathrust system that represents the Late Triassic-Early Jurassic initiation of southern Alaskan subduction. Large scale (1:24,000) mapping revealed similar fabric overprint histories, epitomized by a previously undescribed youngest vertical N-S trending crenulation cleavage in both blueschist bodies which implies a structural correlation despite their separation of ~100 kilometers along strike. Despite structural similarities detrital zircon studies show that the Liberty Creek and Iceberg Lake blueschists do not have a similar maximum age of deposition. Thirteen samples from the Iceberg Lake blueschist were processed, none of which produced detrital zircons. Samples from the McHugh Complex greenschists that surround the Iceberg Lake blueschist produced numerous zircons indicating a Late Jurassic (~160 Ma) maximum age of deposition. Three out of sixteen samples from the Liberty creek blueschist produced detrital zircons indicating maximum depositional ages ranging from Late Jurassic (~160.1 Ma, n=64 grains; ~152.25 Ma, n=68 grains) to Early Cretaceous (~137.1 Ma, n=95 grains). The Late Jurassic dates are consistent with maximum depositional ages determined by Amato and Pavlis (2010) for McHugh Complex rocks along Turnagain Arm near Anchorage, AK. Sisson and Onstott (1986) reported a metamorphic cooling age of 185 Ma for the Iceberg Lake blueschist, thus, although no depostitional age constraints were obtained for the Iceberg Lake body, its metamorphic cooling age is far older than the younger depositional ages of the Liberty Creek blueschists indicating these areas record two different blueschist facies metamorphic assemblages. Work in progress on cooling ages from the Liberty Creek rocks should clarify the age of this younger metamorphism. Although these assemblages record different metamorphic events, the similar overprint history may indicate that the Liberty Creek and Iceberg Lake blueschists were subjected to the same, younger deformation series, possibly Cenozoic strike-slip related deformation.

  2. 78 FR 12714 - Intermountain Region, Payette National Forest, New Meadows Ranger District, Idaho; Lost Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... District, Idaho; Lost Creek-Boulder Creek Landscape Restoration Project AGENCY: Forest Service, USDA... Creek-Boulder Creek Landscape Restoration Project. The Lost Creek- Boulder Creek Landscape Restoration... converted to ATV trails; restoration of 90 miles of unauthorized roads; and relocation of 1\\ 1/2\\ half...

  3. 13. View of Sterling Creek Marsh looking southeast; looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Sterling Creek Marsh looking southeast; looking at canal going to the tree line - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  4. 4. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Sterling Creek Marsh at low tide showing rubble at the entrance of the dam/bridge looking east - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  5. 3. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Sterling Creek Marsh at low tide showing rubble at the entrance of dam/bridge looking southwest - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  6. 9. Double arch culvert on Laurel Creek Road looking ENE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Double arch culvert on Laurel Creek Road looking ENE. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  7. 1. View of Laurel Creek Road, revetment wall and cliff ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Laurel Creek Road, revetment wall and cliff looking S. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  8. 8. Double arch culvert on Laurel Creek Road looking WSW. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Double arch culvert on Laurel Creek Road looking WSW. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  9. 7. Elevation of single arch stone bridge on Laurel Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Elevation of single arch stone bridge on Laurel Creek Road looking N. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  10. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  11. Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Timber Creek bunkhouse and mess hall, Rocky Mountain National Park. Interior, kitchen and dining area, viewing north. - Timber Creek Bunkhouse & Mess Hall, Trail Ridge Road, Grand Lake, Grand County, CO

  12. 5. View of Sterling Creek lettuce shed looking northwest showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek lettuce shed looking northwest showing office - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  13. 15. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail view of Sterling Creek lettuce shed showing second floor support beams. - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  14. 12. Detail view of Sterling Creek lettuce shed showing floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail view of Sterling Creek lettuce shed showing floor joist and support beams - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  15. 13. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of Sterling Creek lettuce shed showing second floor window sill - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  16. 1. View of Sterling Creek lettuce shed looking south, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Sterling Creek lettuce shed looking south, with road in foreground - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  17. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  18. Natural Iron-rich Acidic Spring Flowing into Cement Creek

    Photograph showing natural iron-rich acidic spring flowing into Cement Creek near Silverton, Colorado.  Similar natural springs contribute water to Cement Creek and other tributaries of the upper Animas River. ...

  19. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  20. Water-quality appraisal, Mammoth Creek and Hot Creek, Mono County, California

    USGS Publications Warehouse

    Setmire, J.G.

    1984-01-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that mineralization, eutrophication, sedimentation, and limited areas of fecal contamination were occurring. Mineralization, indicated by a downstream increase in dissolved-solids concentration, was due primarily to geothermal springs that gradually decreased in the percentage of calcium, increased in the percentage of magnesium and sodium, and caused fluctuating, but overall increasing percentage of fluoride, sulfate, and chloride. Resulting water quality in Mammoth Creek was similar to that of the springs forming Hot Creek. Eutrophication was observed in Twin Lakes and the reach of Hot Creek below the fish hatchery. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147 percent at a pH of 9.2. Hot Creek had excessive aquatic vascular plant and algae growth, dissolved-oxygen saturations ranging from 65 to 200 percent, algal growth potential of 30 milligrams per liter, and nitrates and phosphates of 0.44 and 0.157 milligrams per liter. Sedimentation was noted in observations of bed-material composition showing the presence of fine material beginning at Sherwin Creek Road. Fecal contamination was indicated by fecal coliform counts of 250 colonies per 100 milliliters and fecal streptococcal counts greater than 1,000 colonies per 100 milliliters. (USGS)

  1. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  2. Maps showing ground-water conditions in the New Driver-Cave Creek area, Maricopa and Yavapai counties, Arizona; 1977

    USGS Publications Warehouse

    Littin, G.R.

    1979-01-01

    The New River-Cave Creek area includes about 500 square miles in central Arizona. The ground-water conditions vary greatly owing to large differences in rock type and extent of fracturing. Information shown on the maps includes depth to water, altitude of the water level, well depth, and specific conductance and fluoride concentration in the water. Scale 1:125,000. (Woodard-USGS)

  3. Ground-water reconnaissance of the Sailor Creek area, Owyhee, Elmore, and Twin Falls Counties, Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1962-01-01

    This reports evaluates the ground-water resources of about 1,000 square miles in the semiarid uplands south of the Snake River between Bruneau River and Salmon Falls Creek. The outcropping rocks are the Idavada Volcanics of Pliocene age, and the Idaho Group of Pliocene and Plieistocene age, consisting of the Banbury Basalt of middle Pliocene age and overlying predominantly sedimentary deposits of middle Pliocene through middle Pleistocene age. These rocks dip gently northward. The volcanic rocks are the best aquifers, but the yield of water from the sedimentary deposits is adequate for domestic and stock use. About 6,000 acre-feet of water is withdrawn annually from the Idavada Volcanics by 9 irrigation wells to irrigate about 3,000 acres. Only a few tends of acre-feet of water withdrawn from the other formations. The regional dip of the rocks induces weak artesian conditions in the volcanic rocks and somewhat higher artesian head in the sedimentary rocks. Estimated depth to water ranges from less than 250 feet to more than 750 feet, as shown in an accompanying map. The eastern part of the area appears to be more favorable for the development of ground water for irrigation than the western part because of better aquifers at shallower depth.

  4. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  5. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  6. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  7. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  8. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  9. View of west abutment of bridge over little Pine Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of west abutment of bridge over little Pine Creek (S.R. 1026, section 002 bridge), showing substructure and wingwalls, looking southwest - Bridge over Little Pine Creek, State Route 1026 over Little Pine Creek, 2.01 kilometers (1.25 miles) East of Bendertown, Jonestown, Columbia County, PA

  10. View of north elevation of bridge over little Pine Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of north elevation of bridge over little Pine Creek (S.R. 1026, section 002 bridge) looking south - Bridge over Little Pine Creek, State Route 1026 over Little Pine Creek, 2.01 kilometers (1.25 miles) East of Bendertown, Jonestown, Columbia County, PA

  11. View of south elevation of bridge over little Pine Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of south elevation of bridge over little Pine Creek (S.R. 1026, section 002 bridge), showing substructure, looking northeast - Bridge over Little Pine Creek, State Route 1026 over Little Pine Creek, 2.01 kilometers (1.25 miles) East of Bendertown, Jonestown, Columbia County, PA

  12. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  13. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 122 IS VISIBLE AT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  14. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 113 IS VISIBLE AT RIGHT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  15. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ROOF OF BUILDING 105 IS VISIBLE IN UPPER PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  16. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  17. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  18. A Rainbow Trout Rests Among Cobble Substrate in Panther Creek

    A rainbow trout rests among cobble substrate in Panther Creek downstream of Big Deer Creek, central Idaho. Panther Creek was severely damaged by heavy metals released from mining and milling activities at the former Blackbird Mine, and water quality in this section of the stream was acutely lethal t...

  19. A Rainbow Trout Rests Among Substrate in Panther Creek

    A rainbow trout rests among substrate in Panther Creek upstream of Big Deer Creek, central Idaho. Panther Creek was severely damaged by heavy metals released from mining and milling activities at the former Blackbird Mine. USGS and other scientists compiled a 30-year record of recovery of the stream...

  20. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD....