Science.gov

Sample records for white rock creek

  1. Floods on White Rock Creek above White Rock Lake at Dallas, Texas

    USGS Publications Warehouse

    Gilbert, Clarence R.

    1963-01-01

    The White Rock Creek watershed within the city limits of Dallas , Texas, presents problems not unique in the rapid residential and industrial development encountered by many cities throughout the United States. The advantages of full development of the existing area within a city before expanding city boundaries, are related to both economics and civic pride. The expansion of city boundaries usually results in higher per capital costs for the operation of city governments. Certainly no responsible city official would oppose reasonable development of watersheds and flood plains and thus sacrifice an increase in tax revenue. Within the words "reasonable development" lies the problem faced by these officials. They are aware that the natural function of a stream channel, and its associated flood plain is to carry away excess water in time of flood. They are also aware that failure to recognize this has often led to haphazard development on flood plains with a consequent increase in flood damages. In the absence of factual data defining the risk involved in occupying flood plains, stringent corrective and preventative measures must be taken to regulate man's activities on flood plains to a point beyond normal precaution. Flood-flow characteristics in the reach of White Rock Creek that lies between the northern city boundary of Dallas and Northwest Highway (Loop 12) at the upper end of White Rock Lake, are presented in this report. Hydrologic data shown include history and magnitude of floods, flood profiles, outlines of areas inundated by three floods, and estimates of mean velocities of flow at selected points. Approximate areas inundated by floods of April 1942 and July 1962 along White Rock Creek and by the flood of October 1962 along Cottonwood Creek, Floyd Branch, and Jackson Branch, are delineated on maps. Greater floods have undoubtedly occurred in the past but no attempt is made to show their probable overflow limits because basic data on such floods could not

  2. Water-quality trends in White Rock Creek Basin from 1912-1994 identified using sediment cores from White Rock Lake Reservoir, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1997-01-01

    Historical trends in selected water-quality variables from 1912 to 1994 in White Rock Creek Basin were identified by dated sediment cores from White Rock Lake. White Rock Lake is a 4.4-km2 reservoir filled in 1912 and located on the north side of Dallas, Texas, with a drainage area of 259 km2. Agriculture dominated land use in White Rock Creek Basin before about 1950. By 1990, 72% of the basin was urban. Sediment cores were dated using cesium-137 and core lithology. Major element concentrations changed, and sedimentation rates and percentage of clay-sized particles in sediments decreased beginning in about 1952 in response to the change in land use. Lead concentrations, normalized with respect to aluminum, were six times larger in sediment deposited in about 1978 than in pre-1952 sediment. Following the introduction of unleaded gasoline in the 1970s, normalized lead concentrations in sediment declined and stabilized at about two and one-half times the pre-1952 level. Normalized zinc and arsenic concentrations increased 66 and 76%, respectively, from before 1952 to 1994. No organochlorine compounds were detected in sediments deposited prior to about 1940. Concentrations of polychlorinated biphenyls (PCB) and DDE (a metabolite of DDT) increased rapidly beginning in the 1940s and peaked in the 1960s at 21 and 20 ??g kg-1, respectively, which is coincident with their peak use in the United States. Concentrations of both declined about an order of magnitude from the 1960s to the 1990s to 3.0 and 2.0 ??g kg-1, respectively. Chlordane and dieldrin concentrations increased during the 1970s and 1980s. The largest chlordane concentration was 8.0 ??g kg-1 and occurred in a sediment sample deposited in about 1990. The largest dieldrin concentration was 0.7 ??g kg-1 and occurred in the most recent sample deposited in the early 1990s. Agricultural use of chlordane and dieldrin was restricted in the 1970s; however, both were used as termiticides, and urban use of chlordane

  3. Chemical and ecological health of white sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003?04

    USGS Publications Warehouse

    Miller, C.V.; Weyers, H.S.; Blazer, V.S.; Freeman, M.E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded thresholdor chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  4. Chemical and Ecological Health of White Sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003-04

    USGS Publications Warehouse

    Miller, Cherie V.; Weyers, Holly S.; Blazer, Vicki; Freeman, Mary E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded threshold or chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  5. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  6. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can

  7. White Rock

    NASA Technical Reports Server (NTRS)

    2005-01-01

    14 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a portion of the famous 'White Rock' feature in Pollack Crater in the Sinus Sabaeus region of Mars. The light-toned rock is not really white, but its light tone caught the eye of Mars geologists as far back as 1972, when it was first spotted in images acquired by Mariner 9. The light-toned materials are probably the remains of a suite of layered sediments that once spread completely across the interior of Pollack Crater. Dark materials in this image include sand dunes and large ripples.

    Location near: 8.1oS, 335.1oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Southern Summer

  8. Floods on White Rock Creek at Dallas, Texas in 1962 and 1964

    USGS Publications Warehouse

    Ruggles, F.H.; Gilbert, Carter R.

    1967-01-01

    The greatest flood since at least 1892 on Cottonwood Creek and Floyd Branch occurred June 14, 1949. The storm of October 8, 1962, caused flood heights at Forest Lane to be comparable to those of June 14, 1949, on Cottonwood Creek and about 1 foot lower on Floyd Branch. The greatest flood since at least 1917 on Spanky Branch was that of September 21, 1964. Greater floods than those delineated are possible.

  9. Rock Creek Tower Painting Project : Environmental Assessment.

    SciTech Connect

    United States. Bonneville Power Administration.

    1988-10-01

    Bonneville Power Administration (BPA) built a 500-kV line across Rock Creek, a Class I trout stream about 20 miles east of Missoula, MT. Two 190-foot towers rise on either side of the Rock Creek valley, and the line between is suspended 600 feet over the valley floor. The crossing poses a hazard to passing airplanes and disrupts the natural landscape. The area where the line crosses Rock Creek is prized for its scenic beauty. In response to public demand that BPA protect the visual beauty of this area, BPA painted the towers gray to blend them best in with their natural surroundings. The issue now is to decide between either two gray towers or two orange-and-white towers. The underlying need is to resolve the conflict of pilot safety against scenic intrusion. The proposed action is to paint the gray tower aeronautical orange and white. Alternatives are to paint the orange-and-white tower back to its original gray; or leave the dilemma unresolved (the ''no-action'' alternative). 9 refs., 3 figs.

  10. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also

  11. 'White Rock' of Pollack Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 January 2004 The famous 'White Rock' of Pollack Crater has been known for three decades; it was originally found in images acquired by the Mariner 9 spacecraft in 1972. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) close-up view, obtained in October 2003, shows some of the light-toned, wind-eroded sedimentary rock that makes up 'White Rock.' It is not actually white, except when viewed in a processed, grayscale image (in color, it is more of a light butterscotch to pinkish material). The sediment that comprises 'White Rock' was deposited in Pollack Crater a long time ago, perhaps billions of years ago; the material was later eroded by wind. Dark, windblown ripples are present throughout the scene. This picture is located near 8.2oS, 335.1oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  12. ROCK CREEK, IDAHO WATER QUALITY STATUS REPORT, 1970-1984

    EPA Science Inventory

    The study was designed to determine the characteristics and amounts of industrial and municipal wastes discharged to Rock Creek, Idaho (17040212) and subsequently into the Snake River and to evaluate the effects of these wastes on the biota and water quality of Rock Creek. Indus...

  13. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  14. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  15. Floodplain and wetlands assessment of the White Oak Creek Embayment

    SciTech Connect

    Not Available

    1991-07-01

    This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

  16. Sediment discharge in Rock Creek and the effect of sedimentation rate on the proposed Rock Creek Reservoir, northwestern Colorado

    USGS Publications Warehouse

    Butler, D.L.

    1987-01-01

    Sediment data collected from 1976 to 1985 and stream discharge data collected from 1952 to 1980 at gaging station 09060500, Rock Creek near Toponas, Colorado, were used to determine total sediment discharge into the proposed Rock Creek Reservoir. Suspended sediment discharge and bedload discharge were related to stream discharge by using logarithmic regression relations. Mean annual suspended sediment discharge was estimated to be 309 tons/yr, and mean annual bedload discharge was estimated to be 428 tons/yr in Rock Creek at the Toponas gaging station for the 1953 through 1980 water years. The mean annual total sediment discharge into the proposed reservoir was estimated to be 768 tons/yr, which includes 10% addition to the suspended sediment discharge calculated for the Toponas gaging station to account for suspended sediment discharge from Horse Creek. This rate of mean annual total sediment discharge would decrease the long-term water storage capacity of the proposed reservoir by < 1% after 100 years. Suspended sediment discharge/unit-drainage-basin area at gaging station 09060550, Rock Creek at Crater, located about 5 mi downstream for the proposed reservoir site, was equivalent to suspended-sediment discharge/unit-drainage-basin area at the Toponas gaging station during 1985. Long-term sediment data collection at the Crater gaging station could be used for detecting changes in suspended sediment discharge in Rock Creek at the proposed reservoir site. (Author 's abstract)

  17. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM TEN YEAR REPORT. 1981-1991

    EPA Science Inventory

    Prior to this program, water quality of Rock Creek, Idaho (170040212) was severely impacted by irrigated agriculture. Impairments included phosphate, organic nitrogen, suspended solids, turbidity, bacteria, and toxic chemicals. The uses of Rock Creek for recreation, drinking wa...

  18. 111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. ROCK CREEK SIPHON LOW LINE CANAL, TWIN FALLS COUNTY, SOUTH OF KIMBERLY IDAHO; OVERALL VIEW OF SIPHON, EAST VIEW. - Milner Dam & Main Canal: Twin Falls Canal Company, On Snake River, 11 miles West of city of Burley, Idaho, Twin Falls, Twin Falls County, ID

  19. ROCK CREEK RURAL CLEAN WATER PROGRAM, 1988 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Implementation of the Rock Creek (17040212) rural clean water program began in 1980, following a Section 208 planning study. Contracting phases concluded on September 30, 1986. Best Management Practices (BMP) implementation phase began in 1980. As of 1 Oct 88, 38% of the contr...

  20. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  1. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of

  2. Water quality monitoring report for the White Oak Creek Embayment

    SciTech Connect

    Ford, C.J. ); Wefer, M.T. )

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  3. Forecasting contaminant concentrations: Spills in the White Oak Creek Basin

    SciTech Connect

    Borders, D.M.; Hyndman, D.W.; Huff, D.D.

    1987-01-01

    The Streamflow Synthesis and Reservoir Regulation (SSARR) model has been installed and sufficiently calibrated for use in managing accidental release of contaminants in surface waters of the White Oak Creek (WOC) watershed at ORNL. The model employs existing watershed conditions, hydrologic parameters representing basin response to precipitation, and a Quantitative Precipitation Forecast (QPF) to predict variable flow conditions throughout the basin. Natural runoff from each of the hydrologically distinct subbasins is simulated and added to specified plant and process water discharges. The resulting flows are then routed through stream reaches and eventually to White Oak Lake (WOL), which is the outlet from the WOC drainage basin. In addition, the SSARR model is being used to simulate change in storage volumes and pool levels in WOL, and most recently, routing characteristics of contaminant spills through WOC and WOL. 10 figs.

  4. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM, 1987 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Goals of the Rock Creek, Idaho (17040212) Rural Clean Water Program are to significantly reduce the amount of sediment, sediment related pollutants, and animal waste discharging into Rock Creek. Weekly water quality sampling was done through the irrigation season (April - Octobe...

  5. Bridge 17, view looking east at Milepost 17.14. Rock Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 17, view looking east at Milepost 17.14. Rock Creek is in the foreground. The grade loops back north and climbs east up Rock Creek Canyon - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  6. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.29 Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The...

  7. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE FLOOD CONTROL REGULATIONS § 208.29 Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The...

  8. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in Lake of the Arbuckles between elevation 872 (top of conservation pool) and elevation 885.3 (top...

  9. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in Lake of the Arbuckles between elevation 872 (top of conservation pool) and elevation 885.3 (top...

  10. Uranium-bearing coal and carbonaceous rocks in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George Winfred

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Early Cretaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, Idaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  11. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  12. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM COMPREHENSIVE WATER QUALITY MONITORING ANNUAL REPORT 1989

    EPA Science Inventory

    This report documents progress on for the Rock Creek Rural Clean Water Program, Twin Falls County, Idaho (17040212), initiated in 1981. Results through 1988 suggest that Best Management Practices (BMPs) implemented under the program have improved water quality in the creek. BMP...

  13. 75 FR 55539 - Crooked Creek Reservoir Repair; White River National Forest, Eagle County, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ...; ] DEPARTMENT OF AGRICULTURE Forest Service Crooked Creek Reservoir Repair; White River National Forest, Eagle... of Intent (NOT) to prepare an environmental impact statement (ElS) for the Crooked Creek Reservoir... Federal Register (86 FR 24215). The Forest Service has decided to cancel the preparation of this EIS....

  14. 76 FR 56394 - Kootenai National Forest, Sanders, County, MT; Rock Creek Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... and grade of the ore body. During the mine production (Phase II), this adit will not be utilized for... installations. About 90,000 tons of barren development rock and 88,000 tons of ore would be excavated from the... would encompass 482 acres, of which 140 acres are National Forest System lands. The Rock Creek...

  15. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon

    SciTech Connect

    Jones, L.J.; Erickson, M.S.; Fey, D.L.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Fifteen Mile Creek, Twelve Mile Creek, Oregon Canyon, and Willow Creek Wilderness Study Areas, harney and Malheur Counties, Oregon.

  16. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  17. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Forest Service White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements AGENCY: Forest Service, USDA. ACTION: Notice of intent to prepare an environmental impact statement. SUMMARY: The White River National Forest is preparing an Environmental Impact Statement (EIS) to consider...

  18. Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed

    SciTech Connect

    Fontaine, T.A.

    1991-11-01

    Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.

  19. Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed. Environmental Restoration Program

    SciTech Connect

    Fontaine, T.A.

    1991-11-01

    Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.

  20. Rock Creek Methane from Multiple-Coal-Seams Completion Project. Semiannual report, July 1987-December 1987

    SciTech Connect

    Beavers, C.D.; Dobscha, F.X.; Green, C.D.; Lambert, S.W.; Boyer, C.M.

    1988-03-01

    Phase I of the Rock Creek Methane from Multiple Coal Seams Completion Project is a multiyear joint venture investigating the combination of drilling, completion, stimulation, and production parameters required for the viable economic production of methane from shallow, multiple coal seams. Project activities at the Rock Creek site in 1987 focused on well drilling and completion, with special emphasis on wellbore acess and hydraulic stimulation. Data on drawdown analysis of the Mary Lee coal group, and testing limited-entry applications to multiseam simulation are included.

  1. Analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek (ID-111-006), Big Jacks Creek (ID-111-007C), Duncan Creek (ID-111-0007B), and Upper Deep Creek (ID-111-044) Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Gent, C.A.; Bradley, L.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report detailing the analytical results and sample locality maps of stream-sediment, heavy-mineral-concentrate, and rock samples from the Little Jacks Creek, Big Jacks Creek, Duncan Creek, and Upper Deep Creek Wilderness Study Areas, Owyhee County, Idaho

  2. Mars' "White Rock" Feature Lacks Evidence of an Aqueous Origin

    NASA Technical Reports Server (NTRS)

    Ruff, S. W.; Christensen, P. R.; Clark, R. N.; Kieffer, H. H.; Malin, M. C.; Bandfield, J. L.; Jakosky, B. M.; Lane, M. D.; Mellon, M. T.; Presley, M. A.

    2000-01-01

    The Thermal Emission Spectrometer on board the Mars Global Surveyor has observed "White Rock" and the data do not indicate the presence of evaporite minerals. We suggest it is a deposit of compacted or weakly cemented aeolian sediment.

  3. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    USGS Publications Warehouse

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  4. ROCK CREEK RURAL CLEAN WATER PROGRAM, COMPREHENSIVE WATER QUALITY MONITORING, ANNUAL REPORT, 1988.

    EPA Science Inventory

    Water quality monitoring for the Rock Creek (17040212) rural clean water program was initiated by the ID Department of health and Welfare, Division of Environment in 1981. The results to date suggest that Best Management Practices (BMPs) implemented in the project area have impr...

  5. ROCK CREEK, POWER COUNTY, IDAHO. WATER QUALITY STATUS REPORT, 1977-1979

    EPA Science Inventory

    A survey was conducted on Rock Creek, Power County, Idaho (17040209) to assess the levels of transported sediment, various chemical and physical parameters, and macroinvertebrate fauna during base and peak flow periods. The survey was initiated in October 1977 and sampling was c...

  6. Portland Community College, Rock Creek: A Community Based Educational Shopping Center.

    ERIC Educational Resources Information Center

    De Bernardis, Amo

    An overview is presented of Portland Community College's plans to create the Rock Creek campus, scheduled to open in January 1976. The physical environment is considered to be an important factor in a student's cultural and aesthetic experience, and all facilities have been designed with this in mind. The philosophy guiding campus planning is one…

  7. Altered tuffaceous rocks of the Green River Formation in the Piceance Creek Basin, Colorado

    USGS Publications Warehouse

    Griggs, Roy Lee

    1968-01-01

    More than 50 ash-fall tuff beds which have altered to analcitized or feldspathized rocks have been found in the upper 500-600 feet of the Parachute Creek Member of the Green River Formation in the Piceance Creek Basin of northwestern Colorado. Similarly altered water-washed tuff occurs as tongues in the uppermost part of this member, and forms most of the lower 400-600 feet of the overlying Evacuation Creek Member of the Green River Formation. 'The altered ash-fall beds of the Parachute Creek Member are all thin and show a characteristic pattern of alteration. Most beds range in thickness from a fraction of an inch to a few inches. One bed reaches a maximum thickness of 5 feet, and, unlike the other beds, is composed of several successive ash falls. The pattern of alteration changes from the outer part to the center of the basin. Most beds in the outer part of the basin contain about 50 to 65 percent analcite,with the interstices between the crystals filled mainly by microlites of feldspar, opal, and quartz, and small amounts of carbonate. At the center of the basin .essentially all the beds -are composed of microlites of feldspar, opal, and quartz, and small amounts of carbonate. The tongues of water-washed tuff in the uppermost part of the Parachute Creek Member and the similar rocks composing the lower 400-600 feet of the Evacuation Creek Mewber are feldspathized rocks composed mainly of microlites of feldspar, opal, and quartz, varying amounts of carbonate, and in some specimens tiny subrounded crystals of analcite. The general trend in alteration of the tuffaceous rocks from analcitization near the margin to feidspathization near the center of the Piceance Creek Basin is believed to have taken place at shallow depth during diagenesis , as indicated by field observations and laboratory work. It is believed that during sedimentation and diagenesis the waters of the central part of the basin were more alkaline and following the breakdown of the original

  8. Floods on Big Rock, Collins, and Snake Creeks and Capps, Loyd, and Snell Branches in the vicinity of Lewisburg, Tennessee

    SciTech Connect

    Not Available

    1985-06-01

    This report describes the extent and severity of the flood potential along selected reaches of Big Rock, Collins, and Snake Creeks and Capps, Loyd, and Snell Branches in the vicinity of Lewisburg, Tennessee.

  9. Adoption in rock and white-tailed ptarmigan

    USGS Publications Warehouse

    Wong, M.M.L.; Fedy, B.C.; Wilson, S.; Martin, K.M.

    2009-01-01

    Reports of adoption in birds are widespread, but few studies report rates of adoption or possible mechanisms for this phenomenon, particularly in the Order Galliformes. We report incidents of adoption in Rock Ptarmigan (Lagopus muta) and White-tailed Ptarmigan (L. leucura) from two sites in western Canada. Adoption rates for White-tailed Ptarmigan on Vancouver Island, British Columbia, and the Ruby Ranges, Yukon Territory were 13% (n = 16 broods) and 4% (n = 27), respectively, while rates for Rock Ptarmigan were 14% (n = 29) in the Ruby Ranges. Low brood densities may result in lower rates of adoption for ptarmigan. ?? 2009 The Wilson Ornithological Society.

  10. Water quality monitoring report for the White Oak Creek Embayment. Environmental Restoration Program

    SciTech Connect

    Ford, C.J.; Wefer, M.T.

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  11. Environmental data for the White Oak Creek/White Oak Lake watershed: Environmental Sciences Division publication No. 2779

    SciTech Connect

    Sherwood, C.B.; Loar, J.M.

    1987-01-01

    Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km/sup 2/ (6.5 mile/sup 2/). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations since the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs.

  12. Age and tectonic setting of Mesozoic metavolcanic and metasedimentary rocks, northern White Mountains, California

    NASA Astrophysics Data System (ADS)

    Hanson, R. Brooks; Saleeby, Jason B.; Fates, D. Gilbert

    1987-11-01

    Mesozoic metavolcanic and metasedimentary rocks in the northern White Mountains, eastern California and western Nevada, are separated from lower Paleozoic and Precambrian rocks by Jurassic and Cretaceous plutons. The large stratigraphic hiatus across the plutons is called the Barcroft structural break. Recent mapping and new U/Pb zircon ages of 154 +3/-1 Ma and 137 ±1 Ma. from an ash-flow tuff and a hypabyssal intrusion, respectively, indicate that part of the Mesozoic section and the Barcroft structural break are younger than the 160 165 Ma Barcroft Granodiorite, in contrast to previous interpretations. The Barcroft Granodiorite has been thrust westward over most of the Mesozoic section. It is everywhere in fault contact with overturned metasedimentary rocks on the west side of the range, rocks which were previously thought to be upright and the oldest part of the Mesozoic section. The McAfee Creek Granite, which has a 100 ±1 Ma U/Pb zircon age, postdates thrusting; therefore, the Barcroft structural break is primarily Early Cretaceous in age. *Present addresses: Hanson—Department of Mineral Sciences, Smithsonian Institution, Washington, D.C. 20560; Fates—Dames & Moore, 455 S. Figueroa Street, Suite 3504, Los Angeles, California 90074

  13. 76 FR 10938 - Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock Creek Junction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... Federal Highway Administration Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock... a proposed highway project, Sunrise Project, I-205 to Rock Creek Junction, Clackamas County, Oregon..., NE., Suite 100, Salem, Oregon 97301, Telephone: (503) 587-4716. The Sunrise Project, I-205 to...

  14. Post-rock-avalanche dam outburst flood sedimentation in Ram Creek, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Harrison, Lisa M.; Dunning, Stuart A.; Woodward, John; Davies, Timothy R. H.

    2015-07-01

    Rock avalanches are common in mountainous regions that are tectonically active. They are capable of forming natural dams of uncertain persistence that have significant impacts on the river system over wide spatial scales and possibly over geological time scales. Here we combine field data and digital elevation model (DEM) analysis to show the response of Ram Creek, New Zealand, to 28 years of sediment dispersion following the 1968 emplacement of a co-seismic, rock-avalanche dam that breached catastrophically in 1981. The results show a system that has not attained equilibrium, being unable to move the quantity of dam-derived sediments, and will likely not attain equilibrium before the next major sediment input; it is in a state of persistent disturbance where localised reworking dominates. Erosion in Ram Creek is focussed on lateral bevelling and bedrock gorge widening rather than vertical incision to keep pace with tectonic uplift. Importantly for studies of tectonic geomorphology, this widening - which if sustained will form a strath terrace - does not represent a period of reduced uplift. Stream metrics (concavity and steepness) are unable to differentiate the identified rock-avalanche-induced knickpoint from tectonic and lithological knickpoints.

  15. Multidimensional Computational Fluid Dynamics Modeling of the Dispersion of White Oak Creek Contaminants in the Clinch River

    SciTech Connect

    Platfoot, J.H.; Wendel, M.W.; Williams, P.T.

    1996-10-01

    This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.

  16. Forensic Analysis of the May 2014 West Salt Creek Rock Avalanche in Western Colorado

    NASA Astrophysics Data System (ADS)

    Coe, J. A.; Baum, R. L.; Allstadt, K.; Kochevar, B. F.; Schmitt, R. G.; Morgan, M. L.; White, J. L.; Stratton, B. T.; Hayashi, T. A.; Kean, J. W.

    2015-12-01

    The rain-on-snow induced West Salt Creek rock avalanche occurred on May 25, 2014 on the northern flank of Grand Mesa. The avalanche was rare for the contiguous U.S. because of its large size (59 M m3) and high mobility (Length/Height=7.2). To understand the avalanche failure sequence, mechanisms, and mobility, we conducted a forensic analysis using large-scale (1:1000) structural mapping and seismic data. We used high-resolution, Unmanned Aircraft System (UAS) imagery as a base for our field mapping and analyzed seismic data from 22 broadband stations (distances <656 km) and one short-period network. We inverted broadband data to derive a time series of forces that the avalanche exerted on the earth and tracked these forces using curves in the avalanche path. Our results revealed that the rock avalanche was a cascade of landslide events, rather than a single massive failure. The sequence began with a landslide/debris flow that started about 10 hours before the main avalanche. The main avalanche lasted just over 3 minutes and traveled at average velocities ranging from 15 to 36 m/s. For at least two hours after the avalanche ceased movement, a central, hummock-rich, strike-slip bound core continued to move slowly. Following movement of the core, numerous shallow landslides, rock slides, and rock falls created new structures and modified topography. Mobility of the main avalanche and central core were likely enhanced by valley floor material that liquefied from undrained loading by the overriding avalanche. Although the base was likely at least partially liquefied, our mapping indicates that the overriding avalanche internally deformed predominantly by sliding along discrete shear surfaces in material that was nearly dry and had substantial frictional strength. These results indicate that the West Salt Creek avalanche, and probably other long-traveled avalanches, could be modeled as two layers: a liquefied basal layer; and a thicker and stronger overriding layer.

  17. Regulatory compliance issues related to the White Oak Creek Embayment time-critical removal action

    SciTech Connect

    Leslie, M. ); Kimmel, B.L. )

    1991-01-01

    In September 1990, Martin Marietta Energy Systems (Energy Systems) discovered high levels of Cesium-137 ({sup 137}Cs) in surface sedimenus near the mouth of White Oak Creek Embayment (WOCE). White Oak Creek (WOC) receives surface water drainage from Oak Ridge National Laboratory. Since this discovery, the Department of Energy (DOE) and Energy Systems have pursued actions designed to stabilize the contaminated WOCE sediments under provisions of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), and the implementing regulations in the National Contingency Plan (NCP) (40 CFR Part 300), as a time-critical removal action. By definition, a time-critical removal is an action where onsite activities are initiated within six months of the determination that a removal action is appropriate. Time-critical removal actions allow comparatively rapid mobilization to protect human health and the environment without going through the lengthy and extensive CERCLA Remedial Investigation/Feasibility Study/Record of Decision process. Many aspects of the project, in terms of compliance with the substantive requirements of the NCP and ARARs, have exceeded the regulatory requirements, despite the fact that there is no apparent authority on conducting removal actions at Federal facilities. Much of the interpretation of the NCP was groundbreaking in nature for both EPA and DOE. 4 refs., 2 figs.

  18. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Geochronology of an Archean granite, Owl Creek Mountains, Wyoming

    SciTech Connect

    Hedge, C.E.; Simmons, K.R.; Stuckless, J.S.

    1986-01-01

    Rubidium-strontium analyses of whole-rock samples of an Archean granite from the Owl Creek Mountains, Wyo., indicate an intrusive age of 2640 {plus minus} 125 Ma. Muscovite-bearing samples give results suggesting that these samples were altered about 2300 Ma. This event may have caused extensive strontium loss from the rocks as potassium feldspar was altered to muscovite. Alteration was highly localized in nature as evidence by unaffected rubidium-strontium mineral ages in the Owl Creek Mountains area. Furthermore, the event probably involved a small volume of fluid relative to the volume of rock because whole-rock {delta}{sup 18}O values of altered rocks are not distinct from those of unaltered rocks. In contrast to the rubidium-strontium whole-rock system, zircons from the granite have been so severely affected by the alteration event, and possibly by a late-Precambrian uplift event, that the zircon system yields little usable age information. The average initial {sup 87}Sr/{sup 86}Sr (0.7033 {plus minus} 0.0042) calculated from the isochron intercept varies significantly. Calculated initial {sup 87}Sr/{sup 86}Sr ratios for nine apparently unaltered samples yield a range of 0.7025 to 0.7047. These calculated initial ratios correlate positively with whole-rock {delta}{sup 18}O values; and, therefore, the granite was probably derived from an isotopically heterogeneous source. The highest initial {sup 87}Sr/{sup 86}Sr ratio is lower than the lowest reported for the metamorphic rocks intruded by the granite as it would have existed at 2640 Ma. Thus, the metamorphic sequence, at its current level of exposure, can represent no more than a part of the protolith for the granite.

  19. Analyses of geochemical samples and descriptions of rock samples, Adams Gap and Shinbone Creek Roadless Areas, Clay County, Alabama

    USGS Publications Warehouse

    Erickson, M.S.; Hanley, J.T.; Kelley, D.L.; Sherlock, L.J.

    1983-01-01

    Semiquantitative spectrographic analyses for 31 elements on 105 rocks, 47 stream-sediment, and 70 soil samples from the Adams Gap and Shinbone Creek Roadless Areas and vicinity, Talladega National Forest, Clay County, Alabama are reported here in detail. Atomic-absorption analyses for zinc in all samples and for gold in 5 selected rock samples are also reported. Localities for all sables are given in Universal Transverse Mercator (UTM) coordinates. A brief description of each rock sample is included. Rocks analyzed include quartzite, phyllite, vein quartz, and schist.

  20. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  1. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  2. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon

    SciTech Connect

    Johnes, Erickson, M.S.; Fey, D.L.; Kennedy, K.R.; Gent, C.A.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Camp Creek and Cottonwood Creek Wilderness Study Areas, Malheur County, Oregon.

  3. Water balance dynamics of a boreal forest watershed: White Gull Creek basin, 1994-1996

    NASA Astrophysics Data System (ADS)

    Nijssen, Bart; Lettenmaier, Dennis P.

    2002-11-01

    Field measurements from the Boreal Ecosystem-Atmosphere Study (BOREAS) were combined to calculate the water balance of the White Gull Creek basin for the three year period 1994-1996. Evapotranspiration was mapped from the observations made at the BOREAS flux towers to the basin using a simple evaporation model with a bulk canopy resistance based on tower observations. Runoff ratios were low, and evapotranspiration accounted for most of the precipitation over the area. The accumulated storage change, over the 3 year period, was 47 mm or 3.4% of the total precipitation, but precipitation exceeded the sum of discharge and evapotranspiration by 80 mm or 15% of the precipitation in 1994. Five possible explanations for the discrepancy in the water balance are identified, with the most likely cause an underestimation of the evapotranspiration in 1994, especially during periods when the basin is wet.

  4. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  5. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  6. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the King Hill Creek Wilderness Study Area, Elmore County, Idaho

    SciTech Connect

    Erickson, M.S.; King, H.D.; Bradley, L.; Gent, C.

    1989-01-01

    A U.S. Geological report is presented detailing analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the King Hill Creek Wilderness Study Area, Elmore County, Idaho.

  7. Surface radiological investigations at two creek receiving runoff from White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1994-02-01

    A surface radiological investigation was conducted intermittently from August 1992 July 1993 at two creeks receiving runoff from White Wing Scrap Yard. In this report, the two creeks (both unnamed tributaries of Bear Creek) are, referred to as the east creek and the west creek based on their respective locations relative to White Wing Scrap Yard. The radiological survey of accessible areas at the east creek revealed no detectable gamma exposure rates above typical background levels (8 to 12 {mu}R/h). The very slight elevations in gamma and beta-gamma levels found along the creek were generally associated with outcroppings of shale and typical of naturally occurring radionuclides present in such material. No radiological anomalies were associated with an oily sheen observed on the water at three locations, three 55-gal metal drums in or near the creek, a small pile of metal debris near the creek, or several enclosures used in a 1969 study of animal excretion rates. Radionuclide analysis of three soil samples collected at the east creek demonstrated typical of {sup 60}Co, {sup 137}Cs, gross alpha activity, gross beta activity, and {sup 40}K.

  8. Rock magnetic properties of a soil developed on an alluvial deposit at Buttermilk Creek, Texas, USA

    NASA Astrophysics Data System (ADS)

    Lindquist, Anna K.; Feinberg, Joshua M.; Waters, Michael R.

    2011-12-01

    The evolution of magnetization within a floodplain soil begins with initial deposition of magnetic particles during sedimentation and continues via subsequent alteration and growth of iron-bearing compounds by pedogenic and biologic processes. Measurements of soil magnetic properties capture information about the developmental history of the soil and are a convenient method by which to investigate environmental change and pedogenesis. Using a range of magnetic measurements, a comprehensive scenario for soil development was constructed for floodplain sediments at the Debra L. Friedkin site, an important archeological site near Buttermilk Creek, Texas. Floodplain deposits have traditionally been avoided for soil magnetism studies because it is thought that the episodic input of sediment would form soils characterized by discrete sedimentary units rather than a continuous record of pedogenesis. We demonstrate that alluvial deposits can sometimes carry a straightforwardly interpretable magnetic signal similar to those typically seen in loess deposits. Smooth variation of rock magnetic parameters as a function of depth also leads us to conclude that the soil at this site is largely undisturbed and that the age of lithic artifacts found within the soil may be interpreted within stratigraphic context.

  9. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  10. Rock-Eval pyrolysis and vitrinite reflectance results from the Sheep Creek 1 well, Susitna basin, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.

    2014-01-01

    We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.

  11. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the

  12. White Oak Creek Embayment time-critical CERCLA removal action sediment-retention structure

    SciTech Connect

    Not Available

    1992-09-01

    Over a 20-month period between September 1990 and April 1992, the Department of Energy (DOE), acting through Martin Marietta Energy Systems, Inc., managing contractor for the DOE Oak Ridge Field Office (DOE-OR), conducted a DOE-lead and DOE-funded time-critical removal action at the White Oak Creek Embayment (WOCE), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The time-critical removal action specifically consisted of the design and construction of a sediment-retention structure across the mouth of WOCE to prevent off-site migration of sediments contaminated by cesium ([sup 137]Cs) into the Clinch River. Construction of a sediment-retention structure was completed in mid-April 1992. The purpose of this report is to meet the substantive requirements of 40 CFR 300.165 describing a complete report on the removal operation and the actions taken.'' This section of the NCP specifically addresses on-scene coordinator reports for the Environmental Protection Agency (EPA) Superfund-lead actions and includes several elements that are not applicable to this DOE-lead action. Only those sections that are pertinent and applicable are addressed in this final report.

  13. Chemical and isotopic studies of granitic Archean rocks, Owl Creek Mountains, Wyoming: Uranium-thorium-lead systematics of an Archean granite from the Owl Creek Mountains, Wyoming

    SciTech Connect

    Stuckless, J.S.; Nkomo, I.T.; Butt, K.A.

    1986-01-01

    Isotopic analyses of apparently unaltered whole-rock samples of a granite from the Owl Creek Mountains, Wyo., yield a lead-lead isochron age of 2730 {plus minus} 35 Ma, which is somewhat older than the age obtained by the rubidium-strontium whole-rock method. Thorium-lead data for the same samples deviate markedly from an isochronal relation; however, calculated initial {sup 208}Pb/{sup 204}Pb ratios correlate with whole-rock {delta}{sup 18}O values and lead to the conclusion that the {sup 232}Th-{sup 208}Pb data are not colinear because of an originally heterogeneous granitic magma. Relationships in the {sup 207}Pb/{sup 235}U-{sup 206}Pb/{sup 238}U system show that uranium was mobilized during early Laramide time or shortly before, such that most surface and shallow drill-core samples lost 60-80 percent of their uranium, and some fractured, deeper drill-core samples gained from 50 to 10,000 percent uranium. Fission-track maps show that much uranium is located along edges and cleavages of biotite and magnetic where it is readily accessible to oxidizing ground water. Furthermore, qualitative comparisons of uranium distribution in samples with excess radiogenic lead and in samples with approximately equilibrium amounts of uranium and lead suggest that the latter contain more uranium in these readily accessible sites. Unlike other granites that have uranium distributions and isotopic systematics similar to those observed in this study, the granite of the Owl Creek Mountains is not associated with economic uranium deposits.

  14. An innovative geostatistical approach to oil volumetric calculations: Rock Creek Field, West Virginia

    SciTech Connect

    McDowell, R.R.; Matchen, D.L.; Hohn, M.E.; Vargo, A.G. )

    1994-08-01

    Detailed analysis of production trends in heterogeneous reservoirs requires local estimates of production, original, oil in place (OOIP), and recovery efficiency. In older fields, calculating these values is hampered by incomplete well records, inconsistent reporting of production (well by well vs. lease by lease), unknown effective drainage radius, and poorly constrained completion interval. Accepted methods of estimation rely heavily on the use of average values for reservoir properties. The authors have developed the use of average values for calculating local and field-wide estimates, and have compared their results to published values. The study of the Lower Mississippian Big Injun sandstone reservoir in Rock Creek field, central West Virginia, used production data obtained from operators. Production for the first 10 yr was reconstructed, when necessary, by comparison to decline curves for 70 wells with complete production records. Similarly, curve fitting techniques were used to interpolate data for missing years. Cumulative production values for 667 producing wells were kriged over the extent of the field; the resulting grid was sampled to provide an estimate of cumulative production at each well location. Kriged estimates of pay thickness, porosity, and water saturation were used to calculate OOIP and recovery efficiency (cumulative production + OOIP), but not geographic distribution of these two parameters. An optimal radius of 270 ft gave recovery efficiencies ranging between 18.75% and 21.9%, comparing favorably with a published value of 22.3%. Summing the OOIP value for all producing wells in the field yields a value of 139.6 million bbl, significantly higher than the published value of 37.8 million bbl. The estimate reflects a more complete data set and revised values for reservoir parameters. Discussions with the principal operator in the field suggests that the higher figure is more correct.

  15. Food of white perch, rock bass and yellow perch in eastern Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; Busch, Wolf-Dieter N.; Griswold, Bernard L.; Schneider, Clifford P.; Wolfert, David R.

    1981-01-01

    The contents of stomachs from 1,485 white perch, 218 rock bass and 1,399 yellow perch collected in eastern Lake Ontario from May to October in 1972 and in May 1973 were examined. All three species fed primarily on amphipods, but they also ate chironomids and trichopterans regularly. Rock bass ate more trichopterans than chironomids, whereas white perch and yellow perch ate more chironomids. Snails and crayfish were significant items in the diet of rock bass, but occurred infrequently in stomachs of white perch and yellow perch. White perch and yellow perch frequently ate fish eggs during early summer, but rock bass seldom ate fish eggs. Fish were important in the diets of white perch longer than 300 millimeters and rock bass and yellow perch longer than 200 millimeters. Similarities in the diets of fish 1 year old or older suggest that the potential for competition between white perch and yellow perch is greater than that between rock bass and either white perch or yellow perch.

  16. Mixing Model Analysis of Suspended Sediment and Particulate Organic Carbon Sources in White Clay Creek, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Marquard, J.; Pizzuto, J. E.; Newbold, J. D.

    2013-12-01

    Material exports from watersheds have consequences to upstream catchment elemental budgets, downstream ecosystem processes and water resources management. Despite this importance, quantifying exports of all major and trace elements associated with suspended sediments is challenging due to the highly episodic nature of that export. Constraining sediment sources using various mixing model approaches is further complicated by the diversity of potential sources. In this study, we leveraged the infrastructure of the Christina River Basin Critical Zone Observatory (CRB-CZO) to collect large volume (200 L) samples from 17 storms, including some of the biggest storms of the decade (i.e. Hurricane Irene and Sandy), and 95 potential source soils and sediments within the White Clay Creek watershed, a third-order watershed in southeastern Pennsylvania. On all samples we analyzed major and minor elements, rare earth elements, and radioisotopes in order to determine the erosional source category of stream suspended material, such that differences in the chemical composition of source materials can be used in a multivariate statistical model to predict the chemical composition of suspended sediment. For example, 137Cs is higher in surface and near-surface terrestrial soils and low in streambanks, deeper soils, road cuts, and road dust. Elemental chromium is much higher in road dust than any other source. We integrate sediment fingerprinting analyses common in geomorphological studies of mineral suspended material with biological and ecological characterizations of particulate organic carbon. Through this combination, we determine particle source, a necessary first step to calculating the amount of excess carbon that has complexed with particles during erosion and transit through the watershed. This interdisciplinary project is conducted as one of many studies in the CRB-CZO and directly contributes to the overall research focus of this CZO: to quantify the net carbon sink or

  17. Comagmatic contact relationships between the Rock Creek Gabbro and Round Valley Peak granodiorite, central Sierra Nevada, CA

    SciTech Connect

    Christensen, C.C.; Bown, C.J. . School of Natural Science)

    1993-03-01

    The Rock Creek Gabbro (RCG) in Little Lakes Valley, near Tom's Place, CA abuts three granodiorites with distinctive contact characteristics. Against within a cm in most places. The contact with Round Valley Peak (RVP) on the north, however, is a zone at least 3 km wide and records a mode of mafic magmatic enclave formation. A northward traverse of the zone begins 300--400 m within the RCG with progressively lighter, though still uniform rock. Next is a 100--200m wide jumble of sharp-edged angular 10--30m gabbroic xenoliths, variable in grainsize and plastic deformation and interspersed with stretched partially disaggregated enclaves in normal RVP granodiorite. Xenoliths are essentially absent from the RVP from here north; stretched enclaves with very consistent strikes paralleling (within 20[degree]) the mapped RCG-RVP contact and high angle dips (70--90[degree]), occur singly and in dense swarms and fall from 4% to 0.5% of outcrop area in the remaining traverse. Rock Creek gabbros including xenoliths at the contact cluster chemically with RVP enclaves on all major and trace element plots, suggesting a common parentage; some of each group show evidence of plagioclase flotation. Trace element data (esp. Zr/Nb) suggests that fractional crystallization dominates mixing in the evolution of the gabbroic/enclave magma.

  18. Impacts of deer herbivory on vegetation in Rock Creek Park, 2001-2009

    USGS Publications Warehouse

    Kraft, Cairn C.; Hatfield, Jeff S.

    2011-01-01

    Starting in 2001, vegetation data have been collected annually in 16 study modules consisting of paired (1x4 m) fenced plots and unfenced control plots located in the upland forests of Rock Creek Park, Washington, D.C. Vegetation data collected from 2001-2009 have been analyzed to determine impacts of deer herbivory on vegetation in the park. Differences between fenced plots and unfenced control plots were analyzed for the following variables: cover provided by various groups of species (woody, herbaceous, native, non-native, trees, shrubs, and woody vines), as well as by individual dominant species, vegetation thickness (a measure of percent cover projected horizontally that provides information on the vertical distribution of vegetation), and species richness overall and for groups of species (woody, herbaceous, native, non-native, trees, shrubs, and woody vines). The analyses were performed using repeated measures analysis of variance (ANOVA) and associated tests. Vegetation in plots protected from deer herbivory for 9 years showed significantly greater vegetative cover compared to plots not protected from deer herbivory. This effect was most pronounced for woody and shrub cover. Cover by the dominant species was not significantly greater in the fenced plots compared to the unfenced control plots, indicating that the significant differences observed for groups were not driven by single species within those groups. With respect to vegetation thickness, results indicate that protection from deer herbivory produced significantly higher levels of vegetation in the fenced plots compared to the unfenced control plots for both the Low (0-30 cm) and Middle (30-110 cm) height classes. Protection from deer herbivory has led to higher overall species richness and higher species richness for woody species, natives, and shrubs compared to plots not receiving protection. There is also evidence that plots protected from deer herbivory and those not receiving this protection

  19. Selenium and Other Elements in Water and Adjacent Rock and Sediment of Toll Gate Creek, Aurora, Arapahoe County, Colorado, December 2003 through March 2004

    USGS Publications Warehouse

    Herring, J.R.; Walton-Day, Katherine

    2007-01-01

    Streamwater and solid samples (rock, unconsolidated sediment, stream sediment, and efflorescent material) in the Toll Gate Creek watershed, Colorado, were collected and analyzed for major and trace elements to determine trace-element concentrations and stream loads from December 2003 through March 2004, a period of seasonally low flow. Special emphasis was given to selenium (Se) concentrations because historic Se concentrations exceeded current (2004) stream standards. The goal of the project was to assess the distribution of Se concentration and loads in Toll Gate Creek and to determine the potential for rock and unconsolidated sediment in the basin to be sources of Se to the streamwater. Streamwater samples and discharge measurements were collected during December 2003 and March 2004 along Toll Gate Creek and its two primary tributaries - West Toll Gate Creek and East Toll Gate Creek. During both sampling periods, discharge ranged from 2.5 liters per second to 138 liters per second in the watershed. Discharge was greater in March 2004 than December 2003, but both periods represent low flow in Toll Gate Creek, and results of this study should not be extended to periods of higher flow. Discharge decreased moving downstream in East Toll Gate Creek but increased moving downstream along West Toll Gate Creek and the main stem of Toll Gate Creek, indicating that these two streams gain flow from ground water. Se concentrations in streamwater samples ranged from 7 to 70 micrograms per liter, were elevated in the upstream-most samples, and were greater than the State stream standard of 4.6 micrograms per liter. Se loads ranged from 6 grams per day to 250 grams per day, decreased in a downstream direction along East Toll Gate Creek, and increased in a downstream direction along West Toll Gate Creek and Toll Gate Creek. The largest Se-load increases occurred between two sampling locations on West Toll Gate Creek during both sampling periods and between the two sampling

  20. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  1. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  2. A Long-term Reach-Scale Monitoring Network for Riparian Evapotranspiration, Rock Creek, Kansas

    NASA Astrophysics Data System (ADS)

    Rajaram, H.; Solis, J. A.; Whittemore, D. O.; Butler, J. J.; Reboulet, E.; Knobbe, S.; Dealy, M.

    2011-12-01

    Riparian evapotranspiration (RET) is an important component of basin-wide evapotranspiration (ET), especially in subhumid to semi-arid regions, with significant impact on water management and conservation. In narrow riparian zones, typical of much of the subhumid to semi-arid U.S., direct measurement of RET by eddy correlation is precluded by the limited fetch distance of riparian vegetation. Alternative approaches based on water balance analyses have a long history, but their accuracy is not well understood. Factors such as heterogeneity in soil properties and root distributions, and sparse measurements, introduce uncertainties in RET estimates. As part of a larger effort aimed at improving understanding of basin-wide RET using scaling theories, we installed a continuous monitoring system for water balance estimation at the scale of a single (~100 m long) reach along Rock Creek in the Whitewater Basin in central Kansas. The distinguishing features of this site include a vadose zone with fine-grained soils underlain by a phreatic zone of coarse gravel embedded in clay, overlying karst bedrock. Across the width (~40 m) of the riparian zone, we installed one transect of four wells screened at the bottom of the alluvium (6-7 m depth), each accompanied by a soil moisture profiler with capacitance sensors at 4 vertical levels above the local water-table elevation (~2.5 m depth) and a shallow well screened just below the water table. All wells were instrumented with pressure transducers for monitoring water levels. Additional sets of all sensors were installed at the upstream and downstream ends of the study reach. Initial results from the monitoring network suggest significant complexities in the behavior of the subsurface system at the site, including a high degree of heterogeneity. All deep wells show a rapid response to streamflow variations and nearby pumping. However, the shallow water-table wells do not respond rapidly to either. Both the shallow wells and soil

  3. Mars' "White Rock" feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Clark, R.N.; Kieffer, H.H.; Malin, M.C.; Bandfield, J.L.; Jakosky, B.M.; Lane, M.D.; Mellon, M.T.; Presley, M.A.

    2001-01-01

    The "White Rock" feature on Mars has long been viewed as a type example for a Martian playa largely because of its apparent high albedo along with its location in a topographic basin (a crater). Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) demonstrate that White Rock is not anomalously bright relative to other Martian bright regions, reducing the significance of its albedo and weakening the analogy to terrestrial playas. Its thermal inertia value indicates that it is not mantled by a layer of loose dust, nor is it bedrock. The thermal infrared spectrum of White Rock shows no obvious features of carbonates or sulfates and is, in fact, spectrally flat. Images from the Mars Orbiter Camera show that the White Rock massifs are consolidated enough to retain slopes and allow the passage of saltating grains over their surfaces. Material appears to be shed from the massifs and is concentrated at the crests of nearby bedforms. One explanation for these observations is that White Rock is an eroded accumulation of compacted or weakly cemented aeolian sediment. Copyright 2001 by the American Geophysical Union.

  4. Overview of shallow gas production from Eagle-equipment rocks south and east of Cedar Creek Anticline

    SciTech Connect

    Shurr, G.W.

    1996-06-01

    Shallow gas has been produced for more than fifty years from Eagle-equivalent Cretaceous sandstones on Cedar Creek Anticline in eastern Montana. In the last two decades four fields have been developed off the south and east flanks of the anticline: (1) West Short Pine Hills and (2) Cady Creek in Harding County, SD; (3) Gaslight in Fallon County, MT; and (4) Little Missouri in Bowman County, ND. Paleogeographic reconstructions indicate that the reservoir rocks in all four fields were deposited near an outer shelf margin more than 200 mi (322 km) east of the strandline. West Short Pine Hills and Cady Creek Fields are located within a sandstone sheet up to 15 ft (4.6 m) thick. Gaslight Field is near the margin of the sheet and has thinner sandstones. In Little Missouri Field the reservoir is primarily interbedded siltstone and shale. Regional lineament zones mapped on satellite images influenced Cretaceous deposition and were also the sites of post-depositional deformation. The South Dakota gas fields are located within a tectonic block well away from bounding lineament zones. Gaslight is within a northeast-trending lineament zone and Little Missouri is at the intersection of lineament zones trending north-east and northwest. Production in Little Missouri Field is clearly influenced by structure. Values of initial production and marker-bed elevation show a strong correlation. Wells with large IP values are found along the crest of a small anticline and show steeper decline curves than wells with small IP values at the margins of the structure. In contrast, IP values show little correlation with structural altitude in the gas fields of South Dakota and Montana.

  5. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  6. Roof-rock contamination of Taylor Creek Rhyolite, New Mexico, as recorded in hornblende phenocrysts and biotite xenocrysts

    USGS Publications Warehouse

    Wittke, J.H.; Duffield, W.A.; Jones, C.

    1996-01-01

    The Taylor Creek Rhyolite, a group of coeval, mid-Tertiary, silica-rich rhyolite lava domes in southwestern New Mexico, is notable for recording bulk-rock evidence of minor, yet easily measurable, contamination of its source magma reservoir resulting from assimilation of Proterozoic roof rock. Most of the evidence is recorded in trace element concentrations and 87Sr/86Sri ratios, which are far different in unconlaminated magma and roof rocks. Hornblende phenocrysts and biotite xenocrysts also record the effects of contamination. Electron microprobe analyses show that all hornblende grains are zoned to Mg-rich and Fe- and Mn-poor rims. Rim MgO content is typically about 10 wt% greater than core MgO content. Other hornblende constituents are not measurably variable. Biotite xenocrysts, trace mineral constituents, are present only in the domes that are most contaminated, as judged by bulk-rock variations in trace element concentrations and 87Sr/ 86Sri. Biotite grains are invariably partly to almost completely altered. Microprobe analyses of the cores of the least-altered grains show that large variations in Fe and Mg and that biotite contains 2-20 times as much Mg as fresh biotite phenocrysts in other silica-rich rhyolite lavas. Fe and Mg are negatively correlated in hornblende and biotite, consistent with mixing two end-member compositions. The mass ratio of contaminant to magma was probably less than 1:100, and major constituents, including Al, were not measurably affected in hornblende. Al-in-hornblende barometry yields essentially a constant calculated pressure of about 1.5 kbar, which is consistent with the interpretation that all contamination occurred in a boundary zone about 300 m thick at the top of the magma reservoir.

  7. Sampling and Analysis Plan for White Oak Creek Watershed Remedial Investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-05-01

    This Sampling and Analysis (SAP) presents the project requirements for proposed soil sampling to support the White Oak Creek Remedial Investigation/Feasibility Study at Oak Ridge National Laboratory. During the Data Quality Objectives process for the project, it was determined that limited surface soils sampling is need to supplement the historical environmental characterization database. The primary driver for the additional sampling is the need to identify potential human health and ecological risks at various sites that have not yet proceeded through a remedial investigation. These sites include Waste Area Grouping (WAG)3, WAG 4, WAG 7, and WAG 9. WAG 4 efforts are limited to nonradiological characterization since recent seep characterization activities at the WAG have defined the radiological problem there.

  8. Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments

    SciTech Connect

    Thorne, B.J.

    1991-09-01

    Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

  9. Conservation practice effectiveness in the irrigated Upper Snake/Rock Creek watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Upper Snake-Rock (USR) Conservation Effects Assessment Project (CEAP) was initiated in 2005 to determine the effectiveness of conservation practices in an irrigated watershed. Our objectives were to determine water and salt balances and water quality effects of using sprinkler rather than furrow...

  10. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  11. Geochemical and stable isotope variations in baseflow from an urbanized watershed: White Rock Creek, Dallas, Texas

    SciTech Connect

    Hercod, D.J.; Gregory, R.T.; Brady, P.V. |

    1995-03-01

    Public concerns about surface water quality and its impact on health issues have put a premium on the ability to predict surface and groundwater quality in urban areas. The movement of toxins and nutrients in urban areas is largely controlled by interactions with soil and aquifer minerals along hydrologic pathways. Despite progress in theoretical modeling of the effects of these interactions on water chemistry, it is presently impossible to predict overall trends in urban water quality. Determining the controls on stream water chemistry is problematic due to the interplay between different hydrologic reservoirs which cannot be easily observed or measured. Natural tracers, such as dissolved ions and isotopes, provide an indirect method for observing subsurface interactions and are useful for time series analysis of stream water composition. Ionic species are generally nonconservative components because of chemical reactions and are thus useful for discerning the overall discharge chemistry affected by the relationship.

  12. Radiocarbon and cation-radio ages for rock varnish on Tioga and Tahoe marainal boulders of Pine Creek, eastern Sierra Nevada, California, and their paleoclimatic implications

    USGS Publications Warehouse

    Dorn, R.I.; Turrin, B.D.; Jull, A.J.T.; Linick, T.W.; Donahue, D.J.

    1987-01-01

    Accelerator mass spectrometry 14C analyses of organic matter extracted from rock varnishes on morainal boulders yield limiting minimum ages for three crests of the Tioga glaciation. At Pine Creek in the eastern Sierra Nevada, varnish started to form on boulders of the outermost Tioga moraine before 19,000 yr B.P., and varnish originated on the innermost Tioga moraine before 13,200 yr B.P. Comparisons with lake-level, paleohydrological, paleoecological, colluvial, and rock varnish micromorphological data indicate that central-eastern California and western Nevada experienced a moisture-effective period during the late Pleistocene but after the Tioga maximum, and perhaps as Tioga glaciers receded from the mouth of Pine Creek canyon. Varnishes on Tahoeage morainal boulders at Pine Creek have cation-ratio ages of about 143,000-156,000 yr B.P., suggesting that the Tahoe glaciation should not be correlated with oxygen-isotope stage 4 in the early Wisconsin, but rather with stage 6. Varnishes on morainal boulders of an older glaciation at Pine Creek are dated by cation ratio at about 182,000-187,000 yr B.P. ?? 1987.

  13. Analytical results for 56 rock, 46 stream-sediment and soil, and 22 panned-concentrate samples from the Welcome Creek Wilderness Study Area, Granite County, Montana

    USGS Publications Warehouse

    Campbell, W.L.; Lee, G.K.; Antweiler, J.C.; Hopkins, R.T.

    1983-01-01

    Fifty-six rock, 46 stream-sediment, and 22 panned-concentrate samples were collected from the Welcome Creek Wilderness, Granite County, Montana, during the summers of 1979 and 1980. All samples were analyzed for 31 elements by a six-step semiquantitative emission spectrographic method (Grimes and Marranzino, 1968). All panned concentrate and other selected samples were analyzed for gold by an atomic absorption procedure (Thompson and others, 1968). All rock and stream-sediment samples were also analyzed for Ag, Bi, Cd, Cu, Pb, Sb, and Zn by a partial-digestion procedure (Viets and others, 1979). Sample analyses and locations are presented in this report.

  14. Stoping & Screen Formation In The Wooley Creek Batholith And Andalshatten Pluton: Complex Pluton - Host Rock Interactions During Magma Emplacement

    NASA Astrophysics Data System (ADS)

    Yoshinobu, A. S.; Hargrove, B.

    2010-12-01

    The presence of xenoliths in plutons is often assumed to either be due to stoping or the formation of screens. Stoped blocks are defined as having undergone significant translation, rotation, and/or internal deformation while incorporated in the magma, while screens are considered to be relatively in situ. However, there remains much controversy as to 1) the relative spatial distribution of xenoliths/screens in plutons; 2) the degree to which xenoliths/screens may or may not have moved within the magma; 3) the extent of melting and assimilation xenoliths undergo; and 4) the mechanism by which xenoliths and screens are incorporated into plutons. We describe field and structural relations from the tilted Wooley Creek batholith (WCb) and the mid-crustal Andalshatten pluton (AHp). Both intrusions preserve xenoliths/screens of a variety of lithologies that correspond to the host rocks. The WCb is a 158-155 MA tilted intrusion emplaced into a series of accreted terranes in the Marble Mountains Wilderness, Klamath Mountains, CA. Previous work has demonstrated that the WCb is complexly zoned, and can be divided into three distinct structural units: a structurally deep unit ranging from gabbro to tonalite, a structurally shallow unit ranging from diorite to granite, and an intermediate unit of intensely deformed quartz diorite and tonalite. Numerous xenoliths of metric to centimetric scale occur in this intermediate zone, as well as in proximity to the pluton roof as exposed along the southern contact. While many of these xenoliths have internal structures that are discordant to those found in the host rock, others seem to maintain concordance with the regional bedding, and are identified as screens. In nearly all cases, xenoliths appear partially migmatitic, and veining of the host magma into them is common. The 442 Ma AHp is a large, predominantly granodioritic pluton in the Bindal Batholith. It intrudes four lithologically distinct and structurally complex nappes of the

  15. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  16. White Oak Creek Embayment time-critical CERCLA removal action sediment-retention structure. Environmental Restoration Program

    SciTech Connect

    Not Available

    1992-09-01

    Over a 20-month period between September 1990 and April 1992, the Department of Energy (DOE), acting through Martin Marietta Energy Systems, Inc., managing contractor for the DOE Oak Ridge Field Office (DOE-OR), conducted a DOE-lead and DOE-funded time-critical removal action at the White Oak Creek Embayment (WOCE), pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The time-critical removal action specifically consisted of the design and construction of a sediment-retention structure across the mouth of WOCE to prevent off-site migration of sediments contaminated by cesium ({sup 137}Cs) into the Clinch River. Construction of a sediment-retention structure was completed in mid-April 1992. The purpose of this report is to meet the substantive requirements of 40 CFR 300.165 describing ``a complete report on the removal operation and the actions taken.`` This section of the NCP specifically addresses on-scene coordinator reports for the Environmental Protection Agency (EPA) Superfund-lead actions and includes several elements that are not applicable to this DOE-lead action. Only those sections that are pertinent and applicable are addressed in this final report.

  17. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  18. Long-term water quality and biological responses to multiple best management practices in Rock Creek, Idaho

    USGS Publications Warehouse

    Maret, T.R.; MacCoy, D.E.; Carlisle, D.M.

    2008-01-01

    Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long-term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate-nitrite (NN) were estimated using a regression model with time-series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow-adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post-implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus antipodarum), which approached densities of 100,000 per m 2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate

  19. Rotation of Plio-Pleistocene Sedimentary Rocks in the Fish Creek Vallecito Basin, Western Salton Trough, CA

    NASA Astrophysics Data System (ADS)

    Housen, B. A.; Dorsey, R. J.; Janecke, S. U.; Axen, G. J.

    2005-12-01

    Application of paleomagnetism to the study of vertical axis rotations in deformed regions can be used to test estimates of block rotation derived from other methods, such as GPS, with many implications for our understanding of crustal deformation and seismic hazard. We present results of a study that compares magnetization directions obtained by a combination of low-temperature and thermal demagnetization experiments that is inspired by the work of David Dunlop and his colleagues. The magnetostratigraphy of Plio-Pleistocene sedimentary rocks in the Fish Creek-Vallecito Basin (FCVB), southern California, is well documented (Opdyke et al., 1977; Johnson et al., 1983), who found these rocks to contain a complete record of geomagnetic field reversals spanning Plio-Pleistocene time. Johnson et al. (1983) also concluded that the FCVB had undergone 35° of CW rotation during the past 0.9 Ma. We resampled and reanalyzed their section in order to better document the amount of vertical axis rotation recorded by these rocks. Initial results from 29 sites have well-defined magnetizations with two components. Low temperature (77 K) demagnetization produced 5 to 15% drops in NRM intensity. The first removed component in all samples is unblocked between 90 and 220 °C, and the second-removed components are unblocked between 300 and 590 °C. These two components have sharp and well-defined LT-HT junctions in most samples, indicating SD-like magnetizations. We thus interpret the first-removed component to represent a thermo-viscous magnetization acquired during the past 500-700 ka. The mean of this component is D = 358.4, I = 56.8, k =111, α95 = 2.6°, N = 29. The second-removed components have either normal or reverse polarity. Due to gentle and mostly homoclinal bedding dips, paleomagnetic fold tests are statistically inconclusive, but do show stratigraphic variation in degree of maximum clustering as a function of tilting. Sites from the upper portion of the section have

  20. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  1. Landslides and other mass movements near TA-33, northern White Rock Canyon, New Mexico. Final report

    SciTech Connect

    Dethier, D.P.

    1993-09-01

    Massive slump complexes and at least two rock avalanches flank the eastern rim of the Pajarito Plateau along northern White Rock Canyon, north of TA-33. Landslides failed along mechanically weak rocks in the Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and lacustrine units. The landslides are mainly of early or middle Pleistocene age. The toe area of at least,one slump complex has been active in the late Pleistocene, damming White Rock Canyon near the mouth of Water Canyon. Lacustrine sediment that filled this lake, or series of lakes, to an elevation of at least 1710 m is preserved at a number of upstream sites, including a deposit near the Buckman townsite that exposes 30 m of lacustrine sediment. Charcoal collected at several sites has been submitted for {sup 14}C dating. Landslides, however, probably do not represent a significant short-term threat to the material disposal areas at TA-33. Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa shows no signs of incipient failure, and past periods of slide activity were responses to rapid downcutting of the Rio Grande and climate change, probably over periods of several decades, at least. Rockfall and headward erosion of gullies do not represent significant decadal hazards on canyon rims near TA-33. Gully migration near MDA-K is a potential threat, but the gullies were not examined in detail. A system of north-trending faults, at least one of which displays Pleistocene activity, bisects the TA-33 mesa. If these faults are capable of producing significant seismic shaking, generalizations about landslide and rockfall hazards must be reevaluated.

  2. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S.

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  3. A possible climate signal in the surface morphology and internal structure of Galena Creek Rock Glacier, Wyoming

    NASA Astrophysics Data System (ADS)

    Petersen, Eric; Holt, John; Levy, Joseph; Stuurman, Cassie; Nerozzi, Stefano; Cardenas, Benjamin; Pharr, James; Aylward, Dan; Schmidt, Logan; Hoey, William; Prem, Parvathy; Rambo, Jackie; Lim, YeJin; Maharaj, Kian

    2016-04-01

    Galena Creek Rock Glacier (GCRG) has been shown in previous studies to be a debris-covered glacier (e.g. Ackert, Jr., 1998), and is thus a target of interest as a record of climate and an element of the mountain hydrological system. The goal of this study was to investigate possible relationships between surface morphology and internal structure and composition of GCRG. This was achieved using ground-penetrating radar (GPR), time-domain electromagnetic sounding (TEM), and photogrammetry to produce digital terrain models (DTMs). We acquired 6 longitudinal GPR surveys at 50 and 100 MHz, 2 common midpoint GPR surveys, and 28 TEM soundings on GCRG from the head to the toe, and ground-based photogrammetry data were collected to produce a DTM of its cirque at 10 cm resolution. TEM soundings locally constrained the bulk thickness of GCRG to 26-75 meters. Common midpoint and hyperbola analyses of GPR surveys produced dielectric constants in the near subsurface of 4 in the upper glacier to 5-9 in the middle and lower glacier. These are consistent with clean ice and a mélange of rock with air and/or ice, respectively. GPR revealed a pervasive shallow reflector at 1-2.5m depth that we interpret to be the interface between the surface debris layer and glacier ice. There is increased structure and clutter in the GPR data beneath this interface as one moves down glacier. Observations were additionally made of a 40m wide, 4-5m deep circular thermokarst pond located on upper GCRG in the cirque. The walls of the pond revealed a cross-section of the top several meters of GCRG's interior: a dry surface layer of rocky debris 1-1.5m thick overlying pure glacier ice. An englacial debris band was also observed, roughly 50 cm thick and presenting at an apparent up-glacier dip of ~30 degrees, intersecting the surface near a subtle ridge resolved in the photogrammetry DTM. A GPR transect conducted near the pond over 6 similar ridges imaged 6 corresponding up-glacier dipping reflectors that

  4. Solar Abundances of Rock Forming Elements, Extreme Oxygen and Hydrogen in a Young Polluted White Dwarf

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Koester, D.; Zuckerman, B.; Vican, L.; Gänsicke, B. T.; Smith, N.; Walth, G.; Breedt, E.

    2016-09-01

    The Teff = 20 800 K white dwarf WD 1536+520 is shown to have broadly solar abundances of the major rock forming elements O, Mg, Al, Si, Ca, and Fe, together with a strong relative depletion in the volatile elements C and S. In addition to the highest metal abundances observed to date, including log (O/He) =-3.4, the helium-dominated atmosphere has an exceptional hydrogen abundance at log (H/He) =-1.7. Within the uncertainties, the metal-to-metal ratios are consistent with the accretion of an H2O-rich and rocky parent body, an interpretation supported by the anomalously high trace hydrogen. The mixed atmosphere yields unusually short diffusion timescales for a helium atmosphere white dwarf, of no more than a few hundred yr, and equivalent to those in a much cooler, hydrogen-rich star. The overall heavy element abundances of the disrupted parent body deviate modestly from a bulk Earth pattern, and suggest the deposition of some core-like material. The total inferred accretion rate is 4.2 × 109 g s-1, and at least 4 times higher than any white dwarf with a comparable diffusion timescale. Notably, when accretion is exhausted in this system, both metals and hydrogen will become undetectable within roughly 300 Myr, thus supporting a scenario where the trace hydrogen is related to the ongoing accretion of planetary debris.

  5. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    SciTech Connect

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR.

  6. Forceful emplacement of the Eureka Valley-Joshua Flat-Beer Creek composite pluton into a structural basin in eastern California; internal structure and wall rock deformation

    NASA Astrophysics Data System (ADS)

    Morgan, Sven; Law, Richard; de Saint Blanquat, Michel

    2013-11-01

    Anisotropy of Magnetic Susceptibility parameters have been analyzed at 311 locations in the Eureka Valley-Joshua Flat-Beer Creek (EJB) pluton of eastern California. The large amount of data has allowed for the AMS parameters to be contoured using techniques that both reveal map-scale trends and emphasize small-scale differences. The contour maps suggest that magnetic susceptibility is dominantly controlled by composition of the magma but may also be affected by emplacement-related strain as the magma chamber inflated and forced the wall rocks outward. Pluton construction involved two major pulses of different composition magmas that were emplaced sequentially but with overlapping periods of crystallization. The magmas initially intruded as sill-like bodies into a structural basin. The magnetic foliation of the pluton cuts across internal magmatic contacts on the map scale and is parallel to local contacts between the pluton and surrounding metasedimentary wall rocks. The magnetic fabric is similar in orientation and symmetry to intense flattening strains recorded in the aureole rocks. The metasedimentary wall rocks have been shortened between 60 and 70% and this strain magnitude is approximately equal on the west, south, and east margins of the pluton. Strain in the wall rocks is dominantly flattening and concentrated into a narrow (1 km wide) inner aureole. Mapping of bedding/cleavage intersection lineations south of the pluton indicates that the magma made room for itself by translating the wall rocks outward and rotating the already inward dipping wall rocks of the structural basin to sub-vertical. Stretching of the inner aureole around an expanding magma chamber was responsible for the intense shortening. Limited data on the Marble Canyon pluton to the south of the EJB pluton indicates a very similar emplacement process.

  7. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  8. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  9. Effects of storm runoff on water quality in the White River and Fall Creek, Indianapolis, Indiana, June through October 1986 and 1987

    SciTech Connect

    Martin, J.D.; Craig, R.A. )

    1990-01-01

    Four continuous, flow-through water-quality monitors were installed upstream from, in, and downstream from Indianapolis on the White River and near the mouth of Fall Creek in Indianapolis to monitor water quality, especially dissolved oxygen, during periods of base flow and storm runoff. Streamflow, dissolved-oxygen concentration, specific conductance, pH, and water temperature were measured at 15-minute intervals from June through October 1986 at the four sites and from June through October 1987 at two sites. Photosynthesis caused the large fluctuations and supersaturation of dissolved oxygen, and indicates that the White River is more productive than Fall Creek. Water quality during base flow is the typical condition against which water quality during storm runoff is compared. A rapid increase in streamflow indicates the beginning of a period of storm runoff and is associated with a decrease in specific conductance and pH and, dissolved oxygen or temperature. Concentrations of dissolved oxygen often decreased during storm runoff, especially during the initial rise in the hydrograph. Storm runoff consistently diminished or eliminated daily cycles of dissolved oxygen. Minimum concentrations during 12 low dissolved-oxygen periods of storm runoff. Minimum concentrations during twelve low dissolved-oxygen periods ranged from 1.0 to 3.9 mg/L and had a median concentration of 2.8 mg/L. Durations of low dissolved-oxygen concentrations ranged from .75 to 83.75 hours and had median durations of five hrs. Minimum concentrations during five low dissolved-oxygen periods at Fall Creek ranged from 2.0 to 3.4 mg/L and had a median concentration of 2.7 mg/L. Duration of low dissolved-oxygen concentrations ranged from 1.75 to 33.75 hrs and had a median duration of 7 hrs.

  10. Analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Bruneau River, Jarbidge River, and Sheep Creek West Wilderness Study Areas, Owyhee County, Idaho

    SciTech Connect

    Erickson, M.S.; Bradley, L.A.; Gent, C.A.; King, H.D.

    1989-01-01

    A U.S. Geological Survey report is presented giving the analytical results and sample locality map of stream-sediment, heavy-mineral-concentrate, and rock samples from the Bruneau River, Jarbidge River, and Sheep Creek West Wilderness Study Areas, Owyhee County, Idaho.

  11. Epizootiology of Myxobolus cerebralis, the causative agent of salmonid whirling disease in the Rock Creek drainage of west-central Montana: 2004-2008.

    PubMed

    Granath, Willard O; Vincent, E Richard

    2010-04-01

    Whirling disease, caused by the myxozoan parasite Myxobolus cerebralis , remains a serious health threat to salmonid fish in the western United States. A previously published study on the epizootiology of whirling disease in the Rock Creek watershed of west-central Montana, conducted from 1998 to 2003, showed that the intensity of M. cerebralis infections in sentinel trout increased significantly throughout the drainage and that the range of M. cerebralis had expanded considerably. In addition, the parasite had apparently caused a dramatic decline in rainbow trout densities, but the brown trout population numbers had increased. This earlier study was continued from 2004 to 2008 and the results are reported here. It now appears that the disease intensity may have peaked in 2006 and is on the decline in this watershed. The decline cannot be directly attributed to a change in the prevalence of M. cerebralis-infected Tubifex tubifex, as these numbers remained statistically the same from 1998 to 2008. Similarly, changes in water temperature and water flow do not account for the decrease in disease intensity. However, it is possible that wild rainbow trout are developing resistance to the parasite, a phenomenon recently documented to be occurring in the Willow Creek Reservoir of southwest Montana. PMID:19891515

  12. Audiomagnetotelluric data to characterize the Revett-type copper-silver deposits at Rock Creek in the Cabinet Mountains Wilderness, Montana

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2011-01-01

    The Revett-type deposits at Rock Creek are part of the concealed stratabound copper-silver deposits located in the Cabinet Mountains Wilderness of Montana. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. Geologic, geochemical, geophysical, and mineral resources data are being evaluated with existing and new mineral deposit models to predict the possibility and probability of undiscovered deposits in covered terranes. To help characterize the size, resistivity, and depth of the mineral deposit concealed beneath thick overburden, a regional southwest-northeast audiomagnetotelluric sounding profile was acquired. Further studies will attempt to determine if induced polarization parameters can be extracted from the magnetotelluric data to determine the size of the mineralized area. The purpose of this report is to release the audiomagnetotelluric sounding data collected along that southwest-northeast profile. No interpretation of the data is included.

  13. Two Distinct Sets of Magma Sources in Cretaceous Rocks From Magnet Cove, Prairie Creek, and Other Igneous Centers of the Arkansas Alkaline Province, USA

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Eby, G. N.

    2008-12-01

    Two distinct sets of magma sources from the Arkansas alkaline province (~106-89 Ma) are revealed by Sr-Nd-Pb isotopic compositions of olivine lamproites vs. other alkalic rock types, including carbonatite, ijolite, lamprophyres, tephrite, malignite, jacupirangite, phonolite, trachyte, and latite. Isotopic compositions of diamond-bearing olivine lamproites from Prairie Creek and Dare Mine Knob point to Proterozoic lithosphere as an important source, and previous Re-Os isotopic data indicate derivation from subcontinental mantle lithosphere. Both sources were probably involved in lamproite generation. Magnet Cove carbonatites and other alkalic magmas were likely derived from an asthenospheric source. Lamproite samples are isotopically quite different from other rock types in Sr-Nd-Pb isotopic space. Although three lamproite samples from Prairie Creek have a large range of SiO2 contents (40-60 wt %), initial values of ɛNd (-10 to -13), 206Pb/204Pb (16.61-16.81), 207Pb/204Pb (15.34-15.36), and 208Pb/204Pb (36.57-36.76) are low and similar. Only 87Sr/86Sr(i) displays a wide range in the Prairie Creek lamproites (0.70627-0.70829). A fourth lamproite from Dare Mine Knob has the most negative ɛNd(i) of -19. Lamproite isotope values show a significant crustal component and isotopically overlap subalkalic rhyolites from the Black Hills (SD), which assimilated Proterozoic crust. Six samples of carbonatite, ijolite, and jacupirangite from Magnet Cove and Potash Sulphur Springs exhibit the most depleted Sr-Nd isotopic signatures of all samples. For these rock types, 87Sr/86Sr(i) is 0.70352 - 0.70396, and ɛNd(i) is +3.8 - +4.3. Eight other rock types have a narrow range of ɛNd(i) (+1.9 - +3.7), but a wide range of 87Sr/86Sr(i) (0.70424 - 0.70629). These 14 samples comprise a fairly tight cluster of Pb isotopic values: 206Pb/204Pb (18.22-19.23), 207Pb/204Pb (15.54-15.62), and 208Pb/204Pb (38.38-38.94), suggesting very little crustal assimilation. They are most similar to EM-2

  14. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    SciTech Connect

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

  15. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the

  16. Petrology of Apollo 15 black-and-white rocks 15445 and 15455 - Fragments of the Imbrium impact melt sheet

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Bower, J. F.

    1977-01-01

    The paper describes two macroscopically similar black-and-white rocks, 15445 and 15455, which were collected from the rim of Spur Crater on the Apennine Front. The two Apollo 15 rocks are very similar in chemistry and clast population, but the matrix of 15455 is finer grained than that of 15445. The 15445 sample contains a lithic clast assemblage of plutonic/metamorphic spinel troctolite, troctolite, norite, and anorthosite, and its fine-grained vesicular black coherent matrix consists of a melt-bonded aggregate of small mineral clasts which are mainly olivine, plagioclase, and pink spinel. The two rocks are distinct from any other large samples from the Apollo 15 site. It is suggested that the rocks are samples of an impact melt sheet which forms a bedrock unit of the Apennine Front, and that this melt sheet did not form in a local small-scale event but was produced during the Imbrium impact event.

  17. Maintenance action readiness assessment plan for White Oak Creek and Melton Branch Weir Stilling Pool cleanout at Oak Ridge National Laboratory

    SciTech Connect

    1995-08-01

    This Readiness Assessment Plan has been prepared to document operational readiness for the following maintenance action: (1) removal of sediment from the White Oak Creek and Melton Branch Weir Stilling Pools and (2) disposal of the radiologically contaminated sediment in another location upstream of the weirs in an area previously contaminated by stream overflow from Melton Branch in Waste Area Grouping 2 (WAG) at Oak Ridge National Laboratory. This project is being performed as a maintenance action rather than an action under the Comprehensive Environmental Response, Compensation, and Liability Act because the risk to human health and environment is well below the US Environmental Protection Agency`s level of concern. The decision to proceed as a maintenance action was documented by an interim action proposed plan, which is included in the administrative record. The administrative record is available for review at the US Department of Energy Information Resource Center, 105 Broadway Avenue, Oak Ridge, Tennessee 37830.

  18. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  19. Modified level II streambed-scour analysis for structure I-70-69-5185 crossing East Fork White Lick Creek in Hendricks County, Indiana

    USGS Publications Warehouse

    Robinson, B.A.; Voelker, D.C.; Miller, R.L.

    1997-01-01

    Level II scour evaluations follow a process in which hydrologic, hydraulic, and sediment transport data are evaluated to calculate the depth of scour that may result when a given discharge is routed through a bridge opening. The results of the modified Level II analysis for structure 1-70-69-5185 on Interstate 70 crossing East Fork White Lick Creek in Hendricks County, Indiana, are presented. The site is near the town of Camby and is in the southeastern part of Hendricks County. Scour depths were computed with the Water Surface PROfile model, version V050196, which incorporates the scour-calculation procedures outlined in Hydraulic Engineering Circular No. 18. Total scour depths at the piers were approximately 12.0 feet for the modeled discharge of 5,720 cubic feet per second and approximately 13.8 feet for the modeled discharge of 7,360 cubic feet per second.

  20. Clinoptilolite and associated authigenic minerals in Miocene tuffaceous rocks in the Goose Creek Basin, Cassia County, Idaho

    SciTech Connect

    Brownfield, M.E.; Hildebrand, R.T.

    1985-01-01

    Miocene tuffaceous fluviolacustrine deposits in the southeastern part of the Goose Creek basin contain a variety of authigenic minerals, including clinoptilolite, smectite, pyrite, gypsum, and calcite. Clinoptilolite is the primary mineral in the diagenetically altered rhyolitic vitric tuffs in the study area. These zeolitic tuffs locally attain thicknesses of as much as 30 meters. Examinations of samples of the altered tuff beds using the scanning electron microscope reveal that the clinoptilolite usually occurs as clean, well-formed tabular crystals about 0.005 mm across in a matrix of smectite. Prismatic clinoptilolite crystals, as much as 0.06 mm long, are present in the larger vugs. During the Miocene, thick beds of air-fall rhyolitic vitric volcanic ash accumulated in the Goose Creek basin in a coalescing fluviolacustrine depositional setting. In the southeastern part of the basin, the volcanic ash was deposited in a lacustrine fan delta, where it was partly reworked and interbedded with sandstone and siltstone. Diagenetic alteration of the ash beds proceeded in an open hydrologic system. Solution and hydrolysis by ground water initially altered the glass shards to form smectite and silica gel. Clinoptilolite subsequently precipitated on the altered shard surfaces. The paragenesis of pyrite, gypsum, and calcite in the zeolitic tuffs is uncertain.

  1. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  2. 40Ar/39Ar Data for White Mica, Biotite, and K-Feldspar Samples from Low-Grade Metamorphic Rocks in the Westminster Terrane and Adjacent Rocks, Maryland

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan

    2008-01-01

    This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.

  3. Viking High-Resolution Topography and Mars '01 Site Selection: Application to the White Rock Area

    NASA Astrophysics Data System (ADS)

    Tanaka, K. L.; Kirk, Randolph L.; Mackinnon, D. J.; Howington-Kraus, E.

    1999-06-01

    Definition of the local topography of the Mars '01 Lander site is crucial for assessment of lander safety and rover trafficability. According to Golombek et al., steep surface slopes may (1) cause retro-rockets to be fired too early or late for a safe landing, (2) the landing site slope needs to be < 1deg to ensure lander stability, and (3) a nearly level site is better for power generation of both the lander and the rover and for rover trafficability. Presently available datasets are largely inadequate to determine surface slope at scales pertinent to landing-site issues. Ideally, a topographic model of the entire landing site at meter-scale resolution would permit the best assessment of the pertinent topographic issues. MOLA data, while providing highly accurate vertical measurements, are inadequate to address slopes along paths of less than several hundred meters, because of along-track data spacings of hundreds of meters and horizontal errors in positioning of 500 to 2000 m. The capability to produce stereotopography from MOC image pairs is not yet in hand, nor can we necessarily expect a suitable number of stereo image pairs to be acquired. However, for a limited number of sites, high-resolution Viking stereo imaging is available at tens of meters horizontal resolution, capable of covering landing-ellipse sized areas. Although we would not necessarily suggest that the chosen Mars '01 Lander site should be located where good Viking stereotopography is available, an assessment of typical surface slopes at these scales for a range of surface types may be quite valuable in landing-site selection. Thus this study has a two-fold application: (1) to support the proposal of White Rock as a candidate Mars '01 Lander site, and (2) to evaluate how Viking high resolution stereotopography may be of value in the overall Mars '01 Lander site selection process.

  4. 77 FR 1720 - Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... capture and euthanasia of individual deer. Capture and euthanasia of individual deer would be an approach... numbers. The lethal actions would include both sharpshooting and capture/euthanasia and would be...

  5. Development of a digital model of ground-water flow in deeply weathered crystalline rock, Indian Creek area, North Carolina

    SciTech Connect

    Daniel, C.C. III; Eimers, J.L. )

    1994-03-01

    The digital ground-water model of the regolith-bedrock aquifer system in the Indian Creek area is based on the US Geological Survey's modular finite-difference ground-water flow model (MODFLOW). Use of MODFLOW assumes porous media equivalence; however, special approaches have been used to account for non-uniform fracture distribution. The model is divided into a uniformly spaced grid having 196 rows, 140 columns, and a 500-foot spacing. Rows are oriented parallel to fractures (N 72 E) and columns are oriented parallel to foliation (N 18 W). The area represented by active model cells is 146 square miles and has about 17,400 cells. The model has 11 layers of different thickness; the top layer represents the regolith and the lower 10 layers represent bedrock. The regolith-bedrock contact is at a uniform depth of 50 feet. The base of the model is 850 feet below land surface. Hydraulic properties of regolith are based on diffusivity calculated from streamflow recession and are assumed to be areally constant. The steady-state model simulates recharge to, flow through, and discharge from the regolith-bedrock aquifer system. The mass balance between inflow and outflow differs by less than 1%. Along select sections, computed travel times from drainage divides to streams range from less than 4 years in the regolith to as much as 300 years for flow passing through the bottom layer of bedrock. The volume of ground water that flows through the bottom layer is only about 2% of the flow through the regolith.

  6. Polymorphobacter multimanifer gen. nov., sp. nov., a polymorphic bacterium isolated from Antarctic white rock.

    PubMed

    Fukuda, Wakao; Chino, Yohzo; Araki, Shigeo; Kondo, Yuka; Imanaka, Hiroyuki; Kanai, Tamotsu; Atomi, Haruyuki; Imanaka, Tadayuki

    2014-06-01

    A Gram-stain-negative, non-spore-forming, aerobic, oligotrophic bacterium (strain 262-7(T)) was isolated from a crack of white rock collected in the Skallen region of Antarctica. Strain 262-7(T) grew at temperatures between -4 and 30 °C, with optimal growth at 25 °C. The pH range for growth was between pH 6.0 and 9.0, with optimal growth at approximately pH 7.0. The NaCl concentration range allowing growth was between 0.0 and 1.0%, with an optimum of 0.5%. Strain 262-7(T) showed an unprecedented range of morphological diversity in response to growth conditions. Cells grown in liquid medium were circular or ovoid with smooth surfaces in the lag phase. In the exponential phase, ovoid cells with short projections were observed. Cells in the stationary phase possessed long tentacle-like projections intertwined intricately. By contrast, cells grown on agar plate medium or in liquid media containing organic compounds at low concentration exhibited short- and long-rod-shaped morphology. These projections and morphological variations clearly differ from those of previously described bacteria. Ubiquinone 10 was the major respiratory quinone. The major fatty acids were C(17 : 1)ω6c (28.2%), C(16 : 1)ω7c (22.6%), C(18 : 1)ω7c (12.9%) and C(15 : 0) 2-OH (12.3%). The G+C content of genomic DNA was 68.0 mol%. Carotenoids were detected from the cells. Comparative analyses of 16S rRNA gene sequences indicated that strain 262-7(T) belongs to the family Sphingomonadaceae, and that 262-7(T) should be distinguished from known genera in the family Sphingomonadaceae. According to the phylogenetic position, physiological characteristics and unique morphology variations, strain 262-7(T) should be classified as a representative of a novel genus of the family Sphingomonadaceae. Here, a novel genus and species with the name Polymorphobacter multimanifer gen. nov., sp. nov. is proposed (type strain 262-7(T) = JCM 18140(T) = ATCC BAA-2413(T)). The novel species was

  7. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  8. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  9. Educational outreach and impacts of white-tailed deer browse on native and invasive plants at the Crooked Creek Environmental Learning Center, Armstrong County, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Lindsay, Lisa O.

    Overabundance of deer can assist the intrusion of invasive plants through browse, leading to homogenization of plant communities. Public attitudes towards native and invasive plant species and white-tailed deer browse related to personal experiences, can be changed through education focusing public awareness of ramifications of deer browse on native and invasive plants. I developed an interactive, interpretive Self-Guided Walking Tour brochure of the "You Can Trail" to provide an educational outreach program for visitors of Crooked Creek Environmental Learning Center that includes ecologically important native and invasive plants species from my investigation. This research study focuses on the overall abundance of native and invasive plant species once Odocoileus virginianus have been removed from the landscape during collection periods in June and September 2013 from exclosure and access plots that were maintained for seven years. Similarity of abundance were found in native and invasive abundance of forbs, bushes and percentage of ground cover. Differences included native bush volume being greater than invasive bush volume in the access plot in June with opposing results in the exclosure plot, being greater in invasive bush volume. However, in September, native and invasive bush volume was similar within the exclosure plot, while invasive bush volume decreased in the access plot. Invasive vines recorded in the June access plot were absent in the September collection period.

  10. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  11. Validated analytical data summary report for White Oak Creek Watershed remedial investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-09-01

    CDM Federal Programs Corporation (CDM Federal) was tasked by the Environmental Restoration Program of Lockheed Martin Energy Systems Inc. (Energy Systems), to collect supplemental surface soil data for the remedial investigation/feasibility study (RI/FS) for the White Oak Creek (WOC) watershed. The WOC watershed RI/FS is being conducted to define a remediation approach for complying with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Oak Ridge National Laboratory (ORNL). The data generated from these supplemental sampling activities will be incorporated into the RUFS to aid decision makers and stakeholders with the selection of remedial alternatives and establish remediation goals for the WOC watershed. A series of Data Quality Objective (DQO) meetings were held in February 1996 to determine data needs for the WOC watershed RI/FS. The meetings were attended by representatives from the Tennessee Department of Environment and Conservation, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and contractors to DOE. During the DQO meetings, it was determined that the human health risk associated with exposure to radionuclides was high enough to establish a baseline for action; however, it was also determined that the impacts associated with other analytes (mainly metals) were insufficient for determining the baseline ecological risk. Based on this premise, it was determined that additional sampling would be required at four of the Waste Area Groupings (WAGs) included in the WOC watershed to fulfill this data gap.

  12. 80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. LITTLE ROCK DAM: DIMENSIONS, SECTION THROUGH ARCH RING, AMENDED SHEET 5; SEPTEMBER, 1922. Palmdale Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  13. Big Creek Hydroelectric System, East & West Transmission Line, 241mile ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Big Creek Hydroelectric System, East & West Transmission Line, 241-mile transmission corridor extending between the Big Creek Hydroelectric System in the Sierra National Forest in Fresno County and the Eagle Rock Substation in Los Angeles, California, Visalia, Tulare County, CA

  14. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    USGS Publications Warehouse

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  15. Quantifying Geomorphic Change to a Point Bar in Response to High Flow Events Using Terrestrial LiDAR, White Clay Creek, Delaware

    NASA Astrophysics Data System (ADS)

    Orefice, M. J.; O'Neal, M. A.; Pizzuto, J. E.

    2014-12-01

    Light Detection And Ranging (LiDAR) can accurately measure three dimensional surfaces for quantifying fluvial erosion and deposition. Point bars are topographic features that form on the convex bank of a meander. While point bars are considered to be formed by depositional processes, they display features such as chute channels and scour holes that suggest that erosion (due to high flow events) may significantly influence point bar evolution. Through the use of Terrestrial Laser Scanning (TLS), we observed how a point bar on the White Clay Creek near Newark, Delaware responded to a flood event with a return period of 5-50 years. Pre-flood and post-flood LiDAR scans were completed in April and May of 2014. Scans were referenced to a common coordinate system, vegetation points were removed, and two 0.10 m resolution gridded Digital Elevation Models (DEMs) were created. A DEM of Difference (DoD) was created by subtracting the pre-flood DEM from the post-flood DEM. Total deposition was 43.58 m3 and total erosion was 79.15 m3, with a net volumetric change of -35.57 m3 over an area of 630.32 m2. Erosion was dominant on the surface of the scroll bar and on the upstream end of the point bar. The pre-flood surface had a large chute channel adjacent to the scroll bar that was filled in during the storm, particularly on the downstream end. Deposits from the storm also extended the point bar into the river channel on the downstream end of the study site. Our results suggest that 1) sediment deposited on point bars is eroded frequently by flood events; and 2) TLS can provide useful estimates of erosion and deposition. If TLS surveys are repeated through time, sediment residence times in point bars can be quantified. This information is useful for creating accurate sediment budgets and for remediating contamination issues.

  16. My Rock: Black Women Attending Graduate School at a Southern Predominantly White University

    ERIC Educational Resources Information Center

    Alexander, Quentin R.; Bodenhorn, Nancy

    2015-01-01

    Participants in this phenomenological study were 11 Black women who received an undergraduate degree from a historically Black college or university and were currently attending graduate school at a southern predominantly White university. This study investigated the adjustment experiences of these women to life on a southern predominantly White…

  17. Thermochronology of fault rocks from the mid-Miocene South Virgin-White Hills detachment, Arizona and Nevada

    NASA Astrophysics Data System (ADS)

    Verdel, C.; van der Pluijm, B. A.; Niemi, N. A.

    2009-12-01

    One of the most prominent low-angle normal fault systems in the Basin and Range province of the western U.S. is the ~100 km-long South Virgin-White Hills detachment. Multiple low-temperature thermochronometers have been used to document rapid Miocene exhumation of the footwall of this detachment, most notably within the Gold Butte block of southern Nevada. Less attention has been paid to the actual faults that comprise the detachment system, one of which (the Salt Spring fault) is very well-exposed over an along-strike distance of about 5 km just south of Lake Mead. In this location, the fault dips ~25° and separates Proterozoic crystalline rocks in the footwall from Tertiary gravels and volcanic rocks in the hanging wall. At one exceptional outcrop, the fault consists of a 9 m-thick stratified zone of brecciated granite in a clay matrix (fault breccia), overlain by a relatively thin (<1 m) layer of finer-grained, foliated, clay-rich fault gouge that is in direct contact with overlying Tertiary gravels. Clay minerals are a minor constituent of the crystalline footwall rocks but are abundant in the fault zone. We utilized apatite fission track and illite/muscovite 40Ar/39Ar thermochronology to investigate the thermal evolution of the fault gouge. Apatite grains entrained in the gouge have fission track ages of ~15 Ma, comparable to previously published apatite fission track ages from structurally deep parts of the Gold Butte block and the immediate footwall of the Salt Spring fault, near the fault rock sampling site. Encapsulated 40Ar/39Ar data from micron-scale size fractions of the gouge yield staircase-shaped step-heating spectra that reach maximum ages of 80 to 110 Ma. The primary K-bearing phases in these size fractions are illite and muscovite. In structurally deep parts of the Gold Butte block, previously published muscovite 40Ar/39Ar ages are ~90 Ma. We interpret the staircase-shaped 40Ar/39Ar spectra of the fault gouge 1) to indicate the presence of

  18. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  19. A land-use and water-quality history of White Rock Lake Reservoir, Dallas, Texas, based on paleolimnological analyses

    USGS Publications Warehouse

    Platt, Bradbury J.; Van Metre, P.C.

    1997-01-01

    White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.

  20. Spring Database for the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Pavelko, Michael T.

    2007-01-01

    A database containing nearly 3,400 springs was developed for the Basin and Range carbonate-rock aquifer system study area in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The spring database provides a foundation for field verification of springs in the study area. Attributes in the database include location, geographic and general geologic settings, and available discharge and temperature data for each spring.

  1. Sailing to White Boat

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a composite red-green-blue image of the rock called White Boat. It is the first rock target that Spirit drove to after finishing a series of investigations on the rock Adirondack. White Boat stood out to scientists due to its light color and more tabular shape compared to the dark, rounded rocks that surround it.

  2. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  3. Geologic Map of the Upper Wolf Island Creek Watershed, Reidsville Area, Rockingham County, North Carolina

    USGS Publications Warehouse

    Horton, J. Wright, Jr.; Geddes, Donald J., Jr.

    2006-01-01

    This geologic map provides a foundation for hydrogeologic investigations in the Reidsville area of Rockingham County, north-central North Carolina. The 16-mi2 area within the Southeast Eden and Reidsville 7.5-min quadrangles includes the watershed of Wolf Island Creek and its tributary, Carroll Creek, upstream of their confluence. Layered metamorphic rocks in this area of the Milton terrane, here informally named the Chinqua-Penn metamorphic suite, include a heterogeneous mica gneiss and schist unit that contains interlayers and lenses of white-mica schist, felsic gneiss, amphibolite, and ultramafic rock; a felsic gneiss that contains interlayers of amphibolite, white-mica schist, and minor ultramafic lenses; and a migmatitic biotite gneiss. Crushed stone is produced from an active quarry in the felsic gneiss. Igneous intrusive rocks include a mafic-ultramafic assemblage that may have originated as mafic intrusive bodies containing ultramafic cumulates, a foliated two-mica granite informally named the granite of Reidsville, and unmetamorphosed Jurassic diabase dikes. The newly recognized Carroll Creek shear zone strikes roughly east-west and separates heterogeneous mica gneiss and schist to the north from structurally overlying felsic gneiss to the south. Regional amphibolite-facies metamorphism accompanied polyphase ductile deformation in the metamorphic rocks. Two phases of isoclinal to tight folding and related penetrative deformation, described as D1 and D2, were followed by phases of high-strain mylonitic deformation in shear zones and late gentle to open folding. Later brittle deformation produced minor faults, steep joints, foliation-parallel parting, and sheeting joints. The metamorphic and igneous rocks are mantled by saprolite and residual soil derived from weathering of the underlying bedrock, and unconsolidated Quaternary alluvium occupies the flood plains of Wolf Island Creek and its tributaries. The geologic map delineates lithologic and structural

  4. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    USGS Publications Warehouse

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using

  5. The geology and tectonic significance of the Big Creek Gneiss, Sierra Madre, southeastern Wyoming

    NASA Astrophysics Data System (ADS)

    Jones, Daniel S.

    The Big Creek Gneiss, southern Sierra Madre, southeastern Wyoming, is a heterogeneous suite of upper-amphibolite-facies metamorphic rocks intruded by post-metamorphic pegmatitic granite. The metamorphic rocks consist of three individual protolith suites: (1) pre- to syn-1780-Ma supracrustal rocks including clastic metasedimentary rocks, calc-silicate paragneiss, and metavolcanic rocks; (2) a bimodal intrusive suite composed of metagabbro and granodiorite-tonalite gneiss; and (3) a younger bimodal suite composed of garnet-bearing metagabbronorite and coarse-grained granitic gneiss. Zircons U-Pb ages from the Big Creek Gneiss demonstrate that: (1) the average age of detrital zircons in the supracrustal rocks is ~1805 Ma, requiring a significant source of 1805-Ma (or older) detritus during deposition, possibly representing an older phase of arc magmatism; (2) the older bimodal igneous suite crystallized at ~1780 Ma, correlative with arc-derived rocks of the Green Mountain Formation; (3) the younger bimodal igneous suite crystallized at ~1763 Ma, coeval with the extensional(?) Horse Creek anorthosite complex in the Laramie Mountains and Sierra Madre Granite batholith in the southwestern Sierra Madre; (4) Big Creek Gneiss rocks were tectonically buried, metamorphosed, and partially melted at ~1750 Ma, coeval with the accretion of the Green Mountain arc to the Wyoming province along the Cheyenne belt; (5) the posttectonic granite and pegmatite bodies throughout the Big Creek Gneiss crystallized at ~1630 Ma and are correlative with the 'white quartz monzonite' of the south-central Sierra Madre. Geochemical analysis of the ~1780-Ma bimodal plutonic suite demonstrates a clear arc-affinity for the mafic rocks, consistent with a subduction environment origin. The granodioritic rocks of this suite were not derived by fractional crystallization from coeval mafic magmas, but are instead interpreted as melts of lower-crustal mafic material. This combination of mantle

  6. Comparative analysis of precipitating antibodies in White Rock and Fayoumi hens injected with bovine serum albumin or crude mite extract with resulting effects on northern fowl mite, Ornithonyssus sylviarum (Acari: Macronyssidae) population densities.

    PubMed

    Burg, J G; Collison, C H; Mastro, A M

    1988-07-01

    Precipitating antibody concentration responses to crude northern fowl mite extract (CME) and bovine serum albumin (BSA) injections were compared in White Rock and Fayoumi hens with two-dimensional immunoelectrophoresis and rocket electrophoresis. The effect of CME injections on northern fowl mite population development was also determined. White Rock and Fayoumi hens developed similar antibody concentrations in response to intramuscular injections of BSA according to serum samples analyzed with two-dimensional immunoelectrophoresis. Rocket electrophoresis analyses of pooled serum samples showed significant differences between slopes of White Rock and Fayoumi pools for CME and BSA injections, suggesting differences in antibody-antigen interactions. Fayoumi hens injected with CME, 78, 50, and 14 days prior to experimental infestation with 2,000 northern fowl mites/bird supported significantly fewer mites than BSA-injected hens, although mite populations were low on both treatment groups. Injections of CME had no effect on mite population development on White Rock hens, even though CME-specific antibodies were detected. Although White Rock hens supported significantly greater mite numbers than Fayoumi hens, the difference was not attributed to anti-CME antibody activity alone. PMID:3222187

  7. The Boulder Creek Batholith, Front Range, Colorado

    USGS Publications Warehouse

    Gable, Dolores J.

    1980-01-01

    The Boulder Creek batholith is the best known of several large Precambrian batholiths of similar rock composition that crop out across central Colorado. The rocks in the batholith belong to the calc-alkaline series and range in composition from granodiorite through quartz diorite (tonalite) to gneissic aplite. Two rock types dominate': the Boulder Creek Granodiorite, the major rock unit, and a more leucocratic and slightly younger unit herein named Twin Spruce Quartz Monzonite. Besides mafic inclusions, which occur mainly in hornblende-bearing phases of the Boulder Creek Granodiorite, there are cogenetic older and younger lenses, dikes, and small plutons of hornblende diorite, hornblendite, gabbro, and pyroxenite. Pyroxenite is not found in the batholith. The Boulder Creek Granodiorite in the batholith represents essentially two contemporaneous magmas, a northern body occurring in the Gold Hill and Boulder quadrangles and a larger southern body exposed in the Blackhawk and the greater parts of the Tungsten and Eldorado Springs quadrangles. The two bodies are chemically and mineralogically distinct. The northern body is richer in CaO and poorer in K2O, is more mafic, and has a larger percentage of plagioclase than the southern body. A crude sequence of rock types occurs from west to east in the batholith accompanied by a change in plagioclase composition from calcic plagioclase on the west to sodic on the east. Ore minerals tend to decrease, and the ratio potassium feldspar:plagioclase increases inward from the western contact of the batholith, indicating that the Boulder Creek batholith is similar to granodiorite batholiths the world over. Emplacement of the Boulder Creek batholith was contemporaneous with plastic deformation and high-grade regional metamorphism that folded the country rock and the batholith contact along west-northwest and north-northwest axes. Also, smaller satellitic granodiorite bodies tend to conform to the trends of foliation and fold axes in

  8. 1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EAGLE CREEK RECREATION AREA, VIEW OF EAGLE CREEK TRAIL REGISTRY BOOTH. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  9. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  10. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah - Draft Report

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.

    2007-01-01

    Summary of Major Findings This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 131 of the Lincoln County Conservation, Recreation, and Development Act of 2004) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins represent subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas represent the subdivision used for reporting summed and tabulated subbasin estimates.

  11. Water Resources of the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Welch, Alan H., (Edited By); Bright, Daniel J.; Knochenmus, Lari A.

    2008-01-01

    INTRODUCTION This report summarizes results of a water-resources study for White Pine County, Nevada, and adjacent areas in east-central Nevada and western Utah. The Basin and Range carbonate-rock aquifer system (BARCAS) study was initiated in December 2004 through Federal legislation (Section 301(e) of the Lincoln County Conservation, Recreation, and Development Act of 2004; PL108-424) directing the Secretary of the Interior to complete a water-resources study through the U.S. Geological Survey, Desert Research Institute, and State of Utah. The study was designed as a regional water-resource assessment, with particular emphasis on summarizing the hydrogeologic framework and hydrologic processes that influence ground-water resources. The study area includes 13 hydrographic areas that cover most of White Pine County; in this report however, results for the northern and central parts of Little Smoky Valley were combined and presented as one hydrographic area. Hydrographic areas are the basic geographic units used by the State of Nevada and Utah and local agencies for water-resource planning and management, and are commonly defined on the basis of surface-water drainage areas. Hydrographic areas were further divided into subbasins that are separated by areas where bedrock is at or near the land surface. Subbasins are the subdivisions used in this study for estimating recharge, discharge, and water budget. Hydrographic areas are the subdivision used for reporting summed and tabulated subbasin estimates.

  12. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  13. Altitude and Configuration of the Potentiometric Surface in the Upper White Clay Creek and Lower West Branch Brandywine Creek Basins including Portions of Penn, London Grove, New Garden, Londonderry, West Marlborough, Highland, and East Fallowfield Townships and West Grove, Avondale, Modena, and South Coatesville boroughs, Chester County, Pennsylvania, May through July 2006

    USGS Publications Warehouse

    Hale, Lindsay B.

    2007-01-01

    INTRODUCTION Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county. These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements. For this study, the potentiometric surface was mapped for an area in south-central Chester County. The northern part of the map includes portions of Highland, East Fallowfield, Londonderry, and West Marlborough Townships and South Coatesville and Modena Boroughs. The southern part of the map includes portions of Londonderry, West Marlborough, Penn, London Grove, and New Garden Townships and West Grove and Avondale Boroughs. The study area is mostly underlain by metamorphic rocks of the Glenarm Supergroup including Peters Creek Schist, Octoraro Phyllite, Wissahickon Schist, Cockeysville Mrable, and Setters Quartzite; and by pegmatite, mafic gneiss, felsic gneiss, and diabase. Ground water is obtained from these bedrock formations by wells that intercept fractures. The altitude and configuration of the potentiometric surface was contoured from water levels measured on different dates in available wells during May through July 2006 and from the altitude of springs and perennial streams. Topography was used as a guide for contouring so that the altitude of the potentiometric surface was inferred nowhere to be higher than the land surface. The potentiometric surface shown on this map is an approximation of the water table. The altitude of the actual potentiometric surface may differ from the water table, especially in areas where wells are completed in a semi-confined zone or have long open intervals that reflect the composite hydraulic head of multiple water-yielding fractures. A composite

  14. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystalli

  15. Changes in relative organ weights and intestinal transporter gene expression in embryos from White Plymouth Rock and WENS Yellow Feather Chickens.

    PubMed

    Li, Xiang-guang; Chen, Xue-ling; Wang, Xiu-qi

    2013-02-01

    This study was conducted to evaluate the embryonic development of broilers with different growth rates and correlate the differences between the amino acid transporter and peptide transporter gene expression patterns to the growth of the small intestine. The results showed that the body and yolk weights of the White Plymouth Rock (WPR) embryos were higher than those of the WENS Yellow Feather Chicken (WYFC) embryos although the relative embryonic body weights were inversely correlated. We studied nine organs and classified them into four clusters according to their changes in relative weight during the hatching process. The levels of gene expression of SLC7A9, SLC1A1 and SLC15A1 in the small intestine increased during embryo development and were affected by breed. Breed-specific differences in embryonic development were observed for SLC7A9, SLC1A1 and SLC15A1 gene expression. When represented as a function of SLC7A9, SLC1A1 or SLC15A1 gene expression, strong correlations were observed for the weight of small intestine. We conclude that WPR embryos have a higher absolute growth rate but a lower relative growth rate in comparison with WYFC embryos. Moreover, the expression levels of the SLC7A9, SLC1A1 or SLC15A1 genes can be used as indicators for the growth of the small intestine. PMID:23202657

  16. Guardians of Tradition and Handmaidens to Change: Women's Roles in Creek Economic and Social Life during the Eighteenth Century.

    ERIC Educational Resources Information Center

    Braund, Kathryn E. Holland

    1990-01-01

    Argues that, during the eighteenth century, Creek women were central elements in both cultural preservation and adaptation to white ways. Discusses the deerskin trade, matrilineal customs, male and female roles, sexuality, marriage, intermarriage between Creek women and white traders, and the role of mixed bloods as cultural intermediaries. (SV)

  17. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  18. Greigite (Fe3S4) as an indicator of drought - The 1912-1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Van Metre, P.; Tuttle, M.; Callender, E.; Goldin, A.

    1999-01-01

    Combined magnetic and geochemical studies were conducted on sediments from White Rock Lake, a reservoir in suburban Dallas (USA), to investigate how land use has affected sediment and water quality since the reservoir was filled in 1912. The chronology of a 167-cm-long core is constrained by the recognition of the pre-reservoir surface and by 137Cs results. In the reservoir sediments, magnetic susceptibility (MS) and isothermal remanent magnetization (IRM) are largely carried by detrital titanomagnetite that originally formed in igneous rocks. Titanomagnetite and associated hematite are the dominant iron oxides in a sample from the surficial deposit in the watershed but are absent in the underlying Austin Chalk. Therefore, these minerals were transported by wind into the watershed. After about 1960, systematic decreases in Ti, Fe, and Al suggest diminished input of detrital Fe-Ti oxides from the surficial deposits. MS and IRM remain constant over this interval, however, implying compensation by an increase in strongly magnetic material derived from human activity. Anthropogenic magnetite in rust and ferrite spherules (from fly ash?) are more common in sediment deposited after about 1970 than before and may account for the constant magnetization despite the implied decrease in detrital Fe-Ti oxides. An unexpected finding is the presence of authigenic greigite (Fe3S4), the abundance of which is at least partly controlled by climate. Greigite is common in sediments that predate about 1975, with zones of concentration indicated by relatively high IRM/MS. High greigite contents in sediment deposited during the early to mid-1950s and during the mid-1930s correspond to several-year periods of below-average precipitation and drought from historical records. Relatively long water-residence times in the reservoir during these periods may have led to elevated levels of sulfate available for bacterial sulfate reduction. The sulfate was probably derived via the oxidation of

  19. LOST COVE AND HARPER CREEK ROADLESS AREAS, NORTH CAROLINA.

    USGS Publications Warehouse

    Griffitts, W.R.; Crandall, T.M.

    1984-01-01

    An investigation indicated that a part of the Lost Cove and Harper Creek Roadless Areas, North Carolina has a probable mineral-resource potential for uranium, niobium, and beryllium. The study areas lie within the Blue Ridge physiographic province and are predominantly underlain by Precambrian plutonic and metasedimentary rocks of low metamorphic grade. The uranium occurs in vein-type deposits and in supergene-enriched foliated rocks. The geologic setting precludes the presence of fossil fuel resources.

  20. CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.

    USGS Publications Warehouse

    Slack, John F.; Behum, Paul T.

    1984-01-01

    A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.

  1. BUCKS LAKE AND CHIPS CREEK ROADLESS AREAS, CALIFORNIA.

    USGS Publications Warehouse

    Sorensen, Martin L.; Linne, J. Mitchell

    1984-01-01

    The results of a mineral-resource assessment of the Bucks Lake and Chips Creek Roadless Areas, California indicate several areas with mineral-resource potential. The presence or absence of these potentially auriferous deposits can best be determined by drilling through the relatively thin cover of volcanic rocks.

  2. BEAVER CREEK WILDERNESS, KENTUCKY.

    USGS Publications Warehouse

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8. 31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  3. Beaver Creek Wilderness, Kentucky

    SciTech Connect

    Englund, K.J.; Hammack, R.W.

    1984-01-01

    The Beaver Creek Wilderness, Kentucky, was studied in 1980 by the USGS and USBM. Coal is the most important mineral resource in the Beaver Creek Wilderness. The coal is tentatively ranked as high-volatile A bituminous, and like coal of this rank in nearby mining areas, it is primarily suitable for use as steam coal. The coal resources are estimated to total 8.31 million short tons in beds greater than 14 in. thick. Nonmetallic minerals present in the Wilderness include limestone, shale, clay, and sandstone; these commodities are abundant outside the wilderness. The information available is not adequate for the assessment of the oil and gas resource potential of the Beaver Creek Wilderness. There is little likelihood for the occurrence of metallic mineral resources.

  4. Regional significance of recurrent faulting and intracanyon volcanism at Oak Creek Canyon, southern Colorado Palteau, Arizona

    SciTech Connect

    Holm, R.F. ); Cloud, R.A. )

    1990-10-01

    Measured sections of late Miocene basalt lava flows, Tertiary gravel, and Paleozoic strata are the basis for stratigraphic reconstructions that provide evidence for pre- and post-volcanic movements on the Oak Creek fault, and for the existence of a prevolcanic ancestral Oak Creek Canyon, Arizona. Recurrent faulting, recording Laramide compression and Basin and Range extension, suggests probable control by an ancestral Oak Creek fault that would belong to a regional system of basement faults hat have controlled Colorado Plateau structures in Phanerozoic rocks. Locally derived Tertiary gravel and overlying lavas filled a canyon eroded in Paleozoic strata along the Oak Creek fault. Southward flow of ancestral Oak Creek, indicated y the lithology and geomorphic position of the gravel, valley reconstruction, and lava vents to the north, northeast, or east, requires that the regional drainage reversal on the southern Colorado Plateau occurred before late Miocene time in the Oak Creek area.

  5. Occurrence of uranium-bearing coal, carbonaceous shale, and carbonaceous limestone in the Fall Creek area, Bonneville County, Idaho

    USGS Publications Warehouse

    Vine, James D.; Moore, George W.

    1952-01-01

    Uraniferous coal, carbonaceous shale, and carbonaceous limestone occur in the Bear River formation of Upper Crestaceous age at the Fall Creek prospect, in the Fall Creek area, Bonneville County, IDaho. The uranium compounds are believed to have been derived from mildly radioactive silicic volcanic rocks of the Tertiary age that rest unconformably on all older rocks and once overlay the Bear River formation and its coal. Meteoric water, percolating downward through the silicic volcanic rocks and into the older rocks along joints and faults, is believed to have brought the uranium compounds into contact with the coal and carbonaceous rocks in which the uranium was absorbed.

  6. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  7. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  8. The Paint Creek Project.

    ERIC Educational Resources Information Center

    Northrop, David; Vonck, Beth

    1998-01-01

    Describes a summer program project designed and conducted by a mixed-age group of elementary children. Students collected data to determine whether a local stream was polluted, and interpretations of the data varied. An informational video about the project and the creek was produced. (PVD)

  9. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    USGS Publications Warehouse

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  10. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  11. Death in Indiana: "The Massacre at Fall Creek" by Jessamyn West.

    ERIC Educational Resources Information Center

    Rout, Kathleen

    1985-01-01

    Interpreted is the novel, "The Massacre at Fall Creek," that dramatizes an event that occurred in Indiana in 1824 in which White men killed unarmed Seneca Indians. The Whites were brought to trial, convicted, and hanged. The novel demonstrates the moral ambiguity that often characterizes responses toward crime and punishment. (RM)

  12. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite

  13. Mineralogy and diagenesis of low-permeability sandstones of Late Cretaceous age, Piceance Creek Basin, northwestern Colorado

    USGS Publications Warehouse

    Hansley, Paula L.; Johnson, Ronald C.

    1980-01-01

    This report presents preliminary results of a mineralogic and diagenetic study of some low-permeability sandstones from measured surface sections and cores obtained from drill holes in the Piceance Creek Basin of northwestern Colorado. A documentation of the mineralogy and diagenetic history will aid in the exploration for natural gas and in the development of recovery technology in these low-permability sandstones. These sandstones are in the nonmarine upper part of the Mesaverde Formation (or Group) of Late Cretaceous age and are separated from overlying lower Tertiary rocks by a major regional unconformity. Attention is focused on the sandstone units of the Ohio Creek Member, which directly underlies the unconformity; however, comparisons between the mineralogy of the Ohio Creek strata and that of the underlying sandstone units are made whenever possible. The Ohio Creek is a member of the Hunter Canyon Formation (Mesaverde Group) in the southwestern part of the basin, and the Mesaverde Formation in the southern and central parts of the basin. The detrital mineralogy is fairly constant throughout all of these nonrnarine Cretaceous sandstone units; however, in the southeastern part of the basin, there is an increase in percentage of feldspar, quartzite, and igneous rock fragments in sandstones of the Ohio Creek Member directly underlying the unconformity. In the southwestern part of the basin, sandstones of the Ohio Creek Member are very weathered and are almost-entirely comprised of quartz, chert, and kaolinite. A complex diagenetic history, partly related to the overlying unconformity, appears to be responsible for transforming these sandstones into potential gas reservoirs. The general diagenetic sequence for the entire Upper Cretaceous interval studied is interpreted to be (early to late): early(?) calcite cement, chlorite, quartz overgrowths, calcite cement, secondary porosity, analcime (surface only), kaolinite and illite, and late carbonate cements

  14. Geochemical Data for Stream-Sediment, Surface-Water, Rock, and Vegetation Samples from Red Mountain (Dry Creek), an Unmined Volcanogenic Massive Sulfide Deposit in the Bonnifield District, Alaska Range, East-Central Alaska

    USGS Publications Warehouse

    Giles, Stuart A.; Eppinger, Robert G.; Granitto, Matthew; Zelenak, Philip P.; Adams, Monique G.; Anthony, Michael W.; Briggs, Paul H.; Gough, Larry P.; Hageman, Philip L.; Hammarstrom, Jane M.; Horton, John D.; Sutley, Stephan J.; Theodorakos, Peter M.; Wolf, Ruth E.

    2007-01-01

    North-central and northeast Nevada contains numerous large plutons and smaller stocks but also contains many small, shallowly emplaced intrusive bodies, including dikes, sills, and intrusive lava dome complexes. Decades of geologic investigations in the study area demonstrate that many ore deposits, representing diverse ore deposit types, are spatially, and probably temporally and genetically, associated with these igneous intrusions. However, despite the number and importance of igneous instrusions in the study area, no synthesis of geochemical data available for these rocks has been completed. This report presents a synthesis of composition and age data for these rocks. The product represents the first phases of an effort to evaluate the time-space-compositional evolution of Mesozoic and Cenozoic magmatism in the study area and identify genetic associations between magmatism and mineralizing processes in this region.

  15. Three classes of Martian rocks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this portion of the 360-degree color gallery pan, looking to the northeast, the colors have been exaggerated to highlight the differences between rocks and soils. Visible are the downwind sides of rocks, not exposed to wind scouring like Barnacle Bill (which faces upwind). There is a close correspondence between the shapes and colors of the rocks. Three general classes of rocks are recognized: large rounded rocks with weathered coatings, small gray angular rocks lacking weathered coatings, and flat white rocks. The large rounded rocks in the distance, marked by the red arrows, are comparable to Yogi. Spectral properties show that these rocks have a highly weathered coating in addition to a distinctive shape. A second population of smaller, angular rocks (blue arrows) in the foreground have unweathered surfaces even on the downwind side, except where covered on their tops by drift. These are comparable to Barnacle Bill. They may have been emplaced at the site relatively recently, perhaps as ejecta from an impact crater, so they have not had time to weather as extensively as the larger older rocks. The third kind of rock (white arrows) is white and flat, and includes Scooby Doo in the foreground and a large deposit in the background called Baker's Bank. The age of the white rock relative to the other two classes is still being debated. One representative rock of each class (Yogi, Barnacle Bill, and Scooby Doo) has been measured by the rover.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  16. CANEY CREEK WILDERNESS, ARKANSAS.

    USGS Publications Warehouse

    Ericksen, George E.; Dunn, Maynard L., Jr.

    1984-01-01

    Metallic and nonmetallic mineral resources identified in the Caney Creek Wilderness, Arkansas, include many small manganese deposits in areas of novaculite, tripoli, shale, and slate. Small amounts of hand-sorted manganese-oxide ore have been recovered from several of the manganese deposits during sporadic mining activity. Additional manganese resources remain in the known deposits, but the amount in any given deposit is small.

  17. Mineralogical and geochemical characteristics of the Archaean LCT pegmatite deposit Cattlin Creek, Ravensthorpe, Western Australia

    NASA Astrophysics Data System (ADS)

    Bauer, Matthias; Dittrich, Thomas; Seifert, Thomas; Schulz, Bernhard

    2014-05-01

    The LCT (lithium-cesium-tantalum) pegmatite Cattlin Creek is located about 550 km ESE of Perth, Western Australia. The complex-type, rare-element pegmatite is hosted in metamorphic rocks of the Archaean Ravensthorpe greenstone belt, which constitutes of the southern edge of the Southern Cross Terranes of the Yilgarn Craton. The deposit is currently mined for both lithium and tantalum by Galaxy Resources Limited since 2010. The pegmatitic melt intruded in a weak structural zone of crossing thrust faults and formed several pegmatite sills, of which the surface nearest mineralized pegmatite body is up to 21 m thick. The Cattlin Creek pegmatite is characterized by an extreme fractionation that resulted in the enrichment of rare elements like Li, Cs, Rb, Sn and Ta, as well as the formation of a vertical zonation expressed by distinct mineral assemblages. The border zone comprises a fine-grained mineral assemblage consisting of albite, quartz, muscovite that merges into a medium-grained wall zone and pegmatitic-textured intermediate zones. Those zones are manifested by the occurrence of megacrystic spodumene crystals with grain sizes ranging from a couple of centimeters up to several metres. The core zone represents the most fractionated part of the pegmatite and consists of lepidolite, cleavelandite, and quartz. It also exhibits the highest concentrations of Cs (0.5 wt.%), Li (0.4 wt.%), Rb (3 wt.%), Ta (0.3 wt.%) and F (4 wt.%). This zone was probably formed in the very last crystallization stage of the pegmatite and its minerals replaced earlier crystallized mineral assemblages. Moreover, the core zone hosts subordinate extremely Cs-enriched (up to 13 wt.% Cs2O) mineral species of beryl. The chemical composition of this beryl resamples that of the extreme rare beryl-variety pezzotaite. Other observed subordinate, minor and accessory minerals comprise tourmaline, garnet, cassiterite, apatite, (mangano-) columbite, tantalite, microlite (Bi-bearing), gahnite, fluorite

  18. 40Ar/39Ar age-spectrum data for hornblende, biotite, white mica, and K-feldspar samples from metamorphic rocks in the Great Smoky Mountains of North Carolina and Tennessee

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan

    2011-01-01

    This report contains reduced 40Ar/39Ar data of hornblende, biotite, white mica and (or) sericite, and potassium-feldspar mineral separates and phyllite groundmass samples from metamorphic rocks of the Great Smoky Mountains in North Carolina and Tennessee. Included in this report are information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by users unfamiliar with argon isotopic data in the use of these results. No geological meaning is implied for any of the apparent ages presented below, and many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context. All the samples in this report were collected in and around the Great Smoky Mountain National Park in western North Carolina and eastern Tennessee.

  19. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  20. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  1. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect

    Nelson, W.J. )

    1991-06-01

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  2. 216. Construction of the Back Creek Bridge over Back Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    216. Construction of the Back Creek Bridge over Back Creek and Virginia Route 613. This is a good example of a precast concrete girder bridge. Note the fallen beam at the far end. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  3. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H., Jr.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  4. Assessment of hydrology, water quality, and trace elements in selected placer-mined creeks in the birch creek watershed near central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase

  5. ADAMS GAP AND SHINBONE CREEK ROADLESS AREAS, ALABAMA.

    USGS Publications Warehouse

    Klein, T.L.; Harrison, Donald K.

    1984-01-01

    The Adams Gap and Shinbone Creek Roadless Areas in Alabama were evaluated for their mineral potential. The only resource within the established boundary of the roadless area is quartzite suitable for crushed rock or refractory-grade aggregate. The quartzite contains deleterious impurities and is found in abundance outside the areas. Natural gas or petroleum may exist at depth. Detailed seismic studies and deep drilling tests are needed before a reasonable estimate of hydrocarbon potential can be made.

  6. Rock strength reductions during incipient weathering

    NASA Astrophysics Data System (ADS)

    Kelly, P. J.; Anderson, S. P.; Blum, A.

    2012-12-01

    Patrick Kelly, Suzanne Anderson, Alex Blum In rock below the surface, temperature swings are damped, water flow is limited, and biota are few. Yet rock weathers, presumably driven by these environmental parameters. We use rock strength as an indicator of rock weathering in Gordon Gulch in the Boulder Creek Critical Zone Observatory, a watershed at 2500 m underlain by Proterozoic gneiss intruded by the Boulder Creek granodiorite. Fresh rock is found at depths of 8-30 m in this area, and the thickness of the weathered rock zone imaged with shallow seismic refraction is greater on N-facing slopes than S-facing slopes (Befus et al., 2011, Vadose Zone J.). We use the Brazilian splitting test to determine tensile strength of cores collected with a portable drilling rig. Spatial variations in rock strength that we measure in the top 2 m of the weathered rock mantle can be connected to two specific environmental variables: slope aspect and the presence of a soil mantle. We find weaker rock on N-facing slopes and under soil. There is no clear correlation between rock strength and the degree of chemical alteration in these minimally weathered rocks. Denudation rates of 20-30 microns/yr imply residence times of 105-106 years within the weathered rock layers of the critical zone. Given these timescales, rock weathering is more likely to have occurred under glacial climate conditions, when periglacial processes prevailed in this non-glaciated watershed. Incipient weathering of rock appears to be controlled by water and frost cracking in Gordon Gulch. Water is more effectively delivered to the subsurface on N-facing slopes, and is more likely held against rock surfaces under soil than on outcrops. These moisture conditions, and the lower surface temperatures that prevail on N-facing slopes also favor frost cracking as an important weathering process.

  7. Tectonic significance of Currant Creek formation, north-central Utah

    SciTech Connect

    Isby, J.S.; Picard, M.D.

    1984-07-01

    The Currant Creek Formation is composed of conglomerate, sandstone, and fine-grained clastic rocks that crop out along the northwestern margin of the Uinta basin in north-central Utah. Lateral gradations in grain size define proximal, medial, and distal parts of coalescing alluvial-fan deposits that prograded eastward from the active Sevier-Laramide orogenic belt during Maestrichtian through Paleocene (.) time. Paleocurrent directions indicate a dominant southerly transport direction and a minor easterly component. Strong east and southeasterly directions, measured in imbricated clasts and in sand lenses in conglomerate, indicate multiple source areas for the detritus. Source of the coarse-grained detritus in the Currant Creek Formation was the Charleston thrust sheet. Conglomeratic clasts are composed of Precambrian and Cambrian quartzite, chert derived from Cambrian and Mississippian carbonate beds, and Pennsylvanian sandstone. These rocks are exposed in the upper plate of the Charleston thrust near Deer Creek Reservoir, Mount Timpanogos, and Strawberry Reservoir. At Big and Little Cottonwood Canyons, the same rocks are exposed in the lower plate.

  8. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  9. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  10. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  11. Geology and petrology of the Wooley Creek batholith, Klamath Mountains, northern California

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.

    The Wooley Creek batholith was intruded into metamorphic rocks of the western Paleozoic and Triassic belt (TrPz) of the Klamath Mountains 162 + or -2 my ago. The batholith crosscut a thrust fault between the lowest subunit of the TrPz, the Rattlesnake Creek terrane, and overlying Hayfork terrain metasediments. Contact metamorphic assemblages in the wall rocks show that the structurally deepest part of the pluton crystallized at about 7.5kb whereas the structurally shallowest part crystallized at about 3kb. The batholith and its host rocks were subsequently thrust over low-density rocks of the Galice Fm. and then tilted toward the southwest, presumably by regional doming. The Wooley Creek batholith is gradationally zoned from two-pyroxene gabbro in the deepest part to hornblende-biotite granite in the shallowest part. The plutonic rocks fall on two distinct chemical trends that correspond to rocks that contain pyroxene and rocks with only hornblende and biotite as mafic minerals. Pyroxene-bearing rocks are structurally lower and are enriched in Mg, Ca, Cr, Ni, Co, and Sc.

  12. Correlation of Twin Creek limestone with Arapien shale in Arapien embayment, Utah - preliminary appraisal

    SciTech Connect

    Sprinkel, D.A.; Waanders, G.L.

    1984-07-01

    Striking and important stratigraphic patterns have emerged as a result of recent work during which members of the Twin Creek Limestone were correlated with the Arapien Shale, all of Middle Jurassic age. These correlations, determined first on the basis of electric and lithologic logs, are supported by recent palynologic work. Three distinct dinoflagellate assemblages, assigned to the Bajocian(.), Bathonian, and Callovian stages, form the paleontologic basis for these correlations. The Bajocian(.) assemblage is found in rocks of the Sliderock and Rich Members of the Twin Creek Limestone. The Bathonian assemblage is found in units of the Boundary Ridge and Watton Canyon Members of the Twin Creek, and also in units of the lower Arapien Shale (lower Leeds Creek Member of the Twin Creek of Wyoming). The Callovian assemblage is found in rocks of the upper Arapien (upper Leeds Creek and Giraffe Creek Members of the Twin Creek of Wyoming). Isopach maps, based on these correlations, indicate that most of central Utah was the site of a large marine embayment - the Arapien embayment -that was flanked on the west, south, and east by highlands. The maps also suggest that the ancestral Uinta Mountains, a submerged feature, affected sedimentation as early as Bajocian time, and became a significant barrier from the late Bathonian through Callovian. In central Utah, marine carbonates were deposited in the Arapien embayment during deposition of the Gypsum Spring through Watton Canyon Members of the Twin Creek Limestone. During deposition of the Arapien Shale, a major northward regression occurred; the embayment shrank to form a smaller basin - the Arapien basin - that lay directly south of the ancestral Uinta Mountains. Most of the Arapien Shale is shallow-water deposits that formed in the basin under hypersaline conditions.

  13. The Elk Creek Carbonatite Complex, Nebraska (USA)

    NASA Astrophysics Data System (ADS)

    Kettler, R. M.; Blessington, M.

    2015-12-01

    The Elk Creek carbonatite complex (ECCC) is a large Early Cambrian carbonatite-alkaline syenite complex located in SE Nebraska (USA). The carbonatite and related rocks are buried by more than 200 m of Pennsylvanian marine sedimentary rocks and Quaternary till. The pre-Pennsylvanian sub-crop is crudely circular in plan-view and exceeds 30 km2, making it one of the larger carbonatite complexes in North America. The rocks of the complex were intruded in Precambrian granite and gneiss on the eastern margin of the Mid-Continent rift where it has been offset by one of a series of southeasterly trending structures. The primary rock type in the ECCC is dolomite carbonatite. The dolomite carbonatite ranges from fine-grained flow-banded dolomite to a coarse-grained rock comprising large prismatic dolomite crystals. The central portion of the complex comprises a pipe-like intrusion of magnetite dolomite carbonatite and magnetite dolomite carbonatite breccia. Magnetite dolomite carbonatite is typically fine-grained and contains angular or rounded elongate fragments of dolomite carbonatite. Fragments of magnetite dolomite carbonatite are also included in dolomite carbonatite and other carbonatite rocks in the complex. Emplacement of a discreet pulse of reduced, iron-rich carbonatite magma was, therefore, a likely early event in the evolution of the ECCC. The magnetite is altered locally to hematite and other iron oxides. The oxidation ranges from a dusting of hematite to pervasive alteration to hematite and ferric oxyhydroxides and occurs to depths as much as 630 m below the modern land surface. Other volumetrically important rock types include apatite dolomite carbonatite and barite dolomite carbonatite. Both of these rock types are localized largely along fractures, occur later in the intrusive sequence, and may reflect exsolution of phosphates and sulfates with decreasing temperatures. The magnetite dolomite carbonatite hosts significant pyrochlore mineralization. Microprobe

  14. FLINT CREEK RANGE WILDERNESS STUDY AREA, MONTANA.

    USGS Publications Warehouse

    Ericksen, George E.; Marks, Lawrence Y.

    1984-01-01

    A mineral survey of the Flint Creek Range Wilderness study area, Montana shows the presence of mineral deposits. By far the most important are low-grade, potentially large, contact-metamorphic tungsten deposits. A large stockwork molybdenum deposit is probably low in grade. The areas of these tungsten and molybdenum deposits have substantiated mineral-resource potential. A multimillion ton phosphate-rock deposit occurs in an area of substantiated resource potential in the Permian Phosphoria Formation in the south-central part of the study area. Deposits of massive quartz, perhaps suitable for smelter flux, a demonstrated resource. Small scattered silver- and gold-bearing veins are present, but no resource potential was identified.

  15. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  16. 1. OVERALL VIEW OF WHITE MILLER LAKE AND UPSTREAM FACE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF WHITE MILLER LAKE AND UPSTREAM FACE OF DAM, LOOKING NORTH - High Mountain Dams in Upalco Unit, White Miller Lake Dam, Ashley National Forest, 6.9 miles North of Swift Creek Campground, Mountain Home, Duchesne County, UT

  17. 5. VIEW OF MOSIER CREEK BRIDGE, NORTH ELEVATION. Historic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW OF MOSIER CREEK BRIDGE, NORTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  18. EAGLE CREEK BRIDGE, WEST ELEVATION LOOKING 55 DEGREES NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, WEST ELEVATION LOOKING 55 DEGREES NORTHEAST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  19. 2. MOSIER CREEK BRIDGE LOOKING NORTHWEST AT SOUTH ELEVATION. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. MOSIER CREEK BRIDGE LOOKING NORTHWEST AT SOUTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  20. 2. EAGLE CREEK RECREATION AREA, VIEW OF COMMUNITY KITCHEN. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. EAGLE CREEK RECREATION AREA, VIEW OF COMMUNITY KITCHEN. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  1. Perspective view of span over French Creek and east abutment, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view of span over French Creek and east abutment, looking NW. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  2. Underside of span over Pickering Creek, showing highly skewed piers, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Underside of span over Pickering Creek, showing highly skewed piers, looking south. - Pennsylvania Railroad, Pickering Creek Trestle, Spanning Pickering Creek, south of Buckwalter Road, Pickering, Chester County, PA

  3. Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.

    1979-01-01

    A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata

  4. Mineralogy of the deadhorse creek volcaniclastic breccia complex, northwestern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Potter, Eric G.; Mitchell, Roger H.

    2005-09-01

    The Proterozoic Deadhorse Creek volcaniclastic breccia complex was emplaced in Archean metasedimentary and metavolcanic rocks of the Schreiber-White River greenstone belt adjacent to the Proterozoic Coldwell alkaline complex. The western sub-complex of the Deadhorse Creek breccia consists of metasomatically-altered breccia, a U-Be-Zr-rich main mineralized zone and a Zr-Y-Th-rich carbonate vein. The main mineralized zone is enriched in beryllium, thorium, uranium, first and second row transition elements, and rare earth elements. The major minerals present include: albite; potassium feldspar; quartz; calcite; apatite; and phenakite. Accessory minerals include: aegirine-jervisite; aegirine-natalyite; allanite; barite; barylite; coffinite; Ca-Mn-silicate; magnetite; monazite-(Ce); niobian vanadian rutile; pyrite; thorite; thorogummite; thortveitite; uraninite; vanadian crichtonite; xenotime-(Y); zircon and hydrated zircon; and zircon-thorite-coffinite solid solutions. The carbonate vein consists of dolomite-ankerite and calcite with accessory zircon, xenotime, and monazite. Barite, baotite and Ba-rich feldspars, were formed during metasomatism of the earlier-formed and genetically-unrelated volcaniclastic breccia adjacent to the main mineralized zone. The complex mineral assemblage of the fault-controlled main mineralized zone is considered to have formed in three stages. An initial emplacement of a “granitic” melt/fluid was followed by introduction of CO2-bearing Cr-Nb-V-Ti-enriched alkaline fluids. The latter reacted with minerals which had crystallized from the “granitic” melt/fluid to produce the exotic V-, Sc- and Nb-bearing mineral assemblage. Subsequently, a supergene suite of minerals, consisting principally of calcite, thorogummite, hollandite and tyuyamanite, formed during post-Pleistocene alteration was superimposed onto the pre-existing Proterozoic age mineral assemblage. The major mineralogy of the main mineralized zone is essentially

  5. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    USGS Publications Warehouse

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    This report describes the geography, geology, and ground-water resources of that part of the Frenchman Creek basin upstream from Palisade, Nebr., an area of about 4,900 square miles. The basin includes all of Phillips County, Colo., and Chase County, Nebr., and parts of Logan, Sedgwick, Washington, and Yuma Counties, Colo., and Dundy, Hayes, Hitchcock, and Perkins Counties, Nebr. The land surface ranges from nearly flat to rolling; choppy hills and interdune saddles are common in the areas of dune sand, and steep bluffs and gullies cut the edges of the relatively flat loess plateaus. Most of the basin is drained by tributaries of Frenchman Creek, but parts of the sandhills are undrained. Farming and livestock raising are the principal industries. Irrigation with ground water has expanded rapidly since 1934. The rocks exposed in the basin are largely unconsolidated and range in age from Pliocene to Recent. They comprise the Ogallala formation (Pliocene), the Sanborn formation (Pleistocene and Recent?), dune sand (Pleistocene and Recent), and alluvium (Recent). The rocks underlying the Ogallala are the Pierre shale (Late Cretaceous) and the White River group (Oligocene). The Pierre shale is relatively impermeable and yields little or no water to wells. The White River group also is relatively impermeable and yields little or no water to wells; however, small to moderate quantities of water possibly may be obtained from wells that penetrate fractured or 'porous' zones in the upper part of the White River group or permeable channel deposits within the group. The Ogallala formation is the main aquifer in the basin and yields moderate to large quantities of water to wells. The Sanborn formation and the dune sand generally lie above the water table, but in areas of high water table the dune sand yields small quantities of water to wells for domestic and stock supplies. The alluvium, which includes the low terrace deposits bordering the major streams, yields small to large

  6. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  7. Technical background information for the environmental and safety report, Volume 4: White Oak Lake and Dam

    SciTech Connect

    Oakes, T.W.; Kelly, B.A.; Ohnesorge, W.F.; Eldridge, J.S.; Bird, J.C.; Shank, K.E.; Tsakeres, F.S.

    1982-03-01

    This report has been prepared to provide background information on White Oak Lake for the Oak Ridge National Laboratory Environmental and Safety Report. The paper presents the history of White Oak Dam and Lake and describes the hydrological conditions of the White Oak Creek watershed. Past and present sediment and water data are included; pathway analyses are described in detail.

  8. 76 FR 42124 - Henwood Associates, Inc.; White Mountain Ranch, LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... Energy Regulatory Commission Henwood Associates, Inc.; White Mountain Ranch, LLC; Notice of Transfer of... been transferred to White Mountain Ranch, LLC. The project is located on the Millner Creek Water System...\\ Henwood Associates, Inc., 16 FERC ] 62,075 (1981). White Mountain Ranch, LLC, located at 30130...

  9. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  10. Experimental study of opening-mode crack growth in rock. Progress report and renewal proposal

    SciTech Connect

    Gordon, R.B.

    1981-01-01

    The objective is to relate fracture toughness to rock microstructure. Crack propagation measurements are made on samples of stockbridge marble and Stony Creek granite. Force-displacement curves are recorded and the texture of the fracture surfaces observed. (ACR)

  11. 5. EAGLE CREEK RECREATION AREA, EXTERIOR VIEW OF PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. EAGLE CREEK RECREATION AREA, EXTERIOR VIEW OF PORTION OF EAGLE CREEK OVERLOOK. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  12. 6. EAGLE CREEK RECREATION AREA, INTERIOR VIEW OF PORTION OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. EAGLE CREEK RECREATION AREA, INTERIOR VIEW OF PORTION OF EAGLE CREEK OVERLOOK. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  13. 78 FR 20066 - Special Local Regulations; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...) 366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public Meeting We...Rock Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor...

  14. The Elk Creek Carbonatite, Southeast Nebraska-An Overview

    SciTech Connect

    Carlson, M. P. Treves, S. B.

    2005-03-15

    A framework geophysical program in southeastern Nebraska during 1970 identified a near-circular feature having gravity relief of about 8 mgal and a magnetic anomaly of about 800 gammas. Analysis of the geophysical data provided a model of a cylindrical mass of indefinite length with a radius of 5500 ft (1676 m) and beveled at the basement surface at about 600 ft (183 m). At the approximate depth at which Precambrian rocks were expected, the initial test hole (2-B-71) encountered an iron-rich weathered zone overlying carbonate-rich rock. The carbonate rocks consist essentially of dolomite, calcite, and ankerite and lesser amounts of hematite, chlorite, phlogopite, barite, serpentine, pyrochlore, and quartz and contain barium, strontium, and rare earths. Total REE, P2O5, and 87Sr/86Sr ratios confirm the carbonatite identification. Texturally, the rocks range from fragmental to contorted to massive. Associated with the carbonatite are lesser amounts of basalt, lamprophyre, and syenite. Additional exploratory drilling has provided about 80,000 ft (24,384 m) of rock record and has penetrated about 3400 ft (1038 m) of carbonatite. The carbonatite is overlain by marine sediments of Pennsylvanian (Missourian) age. The surrounding Precambrian basement rocks are low-to medium-grade metamorphic gneiss and schist of island arc origin and granitic plutons. The Elk Creek carbonatite is located near the boundary between the Penokean orogen created at about 1.84 Ga (billion years) and the Dawes terrane (1.78 Ga) of the Central Plains orogen. This boundary strongly influenced the geometry of both the Midcontinent Rift System (1.1 Ga) and the Nemaha uplift (0.3 Ga). It is assumed that the emplacement of the Elk Creek carbonatite (0.5 Ga) was influenced similarly by the pre-existing tectonic sutures.

  15. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  16. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  17. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  18. Water quality study at the Congaree Swamp National monument of Myers Creek, Reeves Creek and Toms Creek. Technical report

    SciTech Connect

    Rikard, M.

    1991-11-01

    The Congaree Swamp National Monument is one of the last significant near virgin tracts of bottom land hardwood forests in the Southeast United States. The study documents a water quality monitoring program on Myers Creek, Reeves Creek and Toms Creek. Basic water quality parameters were analyzed. High levels of aluminum and iron were found, and recommendations were made for further monitoring.

  19. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC; Notice of Application Accepted for Filing, Soliciting Motions To Intervene, Protests, and Comments Take notice that...

  20. PECONIC ESTUARY PROGRAM TIDAL CREEK STUDY

    EPA Science Inventory

    EEA evaluated ten tidal creeks throughout the Peconic Estuary representing a wide range of watershed variables. Primary focus was directed towards the collection and analysis of the macrobenthic invertebrate communities of these ten tidal creeks. Analysis of the macrobenthic comm...

  1. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have changed its name to Salmon Creek Hydroelectric Company, LLC for...

  2. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  3. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  4. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    USGS Publications Warehouse

    Warwick, P.D.; Crowley, S.S.; Ruppert, L.F.; Pontolillo, J.

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we

  5. Paleomagnetism of the Miocene intrusive suite of Kidd Creek: Timing of deformation in the Cascade arc, southern Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.

    1998-01-01

    Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.

  6. CLOUD PEAK CONTIGUOUS, ROCK CREEK, PINEY CREEK, AND LITTLE GOOSE ROADLESS AREAS, WYOMING.

    USGS Publications Warehouse

    Segerstrom, Kenneth; Brown, Don S.

    1984-01-01

    On the basis of mineral surveys, study areas surrounding the Cloud Peak Primitive Area in northern Wyoming offer little promise for the occurrence of mineral or energy resources. The geologic setting precludes the existence of deposits of organic fuels. Nonmetallic commodities, such as feldspar, limestone, building stone, clay, sand, and gravel are present, but these materials are readily available nearby in large quantities in more accessible areas.

  7. ALLEGHENY FRONT AND HICKORY CREEK ROADLESS AREAS, PENNSYLVANIA.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Girol, Vaughn P.

    1984-01-01

    On the basis of a mineral-resource survey the Allegheny Front and Hickory Creek Roadless Areas, Pennsylvania, have a substantiated potential for oil resources, a probable potential for gas resources, and little likelihood for the occurrence of coal and metallic mineral resources. The oil and gas in the Upper Devonian rocks are found in stratigraphic traps, that commonly are not evident from surface indications. The only sure method to determine if the Upper Devonian sandstones contain oil or gas at a specific site is to drill through the sequence and test the more favorable zones.

  8. Stable isotope study of water-rock interaction and ore formation, Bayhorse base and precious metal district, Idaho

    USGS Publications Warehouse

    Seal, R.R., II; Rye, R.O.

    1992-01-01

    Whole-rock ??18O and ??D values from the Garden Creek Phyllite define an isotopically depleted zone (60 km2) around the Nevada Mountain stock and are the result of high-temperature interactions with ancient meteoric waters at water/rock ratios ranging from 0.002 to 0.09. Comparison of the ore fluid ??18OH2O and ??DH2O values with hypothetical waters equilibrated with the Garden Creek Phyllite indicates that the hydrothermal fluids must have also interacted with the basal dolomite of Bayhorse Creek, which underlies the phyllite. The ?? 13CCO2 values for the hydrothermal fluids also record a transition from early water/rock interactions that were dominated by the Garden Creek Phyllite to later interactions that were influenced significantly by the basal dolomite of Bayhorse Creek. The range of ??34S values may be interpreted as either a heterogeneous sedimentary source or mixed sedimentary-magmatic sources. -from Authors

  9. 'Earhart' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This false-color image taken by NASA's Mars Exploration Rover Opportunity shows a rock informally named 'Earhart' on the lower slopes of 'Endurance Crater.' The rock was named after the pilot Amelia Earhart. Like 'Escher' and other rocks dotting the bottom of Endurance, scientists believe fractures in Earhart could have been formed by one of several processes. They may have been caused by the impact that created Endurance Crater, or they might have arisen when water leftover from the rock's formation dried up. A third possibility is that much later, after the rock was formed, and after the crater was created, the rock became wet once again, then dried up and developed cracks. Rover team members do not have plans to investigate Earhart in detail because it is located across potentially hazardous sandy terrain. This image was taken on sol 219 (Sept. 4) by the rover's panoramic camera, using its 750-, 530- and 430-nanometer filters.

  10. Temperature, size, and depth of the magma reservoir for the Taylor Creek Rhyolite, New Mexico

    USGS Publications Warehouse

    Duffield, W.A.; du Bray, E.A.

    1990-01-01

    The 55 km3 mid-Tertiary Taylor Creek Rhyolite in southwestern New Mexico consists of 20 lava domes and flows. This rhyolite is metaluminous to weakly peraluminous. Compositional zonation in feldspar phenocrysts is very minor and nonsystematic. The compositions of each feldspar species vary little throughout the suite of analyzed samples. This chemical homogeneity of phenocrysts reflects similar whole-rock homogeneity and suggests that the lavas were tapped from a single large reservoir of magma. Ages of sanidine phenocrysts determined using 40Ar/39Ar indicate that the Taylor Creek Rhyolite lavas were emplaced during a period of less than 0.42 my. and possibly less than 0.13 m.y., which is consistent with the single-reservoir scenario. Two-feldspar geothermometry suggests that Taylor Creek Rhyolite phenocrysts crystallized at about 775??C, at an assumed pressure of 2 kbar. Fe-Ti-oxide geothermometry suggests phenocryst growth at about 800??C. Experimental studies suggest that quartz and potassium-feldspar crystals that grow from H2O-undersaturated granitic magmas should exhibit resorption texture, a texture ubiquitous to Taylor Creek Rhyolite quartz and sanidine phenocrysts. We tentatively conclude that the Taylor Creek Rhyolite magma was H2O undersaturated and subliquidus at an unspecified pressure greater than 0.5 kbar during phenocryst growth and that Taylor Creek Rhyolite pyroclastic deposits formed because volatile saturation developed during the ascent of magma to sites of eruption. -from Authors

  11. OXYGEN AERATION AT NEWTOWN CREEK

    EPA Science Inventory

    A successful initial feasibility investigation of oxygen aeration at the 0.11-cu m/sec (2.5-mgd) municipal wastewater treatment plant in Batavia, New York, prompted a larger demonstration at New York City's 13.6-cu m/sec (310-mgd) Newtown Creek Plant. A 34-mo evaluation was perfo...

  12. Parachute Creek Shale Oil Program

    SciTech Connect

    Not Available

    1981-01-01

    This pamphlet describes Union Oil's shale oil project in the Parachute Creek area of Garfield County, Colorado. The oil shale is estimated to contain 1.6 billion barrels of recoverable oil in the high Mahogany zone alone. Primarily a public relations publication, the report presented contains general information on the history of the project and Union Oil's future plans. (JMT)

  13. Geologic controls of uranium mineralization in the Tallahassee Creek uranium district, Fremont County, Colorado.

    USGS Publications Warehouse

    Dickinson, K.A.

    1981-01-01

    Two important orebodies have been defined by drilling in the Tallahassee Creek uranium district, Fremont County, Colorado, namely the Hansen and the Picnic Tree. Host rocks are respectively the upper Eocene Echo park Alluvium, and the lower Oligocene Tallahassee Creek Conglomerate. Average ore grade is about 0.08% U3O8. The principal source rock is the lower Oligocene Wall Mountain Tuff. Leaching and transportation of the uranium occurred in alkaline oxidizing ground water that developed during alteration of the ash in a semi-arid environment. The uranium was transported in the groundwater and deposited in a reducing environment controlled by carbonaceous material and associated pyrite. Localization of the ore was controlled by groundwater flow conditions and by the distribution of organic matter in the host rock. -from Author

  14. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  15. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  16. Little Rock Split as Historic Date Nears

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2007-01-01

    Fifty years ago, nine black students walked through the doors of Little Rock Central High School, guarded by U.S. Army and National Guard troops dispatched to protect them from angry white residents protesting integration. Now, Arkansas is inviting the world to turn its eyes to Little Rock--this time, to see how far the city has come since those…

  17. Aeromagnetic map of the West Clear Creek roadless area, Coconino and Yavapai Counties, Arizona

    USGS Publications Warehouse

    Davis, Willard E.; Ulrich, George E.

    1983-01-01

    The greater part of the surface is underlain by late Tertiary volcanic rocks, mainly alkali olivine basalts. These overlie Lower Per i an sedimentary rocks consisting mostly of dolomite, limestone, and sandstone strata that dip gently westward. Late Tertiary and Quaternary sedimentary rocks and deposits mantle several ridges (terrace gravels) and cover basalt flows in Verde Valley at the west end of the area (Verde Formation). Quaternary alluvial deposits occur in the main West Clear Creek drainage and its larger tributaries at the west end of the area.

  18. Reconstructing the Shock Wave From the Wolfe Creek Meteorite Impact.

    NASA Astrophysics Data System (ADS)

    Heine, C.; O'Neill, C. J.

    2003-12-01

    The Wolfe Creek meteorite crater is an 800m diameter impact structure located in the Tanami Desert near Hall's Creek, Western Australia. The crater formed <300000 years ago, and is the 2nd largest crater from which fragments of the impacting meteorite (a medium octahedrite) have been recovered. We present the results of new ground based geophysical (magnetics and gravity) surveys conducted over the structure in July-August, 2003. The results highlight the simple structure of the crater under the infilling sediments, and track the extent of deformation and the ejecta blanket under the encroaching sanddunes. The variations in the dip of the foliations around the crater rim confirm that the crater approached from East-Northeast, as deduced from the ejecta distribution, and provide constraints on the kinetic energy and angle of the impactor. We also use the distribution of shocked quartz in the target rock (Devonian sandstones) to reconstruct the shock loading conditions of the impact using the Grieve and Robertson (1976) criterion. We also use a Simplified Arbitrary Langrangian-Eulerian hydrocode (SALE 2) to simulate the propagation of shock waves through a material described by a Tillotson equation of state. Using the deformational and PT constraints of the Wolfe-Creek crater, we can estimate the partitioning of kinetic energy as a result of this medium-size impact.

  19. Geology of the Atkinson Creek quadrangle, Montrose county, Colorado

    USGS Publications Warehouse

    McKay, E.J.

    1953-01-01

    The Atkinson Creek quadrangle is one of eighteen 7 1/2-minute quadrangles covering the principal carnotite-producing area of southwestern Colorado. The geology of the quadrangles was mapped by the U.S. Geological Survey for the Atomic Energy Commission as part of a comprehensive study of carnotite deposits. The rocks exposed in the eighteen quadrangles consist of crystalline rocks of pre-Cambrian age and sedimentary rocks that rangein age from late Paleozoic to Quaternary. Over much of the area the sedimentary rocks are flat lying, but in places the rocks are disrupted by high-angle faults, and northwest-trending folds. Conspicuous among the folds are large anticlines having cores of intrusive salt and gypsum. Most of the carnotite deposits are confines to the Salt Wash sandstone member of the Jurassic Morrison formation. Within this sandstone, most of the deposits are spottily distributed through an arcuate zone known as the "Uravan Mineral Bath". Individual deposits range in size from irregular masses containing only a few tons of ore to large, tabular masses containing many thousands of tons. The ore consists largely of sandstone selectively impregnated and in part replaced by uranium and vanadium minerals. Most of the deposits appear to be related to certain sedimentary structures in sandstone of favorable composition.

  20. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  1. "Sweet Little (White) Girls"? Sex and Fantasy across the Color Line and the Contestation of Patriarchal White Supremacy

    ERIC Educational Resources Information Center

    Godfrey, Phoebe

    2004-01-01

    The presence of the Little Rock Nine at Little Rock's Central High in September 1957 as a result of "Brown vs. the Board of Education" evoked anger, fear, and even panic among some parts of the white community, and many white women and girls responded with near hysteria. This article seeks to answer why. What was it about integration that provoked…

  2. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  3. GRAHAM CREEK ROADLESS AREA, TEXAS.

    USGS Publications Warehouse

    Houser, B.B.; Ryan, George S.

    1984-01-01

    A geologic and geochemical investigation of the Graham Creek Roadless Area, Texas was conducted. The area has a probable mineral-resource potential for oil and gas. The roadless area contains a deposit of kaolinite clay similar to deposits being mined west of the area; the southeast part of the roadless area has a substantiated kaolinite clay resource potential. Semectite clay and sand deposits also are present in the area but these resources are relatively abundant throughout the region. Detailed analyses of well logs from the vicinity of the Graham Creek Roadless Area in conjunction with study of seismic data are necessary to determine if subsurface stratigraphy and structure are favorable for the accumulation of oil and gas.

  4. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  5. PINE CREEK ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Denton, David K., Jr.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  6. GENERAL VIEW OF DRYLAID ROCK CUTOFF WALLS ALONG NORTH EDGE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    GENERAL VIEW OF DRY-LAID ROCK CUTOFF WALLS ALONG NORTH EDGE OF TUMALO RESERVOIR AND ADJACENT TO NORTH SIDE OF BULL CREEK DAM AND BRIDGE. LOOKING NORTHWEST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  7. Geologic map of the Redwood Creek drainage basin, Humboldt County, California

    USGS Publications Warehouse

    Harden, Deborah Reid; Kelsey, H.M.; Morrison, S.D.; Stephens, T.A.

    1982-01-01

    A 1:62,500-scale geologic map with 14 rock stratigraphic units and an accompanying explanatory text are used to describe the geology of the Redwood Creek drainage basin of northwestern California. A large part of Redwood National Park is located in the downstream part of this actively eroding drainage basin. The bedrock consists primarily of Mesozoic sedimentary and metamorphic rocks. The structurally complex Franciscan assemblage of rocks underlies most of the basin, but rocks of the Klammath Mountain tectonic province occurs in a small eastern part of the basin. Most major boundaries between Mesozoic rock units are north-northwest trending faults parallel to the regional structural trend. Extensive areas of surficial coastal plain sediments, landslide deposits, stream terrace deposits and modern alluvium are also present; these areas help identify loci of vigorous recent erosion. (USGS)

  8. Analyses and description of geochemical samples, Mill Creek Wilderness Study Area, Giles County, Virginia

    USGS Publications Warehouse

    Mei, Leung; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.

  9. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  10. Floods in Starkweather Creek basin, Madison, Wisconsin

    USGS Publications Warehouse

    Lawrence, Carl L.; Holmstrom, Barry K.

    1972-01-01

    The reaches evaluated are (1) Starkweather Creek and West Branch Starkweather Creek, for a distance of 6.0 river miles from the mouth at Lake Monona upstream to the U.S. Highway 51 crossing north of Truax Field; and (2) East Branch Starkweather Creek (2.8 river miles), from its confluence with the West Branch near Milwaukee Street upstream to a point near the Interstate Highway 90-94 crossing.

  11. Geologic controls of uranium mineralization in the Tallahassee Creek uranium district, Fremont County, Colorado

    SciTech Connect

    Dickinson, K.A.

    1981-10-01

    Two important orebodies have been defined by drilling in the Tallahassee Creek uranium district, Fremont County, Colorado. They are the Hansen orebody, which contains about 12 million kg of U/sub 3/O/sub 8/, and the Picnic Tree orebody, which contains about 1 million kg of U/sub 3/O/sub 8/. Host rock for the Hansen is the upper Eocene Echo Park Alluvium, and host rock for the Picnic Tree is the lower Oligocene Tallahassee Creek onglomerate. Average ore grade for both deposits is about 0.08 percent U/sub 3/O/sub 8/. The principal source rock for the uranium depsoits is the lower Oligocene Wall Mountain Tuff, although a younger volcanic rock, the Oligocene Thirtynine Mile Andesite, and Precambrian granitic rocks probably also contributed some uranium. Leaching and transportation of the uranium occurred in alkaline oxidizing ground water that developed during alteration of the ash in a semi-arid environment. The uranium was transported in the ground water to favorable sites where it was deposited in a reducing environment controlled by carbonaceous material and associated pyrite. Localization of the ore was controlled by ground-water flow conditions and by the distribution of organic matter in the host rock. Ground-water flow, which was apparently to the southeast in Echo Park Alluvium that is confined in the Echo Park graben, was impeded by a fault that offsets the southern end of the graben. This offset prevented efficient discharge into the ancestral Arkansas River drainage, and protected chemically reducing areas from destruction by the influx of large amounts of oxidizing ground water. The location of orebodies in the Echo Park Alluvium also may be related to areas where overlying rocks of low permeability were breached by erosion during deposition of the fluvial Tallahassee Creek Conglomerate allowing localized entry of uranium-bearing water.

  12. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements

  13. Do suspended sediment and bedload move progressively from the summit to the sea along Magela Creek, northern Australia?

    NASA Astrophysics Data System (ADS)

    Erskine, W. D.; Saynor, M. J.; Turner, K.; Whiteside, T.; Boyden, J.; Evans, K. G.

    2015-03-01

    Soil erosion rates on plots of waste rock at Ranger uranium mine and basin sediment yields have been measured for over 30 years in Magela Creek in northern Australia. Soil erosion rates on chlorite schist waste rock are higher than for mica schist and weathering is also much faster. Sediment yields are low but are further reduced by sediment trapping effects of flood plains, floodouts, billabongs and extensive wetlands. Suspended sediment yields exceed bedload yields in this deeply weathered, tropical landscape, but the amount of sand transported greatly exceeds that of silt and clay. Nevertheless, sand is totally stored above the topographic base level. Longitudinal continuity of sediment transport is not maintained. As a result, suspended sediment and bedload do not move progressively from the summit to the sea along Magela Creek and lower Magela Creek wetlands trap about 90.5% of the total sediment load input.

  14. Sediment transport through a tidal creek

    NASA Astrophysics Data System (ADS)

    Green, Malcolm O.; Hancock, Nicole J.

    2012-08-01

    A 3-month field experiment was conducted at Henderson Creek, New Zealand. The data show how tidal creeks that are an extension of the freshwater drainage network (as opposed to tidal creeks that are part of an estuarine distributary network with no direct connection to the land) variously import, export and deposit fine sediment sourced from both landward and seaward of the creek, depending on the wind and freshwater runoff, and modulated by the tide. During freshwater spates, saltwater was largely displaced from the tidal creek at low tide, and sediment sourced from the land was deposited inside the tidal creek and exported to the wider estuary beyond the base of the creek. In one spate, during which 80 mm of rain fell in less than one day, 580 t of sediment was sourced from landward of the tidal creek, and a maximum of 33% of this was exported to the wider estuary. Between rainstorms when it was calm, sediment was returned from the wider estuary by tidal currents (but not necessarily the same sediment that was exported during spates), and sediment was also eroded from the middle reaches of the tidal creek and transported to the upper reaches, where it was deposited. The up-estuary deposition is explainable in Lagrangian terms as a type of settling lag, which results in an asymmetrical response of suspended-sediment concentration to current speed in the tidal creek. The return of sediment to the tidal creek between spates was greatly enhanced by wind waves that resuspended sediments from the intertidal flats of the wider estuary, with that sediment being transported by tidal currents into the tidal creek where it was deposited, largely in the middle reaches. There is a broad consensus that waves drive a net loss of sediment from intertidal flats to offshore, which reverses a net accumulation of sediment on intertidal flats during calm weather. In contrast, waves on the intertidal flats outside the mouth of Henderson Creek initiate net landward transport of

  15. DEEP CREEK AND MUD CREEK, TWIN FALLS, IDAHO. WATER QUALITY STATUS REPORT, 1986

    EPA Science Inventory

    Deep Creek and Mud Creek are located in Twin Falls County near Buhl, Idaho (17040212). From April through October, these creeks convey irrigation drainage water from the western part of the Twin Falls irrigation tract to the Snake River. During 1986, water quality surveys were ...

  16. LIGHTNING CREEK, PACK RIVER, AND SAND CREEK, BONNER COUNTY, IDAHO - WATER QUALITY SUMMARY, 1978

    EPA Science Inventory

    In Water Year 1978, water quality studies were conducted on Lightning Creek, Pack River, and Sand Creek in Bonner County, Idaho (17010214, 17010213) to determine the present status of the streams. Water quality in Lightning Creek was generally very high. No violations of standa...

  17. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  18. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  19. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... (Significant Threat), or Rank 3 (Lesser Threat) on the Tennessee Exotic Plant Pest Council list of Invasive... Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort Patrick Henry... Land Management Plan (NTRLMP) for the 4,933 acres of TVA-managed public land on Beaver Creek,...

  20. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  1. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  2. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  3. 7. Cable Creek Bridge after completion. Zion National Park negative ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Cable Creek Bridge after completion. Zion National Park negative number 1485, classification series 002, 12. - Floor of the Valley Road, Cable Creek Bridge, Spanning Cable Creek on Floor of Valley, Springdale, Washington County, UT

  4. 8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. DETAIL VIEW OF DATEPLATE WHICH READS 'HARP CREEK, LUTEN BRIDGE CO., CONTRACTOR, ARKANSAS STATE HIGHWAY DEPARTMENT, 1928' - Harp Creek Bridge, Spans Harp Creek at State Highway 7, Harrison, Boone County, AR

  5. Detail view of the Ten Mile Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge, view looking northeast at the modified "X" bracing and concrete hangers. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  6. Detail view of the Ten Mile Creek Bridge decorative concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge decorative concrete arched balustrade at southeast corner of bridge, view looking east. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  7. Detail perspective view of the Ten Mile Creek Bridge arch, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail perspective view of the Ten Mile Creek Bridge arch, decorative cantilevered balustrade, and floor beams. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  8. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  9. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  10. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  11. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  12. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  13. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  14. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  15. 3. MOSIER CREEK BRIDGE LOOKING 135 DEGREES SOUTHEAST AT NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. MOSIER CREEK BRIDGE LOOKING 135 DEGREES SOUTHEAST AT NORTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  16. EAGLE CREEK BRIDGE, EAST ELEVATION, SUBSTRUCTURE DETAIL LOOKING 333 DEGREES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, EAST ELEVATION, SUBSTRUCTURE DETAIL LOOKING 333 DEGREES NORTH-NORTHWEST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  17. 4. MOSIER CREEK BRIDGE LOOKING 202 DEGREES SOUTHWEST AT NORTH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. MOSIER CREEK BRIDGE LOOKING 202 DEGREES SOUTHWEST AT NORTH ELEVATION. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  18. NORTH ELEVATION OF MULTNOMAH CREEK BRIDGE, VIEW LOOKING 130 DEGREES ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH ELEVATION OF MULTNOMAH CREEK BRIDGE, VIEW LOOKING 130 DEGREES SOUTHEAST - Historic Columbia River Highway, Multnomah Creek Bridge, Historic Columbia River Highway spanning Multnomah Creek, Troutdale, Multnomah County, OR

  19. 1. MOSIER CREEK BRIDGE LOOKING NORTHEAST FROM SOUTHEAST CORNER AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. MOSIER CREEK BRIDGE LOOKING NORTHEAST FROM SOUTHEAST CORNER AT BRIDGE SURFACE. - Historic Columbia River Highway, Mosier Creek Bridge, Spanning Mosier Creek carrying Historic Columbia River Highway, Troutdale, Multnomah County, OR

  20. DETAIL OF MULTNOMAH CREEK BRIDGE, LOOKING 25 DEGREES NORTHNORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF MULTNOMAH CREEK BRIDGE, LOOKING 25 DEGREES NORTH-NORTHEAST - Historic Columbia River Highway, Multnomah Creek Bridge, Historic Columbia River Highway spanning Multnomah Creek, Troutdale, Multnomah County, OR

  1. EAGLE CREEK BRIDGE, EAST ELEVATION, VIEW LOOKING 290 DEGREES WESTNORTHWEST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAGLE CREEK BRIDGE, EAST ELEVATION, VIEW LOOKING 290 DEGREES WEST-NORTHWEST - Historic Columbia River Highway, Eagle Creek Bridge, Spanning Eagle Creek on Historic Columbia River Highway, Troutdale, Multnomah County, OR

  2. 3. EAGLE CREEK RECREATION AREA, VIEW OF PICNIC AREA WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. EAGLE CREEK RECREATION AREA, VIEW OF PICNIC AREA WITH COMMUNITY KITCHEN IN BACKGROUND. - Historic Columbia River Highway, Eagle Creek Recreation Area, Historic Columbia River Highway at Eagle Creek, Troutdale, Multnomah County, OR

  3. 1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERALL VIEW OF LOBOS CREEK INLET STRUCTURE (#1786), LOOKING SOUTHWEST - Presidio Water Treatment Plant, Lobos Creek Inlet Structure, East of Lobos Creek at Baker Beach, San Francisco, San Francisco County, CA

  4. 3. Threequarter view of Oak Creek Bridge behind visitor center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of Oak Creek Bridge behind visitor center facing southwest - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT

  5. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  6. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  7. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  8. 6. General perspective view of Neawanna Creek Bridge, showing bushhammered, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. General perspective view of Neawanna Creek Bridge, showing bush-hammered, recessed panels in fascia wall - Neawanna Creek Bridge, Spanning Neawanna Creek at Milepoint 19.72 on U.S. 101 (Oregon Coast Highway), Seaside, Clatsop County, OR

  9. Assessment of Young Dong tributary and Imgok Creek impacted by Young Dong coal mine, South Korea.

    PubMed

    Lee, Byung-Tae; Ranville, James F; Wildeman, Thomas R; Jang, Min; Shim, Yon Sik; Ji, Won Hyun; Park, Hyun Sung; Lee, Hyun Ju

    2012-01-01

    An initial reclamation of the Young Dong coal mine site, located in northeastern South Korea, was completed in 1995. Despite the filling of the adit with limestone, acid rock drainage (ARD) enters Young Dong tributary and is then discharged to Imgok Creek. This ARD carries an average of 500 mg CaCO(3)/l of mineral acidity, primarily as Fe(II) and Al. Before spring runoff, the flow of Imgok Creek is 3.3-4 times greater than that of the tributary and has an alkalinity of 100 mg CaCO(3)/l, which is sufficient to eliminate the mineral acidity and raise the pH to about 6.5. From April through September 2008, there were at least two periods of high surface flow that affects the flow of ARD from the adit. Flow of ARD reaches 2.8 m(3)/min during spring runoff. This raised the concentrations of Fe and Al in the confluence with Imgok Creek. However, by 2 km downstream the pH of the Imgok Creek is 6.5 and only dissolved Fe is above the Korean drinking water criteria (0.30 mg/l). This suggests only a minor impact of Young Dong Creek water on Imgok Creek. Acid digestion of the sediments in Imgok Creek and Young Dong Tributary reveals considerable abundances of heavy metals, which could have a long-term impact on water quality. However, several water-based leaching tests, which better simulate the bioavailable metals pool, released only Al, Fe, Mn, and Zn at concentrations exceeding the criteria for drinking water or aquatic life. PMID:21818559

  10. Reconnaissance investigation of the Lisburne Group in the Cobblestone Creek area, Chandler Lake quadrangle, Alaska

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.

    2015-01-01

    A reconnaissance investigation of the Carboniferous Lisburne Group in the Cobblestone Creek area, Chandler Lake Quadrangle, yields insights into its resource potential and regional relations. Locally porous vuggy dolostone with hydrocarbon reservoir potential occurs in the lower Lisburne in the three most southerly of five thrust sheets, and contains traces of dead oil in two of these sheets. The dolostones are coarse crystalline, commonly cross-bedded, and at least in part of Osagean (late Early Mississippian) age; they have pelmatozoan grainstone protoliths that likely formed in sand shoals of the midramp to inner ramp. Similar, coeval porous dolostones occur in the Lisburne from Skimo Creek to Itkillik Lake, ~70 km west and 10 km east of the Cobblestone Creek area, respectively. We also examined the uppermost Lisburne Group at several localities in the Cobblestone Creek area, mainly in the northernmost thrust sheet where the rocks are as young as Morrowan (Early Pennsylvanian). Cobblestone sections contain more supportstone than equivalent strata at Skimo Creek, and overlying Permian successions also differ between the two areas. These lithologic contrasts may reflect different rates of tectonically controlled subsidence, and (or) changes in sediment input, along the late Paleozoic continental margin.

  11. Underside from northeast. Waterville Bridge, Spanning Swatara Creek at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Underside from northeast. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  12. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Yakama Indian Nation, Annual Report 2002-2003.

    SciTech Connect

    Morris, Gregory

    2003-05-01

    This document represents the FY2002 BPA contract Statement of Work for the Yakama Nation (YN) portion of the project entitled 'Assessment of current and potential salmonid production in Rattlesnake Creek associated with restoration efforts'. The purpose of the project is to complete detailed surveys of water quality, fish populations, habitat conditions and riparian health in the Rattlesnake Creek sub-basin of the White Salmon River in south central Washington. Results of the surveys will be used to establish Rattlesnake Creek sub-basin baseline environmental factors prior to anticipated removal of Condit Dam in 2006 and enable cost-effective formulation of future watershed restoration strategies.

  13. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  14. KANAB CREEK ROADLESS AREA, ARIZONA.

    USGS Publications Warehouse

    Billingsley, George H.; Ellis, Clarence E.

    1984-01-01

    On the basis of a mineral survey, the Kanab Creek Roadless Area in north-central Arizona has a probable mineral-resource potential for uranium and copper in four small areas around five collapse structures. Gypsum is abundant in layers along the canyon rim of Snake Gulch, but it is a fairly common mineral in the region outside the roadless area. There is little promise for the occurence of fossil fuels in the area. Studies of collapse structures in surrounding adjacent areas might reveal significant mineralization at depth, such as the recent discovery of the uranium ore body at depth in the Pigeon Pipe.

  15. Pyroclastic Rocks

    NASA Astrophysics Data System (ADS)

    Mahood, Gail A.

    Most of the advances in volcanology during the past 20 years have concerned the recognition, interpretation, and mode of emplacement of pyroclastic rocks. The literature on pyroclastic rocks is widely scattered, in part because the field draws from sedimentology, igneous petrology, physics, and fluid mechanics, and there have been few review papers on the topic. Fisher and Schmincke have done the discipline of volcanology and all field-oriented geologists a great service in assembling material from a wide range of sources in this comprehensive treatment of pyroclastic rocks. With its introduction to the petrology of magmas involved in explosive eruptions in chapter 2 and a complete treatment of magma rheology and the behavior of dissolved and exsolving magmatic volatiles in chapter 3, they lay sufficient groundwork that anyone with a rudimentary knowledge of geology can understand the book.

  16. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  17. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  18. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  19. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  20. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Snake Creek. 117.331 Section 117.331 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake...

  1. TOXICITY PERSISTENCE IN PRICKLY PEAR CREEK, MONTANA

    EPA Science Inventory

    Instream toxicity tests using the larval fathead minnow Pimephales promelas and the cladoceran Ceriodaphnia reticulata were conducted on Prickly Pear Creek, Montana waters to study toxicity persistence in a stream. The toxicity source was Spring Creek, a tributary of Prickly Pear...

  2. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  3. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  4. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  5. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  6. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge,...

  7. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  8. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  9. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  10. 33 CFR 117.1013 - Kinsale Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Kinsale Creek. 117.1013 Section 117.1013 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Virginia § 117.1013 Kinsale Creek. The draw of...

  11. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  12. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  13. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  14. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  15. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  16. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  17. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Swan Creek. 9.211 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  18. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  19. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Swan Creek. 9.211 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  20. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  1. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Swan Creek. 9.211 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the viticultural area described in this section is “Swan Creek”....

  2. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  3. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile...

  4. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  5. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  6. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  7. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  8. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  9. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  10. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Wappinger Creek. 117.813 Section 117.813 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of...

  11. 33 CFR 117.813 - Wappinger Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Wappinger Creek. 117.813 Section 117.813 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.813 Wappinger Creek. The draw of...

  12. 33 CFR 117.809 - Tonawanda Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Tonawanda Creek. 117.809 Section 117.809 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.809 Tonawanda Creek. The draw of...

  13. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  14. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  15. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  16. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  17. 33 CFR 117.841 - Smith Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Smith Creek. 117.841 Section 117.841 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements North Carolina § 117.841 Smith Creek. The draw of the...

  18. White House

    MedlinePlus

    ... Check out the most popular infographics and videos Photos View the photo of the day and other galleries Video Gallery ... your questions or your story with President Obama. Photo of the Day Explore the White House Photo ...

  19. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the

  20. Geophysical Investigations of the Smoke Creek Desert and their Geologic Implications, Northwest Nevada and Northeast California

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Tilden, Janet E.

    2006-01-01

    The Smoke Creek Desert is a large basin about 100 km (60 mi) north of Reno near the California-Nevada border, situated along the northernmost parts of the Walker Lane Belt, a physiographic region defined by diverse topographic expression consisting of northweststriking topographic features and strike-slip faulting. Because geologic and geophysical framework studies play an important role in understanding the hydrogeology of the Smoke Creek Desert, a geophysical effort was undertaken to help determine basin geometry, infer structural features, and estimate depth to basement. In the northernmost parts of the Smoke Creek Desert basin, along Squaw Creek Valley, geophysical data indicate that the basin is shallow and that granitic rocks are buried at shallow depths throughout the valley. These granitic rocks are faulted and fractured and presumably permeable, and thus may influence ground-water resources in this area. The Smoke Creek Desert basin itself is composed of three large oval sub-basins, all of which reach depths to basement of up to about 2 km (1.2 mi). In the central and southern parts of the Smoke Creek Desert basin, magnetic anomalies form three separate and narrow EW-striking features. These features consist of high-amplitude short-wavelength magnetic anomalies and probably reflect Tertiary basalt buried at shallow depth. In the central part of the Smoke Creek Desert basin a prominent EW-striking gravity and magnetic prominence extends from the western margin of the basin to the central part of the basin. Along this ridge, probably composed of Tertiary basalt, overlying unconsolidated basin-fill deposits are relatively thin (< 400 m). The central part of the Smoke Creek Desert basin is also characterized by the Mid-valley fault, a continuous geologic and geophysical feature striking NS and at least 18-km long, possibly connecting with faults mapped in the Terraced Hills and continuing southward to Pyramid Lake. The Mid-valley fault may represent a lateral

  1. Buck Creek River Flow Analysis

    NASA Astrophysics Data System (ADS)

    Dhanapala, Yasas; George, Elizabeth; Ritter, John

    2009-04-01

    Buck Creek flowing through Springfield Ohio has a number of low-head dams currently in place that cause safety issues and sometimes make it impossible for recreational boaters to pass through. The safety issues include the back eddies created by the dams that are known as drowning machines and the hydraulic jumps. In this study we are modeling the flow of Buck Creek using topographical and flow data provided by the Geology Department of Wittenberg University. The flow is analyzed using Hydraulic Engineering Center - River Analysis System software (HEC-RAS). As the first step a model of the river near Snyder Park has been created with the current structure in place for validation purposes. Afterwards the low-head dam is replaced with four drop structures with V-notch overflow gates. The river bed is altered to reflect plunge pools after each drop structure. This analysis will provide insight to how the flow is going to behave after the changes are made. In addition a sediment transport analysis is also being conducted to provide information about the stability of these structures.

  2. Geology and phosphate resources of the Hawley Creek area, Lemhi County, Idaho

    USGS Publications Warehouse

    Oberlindacher, Peter; Hovland, Robert David

    1979-01-01

    Phosphate resources occur within the Retort Phosphatic Shale Member of the Permian Phosphoria Formation in the Hawley Creek area, near Leadore, in east-central Idaho. About 12 square miles (31 km2 ) of the Retort Member and enclosing rocks were mapped at a scale of 1:12,000 to evaluate the leasable Federal mineral resources. The Retort has an average thickness of 73 feet (22.3 m) and 12.9 linear miles (20.8 linear km) of outcrop within the area mapped. Rock samples taken from a bulldozer trench were analyzed for phosphate content and for minor trace elements. Analyses show a cumulative thickness of 8.7 feet ( 2.7 m) of medium-grade phosphate rock ( 24 to 31 percent P2O5) and 33.4 feet (10.2 m) of low-grade phosphate rock (16 to 24 percent P2O5). Minor elements in the Retort include uranium, vanadium, fluorine, cadmium, chromium, nickel, molybdenum, silver, and rare earths. These minor elements are potential byproducts of any future phosphate production in the Hawley Creek area. In addition, analyses of six phosphate rock samples taken from a prospect trench show a cumulative thickness of 14.9 ft (4.5 m) at 17.6 percent P2O5. Indicated phosphate resources are calculated for phosphate beds under less than 600 feet (183.0 m) of overburden. Approximately 36.5 feet (11.1 m), representing 50 percent of the total Retort Member, were measured in trench CP-71. There are 80.42 million short tons (72.96 million metric tons) of medium-grade phosphate rock, and 308.76 million short tons ( 280.10 million metric tons) of low-grade phosphate rock in the Retort Member within the map area. Because the thickness and grade of the phosphate beds for each block are based on the recovered section from CP-71, the calculated phosphate resource estimates represent a minimum. Other mineral resources in the area are thorium (35 ppm) in a Precambrian (?) granite body located immediately west of the Hawley Creek area; oil and gas accumulations may occur beneath the Medicine Lodge thrust system

  3. Hydrogeology of the carbonate rocks of the Lebanon Valley, Pennsylvania

    USGS Publications Warehouse

    Meisler, Harold

    1963-01-01

    The Lebanon Valley, which is part of the Great Valley in southeastern Pennsylvania, is underlain by carbonate rocks in the southern part and by shale in the northern part. The carbonate rocks consist of alternating beds of limestone and dolomite of Cambrian and Ordovician age. Although the beds generally dip to the south, progressively younger beds crop out to the north, because the rocks are overturned. The stratigraphic units, from oldest to youngest, are: the Buffalo Springs Formation, Snitz Creek, Schaefferstown, Millbach, and Richland Formations of the Conococheague Group; the Stonehenge, Rickenbach, Epler, and Ontelaunee Formations of the Beekmantown Group; and the Annville, Myerstown, and Hershey Limestones.

  4. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  5. Geology of crystalline rocks of northern Fiordland: details of the granulite facies Western Fiordland Orthogneiss and associated rock units

    USGS Publications Warehouse

    Bradshaw, J.Y.

    1990-01-01

    A c. 700 km2 area of northern Fiordland (South Island, New Zealand) is described in which Early Cretaceous high-pressure metamorphic rocks and virtually unmetamorphosed plutonic rocks occur. The dominant rocks are orthogneisses developed from synmetamorphic basic-intermediate intrusive complexes, the youngest and most widespread of which is the Early Cretaceous Western Fiordland Orthogneiss (WFO). The latter has undergone granulite facies metamorphism and occurs throughout much of western Fiordland. WFO was emplaced synkinematically in a subduction-related magmatic arc. A collisional event during or immediately following magma emplacement resulted in crustal thickening equivalent to onloading of a 20 km thick section over rocks already buried at mid-crustal depths. This event was responsible for peak load pressures of c. 12-13 kbar. The steeply dipping Surprise Creek Fault juxtaposes high-pressure metamorphic rocks of western and central Fiordland against virtually unmetamorphosed gabbroic rocks of the Early Cretaceous Darran Complex. -from Author

  6. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  7. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ... SECURITY Coast Guard 33 CFR Part 117 Drawbridge Operation Regulation; Snake Creek, Islamorada, FL AGENCY... of Snake Creek Bridge, mile 0.5, across Snake Creek, in Islamorada, Florida. The regulation is set... Sheriff's Office has requested a temporary modification to the operating schedule of Snake Creek Bridge...

  8. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND TREE. RUSH CREEK POWERHOUSE IS PARTIALLY VISIBLE AT EXTREME PHOTO LEFT). VIEW TO WEST. - Rush Creek Hydroelectric System, Clubhouse Cottage, Rush Creek, June Lake, Mono County, CA

  9. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT (TAILRACE IN FOREGROUND), BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO LEFT CENTER, AND BUILDING 103 AT UPPER PHOTO LEFT ABOVE AND BEHIND BUILDING 106. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  10. 3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX SHOWING SWITCHRACKS AND SUPPORT BUILDINGS TO PHOTO RIGHT OF POWERHOUSE, SAN JOAQUIN RIVER FLOWING IN PHOTO CENTER TO LOWER RIGHT, AND PENSTOCKS AND STANDPIPES IN BACKGROUND ABOVE POWERHOUSE. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  11. 2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN FROM SAME ANGLE AS CA-167-X-1. THREE ORIGINAL PENSTOCKS PLUS FOURTH AND FIFTH PENSTOCKS (VISIBLE TO LEFT OF ORIGINAL THREE), AND THREE ORIGINAL STANDPIPES COUPLED TO FOURTH STANDPIPE SHOWN BEHIND AND ABOVE POWERHOUSE BUILDING. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  12. Geology of the lower Yellow Creek area, northwestern Colorado

    SciTech Connect

    Hail, W.J. Jr.

    1990-01-01

    The geology and resources of the lower Yellow Creek area, an area at the northwestern margin of the Piceance Creek basin comprising of four 7.5-minute quadrangles, are described. Subsurface face rocks penetrated by drill holes range in age from Pennsylvania to Cretaceous. Measured sections show the Mancos Shale and the Castlegate Sandstone, Iles Formation, and Williams Fork Formation of the Mesaverde Group of Late Cretaceous age and the Fort Union, Wasatch, Green River, and Uinta formations of Tertiary age. Surficial deposits of Quaternary age include terrace gravels, alluvium, and landslides. Fold axes and faults in the area trend northwesterly. The southern part of the area contains major oil-shale resources. Coal-bearing zones in the Williams Fork and Iles formations contain considerable coal. The coal-resources potential is limited, however, by nonpersistence of the thicker coal beds. Small amounts of gas have been produced from shallow, lenticular Tertiary sandstones. Large, but very lowgrade uranium resources are present in the Fort Union Formation.

  13. Water resources of the Sycamore Creek watershed, Maricopa County, Arizona

    USGS Publications Warehouse

    Thomsen, B.W.; Schumann, Herbert H.

    1969-01-01

    The Sycamore Creek watershed is representative of many small watersheds in the Southwest where much of the streamflow originates in the mountainous areas and disappears rather quickly into the alluvial deposits adjacent to the mountains. Five years of .streamflow records from the Sycamore Creek watershed show that an average annual water yield of 6,110 acre-feet was obtained from the 165 square miles (105,000 acres) of the upper hard-rock mountain area, which receives an average annual precipitation of about 20 inches. Only a small percentage of the ,annual water yield, however, reaches the Verde River as surface flow over the 9-mile reach of the alluvial channel below the mountain front. Flows must be more ,than 200 cubic feet per second to reach the river; flows less than this rate disappear into the 1,ower alluvial area and are stored temporarily in the ground-Water reservoir : most of this water is released as ground-water discharge to the Verde River at a relatively constant rate of about 4,000 acre-feet per year. Evapotranspiration losses in the lower alluvial area are controlled by the depth of the water table and averaged about 1,500 acre-feet per year.

  14. Poohbear Rock

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This image, taken by Sojourner's front right camera, was taken when the rover was next to Poohbear (rock at left) and Piglet (not seen) as it looked out toward Mermaid Dune. The textures differ from the foreground soil containing a sorted mix of small rocks, fines and clods, from the area a bit ahead of the rover where the surface is covered with a bright drift material. Soil experiments where the rover wheels dug in the soil revealed that the cloudy material exists underneath the drift.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech).

  15. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  16. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  17. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  18. Jacobs Creek bioaccumulation report, 1979 and 1980

    SciTech Connect

    Koch, L.M.; Harned, R.D.

    1981-04-01

    In conjunction with TVA's monitoring of biota in Jacobs Creek (TVA 1981), which receives fly ash pond effluent from Paradise Steam-Electric Plant and is a tributary to the Green River, fish flesh samples were collected for metals analyses. Following pH adjustment of the Paradise fly ash pond, it was anticipated aquatic communities in the lower portion of Jacobs Creek would begin to recover. Development of a fishery in this area was expected as recovery progressed. A potential avenue for metals transfer to humans would be established through consumption of fish from Jacobs Creek. Therefore, concentrations of metals in fish flesh were analyzed.

  19. Flood of August 27-28, 1977, West Cache Creek and Blue Beaver Creek, southwestern Oklahoma

    USGS Publications Warehouse

    Corley, Robert K.; Huntzinger, Thomas L.

    1979-01-01

    This report documents a major storm which occurred August 27-28, 1977, in southwest Oklahoma near the communities of Cache and Faxon, OK. Blue Beaver Creek and West Cache Creek and their tributaries experienced extensive flooding that caused an estimated $1 million in damages. Reported rainfall amounts of 8 to 12 inches in 6 hours indicate the storm had a frequency in excess of the 100-year rainfall. Peak discharges on Blue Beaver Creek near Cache and West Cache Creek near Faxon were 13,500 cubic feet per second and 45,700 cubic feet per second respectively. The estimated flood frequency was in excess of 100 years on Blue Beaver Creek and in excess of 50 years on West Cache Creek. Unit runoff on small basins were in excess of 2000 cubic feet per second per square mile. Surveyed highwater marks were used to map the flooded area. (USGS)

  20. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  1. Toms Creek IGCC Demonstration Project

    SciTech Connect

    Virr, M.J.

    1992-01-01

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  2. Toms Creek IGCC Demonstration Project

    SciTech Connect

    Virr, M.J.

    1992-11-01

    The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

  3. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  4. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  5. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  6. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  7. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  8. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  9. 33 CFR 117.929 - Durham Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... OPERATION REGULATIONS Specific Requirements South Carolina § 117.929 Durham Creek. The removable span of the... Charleston of an emergency in the Bushy Park Reservoir, the span shall be removed as soon as possible...

  10. Dry Creek Wilderness study area, Arkansas

    SciTech Connect

    Haley, B.R.; Stroud, R.B.

    1984-01-01

    A mineral evaluation study of the Dry Creek Wilderness Study Area indicated that the area has a probable resource potential for natural gas and little promise for the occurrence of other mineral commodities.

  11. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, J.K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  12. Wolf Creek Generating Station containment model

    SciTech Connect

    Nguyen, D.H.; Neises, G.J.; Howard, M.L.

    1995-12-31

    This paper presents a CONTEMPT-LT/28 containment model that has been developed by Wolf Creek Nuclear Operating Corporation (WCNOC) to predict containment pressure and temperature behavior during the postulated events at Wolf Creek Generating Station (WCGS). The model has been validated using data provided in the WCGS Updated Safety Analysis Report (USAR). CONTEMPT-LT/28 model has been used extensively at WCGS to support plant operations, and recently, to support its 4.5% thermal power uprate project.

  13. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  14. The Tallahala Creek Complex, Smith County, Mississippi: The crest is not always the best

    SciTech Connect

    Sticker, E.E.

    1994-09-01

    The Tallahala Creek complex, comprising both Tallahala Creek and East Tallahala Creek fields, is a salt-induced anticline transacted by two down-to-the-north fault systems. Since 1967, the upper portion of the Jurassic Smackover Formation has yielded almost 15 million bbl of oil and 20 billion ft{sup 3} of gas, or 75% and 64% of the total oil and gas, respectively, produced from the fields. Contemporaneous sediment accumulation and structural growth have created various lithofacies in the upper Smackover, thereby significantly affecting reservoir heterogeneity. These lithofacies can be delineated by their structural position on the anticline. On the most downdip and downthrown portions of the structure, the Lipper Smackover consists of a series of gray, fine to medium-grained sandstones separated by limestones. These sandstones generally exhibit both high porosity and permeability, and have thus contributed over 95% of the total Smackover production. Updip the upper Smackover becomes increasingly calcareous, finally grading into a sandy, occasionally dolomitic, limestone on the crest and southern upthrown flank of the anticline. This limestone lithofacies has been noncommercial as a reservoir rock, as evidenced by the less than 7000 bbl of oil cumulatively produced from the Smackover in two of the structurally highest wells, the Shell 2 E. M. Lane and the Shell 1 F. James. Structural and stratigraphic relationships discovered through field development of the Tallahala Creek complex have significantly altered the conventional idea that {open_quotes}the crest is always the best.{close_quotes}

  15. Water resources of the Minnesota River-Hawk Creek watershed, southwestern Minnesota

    USGS Publications Warehouse

    Van Voast, Wayne A.; Broussard, W.L.; Wheat, D.E.

    1972-01-01

    The Minnesota River – Hawk Creek watershed is located in southwestern Minnesota. The watershed has an area of 1,479 square miles and is drained along its southwestern edge by the Minnesota River (Minnesota Division of Waters, 1959). The major watercourse within the watershed is Hawk Creek, having a drainage area of 510 square miles. Other, shorter streams drain into the Minnesota River but are mostly ephemeral. The watershed has a gently undulating land surface formed on glacial deposits. Directly underlying the glacial deposits in most of the area are Cretaceous sedimentary rocks. Paleozoic and Precambrian rocks are also locally in contact with overlying glacial deposits. Beds of sand and gravel buried at various depths within the glacial deposits are generally thin and discomtinuous but are the most accessible and widely used aquifers in the watershed. Beds of poorly consolidated sandstone in the Cretaceous rocks are locally good aquifers, generally yielding softer water, but in lesser quantities, than aquifers in the overlying glacial deposits. In the eastern part of the watershed, aquifers in Paleozoic and Precambrian sedimentary rocks are capable of high yields to wells and contain water of similar quality to water in the overlying Cretaceous and glacial deposits.

  16. Thermal Inertia of Rocks and Rock Populations

    NASA Technical Reports Server (NTRS)

    Golombek, M. P.; Jakosky, B. M.; Mellon, M. T.

    2001-01-01

    The effective thermal inertia of rock populations on Mars and Earth is derived from a model of effective inertia versus rock diameter. Results allow a parameterization of the effective rock inertia versus rock abundance and bulk and fine component inertia. Additional information is contained in the original extended abstract.

  17. Flood on Big Fossil Creek at Haltom City near Fort Worth, Texas, in 1962

    USGS Publications Warehouse

    Montgomery, John H.; Ruggles, Frederick H.; Patterson, James Lee

    1965-01-01

    The approximate area inundated near Fort Worth, Texas, by Big Fossil Creek, during the flood of September 7, 1962, is shown on a topographic map to record the flood hazard in graphic form. Big Fossil Creek, which drains an area of 74.7 square miles, flows generally southeastward along the northeast edge of Fort Worth through Richland Hills and Haltom City, into West Fork Trinity River. The flood of September 7, 1962, the greatest in Richland Hills since at least 1900 was the result of a high rate of discharge from the area upstream from the confluence of Big Fossil Creek and Whites Branch. Greater floods are possible, but no attempt has been made to show their probable overflow limits. Future protective works may reduce the frequency of flooding in the area but will not necessarily eliminate flooding. Changes in culture such as new highways and bridges and changes in land use may influence the inundation pattern of future floods. Mapping of the West Fork Trinity River flood was beyond the scope of the Big Fossil Creek study, and is not shown.

  18. The early Oligocene Copperas Creek volcano and geology along New Mexico Highway 15 between Sapillo Creek and the Gila Cliff Dwellings National Monument, Grant and Catron counties, New Mexico

    USGS Publications Warehouse

    Ratte, James C.

    2008-01-01

    New Mexico Highway 15 between Sapillo Creek and the Gila Cliff Dwellings National Monument provides a tour through the eroded remains of the ~ 30 million year old Copperas Creek volcano, as preserved between the west-northwest -trending Sapillo Creek and Gila Hot Springs grabens of Basin and Range age. Colorful exposures of altered volcanic rocks in road cuts and a scenic overlook of the Alum Mountain eruptive center are witness to the hydrothermal alteration and mineralization in a Yellowstone-type hot spring environment here in Oligocene time. New Mexico Highway 15 ends at the Gila Cliff Dwellings where alcoves in Gila Conglomerate were occupied by members of the Mogollon culture 700-800 years ago.

  19. 6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ROCK CLUSTER GARDEN REMINISCENT OF RYOAN-JI TEMPLE GARDEN IN KYOTO - Kykuit, Japanese Gardens, 200 Lake Road, Pocantico Hills, Westchester County, NY

  20. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Underwood Conservation District, Annual Report 2002-2003.

    SciTech Connect

    White, Jim

    2004-02-01

    This project addresses existing habitat conditions, fish population status, and restoration priority sites within the Rattlesnake Creek watershed, a sub-basin of the White Salmon River. Our partners in this project are the United States Geological Service (USGS), and the Yakama Indian Nation (YIN). Underwood Conservation District (UCD) is involved in the project via accomplishment of water quality monitoring, sampling for stable isotopes, and characterization of the watershed geomorphology. These work items are part of an effort to characterize the stream and riparian habitat conditions in Rattlesnake Creek, to help guide habitat and fish restoration work. Water chemistry and temperature information is being collected both on Rattlesnake Creek, and on other tributaries and the main stem of the White Salmon River. Information on the entire system enables us to compare results obtained from Rattlesnake Creek with the rest of the White Salmon system. Water chemistry and temperature data have been collected in a manner that is comparable with data gathered in previous years. The results from data gathered in the 2001-2002 performance period are reported in appendix A at the end of this 2002-2003 report. Additional work being conducted as part of this study includes; an estimate of salmonid population abundance (YIN and USGS); a determination of fish species composition, distribution, and life history (YIN and USGS), and a determination of existing kinds, distribution, and severity of fish diseases (YIN and USGS). The overall objective is to utilize the above information to prioritize restoration efforts in Rattlesnake Creek.

  1. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  2. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  3. Geologic strip map along the Hines Creek Fault showing evidence for Cenozoic displacement in the western Mount Hayes and northeastern Healy quadrangles, eastern Alaska Range, Alaska

    USGS Publications Warehouse

    Nokleberg, Warren J.; Aleinikoff, John N.; Bundtzen, Thomas K.; Hanshaw, Maiana N.

    2013-01-01

    Geologic mapping of the Hines Creek Fault and the adjacent Trident Glacier and McGinnis Glacier Faults to the north in the eastern Alaska Range, Alaska, reveals that these faults were active during the Cenozoic. Previously, the Hines Creek Fault, which is considered to be part of the strike-slip Denali Fault system (Ridgway and others, 2002; Nokleberg and Richter, 2007), was interpreted to have been welded shut during the intrusion of the Upper Cretaceous Buchanan Creek pluton (Wahrhaftig and others, 1975; Gilbert, 1977; Sherwood and Craddock, 1979; Csejtey and others, 1992). Our geologic mapping along the west- to west-northwest-striking Hines Creek Fault in the northeastern Healy quadrangle and central to northwestern Mount Hayes quadrangle reveals that (1) the Buchanan Creek pluton is truncated by the Hines Creek Fault and (2) a tectonic collage of fault-bounded slices of various granitic plutons, metagabbro, metabasalt, and sedimentary rock of the Pingston terrane occurs south of the Hines Creek Fault.

  4. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Comments and Motions To Intervene On February 24, 2012, AER NY-Gen, LLC (transferor), Eagle Creek Hydro...' Contact: Transferor: Mr. Joseph Klimaszewski, AER NY- Gen, LLC, P.O. Box 876, East Aurora, NY 14052,...

  5. Health assessment for Clear Creek/Central City, Clear Creek and Gilpin Counties, Colorado, Region 8. CERCLIS No. COD980717557. Final report

    SciTech Connect

    Not Available

    1988-07-11

    Clear Creek/Central City is a National Priorities List site located within the communities of Idaho Springs, Central City and Black Hawk, Colorado. The site consists of abandoned mill tailings and waste-rock piles with numerous open mining tunnels and shafts. Site contaminants consist of a variety of heavy metals, sulfur, radionuclides, and acid-mine discharges. The site is of public health concern because of the risk to human health caused by probable human exposure to hazardous substances at levels that may result in adverse human health effects over time.

  6. White Blood Cell Count

    MedlinePlus

    ... Home Visit Global Sites Search Help? White Blood Cell Count Share this page: Was this page helpful? Also ... Leukocyte Count; White Count Formal name: White Blood Cell Count Related tests: Complete Blood Count , Blood Smear , White ...

  7. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... Federal Register notice dated March 27, 2009 (74 FR 13967). There will be no change to radioactive... no significant impact [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27... COMMISSION Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental...

  8. 4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. O'BRIAN CANAL/SECOND CREEK INTERSECTION Second Creek is in the foreground; the O'Brian Canal is in the background; vicinity of East 112th Avenue and Potomac Road in Adams County - O'Brian Canal, South Platte River Drainage Area Northest of Denver, Brighton, Adams County, CO

  9. Hoe Creek groundwater restoration, 1989

    SciTech Connect

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  10. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  11. Post-Supereruption (18-19 Ma) Magmatic Reactivation Beneath the Silver Creek Caldera, Black Mountains, AZ

    NASA Astrophysics Data System (ADS)

    Mcdowell, S.; Miller, C. F.; Ferguson, C.

    2011-12-01

    The Silver Creek caldera, southern Black Mountains, AZ, is the source of the supereruption that produced the Miocene (18.8 Ma) Peach Spring Tuff (PST), an extensive ignimbrite found throughout much of northwestern Arizona, southern Nevada, and southeastern California. The caldera's eastern margin is intruded by a slightly younger (18.5 +/- 0.5 Ma), ~30 km2 complex of epizonal, intermediate to felsic plutonic rocks. Because it is the largest known suite of intrusive rocks associated with the Peach Spring supereruption and contiguous (~19.5-17.5 Ma) volcanic activity in the Black Mountains, the Silver Creek intrusive complex provides a valuable record of processes operating in the shallow crust in the aftermath of a major eruption and during a period of intense volcanic activity. Rocks in the Silver Creek intrusive complex have historically been divided into two units, the Moss porphyry and the Times porphyry, though the complex exhibits textural and compositional complexity that belies a simple two-unit classification scheme. Field observations and geochemical analysis indicate that the northern portion of the Silver Creek suite comprises porphyries and coarse-grained rocks with ~62 to ~68 wt. % SiO2 ("Moss porphyry"). Rounded, 2-10 cm enclaves (59 wt. % SiO2) with crenulate margins are sparse overall but locally abundant in this portion of the complex. The southern part of the complex consists of leucogranitic porphyry and coarse-grained granite with >70 wt. % SiO2 ("Times porphyry"). At the east/west-trending Times/Moss contact zone along Silver Creek, the coarse-grained component of the Times contains < 0.5-2 m-diameter, fine-grained enclaves with crenulate margins and compositions similar to that of the intermediate Moss to the north. Mafic, intermediate, and felsic porphyritic dikes crosscut the entire complex. Major and trace element compositions of the Silver Creek intrusive complex define a coherent and continuous array extending from the most mafic enclaves

  12. Blasting of the Twin Creek`s highwall failure

    SciTech Connect

    Gray, C.J.; Bachmann, J.A.

    1996-12-01

    On December 26, 1994, at 1:00 a.m., the Twin Creeks Mine experienced a major highwall failure involving over 2.5 million tons. The long chain of events that led up to this failure actually started in late August when a truck driver first noticed the cracks in the highwall. Soon after, an intense survey prism monitoring program was initiated. An electronic, continuous monitor linked to Dispatch was soon in place which monitored the crack that was most likely to fail into the active pit area first. It wasn`t until early December when the graphs started showing greater increases in movement. On December 22, the acceleration curves skied-out. The 600 ft. highwall finally collapsed about three days later and left material spread 800 ft. across the bottom of the pit. Not knowing if the large overhangs above the slide would soon give away sending more material into the pit or if the numerous tension cracks on the surface would result in yet another major failure, it was only after restoring the rigid monitoring program and observing no movement that the company decided to drill and blast the overhanging material. The purpose of the blast wasn`t to cast the material into the pit, but to kick-out the toe so that the weight of material above would fall upon itself. After two months of preparation and almost three weeks of drilling and loading, the shot occurred on March 21, 1995. Approximately one million tons were successfully blasted that day, and presently they have completed mining the slough material itself and reestablished benches from the top.

  13. Distribution of gold, tellurium, silver, and mercury in part of the Cripple Creek district, Colorado

    USGS Publications Warehouse

    Gott, Garland Bayard; McCarthy, J.H.; Van Sickle, G.H.; McHugh, J.B.

    1967-01-01

    Geochemical exploration studies were undertaken in the Cripple Creek district to test the possibility that large low-grade gold deposits might be found. Surface rock samples taken throughout the district indicate that the volcanic rocks between the productive veins contain an average of about 0.6 ppm (part per million) gold. In an area above 3,800 feet long and 500 feet wide near the Cresson mine in the south-central part of the district, scattered surface samples show that the rocks contain an average of 2.5 ppm gold, equivalent to $2.50 per ton. Inasmuch as veins that contain more than 2.5 ppm may also exist in the area, systematic sampling by trenching and drilling is warranted.

  14. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  15. Multispectral analysis of limestone, dolomite, and granite, Mill Creek, Oklahoma

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Watson, K.

    1970-01-01

    Spectral reflectance and thermal emission data were collected at the Mill Creek, Oklahoma test site during NASA missions 132 and 133 in June 1970. The data were collected by three aircraft flown several times during the diurnal cycle at altitudes of 150 to 17,000 m above mean terrain. Reflectance of the main rock types (limestone, dolomite, and granite) was determined from the data collected using a 12-channel multispectral scanner during mission 133 and from thermal infrared images recorded during mission 132 on an RS-7 scanner from 17,000 m above terrain. A preliminary rock recognition map was generated automatically using data collected from 900 m above terrain. The discrimination provided by the map is reasonably accurate. Misidentification occurred in areas of unusually high dolomite reflectivity. High altitude thermal infrared (10 to 12 micrometers) images show regional folds and faults distinguished by the presence of thermally contrasting materials. Linear and curvilinear structural features two to three times smaller than the nominal 17 m resolution could be detected.

  16. Hydrologic reconnaissance of the Montezuma Creek-Aneth area, southeastern Utah

    USGS Publications Warehouse

    Sumsion, C.T.

    1975-01-01

    The Montezuma Creek-Aneth area is in the northeastern part of the Navajo Indian Reservation in southeastern Utah. It is a semiarid area along the San Juan River near the communities of Montezuma Creek and Aneth. Within the Blanding Basin, geologic formations exposed are of Jurassic and Quaternary age. The rock strata are nearly horizontal, dipping gently northeastward. Wells derive small quantities of mater for domestic use from aquifers in the Morrison Formation and the Bluff Sandstone of Jurassic age, but aquifers in deeper formations contain saline mater or brine. Alluvium consisting of sand and gravel along the San Juan River is a potential source of additional moderately large quantities of water to shallow wells for industrial use and public supply. The chemical quality of water in the alluvium is good and varies directly with the discharge of the San Juan River.

  17. Mineral resources of the Spring Creek Canyon Wilderness Study Area, Iron County, Utah

    SciTech Connect

    Van Loenen, R.E.; Blank, H.R. Jr.; Sable, E.G.; Lee, G.K.; Cook, K.L.; Zelten, J.E.

    1989-01-01

    In 1986 and 1987 the US Geological Survey and the US Bureau of Mines appraised the mineral resources and the mineral resource potential of the Spring Creek Canyon Wilderness Study Area in southwestern Utah. This study area contains principally Mesozoic sedimentary rocks exposed along the Hurricane Fault and in canyons adjacent to Zion National Park. Inferred subeconomic resources of common variety sand, sandstone, and limestone occur in this study area. The Spring Creek Canyon Wilderness Study Area has a moderate potential for undiscovered resources of oil and gas in small fields. This study area has a low potential for all metals (including copper, silver, and uranium) and geothermal resources. There is no potential for coal or gypsum.

  18. In stream habitat and stock restoration for salmon otter creek barrier bypass subproject. Restoration project 94139-b1. Exxon Valdez oil spill restoration project final report

    SciTech Connect

    Wedemeyer, K.; Gillikin, D.

    1995-05-01

    In 1994, two barrier falls on Otter Creek, Bay of Isles, Knight Island, Prince William Sound were modified to provide upstream passage to adult pink salmon (Onchorhynchus gorbuscha). The falls were modified by using wire basket gabions, rock drills and wooden weir structures. In addition, an existing set of Alaska steeppasses were maintained and slightly modified for efficient passage of salmon.

  19. Preservation Potential of Life in Little Hot Creek, California: Implications for the use of Hot Spring Systems as Astrobiological Targets

    NASA Astrophysics Data System (ADS)

    Santiago Ramos, D. P.; Rempfert, K. R.; Nascimento, G. S.; Zhang, F.; Loyd, S. J.; Piazza, O.; Bertran, E.; Stamps, B. W.; Stevenson, B. S.; Spear, J. R.; Corsetti, F. A.

    2015-12-01

    Hot spring deposits have long been considered astrobiological targets; modern springs display diverse and abundant life and rapid mineralization is thought to increase biosignature preservation potential. Volcano-associated, silica-rich, mineral deposits have been identified on Mars, so the study of terrestrial examples is warranted. We studied a hot spring in Long Valley Caldera near Little Hot Creek, California, as part of the 2015 Geobiology Summer Course to characterize biological diversity and the potential for biosignature preservation in the rock record. Subsurface hydrothermal waters interact with the rhyolitic Bishop Tuff and feed Little Hot Creek, which exhibits progressively decreasing temperatures (~82-71°C) and rising pH (6.7-7.6) along a 23 m spatial transect. Creek water and sediment samples were collected along the entire transect, in addition to rim-encrusting carbonate-silica structures located ~6 m downstream from the creek source. 16S rRNA sequencing of both water and sediment samples yielded operational taxonomic units (OTUs) reflecting the potential capability for autotrophic thiosulfate oxidation and reduction, hydrogen oxidation, and sulfur oxidation near the creek source. Despite the obvious presence of life in the creek, the preservation potential of biosignatures in mineral deposits has proven ambiguous in at least three ways: 1. Sulfur isotope fractionation between aqueous sulfate and sulfide (~0.3‰) is consistent with both biotic and abiotic sulfur oxidation; 2. The increasing d13C of DIC down the transect can be solely explained by CO2 degassing; and 3. The d13C of rim-encrusting carbonates likely record a similar degassing signal. However, amorphous silica precipitates do exhibit textural evidence of life, with low inheritance between layers and lack of isopachous layering. Our results suggest that mineral deposits in Little Hot Creek show little potential for biosignature preservation; hence, further consideration of hot springs

  20. Hydrologic characteristics of Bear Creek near Silver Hill and Buffalo River near St. Joe, Arkansas, 1999-2000

    USGS Publications Warehouse

    Petersen, Jim C.; Haggard, Brian E.; Green, W. Reed

    2002-01-01

    The Buffalo River and its tributary Bear Creek are in the White River Basin in the Ozark Plateaus in north-central Arkansas. Analysis of streamflow measurements and water-quality samples at a site on Bear Creek and a site on the Buffalo River in Searcy County, Arkansas, quantify differences between the two sites during calendar years 1999 and 2000. Streamflow and water quality also vary seasonally at each site. Mean annual streamflow was substantially larger at the Buffalo River site (836 and 719 cubic feet per second in 1999 and 2000) than at the Bear Creek site (56 and 63 cubic feet per second). However, during times of low flow, discharge of Bear Creek comprises a larger proportion of the flow of the Buffalo River. Concentrations of nutrients, fecal-indicator bacteria, dissolved organic carbon, and suspended sediment generally were greater in samples from Bear Creek than in samples from the Buffalo River. Statistically significant differences were detected in concentrations of nitrite plus nitrate, total nitrogen, dissolved phosphorus, orthophosphorus, total phosphorus, fecal coliform bacteria, and suspended sediment. Loads varied between sites, hydrologic conditions, seasons, and years. Loads were substantially higher for the Buffalo River than for Bear Creek (as would be expected because of the Buffalo?s higher streamflow). Loads contributed by surface runoff usually comprised more than 85 percent of the annual load. Constituent yields (loads divided by drainage area) were much more similar between sites than were loads. Flow-weighted concentrations and dissolved constituent yields generally were greater for Bear Creek than yields for the Buffalo River and flowweighted concentrations yields were higher than typical flow-weighted concentrations and yields in undeveloped basins, but lower than flow-weighted concentrations and yields at a site in a more developed basin.

  1. FIDDLER CREEK POLYMER AUGMENTATION PROJECT

    SciTech Connect

    Lyle A. Johnson, Jr.

    2001-10-31

    The Fiddler Creek field is in Weston County, Wyoming, and was discovered in 1948. Secondary waterflooding recovery was started in 1955 and terminated in the mid-1980s with a fieldwide recovery of approximately 40%. The West Fiddler Creek Unit, the focus of this project, had a lower recovery and therefore has the most remaining oil. Before the project this unit was producing approximately 85 bbl of oil per day from 20 pumping wells and 17 swab wells. The recovery process planned for this project involved adapting two independent processes, the injection of polymer as a channel blocker or as a deep-penetrating permeability modifier, and the stabilization of clays and reduction of the residual oil saturation in the near-wellbore area around the injection wells. Clay stabilization was not conducted because long-term fresh water injection had not severely reduced the injectivity. It was determined that future polymer injection would not be affected by the clay. For the project, two adjoining project patterns were selected on the basis of prior reservoir studies and current well availability and production. The primary injection well of Pattern 1 was treated with a small batch of MARCIT gel to create channel blocking. The long-term test was designed for three phases: (1) 77 days of injection of a 300-mg/l cationic polyacrylamide, (2) 15 days of injection of a 300-mg/l anionic polymer to ensure injectivity of the polymer, and (3) 369 days of injection of the 300-mg/l anionic polymer and a 30:1 mix of the crosslinker. Phases 1 and 2 were conducted as planned. Phase 3 was started in late March 1999 and terminated in May 2001. In this phase, a crosslinker was added with the anionic polymer. Total injection for Phase 3 was 709,064 bbl. To maintain the desired injection rate, the injection pressure was slowly increased from 1,400 psig to 2,100 psig. Early in the application of the polymer, it appeared that the sweep improvement program was having a positive effect on Pattern 1

  2. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  3. An investigation of carbon dynamics in Beaver Creek, Alaska, using in-situ sensors

    NASA Astrophysics Data System (ADS)

    Dornblaser, M.; Striegl, R. G.

    2010-12-01

    Carbon dioxide (pCO2), chromophoric dissolved organic matter (CDOM) and water-quality sensors were deployed at two remote sites on sub-arctic Beaver Creek, Alaska, to characterize carbon dynamics during the open water season of 2010. Beaver Creek is a tributary of the Yukon River, with nearly half of its 300 mile length classified as a national Wild and Scenic River. Beaver Creek above Victoria Creek (BCV) drains 3315 km2, and receives water inputs primarily from the White Mountains and other headwater catchments. Beaver Creek near Michel Lake (BCM) drains 6164 km2, and is located 180 km downriver from BCV in the Yukon Flats. The location of the sites permitted the study of lake and wetland inputs between the sites. Seasonal pCO2 ranged from ~1000 to 2200 ppm at BCV and from ~600 to 1200 ppm at BCM. Diel pCO2 variations were as high as 500 ppm at BCV and 200 ppm at BCM. Both sites were supersaturated in pCO2 with respect to atmospheric levels for the entire open water season. CO2 fluxes from water to atmosphere at each site will be presented. CDOM, pH, and O2 were used to further characterize river carbon dynamics. While rapidly changing river levels resulted in sensors being exposed to the atmosphere for varying periods of time, the use of these in-situ sensors provided a means to explore C dynamics on scales that would be impossible to investigate with random discreet sampling in this remote area of Alaska.

  4. Lithofacies, Age, and Sequence Stratigraphy of the Carboniferous Lisburne Group in the Skimo Creek Area, Central Brooks Range

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.; Harris, Anita G.

    2008-01-01

    The Lisburne Group, a mainly Carboniferous carbonate succession that is widely distributed across northern Alaska, contains notable amounts of oil and gas at Prudhoe Bay. Detailed studies of the Lisburne in the Skimo Creek area, central Brooks Range, delineate its lithofacies, age, conodont biofacies, depositional environments, and sequence stratigraphy and provide new data on its hydrocarbon source-rock and reservoir potential, as well as its thermal history, in this area. We have studied the Lisburne Group in two thrust sheets of the Endicott Mountains allochthon, herein called the Skimo and Tiglukpuk thrust sheets. The southern, Skimo Creek section, which is >900 m thick, is composed largely of even-bedded to nodular lime mudstone and wackestone intercalated with intervals of thin- to thick-bedded bioclastic packstone and grainstone. Some parts of the section are partially to completely dolomitized and (or) replaced by chert. A distinctive, 30-m-thick zone of black, organic-rich shale, lime mudstone, and phosphorite is exposed 170 m below the top of the Lisburne. The uppermost 40 m of section is also distinctive and made up of dark shale, lime mudstone, spiculite, and glauconitic grainstone. The northern, Tiglukpuk Creek section, which is similar to the Skimo Creek section but only ~760 m thick, includes more packstone and grainstone and less organic-rich shale. Analyses of conodonts and foraminifers indicate that both sections range in age from late Early Mississippian (Osagean) through Early Pennsylvanian (early Morrowan) and document a hiatus of at least 15 m.y. at the contact between the Lisburne and the overlying Siksikpuk Formation. No evidence of subaerial exposure was observed along this contact, which may represent a submarine erosional surface. Lithofacies and biofacies imply that the Lisburne Group in the study area was deposited mainly in midramp to outer-ramp settings. Deepest water strata are mud rich and formed below storm or fair-weather wave

  5. Diverging Histories of the Liberty Creek and Iceberg Lake Blueschist Bodies, south central Alaska

    NASA Astrophysics Data System (ADS)

    Day, E. M.; Pavlis, T. L.; Amato, J. M.

    2011-12-01

    New studies of the Liberty Creek and Iceberg Lake blueschist bodies of south central Alaska indicate that despite structural similarities, these blueschist bodies are derived from a different protolith and were metamorphosed to blueschist facies at distinctly different times. Both blueschists are located just south of the Border Ranges Fault (BRF) within outcrop belts of the McHugh Complex, a low-grade mélange assemblage that is now known from detrital zircon studies to consist of two distinct assemblages: a Jurassic to Earliest Cretaceous assemblage and a Late Cretaceous assemblage. The BRF is a megathrust system that represents the Late Triassic-Early Jurassic initiation of southern Alaskan subduction. Large scale (1:24,000) mapping revealed similar fabric overprint histories, epitomized by a previously undescribed youngest vertical N-S trending crenulation cleavage in both blueschist bodies which implies a structural correlation despite their separation of ~100 kilometers along strike. Despite structural similarities detrital zircon studies show that the Liberty Creek and Iceberg Lake blueschists do not have a similar maximum age of deposition. Thirteen samples from the Iceberg Lake blueschist were processed, none of which produced detrital zircons. Samples from the McHugh Complex greenschists that surround the Iceberg Lake blueschist produced numerous zircons indicating a Late Jurassic (~160 Ma) maximum age of deposition. Three out of sixteen samples from the Liberty creek blueschist produced detrital zircons indicating maximum depositional ages ranging from Late Jurassic (~160.1 Ma, n=64 grains; ~152.25 Ma, n=68 grains) to Early Cretaceous (~137.1 Ma, n=95 grains). The Late Jurassic dates are consistent with maximum depositional ages determined by Amato and Pavlis (2010) for McHugh Complex rocks along Turnagain Arm near Anchorage, AK. Sisson and Onstott (1986) reported a metamorphic cooling age of 185 Ma for the Iceberg Lake blueschist, thus, although no

  6. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  7. 78 FR 12714 - Intermountain Region, Payette National Forest, New Meadows Ranger District, Idaho; Lost Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... District, Idaho; Lost Creek-Boulder Creek Landscape Restoration Project AGENCY: Forest Service, USDA... Creek-Boulder Creek Landscape Restoration Project. The Lost Creek- Boulder Creek Landscape Restoration... converted to ATV trails; restoration of 90 miles of unauthorized roads; and relocation of 1\\ 1/2\\ half...

  8. A Rock Encyclopedia That Includes Rock Samples.

    ERIC Educational Resources Information Center

    Laznicka, Peter

    1981-01-01

    Described is a rock encyclopedia combining rock sample sets and encyclopedic word and picture entries which can be used as a realistic information resource for independent study or as a part of a course. (JT)

  9. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  10. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  11. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  12. 13. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of Sterling Creek lettuce shed showing second floor window sill - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  13. 15. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail view of Sterling Creek lettuce shed showing second floor support beams. - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  14. 12. Detail view of Sterling Creek lettuce shed showing floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail view of Sterling Creek lettuce shed showing floor joist and support beams - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  15. 1. View of Sterling Creek lettuce shed looking south, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Sterling Creek lettuce shed looking south, with road in foreground - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  16. 5. View of Sterling Creek lettuce shed looking northwest showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek lettuce shed looking northwest showing office - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  17. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  18. Elevation of deck truss span over creek, looking NW along ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation of deck truss span over creek, looking NW along U.S. route 322. - Pennsylvania Railroad, Brandywine Valley Viaduct, Spanning Brandywine Creek & U.S. Route 322, Downingtown, Chester County, PA

  19. Lower connections from south. Waterville Bridge, Spanning Swatara Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Lower connections from south. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  20. Barrel view from southwest. Waterville Bridge, Spanning Swatara Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Barrel view from southwest. - Waterville Bridge, Spanning Swatara Creek at Appalachian Trail (moved from Little Pine Creek at State Route 44, Waterville, Lycoming County), Green Point, Lebanon County, PA

  1. Hydrology and Flood Profiles of Duck Creek and Jordan Creek Downstream from Egan Drive, Juneau, Alaska

    USGS Publications Warehouse

    Curran, Janet H.

    2007-01-01

    Hydrologic and hydraulic updates for Duck Creek and the lower part of Jordan Creek in Juneau, Alaska, included computation of new estimates of peak streamflow magnitudes and new water-surface profiles for the 10-, 50-, 100-, and 500-year floods. Computations for the 2-, 5-, 10-, 25-, 50-, 100-, 200-, and 500-year recurrence interval flood magnitudes for both streams used data from U.S. Geological Survey stream-gaging stations weighted with regional regression equations for southeast Alaska. The study area for the hydraulic model consisted of three channels: Duck Creek from Taku Boulevard near the stream's headwaters to Radcliffe Road near the end of the Juneau International Airport runway, an unnamed tributary to Duck Creek from Valley Boulevard to its confluence with Duck Creek, and Jordan Creek from a pedestrian bridge upstream from Egan Drive to Crest Street at Juneau International Airport. Field surveys throughout the study area provided channel geometry for 206 cross sections, and geometric and hydraulic characteristics for 29 culverts and 15 roadway, driveway, or pedestrian bridges. Hydraulic modeling consisted of application of the U.S. Army Corps of Engineers' Hydrologic Engineering Center River Analysis System (HEC-RAS) for steady-state flow at the selected recurrence intervals using an assumed high tide of 20 feet and roughness coefficients refined by calibration to measured water-surface elevations from a 2- to 5-year flood that occurred on November 21, 2005. Model simulation results identify inter-basin flow from Jordan Creek to the southeast at Egan Drive and from Duck Creek to Jordan Creek downstream from Egan Drive at selected recurrence intervals.

  2. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  3. Quality of water and time-of-travel in Bakers Creek near Clinton, Mississippi. [Bakers Creek

    SciTech Connect

    Kalkhoff, S.J.

    1982-01-01

    A short-term intensive quality-of-water study was conducted during a period of generally low streamflow in Bakers Creek and its tributary, Lindsey Creek, near Clinton, Mississippi. During the September 15-18, 1980 study, dissolved oxygen concentrations in Bakers Creek were less than 5 milligrams per liter. The specific conductance, 5-day biochemical oxygen demand, nutrient concentrations, and bacteria densities in Bakers Creek decreased downstream through the study reach. The mean specific conductance decreased from 670 to 306 microhms per centimeter. The 5-day biochemical oxygen demand decreased from 19 to 2.8 milligrams per liter. The mean total nitrogen and phosphorous concentrations decreased from 10 and 7.1 to 1.0 and 0.87 milligram per litter, respectively. The maximum fecal bacteria decreased from 7200 to 400 colonies per 100 milliliter. The concentrations of mercury, iron, and manganese in a sample collected at the downstream site exceeded recommended limits. Diazinon and 2,4-D were also present in the water. A bottom material sample contained DDD (2.5 micrograms per kilogram), DDE (2.7 micrograms per kilogram), and DDT (.3 micrograms per kilogram). The tributary inflow from Lindsey Creek did not improve the water quality of Bakers Creek. The dissolved oxygen concentrations were generally less than 5.0 milligrams per liter at the sampling site on Lindsey Creek. The 5-day biochemical oxygen demand, the mean specific conductance, and fecal coliform densities were greater in the tributary than at the downstream site on Bakers Creek. The average rate of travel through a 1.8-mile reach of Bakers Creek was 0.06 foot per second or 0.04 miles per hour. 6 references, 9 figures, 2 tables.

  4. Maps showing ground-water conditions in the New Driver-Cave Creek area, Maricopa and Yavapai counties, Arizona; 1977

    USGS Publications Warehouse

    Littin, G.R.

    1979-01-01

    The New River-Cave Creek area includes about 500 square miles in central Arizona. The ground-water conditions vary greatly owing to large differences in rock type and extent of fracturing. Information shown on the maps includes depth to water, altitude of the water level, well depth, and specific conductance and fluoride concentration in the water. Scale 1:125,000. (Woodard-USGS)

  5. Ground-water reconnaissance of the Sailor Creek area, Owyhee, Elmore, and Twin Falls Counties, Idaho

    USGS Publications Warehouse

    Crosthwaite, E.G.

    1962-01-01

    This reports evaluates the ground-water resources of about 1,000 square miles in the semiarid uplands south of the Snake River between Bruneau River and Salmon Falls Creek. The outcropping rocks are the Idavada Volcanics of Pliocene age, and the Idaho Group of Pliocene and Plieistocene age, consisting of the Banbury Basalt of middle Pliocene age and overlying predominantly sedimentary deposits of middle Pliocene through middle Pleistocene age. These rocks dip gently northward. The volcanic rocks are the best aquifers, but the yield of water from the sedimentary deposits is adequate for domestic and stock use. About 6,000 acre-feet of water is withdrawn annually from the Idavada Volcanics by 9 irrigation wells to irrigate about 3,000 acres. Only a few tends of acre-feet of water withdrawn from the other formations. The regional dip of the rocks induces weak artesian conditions in the volcanic rocks and somewhat higher artesian head in the sedimentary rocks. Estimated depth to water ranges from less than 250 feet to more than 750 feet, as shown in an accompanying map. The eastern part of the area appears to be more favorable for the development of ground water for irrigation than the western part because of better aquifers at shallower depth.

  6. 1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF SOUTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING THE RUSH CREEK POWERHOUSE AT PHOTO RIGHT, BUILDING 106 NEXT TO THE POWERHOUSE AT PHOTO CENTER, BUILDING 103 AT UPPER PHOTO LEFT, AND BUILDING 104 ABOVE BUILDING 106 PARTIALLY OBSCURED BEHIND TREE AT UPPER PHOTO CENTER. VIEW TO SOUTH. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  7. 1. OVERVIEW OF EXTREME EAST END OF BIG CREEK TOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF EXTREME EAST END OF BIG CREEK TOWN ACROSS POWERHOUSE NO. 2 FOREBAY (POWERHOUSE NO. 1 AFTERBAY). TOWER CARRYING TRANSMISSION LINES FROM POWERHOUSE NO. 1 IS AT PHOTO CENTER. BEHIND TOWER IS BUILDING 103. TO PHOTO LEFT OF BUILDING 103 IS BUILDING 105. VIEW TO NORTH. - Big Creek Hydroelectric System, Big Creek Town, Operator House, Orchard Avenue south of Huntington Lake Road, Big Creek, Fresno County, CA

  8. The Debris Flow of September 20, 2014, in Mud Creek, Mount Shasta Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    De La Fuente, J. A.; Bachmann, S.; Courtney, A.; Meyers, N.; Mikulovsky, R.; Rust, B.; Coots, F.; Veich, D.

    2015-12-01

    The debris flow in Mud Creek on September 20, 2014 occurred during a warm spell at the end of an unusually long and hot summer. No precipitation was recorded during or immediately before the event, and it appears to have resulted from rapid glacial melt. It initiated on the toe of the Konwakiton Glacier, and immediately below it. The flow track was small in the upper parts (40 feet wide), but between 8,000 and 10,000 feet in elevation, it entrained a large volume of debris from the walls and bed of the deeply incised gorge and transported it down to the apex of the Mud Creek alluvial fan (4,800'). At that point, it overflowed the channel and deposited debris on top of older (1924) debris flow deposits, and the debris plugged a road culvert 24 feet wide and 12 feet high. A small fraction of the flow was diverted to a pre-existing overflow channel which parallels Mud Creek, about 1,000 feet to the west. The main debris flow traveled down Mud Creek, confined to the pre-existing channel, but locally got to within a foot or so of overflowing the banks. At elevation 3920', video was taken during the event by a private citizen and placed on YouTube. The video revealed that the flow matrix consisted of a slurry of water/clay/silt/sand/gravel, transporting boulders 1-6 feet in diameter along with the flow. Cobble-sized rock appears to be absent. Sieve analysis of the debris flow matrix material revealed a fining of particles in a downstream direction, as expected. The thickness of deposits on the fan generally decreased in a downstream direction. Deposits were 5-6 feet deep above the Mud Creek dam, which is at 4,800' elevation, and 4-5 feet deep at the dam itself. Further downstream, thicknesses decreased as follows: 3920'aqueduct crossing, 3-4 feet; 3620' Pilgrim Creek Road crossing, 2-3 feet; 3,520', 1-2 feet; 3,440' abandoned railroad grade, 1 foot. This event damaged roads, and future events could threaten life and property. There is a need to better understand local

  9. Flood-inundation maps for Indian Creek and Tomahawk Creek, Johnson County, Kansas, 2014

    USGS Publications Warehouse

    Peters, Arin J.; Studley, Seth E.

    2015-01-01

    Digital flood-inundation maps for a 6.4-mile upper reach of Indian Creek from College Boulevard to the confluence with Tomahawk Creek, a 3.9-mile reach of Tomahawk Creek from 127th Street to the confluence with Indian Creek, and a 1.9-mile lower reach of Indian Creek from the confluence with Tomahawk Creek to just beyond the Kansas/Missouri border at State Line Road in Johnson County, Kansas, were created by the U.S. Geological Survey in cooperation with the city of Overland Park, Kansas. The flood-inundation maps, which can be accessed through the U.S. Geological Survey Flood Inundation Mapping Science Web site at http://water.usgs.gov/osw/flood_inundation/, depict estimates of the areal extent and depth of flooding corresponding to selected water levels (stages) at the U.S. Geological Survey streamgages on Indian Creek at Overland Park, Kansas; Indian Creek at State Line Road, Leawood, Kansas; and Tomahawk Creek near Overland Park, Kansas. Near real time stages at these streamgages may be obtained on the Web from the U.S. Geological Survey National Water Information System at http://waterdata.usgs.gov/nwis or the National Weather Service Advanced Hydrologic Prediction Service at http://water.weather.gov/ahps/, which also forecasts flood hydrographs at these sites.Flood profiles were computed for the stream reaches by means of a one-dimensional step-backwater model. The model was calibrated for each reach by using the most current stage-discharge relations at the streamgages. The hydraulic models were then used to determine 15 water-surface profiles for Indian Creek at Overland Park, Kansas; 17 water-surface profiles for Indian Creek at State Line Road, Leawood, Kansas; and 14 water-surface profiles for Tomahawk Creek near Overland Park, Kansas, for flood stages at 1-foot intervals referenced to the streamgage datum and ranging from bankfull to the next interval above the 0.2-percent annual exceedance probability flood level (500-year recurrence interval). The

  10. Selected hydrologic data for Fountain Creek and Monument Creek basins, east-central Colorado

    USGS Publications Warehouse

    Kuhn, Gerhard; Ortiz, Roderick F.

    1989-01-01

    Selected hydrologic data were collected during 1986, 1987, and 1988 by the U.S. Geological Survey for the Fountain Creek and Monument Creek basins, east-central Colorado. The data were obtained as part of a study to determine the present and projected effects of wastewater discharges on the two creeks. The data, which are available for 129 surface-water sites, include: (1) About 1,100 water quality analyses; (2) about 420 measurements of discharge, (3) characteristics of about 50 dye clouds associated with measurements of traveltime and reaeration , and (4) about 360 measurements of channel geometry. (USGS)

  11. 78 FR 28897 - Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Lost Creek ISR, LLC, Lost Creek Uranium In-Situ Recovery Project; Sweetwater County, Wyoming AGENCY: Nuclear Regulatory Commission. ACTION: Environmental assessment and finding of no...

  12. 78 FR 37474 - Radio Broadcasting Services; Dove Creek, Colorado

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Dove Creek, Colorado AGENCY: Federal Communications..., allots FM Channel 229C3 as a first local transmission service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek, consistent with the minimum distance separation requirements of...

  13. 77 FR 75946 - Radio Broadcasting Services; Dove Creek, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... COMMISSION 47 CFR Part 73 . Radio Broadcasting Services; Dove Creek, CO AGENCY: Federal Communications... 229C3 as a first local service at Dove Creek, Colorado. Channel 229C3 can be allotted at Dove Creek... Sec. 73.202 2. Section 73.202(b), the Table of FM Allotments under Colorado, is amended by adding...

  14. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  15. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 113 IS VISIBLE AT RIGHT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  16. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ROOF OF BUILDING 105 IS VISIBLE IN UPPER PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  17. 1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW OF NORTH END OF RUSH CREEK POWERHOUSE RESIDENTIAL COMPLEX SHOWING BUILDING 108 AT PHOTO RIGHT AND BUILDING 105 AT PHOTO CENTER BEHIND SWITCHRACKS AND TREE. POWERHOUSE IS AT EXTREME PHOTO LEFT. VIEW TO WEST. - Rush Creek Hydroelectric System, Worker Cottage, Rush Creek, June Lake, Mono County, CA

  18. 1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. EXTERIOR OVERVIEW SHOWING BISHOP CREEK PLANT 4 RESIDENTIAL COMPLEX. BUILDING 122 IS VISIBLE AT PHOTO CENTER. PLANT 5 INTAKE DAM AT PHOTO LEFT. VIEW TO WEST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  19. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  20. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  1. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  2. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  3. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tip of an unnamed island located 0.16 mile upstream from the mouth of the creek approximately 660 feet to the west shore of the creek; northwest of a line ranging from the southwesterly tip of the island toward the point of land on the west shore of the creek immediately southwest thereof; and north of...

  4. Detail view of the Ten Mile Creek Bridge joint between ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of the Ten Mile Creek Bridge joint between the tied arch span and the approach span, view looking east at southwest corner of bridge. - Ten Mile Creek Bridge, Spanning Ten Mile Creek on Oregon Coast Highway, Yachats, Lincoln County, OR

  5. 33 CFR 117.745 - Rancocas River (Creek).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Rancocas River (Creek). 117.745... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas River (Creek). (a) The following requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of...

  6. 33 CFR 117.745 - Rancocas River (Creek).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Rancocas River (Creek). 117.745... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.745 Rancocas River (Creek). (a) The following requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of...

  7. View looking Eastnortheast at French Creek trestle, which appears at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View looking Eastnortheast at French Creek trestle, which appears at left center of frame. Bridge in foreground is west entrance to abandoned Phoenix iron works. - Pennsylvania Railroad, French Creek Trestle, Spanning French Creek, north of Paradise Street, Phoenixville, Chester County, PA

  8. Geohydrologic data for selected springs in eastern Nevada through 1982, with emphasis on White Pine County

    USGS Publications Warehouse

    Pupacko, Alex; Wood, D.B.; Williams, R.P.

    1989-01-01

    Discharge and water-chemistry data for springs in eastern Nevada , with an emphasis on White Pine County, are compiled and tabulated. Discharge data for springs emanating from the deep carbonate rocks are included. The report contains: (1) miscellaneous discharge measurements for 131 selected springs in White Pine County and vicinity; (2) selected water quality data for 557 sampled springs in White Pine County and vicinity; and (3) discharge data for 42 regional springs in the eastern Nevada carbonate-rock system. (USGS)

  9. A sedimentological model for the Loves Creek Member of the Bitter Springs Formation, northern Amadeus Basin

    NASA Astrophysics Data System (ADS)

    Southgate, P. N.

    Sediments of the Loves Creek Member of the Bitter Springs Formation comprise the transgressive and highstand systems tracts of a stratigraphic sequence. The member is bounded top and bottom by disconformity surfaces and is divisible into three sedimentary packages referred to as units. Each unit represents a series of depositional environments related to each other by position on a large-scale sea-level cycle. The uppermost redbed and dolomitic limestone/dolostone unit provides evidence for continued regression and progradation as the underlying marine sediments are succeeded by carbonate rocks and redbeds deposited in lacustrine and terrestrial environments respectively.

  10. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  11. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  12. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  13. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  14. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  15. Evidence for the importance of ductile shear in regional fabric development in Grenville-age gneisses of the Beaver Creek region, Northwest Lowlands, New York State

    SciTech Connect

    Tewksbury, B.; Culbertson, H.; Marcoline, J.; Walvoord, M. . Dept. of Geology)

    1993-03-01

    In the Beaver Creek region of the Northwest Lowlands, Brown (1989) has described Grenville-age metasedimentary and metaigneous rocks as showing a prominent regional foliation, early southeastward emplacement of a nappe complex (the North Gouverneur Nappe), 2 subsequent generations of folds, and late regional faulting along the Beaver Creek, Pleasant Lake, and Hickory-Mud Lakes faults. The authors examined a variety of units across the Beaver Creek region, including a granitic augen gneiss immediately west of the Beaver Creek Fault Zone, an alaskitic gneiss immediately below Brown's (1989) North Gouverneur Nappe Sole Fault, a biotitic granitic gneiss within the body of Brown's North Gouverneur Nappe, and hornblende augen gneisses and metasediments adjacent to the granitic gneisses. Each of the granitic units has moderately well-developed to extremely well-developed quartz ribbon lineations, and all show at least 2 ductile shear fabrics. Shear fabrics are present as well in the hornblende augen gneisses but are essentially absent in most of the metasedimentary lithologies, even those immediately adjacent to well-lineated, sheared granitic gneiss. The earliest shear fabrics exhibit spectacular quartz ribbon lineations, sigma grains, and, in the hornblende augen gneiss, shear bands. Granitic gneisses in the Beaver Creek Region show shear fabrics in addition to the main fabric in the rock. A second, variably-recovered shear fabric with quartz ribbons and well-developed sigma grains with core and mantle structure overprints the main shear fabric and shows largely the same sense of shear. The authors suggest further that a regional kinematic model for the Beaver Creek region must take into account significant, protracted regional shear, perhaps including formation of sheath folds, as in the Hyde School Gneiss at Payne Lake and Dobbs Creek.

  16. Grieving in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.

    2008-01-01

    A qualitative, collective case study explores grieving in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, reveal tendencies in patterns of grieving. Commonalities include (a) individual strength and certainty of recovery; (b) focus on giving to others in the family and coping as a family unit;…

  17. Wolf Creek steam line break analysis

    SciTech Connect

    Garrett, T.J.; Neises, G.J. )

    1990-07-01

    The Steamline Break transient results are presented to the Electric Power Research Institute (EPRI) to demonstrate the RETRAN analysis of a PWR steamline break. RETRAN analysis results are compared to the Wolf Creek USAR results to demonstrate the adequacy of plant modeling techniques for the Design Basis Accident Methodology with Multidimensional Effects project coordinated by EPRI. 7 refs., 29 figs., 4 tabs.

  18. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  19. The Last Class at Daniel's Creek.

    ERIC Educational Resources Information Center

    Rice, Russ

    1987-01-01

    Time and modern education caught up with the nine pupils of Daniel's Creek Elementary School, one of the last remaining one-room schoolhouses in Kentucky. The school was closed at the end of the 1986-87 school year by the county school board, after much opposition from a citizen's group. (JMM)

  20. Bereavement Rituals in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.; Balk, David E.

    2007-01-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included (a) conducting a wake service the night before burial; (b) never leaving the body alone…

  1. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  2. CAMAS CREEK STUDY, CAMAS COUNTY, IDAHO. 1979

    EPA Science Inventory

    The National Eutrophication Survey on Magic Reservoir determined that Camas Creek in Camas County, Idaho (17040220) contributed roughly 45% of the total phosphorus load and 34% of the total nitrogen load into Magic Reservoir. From this finding, a water quality study was conducte...

  3. Species status of Mill Creek Elliptio

    SciTech Connect

    Davis, G.M.; Mulvey, M.

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  4. Goodwin Creek Experimental Watershed: A Historical Perspective

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Goodwin Creek Experimental Watershed was established in north central Mississippi by U.S. Congressional action and the U.S. Department of Agriculture National Sedimentation Laboratory has operated the watershed since October, 1981. Since then, the watershed has provided a platform for research ...

  5. OROFINO CREEK STUDY, CLEARWATER COUNTY IDAHO, 1979

    EPA Science Inventory

    In Water Year 1979, a water quality study was conducted on Orofino Creek in Clearwater County, Idaho (17060306) to determine the present condition of the stream and to assess the impact of point and nonpoint sources. The study involved approximately bi-monthly monitoring for the...

  6. 33 CFR 117.745 - Rancocas Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements apply to all bridges across the Rancocas River (Creek): (1) Public vessels of the United States... that any delay in opening the draw span shall not exceed ten minutes. However, if a train moving toward... bridge is given, that train may continue across the bridge and must clear the bridge interlocks...

  7. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  8. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  9. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile 1.7, at the Bronx, New York, shall open on signal if at least a two-hour advance notice is given to the New York City Department of Transportation (NYCDOT)...

  10. Intensive survey of the bay creek watershed, July 1992

    SciTech Connect

    Short, M.B.; Kelly, T.G.; Hefley, J.E.

    1995-05-01

    During July 1992, the Illinois Environmental Protection Agency conducted an intensive survey of the Bay Creek basin, a fifth order tributary in the Mississippi River North Central Basin. Bay Creek drains approximately 176.4 square miles primarily in Pike and a small portion of Calhoun counties. Four stations were sampled on the Bay Creek main stem and one on Honey Creek. The survey focused on macroinvertebrate communities, fish populations, instream habitat, fish tissue, sediment and water chemistry, and land use as well as a review of ambient water quality data from IEPA station KCA-01 near Nebo, Illinois, as tools to document the biological and chemical status of Bay Creek.

  11. Steel Creek zooplankton: L Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Starkel, W.M.; Chimney, M.J.

    1988-03-01

    The objectives of this portion of the Steel Creek Biological Monitoring Program were to analyze data on macrozooplankton taxonomy and density in the Steel Creek corridor and swamp/delta, and compare the composition of the post-impoundment macrozooplankton community with pre-impoundment conditions and communities from other stream and swamp systems. The data presented in the report cover the period January 1986 through December 1987. Macrozooplankton samples were collected monthly using an 80 ..mu..m mesh net at Stations 275, 280, and 290 in the Steel Creek corridor and Stations 310, 330, 350, and 370 in the Steel Creek delta/swamp. Macrozooplankton taxa richness was highest at the two Steel Creek corridor stations nearest the L-Lake dam (Stations 275 and 280); mean values were 10.6 and 7.2 taxa collected/month in 1986 vs 12.1 and 12.3 taxa collected/month in 1987. The lowest taxa richness occurred at Steel Creek swamp/delta stations; means ranged from 1.9 to 4.2 taxa collected/month during both years.

  12. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  13. The Dinner Creek Tuff: A Widespread Co-CRBG Ignimbrite Sheet in Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Streck, M. J.; Ferns, M. F.; Ricker, C.; Handrich, T.

    2011-12-01

    high temperature, A-type rhyolites of Oregon such as the Rattlesnake Tuff. The source area - yet to be mapped in detail - of the Dinner Creek Tuff lies between Castle Rock and Ironside Mountain and coincides with the hypothesized crustal magma reservoirs of the Columbia River Basalt group (CRBG) (Wolff et al., 2008). Given that the Dinner Creek eruptions coincide with the eruptions of the Grand Ronde Basalt member of the CRBG, it is plausible that these CRBG magmas provided the heat for crustal melting that formed the Dinner Creek Tuff. Nash, B.P., Perkins, M.E., Christensen, J.N. Lee, D-C., Halliday, A.N., 2006, Earth Planet Sci Let 247: 143-156. Streck, M.J., Ferns, M., 2004, U.S.G.S Open-File Report 2004-1222: 2-17 Wolff, J.A., Ramos, F.C., Hart, G.L., Patterson, J.D., Brandon, A.D., 2008, Nature Geosci 1: 177-180.

  14. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  15. Whites Trashing Whites: Multiculturalism's Liberal Guilt Trip.

    ERIC Educational Resources Information Center

    Holden, Michael

    1995-01-01

    Presents the opinions of a white, male literature professor who attended a conference of college writing teachers and was distressed because the overwhelmingly white audience listened quietly as speakers used the platform to identify whites as oppressors of minorities and linguistic imperialists. The paper questions the view that Standard English…

  16. Cripple Creek and other alkaline-related gold deposits in the Southern Rocky Mountains, USA: Influence of regional tectonics

    USGS Publications Warehouse

    Kelley, K.D.; Ludington, S.

    2002-01-01

    Alkaline-related epithermal vein, breccia, disseminated, skarn, and porphyry gold deposits form a belt in the southern Rocky Mountains along the eastern edge of the North American Cordillera. Alkaline igneous rocks and associated hydrothermal deposits formed at two times. The first was during the Laramide orogeny (about 70-40 Ma), with deposits restricted spatially to the Colorado mineral belt (CMB). Other alkaline igneous rocks and associated gold deposits formed later, during the transition from a compressional to an extensional regime (about 35-27 Ma). These younger rocks and associated deposits are more widespread, following the Rocky Mountain front southward, from Cripple Creek in Colorado through New Mexico. All of these deposits are on the eastern margin of the Cordillera, with voluminous calc-alkaline rocks to the west. The largest deposits in the belt include Cripple Creek and those in the CMB. The most important factor in the formation of all of the gold deposits was the near-surface emplacement of relatively oxidized volatile-rich alkaline magmas. Strontium and lead isotope compositions suggest that the source of the magmas was subduction-modified subcontinental lithosphere. However, Cripple Creek alkaline rocks and older Laramide alkaline rocks in the CMB that were emplaced through hydrously altered LREE-enriched rocks of the Colorado (Yavapai) province have 208Pb/204Pb ratios that suggest these magmas assimilated and mixed with significant amounts of lower crust. The anomalously hot, thick, and light crust beneath Colorado may have been a catalyst for large-scale transfer of volatiles and crustal melting. Increased dissolved H2O (and CO2, F, Cl) of these magmas may have resulted in more productive gold deposits due to more efficient magmatic-hydrothermal systems. High volatile contents may also have promoted Te and V enrichment, explaining the presence of fluorite, roscoelite (vanadium-rich mica) and tellurides in the CMB deposits and Cripple Creek as

  17. The Crabtree Creek pluton: A deformed Mid-Paleozoic( ) stitching pluton on the west flank of the Raleigh metamorphic belt

    SciTech Connect

    Blake, E.F. . Dept. of Earth Sciences); Stoddard, E.F. . Dept. of MEAS)

    1993-03-01

    Crystalline rocks on the west flank of the Alleghanian-aged Raleigh metamorphic belt are subdivided into four west-dipping lithotectonic terranes in the Falls Lake and north Raleigh areas. The rocks of these terranes are separated from east to west on the basis of bulk rock composition, metamorphic textural characteristics, and discrete structural discontinuities into the Raleigh terrane (RT), Crabtree terrane (CT), Falls Lake melange (FLM), and the volcanogenic Carolina slate belt (CSB). The RT and CT are separated by the dextral shear Nutbush Creek fault zone, while the Falls Lake thrust juxtaposes the CT and FLM. The structural character of the discontinuity separating the FLM and the CSB is unclear, although thrusting has been proposed. The results of geologic mapping in the Raleigh West 7.5[prime] quadrangle for the NC Geological Survey's COGEOMAP project in the Raleigh 1[degree] sheet indicate that only the CSB and CT are exposed west of I-440 between US 70 and I-40. This confirms the mapping results of Horton and others that the melange pinches out in north Raleigh just north of US 70. South of US 70, a large orthogneiss body, the Crabtree Creek composite granitic pluton, occupies the same relative position as the melange, separating mafic and intermediate metavolcanic rocks of the CSB from nonlineated and lineated interlayered schists and gneisses of the CT. The pluton is subdivided into a foliated leucocratic, medium grained muscovite granitic orthogneiss, and a foliated leucocratic to mesocratic medium to coarse grained muscovite [plus minus] biotite granitic orthogneiss containing abundant porphyroclastic disks, rods, and knobs of quartz. Because its lobes locally display intrusive contacts with metavolcanic and metasedimentary rocks of both terranes, the Crabtree Creek pluton represents an intrusion that stitched the two terranes together.

  18. Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.

    SciTech Connect

    Johnson, Bradley J.

    1999-11-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

  19. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  20. Structural reinterpretation of Ruedi and Woody Creek quadrangles, Pitkin and Eagle Counties, Colorado: a central Colorado overthrust belt

    SciTech Connect

    Zoerner, F.P.

    1986-08-01

    The mountains northwest of Aspen, Colorado, are composed of Pennsylvanian through Triassic evaporites and molasse of the Eagle Valley, Belden, Minturn, Maroon, and State Bridge formations. Southwest of the Roaring Fork River and its tributary, Woody Creek, are Jurassic through Cretaceous sediments that unconformably overlie these older rocks. This entire sequence is located in the Elk Range thrust sheet. Along Woody Creek and the Roaring Fork River, Bryant and Freeman have mapped the continuation of the Castle Creek fault zone. These writers interpreted the fault zone as a southeast-dipping normal fault with a horst of Eagle Valley formation continuously present between the Pennsylvanian-Triassic and Cretaceous beds within the fault zone. Southwestward thrusting on a decollement within the Eagle Valley evaporite sequence would explain (1) its presence in the fault zone, (2) the 17,000 + ft of stratigraphic throw, and (3) the structural discordance across the fault zone. The author interprets the fault zone to be a northeast-dipping gravity slide that has been thrust off and possibly pushed by the Laramide Sawatch uplift. Cross sections through the area have similar geometry to those for the Elk Range and Hunters Hill thrusts to the south-southwest. The upturned heel is exposed along the Sawatch structural front between Hunter Creek (north of Aspen) and Lenado. These relationships suggest that another thrust paralleling the Fryingpan River is possible to the north. The author proposes the name Roaring fork thrust for the fault zone in the Woody Creek and Roaring Fork River valleys. The Castle Creek fault zone should be reserved for the fault zone in the drainage south of Aspen and the southwest projection of the Homestake shear zone, against which is appears to terminate.

  1. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    USGS Publications Warehouse

    Ashland, Francis X.; McDonald, Greg N.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  2. The relationship of geophysical measurements to engineering and construction parameters in the Straight Creek Tunnel pilot bore, Colorado

    USGS Publications Warehouse

    Scott, J.H.; Lee, F.T.; Carroll, R.D.; Robinson, C.S.

    1968-01-01

    Seismic-refraction and electrical-resistivity measurements made along the walls of the Straight Creek Tunnel pilot bore indicate that both a low-velocity and a high-resistivity layer exist in the disturbed rock surrounding the excavation. Seismic measurements were analyzed to obtain the thickness and seismic velocity of rock in the low-velocity layer, the velocity of rock behind the layer and the amplitude of seismic energy received at the detectors. Electrical-resistivity measurements were analyzed to obtain the thickness and electrical resistivity of the high-resistivity layer and the resistivity of rock behind the layer. The electrical resistivity and the seismic velocity of rock at depth, the thickness of rock in the low-velocity layer, and the relative amplitude of seismic energy were correlated against the following parameters, all of which are important in tunnel construction: height of the tension arch, stable vertical rock load, rock quality, rate of construction and cost per foot, percentage of lagging and blocking, set spacing, and type and amount of steel support required, The correlations were statistically meaningful, having correlation coefficients ranging in absolute value from about 0??7 to nearly 1??0. This finding suggests the possibility of predicting parameters of interest in tunnel construction from geophysical measurements made in feeler holes drilled ahead of a working face. Predictions might be based on correlations established either during the early stages of construction or from geophysical surveys in other tunnels of similar design in similar geologic environments. ?? 1968.

  3. Biological Monitoring Program for East Fork Poplar Creek

    SciTech Connect

    Adams, S.M.; Christensen, S.W.; Greeley, M.S.jr; Hill, W.R.; Kszos, L.A.; McCarthy, J.F.; Peterson, M.J.; Ryon, M.G.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.

    1998-10-15

    ) access. The sampling sites include upper EFPC at kilometers (EFKs) 24.4 and 23.4 [upstream and downstream of Lake Reality (LR) respectively]; EFK 18.7 (also EFK 18 and 19), iocated off the ORR and below an area of intensive commercial and limited light industrial development; EFK 13.8 (also EFK 14), located upstream from the Oak Ridge Wastewater Treatment Facility (ORWTF); and EFK 6.3 located approximately 1.4 km below the ORR boundary (Fig. 1.1 ). Other sampling sites on EFPC are utilized as appropriate for individual tasks. Brushy Fork (BF) at kilometer (BFK) 7.6 is used as a reference stream in most tasks of the BMAP. Additional sites off the ORR are also occasional 1 y used for reference, including Beaver Creek, Bull Run, Hinds Creek, Paint Rock Creek, and the Einory River in Watts Bar Reservoir (Fig. 1.2).

  4. Geology of the Deep Creek area, Washington, and its regional significance

    USGS Publications Warehouse

    Yates, Robert Giertz

    1976-01-01

    This report, although primarily concerned with the stratigraphy and structure of a lead-zinc mining district in northern Stevens County, Washington, discusses and integrates the geology of the region about the Deep Creek area. Although the study centers in an area of about 200 square miles immediately south of the International Boundary, the regional background comes from: (1)the previously undescribed Northport quadrangle to the west, (2) published reports and reconnaissance of the Metaline quadrangle to the east, and (3) from published reports and maps of a 16 mile wide area that lies to the north adjacent to these three quadrangles in British Columbia. The report is divided into three parts: (1) descriptions of rocks and structures of the Deep Creek area, (2) descriptions of the regional setting of the Deep Creek area, and (3) an analysis and interpretation of the depositional and tectonic events that produced the geologic features exposed today. In the Deep Creek area surficial deposits of sand and gravel of glacial origin cover much of the consolidated rocks, which range in age from greenschist of the late Precambrlan to albite granite of the Eocene. Three broad divisions of depositional history are represented: (1) Precambrian, (2) lower Paleozoic and (3) upper Paleozoic; the record of the Mesozoic and Eocene is fragmentary. The lower Paleozoic division is the only fossil-controlled sequence; the age of the other two divisions were established by less direct methods. Both Precambrian and upper Paleozoic sequences are dominated by fine-grained detrital sediments, the Precambrian tending towards the alumina-rich and the upper Paleozoic tending towards the black shale facies with high silica. Neither sequence has more than trivial amounts of coarse clastics. Both include limestones, but in minor abundance. The lower Paleozoic sequence, on the other hand, represents a progressive change in deposition. The sequence began during the very late Precambrian with the

  5. Unblocking temperatures of viscous remanent magnetism in displaced granitic boulders, Icicle Creek glacial moraines (Washington, USA)

    NASA Astrophysics Data System (ADS)

    Crider, Juliet G.; Globokar, Danika M.; Burmester, Russell F.; Housen, Bernard A.

    2015-12-01

    Viscous remanent magnetization (VRM) may partially overprint original magnetization in rocks displaced by geomorphic events. An established theoretical relationship between the time and temperature of acquisition of VRM and the time and temperature of demagnetization suggests that laboratory demagnetization (unblocking) of VRM can be used to estimate the displacement age of rocks. We test this hypothesis at four nested glacial moraines in the Icicle Creek drainage of central Washington, the ages of which were previously determined by cosmogenic surface exposure dating. The moraines are composed primarily of granodiorite boulders, and magnetic remanence is carried dominantly by magnetite. Both the maximum and average pVRM demagnetization temperatures (TD) increase with relative age of the moraines. For the three younger moraines, the average TD yields an age comparable to the cosmogenic age, within uncertainty of pVRM acquisition temperature. Uncertainty in the acquisition and demagnetization temperatures can limit the utility of pVRM for absolute dating.

  6. Genetic implications of minor-element and Sr-isotope geochemistry of alkaline rock complexes in the Wet Mountains area, Fremont and Custer counties, Colorado

    USGS Publications Warehouse

    Armbrustmacher, T.J.; Hedge, C.E.

    1982-01-01

    Concentrations of Rb, Sr, and REE (rare earth elements), and Sr-isotopic ratios in rocks of the Cambrian alkaline complexes in the Wet Mountains area, Colorado, show that rocks formed as end-products of a variety of magmas generated from different source materials. The complexes generally contain a bimodal suite of cumulus mafic-ultramafic rocks and younger leucocratic rocks that include nepheline syenite and hornblende-biotite syenite in the McClure Mountain Complex, nepheline syenite pegmatite in the Gem Park Complex, and quartz syenite in the complex at Democrat Creek. The nepheline syenite and hornblende-biotite syenite at McClure Mountain (535??5m.y.) are older than the syenitic rocks at Democrat Creek (511??8m.y.). REE concentrations indicate that the nepheline syenite at McClure Mountain cannot be derived from the hornblende-biotite syenite, which it intrudes, or from the associated mafic-ultramafic rocks. REE also indicate that mafic-ultramafic rocks at McClure Mountain have a source distinct from that of the mafic-ultramafic rocks at Democrat Creek. In the McClure Mountain Complex, initial87Sr/86Sr ratios for mafic-ultramafic rocks (0.7046??0.0002) are similar to those of hornblende-biotite syenite (0.7045??0.0002), suggesting a similar magmatic source, whereas ratios for carbonatites (0.7038??0.0002) are similar to those of nepheline syenite (0.7038??0.0002). At Democrat Creek, initial ratios of syenitic rocks (0.7032??0.0002) and mafic-ultramafic rocks (0.7028??0.0002) are different from those of corresponding rocks at McClure Mountain. ?? 1982 Springer-Verlag.

  7. Multidisciplinary approach (geology, geomorphology, geomechanics, geomatics) for the characterization of the Blais Creek DsGSD (Monashee Mountains, BC, Canada)

    NASA Astrophysics Data System (ADS)

    Moretti, Danilo; Giardino, Marco; Stead, Doug; Clague, John; Gibson, Dan; Ghirotti, Monica; Perotti, Luigi

    2013-04-01

    Field investigations, including detailed geological and geomorphological mapping have been coupled with stratigraphic and structural studies of the Blais Creek Deep-seated Gravitational Slope Deformations (DsGSD), Monashee Mountains, British Columbia (BC). To reconstruct the DsGSD evolutionary stages and to evaluate its controlling factors, a complex methodology has been applied, integrating orthophotos, stereo models and 3D models of the DsGSD with field and literature data concerning tectonic and glacial history of the Seymour Valley. General geomechanical properties of the deforming rock mass has been then evaluated for using in numerical models of the failure mechanism at Blais Creek and to define a broad geomechanical characterization of different portions of the DsGSD. The combination between the aerial and terrestrial photogrammetry was appropriate in terms of the quality of the information obtained more than the quantitative information. Several Ground Control Points (GCPs) and Tie Points (TPs) were selected from the original DEM received by the BC Government. The use of a multitemporal aerial triangulation gave the possibility to minimize the error relative to every single block of images. Couples of oriented photos were used to create stereoscopic models. Multitemporal variations of the Blais Creek slope were observed and compared to the actual situation of the slope. The use of terrestrial photogrammetry through Adamtech software confirmed some of the qualitative data obtained from aerial interpretation and from field survey. The limited use of terrestrial photogrammetry was due to the impossibility of orienting the 3D terrestrial models. Anyway these models were also useful to confirm one of the possible mechanisms used to describe the evolution of Blais Creek. Geomechanical analysis was performed through field work and laboratory tests to characterize the entire slope and to produce some of the values useful for a possible numerical analysis of Blais

  8. Exploration strategies and possible submarine fan complexes in the Rough Creek Graben, western Kentucky

    SciTech Connect

    Drahovzal, J.A.

    1995-09-01

    The Rough Creek Graben is a deep, east-west-oriented rift basin more than 160 km long and 40 to 70 km wide in western Kentucky. It is a north-dipping half graben bounded on the north by the Rough Creek Fault Zone and on the east by a presumed tectonic inversion structure associated with reactivation of the East Continent Rift Basin. The half graben is filled with up to 5.5 km of dominantly marine sediments of the Cambrian pre-Knox Group that thin away from the Rough Creek Fault Zone. Most of the pre-Knox oil and gas exploration in the graben has taken place near the Rough Creek Fault Zone. The boundary fault has a polyphase movement history and is characterized by extensive fracturing in and near the fault zone. Both the mechanical drilling problems and the lack of exploration success that have marked past exploration attempts are likely related to the high degree of fracturing associated with the northern edge of the graben. The pre-Knox rocks south of the boundary-fault zone are virtually untested and include viable exploration targets. Recent investigations using limited seismic reflection data provide strong evidence for the presence of basin-floor submarine fan deposition at least in the western, basal part of the graben. Several fan complexes up to 2 km in aggregate thickness have been interpreted in the northern part of the basin. To the south, thinner, less continuous fan deposits are inferred. If confirmed by drilling, these fan complexes could represent important future hydrocarbon reservoirs in many areas of the graben.

  9. The Tallahala Creek complex, Smith County, Mississippi: The crest is not always the best

    SciTech Connect

    Sticker, E.E.

    1994-12-31

    The Tallahala Creek complex, comprising both Tallahala Creek and East Tallahala Creek fields, is a salt-induced anticline transected by two down-to-the-north fault systems. Since 1967, the upper portion of the Jurassic Smackover Formation has yielded almost 15 million bbl of oil and 20 billion ft{sup 3} of gas, or 75 percent and 64 percent of the total oil and gas, respectively, produced from the fields. Contemporaneous sediment accumulation and structural growth have created various lithofacies in the upper Smackover, thereby significantly affecting reservoir heterogeneity. These lithofacies can be delineated by their structural position on the anticline. On the most downdip and downthrown portions of the structure, the upper Smackover consists of a series of gray, fine- to medium-grained sandstones separated by limestones. These sandstones generally exhibit both high porosity and permeability and have thus contributed more than 95 percent of the total Smackover production. Updip the upper Smackover becomes increasingly calcareous, finally grading into a sandy, in some places dolomitic, limestone on the crest and southern upthrown flank of the anticline. This limestone lithofacies has been noncommercial as a reservoir rock, as evidenced by the less than 7,000 bbl of oil cumulatively produced from the Smackover in two of the structurally highest wells, the Shell 2 E.M. Lane and the Shell 1 F. James. Structural and stratigraphic relationships discovered through field development of the Tallahala Creek complex have significantly altered the conventional idea that {open_quotes}the crest is always the best{close_quotes}.

  10. Supplement Analysis for the Watershed Management Program EIS - Libby Creek (Lower Cleveland) Stabilization Project

    SciTech Connect

    N /A

    2004-07-29

    This project is follow-up to stream stabilization activities on Libby Creek that were initiated on the Upper Cleveland reach of Libby Creek 2 years ago. BPA now proposes to fund FWP to complete channel stabilization activities on the Lower Cleveland reach of Libby Creek, reduce sediment sources, convert overwidened portions of the stream into self-maintaining channel types, use natural stream stabilization techniques, and improve wildlife migratory corridors. This lower reach is about one river mile below the upper Cleveland Reach and the proposed activities are very similar to those conducted before. The current work would be constructed in two additional phases. The first phase of the Lower Cleveland project would be completed in the fall of 2004 (9/1/04--12/31/04), to include the upper 3,100 feet. The second phase will be constructed in the fall of 2005 (9/1/05--12/31/05), to include stabilizing the remaining 6,200 feet of stream. The Cleveland reaches are a spawning and rearing tributary for resident redband trout, and resident and fluvial bull trout migrating from the Kootenai River. The planned work at the two remaining phases calls for shaping cut banks; installing root wads and tree revetments; installing channel grade control structures; planting native vegetation; and installing cross vanes constructed from rock and trees to control channel gradient. In the past, this reach of Libby Creek has been degraded by past management practices, including road building, hydraulic and dredge mining, and riparian logging. This past activity has resulted in accelerated bank erosion along a number of meander bends, resulting in channel degradation and poor fish habitat. Currently the stream channel is over-widened and shallow having limited pool habitat. The current stream channel is over-widened and shallow, having limited pool habitat.

  11. Stratigraphic and structural implications of conodont and detrital zircon U-Pb ages from metamorphic rocks of the Coldfoot terrane, Brooks Range, Alaska

    USGS Publications Warehouse

    Moore, T.E.; Aleinikoff, J.N.; Harris, A.G.

    1997-01-01

    New paleontologic and isotopic data from the Emma Creek and Marion Creek schists of the Coldfoot terrane, Arctic Alaska superterrane, central Brooks Range, suggest Devonian and possibly younger ages of deposition for their sedimentary protoliths. Conodonts from marble of the Emma Creek schist, intruded by a roughly 392 Ma orthogneiss, are late Lochkovian (early Early Devonian, between about 408 and 396 Ma) and Silurian to Devonian at two other locations. Spherical to oblong detrital zircons from quartz-mica schist of the overlying Marion Creek schist yield mostly discordant U-Pb data suggestive of provenance ages of 3.0, 2.0-1.8, and 1.5-1.4 Ga; however, several euhedral grains of zircon from Marion Creek quartz-mica schist have concordant U-Pb ages from 370 to 360 Ma. The Marion Creek schist in our study area therefore is at least 26 m.y. younger than the Emma Creek schist. The age data imply that the protolith of the Emma Creek schist is age correlative with Devonian carbonate rocks in the Hammond and North Slope terranes, whereas the Marion Creek schist is age correlative with Upper Devonian and Lower Mississippian clastic sedimentary rocks of the Endicott Group in the Endicott Mountains terrane and shale and carbonate units in the De Long Mountains and Sheenjek River terranes. Consequently, tectonic models restoring the entire Coldfoot terrane beneath partly or wholly coeval rocks of the Hammond, Endicott Mountains, De Long Mountains, and Sheenjek River terranes of the Arctic Alaska superterrane require revision. Alternative reconstructions, including restoration of the Coldfoot terrane inboard of the Endicott Mountains terrane or outboard of the De Long Mountains and Sheenjek River terranes are plausible but require either larger amounts of shortening than previously suggested or indicate problematic facies relations. copyright. Published in 1997 by the American Geophysical Union.

  12. Multiple Magmatic Events Over 40 Ma in the Fish Creek Mountains, North-central Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.; Stevens, C.; Varve, S.

    2011-12-01

    The Fish Creek Mountains, located in north-central Nevada south of Battle Mountain, is a site of multiple igneous events ranging from ca. 35 Ma to 1 Ma, covering most of the igneous history of the Great Basin of the western United States. Such extended volcanic activity allows for documentation of mantle sources and petrogenetic processes over time. Beginning approximately 50 Ma, the Great Basin experienced a magmatic front that began migrating southwestward across southern Idaho, central Oregon and into northern Nevada and Utah. Intermediate, "arc-like" andesite and dacite dominated volcanic activity in northeastern Nevada between about 45 and 36 Ma. By 34 Ma, a northwest-trending belt of rhyolitic ash-flow calderas began to develop through central Nevada, the "ignimbrite flare-up". Volcanism then migrated westwards towards the Sierra Nevada. In north-central Nevada, the oldest lavas are ca. 35 Ma basaltic andesites through rhyolites that are exposed in the western Shoshone Range, the eastern Tobin Range, and the northern and eastern Fish Creek Mountains. Plagioclase-rich andesites, dacite intrusions, and volcanic breccias occur in a belt along the western side of the Fish Creek Mountains. The bulk of the Fish Creek Mountains is composed of the 24.7 Ma Fish Creek Mountains rhyolitic tuff that is largely confined to an undeformed caldera structure. The caldera and tuff are anomalously young compared to nearby felsic centers such as the Caetano caldera (33.8Ma) and Shoshone Range (39-35 Ma) and relative to the southwest to west magmatic migration. The basal tuff is unwelded, with abundant pumice and lithic (primarily volcanic) fragments but only rare crystals. Sanidine and smoky quartz phenocrysts become more abundant upsection and glassy fiamme (hydrated to devitrified) are common, but the abundance of lithic fragments diminishes. 16-15 Ma volcanic rocks of the Northern Nevada Rift are exposed in the Battle Mountain area, ranging in composition from subalkaine

  13. Older Hydrothermal Activity along the Northern Yellowstone Caldera Margin at Sulphur Creek, Yellowstone Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Manion, J. L.; Larson, P.

    2008-12-01

    silica, dominantly opal, is pervasive in the veins throughout the entire system. At the base of the system it is very dark grey and found in the matrix of the veins. The silica veins found on the canyon walls are most often white to cream in color. These veins rarely have cross-cutting relationship with other veins. The stockwork veinlets are found throughout the system. Though the veins are narrow, the wall rock surrounding them is pervasively silicified. The silica in these veins is usually bluish in color, or is rarely clear, and contains very minor sulfides. Wall rock alteration associated with all of the vein types does not vary significantly across the field area. The tuff deeper in the system is completely silicified, so much so that outcrops are well exposed and extensive. The canyon walls are mostly silicified though occasionally there are unsilicified pockets. The top of the system is not silicified though there is one section, on the ridge, that has been thoroughly altered such that the original lithology can not be determined in a hand sample.

  14. Benthic macroinvertebrate richness along Sausal Creek, Oakland, California

    NASA Astrophysics Data System (ADS)

    Lara, D.; Ahumada, E.; Leon, Y.; Bracho, H.; Telles, C.

    2012-12-01

    Sausal Creek, 5.0 km long, is one of the principal watercourses in Oakland, California. The headwaters of Sausal Creek arise in the Oakland Hills and the creek flows southwestward through the city, discharging into the tidal canal that separates the island of Alameda from Oakland; the creek ultimately flows into San Francisco Bay. Due to the presence of rainbow trout, the stream health of Sausal Creek is a local conservation priority. In the present study, a survey of benthic macroinvertebrates in the creek was conducted and possible correlations between environmental variables and taxonomic richness were analyzed. Three stations along the creek were sampled using a 30.5cm 500 micron aquatic d-net, and temperature, pH and dissolved oxygen levels were measured in creek samples obtained at each station. Temperature, pH and dissolved oxygen levels remained constant along the creek. Taxonomic richness was highest at the upstream site of Palo Seco, located in an eastern section of the creek, and furthest downstream at Dimond Park, in the western portion of the creek. The Monterrey site, just west of Palo Seco was found to be significantly low in benthic macroinvertebrates. The Palo Seco and Monterrey sites are separated by Highway 13 and storm drain inputs may bring contaminants into the creek at this site. At the Monterrey site Sausal Creek follows the Hayward Fault, gas emissions or change in substrate may also affect the local population of benthic invertebrates. Further research will be conducted to determine what factors are contributing to this local anomaly.

  15. Surface-water quality in the Campbell Creek basin, Anchorage, Alaska

    USGS Publications Warehouse

    Brabets, T.P.; Wittenberg, L.A.

    1983-01-01

    Four streams in the Campbell Creek Basin were sampled during different flow conditions for an 18-month period. North Fork Campbell and South Fork Campbell Creeks drain areas virtually undisturbed by man 's activities. The other two streams, Little Campbell Creek and the main stem Campbell Creek, drain areas that have been urbanized. The water from South Fork Campbell and North Fork Campbell Creeks is of good quality and does not adversely affect the water quality of the main stem Campbell Creek. Little Campbell Creek, which has been affected by urbanization, impacts the water quality of Campbell Creek during lowland snowmelt periods when discharges from South Fork Campbell and North Fork Campbell Creeks are small. High concentrations of suspended sediment in Campbell Creek may be contributed by Little Campbell Creek. Fecal-coliform bacteria concentrations are highest at Little Campbell Creek and probably account for most of the high coliform concentrations at Campbell Creek. (USGS)

  16. Summer food habits and trophic overlap of roundtail chub and creek chub in Muddy Creek, Wyoming

    USGS Publications Warehouse

    Quist, M.C.; Bower, M.R.; Hubert, W.A.

    2006-01-01

    Native fishes of the Upper Colorado River Basin have experienced substantial declines in abundance and distribution, and are extirpated from most of Wyoming. Muddy Creek, in south-central Wyoming (Little Snake River watershed), contains sympatric populations of native roundtail chub (Gila robusta), bluehead sucker, (Catostomus discobolus), and flannelmouth sucker (C. tatipinnis), and represents an area of high conservation concern because it is the only area known to have sympatric populations of all 3 species in Wyoming. However, introduced creek chub (Semotilus atromaculatus) are abundant and might have a negative influence on native fishes. We assessed summer food habits of roundtail chub and creek chub to provide information on the ecology of each species and obtain insight on potential trophic overlap. Roundtail chub and creek chub seemed to be opportunistic generalists that consumed a diverse array of food items. Stomach contents of both species were dominated by plant material, aquatic and terrestrial insects, and Fishes, but also included gastropods and mussels. Stomach contents were similar between species, indicating high trophic, overlap. No length-related patterns in diet were observed for either species. These results suggest that creek chubs have the potential to adversely influence the roundtail chub population through competition for food and the native fish assemblage through predation.

  17. 77 FR 21722 - Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Forest Service Gore Creek Restoration Project; Intent To Prepare an Environmental Impact Statement AGENCY: Medicine Bow-Routt National Forests, Forest Service, USDA. Project: Gore Creek Restoration Project. ACTION... proposed Gore Creek Restoration Project (Gore Creek). The Gore Creek analysis area...

  18. Aftereffect in rocks caused by preexisting irreversible deformations

    SciTech Connect

    Stavrogin, A.N.; Shirkes, O.A.

    1987-05-01

    In this paper, rock specimens cut as cores of a diameter of 30 mm, 80 mm in length, were subjected to irreversible deformation in a high hydrostatic pressure chamber according to Karman's procedure. The types of rocks investigated were white Koelga marble, non-burst-hazardous (NBH) sandstone from Donets Basin, limestone from Estonslanets deposit and brown coal from Shurab coal deposit. Marble specimens were subjected to the most extensive studies. The aftereffect curves are shown for each type of rock studied. Aftereffect deformations of rocks are basically creep flows occurring under the effect of residual stresses introduced into the rock material on the course of its irreversible deformation by a high hydrostatic pressure, according to the authors. The physical nature of the residual stresses in the rocks and the mechanism of their creation are examined at the level of structural elements (grains or crystals).

  19. Active channel for Fanno Creek, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2011-01-01

    Fanno Creek is a tributary to the Tualatin River and flows though parts of the southwest Portland metropolitan area. The stream is heavily influenced by urban runoff and shows characteristic flashy streamflow and poor water quality commonly associated with urban streams. This data set represents the active, wetted channel as derived from light detection and ranging (LiDAR) data and aerial photographic imagery. The wetted channel boundary is equivalent to the extent of water observed during a 2-yr high flow event.

  20. Channel stability of Turkey Creek, Nebraska

    USGS Publications Warehouse

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.