Science.gov

Sample records for white rock creek

  1. 77 FR 1720 - Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ...the White-Tailed Deer Management Plan, Rock Creek Park AGENCY: National Park Service...White-tailed Deer Management Plan (Plan), Rock Creek Park, Washington, DC The Plan will...other natural and cultural resources in Rock Creek Park. DATES: The NPS will...

  2. 77 FR 1720 - Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock Creek Park

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-11

    ... National Park Service Final Environmental Impact Statement for the White-Tailed Deer Management Plan, Rock... the White-tailed Deer Management Plan (Plan), Rock Creek Park, Washington, DC The Plan will support... resources in Rock Creek Park. DATES: The NPS will execute a Record of Decision (ROD) no sooner than 30...

  3. Impact of Urbanization on Storm Response of White Rock Creek, Dallas, Texas.

    NASA Astrophysics Data System (ADS)

    Williams, H.; Groening-Vicars, J.

    2005-12-01

    This study documents hydrological changes resulting from urbanization of the upper sub-basin of White Rock Creek watershed in Collin and Dallas counties, Texas. The 66.4 square mile watershed was transformed from 87% rural in 1961 to 95% urban in 2002, following construction of the Dallas suburbs of Richardson, Addison, Plano and Frisco. The objective of the study was to investigate changes in the storm response of White Rock Creek in terms of peak storm flow, storm flow volume and lag time. The approach employed to compare pre- and post-urbanization hydrology was to develop average unit hydrographs for each time period and use them to generate the creek's storm flow response to a set of six hypothetical precipitation events. The results suggest that substantial hydrological changes have occurred. The average infiltration capacity of the watershed was reduced by about 60%, so that storm flow was generated at lower precipitation intensities in the post-urbanization period. Storm flow peak discharge and volume were more than doubled for a hypothetical 10-year precipitation event. Average lag time was about 45 minutes faster in the post-urbanization period. It was concluded that urbanization has significantly impacted the storm response of the creek and increased the potential for flooding. It is anticipated that similar hydrological changes will occur in other rapidly urbanizing watersheds in the Dallas-Fort Worth Metropolitan region.

  4. Water-quality trends in White Rock Creek Basin from 1912-1994 identified using sediment cores from White Rock Lake Reservoir, Dallas, Texas

    USGS Publications Warehouse

    Van Metre, P.C.; Callender, E.

    1997-01-01

    Historical trends in selected water-quality variables from 1912 to 1994 in White Rock Creek Basin were identified by dated sediment cores from White Rock Lake. White Rock Lake is a 4.4-km2 reservoir filled in 1912 and located on the north side of Dallas, Texas, with a drainage area of 259 km2. Agriculture dominated land use in White Rock Creek Basin before about 1950. By 1990, 72% of the basin was urban. Sediment cores were dated using cesium-137 and core lithology. Major element concentrations changed, and sedimentation rates and percentage of clay-sized particles in sediments decreased beginning in about 1952 in response to the change in land use. Lead concentrations, normalized with respect to aluminum, were six times larger in sediment deposited in about 1978 than in pre-1952 sediment. Following the introduction of unleaded gasoline in the 1970s, normalized lead concentrations in sediment declined and stabilized at about two and one-half times the pre-1952 level. Normalized zinc and arsenic concentrations increased 66 and 76%, respectively, from before 1952 to 1994. No organochlorine compounds were detected in sediments deposited prior to about 1940. Concentrations of polychlorinated biphenyls (PCB) and DDE (a metabolite of DDT) increased rapidly beginning in the 1940s and peaked in the 1960s at 21 and 20 ??g kg-1, respectively, which is coincident with their peak use in the United States. Concentrations of both declined about an order of magnitude from the 1960s to the 1990s to 3.0 and 2.0 ??g kg-1, respectively. Chlordane and dieldrin concentrations increased during the 1970s and 1980s. The largest chlordane concentration was 8.0 ??g kg-1 and occurred in a sediment sample deposited in about 1990. The largest dieldrin concentration was 0.7 ??g kg-1 and occurred in the most recent sample deposited in the early 1990s. Agricultural use of chlordane and dieldrin was restricted in the 1970s; however, both were used as termiticides, and urban use of chlordane continued at least until 1990. Recent use of dieldrin and aldrin, which degrades to dieldrin, has not been reported; however, increasing trends in dieldrin since the 1970s suggest recent urban use could have occurred.

  5. Rock Creek and Potomac Parkway / Waterside Drive Sycamore and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Rock Creek and Potomac Parkway / Waterside Drive Sycamore and White Ash Trees, Rock Creek and Potomac Parkway, median between northbound and southbound lanes near the Waterside Drive exit and entrance ramps., Washington, District of Columbia, DC

  6. Chemical and ecological health of white sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003?04

    USGS Publications Warehouse

    Miller, C.V.; Weyers, H.S.; Blazer, V.S.; Freeman, M.E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded thresholdor chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  7. Chemical and Ecological Health of White Sucker (Catostomus Commersoni) in Rock Creek Park, Washington, D.C., 2003-04

    USGS Publications Warehouse

    Miller, Cherie V.; Weyers, Holly S.; Blazer, Vicki; Freeman, Mary E.

    2006-01-01

    Several classes of chemicals that are known or suspected contaminants were found in bed sediment in Rock Creek, including polyaromatic hydrocarbons (PAHs), phthalate esters, organochlorine pesticides, dioxins and furans, trace metals and metalloids (mercury, arsenic, cadmium, chromium, cobalt, copper, lead, nickel, silver, and zinc), and polychlorinated biphenyls (total PCBs and selected aroclors). Concentrations of many of these chemicals consistently exceeded threshold or chronic-effects guidelines for the protection of aquatic life and often exceeded probable effects levels (PELs). Exceedance of PELs was dependent on the amount of total organic carbon in the sediments. Concurrent with the collection of sediment-quality data, white sucker (Catostomus commersoni) were evaluated for gross-external and internal-organ anomalies, whole-body burdens of chemical contaminants, and gut contents to determine prey. The histopathology of internal tissues of white sucker was compared to contaminant levels in fish tissue and bed sediment. Gut contents were examined to determine preferential prey and thus potential pathways for the bioaccumulation of chemicals from bed sediments. Male and female fish were tested separately. Lesions and other necroses were observed in all fish collected during both years of sample collection, indicating that fish in Rock Creek have experienced some form of environmental stress. No direct cause and effect was determined for chemical exposure and compromised fish health, but a substantial weight of evidence indicates that white sucker, which are bottom-feeding fish and low-order consumers in Rock Creek, are experiencing some reduction in vitality, possibly due to immunosuppression. Abnormalities observed in gonads of both sexes of white sucker and observations of abnormal behavior during spawning indicated some interruption in reproductive success.

  8. White Rock

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 19 April 2002) The Science 'White Rock' is the unofficial name for this unusual landform which was first observed during the Mariner 9 mission in the early 1970's. As later analysis of additional data sets would show, White Rock is neither white nor dense rock. Its apparent brightness arises from the fact that the material surrounding it is so dark. Images from the Mars Global Surveyor MOC camera revealed dark sand dunes surrounding White Rock and on the floor of the troughs within it. Some of these dunes are just apparent in the THEMIS image. Although there was speculation that the material composing White Rock could be salts from an ancient dry lakebed, spectral data from the MGS TES instrument did not support this claim. Instead, the White Rock deposit may be the erosional remnant of a previously more continuous occurrence of air fall sediments, either volcanic ash or windblown dust. The THEMIS image offers new evidence for the idea that the original deposit covered a larger area. Approximately 10 kilometers to the southeast of the main deposit are some tiny knobs of similarly bright material preserved on the floor of a small crater. Given that the eolian erosion of the main White Rock deposit has produced isolated knobs at its edges, it is reasonable to suspect that the more distant outliers are the remnants of a once continuous deposit that stretched at least to this location. The fact that so little remains of the larger deposit suggests that the material is very easily eroded and simply blows away. The Story Fingers of hard, white rock seem to jut out like icy daggers across a moody Martian surface, but appearances can be deceiving. These bright, jagged features are neither white, nor icy, nor even hard and rocky! So what are they, and why are they so different from the surrounding terrain? Scientists know that you can't always trust what your eyes see alone. You have to use other kinds of science instruments to measure things that our eyes can't see . . . things like information about what kinds of minerals make up the landforms. Mars scientists once thought, for instance, that these unusual features might be vast hills of salt, the dried up remains of a long-ago, evaporated lake. Not so, said an instrument on the Mars Global Surveyor spacecraft, which revealed that the bright material is probably made up of volcanic ash or windblown dust instead. And talk about a cyclical 'ashes to ashes, dust to dust' story! Particles of this material fell and fell until they built up quite a sedimentary deposit, which was then only eroded away again by the wind over time, leaving the spiky terrain seen today. It looks white, but its apparent brightness arises from the fact that the surrounding material is so dark. Of course, good eyesight always helps in understanding. A camera on Mars Global Surveyor with close-up capabilities revealed that sand dunes are responsible for the smudgy dark material in the bright sediment and around it. But that's not all. The THEMIS camera on the Mars Odyssey spacecraft that took this image reveals that this ashy or dusty deposit once covered a much larger area than it does today. Look yourself for two small dots of white material on the floor of a small crater nearby (center right in this image). They preserve a record that this bright deposit once reached much farther. Since so little of it remains, you can figure that the material probably isn't very hard, and simply blows away. One thing's for sure. No one looking at this image could ever think that Mars is a boring place. With all of its bright and dark contrasts, this picture would be perfect for anyone who loves Ansel Adams and his black-and-white photography.

  9. Metasedimentary Rocks at the Apple Creek Formation

    USGS Multimedia Gallery

    USGS scientist Art Bookstrom looks at puzzling sedimentary structures in metasedimentary rocks of the Apple Creek Formation, near the Jackass prospect, near Iron Creek, in the southeastern part of the Idaho cobalt belt, in east-central Idaho....

  10. Pollack Crater's White Rock

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of White Rock in Pollack crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on February 3, 2007 at 1750 UTC (12:50 p.m. EST), near 8 degrees south latitude, 25 degrees east longitude. The CRISM image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 40 meters (132 feet) across. The region covered is roughly 20 kilometers (12 miles) long and 10 kilometers (6 miles) wide at its narrowest point.

    First imaged by the Mariner 9 spacecraft in 1972, the enigmatic group of wind-eroded ridges known as White Rock has been the subject of many subsequent investigations. White Rock is located on the floor of Pollack Crater in the Sinus Sabaeus region of Mars. It measures some 15 by 18 kilometers (9 by 11 miles) and was named for its light-colored appearance. In contrast-enhanced images, the feature's higher albedo or reflectivity compared with the darker material on the floor of the crater makes it appear white. In reality, White Rock has a dull, reddish color more akin to Martian dust. This higher albedo as well as its location in a topographic low suggested to some researchers that White Rock may be an eroded remnant of an ancient lake deposit. As water in a desert lake on Earth evaporates, it leaves behind white-colored salts that it leached or dissolved out of the surrounding terrain. These salt deposits may include carbonates, sulfates, and chlorides.

    In 2001, the Thermal Emission Spectrometer (TES) on NASA's Mars Global Surveyor measured White Rock and found no obvious signature of carbonates or sulfates, or any other indication that White Rock holds evaporite minerals. Instead, it found Martian dust.

    CRISM's challenge was to obtain greater detail of White Rock's mineralogical composition and how it formed. The instrument operates at a different wavelength range than TES, giving it greater sensitivity to carbonate, sulfate and phyllosilicate (clay-like) minerals. It also has a higher spatial resolution that enables CRISM to see smaller exposures of these minerals, if they occur. If White Rock is an evaporative lacustrine or lake deposit, CRISM has the best chance of detecting telltale mineralogical signatures. The images above reveal what CRISM found.

    The top panel in the montage above shows the location of the CRISM image on a mosaic of Pollack Crater taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). White Rock actually appears dark in the THEMIS mosaic due to a low daytime temperature, because its light color leads to less heating by the Sun. The middle-left image is an infrared, false color image that reveals White Rock's reddish hue. The middle-right image shows the signatures of different minerals that are present. CRISM found that White Rock is composed of accumulated dust perhaps with some fine-grained olivine (an igneous mineral), surrounded by basaltic sand containing olivine and dark-colored pyroxene. The lower two images were constructed by draping CRISM images over topography and exaggerating the vertical scale to better illustrate White Rock's topography. White Rock still appears not to contain evaporite, but instead to be composed of accumulated dust and sand.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  11. 'White Rock' of Pollack Crater

    NASA Technical Reports Server (NTRS)

    2004-01-01

    1 January 2004 The famous 'White Rock' of Pollack Crater has been known for three decades; it was originally found in images acquired by the Mariner 9 spacecraft in 1972. This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) close-up view, obtained in October 2003, shows some of the light-toned, wind-eroded sedimentary rock that makes up 'White Rock.' It is not actually white, except when viewed in a processed, grayscale image (in color, it is more of a light butterscotch to pinkish material). The sediment that comprises 'White Rock' was deposited in Pollack Crater a long time ago, perhaps billions of years ago; the material was later eroded by wind. Dark, windblown ripples are present throughout the scene. This picture is located near 8.2oS, 335.1oW, and covers an area about 3 km (1.9 mi) wide. Sunlight illuminates the scene from the lower left.

  12. Bridge 223, view looking east up Rock Creek Canyon at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Bridge 22-3, view looking east up Rock Creek Canyon at Milepost 22.82. The line passes through tunnel 4 onto Bridge 22-3 and heads eastward up Rock Creek Canyon out onto the Camas Prairie - Camas Prairie Railroad, Second Subdivision, From Spalding in Nez Perce County, through Lewis County, to Grangeville in Idaho County, Spalding, Nez Perce County, ID

  13. ROCK CREEK, IDAHO WATER QUALITY STATUS REPORT, 1970-1984

    EPA Science Inventory

    The study was designed to determine the characteristics and amounts of industrial and municipal wastes discharged to Rock Creek, Idaho (17040212) and subsequently into the Snake River and to evaluate the effects of these wastes on the biota and water quality of Rock Creek. Indus...

  14. "Bridge #6 Rock Creek: Castiron 48" pipe lines to ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    "Bridge #6 - Rock Creek: Cast-iron 48" pipe lines to Gravity - 1859." Construction photo of Pennsylvania Avenue Bridge, 1859. Photograph courtesy Washington Aqueduct Division, U.S. Army Corps of Engineers - Pennsylvania Avenue Bridge, Spanning Rock Creek & Potomac Parkway, Washington, District of Columbia, DC

  15. Floodplain and wetlands assessment of the White Oak Creek Embayment

    SciTech Connect

    Not Available

    1991-07-01

    This report describes the proposed methods for dealing with contaminants that have accumulated in White Oak Creek, White Oak Lake, and the White Oak Creek Embayment as a result of process releases and discharges from the Oak Ridge National Laboratory. Alternative methods of cleaning up the area which were considered in accordance with regulatory guidelines are listed, and information supporting the selected methods is provided. Also included are results of a site survey conducted at the White Oak Creek Embayment and the expected effects of the proposed control structures on the floodplain and wetlands. The appendix contains figures showing the nine cross-sections of the stream channel surveyed during studies of the White Oak Creek area.

  16. 76 FR 10938 - Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock Creek Junction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ...Actions on Sunrise Project, I-205 to Rock Creek Junction: Clackamas County, OR...project, Sunrise Project, I-205 to Rock Creek Junction, Clackamas County, Oregon...587-4716. The Sunrise Project, I-205 to Rock Creek Junction Final Environmental...

  17. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM TEN YEAR REPORT. 1981-1991

    EPA Science Inventory

    Prior to this program, water quality of Rock Creek, Idaho (170040212) was severely impacted by irrigated agriculture. Impairments included phosphate, organic nitrogen, suspended solids, turbidity, bacteria, and toxic chemicals. The uses of Rock Creek for recreation, drinking wa...

  18. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The Bureau of Reclamation...produce flows in excess of bankfull on Rock Creek downstream of the lake and on...

  19. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The Bureau of Reclamation...produce flows in excess of bankfull on Rock Creek downstream of the lake and on...

  20. 76 FR 56394 - Kootenai National Forest, Sanders, County, MT; Rock Creek Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ...National Forest, Sanders, County, MT; Rock Creek Project AGENCY: Forest Service...Environmental Impact Statement (SEIS) for the Rock Creek Project. The project is located...respond to the US District Court Decision in Rock Creek Alliance et al. v. USFS,...

  1. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The Bureau of Reclamation...produce flows in excess of bankfull on Rock Creek downstream of the lake and on...

  2. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The Bureau of Reclamation...produce flows in excess of bankfull on Rock Creek downstream of the lake and on...

  3. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. 208.29 Section 208...Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla. The Bureau of Reclamation...produce flows in excess of bankfull on Rock Creek downstream of the lake and on...

  4. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  5. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  6. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  7. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  8. 33 CFR 208.29 - Arbuckle Dam and Lake of the Arbuckles, Rock Creek, Okla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Arbuckles, Rock Creek, Okla. 208.29 Section 208.29 Navigation and Navigable Waters CORPS OF ENGINEERS... Arbuckles, Rock Creek, Okla. The Bureau of Reclamation, or its designated agent, shall operate the Arbuckle... in excess of bankfull on Rock Creek downstream of the lake and on the Washita River, from...

  9. White Rock in False Color

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image shows the wind eroded deposit in Pollack Crater called 'White Rock'. This image was collected during the Southern Fall Season.

    Image information: VIS instrument. Latitude -8, Longitude 25.2 East (334.8 West). 0 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. 76 FR 56394 - Kootenai National Forest, Sanders, County, MT; Rock Creek Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-13

    ... Forest Service Kootenai National Forest, Sanders, County, MT; Rock Creek Project AGENCY: Forest Service... Kootenai National Forest will prepare a Supplemental Environmental Impact Statement (SEIS) for the Rock... will respond to the US District Court Decision in Rock Creek Alliance et al. v. USFS, Revett...

  11. Water quality monitoring report for the White Oak Creek Embayment

    SciTech Connect

    Ford, C.J. ); Wefer, M.T. )

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  12. 75 FR 55539 - Crooked Creek Reservoir Repair; White River National Forest, Eagle County, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ...DEPARTMENT OF AGRICULTURE Forest Service Crooked Creek Reservoir Repair; White River National Forest, Eagle County, CO AGENCY...environmental impact statement (ElS) for the Crooked Creek Reservoir Repair project on the Sopris Ranger District of the...

  13. ROCK CREEK, IDAHO RURAL CLEAN WATER PROGRAM, 1987 ANNUAL PROGRESS REPORT

    EPA Science Inventory

    Goals of the Rock Creek, Idaho (17040212) Rural Clean Water Program are to significantly reduce the amount of sediment, sediment related pollutants, and animal waste discharging into Rock Creek. Weekly water quality sampling was done through the irrigation season (April - Octobe...

  14. White Oak Creek embayment sediment retention structure design and construction

    SciTech Connect

    Van Hoesen, S.D.; Kimmell, B.L.; Page, D.G.; Wilkerson, R.B.; Hudson, G.R.; Kauschinger, J.L.; Zocolla, M.

    1994-12-31

    White Oak Creek is the major surface water drainage throughout the Department of Energy (DOE) Oak Ridge National Laboratory (ORNL). Samples taken from the lower portion of the creek revealed high levels of Cesium 137 and lower level of Cobalt 60 in near surface sediment. Other contaminants present in the sediment included: lead, mercury, chromium, and PCBs. In October 1990, DOE, US Environmental Protection Agency (EPA), and Tennessee Department of Environment and Conservation (TDEC) agreed to initiate a time critical removal action in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) to prevent the transport of the contaminated sediments into the Clinch River system. This paper discusses the environmental, regulatory, design, and construction issues that were encountered in conducting the remediation work.

  15. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ...DEPARTMENT OF AGRICULTURE Forest Service White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements AGENCY: Forest Service, USDA. ACTION: Notice...SUMMARY: The White River National Forest is...

  16. White Oak Creek Embayment site characterization and contaminant screening analysis

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed [sup 137]Cs concentrations [> 10[sup 6] Bq/kg dry wt (> 10[sup 4] pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of [sup 137]Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h[sup 1] 1 m above the soil surface.

  17. 75 FR 55539 - Crooked Creek Reservoir Repair; White River National Forest, Eagle County, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... Federal Register (86 FR 24215). The Forest Service has decided to cancel the preparation of this EIS. The...; ] DEPARTMENT OF AGRICULTURE Forest Service Crooked Creek Reservoir Repair; White River National Forest, Eagle... of Intent (NOT) to prepare an environmental impact statement (ElS) for the Crooked Creek...

  18. 75 FR 77826 - White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... Forest Service White River National Forest; Eagle County, CO; Beaver Creek Mountain Improvements AGENCY... Creek Mountain Improvements'' in the subject line. The scoping notice and map can be reviewed/downloaded...: --Update mountain facilities and infrastructure in order to provide the highest quality guest...

  19. Simulation of contaminated sediment transport in White Oak Creek basin

    SciTech Connect

    Bao, Y.; Clapp, R.B.; Brenkert, A.L.; Moore, T.D.; Fontaine, T.A.

    1995-12-31

    This paper presents a systematic approach to management of the contaminated sediments in the White Oak Creek watershed at Oak Ridge National Laboratory near Oak Ridge, Tennessee. The primary contaminant of concern is radioactive cesium-137 ({sup 137}Cs), which binds to soil and sediment particles. The key components in the approach include an intensive sampling and monitoring system for flood events; modeling of hydrological processes, sediment transport, and contaminant flux movement; and a decision framework with a detailed human health risk analysis. Emphasis is placed on modeling of watershed rainfall-runoff and contaminated sediment transport during flooding periods using the Hydrologic Simulation Program- Fortran (HSPF) model. Because a large number of parameters are required in HSPF modeling, the major effort in the modeling process is the calibration of model parameters to make simulation results and measured values agree as closely as possible. An optimization model incorporating the concepts of an expert system was developed to improve calibration results and efficiency. Over a five-year simulation period, the simulated flows match the observed values well. Simulated total amount of sediment loads at various locations during storms match with the observed values within a factor of 1.5. Simulated annual releases of {sup 137}Cs off-site locations match the data within a factor of 2 for the five-year period. The comprehensive modeling approach can provide a valuable tool for decision makers to quantitatively analyze sediment erosion, deposition, and transport; exposure risk related to radionuclides in contaminated sediment; and various management strategies.

  20. Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed

    SciTech Connect

    Fontaine, T.A.

    1991-11-01

    Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.

  1. Monitoring and modeling contaminated sediment transport in the White Oak Creek watershed. Environmental Restoration Program

    SciTech Connect

    Fontaine, T.A.

    1991-11-01

    Over the past 47 years, operations and waste disposal activities at Oak Ridge National Laboratory have resulted in the contamination of the White Oak Creek drainage system. The containments presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in White Oak Creek. During floods, the erosion of these sediments results in the transport of contaminants out of the catchment into the Clinch River. A long-term strategy is required to monitor the movement of contaminated sediments and to predict the transport of these sediments that could occur during major floods. A monitoring program will provide the information required to (1) evaluate the existing off-site transport of contaminated sediments, (2) evaluate the need for short-term control measures, (3) set priorities for remediation of contaminated areas in White Oak Creek (4) verify the success of completed remedial actions intended to control the movement of contaminated sediments, and (5) develop a computer model to simulate the transport of contaminated sediments in White Oak Creek. A contaminant-transport model will be developed to (1) evaluate the potential for the off-site transport of contaminated sediments during major floods, (2) develop long term control measures and remediation solutions, (3) predict the impact of future land-use changes in White Oak Creek on the transport of contaminated sediment. This report contains a plan for the monitoring and modeling activities required to accomplish these objectives.

  2. Mars' "White Rock" Feature Lacks Evidence of an Aqueous Origin

    NASA Technical Reports Server (NTRS)

    Ruff, S. W.; Christensen, P. R.; Clark, R. N.; Kieffer, H. H.; Malin, M. C.; Bandfield, J. L.; Jakosky, B. M.; Lane, M. D.; Mellon, M. T.; Presley, M. A.

    2000-01-01

    The Thermal Emission Spectrometer on board the Mars Global Surveyor has observed "White Rock" and the data do not indicate the presence of evaporite minerals. We suggest it is a deposit of compacted or weakly cemented aeolian sediment.

  3. Giant desiccation fissures on the Black Rock and Smoke Creek Deserts, Nevada

    USGS Publications Warehouse

    Willden, R.; Mabey, D.R.

    1961-01-01

    Open fissures, from 100 to several hundred feet apart, that have produced polygonal patterns on the Black Rock Desert, Nevada, are believed to be giant desiccation cracks resulting from a secular trend toward aridity in the last few decades. Similar features on the Smoke Creek Desert probably have the same origin.

  4. ROCK CREEK RURAL CLEAN WATER PROGRAM, COMPREHENSIVE WATER QUALITY MONITORING REPORT, 1981-1986

    EPA Science Inventory

    Water quality monitoring for the Rock Creek (17040212) rural clean water program was initiated by the ID Department of Health and Welfare, Division of Environment in 1981. Weekly sampling is done through the irrigation season (April - October) on the subbasin drains for suspende...

  5. ROCK CREEK RURAL CLEAN WATER PROGRAM, COMPREHENSIVE WATER QUALITY MONITORING, ANNUAL REPORT, 1988.

    EPA Science Inventory

    Water quality monitoring for the Rock Creek (17040212) rural clean water program was initiated by the ID Department of health and Welfare, Division of Environment in 1981. The results to date suggest that Best Management Practices (BMPs) implemented in the project area have impr...

  6. Surface Water Chemistry in White Oak Creek, North-East Texas: Effect of Land Use 

    E-print Network

    Watson, Eliza

    2012-02-14

    and land use in a sub-tropical watershed in Northeast Texas largely dominated by rangeland. The study site, White Oak Creek Watershed located in the Sulphur River Basin, has been identified as an impaired stream due to low dissolved oxygen concentrations...

  7. Adoption in rock and white-tailed ptarmigan

    USGS Publications Warehouse

    Wong, M.M.L.; Fedy, B.C.; Wilson, S.; Martin, K.M.

    2009-01-01

    Reports of adoption in birds are widespread, but few studies report rates of adoption or possible mechanisms for this phenomenon, particularly in the Order Galliformes. We report incidents of adoption in Rock Ptarmigan (Lagopus muta) and White-tailed Ptarmigan (L. leucura) from two sites in western Canada. Adoption rates for White-tailed Ptarmigan on Vancouver Island, British Columbia, and the Ruby Ranges, Yukon Territory were 13% (n = 16 broods) and 4% (n = 27), respectively, while rates for Rock Ptarmigan were 14% (n = 29) in the Ruby Ranges. Low brood densities may result in lower rates of adoption for ptarmigan. ?? 2009 The Wilson Ornithological Society.

  8. 76 FR 10938 - Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock Creek Junction...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... Federal Highway Administration Notice of Final Federal Agency Actions on Sunrise Project, I-205 to Rock... a proposed highway project, Sunrise Project, I-205 to Rock Creek Junction, Clackamas County, Oregon..., NE., Suite 100, Salem, Oregon 97301, Telephone: (503) 587-4716. The Sunrise Project, I-205 to...

  9. Water quality monitoring report for the White Oak Creek Embayment. Environmental Restoration Program

    SciTech Connect

    Ford, C.J.; Wefer, M.T.

    1993-01-01

    Water quality monitoring activities that focused on the detection of resuspended sediments in the Clinch River were conducted in conjunction with the White Oak Creek Embayment (WOCE) time-critical Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to construct a sediment-retention structure at the mouth of White Oak Creek (WOC). Samples were collected by use of a 24-h composite sampler and through real-time water grab sampling of sediment plumes generated by the construction activities. Sampling stations were established both at the WOC mouth, immediately adjacent to the construction site, and at K-1513, the Oak Ridge K-25 Site drinking water intake approximately 9.6 km downstream in the Clinch River. Results are described.

  10. Post-rock-avalanche dam outburst flood sedimentation in Ram Creek, Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Harrison, Lisa M.; Dunning, Stuart A.; Woodward, John; Davies, Timothy R. H.

    2015-07-01

    Rock avalanches are common in mountainous regions that are tectonically active. They are capable of forming natural dams of uncertain persistence that have significant impacts on the river system over wide spatial scales and possibly over geological time scales. Here we combine field data and digital elevation model (DEM) analysis to show the response of Ram Creek, New Zealand, to 28 years of sediment dispersion following the 1968 emplacement of a co-seismic, rock-avalanche dam that breached catastrophically in 1981. The results show a system that has not attained equilibrium, being unable to move the quantity of dam-derived sediments, and will likely not attain equilibrium before the next major sediment input; it is in a state of persistent disturbance where localised reworking dominates. Erosion in Ram Creek is focussed on lateral bevelling and bedrock gorge widening rather than vertical incision to keep pace with tectonic uplift. Importantly for studies of tectonic geomorphology, this widening - which if sustained will form a strath terrace - does not represent a period of reduced uplift. Stream metrics (concavity and steepness) are unable to differentiate the identified rock-avalanche-induced knickpoint from tectonic and lithological knickpoints.

  11. Eocene sedimentary and volcanic rocks and their use in dating Mesozoic and Tertiary structures in the southern Deep Creek range, Nevada and Utah

    SciTech Connect

    Nutt, C.J.; Thorman, C.H. )

    1993-04-01

    Lower Eocene White Sage Formation and upper Eocene volcanic rocks are used to date Mesozoic to middle-Tertiary structures in and near the Goshute Indian Reservation, southern Deep Creek Range. Outcrops of conglomerate, limestone, and dolomite that are correlated with the White Sage type section at Gold Hill are scarce and confined to the eastern part of the map area. Voluminous volcanic rocks (39.5-- 39 Ma) are exposed in the western part of the map area. The relationships between these structures and the lower and upper Eocene rocks indicate that the attenuation faults are Paleocene or older, the broad folds are early to late Eocene, and the high-angle faults are post-late Eocene. Low-angle attenuation faults are most prominent at the Pennsylvanian Ely Limestone-Mississippian Chainman Shale contact, at the Mississippian-Devonian Pilot Shale-Devonian Guilmette Formation contact, and at the top of the Ordovician Eureka Quartzite. The White Sage overlies an attenuated section of Pilot Shale and Guilmette, establishing that the faults are pre-early Eocene. Deposition of White Sage on both Pennsylvanian and Devonian rocks indicates that by early Eocene time the attenuated Paleozoic rocks had been deeply eroded. Broad, N-NE-trending folds deform the White Sage and older rocks but are overlain unconformably by a 39.5-Ma basal tuff, restricting the age of folding to the middle Eocene. Deformation of this age has also been documented at Gold Hill and on the east side of the Elko Basin. Erosion followed folding and stripped the White Sage from most of the area. High-angle, down-to-the-west faults cut all Eocene rocks and are therefore younger than about 39 Ma. Near the southern boundary of the Reservation, the faults die out, and, where present, become near bedding-parallel in moderately to steeply dipping and thinly bedded rocks. These faults can be distinguished from the older attenuation faults by their association with numerous, small-scale, listic normal faults.

  12. Multidimensional Computational Fluid Dynamics Modeling of the Dispersion of White Oak Creek Contaminants in the Clinch River

    SciTech Connect

    Platfoot, J.H.; Wendel, M.W.; Williams, P.T.

    1996-10-01

    This report describes the simulation of the dispersion and dilution of dissolved or finely suspended contaminants entering the Clinch river from White Oak Creek. The work is accomplished through the application of a commercial computational fluid dynamics (CFD) solver. This study assumes that contaminants originating in the White Oak Creed watershed, which drains Oak Ridge National Laboratory, will eventually reach the mouth of White Oak Creek and be discharged into the clinch River. The numerical model was developed to support the analysis of the off-site consequences of releases from the ORNL liquid low-level waste system. The system contains storage tanks and transfer lines in Bethel Valley and Melton Valley. Under certain failure modes, liquid low-level waste could be released to White Oak Creek or Melton Branch to White Oak Creek and eventually be discharged to the Clinch River. Since the Clinch River has unrestricted access by the public and water usage from the Clinch River is not controlled by the Department of Energy, such a liquid low-level waste spill would create the possibility of public exposure to the contaminant. This study is limited to the dispersion of the contaminants downstream of the confluence of White Oak Creek.

  13. Analyses of geochemical samples and descriptions of rock samples, Adams Gap and Shinbone Creek Roadless Areas, Clay County, Alabama

    USGS Publications Warehouse

    Erickson, M.S.; Hanley, J.T.; Kelley, D.L.; Sherlock, L.J.

    1983-01-01

    Semiquantitative spectrographic analyses for 31 elements on 105 rocks, 47 stream-sediment, and 70 soil samples from the Adams Gap and Shinbone Creek Roadless Areas and vicinity, Talladega National Forest, Clay County, Alabama are reported here in detail. Atomic-absorption analyses for zinc in all samples and for gold in 5 selected rock samples are also reported. Localities for all sables are given in Universal Transverse Mercator (UTM) coordinates. A brief description of each rock sample is included. Rocks analyzed include quartzite, phyllite, vein quartz, and schist.

  14. Impacts on water quality and biota from natural acid rock drainage in Colorado's Lake Creek watershed

    USGS Publications Warehouse

    Bird, D.A.; Sares, Matthew A.; Policky, Greg A.; Schmidt, Travis S.; Church, Stanley E.

    2006-01-01

    Colorado's Lake Creek watershed hosts natural acid rock drainage that significantly impacts surface water, streambed sediment, and aquatic life. The source of the ARD is a group of iron-rich springs that emerge from intensely hydrothermally altered, unexploited, low-grade porphyry copper mineralization in the Grizzly Peak Caldera. Source water chemistry includes pH of 2.5 and dissolved metal concentrations of up to 277 mg/L aluminum, 498 mg/L iron, and 10 mg/L copper. From the hydrothermally altered area downstream for 27 kilometers to Twin Lakes Reservoir, metal concentrations in streambed sediment are elevated and the watershed experiences locally severe adverse impacts to aquatic life due to the acidic, metal-laden water. The water and sediment quality of Twin Lakes Reservoir is sufficiently improved that the reservoir supports a trout fishery, and remnants of upstream ARD are negligible.

  15. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed-sediment assessment. In addition to the water-quality and sediment-quality assessments, a Rosgen stream-channel classification was performed on a 900-foot-long segment of Rock Creek. In the synoptic water-quality assessment, two pesticides were found to be above published criteria for the protection of aquatic life. In the temporal water-quality assessment, four pesticides were found to be above published criteria for the protection of aquatic life. In the bed-sediment assessment, 8 trace elements, 14 polycyclic aromatic hydrocarbons, 6 pesticides, and 1 phthalate compound were found to be above published criteria for the protection of aquatic life. In the Rosgen classification, a comparison to a previous classification for this segment showed an increase in sands and other fine-grained sediments in the creek bed.

  16. The development of an aquatic spill model for the White Oak Creek watershed, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    Johnson, R.O.

    1996-05-01

    This study develops an aquatic spill model applicable to the White Oak Creek watershed draining the Oak Ridge National Laboratory. Hazardous, toxic, and radioactive chemicals are handled and stored on the laboratory reservation. An accidental spill into the White Oak Creek watershed could contaminate downstream water supplies if insufficient dilution did not occur. White Oak Creek empties into the Clinch River, which flows into the Tennessee River. Both rivers serve as municipal water supplies. The aquatic spill model provides estimates of the dilution at sequential downstream locations along White Oak creek and the Clinch River after an accidental spill of a liquid containing a radioactively decaying constituent. The location of the spill on the laboratory is arbitrary, while hydrologic conditions range from drought to extreme flood are simulated. The aquatic spill model provides quantitative estimates with which to assess water quality downstream from the site of the accidental spill, allowing an informed decision to be made whether to perform mitigating measures so that the integrity of affected water supplies is not jeopardized.

  17. Magnetic susceptibility of rocks in the Nutbush Creek ductile shear zone, North Carolina

    NASA Astrophysics Data System (ADS)

    Mims, Charles V. H.; Powell, Christine A.; Ellwood, Brooks B.

    1990-06-01

    Applicability of anisotropy of magnetic susceptibility (AMS) as a strain indicator is investigated for the Falls lineated gneiss, a strongly lineated, weakly foliated tectonite lying within the Nutbush Creek fault zone (NCFZ). The NCFZ is a major Alleghanian ductile shear zone within the southern Appalachian Piedmont and is characterized along most of its length by a pronounced, linear trend on aeromagnetic maps. Sampling was conducted along a traverse near Raleigh N.C., that extended through the lineated gneiss, across the eastern boundary of the NCFZ and into adjacent, supposedly unsheared Raleigh-belt gneiss. Petrofabric element orientations are similar within the Falls lineated gneiss and the Raleigh-belt gneiss but foliation is better developed than lineation in the Raleigh-belt gneiss. Mineral lineation parallels the strike of the NCFZ. Results of the AMS analysis are remarkably consistent along the entire traverse. Mean susceptibilty ellipsoids are uniformly prolate and display little variation in spatial orientation. In both the Falls lineated gneiss and the Raleigh-belt gneiss, mean maximum susceptibility axes are oriented along the trend of mineral lineation, and mean minimum susceptibility axes coincide with poles to foliation. Magnetic fabric in both lithologies is dominated by the alignment of magnetite grains in the direction of silicate-mineral lineation; magnetic lineation is better developed than magnetic foliation even in Raleigh-belt rocks. Similarity of the magnetic fabrics in the lineated gneiss and the Raleigh-belt gneiss suggests that both fabrics were produced by the same deformational process. The possibility that the Raleigh-belt rocks are actually part of the NCFZ is suggested by alignment of petrofabric elements along the strike of the fault zone. The presently mapped eastern boundary of the NCFZ which was defined on the basis of lithologie and mesoscopic rock fabric differences, may separate two distinct units within the fault zone. AMS results for Raleigh-belt rocks located north of the study area suggest that deformation associated with the fault zone may extend several kilometers east of its presently mapped boundary at certain locations. AMS results provide insight into the size of the strain field associated with the NCFZ but cannot be used to estimate either the strain history or the magnitude of strain experienced by rocks within the fault zone.

  18. Streamflow characteristics of small tributaries of Rock Creek, Milk River basin, Montana, base period water years 1983-87

    USGS Publications Warehouse

    Parrett, Charles; Hull, J.A.

    1990-01-01

    Five streamflow-gaging stations were installed in the Rock Creek basin north of the Milk River near Hinsdale, Montana. Streamflow was monitored at these stations and at an existing gaging station upstream on Rock Creek from May 1983 through September 1987. The data collected were used to describe the flow characteristics of four small tributary streams. Annual mean streamflow ranges from 2.8 to 57 cu ft/sec in the mainstem and from 0 to 0.60 cu ft/sec in the tributaries. Monthly mean streamflow ranged from 0 to 528 cu ft/sec in Rock Creek and from zero to 5.3 cu ft/sec in the four tributaries. The six gaged sites show similar patterns of daily mean streamflow during periods of large runoff, but substantial individual variations during periods of lesser runoff. During periods of lesser runoff , the small tributaries may have small daily mean streamflows. At other times, daily mean streamflow at the two mainstem sites decreased downstream. Daily mean streamflow in the tributaries appears to be closely related to daily mean streamflow in the mainstem only during periods of substantial area-wide runoff. Thus, streamflow in the tributaries resulting from local storms or local snowmelt may not contribute to streamflow in the mainstem. (USGS)

  19. Transport of contaminated sediment during floods in White Oak Creek near Oak Ridge, Tennessee

    SciTech Connect

    Fontaine, T.A.

    1991-01-01

    Parts of the White Oak Creek (WOC) watershed have become contaminated during the last 47 years of operation of Oak Ridge National Laboratory (ORNL). The 16 sq. km. catchment consists of a short embayment between White Oak Dam and the Clinch River, a small lake (7 ha), and two main tributaries (Melton Branch and White Oak Tributary) which converge 1 km upstream of the lake. The contaminants presenting the highest risk to human health and the environment are particle reactive and are associated with the soils and sediments in the floodplains and channels of WOC and in White Oak Lake (WOL). During floods, the erosion and resuspension of these sediments can result in the transport of contaminants within the catchment and out of WOL into the Clinch River. It is not possible to predict the transport of contaminated sediment during storms because the existing database and monitoring program were not developed to address this issue. In order to evaluate the probability of contaminated sediment transport during floods, and to develop strategies for controlling off-site transport, a data collection program and a modeling investigation have been initiated. The data collection program is required to establish a conceptual model of contaminated sediment transport in WOC, to provide the data required to calibrate and apply the computer model, and to generate a database that will be used in the future to evaluate the effectiveness of completed clean up activities. The computer model will be used to simulate the transport of contaminated sediments during floods up to the 100-year event with existing and future land use conditions. 1 ref., 1 fig.

  20. Rock-Eval pyrolysis and vitrinite reflectance results from the Sheep Creek 1 well, Susitna basin, south-central Alaska

    USGS Publications Warehouse

    Stanley, Richard G.; Lillis, Paul G.; Pawlewicz, Mark J.; Haeussler, Peter J.

    2014-01-01

    We used Rock-Eval pyrolysis and vitrinite reflectance to examine the petroleum source potential of rock samples from the Sheep Creek 1 well in the Susitna basin of south-central Alaska. The results show that Miocene nonmarine coal, carbonaceous shale, and mudstone are potential sources of hydrocarbons and are thermally immature with respect to the oil window. In the samples that we studied, coals are more organic-rich and more oil-prone than carbonaceous shales and silty mudstones, which appear to be potential sources of natural gas. Lithologically similar rocks may be present in the deeper parts of the subsurface Susitna basin located west of the Sheep Creek 1 well, where they may have been buried deeply enough to generate oil and (or) gas. The Susitna basin is sparsely drilled and mostly unexplored, and no commercial production of hydrocarbons has been obtained. However, the existence of potential source rocks of oil and gas, as shown by our Rock-Eval results, suggests that undiscovered petroleum accumulations may be present in the Susitna basin.

  1. White Oak Creek watershed: Melton Valley area Remedial Investigation report, at the Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 2, Appendixes A and B

    SciTech Connect

    1996-11-01

    This document contains Appendixes A ``Source Inventory Information for the Subbasins Evaluated for the White Oak Creek Watershed`` and B ``Human Health Risk Assessment for White Oak Creek / Melton Valley Area`` for the remedial investigation report for the White Oak Creek Watershed and Melton Valley Area. Appendix A identifies the waste types and contaminants for each subbasin in addition to the disposal methods. Appendix B identifies potential human health risks and hazards that may result from contaminants present in the different media within Oak Ridge National Laboratory sites.

  2. Isotopic composition of ice cores and meltwater from upper fremont glacier and Galena Creek rock glacier, Wyoming

    USGS Publications Warehouse

    DeWayne, Cecil L.; Green, J.R.; Vogt, S.; Michel, R.; Cottrell, G.

    1998-01-01

    Meltwater runoff from glaciers can result from various sources, including recent precipitation and melted glacial ice. Determining the origin of the meltwater from glaciers through isotopic analysis can provide information about such things as the character and distribution of ablation on glaciers. A 9.4 m ice core and meltwater were collected in 1995 and 1996 at the glacigenic Galena Creek rock glacier in Wyoming's Absaroka Mountains. Measurements of chlorine-36 (36Cl), tritium (3H), sulphur-35 (35S), and delta oxygen-18 (??18O) were compared to similar measurements from an ice core taken from the Upper Fremont Glacier in the Wind River Range of Wyoming collected in 1991-95. Meltwater samples from three sites on the rock glacier yielded 36Cl concentrations that ranged from 2.1 ?? 1.0 X 106 to 5.8??0.3 X 106 atoms/l. The ice-core 36Cl concentrations from Galena Creek ranged from 3.4??0.3 X 105 to 1.0??0.1 X 106 atoms/l. Analysis of an ice core from the Upper Fremont Glacier yielded 36Cl concentrations of 1.2??0.2 X 106 and 5.2??0.2 X 106 atoms/l for pre- 1940 ice and between 2 X 106 and 3 X 106 atoms/l for post-1980 ice. Purdue's PRIME Lab analyzed the ice from the Upper Fremont Glacier. The highest concentration of 36Cl in the ice was 77 ?? 2 X 106 atoms/l and was deposited during the peak of atmospheric nuclear weapons testing in the late 1950s. This is an order of magnitude greater than the largest measured concentration from both the Upper Fremont Glacier ice core that was not affected by weapons testing fallout and the ice core collected from the Galena Creek rock glacier. Tritium concentrations from the rock glacier ranged from 9.2??0.6 to 13.2??0.8 tritium units (TU) in the meltwater to -1.3??1.3 TU in the ice core. Concentrations of 3H in the Upper Fremont Glacier ice core ranged from 0 TU in the ice older than 50 years to 6-12 TU in the ice deposited in the last 10 years. The maximum 3H concentration in ice from the Upper Fremont Glacier deposited in the early 1960s during peak weapons testing fallout for this isotope was 360 TU. One meltwater sample from the rock glacier was analyzed for 35S with a measured concentration of 5.4??1.0 millibecquerel per liter (mBeq/l). Modern precipitation in the Rocky Mountains contains 35S from 10 to 40 mBeq/L. The ??18O results in meltwater from the Galena Creek rock glacier (-17.40??0.1 to -17.98??0.1 per mil) are similar to results for modern precipitation in the Rocky Mountains. Comparison of these isotopic concentrations from the two glaciers suggest that the meltwater at the Galena Creek site is composed mostly of melted snow and rain that percolates through the rock debris that covers the glacier. Additionally, this water from the rock debris is much younger (less than two years) than the reported age of about 2000 years for the subsurface ice at the mid-glacier coring site. Thus the meltwater from the Galena Creek rock glacier is composed primarily of melted surface snow and rain water rather than melted glacier ice, supporting previous estimates of slow ablation rates beneath the surface debris of the rock glacier.

  3. White Oak Creek Embayment site characterization and contaminant screening analysis. Environmental Restoration Program

    SciTech Connect

    Blaylock, B.G.; Ford, C.J.; Frank, M.L.; Hoffman, F.O.; Hook, L.A.

    1993-01-01

    Analyses of sediment samples collected near the mouth of White Oak Creek during the summer of 1990 revealed {sup 137}Cs concentrations [> 10{sup 6} Bq/kg dry wt (> 10{sup 4} pCi/g dry wt)] near the sediment surface. Available evidence indicates that these relatively high concentrations of {sup 137}Cs now at the sediment surface were released from White Oak Dam in the mid-1950s and had accumulated at depositionalsites in the embayment. These accumulated sediments are being eroded and transported downstream primarily during winter low-water levels by flood events and by a combination of normal downstream flow and the water turbulence created by the release of water from Melton Hill Dam during hydropower generation cycles. This report provides a more thorough characterization of the extent of contamination in WOCE than was previously available. Environmental samples collected from WOCE were analyzed for organic, inorganic, and radiological contaminants in fish, water, and sediment. These results were used to conduct a human health effects screening analysis. Walkover radiation surveys conducted inside the fenced area surrounding the WOCE at summer-pool (741 ft MSL) and at winter-pool (733 ft MSL) level, indicated a maximum exposure rate of 3 mR h{sup 1} 1 m above the soil surface.

  4. Surface radiological investigations at two creek receiving runoff from White Wing Scrap Yard, Oak Ridge Reservation, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect

    Uziel, M.S.; Tiner, P.F.; Williams, J.K.

    1994-02-01

    A surface radiological investigation was conducted intermittently from August 1992 July 1993 at two creeks receiving runoff from White Wing Scrap Yard. In this report, the two creeks (both unnamed tributaries of Bear Creek) are, referred to as the east creek and the west creek based on their respective locations relative to White Wing Scrap Yard. The radiological survey of accessible areas at the east creek revealed no detectable gamma exposure rates above typical background levels (8 to 12 {mu}R/h). The very slight elevations in gamma and beta-gamma levels found along the creek were generally associated with outcroppings of shale and typical of naturally occurring radionuclides present in such material. No radiological anomalies were associated with an oily sheen observed on the water at three locations, three 55-gal metal drums in or near the creek, a small pile of metal debris near the creek, or several enclosures used in a 1969 study of animal excretion rates. Radionuclide analysis of three soil samples collected at the east creek demonstrated typical of {sup 60}Co, {sup 137}Cs, gross alpha activity, gross beta activity, and {sup 40}K.

  5. Food of white perch, rock bass and yellow perch in eastern Lake Ontario

    USGS Publications Warehouse

    Elrod, Joseph H.; Busch, Wolf-Dieter N.; Griswold, Bernard L.; Schneider, Clifford P.; Wolfert, David R.

    1981-01-01

    The contents of stomachs from 1,485 white perch, 218 rock bass and 1,399 yellow perch collected in eastern Lake Ontario from May to October in 1972 and in May 1973 were examined. All three species fed primarily on amphipods, but they also ate chironomids and trichopterans regularly. Rock bass ate more trichopterans than chironomids, whereas white perch and yellow perch ate more chironomids. Snails and crayfish were significant items in the diet of rock bass, but occurred infrequently in stomachs of white perch and yellow perch. White perch and yellow perch frequently ate fish eggs during early summer, but rock bass seldom ate fish eggs. Fish were important in the diets of white perch longer than 300 millimeters and rock bass and yellow perch longer than 200 millimeters. Similarities in the diets of fish 1 year old or older suggest that the potential for competition between white perch and yellow perch is greater than that between rock bass and either white perch or yellow perch.

  6. Comagmatic contact relationships between the Rock Creek Gabbro and Round Valley Peak granodiorite, central Sierra Nevada, CA

    SciTech Connect

    Christensen, C.C.; Bown, C.J. . School of Natural Science)

    1993-03-01

    The Rock Creek Gabbro (RCG) in Little Lakes Valley, near Tom's Place, CA abuts three granodiorites with distinctive contact characteristics. Against within a cm in most places. The contact with Round Valley Peak (RVP) on the north, however, is a zone at least 3 km wide and records a mode of mafic magmatic enclave formation. A northward traverse of the zone begins 300--400 m within the RCG with progressively lighter, though still uniform rock. Next is a 100--200m wide jumble of sharp-edged angular 10--30m gabbroic xenoliths, variable in grainsize and plastic deformation and interspersed with stretched partially disaggregated enclaves in normal RVP granodiorite. Xenoliths are essentially absent from the RVP from here north; stretched enclaves with very consistent strikes paralleling (within 20[degree]) the mapped RCG-RVP contact and high angle dips (70--90[degree]), occur singly and in dense swarms and fall from 4% to 0.5% of outcrop area in the remaining traverse. Rock Creek gabbros including xenoliths at the contact cluster chemically with RVP enclaves on all major and trace element plots, suggesting a common parentage; some of each group show evidence of plagioclase flotation. Trace element data (esp. Zr/Nb) suggests that fractional crystallization dominates mixing in the evolution of the gabbroic/enclave magma.

  7. Impacts of deer herbivory on vegetation in Rock Creek Park, 2001-2009

    USGS Publications Warehouse

    Kraft, Cairn C.; Hatfield, Jeff S.

    2011-01-01

    Starting in 2001, vegetation data have been collected annually in 16 study modules consisting of paired (1x4 m) fenced plots and unfenced control plots located in the upland forests of Rock Creek Park, Washington, D.C. Vegetation data collected from 2001-2009 have been analyzed to determine impacts of deer herbivory on vegetation in the park. Differences between fenced plots and unfenced control plots were analyzed for the following variables: cover provided by various groups of species (woody, herbaceous, native, non-native, trees, shrubs, and woody vines), as well as by individual dominant species, vegetation thickness (a measure of percent cover projected horizontally that provides information on the vertical distribution of vegetation), and species richness overall and for groups of species (woody, herbaceous, native, non-native, trees, shrubs, and woody vines). The analyses were performed using repeated measures analysis of variance (ANOVA) and associated tests. Vegetation in plots protected from deer herbivory for 9 years showed significantly greater vegetative cover compared to plots not protected from deer herbivory. This effect was most pronounced for woody and shrub cover. Cover by the dominant species was not significantly greater in the fenced plots compared to the unfenced control plots, indicating that the significant differences observed for groups were not driven by single species within those groups. With respect to vegetation thickness, results indicate that protection from deer herbivory produced significantly higher levels of vegetation in the fenced plots compared to the unfenced control plots for both the Low (0-30 cm) and Middle (30-110 cm) height classes. Protection from deer herbivory has led to higher overall species richness and higher species richness for woody species, natives, and shrubs compared to plots not receiving protection. There is also evidence that plots protected from deer herbivory and those not receiving this protection are diverging over time with respect to a number of variables such as cover by woody and shrub species, cover in the lowest height class, and species richness of woody and native species. Recommendations were made regarding future sampling.

  8. Selenium and Other Elements in Water and Adjacent Rock and Sediment of Toll Gate Creek, Aurora, Arapahoe County, Colorado, December 2003 through March 2004

    USGS Publications Warehouse

    Herring, J.R.; Walton-Day, Katherine

    2007-01-01

    Streamwater and solid samples (rock, unconsolidated sediment, stream sediment, and efflorescent material) in the Toll Gate Creek watershed, Colorado, were collected and analyzed for major and trace elements to determine trace-element concentrations and stream loads from December 2003 through March 2004, a period of seasonally low flow. Special emphasis was given to selenium (Se) concentrations because historic Se concentrations exceeded current (2004) stream standards. The goal of the project was to assess the distribution of Se concentration and loads in Toll Gate Creek and to determine the potential for rock and unconsolidated sediment in the basin to be sources of Se to the streamwater. Streamwater samples and discharge measurements were collected during December 2003 and March 2004 along Toll Gate Creek and its two primary tributaries - West Toll Gate Creek and East Toll Gate Creek. During both sampling periods, discharge ranged from 2.5 liters per second to 138 liters per second in the watershed. Discharge was greater in March 2004 than December 2003, but both periods represent low flow in Toll Gate Creek, and results of this study should not be extended to periods of higher flow. Discharge decreased moving downstream in East Toll Gate Creek but increased moving downstream along West Toll Gate Creek and the main stem of Toll Gate Creek, indicating that these two streams gain flow from ground water. Se concentrations in streamwater samples ranged from 7 to 70 micrograms per liter, were elevated in the upstream-most samples, and were greater than the State stream standard of 4.6 micrograms per liter. Se loads ranged from 6 grams per day to 250 grams per day, decreased in a downstream direction along East Toll Gate Creek, and increased in a downstream direction along West Toll Gate Creek and Toll Gate Creek. The largest Se-load increases occurred between two sampling locations on West Toll Gate Creek during both sampling periods and between the two sampling locations on the main stem of Toll Gate Creek during the December 2003 sampling. These load increases may indicate that sources of Se exist between these two locations; however, Se loading along West Toll Gate Creek and Toll Gate Creek primarily was characterized by gradual downstream increases in load. Linear regressions between Se load and discharge for both sampling periods had large, significant values of r2 (r2 > 0.96, p < 0.0001) because increases in Se load (per unit of flow increase) were generally constant. This relation is evidence for a constant addition of water having a relatively constant Se concentration over much of the length of Toll Gate Creek, a result which is consistent with a ground-water source for the Se loads. Rock outcroppings along the stream were highly weathered, and Se concentrations in rock and other solid samples ranged from below detection (1 part per million) to 25 parts per million. One sample of efflorescence (a surface encrustation produced by evaporation) had the greatest selenium concentration of all solid samples, was composed of thenardite (sodium sulfate), gypsum (calcium sulfate) and minor halite (sodium chloride), and released all of its Se during a 30-minute water-leaching procedure. Calculations indicate there was an insufficient amount of this material present throughout the watershed to account for the observed Se load in the stream. However, this material likely indicates zones of ground-water discharge that contain Se. This report did not identify an unequivocal source of Se in Toll Gate Creek. However, multiple lines of evidence indicate that ground-water discharge supplies Se to Toll Gate Creek: (1) the occurrence of elevated Se concentrations in the stream throughout the watershed and in the headwater regions, upstream from industrial sources; (2) the progressive increase in Se loads moving downstream, which indicates a continuous input of Se along the stream rather than input from point sources; (3) the occurr

  9. Geohydrology of White Rock Canyon of the Rio Grande from Otowi to Frijoles Canyon

    SciTech Connect

    Purtymun, W.D.; Peters, R.J.; Owens, J.W.

    1980-12-01

    Twenty-seven springs discharge from the Totavi Lentil and Tesuque Formation in White Rock Canyon. Water generally acquires its chemical characteristics from rock units that comprise the spring aquifer. Twenty-two of the springs are separated into three groups of similar aquifer-related chemical quality. The five remaining springs make up a fourth group with a chemical quality that differs due to localized conditions in the aquifer. Localized conditions may be related to recharge or discharge in or near basalt intrusion or through faults. Streams from Pajarito, Ancho, and Frijoles Canyons discharge into the Rio Grande in White Rock Canyon. The base flow in the streams is from springs. Sanitary effluent in Mortandad Canyon from the treatment plant at White Rock also reaches the Rio Grande.

  10. Mixing Model Analysis of Suspended Sediment and Particulate Organic Carbon Sources in White Clay Creek, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Karwan, D. L.; Aufdenkampe, A. K.; Aalto, R. E.; Marquard, J.; Pizzuto, J. E.; Newbold, J. D.

    2013-12-01

    Material exports from watersheds have consequences to upstream catchment elemental budgets, downstream ecosystem processes and water resources management. Despite this importance, quantifying exports of all major and trace elements associated with suspended sediments is challenging due to the highly episodic nature of that export. Constraining sediment sources using various mixing model approaches is further complicated by the diversity of potential sources. In this study, we leveraged the infrastructure of the Christina River Basin Critical Zone Observatory (CRB-CZO) to collect large volume (200 L) samples from 17 storms, including some of the biggest storms of the decade (i.e. Hurricane Irene and Sandy), and 95 potential source soils and sediments within the White Clay Creek watershed, a third-order watershed in southeastern Pennsylvania. On all samples we analyzed major and minor elements, rare earth elements, and radioisotopes in order to determine the erosional source category of stream suspended material, such that differences in the chemical composition of source materials can be used in a multivariate statistical model to predict the chemical composition of suspended sediment. For example, 137Cs is higher in surface and near-surface terrestrial soils and low in streambanks, deeper soils, road cuts, and road dust. Elemental chromium is much higher in road dust than any other source. We integrate sediment fingerprinting analyses common in geomorphological studies of mineral suspended material with biological and ecological characterizations of particulate organic carbon. Through this combination, we determine particle source, a necessary first step to calculating the amount of excess carbon that has complexed with particles during erosion and transit through the watershed. This interdisciplinary project is conducted as one of many studies in the CRB-CZO and directly contributes to the overall research focus of this CZO: to quantify the net carbon sink or source due to mineral production, weathering, erosion and deposition as materials are transported and transformed across geophysical boundaries within a dynamic watershed.

  11. Ross basin, upper Cement Creek in Watershed above North Fork Cement Creek

    USGS Multimedia Gallery

    Western view toward the Red Mountains near Silverton, Colorado, taken just upstream from the North Fork Cement Creek drainage in 2006. The photo illustrates acidic drainage (red drainage at right) and less acidic drainage (white drainage at left of photo) that originates from altered rocks and mine...

  12. Mars' "White Rock" feature lacks evidence of an aqueous origin: Results from Mars Global Surveyor

    USGS Publications Warehouse

    Ruff, S.W.; Christensen, P.R.; Clark, R.N.; Kieffer, H.H.; Malin, M.C.; Bandfield, J.L.; Jakosky, B.M.; Lane, M.D.; Mellon, M.T.; Presley, M.A.

    2001-01-01

    The "White Rock" feature on Mars has long been viewed as a type example for a Martian playa largely because of its apparent high albedo along with its location in a topographic basin (a crater). Data from the Mars Global Surveyor Thermal Emission Spectrometer (TES) demonstrate that White Rock is not anomalously bright relative to other Martian bright regions, reducing the significance of its albedo and weakening the analogy to terrestrial playas. Its thermal inertia value indicates that it is not mantled by a layer of loose dust, nor is it bedrock. The thermal infrared spectrum of White Rock shows no obvious features of carbonates or sulfates and is, in fact, spectrally flat. Images from the Mars Orbiter Camera show that the White Rock massifs are consolidated enough to retain slopes and allow the passage of saltating grains over their surfaces. Material appears to be shed from the massifs and is concentrated at the crests of nearby bedforms. One explanation for these observations is that White Rock is an eroded accumulation of compacted or weakly cemented aeolian sediment. Copyright 2001 by the American Geophysical Union.

  13. Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Allison, L.J.; Blaylock, B.G.; Boston, H.L.; Huston, M.A.; Kimmel, B.L.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Kitchings, J.T.; Olsen, C.R.

    1991-09-01

    On April 1, 1986, a National Pollutant Discharge Elimination System (NPDES) permit was issued for the Oak Ridge National Laboratory (ORNL) (EPA 1986). As specified in Part 3: Special Conditions (Item H) of the permit, a plan for biological monitoring of the Clinch River, White Oak Creek (WOC), Northwest Tributary (NWT) of WOC, Melton Branch (MB), Fifth Creek, and First Creek shall be submitted for approval to the US Environmental Protection Agency (EPA) and the Tennessee Department of Health and Environment (TDHE) within 90 days of the effective date of the permit. The plan, which is referred to in Part 3 (H) of the permit as the Biological Monitoring Plan and Abatement Program (BMPAP), describes characterization monitoring studies to be conducted for the duration of the permit (5 years). In order to be consistent with the terminology used for the Biological Monitoring and Abatement Programs for the Oak Ridge Y-12 Plan and the Oak Ridge K-25 Plant, BMPAP will subsequently be referred to as the Biological Monitoring and Abatement Program (BMAP). The proposed BMAP outlined in this document is based on preliminary discussions held on December 9, 1985, between staff of Martin Marietta Energy Systems, Inc. (ORNL and Central Management), the US Department of Energy (DOE), EPA, and TDHE. 232 refs., 11 figs., 7 tabs.

  14. 68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    68. LITTLE ROCK AND PALMDALE IRRIGATION DISTRICT, LITTLE ROCK DAM: STRESS SHEET, SHEET 4; MAY, 1918. Littlerock Water District files. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA

  15. Roof-rock contamination of Taylor Creek Rhyolite, New Mexico, as recorded in hornblende phenocrysts and biotite xenocrysts

    USGS Publications Warehouse

    Wittke, J.H.; Duffield, W.A.; Jones, C.

    1996-01-01

    The Taylor Creek Rhyolite, a group of coeval, mid-Tertiary, silica-rich rhyolite lava domes in southwestern New Mexico, is notable for recording bulk-rock evidence of minor, yet easily measurable, contamination of its source magma reservoir resulting from assimilation of Proterozoic roof rock. Most of the evidence is recorded in trace element concentrations and 87Sr/86Sri ratios, which are far different in unconlaminated magma and roof rocks. Hornblende phenocrysts and biotite xenocrysts also record the effects of contamination. Electron microprobe analyses show that all hornblende grains are zoned to Mg-rich and Fe- and Mn-poor rims. Rim MgO content is typically about 10 wt% greater than core MgO content. Other hornblende constituents are not measurably variable. Biotite xenocrysts, trace mineral constituents, are present only in the domes that are most contaminated, as judged by bulk-rock variations in trace element concentrations and 87Sr/ 86Sri. Biotite grains are invariably partly to almost completely altered. Microprobe analyses of the cores of the least-altered grains show that large variations in Fe and Mg and that biotite contains 2-20 times as much Mg as fresh biotite phenocrysts in other silica-rich rhyolite lavas. Fe and Mg are negatively correlated in hornblende and biotite, consistent with mixing two end-member compositions. The mass ratio of contaminant to magma was probably less than 1:100, and major constituents, including Al, were not measurably affected in hornblende. Al-in-hornblende barometry yields essentially a constant calculated pressure of about 1.5 kbar, which is consistent with the interpretation that all contamination occurred in a boundary zone about 300 m thick at the top of the magma reservoir.

  16. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  17. Application of a damage model for rock fragmentation to the Straight Creek Mine blast experiments

    SciTech Connect

    Thorne, B.J.

    1991-09-01

    Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.

  18. Conservation practice effectiveness in the irrigated Upper Snake/Rock Creek watershed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Upper Snake-Rock (USR) Conservation Effects Assessment Project (CEAP) was initiated in 2005 to determine the effectiveness of conservation practices in an irrigated watershed. Our objectives were to determine water and salt balances and water quality effects of using sprinkler rather than furrow...

  19. Radiocarbon and cation-radio ages for rock varnish on Tioga and Tahoe marainal boulders of Pine Creek, eastern Sierra Nevada, California, and their paleoclimatic implications

    USGS Publications Warehouse

    Dorn, R.I.; Turrin, B.D.; Jull, A.J.T.; Linick, T.W.; Donahue, D.J.

    1987-01-01

    Accelerator mass spectrometry 14C analyses of organic matter extracted from rock varnishes on morainal boulders yield limiting minimum ages for three crests of the Tioga glaciation. At Pine Creek in the eastern Sierra Nevada, varnish started to form on boulders of the outermost Tioga moraine before 19,000 yr B.P., and varnish originated on the innermost Tioga moraine before 13,200 yr B.P. Comparisons with lake-level, paleohydrological, paleoecological, colluvial, and rock varnish micromorphological data indicate that central-eastern California and western Nevada experienced a moisture-effective period during the late Pleistocene but after the Tioga maximum, and perhaps as Tioga glaciers receded from the mouth of Pine Creek canyon. Varnishes on Tahoeage morainal boulders at Pine Creek have cation-ratio ages of about 143,000-156,000 yr B.P., suggesting that the Tahoe glaciation should not be correlated with oxygen-isotope stage 4 in the early Wisconsin, but rather with stage 6. Varnishes on morainal boulders of an older glaciation at Pine Creek are dated by cation ratio at about 182,000-187,000 yr B.P. ?? 1987.

  20. Floods on Elk River and Whitehead, Shawneehaw, Hanging Rock, Horse Bottom, and Sugar Creeks in the vicinity of Banner Elk, North Carolina

    SciTech Connect

    Not Available

    1985-09-01

    This flood hazard information report describes the extent and severity of the flood potential along selected reaches of the Elk River and Whitehead, Shawneehaw, Hanging Rock, Horse Bottom, and Sugar Creeks in the vicinity of Banner Elk, North Carolina. The report is intended to provide a sound basis for informed decisions regarding the wise use of flood-prone lands within the town of Banner Elk and the surrounding portion of Avery County for those stream reaches covered by this report.

  1. Long-term water quality and biological responses to multiple best management practices in Rock Creek, Idaho

    USGS Publications Warehouse

    Maret, T.R.; MacCoy, D.E.; Carlisle, D.M.

    2008-01-01

    Water quality and macroinvertebrate assemblage data from 1981 to 2005 were assessed to evaluate the water quality and biological responses of a western trout stream to the implementation of multiple best management practices (BMPs) on irrigated cropland. Data from Rock Creek near Twin Falls, Idaho, a long-term monitoring site, were assembled from state and federal sources to provide the evaluation. Seasonal loads of the nonpoint source pollutants suspended sediment (SS), total phosphorus (TP), and nitrate-nitrite (NN) were estimated using a regression model with time-series streamflow data and constituent concentrations. Trends in the macroinvertebrate assemblages were evaluated using a number of biological metrics and nonmetric multidimensional scaling ordination. Regression analysis found significant annual decreases in TP and SS flow-adjusted concentrations during the BMP implementation period from 1983 to 1990 of about 7 and 10%, respectively. These results are coincident with the implementation of multiple BMPs on about 75% of the irrigated cropland in the watershed. Macroinvertebrate assemblages during this time also responded with a change in taxa composition resulting in improved biotic index scores. Taxon specific TP and SS optima, empirically derived from a large national dataset, predicted a decrease in SS concentrations of about 37% (52 to 33 mg/l) and a decrease in TP concentrations of about 50% (0.20 to 0.10 mg/l) from 1981 to 1987. Decreasing trends in TP, SS, and NN pollutant loads were primarily the result of naturally low streamflow conditions during the BMP post-implementation period from 1993 to 2005. Trends in macroinvertebrate responses during 1993 to 2005 were confounded by the introduction of the New Zealand mudsnail (Potamopyrgus antipodarum), which approached densities of 100,000 per m 2 in riffle habitat. The occurrence of this invasive species appears to have caused a major shift in composition and function of the macroinvertebrate assemblages. ?? 2008 American Water Resources Association.

  2. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 3 Appendix C

    SciTech Connect

    1996-11-01

    This report provides details on the baseline ecological risk assessment conducted in support of the Remedial Investigation (RI) Report for the Melton Valley areas of the White Oak Creek watershed (WOCW). The RI presents an analysis meant to enable the US Department of Energy (DOE) to pursue a series of remedial actions resulting in site cleanup and stabilization. The ecological risk assessment builds off of the WOCW screening ecological risk assessment. All information available for contaminated sites under the jurisdiction of the US Department of Energy`s Comprehensive Environmental Response, Compensation, and Liability Act Federal Facilities Agreement within the White Oak Creek (WOC) RI area has been used to identify areas of potential concern with respect to the presence of contamination posing a potential risk to ecological receptors within the Melton Valley area of the White Oak Creek watershed. The risk assessment report evaluates the potential risks to receptors within each subbasin of the watershed as well as at a watershed-wide scale. The WOC system has been exposed to contaminant releases from Oak Ridge National Laboratory and associated operations since 1943 and continues to receive contaminants from adjacent waste area groupings.

  3. Landslides and other mass movements near TA-33, northern White Rock Canyon, New Mexico. Final report

    SciTech Connect

    Dethier, D.P.

    1993-09-01

    Massive slump complexes and at least two rock avalanches flank the eastern rim of the Pajarito Plateau along northern White Rock Canyon, north of TA-33. Landslides failed along mechanically weak rocks in the Santa Fe Group, within the Puye Formation, or in Pliocene alluvial and lacustrine units. The landslides are mainly of early or middle Pleistocene age. The toe area of at least,one slump complex has been active in the late Pleistocene, damming White Rock Canyon near the mouth of Water Canyon. Lacustrine sediment that filled this lake, or series of lakes, to an elevation of at least 1710 m is preserved at a number of upstream sites, including a deposit near the Buckman townsite that exposes 30 m of lacustrine sediment. Charcoal collected at several sites has been submitted for {sup 14}C dating. Landslides, however, probably do not represent a significant short-term threat to the material disposal areas at TA-33. Bedrock that lies beneath the TA-33 mesa is relatively stable, the mesa shows no signs of incipient failure, and past periods of slide activity were responses to rapid downcutting of the Rio Grande and climate change, probably over periods of several decades, at least. Rockfall and headward erosion of gullies do not represent significant decadal hazards on canyon rims near TA-33. Gully migration near MDA-K is a potential threat, but the gullies were not examined in detail. A system of north-trending faults, at least one of which displays Pleistocene activity, bisects the TA-33 mesa. If these faults are capable of producing significant seismic shaking, generalizations about landslide and rockfall hazards must be reevaluated.

  4. Third report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.

    1994-03-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1985, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. The BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs at ORNL. These are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake (WOL). The investigation of contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system was originally a task of the BMAP but, in 1988, was incorporated into the Resource Conservation and Recovery Act Facility Investigation for the Clinch River, a separate study to assess offsite contamination from all three Department of Energy facilities in Oak Ridge.

  5. Evidence of deposition from individual tides and of tidal cycles from the Francis Creek Shale (host rock to the Mazon Creek Biota), Westphalian D (Pennsylvanian), northeastern Illinois

    NASA Astrophysics Data System (ADS)

    Kuecher, Gerald J.; Woodland, Bertram G.; Broadhurst, Frederick M.

    1990-09-01

    A silt-clayrock sequence in the Francis Creek Shale (Pennsylvanian, Westphalian D) of northeastern Illinois is characterized by (1) the presence of numerous clayrock-paired bands; and (2) cyclic variations in thickness of silt between and within these clayrock pairs. The sequence is interpreted to result from tidal influence on inner estuarine sediments; the clayrocks representing deposition from suspension at times of tidal slack, the interbedded silts and fine sands representing deposition from bottom traction during ebb and flood tidal flow. The cyclic variations in thickness is interpreted to represent lunar neap-spring forcing of tidal range in a dominantly diurnal tidal system. The association of tidal characteristics provides a means whereby the rate of sedimentation can be quantified at about 1.0 m/yr of compacted sediment during times of active deposition. Such a high rate of sedimentation would account for the rapid burial and preservation of soft-bodied organisms as indicated by the associated Mazon Creek Biota. Similar rates in similar settings (i.e., tidal estuaries) have recently been reported. Although the depositional setting of many Westphalian sequences was favorable to the preservation of tidal features, few examples have been recorded. It is suggested that evidence of Westphalian tides may have been misinterpreted or overlooked in field studies elsewhere.

  6. Effective porosity and density of carbonate rocks (Maynardville Limestone and Copper Ridge Dolomite) within Bear Creek Valley on the Oak Ridge Reservation based on modern petrophysical techniques

    SciTech Connect

    Dorsch, J.

    1997-02-01

    The purpose of this study is to provide quantitative data on effective porosity of carbonate rock from the Maynardville Limestone and Copper Ridge Dolomite within Bear Creek Valley based on modern petrophysical techniques. The data will be useful for groundwater-flow and contaminant-flow modeling in the vicinity of the Y-12 Plant on the Oak Ridge Reservation (ORR). Furthermore, the data provides needed information on the amount of interconnected pore space potentially available for operation of matrix diffusion as a transport process within the fractured carbonate rock. A second aspect of this study is to compare effective porosity data based on modern petrophysical techniques to effective porosity data determined earlier by Goldstrand et al. (1995) with a different technique. An added bonus of the study is quantitative data on the bulk density and grain density of dolostone and limestone of the Maynardville Limestone and Copper Ridge Dolomite which might find use for geophysical modeling on the ORR.

  7. Waste area grouping 2 Phase I task data report: Ecological risk assessment and White Oak Creek watershed screening ecological risk assessment

    SciTech Connect

    Efroymson, R.A.; Jackson, B.L.; Jones, D.S.

    1996-05-01

    This report presents an ecological risk assessment for Waste Area Grouping (WAG) 2 based on the data collected in the Phase I remedial investigation (RI). It serves as an update to the WAG 2 screening ecological risk assessment that was performed using historic data. In addition to identifying potential ecological risks in WAG 2 that may require additional data collection, this report serves to determine whether there are ecological risks of sufficient magnitude to require a removal action or some other expedited remedial process. WAG 2 consists of White Oak Creek (WOC) and its tributaries downstream of the Oak Ridge National Laboratory (ORNL) main plant area, White Oak Lake (WOL), the White Oak Creek Embayment of the Clinch River, associated flood plains, and the associated groundwater. The WOC system drains the WOC watershed, an area of approximately 16.8 km{sup 2} that includes ORNL and associated WAGs. The WOC system has been exposed to contaminants released from ORNL and associated operations since 1943 and continues to receive contaminants from adjacent WAGs.

  8. A First Look at Airborne Imaging Spectrometer (AIS) Data in an Area of Altered Volcanic Rocks and Carbonate Formations, Hot Creek Range, South Central Nevada

    NASA Technical Reports Server (NTRS)

    Feldman, S. C.; Taranik, J. V.; Mouat, D. A.

    1985-01-01

    Three flight lines of Airborne Imaging Spectrometer (AIS) data were collected in 128 bands between 1.2 and 2.4 microns in the Hot Creek Range, Nevada on July 25, 1984. The flight lines are underlain by hydrothermally altered and unaltered Paleozoic carbonates and Tertiary rhyolitic to latitic volcanics in the Tybo mining district. The original project objectives were to discriminate carbonate rocks from other rock types, to distinguish limestone from dolomite, and to discriminate carbonate units from each other using AIS imagery. Because of high cloud cover over the prime carbonate flight line and because of the acquisition of another flight line in altered and unaltered volcanics, the study has been extended to the discrimination of alteration products. In an area of altered and unaltered rhyolites and latites in Red Rock Canyon, altered and unaltered rock could be discriminated from each other using spectral features in the 1.16 to 2.34 micron range. The altered spectral signatures resembled montmorillonite and kaolinite. Field samples were gathered and the presence of montmorillonite was confirmed by X-ray analysis.

  9. Recent processed results from the Skylab S-192 multispectral scanner. [rock mapping and mineral exploration of White Sands area

    NASA Technical Reports Server (NTRS)

    Thomson, F. J.; Nalepta, R. F.; Vincent, R. K.; Salmon, B. C.

    1975-01-01

    Results of mapping of rock types from the White Sands, New Mexico area using digital tape data from the Skylab S-192 multispectral scanner are presented. Spectral recognition techniques were used to process the geological data and signatures were extracted from the training sets using a set of promising ratio features defined by analysis of ERSIS (Earth Resources Spectral Information System). An analysis of ERSIS spectra of rock types yielded 24 promising spectral channel ratio features for separating the rock types into precambrian, calcareous, and clay materials and those containing ferric iron.

  10. Fourth report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.

    1994-04-01

    In response to a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC) and selected tributaries. BMAP currently consists of six major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring, (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota, (3) biological indicator studies, (4) instream ecological monitoring, (5) assessment of contaminants in the terrestrial environment, and (6) radioecology of WOC and White Oak Lake. The ecological characterization of the WOC watershed will provide baseline data that can be used to document the ecological effects of the water pollution control program and the remedial action program. The long-term nature of BMAP ensures that the effectiveness of remedial measures will be properly evaluated.

  11. Audiomagnetotelluric data to characterize the Revett-type copper-silver deposits at Rock Creek in the Cabinet Mountains Wilderness, Montana

    USGS Publications Warehouse

    Sampson, Jay A.; Rodriguez, Brian D.

    2011-01-01

    The Revett-type deposits at Rock Creek are part of the concealed stratabound copper-silver deposits located in the Cabinet Mountains Wilderness of Montana. The U.S. Geological Survey is conducting a series of multidisciplinary studies as part of the Assessment Techniques for Concealed Mineral Resources project. Geologic, geochemical, geophysical, and mineral resources data are being evaluated with existing and new mineral deposit models to predict the possibility and probability of undiscovered deposits in covered terranes. To help characterize the size, resistivity, and depth of the mineral deposit concealed beneath thick overburden, a regional southwest-northeast audiomagnetotelluric sounding profile was acquired. Further studies will attempt to determine if induced polarization parameters can be extracted from the magnetotelluric data to determine the size of the mineralized area. The purpose of this report is to release the audiomagnetotelluric sounding data collected along that southwest-northeast profile. No interpretation of the data is included.

  12. Rocks.

    ERIC Educational Resources Information Center

    Lee, Alice

    This science unit is designed for limited- and non-English speaking students in a Chinese bilingual education program. The unit covers rock material, classification, characteristics of types of rocks, and rock cycles. It is written in Chinese and simple English. At the end of the unit there is a list of main terms in both English and Chinese, and…

  13. Petrology of Apollo 15 black-and-white rocks 15445 and 15455 - Fragments of the Imbrium impact melt sheet

    NASA Technical Reports Server (NTRS)

    Ryder, G.; Bower, J. F.

    1977-01-01

    The paper describes two macroscopically similar black-and-white rocks, 15445 and 15455, which were collected from the rim of Spur Crater on the Apennine Front. The two Apollo 15 rocks are very similar in chemistry and clast population, but the matrix of 15455 is finer grained than that of 15445. The 15445 sample contains a lithic clast assemblage of plutonic/metamorphic spinel troctolite, troctolite, norite, and anorthosite, and its fine-grained vesicular black coherent matrix consists of a melt-bonded aggregate of small mineral clasts which are mainly olivine, plagioclase, and pink spinel. The two rocks are distinct from any other large samples from the Apollo 15 site. It is suggested that the rocks are samples of an impact melt sheet which forms a bedrock unit of the Apennine Front, and that this melt sheet did not form in a local small-scale event but was produced during the Imbrium impact event.

  14. Late Pleistocene landslide-dammed lakes along the Rio Grande, White Rock Canyon, New Mexico

    SciTech Connect

    Reneau, S.L.; Dethier, D.P.

    1996-11-01

    Massive slump complexes composed of Pliocene basaltic rocks and underlying Miocene and Pliocene sediments flank the Rio Grande along 16 km of northern White Rock Canyon, New Mexico. The toe area of at least one slump complex was active in the late Pleistocene, damming the Rio Grande at least four times during the period from 18 to 12 {sup 14}C ka and impounding lakes that extended 10-20 km upriver. Stratigraphic relationships and radiocarbon age constraints indicate that three separate lakes formed between 13.7 and 12.4 {sup 14}C ka. The age and dimensions of the ca. 12.4 ka lake are best constrained; it had an estimated maximum depth of {approx}30 m, a length of {approx}13 km, a surface area of {approx}2.7 km{sup 2}, and an initial volume of {approx}2.5 x 10{sup 7} m{sup 3}. The youngest landslide-dammed lakes formed during a period of significantly wetter regional climate, strongly suggesting that climate changes were responsible for reactivation of the slump complexes. We are not certain about the exact triggering mechanisms for these landslides, but they probably involved removal of lateral support due to erosion of the slope base by the Rio Grande during periods of exceptionally high flood discharge or rapid incision; increased pore pressures associated with higher water tables; higher seepage forces at sites of ground-water discharge; or some combination of these processes. Seismic shaking could also have contributed to triggering of some of the landslides, particularly if aided by wet antecedent conditions. 54 refs., 19 figs., 3 tabs.

  15. Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains, Wyoming

    USGS Publications Warehouse

    Gettings, M.E.

    2005-01-01

    Magnetic susceptibility was measured for 700 samples of drill core from thirteen drill holes in the porphyry copper-molybdenum deposit of the Stinkingwater mining district in the Absaroka Mountains, Wyoming. The magnetic susceptibility measurements, chemical analyses, and alteration class provided a database for study of magnetic susceptibility in these altered rocks. The distribution of the magnetic susceptibilities for all samples is multi-modal, with overlapping peaked distributions for samples in the propylitic and phyllic alteration class, a tail of higher susceptibilities for potassic alteration, and an approximately uniform distribution over a narrow range at the highest susceptibilities for unaltered rocks. Samples from all alteration and mineralization classes show susceptibilities across a wide range of values. Samples with secondary (supergene) alteration due to oxidation or enrichment show lower susceptibilities than primary (hypogene) alteration rock. Observed magnetic susceptibility variations and the monolithological character of the host rock suggest that the variations are due to varying degrees of alteration of blocks of rock between fractures that conducted hydrothermal fluids. Alteration of rock from the fractures inward progressively reduces the bulk magnetic susceptibility of the rock. The model introduced in this paper consists of a simulation of the fracture pattern and a simulation of the alteration of the rock between fractures. A multifractal model generated from multiplicative cascades with unequal ratios produces distributions statistically similar to the observed distributions. The reduction in susceptibility in the altered rocks was modelled as a diffusion process operating on the fracture distribution support. The average magnetic susceptibility was then computed for each block. For the purpose of comparing the model results with observation, the simulated magnetic susceptibilities were then averaged over the same interval as the measured data. Comparisons of the model and data from drillholes show good but not perfect agreement. ?? 2005 Author(s). This work is licensed under a Creative Commons License.

  16. Clinoptilolite and associated authigenic minerals in Miocene tuffaceous rocks in the Goose Creek Basin, Cassia County, Idaho

    SciTech Connect

    Brownfield, M.E.; Hildebrand, R.T.

    1985-01-01

    Miocene tuffaceous fluviolacustrine deposits in the southeastern part of the Goose Creek basin contain a variety of authigenic minerals, including clinoptilolite, smectite, pyrite, gypsum, and calcite. Clinoptilolite is the primary mineral in the diagenetically altered rhyolitic vitric tuffs in the study area. These zeolitic tuffs locally attain thicknesses of as much as 30 meters. Examinations of samples of the altered tuff beds using the scanning electron microscope reveal that the clinoptilolite usually occurs as clean, well-formed tabular crystals about 0.005 mm across in a matrix of smectite. Prismatic clinoptilolite crystals, as much as 0.06 mm long, are present in the larger vugs. During the Miocene, thick beds of air-fall rhyolitic vitric volcanic ash accumulated in the Goose Creek basin in a coalescing fluviolacustrine depositional setting. In the southeastern part of the basin, the volcanic ash was deposited in a lacustrine fan delta, where it was partly reworked and interbedded with sandstone and siltstone. Diagenetic alteration of the ash beds proceeded in an open hydrologic system. Solution and hydrolysis by ground water initially altered the glass shards to form smectite and silica gel. Clinoptilolite subsequently precipitated on the altered shard surfaces. The paragenesis of pyrite, gypsum, and calcite in the zeolitic tuffs is uncertain.

  17. The geology and tectonic significance of the Big Creek Gneiss, Sierra Madre, southeastern Wyoming

    NASA Astrophysics Data System (ADS)

    Jones, Daniel S.

    The Big Creek Gneiss, southern Sierra Madre, southeastern Wyoming, is a heterogeneous suite of upper-amphibolite-facies metamorphic rocks intruded by post-metamorphic pegmatitic granite. The metamorphic rocks consist of three individual protolith suites: (1) pre- to syn-1780-Ma supracrustal rocks including clastic metasedimentary rocks, calc-silicate paragneiss, and metavolcanic rocks; (2) a bimodal intrusive suite composed of metagabbro and granodiorite-tonalite gneiss; and (3) a younger bimodal suite composed of garnet-bearing metagabbronorite and coarse-grained granitic gneiss. Zircons U-Pb ages from the Big Creek Gneiss demonstrate that: (1) the average age of detrital zircons in the supracrustal rocks is ~1805 Ma, requiring a significant source of 1805-Ma (or older) detritus during deposition, possibly representing an older phase of arc magmatism; (2) the older bimodal igneous suite crystallized at ~1780 Ma, correlative with arc-derived rocks of the Green Mountain Formation; (3) the younger bimodal igneous suite crystallized at ~1763 Ma, coeval with the extensional(?) Horse Creek anorthosite complex in the Laramie Mountains and Sierra Madre Granite batholith in the southwestern Sierra Madre; (4) Big Creek Gneiss rocks were tectonically buried, metamorphosed, and partially melted at ~1750 Ma, coeval with the accretion of the Green Mountain arc to the Wyoming province along the Cheyenne belt; (5) the posttectonic granite and pegmatite bodies throughout the Big Creek Gneiss crystallized at ~1630 Ma and are correlative with the 'white quartz monzonite' of the south-central Sierra Madre. Geochemical analysis of the ~1780-Ma bimodal plutonic suite demonstrates a clear arc-affinity for the mafic rocks, consistent with a subduction environment origin. The granodioritic rocks of this suite were not derived by fractional crystallization from coeval mafic magmas, but are instead interpreted as melts of lower-crustal mafic material. This combination of mantle-derived mafic magmas and coeval crust-derived felsic magmas results in the observed bimodality within an arc environment. The lower average initial epsilonNd of the felsic rocks versus the mafic rocks suggests that the Green Mountain arc may have been built on slightly older (e.g., Penokean-age) basement. Geochemical analysis of the 'white quartz monzonite' demonstrates that it was derived by biotite-dehydration melting of rocks similar in elemental and isotopic composition to the Big Creek Gneiss and probably correlative with the Big Creek Gneiss. The melting event is interpreted as a far-field effect of the ~1650-Ma Mazatzal orogeny, with strain localized at the Cheyenne belt---a crustal-scale rheologic boundary. Geothermobarometry, combined with geochronologic results, suggests that the Big Creek Gneiss was metamorphosed at P--T conditions of at least 775 °C and 7.5 kb during the ~1750-Ma Medicine Bow orogeny. Following a period of tectonic quiescence, probably associated with slow decompression and cooling, tectonic exhumation of the Big Creek Gneiss at ~1650 Ma resulted in nearly isothermal decompression and P--T conditions of ~650 °C and 3.7 kb at the time of 'white quartz monzonite' intrusion. The results of this study suggest that the early (1805[?]--1750 Ma) tectonic events recorded in the Big Creek Gneiss are consanguineous with events recorded in Colorado, requiring a regional perspective for their interpretation. The cycle of convergence (Green Mountain arc magmatism), backarc(?) extension (younger bimodal suite), and later convergence (accretion to the Wyoming province) observed in the Big Creek Gneiss can be correlated with tectonic events throughout central Colorado. Similar cycles of extension and contraction also exist within other paleosubduction systems, notably the Lachlan orogen of eastern Australia, suggesting a fundamental style of tectonism that has been termed a 'retreating accretionary orogen' in recent literature. It is proposed here that the crustal growth of the Colorado province during Yavapai time is also attributable to a 'retreating accre

  18. Yosemite Creek

    USGS Multimedia Gallery

    In this image, Yosemite Creek may be seen just below the base of Yosemite Falls. Yosemite Creek is a 31.2 mile long creek in Yosemite National Park. It eventually joins with the Merced River in Yosemite Valley....

  19. 40Ar/39Ar Data for White Mica, Biotite, and K-Feldspar Samples from Low-Grade Metamorphic Rocks in the Westminster Terrane and Adjacent Rocks, Maryland

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan

    2008-01-01

    This report contains reduced 40Ar/39Ar data of white mica and K-feldspar mineral separates and matrix of a whole rock phyllite, all from low-grade metamorphic rocks of the Westminster terrane and adjacent strata in central Maryland. This report presents these data in a preliminary form, but in more detail than can be accommodated in todays professional journals. Also included in this report is information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by readers unfamiliar with argon isotopic data in the use of these results; many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context.

  20. Maintenance action readiness assessment plan for White Oak Creek and Melton Branch Weir Stilling Pool cleanout at Oak Ridge National Laboratory

    SciTech Connect

    1995-08-01

    This Readiness Assessment Plan has been prepared to document operational readiness for the following maintenance action: (1) removal of sediment from the White Oak Creek and Melton Branch Weir Stilling Pools and (2) disposal of the radiologically contaminated sediment in another location upstream of the weirs in an area previously contaminated by stream overflow from Melton Branch in Waste Area Grouping 2 (WAG) at Oak Ridge National Laboratory. This project is being performed as a maintenance action rather than an action under the Comprehensive Environmental Response, Compensation, and Liability Act because the risk to human health and environment is well below the US Environmental Protection Agency`s level of concern. The decision to proceed as a maintenance action was documented by an interim action proposed plan, which is included in the administrative record. The administrative record is available for review at the US Department of Energy Information Resource Center, 105 Broadway Avenue, Oak Ridge, Tennessee 37830.

  1. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee, January--December 1994

    SciTech Connect

    Borders, D.M.; Ziegler, K.S.; Reece, D.K.; Watts, J.A.; Frederick, B.J.; McCalla, W.L.; Pridmore, D.J.

    1995-08-01

    This report summarizes, for the 12-month period January through December 1994, the available dynamic hydrologic data collected on the White Oak Creek (WOC) watershed as well as information collected on surface flow systems in the surrounding vicinity that may affect the quality or quantity of surface water in the watershed. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to characterize the quantity and quality of water in the surface flow system, assist with the planning and assessment of remedial action activities, provide long-term availability of data and quality assurance of these data, and support long-term measures of contaminant fluxes at a spatial scale to provide a comprehensive picture of watershed performance that is commensurate with future remedial actions.

  2. Yuccas in Pine Creek Canyon

    USGS Multimedia Gallery

    The Mojave Desert, home to drought-tolerant plants like yuccas, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Cany...

  3. Aquia Creek Sandstone

    USGS Multimedia Gallery

    This Aquia Creek Sandstone originated from a quarry about 40 miles south of Washington, D.C., in Stafford County, Va. This type of stone was used in the construction of many of D.C.'s most famous landmarks, including the White House and the U.S. Capitol building....

  4. Mills Creek Report Card

    E-print Network

    Hilderbrand, Robert H.

    Mills Creek Report Card 2013 #12;§¨¦80 Huron River Watershed Old Woman Creek Watershed Chappel BAY VIEW Lake Erie Sandusky Bay Sandusky Bay Drainage Mills Creek Watershed Pipe Creek Watershed primarily of small creek systems: Cold Creek, Mills Creek, Pipe Creek, Sawmill Creek, Old Woman Creek

  5. Validated analytical data summary report for White Oak Creek Watershed remedial investigation supplemental sampling, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect

    1996-09-01

    CDM Federal Programs Corporation (CDM Federal) was tasked by the Environmental Restoration Program of Lockheed Martin Energy Systems Inc. (Energy Systems), to collect supplemental surface soil data for the remedial investigation/feasibility study (RI/FS) for the White Oak Creek (WOC) watershed. The WOC watershed RI/FS is being conducted to define a remediation approach for complying with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) at Oak Ridge National Laboratory (ORNL). The data generated from these supplemental sampling activities will be incorporated into the RUFS to aid decision makers and stakeholders with the selection of remedial alternatives and establish remediation goals for the WOC watershed. A series of Data Quality Objective (DQO) meetings were held in February 1996 to determine data needs for the WOC watershed RI/FS. The meetings were attended by representatives from the Tennessee Department of Environment and Conservation, the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy (DOE), and contractors to DOE. During the DQO meetings, it was determined that the human health risk associated with exposure to radionuclides was high enough to establish a baseline for action; however, it was also determined that the impacts associated with other analytes (mainly metals) were insufficient for determining the baseline ecological risk. Based on this premise, it was determined that additional sampling would be required at four of the Waste Area Groupings (WAGs) included in the WOC watershed to fulfill this data gap.

  6. White Oak Creek Watershed: Melton Valley Area Remedial Investigation Report, Oak Ridge National Laboratory, Oak Ridge, Tennessee: Volume 1 Main Text

    SciTech Connect

    1996-11-01

    The purpose of this Remedial Investigation (RI) report is to present an analysis of the Melton Valley portion of the White Oak Creek (WOC) watershed, which will enable the US Department of Energy (DOE) to pursue a series of cost-effective remedial actions resulting in site cleanup and stabilization. In this RI existing levels of contamination and radiological exposure are compared to levels acceptable for future industrial and potential recreational use levels at the site. This comparison provides a perspective for the magnitude of remedial actions required to achieve a site condition compatible with relaxed access restrictions over existing conditions. Ecological risk will be assessed to evaluate measures required for ecological receptor protection. For each subbasin, this report will provide site-specific analyses of the physical setting including identification of contaminant source areas, description of contaminant transport pathways, identification of release mechanisms, analysis of contaminant source interactions with groundwater, identification of secondary contaminated media associated with the source and seepage pathways, assessment of potential human health and ecological risks from exposure to contaminants, ranking of each source area within the subwatershed, and outline the conditions that remedial technologies must address to stop present and future contaminant releases, prevent the spread of contamination and achieve the goal of limiting environmental contamination to be consistent with a potential recreational use of the site.

  7. Hydrologic data summary for the White Oak Creek watershed at Oak Ridge National Laboratory, Oak Ridge, Tennessee (January--December 1993)

    SciTech Connect

    Borders, D.M.; Frederick, B.J.; Reece, D.K.; McCalla, W.L.; Watts, J.A.; Ziegler, K.S.

    1994-10-01

    This report summarizes, for the 12-month period (January through December 1993), the available dynamic hydrologic data collected, primarily, on the White Oak Creek (WOC) watershed along with information collected on the surface flow systems which affect the quality or quantity of surface water. Identification of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. In addition, hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping (WAG) boundaries and ultimately to the off-site environment. For these reasons, it is of paramount importance to the Environmental Restoration Program (ERP) to collect and report hydrologic data, an activity that contributes to the Site Investigations (SI) component of the ERP. This report provides and describes sources of hydrologic data for Environmental Restoration activities that use monitoring data to quantify and assess the impact from releases of contaminants from ORNL WAGs.

  8. A tale of 10 plutons - Revisited: Age of granitic rocks in the White Mountains, California and Nevada

    USGS Publications Warehouse

    McKee, E.H.; Conrad, J.E.

    1996-01-01

    40Ar/39Ar incremental heating analysis and conventional K-Ar age determinations on plutonic rocks of the White Mountains define two stages of magmatic emplacement: Late Cretaceous, between ca. 90 Ma and 75 Ma, and Middle-Late Jurassic, between ca. 180 and 140 Ma. The Jurassic stage can be divided into two substages, 180-165 Ma and 150-140 Ma. Thermal effects of the younger plutons on the older granitoids partially to completely reset ages, making it difficult to determine the age of emplacement and cooling of several of the plutons even by 40Ar/39Ar incremental heating analyses. New data together with published ages and regional geochronological synthesis of the Sierra Nevada batholith indicate that regions within the batholith have coherent periods or episodes of magmatic activity. In the White Mountains and Sierra Nevada directly to the west there was little or no activity in Early Jurassic and Early Cretaceous time; magmatism took place during relatively short intervals of 15 m.y. or less in the Middle and Late Jurassic and Late Cretaceous periods. The new K-Ar and 40Ar/39Ar analyses of granitoids from the White Mountains help, but do not completely clarify the complex history of emplacement, cooling, and reheating of the batholith.

  9. Annual hydrologic data summary for the White Oak Creek Watershed: Water Year 1990 (October 1989--September 1990)

    SciTech Connect

    Borders, D.M.; Gregory, S.M.; Clapp, R.B.; Frederick, B.J.; Moore, G.K.; Watts, J.A.; Broders, C.C.; Bednarek, A.T.

    1991-09-01

    This report summarizes, for the Water Year 1990 (October 1989-- September 1990), the dynamic hydrologic data collected on the Whiteoak Creek (WOC) Watershed's surface and subsurface flow systems. These systems affect the quality or quantity of surface water and groundwater. The collection of hydrologic data is one component of numerous, ongoing Oak Ridge National Laboratory (ORNL) environmental studies and monitoring programs and is intended to 1. characterize the quantity and quality of water in the flow system, 2. plan and assess remedial action activities, and 3. provide long-term availability of data and assure quality. Characterizing the hydrology of the WOC watershed provides a better understanding of the processes which drive contaminant transport in the watershed. Identifying of spatial and temporal trends in hydrologic parameters and mechanisms that affect the movement of contaminants supports the development of interim corrective measures and remedial restoration alternatives. Hydrologic monitoring supports long-term assessment of the effectiveness of remedial actions in limiting the transport of contaminants across Waste Area Grouping boundaries and ultimately to the off-site environment. The majority of the data summarized in this report are available from the Remedial Action Programs Data and Information Management System data base. Surface water data available within the WOC flow system include discharge and runoff, surface water quality, radiological and chemical contamination of sediments, and descriptions of the outfalls to the WOC flow system. Climatological data available for the Oak Ridge area include precipitation, temperature, humidity, wind speed, and wind direction. Information on groundwater levels, aquifer characteristics, and groundwater quality are presented. Anomalies in the data and problems with monitoring and accuracy are discussed. 58 refs., 54 figs., 15 tabs.

  10. Whiteness.

    PubMed

    Altman, Neil

    2006-01-01

    This paper seeks to make meaning of the experience of being white in the United States at this point in history. The self-awareness of white people is limited by a blind spot around the meaning and impact of being white in a multiracial society. Using psychoanalytic and literary methodology, the author seeks to cast light with which to explore this blind spot. Everyday experiences are used to illustrate the widely pervasive impact of race in the lives of white people, and a clinical vignette illustrates how race might show up in a white-on-white psychotherapy. Enactments within this paper are noted when they are evident to the author PMID:16482960

  11. Detection of organic matter in thin-sections of carbonate rocks using a white card

    NASA Astrophysics Data System (ADS)

    Folk, Robert L.

    1987-11-01

    Organic matter is revealed in exquisite detail when a white card is slipped beneath the thin-section and observation is made by oblique reflected light. The method is superior to fluorescence microscopy for highly matured organic matter. Examples are given from the Triassic Portoro limestone of Italy, revealing organic-rich crosses within dolomite crystals, selective bacterial diagenesis of pellet-rich limestones, and hydrocarbon migration along veins.

  12. A Peek into 'Alamogordo Creek'

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] [figure removed for brevity, see original site] Figure 1Figure 2Figure 3

    On its 825th Martian day (May 20, 2006), NASA's Mars Exploration Rover Opportunity stopped for the weekend to place its instrument arm onto the soil target pictured here, dubbed 'Alamogordo Creek.' Two views from the panoramic camera, acquired at about noon local solar time, are at the top. Below them is a close-up view from the microscopic imager.

    At upper left, a false-color view emphasizes differences among materials in rocks and soil. It combines images taken through the panoramic camera's 753-nanometer, 535-nanometer and 432-nanometer filters. At upper right is an approximately true-color rendering made with the panoramic camera's 600-nanometer, 535-nanometer and 480-nanometer filters. The microscopic-imager frame covers the area outlined by the white boxes in the panoramic-camera views, a rectangle 3 centimeters (1.2 inches) across.

    As Opportunity traverses to the south, it is analyzing soil and rocks along the way for differences from those seen earlier. At this site, the soil contains abundant small spherical fragments, thought to be hematite-rich concretions, plus finer-grained basaltic sand. Most of the spherical fragments seen in the microscopic image are smaller than those first seen at the rover's landing site in 'Eagle Crater,' some five kilometers (3.1 miles) to the north. However, a few larger spherical fragments and other rock fragments can also be seen in the panoramic-camera images.

  13. Exploratory electromyography in the study of vibration-induced white finger in rock drillers.

    PubMed Central

    Chatterjee, D S; Barwick, D D; Petrie, A

    1982-01-01

    Electrophysiological observations made in the hands of a group of 16 rock-drillers were compared with 15 controls. Motor and sensory conduction velocities in the median and ulnar nerves together with the latency, duration, and amplitude of the evoked action potentials were measured. The differences between the groups were statistically significant mainly in latency, duration, and amplitude, especially of the sensory action potentials. Measurement of the conduction velocities, in general, proved to be less sensitive, and the only significant change observed was in the sensory conduction velocity in the median nerve when the first digit in the right hand was stimulated. The most interesting result was evidence of an increased prevalence of possible carpal tunnel syndrome in the exposed (44% compared with 7% in the control group). A similar set of data, but exclusively sensory and not standardised for age and sex, was obtained from 25 university students for comparison with the assigned groups. The results showed that apart from sensory duration the control group had values that were closest to the students while the vibration group had values furthest away. PMID:7066226

  14. When did movement begin on the Furnace Creek fault zone

    SciTech Connect

    Reheis, M. )

    1993-04-01

    About 50 km of post-Jurassic right-lateral slip has occurred on the northern part of the Furnace Creek fault zone (FCFZ). The sedimentology, stratigraphy, and structure of Tertiary rocks suggest that movement on the fault began no earlier than 12--8 Ma and possibly as late as 5--4 Ma. Large remnants of erosion surfaces occur on both sides of the FCFZ in the southern White Mountains and Fish Lake Valley and are buried by rhyolite and basalt, mostly 12--10 Ma; the ash flows and welded tuffs were likely erupted from sources at least 40 km to the east. Thus, the area probably had gentle topography, suggesting a lengthy period of pre-late Miocene tectonic stability. On the west side of the FCFZ, Cambrian sedimentary rocks are buried by a fanglomerate with an [sup [minus

  15. Bridalveil Creek

    USGS Multimedia Gallery

    In this image, Bridalveil Creek is seen flowing just beneath the base of Bridalveil Fall. The waterfall is 617 ft (188 m) in height and is one of the most well-known of Yosemite National Park's waterfalls....

  16. Hell Creek

    USGS Multimedia Gallery

    The Hell Creek and underlying Fox Hills Formations are present at the land surface along the margins of the Williston Basin, but otherwise are the deepest bedrock aquifers that are commonly used in the basin....

  17. A land-use and water-quality history of White Rock Lake Reservoir, Dallas, Texas, based on paleolimnological analyses

    USGS Publications Warehouse

    Platt, Bradbury J.; Van Metre, P.C.

    1997-01-01

    White Rock Lake reservoir in Dallas, Texas contains a 150-cm sediment record of silty clay that documents land-use changes since its construction in 1912. Pollen analysis corroborates historical evidence that between 1912 and 1950 the watershed was primarily agricultural. Land disturbance by plowing coupled with strong and variable spring precipitation caused large amounts of sediment to enter the lake during this period. Diatoms were not preserved at this time probably because of low productivity compared to diatom dissolution by warm, alkaline water prior to burial in the sediments. After 1956, the watershed became progressively urbanized. Erosion decreased, land stabilized, and pollen of riparian trees increased as the lake water became somewhat less turbid. By 1986 the sediment record indicates that diatom productivity had increased beyond rates of diatom destruction. Neither increased nutrients nor reduced pesticides can account for increased diatom productivity, but grain size studies imply that before 1986 diatoms were light limited by high levels of turbidity. This study documents how reservoirs may relate to land-use practices and how watershed management could extend reservoir life and improve water quality.

  18. Sunset over Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  19. Sunset in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  20. Yucca in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  1. Manzanita in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  2. Science Rocks!

    ERIC Educational Resources Information Center

    Prestwich, Dorothy; Sumrall, Joseph; Chessin, Debby A.

    2010-01-01

    It all began one Monday morning. Raymond could not wait to come to large group. In his hand, he held a chunk of white granite he had found. "Look at my beautiful rock!" he cried. The rock was passed around and examined by each student. "I wonder how rocks are made?" wondered one student. "Where do they come from?" asked another. At this moment, a…

  3. Sailing to White Boat

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a composite red-green-blue image of the rock called White Boat. It is the first rock target that Spirit drove to after finishing a series of investigations on the rock Adirondack. White Boat stood out to scientists due to its light color and more tabular shape compared to the dark, rounded rocks that surround it.

  4. 76 FR 32896 - Proposed Flood Elevation Determinations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-07

    ...upstream of the Richardson. White Rock Creek confluence. Approximately...Drive. Floyd Branch (of White Rock Creek).. Approximately 1...Cottonwood Creek (of White Rock Creek) confluence. At the...feet None +456 downstream of Grady Lane. South Branch of...

  5. Water quality in the Anacostia River, Maryland and Rock Creek, Washington, D.C.: Continuous and discrete monitoring with simulations to estimate concentrations and yields of nutrients, suspended sediment, and bacteria

    USGS Publications Warehouse

    Miller, Cherie V.; Chanat, Jeffrey G.; Bell, Joseph M.

    2013-01-01

    Concentrations and loading estimates for nutrients, suspended sediment, and E. coli bacteria were summarized for three water-quality monitoring stations on the Anacostia River in Maryland and one station on Rock Creek in Washington, D.C. Both streams are tributaries to the Potomac River in the Washington, D.C. metropolitan area and contribute to the Chesapeake Bay estuary. Two stations on the Anacostia River, Northeast Branch at Riverdale, Maryland and Northwest Branch near Hyattsville, Maryland, have been monitored for water quality during the study period from 2003 to 2011 and are located near the shift from nontidal to tidal conditions near Bladensburg, Maryland. A station on Paint Branch is nested above the station on the Northeast Branch Anacostia River, and has slightly less developed land cover than the Northeast and Northwest Branch stations. The Rock Creek station is located in Rock Creek Park, but the land cover in the watershed surrounding the park is urbanized. Stepwise log-linear regression models were developed to estimate the concentrations of suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria from continuous field monitors. Turbidity was the strongest predictor variable for all water-quality parameters. For bacteria, water temperature improved the models enough to be included as a second predictor variable due to the strong dependence of stream metabolism on temperature. Coefficients of determination (R2) for the models were highest for log concentrations of suspended sediment (0.9) and total phosphorus (0.8 to 0.9), followed by E. coli bacteria (0.75 to 0.8), and total nitrogen (0.6). Water-quality data provided baselines for conditions prior to accelerated implementation of multiple stormwater controls in the watersheds. Counties are currently in the process of enhancing stormwater controls in both watersheds. Annual yields were estimated for suspended sediment, total nitrogen, total phosphorus, and E. coli bacteria using the U.S. Geological Survey model LOADEST with hourly time steps of turbidity, flow, and time. Yields of all four parameters were within ranges found in other urbanized watersheds in Chesapeake Bay. Annual yields for all four watersheds over the period of study were estimated for suspended sediment (65,500 – 166,000 kilograms per year per square kilometer; kg/yr/km2), total nitrogen (465 - 911 kg/yr/km2), total phosphorus (36 - 113 kg/yr/km2), and E. coli bacteria (6.0 – 38 x 1012 colony forming units/yr/km2). The length of record was not sufficient to determine trends for any of the water-quality parameters; within confidence intervals of the models, results were similar to loads determined by previous studies for the Northeast and Northwest Branch stations of the Anacostia River.

  6. Camel Creek Minnamoolka

    E-print Network

    Greenslade, Diana

    Boundary Creek Crystal Stone TwelveMileCreek Mu rphys Lannercost Yam anie Christmas Creek Nitchaga Gorge BEACH AL RUSSELL-HENRY RD TM KOOLMOON CK TM TULLY SUGAR MILL SINGS FARM TM KENNEDY VALLEY TM FISHERS CK

  7. Sunset Panorama in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  8. Barrel Cactus in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  9. Loblolly Pines in Pine Creek Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  10. Geologic map of the Skull Creek Quadrangle, Moffat County Colorado

    USGS Publications Warehouse

    Van Loenen, R. E.; Selner, Gary; Bryant, W.A.

    1999-01-01

    The Skull Creek quadrangle is in northwestern Colorado a few miles north of Rangely. The prominent structural feature of the Skull Creek quadrangle is the Skull Creek monocline. Pennsylvanian rocks are exposed along the axis of the monocline while hogbacks along its southern flank expose rocks that are from Permian to Upper Cretaceous in age. The Wolf Creek monocline and the Wolf Creek thrust fault, which dissects the monocline, are salient structural features in the northern part of the quadrangle. Little or no mineral potential exists within the quadrangle. A geologic map of the Lazy Y Point quadrangle, which is adjacent to the Skull Creek quadrangle on the west, is also available (Geologic Investigations Series I-2646). This companian map shows similar geologic features, including the western half of the Skull Creek monocline. The geology of this quadrangle was mapped because of its proximity to Dinosaur National Monument. It is adjacent to quadrangles previously mapped to display the geology of this very scenic and popular National Monument. The Skull Creek quadrangle includes parts of the Skull Creek Wilderness Study Area, which was assessed for its mineral resource potential.

  11. Geology, geochemistry, and genesis of the Greens Creek massive sulfide deposit, Admiralty Island, southeastern Alaska

    USGS Publications Warehouse

    Taylor, Cliff D.; Johnson, Craig A.

    2010-01-01

    In 1996, a memorandum of understanding was signed by representatives of the U.S. Geological Survey and Kennecott Greens Creek Mining Company to initiate a cooperative applied research project focused on the Greens Creek massive sulfide deposit in southeastern Alaska. The goals of the project were consistent with the mandate of the U.S. Geological Survey Mineral Resources Program to maintain a leading role in national mineral deposits research and with the need of Kennecott Greens Creek Mining Company to further development of the Greens Creek deposit and similar deposits in Alaska and elsewhere. The memorandum enumerated four main research priorities: (1) characterization of protoliths for the wall rocks, and elucidation of their alteration histories, (2) determination of the ore mineralogy and paragenesis, including metal residences and metal zonation within the deposit, (3) determination of the ages of events important to ore formation using both geochronology and paleontology, and (4) development of computer models that would allow the deposit and its host rocks to be examined in detail in three dimensions. The work was carried out by numerous scientists of diverse expertise over a period of several years. The written results, which are contained in this Professional Paper, are presented by 21 authors: 13 from the U.S. Geological Survey, 4 from Kennecott Greens Creek Mining Company, 2 from academia, and 2 from consultants. The Greens Creek deposit (global resource of 24.2 million tons at an average grade of 13.9 percent zinc, 5.1 percent lead, 0.15 troy ounce per ton gold, and 19.2 troy ounces per ton silver at zero cutoff) formed in latest Triassic time during a brief period of rifting of the Alexander terrane. The deposit exhibits a range of syngenetic, diagenetic, and epigenetic features that are typical of volcanogenic (VMS), sedimentary exhalative (SEDEX), and Mississippi Valley-type (MVT) genetic models. In the earliest stages of rifting, formation of precious-metal-rich silica-barite-carbonate white ores began at low temperature in a shallow, subaqueous setting, probably a thin carbonate shelf on the flanks of the Alexander landmass. Epigenetic carbonate replacement textures in the footwall dolostones are overlain by stratiform silica-carbonate-barite-rich ores and indicate that early mineralization formed at and just beneath the paleo sea floor by mixing of a reduced, precious-metal-rich, base-metal-poor hydrothermal fluid with oxygenated seawater. As rifting intensified, the shelf was downfaulted and isolated as a graben. Isolation of the basin and onset of starved-basin shale sedimentation was concurrent with emplacement of mafic-ultramafic intrusives at shallow levels in the rift, resulting in an increasingly higher temperature and progressively more anoxic ore-forming environment. The formation of the main stage of massive sulfide ores began as the supply of bacterially reduced sulfur increased in the accumulating shales. As the main-stage mineralization intensified, shale sedimentation inundated the hydrothermal system, eventually forming a cap. Biogenic sulfate reduction supplied reduced sulfur to the base of the shales where mixing occurred with hot, base-metal-rich hydrothermal fluids. Ore deposition continued by destruction and epigenetic replacement of the early white ores in proximal areas and by inflation and diagenetic replacement of unlithified shale at the interface between the white ores and the base of the shale cap. Ore deposition waned as the shales became lithified and as the supply of bacterially reduced sulfur to the site of ore deposition ceased. The final stages of rifting resulted in the emplacement of mafic-ultramafic intrusive rocks into the Greens Creek system and extrusion of voluminous basaltic flows at the top of the Triassic section. Greenschist facies metamorphism during the Jurassic-Cretaceous accretion of the Alexander terrane to the continental margin resulted in recrystalli

  12. St. Vrain Creek

    USGS Multimedia Gallery

    St. Vrain Creek below Boulder Creek at Hwy 119 near Longmont, CO; Bob Brandle, Cory Stephens, Matt Nicotra, and Kevin Scofield measure discharge and install temporary streamgage replacing nearby damaged streamgage....

  13. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  14. Strawberry Creek Mainstem Reinventing

    E-print Network

    Cohen, Ronald C.

    Strawberry Creek Mainstem Reinventing Stormwater: A Tour of the UC Berkeley Campus #12;2 3 management, and illustrates how each improvement affects Strawberry Creek. Each stop on the tour is labeled on the map on the facing page. In the 1860s, UC Berkeley was built near Strawberry Creek both for its high

  15. Altitude and Configuration of the Potentiometric Surface in the Upper White Clay Creek and Lower West Branch Brandywine Creek Basins including Portions of Penn, London Grove, New Garden, Londonderry, West Marlborough, Highland, and East Fallowfield Townships and West Grove, Avondale, Modena, and South Coatesville boroughs, Chester County, Pennsylvania, May through July 2006

    USGS Publications Warehouse

    Hale, Lindsay B.

    2007-01-01

    INTRODUCTION Since 1984, the U.S. Geological Survey (USGS) has been mapping the altitude and configuration of the potentiometric surface in Chester County as part of an ongoing cooperative program to measure and describe the water resources of the county. These maps can be used to determine the general direction of ground-water flow and are frequently referenced by municipalities and developers to evaluate ground-water conditions for water supply and resource-protection requirements. For this study, the potentiometric surface was mapped for an area in south-central Chester County. The northern part of the map includes portions of Highland, East Fallowfield, Londonderry, and West Marlborough Townships and South Coatesville and Modena Boroughs. The southern part of the map includes portions of Londonderry, West Marlborough, Penn, London Grove, and New Garden Townships and West Grove and Avondale Boroughs. The study area is mostly underlain by metamorphic rocks of the Glenarm Supergroup including Peters Creek Schist, Octoraro Phyllite, Wissahickon Schist, Cockeysville Mrable, and Setters Quartzite; and by pegmatite, mafic gneiss, felsic gneiss, and diabase. Ground water is obtained from these bedrock formations by wells that intercept fractures. The altitude and configuration of the potentiometric surface was contoured from water levels measured on different dates in available wells during May through July 2006 and from the altitude of springs and perennial streams. Topography was used as a guide for contouring so that the altitude of the potentiometric surface was inferred nowhere to be higher than the land surface. The potentiometric surface shown on this map is an approximation of the water table. The altitude of the actual potentiometric surface may differ from the water table, especially in areas where wells are completed in a semi-confined zone or have long open intervals that reflect the composite hydraulic head of multiple water-yielding fractures. A composite head may differ from the potentiometric-surface altitude, particularly beneath hilltops and valleys where vertical hydraulic gradients are significant.

  16. In-situ Ar-Ar white mica ages reveal differences in mica crystallization behaviour in quartz-rich and calcite-rich rocks of the same shear zone

    NASA Astrophysics Data System (ADS)

    Cossette, Élise; Schneider, David; Warren, Clare; Grasemann, Bernhard

    2013-04-01

    Conventional Ar-Ar dating of tectonites can result in equivocal ages due to mixed mineral populations, excess 40Ar (decoupled from its parent 40K), or partial resetting of the K-Ar systematics. In-situ Ar-Ar dating was performed on white micas from footwall marbles and schists of the Western Cycladic Detachment System (WCDS) of the Aegean. These rocks are part of the Cycladic Blueschist Unit, which experienced HP conditions during the Eocene and strong extension during the Miocene. The rocks contain undeformed, kinked, and neocrystallized micas with the mica phases recording higher strain (elongated grains and mica-fish structures) in quartz-dominated rocks compared to the calcite-dominated assemblages. In both quartzitic and calcitic rocks, deformed white micas are chemically zoned. Two chemical populations were identified: (1) a high component of Al-celadonite in undeformed portions of grains that likely crystallized during high pressure metamorphism; (2) enrichment in muscovite in deformed portions of grains as a result of Tschermak substitution that took place during deformation-induced neocrystallization under shallow crustal conditions. Neocrystallization occurs preferentially in zones of localized deformation and in zones of enhanced fluid availability. The latter is supported by stable isotope (O, C, H) analyses of calcite, dolomite and white micas that suggest a moderate fluid-rock interaction resulting in a coupled depletion of ?18O vs ?13C and ?18O vs ?D. Recrystallized quartz exhibits planar indentation structures, also consistent with fluid-assisted deformation. Completely neocrystallized grains, in quartzitic rocks from Kea Island at the center of the WCDS yield Ar-Ar deformation ages of c. 18-21 Ma, which are interpreted as dating the timing of ductile extension along the detachment system. Undeformed (unkinked, prismatic) portions of white micas in calcitic rocks from Serifos Island at the southern end of the WCDS yield Ar-Ar ages of c. 40-45 Ma, whereas deformed (kinked or strained) portions of the same grains yield younger ages of c. 31-36 Ma. Calcitic rocks are intrinsically less permeable than quartzitic rocks, thus are less affected by fluid-induced recrystallization. Moreover, in calcite-muscovite aggregates, strain is accommodated in calcite (by dislocation creep) whereas in quartz-muscovite aggregates, strain is accommodated in mica (as mica-fish structures). Hence, ductily deformed and completely neocrystallized micas occur more often in quartzitic rocks, whereas calcitic rocks contain micas that are only partially neocrystallized due to a lack of deformation and fluid infiltration. Consequently, consistent with our empirical results, the minimum age of ductile deformation is more likely to be preserved in quartzitic rocks, such as the c. 18-21 Ma obtained on Kea. Similarly, inherited or partially reset ages are likely to be found in calcitic rocks, such as the c. 31-36 Ma from Serifos.

  17. 5. Laurel Creek Road, revetment wall and creek. Great ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Laurel Creek Road, revetment wall and creek. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  18. Guardians of Tradition and Handmaidens to Change: Women's Roles in Creek Economic and Social Life during the Eighteenth Century.

    ERIC Educational Resources Information Center

    Braund, Kathryn E. Holland

    1990-01-01

    Argues that, during the eighteenth century, Creek women were central elements in both cultural preservation and adaptation to white ways. Discusses the deerskin trade, matrilineal customs, male and female roles, sexuality, marriage, intermarriage between Creek women and white traders, and the role of mixed bloods as cultural intermediaries. (SV)

  19. Greigite (Fe3S4) as an indicator of drought - The 1912-1994 sediment magnetic record from White Rock Lake, Dallas, Texas, USA

    USGS Publications Warehouse

    Reynolds, R.L.; Rosenbaum, J.G.; Van Metre, P.; Tuttle, M.; Callender, E.; Goldin, A.

    1999-01-01

    Combined magnetic and geochemical studies were conducted on sediments from White Rock Lake, a reservoir in suburban Dallas (USA), to investigate how land use has affected sediment and water quality since the reservoir was filled in 1912. The chronology of a 167-cm-long core is constrained by the recognition of the pre-reservoir surface and by 137Cs results. In the reservoir sediments, magnetic susceptibility (MS) and isothermal remanent magnetization (IRM) are largely carried by detrital titanomagnetite that originally formed in igneous rocks. Titanomagnetite and associated hematite are the dominant iron oxides in a sample from the surficial deposit in the watershed but are absent in the underlying Austin Chalk. Therefore, these minerals were transported by wind into the watershed. After about 1960, systematic decreases in Ti, Fe, and Al suggest diminished input of detrital Fe-Ti oxides from the surficial deposits. MS and IRM remain constant over this interval, however, implying compensation by an increase in strongly magnetic material derived from human activity. Anthropogenic magnetite in rust and ferrite spherules (from fly ash?) are more common in sediment deposited after about 1970 than before and may account for the constant magnetization despite the implied decrease in detrital Fe-Ti oxides. An unexpected finding is the presence of authigenic greigite (Fe3S4), the abundance of which is at least partly controlled by climate. Greigite is common in sediments that predate about 1975, with zones of concentration indicated by relatively high IRM/MS. High greigite contents in sediment deposited during the early to mid-1950s and during the mid-1930s correspond to several-year periods of below-average precipitation and drought from historical records. Relatively long water-residence times in the reservoir during these periods may have led to elevated levels of sulfate available for bacterial sulfate reduction. The sulfate was probably derived via the oxidation of pyrite that is common in the underlying Austin Chalk. These results provide a basis for the paleoenvironmental interpretation of greigite occurrence in older lake sediments. The results also indicate that greigite formed rapidly and imply that it can be preserved in the amounts produced over a short time span (in this lake, only a few years). This finding thus suggests that, in some lacustrine settings, greigite is capable of recording paleomagnetic secular variation.

  20. Shell Creek Summers

    ERIC Educational Resources Information Center

    Seier, Mark; Goedeken, Suzy

    2005-01-01

    In 2002 Shell Creek Watershed Improvement Group turned to the Newman Grove Public Schools' science department to help educate the public on water quality in the watershed and to establish a monitoring system that would be used to improve surface and groundwater quality in the creek's watershed. Nebraska Department of Environmental Quality provided…

  1. Sunset over Red Rock Canyon

    USGS Multimedia Gallery

    Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Rock Canyon is a National Conservation Area managed by the Bureau of Land Management, located just outside of Las Vegas, Nevada. It is part of...

  2. Mill Creek Summit Lovejoy Buttes

    E-print Network

    Mill Creek Summit Lovejoy Buttes Piute Butte Alpine Butte near-Black Butte Lovejoy Buttes Mill Creek Summit Piute Butte Alpine Butte near-Black Butte Lovejoy Buttes Mill Creek Summit Piute Butte Llano Figure 6. Sample Seismogram from M3 Hector Mine Aftershock Mill Creek Summit Lovejoy Buttes Piute

  3. UPPER PENITENCIA CREEK HISTORICAL ECOLOGY ASSESSMENT

    E-print Network

    ................................................................................................................8 Origin of the Upper Penitencia-Coyote Creek connection Upper Penitencia Creek drains a 24 square mile area within the Coyote Creek watershed in Santa Clara

  4. Electrofishing on Lookout Creek

    USGS Multimedia Gallery

    USGS scientists electrofishing on the Lookout Creek near the Blue River, OR. The fish they collected were analyzed for mercury content and added to the data base that the National Fish Mercury Model is based on. ...

  5. Hot Springs Creek

    USGS Multimedia Gallery

    USGS scientist Jennifer Lewicki measures the discharge along a tributary to Hot Springs Creek, Akutan Island, Alaska. Steam (upper left) rises from 3 high-temperature springs that discharge into the tributary....

  6. The Silver Creek Preserve

    USGS Multimedia Gallery

    Before The Nature Conservancy established the Silver Creek Preserve, the watershed had been degraded by years of livestock grazing and overfishing. Preserve managers have been concerned about sedimentation, increasing stream temperatures, and invasive species. To measure the effectiveness of their ...

  7. CITICO CREEK WILDERNESS STUDY AREA, TENNESSEE.

    USGS Publications Warehouse

    Slack, John F.; Behum, Paul T.

    1984-01-01

    A mineral-resource survey of the Citico Creek Wilderness Study Area, in easternmost Tennessee, indicated that the area offers little promise for the occurrence of metallic mineral resources. Geochemical sampling found traces of gold, copper, cobalt, barium, arsenic, lead, zinc, and thorium in rocks, stream sediments, and panned concentrates, but not in sufficient quantities to indicate the presence of metallic mineral deposits. The only apparent resources are nonmetallic commodities including rock suitable for construction materials, and small amounts of sand and gravel; however, these commodities are found in abundance outside the study area. The potential for oil and natural gas at great depths could not be evaluated by this study. Deep drilling would test the potential for hydrocarbon resources underlying the metamorphic rocks.

  8. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ...LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle...and Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and...Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  9. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ...LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle...Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and...Cherry, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  10. Prophet of War: Josiah Francis and the Creek War.

    ERIC Educational Resources Information Center

    Owsley, Frank L., Jr.

    1985-01-01

    Chronicles the life of Josiah Francis, renowned Creek Prophet and leader. Describes his rise to power in the War of 1812 and his subsequent history as ardent advocate of war against the White man. Characterizes him as a charismatic and intelligent, if sometimes foolish, leader. (JHZ)

  11. 75 FR 8895 - Basin Electric Power Cooperative: Deer Creek Station

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-26

    ...The Rural Utilities Service (RUS) and the Western Area Power Administration (Western) have issued a Draft Environmental Impact Statement (DEIS) for the proposed Deer Creek Station in White, Brookings County, South Dakota. The DEIS was prepared pursuant to the National Environmental Policy Act (NEPA) in accordance with the Council on Environmental Quality (CEQ) regulations for implementing the......

  12. Love Garden AntelopeCreek

    E-print Network

    Powers, Robert

    Love Garden Greenspace AntelopeCreek AntelopeCreek Cather/Pound Recreation Fields Mabel Lee Fields Burnett Hall Andrews Hall Morrill Hall College of Business Administration Love Library Sheldon Museum

  13. Gravity, magnetic, and physical property data in the Smoke Creek Desert area, northwest Nevada

    USGS Publications Warehouse

    Tilden, Janet E.; Ponce, David A.; Glen, Jonathan M.G.; Chuchel, Bruce A.; Tushman, Kira; Duvall, Alison

    2006-01-01

    The Smoke Creek Desert, located approximately 100 km (60 mi) north of Reno near the California-Nevada border, is a large basin situated along the northernmost parts of the Walker Lane Belt (Stewart, 1988), a physiographic province defined by northwest-striking topographic features and strike-slip faulting. Because geologic framework studies play an important role in understanding the hydrology of the Smoke Creek Desert, a geologic and geophysical effort was begun to help determine basin geometry, infer structural features, and estimate depth to Pre-Cenozoic rocks, or basement. In May and June of 2004, and June of 2005, the U.S. Geological Survey (USGS) collected 587 new gravity stations, more than 160 line-kilometers (100 line-miles) of truck-towed magnetometer data, and 111 rock property samples in the Smoke Creek Desert and vicinity in northwest Nevada, as part of an effort to characterize its hydrogeologic framework. In the Smoke Creek Desert area, gravity highs occur over rocks of the Skedaddle Mountains, Fox Range, Granite Range, and over portions of Tertiary volcanic rocks in the Buffalo Hills. These gravity highs likely reflect basement rocks, either exposed at the surface or buried at shallow depths. The southern Smoke Creek Desert corresponds to a 25-mGal isostatic gravity low, which corresponds with a basin depth of approximately 2 km. Magnetic highs are likely due to granitic, andesitic, and metavolcanic rocks, whereas magnetic lows are probably associated with less magnetic gneiss and metasedimentary rocks in the region. Three distinctive patterns of magnetic anomalies occur throughout the Smoke Creek Desert and Squaw Creek Valley, likely reflecting three different geological and structural settings.

  14. Radioactivity at the Copper Creek copper lode prospect, Eagle district, east-central Alaska

    USGS Publications Warehouse

    Wedow, Helmuth; Tolbert, Gene Edward

    1952-01-01

    Investigation of radioactivity anomalies at the Copper Creek copper lode prospect, Eagle district, east-central Alaska, during 1949 disclosed that the radioactivity is associated with copper mineralization in highly metamorphosed sedimentary rocks. These rocks are a roof pendant in the Mesozoic "Charley River" batholith. The radioactivity is probably all due to uranium associated with bornite and malachite.

  15. Rockin' around the Rock Cycle

    ERIC Educational Resources Information Center

    Frack, Susan; Blanchard, Scott Alan

    2005-01-01

    In this activity students will simulate how sedimentary rocks can be changed into metamorphic rocks by intense pressure. The materials needed are two small pieces of white bread, one piece of wheat bread, and one piece of a dark bread (such as pumpernickel or dark rye) per student, two pieces of waxed paper, scissors, a ruler, and heavy books.…

  16. 78 FR 12714 - Intermountain Region, Payette National Forest, New Meadows Ranger District, Idaho; Lost Creek...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... District, Idaho; Lost Creek-Boulder Creek Landscape Restoration Project AGENCY: Forest Service, USDA... Creek-Boulder Creek Landscape Restoration Project. The Lost Creek- Boulder Creek Landscape...

  17. Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado

    USGS Publications Warehouse

    Harrison, J.E.; Wells, J.D.

    1956-01-01

    The Chicago Creek area, Clear Creek County, Colo., forms part of the Front Range mineral belt, which is a northeast-trending belt of coextensive porphyry intrusive rocks and hydrothermal veins of Tertiary age. More than $4.5 million worth of gold, silver, copper, lead, zinc, and uranium was produced from the mines in the area between 1859 and 1954. This investigation was made by the Geological survey on behalf of the Division of Raw Materials of the U.S. Atomic Energy Commission. The bedrock in the area is Precambrian and consists of igneous rocks, some of which have been metamorphosed , and metasedimentary rocks. The metasedimentary rocks include biotite-quartz-plagioclase gneiss that is locally garnetiferous, sillimanitic biotite-quartz gneiss, amphibolite, and lime-silicate gneiss. Rocks that may be metasedimentary or meta-igneous are quartz monzonite gneiss and granite gneiss and pegmatite. The granite gneiss and pegmatite locally form a migmatite with the biotitic metasedimentary rocks. These older rocks have been intruded by granodiorite, quartz, and granite pegmatite. During Tertiary time the Precambrian rocks were invaded by dikes and plugs of quartz monzonite porphyry, alaskite porphyry, granite porphyry, monzonite porphyry, bostonite and garnetiferous bostonite porphyry, quartz bostonite porphyry, trachytic granite porphyry, and biotite-quartz latite-porphyry. Solifluction debris of Wisconsin age forms sheets filling some of the high basins, covering some of the steep slopes, and filling parts of some of the valleys; talus and talus slides of Wisconsin age rest of or are mixed with solifluction debris in some of the high basins. Recent and/or Pleistocene alluvium is present along valley flats of the larger streams and gulches. Two periods of Precambrian folding can be recognized in the area. The older folding crumpled the metasedimentary rocks into a series of upright and overturned north-northeast plunging anticlines and synclines. Quartz monzonite gneiss, granite gneiss and pegmatite, granodiorite, and quartz diorite and associated hornblendite are metamorphosed during this period. The second period of folding appears to have been the reflection at depth of faulting nearer the surface; it resulted in crushing as well as some folding of the already folded rocks into terrace and monoclinal folds that plunge gently east-northeast. The biotite-muscovite granite, which is the youngest major Precambrian rock unit, is both concordant (phacolithic) and crosscutting along the older fold system and has been fractured by the younger fold system.

  18. Geochemical Data for Stream-Sediment, Surface-Water, Rock, and Vegetation Samples from Red Mountain (Dry Creek), an Unmined Volcanogenic Massive Sulfide Deposit in the Bonnifield District, Alaska Range, East-Central Alaska

    USGS Publications Warehouse

    Giles, Stuart A.; Eppinger, Robert G.; Granitto, Matthew; Zelenak, Philip P.; Adams, Monique G.; Anthony, Michael W.; Briggs, Paul H.; Gough, Larry P.; Hageman, Philip L.; Hammarstrom, Jane M.; Horton, John D.; Sutley, Stephan J.; Theodorakos, Peter M.; Wolf, Ruth E.

    2007-01-01

    North-central and northeast Nevada contains numerous large plutons and smaller stocks but also contains many small, shallowly emplaced intrusive bodies, including dikes, sills, and intrusive lava dome complexes. Decades of geologic investigations in the study area demonstrate that many ore deposits, representing diverse ore deposit types, are spatially, and probably temporally and genetically, associated with these igneous intrusions. However, despite the number and importance of igneous instrusions in the study area, no synthesis of geochemical data available for these rocks has been completed. This report presents a synthesis of composition and age data for these rocks. The product represents the first phases of an effort to evaluate the time-space-compositional evolution of Mesozoic and Cenozoic magmatism in the study area and identify genetic associations between magmatism and mineralizing processes in this region.

  19. Warm Springs Creek, Idaho

    USGS Multimedia Gallery

    Warm Springs Creek is a tributary of the Big Wood River in south-central Idaho. It is one of eight sites at which the USGS is conducting an ecological assessment during the summer of 2014. Study results will be published in 2015....

  20. WILLOW CREEK RECLAMATION PROJECT

    EPA Science Inventory

    Working in cooperation with the EPA, Colorado Division of Minerals and Geology, and others, the Willow Creek Reclamation Committee (WCRC) will investigate the sources and character of water entering the mine workings on the Amethyst vein near the town of Creede, Colorado. Activi...

  1. Boulder Creek Study

    ERIC Educational Resources Information Center

    Bingaman, Deirdre; Eitel, Karla Bradley

    2010-01-01

    Boulder Creek runs literally in the backyard of Donnelly Elementary School and happens to be on the EPA list of impaired water bodies. Therefore, a unique opportunity for problem solving opened the door to an exciting chance for students to become scientists, while also becoming active in their community. With the help of the Idaho Department of…

  2. 40Ar/39Ar age-spectrum data for hornblende, biotite, white mica, and K-feldspar samples from metamorphic rocks in the Great Smoky Mountains of North Carolina and Tennessee

    USGS Publications Warehouse

    Kunk, Michael J.; McAleer, Ryan

    2011-01-01

    This report contains reduced 40Ar/39Ar data of hornblende, biotite, white mica and (or) sericite, and potassium-feldspar mineral separates and phyllite groundmass samples from metamorphic rocks of the Great Smoky Mountains in North Carolina and Tennessee. Included in this report are information on the location of the samples and a brief description of the samples. The data contained herein are not interpreted in a geological context, and care should be taken by users unfamiliar with argon isotopic data in the use of these results. No geological meaning is implied for any of the apparent ages presented below, and many of the individual apparent ages are not geologically meaningful. This report is primarily a detailed source document for subsequent publications that will integrate these data into a geological context. All the samples in this report were collected in and around the Great Smoky Mountain National Park in western North Carolina and eastern Tennessee.

  3. Mineralogical and geochemical characteristics of the Archaean LCT pegmatite deposit Cattlin Creek, Ravensthorpe, Western Australia

    NASA Astrophysics Data System (ADS)

    Bauer, Matthias; Dittrich, Thomas; Seifert, Thomas; Schulz, Bernhard

    2014-05-01

    The LCT (lithium-cesium-tantalum) pegmatite Cattlin Creek is located about 550 km ESE of Perth, Western Australia. The complex-type, rare-element pegmatite is hosted in metamorphic rocks of the Archaean Ravensthorpe greenstone belt, which constitutes of the southern edge of the Southern Cross Terranes of the Yilgarn Craton. The deposit is currently mined for both lithium and tantalum by Galaxy Resources Limited since 2010. The pegmatitic melt intruded in a weak structural zone of crossing thrust faults and formed several pegmatite sills, of which the surface nearest mineralized pegmatite body is up to 21 m thick. The Cattlin Creek pegmatite is characterized by an extreme fractionation that resulted in the enrichment of rare elements like Li, Cs, Rb, Sn and Ta, as well as the formation of a vertical zonation expressed by distinct mineral assemblages. The border zone comprises a fine-grained mineral assemblage consisting of albite, quartz, muscovite that merges into a medium-grained wall zone and pegmatitic-textured intermediate zones. Those zones are manifested by the occurrence of megacrystic spodumene crystals with grain sizes ranging from a couple of centimeters up to several metres. The core zone represents the most fractionated part of the pegmatite and consists of lepidolite, cleavelandite, and quartz. It also exhibits the highest concentrations of Cs (0.5 wt.%), Li (0.4 wt.%), Rb (3 wt.%), Ta (0.3 wt.%) and F (4 wt.%). This zone was probably formed in the very last crystallization stage of the pegmatite and its minerals replaced earlier crystallized mineral assemblages. Moreover, the core zone hosts subordinate extremely Cs-enriched (up to 13 wt.% Cs2O) mineral species of beryl. The chemical composition of this beryl resamples that of the extreme rare beryl-variety pezzotaite. Other observed subordinate, minor and accessory minerals comprise tourmaline, garnet, cassiterite, apatite, (mangano-) columbite, tantalite, microlite (Bi-bearing), gahnite, fluorite, sphalerite, zircon, and uranitnite. The mineral composition of micas and the Nb-Ta minerals columbite and tantalite where also used to determine the degree of fractionation within the different zones of the Cattlin Creek pegmatite. The mineral composition of white micas clearly points out a fractionation trend from lithian muscovite composition within the border zone via mixed composition in the intermediate zone towards lepidolite and polylithionite composition within the core zone. A similar trend is shown by the Nb-Ta mineral compositions, the border and intermediate zone is dominated by ferrocolumbite and manganocolumbite, whereas in the core zone only manganotantalite is present. Further geochronological and isotopical investigations studies will help to understand the regional geological framework and provenance history of the Cattlin Creek pegmatite in more detail.

  4. Talking Rocks.

    ERIC Educational Resources Information Center

    Rice, Dale; Corley, Brenda

    1987-01-01

    Discusses some of the ways that rocks can be used to enhance children's creativity and their interest in science. Suggests the creation of a dramatic production involving rocks. Includes basic information on sedimentary, igneous, and metamorphic rocks. (TW)

  5. 75 FR 40034 - Northeastern Tributary Reservoirs Land Management Plan, Beaver Creek, Clear Creek, Boone, Fort...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ...Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and...Beaver Creek, Clear Creek, Boone, Fort Patrick Henry, South Holston, Watauga, and...southwest corner of Virginia. Boone, Fort Patrick Henry, and South Holston reservoirs...

  6. CANEY CREEK WILDERNESS, ARKANSAS.

    USGS Publications Warehouse

    Ericksen, George E.; Dunn, Maynard L., Jr.

    1984-01-01

    Metallic and nonmetallic mineral resources identified in the Caney Creek Wilderness, Arkansas, include many small manganese deposits in areas of novaculite, tripoli, shale, and slate. Small amounts of hand-sorted manganese-oxide ore have been recovered from several of the manganese deposits during sporadic mining activity. Additional manganese resources remain in the known deposits, but the amount in any given deposit is small.

  7. Surficial geology of the Cane Creek basin, Lauderdale County, Tennessee

    USGS Publications Warehouse

    Miller, J.H.

    1991-01-01

    The surficial geology of the Cane Creek basin, in Lauderdale County, West Tennessee, was studied from 1985-88. Peoria Loess is the parent material from which soils in the Cane Creek drainage basin were derived. In general, a brown silt grades into a gray silt from 5 to I7 feet below ground surface. This color change probably represents depth to water table prior to the channelization of Cane Creek. Only at river mile 11.9 does rock outcrop near the main channel. Lower reaches of major tributaries have surficial geology similar to the main channel. In upper reaches of Hyde Creek and Fain Spring Creek, the sequence from the St&ace is sand and gravels, red-brown sandstone, sand and clay layers, and then, an orange sand layer. Coarse-grained deposits are found most often along the northern boundary of the basin and only occasionally in areas to the west and south of the main channel. Depth to sand or gravel ranges from about 0 to 158 feet in the uplands, and generally deeper than 40 feet near the main channel.

  8. Recurrent faulting and petroleum accumulation, Cat Creek Anticline, central Montana

    SciTech Connect

    Nelson, W.J. )

    1991-06-01

    The Cat Creek anticline, scene of central Montana's first significant oil discovery, is underlain by a south-dipping high-angle fault (Cat Creek fault) that has undergone several episodes of movement with opposite sense of displacement. Borehole data suggest that the Cat Creek fault originated as a normal fault during Proterozoic rifting concurrent with deposition of the Belt Supergroup. Reverse faulting took place in Late Cambrian time, and again near the end of the Devonian Period. The Devonian episode, coeval with the Antler orogeny, raised the southern block several hundred feet. The southern block remained high through Meramecian time, then began to subside. Post-Atokan, pre-Middle Jurassic normal faulting lowered the southern block as much as 1,500 ft. During the Laramide orogeny (latest Cretaceous-Eocene) the Cat Creek fault underwent as much as 4,000 ft of reverse displacement and a comparable amount of left-lateral displacement. The Cat Creek anticline is a fault-propagation fold; en echelon domes and listric normal faults developed along its crest in response to wrenching. Oil was generated mainly in organic-rich shales of the Heath Formation (upper Chesterian Series) and migrated upward along tectonic fractures into Pennsylvanian, Jurassic, and Cretaceous reservoir rocks in structural traps in en echelon domes. Production has been achieved only from those domes where structural closure was retained from Jurassic through Holocene time.

  9. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 1 2014-07-01 2014-07-01 false Snake Creek. 117.331 Section 117.331 Navigation... Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida,...

  10. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 1 2013-07-01 2013-07-01 false Snake Creek. 117.331 Section 117.331 Navigation... Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida,...

  11. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1 2011-07-01 2011-07-01 false Snake Creek. 117.331 Section 117.331 Navigation... Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida,...

  12. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 1 2012-07-01 2012-07-01 false Snake Creek. 117.331 Section 117.331 Navigation... Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida,...

  13. USGS Scientist Taking Measurements Along Bear Creek

    USGS Multimedia Gallery

    USGS Scientist Taking Measurements Along Bear Creek - Photo taken by Heidi Koontz, USGS Communications, Friday, Sept. 13. USGS scientist Ben Glass conducting current profiler measurements along Bear Creek near Bear Creek Lake in Morrison, Colo....

  14. 33 CFR 117.331 - Snake Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1 2010-07-01 2010-07-01 false Snake Creek. 117.331 Section 117.331 Navigation... Specific Requirements Florida § 117.331 Snake Creek. The draw of the Snake Creek bridge, at Islamorada, Florida,...

  15. Assessment of Hydrology, Water Quality, and Trace Elements in Selected Placer-Mined Creeks in the Birch Creek Watershed near Central, Alaska, 2001-05

    USGS Publications Warehouse

    Kennedy, Ben W.; Langley, Dustin E.

    2007-01-01

    Executive Summary The U.S. Geological Survey, in cooperation with the Bureau of Land Management, completed an assessment of hydrology, water quality, and trace-element concentrations in streambed sediment of the upper Birch Creek watershed near Central, Alaska. The assessment covered one site on upper Birch Creek and paired sites, upstream and downstream from mined areas, on Frying Pan Creek and Harrison Creek. Stream-discharge and suspended-sediment concentration data collected at other selected mined and unmined sites helped characterize conditions in the upper Birch Creek watershed. The purpose of the project was to provide the Bureau of Land Management with baseline information to evaluate watershed water quality and plan reclamation efforts. Data collection began in September 2001 and ended in September 2005. There were substantial geomorphic disturbances in the stream channel and flood plain along several miles of Harrison Creek. Placer mining has physically altered the natural stream channel morphology and removed streamside vegetation. There has been little or no effort to re-contour waste rock piles. During high-flow events, the abandoned placer-mine areas on Harrison Creek will likely contribute large quantities of sediment downstream unless the mined areas are reclaimed. During 2004 and 2005, no substantial changes in nutrient or major-ion concentrations were detected in water samples collected upstream from mined areas compared with water samples collected downstream from mined areas on Frying Pan Creek and Harrison Creek that could not be attributed to natural variation. This also was true for dissolved oxygen, pH, and specific conductance-a measure of total dissolved solids. Sample sites downstream from mined areas on Harrison Creek and Frying Pan Creek had higher median suspended-sediment concentrations, by a few milligrams per liter, than respective upstream sites. However, it is difficult to attach much importance to the small downstream increase, less than 10 milligrams per liter, in median suspended-sediment concentration for either basin. During low-flow conditions in 2004 and 2005, previously mined areas investigated on Harrison Creek and on Frying Pan Creek did not contribute substantial suspended sediments to sample sites downstream from the mined areas. No substantial mining-related water- or sediment-quality problems were detected at any of the sites investigated in the upper Birch Creek watershed during low-flow conditions. Average annual streamflow and precipitation were near normal in 2002 and 2003. Drought conditions, extreme forest fire impact, and low annual streamflow set apart the 2004 and 2005 summer seasons. Daily mean streamflow for upper Birch Creek varied throughout the period of record-from maximums of about 1,000 cubic feet per second to minimums of about 20 cubic feet per second. Streamflow increased and decreased rapidly in response to rainfall and rapid snowmelt events because the steep slopes, thin soil cover, and permafrost areas in the watershed have little capacity to retain runoff. Median suspended-sediment concentrations for the 115 paired samples from Frying Pan Creek and 101 paired samples from Harrison Creek were less than the 20 milligrams per liter total maximum daily load. The total maximum daily load was set by the U.S. Environmental Protection Agency for the upper Birch Creek basin in 1996. Suspended-sediment paired-sample data were collected using automated samplers in 2004 and 2005, primarily during low-flow conditions. Suspended-sediment concentrations in grab samples from miscellaneous sites ranged from less than 1 milligram per liter during low-flow conditions to 1,386 milligrams per liter during a high-flow event on upper Birch Creek. Streambed-sediment samples were collected at six sites on Harrison Creek, two sites on Frying Pan Creek, and one site on upper Birch Creek. Trace-element concentrations of mercury, lead, and zinc in streambed sedimen

  16. Geology and petrology of the Wooley Creek batholith, Klamath Mountains, northern California

    NASA Astrophysics Data System (ADS)

    Barnes, C. G.

    The Wooley Creek batholith was intruded into metamorphic rocks of the western Paleozoic and Triassic belt (TrPz) of the Klamath Mountains 162 + or -2 my ago. The batholith crosscut a thrust fault between the lowest subunit of the TrPz, the Rattlesnake Creek terrane, and overlying Hayfork terrain metasediments. Contact metamorphic assemblages in the wall rocks show that the structurally deepest part of the pluton crystallized at about 7.5kb whereas the structurally shallowest part crystallized at about 3kb. The batholith and its host rocks were subsequently thrust over low-density rocks of the Galice Fm. and then tilted toward the southwest, presumably by regional doming. The Wooley Creek batholith is gradationally zoned from two-pyroxene gabbro in the deepest part to hornblende-biotite granite in the shallowest part. The plutonic rocks fall on two distinct chemical trends that correspond to rocks that contain pyroxene and rocks with only hornblende and biotite as mafic minerals. Pyroxene-bearing rocks are structurally lower and are enriched in Mg, Ca, Cr, Ni, Co, and Sc.

  17. Tectonic significance of Currant Creek formation, north-central Utah

    SciTech Connect

    Isby, J.S.; Picard, M.D.

    1984-07-01

    The Currant Creek Formation is composed of conglomerate, sandstone, and fine-grained clastic rocks that crop out along the northwestern margin of the Uinta basin in north-central Utah. Lateral gradations in grain size define proximal, medial, and distal parts of coalescing alluvial-fan deposits that prograded eastward from the active Sevier-Laramide orogenic belt during Maestrichtian through Paleocene (.) time. Paleocurrent directions indicate a dominant southerly transport direction and a minor easterly component. Strong east and southeasterly directions, measured in imbricated clasts and in sand lenses in conglomerate, indicate multiple source areas for the detritus. Source of the coarse-grained detritus in the Currant Creek Formation was the Charleston thrust sheet. Conglomeratic clasts are composed of Precambrian and Cambrian quartzite, chert derived from Cambrian and Mississippian carbonate beds, and Pennsylvanian sandstone. These rocks are exposed in the upper plate of the Charleston thrust near Deer Creek Reservoir, Mount Timpanogos, and Strawberry Reservoir. At Big and Little Cottonwood Canyons, the same rocks are exposed in the lower plate.

  18. Tumblin CreekTumblin Creek Floodplain:Floodplain

    E-print Network

    Ma, Lena

    1 Tumblin CreekTumblin Creek Floodplain:Floodplain: Impacts AssessmentImpacts Assessment floodplain.floodplain. The goal of this project is to assess how impactsThe goal of this project is to assess how impacts to the floodplain have affected the structure andto the floodplain have affected

  19. 75 FR 27332 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources, LLC; Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC; Eagle Creek Water Resources... Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC.... For the transferee: Mr. Paul Ho, Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC,...

  20. Figure S1. Rock backgrounds of Lake Malawi plotted in the colour space of the UV-sensitive visual system of the lake's rock dwelling cichlids. Excrement covered rock (triangles), brown rock (diamonds), other rocky patches (other

    E-print Network

    Carleton, Karen L.

    UVUV M L 445 425 351 650520 Erock1 Erock2 Erock3 Brock Figure S1. Rock backgrounds of Lake Malawi plotted in the colour space of the UV-sensitive visual system of the lake's rock dwelling cichlids. Excrement covered rock (triangles), brown rock (diamonds), other rocky patches (other symbols), and white

  1. Fault tectonics and earthquake hazards in the Peninsular Ranges, Southern California. [including San Diego River, Otay Mts., Japatul Valley, Barrett Lake, Horsethief Canyon, Pine Valley Creek, Pine Creek, and Mojave Desert

    NASA Technical Reports Server (NTRS)

    Merifield, P. M. (principal investigator)

    1975-01-01

    The author has identified the following significant results. Thin sections of rock exposed along the San Diego River linear were prepared and determined to be fault breccia. Single band and ratio images of the western Mojave Desert were prepared from the multispectral scanner digital tapes. Subtle differences in color of soil and rock are enhanced on the ratio images. Two north-northeast trending linears (Horsethief Canyon and Pine Valley Creek) and an east-west linear (Pine Creek) were concluded to have resulted from erosion along well-developed foliation in crystalline basement rocks.

  2. The Beaver Creek story

    USGS Publications Warehouse

    Doyle, W.H., Jr.; Whitworth, B.G.; Smith, G.F.; Byl, T.D.

    1996-01-01

    Beaver Creek watershed in West Tennessee includes about 95,000 acres of the Nation's most productive farmland and most highly erodible soils. In 1989 the U.S. Geological Survey, in cooperation with the Tennessee Department of Agriculture, began a study to evaluate the effect of agricultural activities on water quality in the watershed and for best management practices designed to reduce agricultural nonpoint-source pollution. Agrichemical monitoring included testing the soils, ground water, and streams at four farm sites ranging from 27 to 420 acres. Monitoring stations were operated downstream to gain a better understanding of the water chemistry as runoff moved from small ditches into larger streams to the outlet of the Beaver Creek watershed. Prior to the implementation of best management practices at one of the farm study sites, some storms produced an average suspended-sediment concentration of 70,000 milligrams per liter. After the implementation of BMP's, however, the average value never exceeded 7,000 milligrams per liter. No-till crop production was the most effective best management practice for conserving soil on the farm fields tested. A natural bottomland hardwood wetland and a constructed wetland were evaluated as instream resource-management systems. The wetlands improved water quality downstream by acting as a filter and removing a significant amount of nonpoint-source pollution from the agricultural runoff. The constructed wetland reduced the sediment, pesticide, and nutrient load by approximately 50 percent over a 4-month period. The results of the Beaver Creek watershed study have increased the understanding of the effects of agriculture on water resources. Study results also demonstrated that BMP's do protect and improve water quality.

  3. CRADIT FARM DRIVE CREEK DRIVE

    E-print Network

    Davis, H. Floyd

    CRADIT FARM DRIVE THURSTON CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME CREEK DRIVE CENTRALAVENUE ENUE UNIVERSITY AVENUE EASTAVENUE FOREST HOME DRIVE HIGHLAND ROBERTS PLACE AVENUE FALL THURSTONAVENUE TOWER ROAD AVENUE PETER LIBE LOPE FARRAND GARDEN ROCKWELL AZALEA GARDEN MINNS

  4. Deep Creek Road Banded Siltite

    USGS Multimedia Gallery

    Outcrop of the banded siltite unit of the Apple Creek Formation of the Lemhi Group, in the Lemhi sub-basin of the Mesoproterozoic Belt Basin. This exposure is along the Deep Creek road, southeast of the Blackbird cobalt-copper mine area, in the Salmon River Mountains of east-central Idaho. USGS inte...

  5. Chollas in Pine Creek Canyon

    USGS Multimedia Gallery

    The Mojave Desert, home to drought-tolerant plants like Cholla cacti, gradually mixes with loblolly pine ecosystems in Pine Creek Canyon. Pine Creek Canyon is a remnant ecosystem of loblolly pines. A remnant ecosystem is the last vestige of an ecosystem type that used to be more widespred. Red Roc...

  6. Waller Creek Urban Redevelopment 

    E-print Network

    McDonald, S.

    2013-01-01

    Antonio, Texas Dec. 16-18 22 Existing Conditions at 5th Street Bridge • Fragmented creekside path • Cut-off from streetscape • Not ADA-Compliant • Inactive creek frontage • Partially within flood plain ESL-KT-13-12-51 CATEE 2013: Clean Air Through Energy... • Not ADA-compliant • Views to back of parking structures • Disconnected from Red River activity ESL-KT-13-12-51 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Anto io, Texas Dec. 16-18 Potential Development Potential Development 27 A New...

  7. Correlation of Twin Creek limestone with Arapien shale in Arapien embayment, Utah - preliminary appraisal

    SciTech Connect

    Sprinkel, D.A.; Waanders, G.L.

    1984-07-01

    Striking and important stratigraphic patterns have emerged as a result of recent work during which members of the Twin Creek Limestone were correlated with the Arapien Shale, all of Middle Jurassic age. These correlations, determined first on the basis of electric and lithologic logs, are supported by recent palynologic work. Three distinct dinoflagellate assemblages, assigned to the Bajocian(.), Bathonian, and Callovian stages, form the paleontologic basis for these correlations. The Bajocian(.) assemblage is found in rocks of the Sliderock and Rich Members of the Twin Creek Limestone. The Bathonian assemblage is found in units of the Boundary Ridge and Watton Canyon Members of the Twin Creek, and also in units of the lower Arapien Shale (lower Leeds Creek Member of the Twin Creek of Wyoming). The Callovian assemblage is found in rocks of the upper Arapien (upper Leeds Creek and Giraffe Creek Members of the Twin Creek of Wyoming). Isopach maps, based on these correlations, indicate that most of central Utah was the site of a large marine embayment - the Arapien embayment -that was flanked on the west, south, and east by highlands. The maps also suggest that the ancestral Uinta Mountains, a submerged feature, affected sedimentation as early as Bajocian time, and became a significant barrier from the late Bathonian through Callovian. In central Utah, marine carbonates were deposited in the Arapien embayment during deposition of the Gypsum Spring through Watton Canyon Members of the Twin Creek Limestone. During deposition of the Arapien Shale, a major northward regression occurred; the embayment shrank to form a smaller basin - the Arapien basin - that lay directly south of the ancestral Uinta Mountains. Most of the Arapien Shale is shallow-water deposits that formed in the basin under hypersaline conditions.

  8. Metals in Devonian kerogenous marine strata at Gibellini and Bisoni properties in southern Fish Creek Range, Eureka County, Nevada

    USGS Publications Warehouse

    Desborough, George A.; Poole, F.G.; Hose, R.K.; Radtke, A.S.

    1979-01-01

    A kerogen-rich sequence of siliceous mudstone, siltstone, and chert as much as 60 m thick on ridge 7129 in the southern Fish Creek Range, referred to as Gibellini facies of the Woodruff Formation, has been evaluated on the surface and in drill holes principally for its potential resources of vanadium, zinc, selenium, molybdenum, and syncrude oil content. The strata are part of a strongly deformed allochthonous mass of eugeosynclinal Devonian marine rocks that overlie deformed allochthonous Mississippian siliceous rocks and relatively undeformed autochthonous Mississippian Antler flysch at this locality. The vanadium in fresh black rocks obtained from drill holes and fresh exposures in trenches and roadcuts occurs chiefly in organic matter. Concentrations of vanadium oxide (V2O5) in unoxidized samples range from 3,000 to 7,000 ppm. In oxidized and bleached rock that is prevalent at the surface, concentrations of vanadium oxide range from 6,000 to 8,000 ppm, suggesting a tendency toward enrichment due to surficial weathering and ground-water movement. Zinc occurs in sphalerite, and selenium occurs in organic matter; molybdenum appears to occur both in molybdenite and in organic matter. Concentrations of zinc in unoxidized rock range from 4,000 to 18,000 ppm, whereas in oxidized rock they range from 30 to 100 ppm, showing strong depletion due to weathering. Concentrations of selenium in unoxidized rock range from 30 to 200 ppm, whereas in oxidized rock they range from 200 to 400 ppm, indicating some enrichment upon weathering. Concentrations of molybdenum in unoxidized rock range from 70 to 960 ppm, whereas in oxidized rock they range from 30 to 80 ppm, indicating strong depletion upon weathering. Most fresh black rock is low-grade oil shale, and yields as much as 12 gallons/short ton of syncrude oil. Metahewettite is the principal vanadium mineral in the oxidized zone, but it also occurs sparsely as small nodules and fillings of microfractures in unweathered strata. In fresh rock, bluish-white opaline-like silica (chalcedonic quartz) fills microfractures, and is believed to have originated by diagenetic mobilization of opaline silica from radiolarian tests and sponge spicules. As revealed by microscopic study, the Gibellini facies originally consisted of siliceous muds, slimes, and oozes high in organic constituents. The organic matter is amorphous flaky and stringy sapropel, and probably includes remains of bacteria, phytoplankton, zooplankton, and minor higher plants. Recognizable organic remnants include radiolarian tests, sponge spicules, conodonts, brachiopod shells, algae, and humic debris. Diagnostic radiolarians indicate a Late Devonian age for the Gibellini facies of the Woodruff Formation. Some pyrite is disseminated through the rock and may be primary (syngenetic) but significant pyrite and marcasite occur in chalcedonic quartz veinlets and appear to be diagenetic. In fresh rock, black solid bitumen and liquid oil fill voids and microfractures. These early phase hydrocarbons probably were released during diagenesis from complex nonhydrocarbon molecular structures originating from living organisms, and formed without any major thermal degradation of the kerogen. Gas chromatographic analysis of the saturated hydrocarbon fraction indicates a very complex mixture dominated by branched and cyclic compounds. Conodont and palynomorph color alteration, vitrinite reflectance, and other organic geochemical data suggest that the organic matter in the rock is thermally immature and has not been subjected to temperatures greater than 60?C since deposition in Devonian time. All of these characteristics are consistent with the interpretation of a relatively low temperature and a shallow-burial history for the Gibellini facies on ridge 7129.

  9. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ... From the Federal Register Online via the Government Printing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek... No.: 9690-109. c. Date Filed: June 19, 2012. d. Applicants: Eagle Creek Hydropower, LLC; Eagle...

  10. Experimental study of opening-mode crack growth in rock. Progress report and renewal proposal

    SciTech Connect

    Gordon, R.B.

    1981-01-01

    The objective is to relate fracture toughness to rock microstructure. Crack propagation measurements are made on samples of stockbridge marble and Stony Creek granite. Force-displacement curves are recorded and the texture of the fracture surfaces observed. (ACR)

  11. Ship Creek bioassessment investigations

    SciTech Connect

    Cushing, C.E.; Mueller, R.P.; Murphy, M.T.

    1995-06-01

    Pacific Northwest Laboratory (PNL) was asked by Elmendorf Air Force Base (EAFB) personnel to conduct a series of collections of macroinvertebrates and sediments from Ship Creek to (1) establish baseline data on these populations for reference in evaluating possible impacts from Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) activities at two operable units, (2) compare current population indices with those found by previous investigations in Ship Creek, and (3) determine baseline levels of concentrations of any contaminants in the sediments associated with the macroinvertebrates. A specific suite of indices established by the US Environmental Protection Agency (EPA) was requested for the macroinvertebrate analyses; these follow the Rapid Bioassessment Protocol developed by Plafkin et al. (1989) and will be described. Sediment sample analyses included a Microtox bioassay and chemical analysis for contaminants of concern. These analyses included, volatile organic compounds, total gasoline and diesel hydrocarbons (EPA method 8015, CA modified), total organic carbon, and an inductive-coupled plasma/mass spectrometry (ICP/MS) metals scan. Appendix A reports on the sediment analyses. The Work Plan is attached as Appendix B.

  12. Kiowa Creek Switching Station

    SciTech Connect

    Not Available

    1990-03-01

    The Western Area Power Administration (Western) proposes to construct, operate, and maintain a new Kiowa Creek Switching Station near Orchard in Morgan County, Colorado. Kiowa Creek Switching Station would consist of a fenced area of approximately 300 by 300 feet and contain various electrical equipment typical for a switching station. As part of this new construction, approximately one mile of an existing 115-kilovolt (kV) transmission line will be removed and replaced with a double circuit overhead line. The project will also include a short (one-third mile) realignment of an existing line to permit connection with the new switching station. In accordance with the Council on Environmental Quality (CEQ) regulations for implementing the procedural provisions of the National Environmental Policy Act of 1969 (NEPA), 40 CFR Parts 1500--1508, the Department of Energy (DOE) has determined that an environmental impact statement (EIS) is not required for the proposed project. This determination is based on the information contained in this environmental assessment (EA) prepared by Western. The EA identifies and evaluates the environmental and socioeconomic effects of the proposed action, and concludes that the advance impacts on the human environment resulting from the proposed project would not be significant. 8 refs., 3 figs., 1 tab.

  13. FLINT CREEK RANGE WILDERNESS STUDY AREA, MONTANA.

    USGS Publications Warehouse

    Ericksen, George E.; Marks, Lawrence Y.

    1984-01-01

    A mineral survey of the Flint Creek Range Wilderness study area, Montana shows the presence of mineral deposits. By far the most important are low-grade, potentially large, contact-metamorphic tungsten deposits. A large stockwork molybdenum deposit is probably low in grade. The areas of these tungsten and molybdenum deposits have substantiated mineral-resource potential. A multimillion ton phosphate-rock deposit occurs in an area of substantiated resource potential in the Permian Phosphoria Formation in the south-central part of the study area. Deposits of massive quartz, perhaps suitable for smelter flux, a demonstrated resource. Small scattered silver- and gold-bearing veins are present, but no resource potential was identified.

  14. Collecting Rocks.

    ERIC Educational Resources Information Center

    Barker, Rachel M.

    One of a series of general interest publications on science topics, the booklet provides those interested in rock collecting with a nontechnical introduction to the subject. Following a section examining the nature and formation of igneous, sedimentary, and metamorphic rocks, the booklet gives suggestions for starting a rock collection and using…

  15. Rock Finding

    ERIC Educational Resources Information Center

    Rommel-Esham, Katie; Constable, Susan D.

    2006-01-01

    In this article, the authors discuss a literature-based activity that helps students discover the importance of making detailed observations. In an inspiring children's classic book, "Everybody Needs a Rock" by Byrd Baylor (1974), the author invites readers to go "rock finding," laying out 10 rules for finding a "perfect" rock. In this way, the…

  16. Rock Art

    ERIC Educational Resources Information Center

    Henn, Cynthia A.

    2004-01-01

    There are many interpretations for the symbols that are seen in rock art, but no decoding key has ever been discovered. This article describes one classroom's experiences with a lesson on rock art--making their rock art and developing their own personal symbols. This lesson allowed for creativity, while giving an opportunity for integration…

  17. Horizontal drilling potential of the Cane Creek Shale, Paradox Formation, Utah

    SciTech Connect

    Morgan, C.D.; Chidsey, T.C. )

    1991-06-01

    The Cane Creek shale of the Pennsylvanian Paradox Formation is a well-defined target for horizontal drilling. This unit is naturally fractures and consists of organic-rich marine shale with interbedded dolomitic siltstone and anhydrite. Six fields have produced oil from the Cane Creek shale in the Paradox basin fold-and-fault belt. The regional structural trend is north-northwest with productive fractures occurring along the crest and flanks of both the larger and more subtle smaller anticlines. The Long Canyon, Cane Creek, Bartlett Flat, and Shafer Canyon fields are located on large anticlines, while Lion Mesa and Wilson Canyon fields produce from subtle structural noses. The Cane Creek shale is similar to the highly productive Bakken Shale in the Williston basin. Both are (1) proven producers of high-gravity oil, (2) highly fractured organic-rich source rocks, (3) overpressured, (4) regionally extensive, and (5) solution-gas driven with little or no associated water. Even though all production from the Cane Creek shale has been from conventional vertical wells, the Long Canyon 1 well has produced nearly 1 million bbl of high-gravity, low-sulfur oil. Horizontal drilling may result in the development of new fields, enhance recovery in producing fields, and revive production in abandoned fields. In addition, several other regionally extensive organic-rich shale beds occur in the Paradox Formation. The Gothic and Chimney Rock shales for example, offer additional potential lying above the Cane Creek shale.

  18. Mineralogy of the deadhorse creek volcaniclastic breccia complex, northwestern Ontario, Canada

    NASA Astrophysics Data System (ADS)

    Potter, Eric G.; Mitchell, Roger H.

    2005-09-01

    The Proterozoic Deadhorse Creek volcaniclastic breccia complex was emplaced in Archean metasedimentary and metavolcanic rocks of the Schreiber-White River greenstone belt adjacent to the Proterozoic Coldwell alkaline complex. The western sub-complex of the Deadhorse Creek breccia consists of metasomatically-altered breccia, a U-Be-Zr-rich main mineralized zone and a Zr-Y-Th-rich carbonate vein. The main mineralized zone is enriched in beryllium, thorium, uranium, first and second row transition elements, and rare earth elements. The major minerals present include: albite; potassium feldspar; quartz; calcite; apatite; and phenakite. Accessory minerals include: aegirine-jervisite; aegirine-natalyite; allanite; barite; barylite; coffinite; Ca-Mn-silicate; magnetite; monazite-(Ce); niobian vanadian rutile; pyrite; thorite; thorogummite; thortveitite; uraninite; vanadian crichtonite; xenotime-(Y); zircon and hydrated zircon; and zircon-thorite-coffinite solid solutions. The carbonate vein consists of dolomite-ankerite and calcite with accessory zircon, xenotime, and monazite. Barite, baotite and Ba-rich feldspars, were formed during metasomatism of the earlier-formed and genetically-unrelated volcaniclastic breccia adjacent to the main mineralized zone. The complex mineral assemblage of the fault-controlled main mineralized zone is considered to have formed in three stages. An initial emplacement of a “granitic” melt/fluid was followed by introduction of CO2-bearing Cr-Nb-V-Ti-enriched alkaline fluids. The latter reacted with minerals which had crystallized from the “granitic” melt/fluid to produce the exotic V-, Sc- and Nb-bearing mineral assemblage. Subsequently, a supergene suite of minerals, consisting principally of calcite, thorogummite, hollandite and tyuyamanite, formed during post-Pleistocene alteration was superimposed onto the pre-existing Proterozoic age mineral assemblage. The major mineralogy of the main mineralized zone is essentially ‘granitic” and the melts/fluids are considered to be derived from an A-type granite source. However, the Deadhorse Creek mineralization is older (1129±6 Ma) than the A-type quartz syenites of the adjacent Coldwell complex (1108±1 Ma) which are the nearest potential sources of such melts. Thus, the source of the “granitic” melt together with that of the Cr-Nb-V-Ti-bearing alkaline fluids remains enigmatic.

  19. Panther Creek Upstream of Big Deer Creek, central Idaho

    USGS Multimedia Gallery

    Panther Creek was severely damaged by heavy metals released from mining and milling activities at the former Blackbird Mine. USGS and other scientists compiled a 30-year record of recovery of the stream’s fish and macroinvertebrate populations....

  20. International Workshop on Interfaces at Bear Creek

    E-print Network

    Gilchrist, James F.

    International Workshop on Interfaces at Bear Creek September 28-October 1, 2015 Bear Creek Mountain at Bear Creek September 28-October 1, 2015 Bear Creek Mountain Resort Macungie, PA USA WORKSHOP PROGRAM Monday September 28, 2015 3:00 p.m. ­ 6:00 p.m. Arrival at the Inn at Bear Creek 6:00 p.m. ­ 8:00 p

  1. Water Quality Monitoring in the Buck Creek Watershed and Facilitation of Buck Creek Watershed Partnership 

    E-print Network

    Gregory, L.; Dyer, P.

    2013-01-01

    The “Water Quality Monitoring in the Buck Creek Watershed and Facilitation of Buck Creek Watershed Partnership” project was developed to continue water quality monitoring on Buck Creek and to continue to engage watershed stakeholders during the Buck...

  2. Ground-water geology and pump irrigation in Frenchman Creek Basin above Palisade, Nebraska

    USGS Publications Warehouse

    Cardwell, W.D.E.; Jenkins, Edward D.

    1963-01-01

    This report describes the geography, geology, and ground-water resources of that part of the Frenchman Creek basin upstream from Palisade, Nebr., an area of about 4,900 square miles. The basin includes all of Phillips County, Colo., and Chase County, Nebr., and parts of Logan, Sedgwick, Washington, and Yuma Counties, Colo., and Dundy, Hayes, Hitchcock, and Perkins Counties, Nebr. The land surface ranges from nearly flat to rolling; choppy hills and interdune saddles are common in the areas of dune sand, and steep bluffs and gullies cut the edges of the relatively flat loess plateaus. Most of the basin is drained by tributaries of Frenchman Creek, but parts of the sandhills are undrained. Farming and livestock raising are the principal industries. Irrigation with ground water has expanded rapidly since 1934. The rocks exposed in the basin are largely unconsolidated and range in age from Pliocene to Recent. They comprise the Ogallala formation (Pliocene), the Sanborn formation (Pleistocene and Recent?), dune sand (Pleistocene and Recent), and alluvium (Recent). The rocks underlying the Ogallala are the Pierre shale (Late Cretaceous) and the White River group (Oligocene). The Pierre shale is relatively impermeable and yields little or no water to wells. The White River group also is relatively impermeable and yields little or no water to wells; however, small to moderate quantities of water possibly may be obtained from wells that penetrate fractured or 'porous' zones in the upper part of the White River group or permeable channel deposits within the group. The Ogallala formation is the main aquifer in the basin and yields moderate to large quantities of water to wells. The Sanborn formation and the dune sand generally lie above the water table, but in areas of high water table the dune sand yields small quantities of water to wells for domestic and stock supplies. The alluvium, which includes the low terrace deposits bordering the major streams, yields small to large quantities of water to wells. The ground-water reservoir is recharged only from precipitation on the basin. Of the average annual precipitation of 19.5 inches, about 0.9 inch infiltrates to the water table, thereby contributing about 220,000 acre-feet of water annually to the ground-water reservoir. About 81 million acre-feet of water that could drain under gravity, and thus theoretically is available to wells, is held in groundwater storage in the basin. Water is discharged from the ground-water reservoir by wells, evaporation and transpiration, springs, seepage into streams, and movement into adjacent areas to the east and southeast. Most of the domestic, stock, and irrigation water supplies and all the public supplies are pumped from wells. During 1953, 96 wells were used to irrigate 10,000 acres of land with 19,000 acre-feet of water. About 34,000 acre-feet of water is evaporated and transpired annually in the valleys of the main streams and in areas of shallow water table in the sandhills. From the projection of base-flow measurements made during 1952, it was estimated that the average annual flow of Frenchman Creek into the reservoir above Enders Dam is about 57,000 acre-feet. By similar determinations, the average annual flow of Frenchman Creek at the gaging station at Palisade, Nebr., about 22 miles downstream from Enders Dam, is about 76,000 acre-feet, and the flow of Stinking Water Creek at the gaging station near Palisade is about 22,000 acre-feet. The combined flow of Frenchman and Stinking Water Creeks at their confluence near Palisade thus is about 98,000 acre-feet per year. About 90,000 acre-feet of ground water is estimated to move eastward each year across the Colorado-Nebraska State line within the basin. Additional irrigation wells that will tap the Ogallala formation and the alluvium in the major valleys undoubtedly will be drilled. On the basis of current estimates of future irrigation.withdrawals, it is concluded that by the

  3. Technical background information for the environmental and safety report, Volume 4: White Oak Lake and Dam

    SciTech Connect

    Oakes, T.W.; Kelly, B.A.; Ohnesorge, W.F.; Eldridge, J.S.; Bird, J.C.; Shank, K.E.; Tsakeres, F.S.

    1982-03-01

    This report has been prepared to provide background information on White Oak Lake for the Oak Ridge National Laboratory Environmental and Safety Report. The paper presents the history of White Oak Dam and Lake and describes the hydrological conditions of the White Oak Creek watershed. Past and present sediment and water data are included; pathway analyses are described in detail.

  4. 76 FR 42124 - Henwood Associates, Inc.; White Mountain Ranch, LLC; Notice of Transfer of Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-18

    ... Energy Regulatory Commission Henwood Associates, Inc.; White Mountain Ranch, LLC; Notice of Transfer of... been transferred to White Mountain Ranch, LLC. The project is located on the Millner Creek Water System...\\ Henwood Associates, Inc., 16 FERC ] 62,075 (1981). White Mountain Ranch, LLC, located at 30130...

  5. 77 FR 2493 - Special Local Regulations for Marine Events; Spa Creek and Annapolis Harbor, Annapolis, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    ... Federal Register (73 FR 3316). Public Meeting We do not now plan to hold a public meeting. But you may... ``TriRock Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor... navigable waters during the event. This action is intended to temporarily restrict vessel traffic in...

  6. 78 FR 20066 - Special Local Regulations; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ...) 366-9826. SUPPLEMENTARY INFORMATION: Table of Acronyms DHS Department of Homeland Security FR Federal... public dockets in the January 17, 2008, issue of the Federal Register (73 FR 3316). 4. Public Meeting We...Rock Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor...

  7. Texture analysis for mapping Tamarix parviflora using aerial photographs along the Cache Creek, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural color photographs were used to detect the coverage of tamarix parviflora and other vegetation along a 40 km portion of Cache Creek in Northern California in 2001. Color aerial photos were digitized and georeferenced. Eight types of ground cover (tamarix patches, crops, roads, rocks, water bo...

  8. IMPACT OF MINE DRAINAGE AND DISTRIBUTION OF METAL LOADING SOURCES IN THE JAMES CREEK WATERSHED

    E-print Network

    Ryan, Joe

    rocks containing sulfide minerals from mines or tailings piles interact with air and water to produceIMPACT OF MINE DRAINAGE AND DISTRIBUTION OF METAL LOADING SOURCES IN THE JAMES CREEK WATERSHED the past several decades has led to widespread concern about the adverse effects that heavy mining has had

  9. 78 FR 38000 - Special Local Regulations; Marine Events, Spa Creek and Annapolis Harbor; Annapolis, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-25

    ...; Annapolis, MD'' in the Federal Register (78 FR 20066). The rulemaking concerned the Coast Guard's proposal... the ``TriRock Triathlon Series,'' a marine event to be held on the waters of Spa Creek and Annapolis Harbor on July 20, 2013. The Coast Guard was notified on May 21, 2013, that the event had been...

  10. The geology and mechanics of formation of the Fort Rock Dome, Yavapai County, Arizona

    USGS Publications Warehouse

    Fuis, Gary S.

    1996-01-01

    The Fort Rock Dome, a craterlike structure in northern Arizona, is the erosional product of a circular domal uplift associated with a Precambrian shear zone exposed within the crater and with Tertiary volcanism. A section of Precambrian to Quaternary rocks is described, and two Tertiary units, the Crater Pasture Formation and the Fort Rock Creek Rhyodacite, are named. A mathematical model of the doming process is developed that is consistent with the history of the Fort Rock Dome.

  11. Habitat Evaluation Procedures (HEP) Report; Carey Creek, Technical Report 2005.

    SciTech Connect

    Entz, Ray

    2005-05-01

    In August 2002, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Carey Creek property, an acquisition completed by the Kalispel Tribe of Indians in December 2001. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Carey Creek Project provides a total of 172.95 Habitat Units (HUs) for the species evaluated. Conifer forest habitat provides 4.91 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Forested wetlands provide 52.68 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. Scrub-shrub wetlands provide 2.82 HUs for mallard, yellow warbler and white-tailed deer. Wet meadow and grassland meadow provide 98.13 HUs for mallard and Canada goose. Emergent wetlands provide 11.53 HUs for mallard, muskrat, and Canada goose. Open water provides 2.88 HUs for Canada goose, mallard, and muskrat. The objective of using HEP at the Carey Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  12. The Elk Creek Carbonatite, Southeast Nebraska-An Overview

    SciTech Connect

    Carlson, M. P. Treves, S. B.

    2005-03-15

    A framework geophysical program in southeastern Nebraska during 1970 identified a near-circular feature having gravity relief of about 8 mgal and a magnetic anomaly of about 800 gammas. Analysis of the geophysical data provided a model of a cylindrical mass of indefinite length with a radius of 5500 ft (1676 m) and beveled at the basement surface at about 600 ft (183 m). At the approximate depth at which Precambrian rocks were expected, the initial test hole (2-B-71) encountered an iron-rich weathered zone overlying carbonate-rich rock. The carbonate rocks consist essentially of dolomite, calcite, and ankerite and lesser amounts of hematite, chlorite, phlogopite, barite, serpentine, pyrochlore, and quartz and contain barium, strontium, and rare earths. Total REE, P2O5, and 87Sr/86Sr ratios confirm the carbonatite identification. Texturally, the rocks range from fragmental to contorted to massive. Associated with the carbonatite are lesser amounts of basalt, lamprophyre, and syenite. Additional exploratory drilling has provided about 80,000 ft (24,384 m) of rock record and has penetrated about 3400 ft (1038 m) of carbonatite. The carbonatite is overlain by marine sediments of Pennsylvanian (Missourian) age. The surrounding Precambrian basement rocks are low-to medium-grade metamorphic gneiss and schist of island arc origin and granitic plutons. The Elk Creek carbonatite is located near the boundary between the Penokean orogen created at about 1.84 Ga (billion years) and the Dawes terrane (1.78 Ga) of the Central Plains orogen. This boundary strongly influenced the geometry of both the Midcontinent Rift System (1.1 Ga) and the Nemaha uplift (0.3 Ga). It is assumed that the emplacement of the Elk Creek carbonatite (0.5 Ga) was influenced similarly by the pre-existing tectonic sutures.

  13. Rock flows

    NASA Technical Reports Server (NTRS)

    Matveyev, S. N.

    1986-01-01

    Rock flows are defined as forms of spontaneous mass movements, commonly found in mountainous countries, which have been studied very little. The article considers formations known as rock rivers, rock flows, boulder flows, boulder stria, gravel flows, rock seas, and rubble seas. It describes their genesis as seen from their morphological characteristics and presents a classification of these forms. This classification is based on the difference in the genesis of the rubbly matter and characterizes these forms of mass movement according to their source, drainage, and deposit areas.

  14. Petrography and geochemistry of selected lignite beds in the Gibbons Creek mine (Manning Formation, Jackson Group, Paleocene) of east-central Texas

    USGS Publications Warehouse

    Warwick, P.D.; Crowley, S.S.; Ruppert, L.F.; Pontolillo, J.

    1997-01-01

    This study examined the petrographic and geochemical characteristics of two lignite beds (3500 and 4500 beds, Manning Formation, Jackson Group, Eocene) that are mined at the Gibbons Creek mine in east-central Texas. The purpose of the study was to identify the relations among sample ash yield, coal petrography, and trace-element concentrations in lignite and adjoining rock layers of the Gibbons Creek mine. Particular interest was given to the distribution of 12 environmentally sensitive trace elements (As, Be, Cd, Cr, Co, Hg, Mn, Ni, Pb, Sb, Se, and U) that have been identified as potentially hazardous air pollutants (HAPs) in the United States Clean Air Act Amendments of 1990. Eleven lignite, floor, and rock parting samples were collected from incremental channel samples of the 3500 and 4500 beds that were exposed in a highwall of pit A3 at the Gibbons Creek mine. Short proximate and ultimate and forms of sulfur analyses were performed on all lignite samples, and lignite and rock samples were analyzed for 60 major, minor and trace elements. Representative splits of all lignite samples were ground and cast into pellets, and polished for petrographic analyses in blue-light fluorescence and reflected white light to determine liptinite, inertinite, and huminite maceral group percentages. The following observations summarize our results and conclusions about the geochemistry, petrography, and sedimentology of the 3500 and 4500 beds of the Gibbons Creek lignite deposit: (1) Weighted average dry (db) ash yield for the two beds is 29.7%, average total sulfur content is 2.6%, and average calorific value is 7832 Btu (18.22 MJ/kg). Ash yields are greatest in the lower bench (59.33% db) of the 3500 bed and in the upper bench of the 4500 bed (74.61% db). (2) For lignite samples (on a whole-coal basis), the distributions of two of the HAPs (Pb and Sb) are positively related to ash yield, probably indicating an inorganic affinity for these elements. By using cluster analysis we found that Be and Cd were poorly associated with ash yield, indicating a possible organic affinity, and that Ni, Se, Hg, U, and Pb cluster with most of the rare-earth elements. (3) The dominance of the crypto-eugelinite maceral subgroup over the crypto-humotelinite subgroup suggests that all Gibbons Creek lignites were subjected to peat-forming conditions (either biogenic or chemical) conducive to the degradation of wood cellular material into matrix gels, or that original plant material was not very woody and was prone to formation of matrix gels. The latter idea is supported by pollen studies of Gibbons Creek lignite beds; results indicate that the peat was derived in part from marsh plants low in wood tissue. (4) The occurrence of siliceous sponge spicules in the lower benches of the 3500 bed suggests the original peat in this part of the bed was deposited in standing, fresh water. (5) The petrographic data indicate that the upper sample interval of the 3500 bed contains more inertinite (3%) than the other samples studied. Increases in inertinite content in the upper part of the 3500 bed may have been associated with alteration of the peat by acids derived from the volcanic ash or could have been caused by fire, oxidation and drying, or biologic alteration of the peat in the paleo-mire. ?? 1997 Elsevier Science B.V.

  15. Paleomagnetism of the Miocene intrusive suite of Kidd Creek: Timing of deformation in the Cascade arc, southern Washington

    USGS Publications Warehouse

    Hagstrum, J.T.; Swanson, D.A.; Snee, L.W.

    1998-01-01

    Paleomagnetic study of the intrusive suite of Kidd Creek in the southern Washington Cascades (23 sites in dikes and sills) was undertaken to help determine if these rocks are comagmatic and whether they postdate regional folding of the volcanic arc. Fission track and 40Ar-39Ar age determinations indicate an age of ???12.7 Ma (middle Miocene) for these rocks. The similarity of normal-polarity characteristic directions for most samples corroborate the available geochemical data indicating that these rocks are most likely comagmatic. Reversed-polarity directions for samples from four sites, however, show that emplacement of Kidd Creek intrusions spanned at least one reversal of the geomagnetic field. The paleomagnetic directions for the dikes and sills fail a fold test at the 99% confidence level indicating that the Kidd Creek rocks postdate regional folding. The mean in situ direction also indicates that the Kidd Creek and older rocks have been rotated 22?? ?? 6?? clockwise about a vertical or near-vertical axis from the expected Miocene direction. Compression and regional folding of the Cascade arc in southern Washington therefore had ended by ???12 Ma prior to the onset of deformation resulting in rotation of these rocks.

  16. 77 FR 73650 - Peabody Trout Creek Reservoir LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ...No. 14446-001] Peabody Trout Creek Reservoir LLC; Notice of Preliminary Permit Application...November 30, 2012, Peabody Trout Creek Reservoir LLC (Peabody) filed an application...feasibility of the Peabody Trout Creek Reservoir Hydroelectric Project (Trout Creek...

  17. Application of the Basin Characterization Model to Estimate In-Place Recharge and Runoff Potential in the Basin and Range Carbonate-Rock Aquifer System, White Pine County, Nevada, and Adjacent Areas in Nevada and Utah

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.

    2007-01-01

    A regional-scale water-balance model was used to estimate recharge and runoff potential and support U.S. Geological Survey efforts to develop a better understanding of water availability for the Basin and Range carbonate-rock aquifer system (BARCAS) study in White Pine County, Nevada, and adjacent areas in Nevada and Utah. The water-balance model, or Basin Characterization Model (BCM), was used to estimate regional ground-water recharge for the 13 hydrographic areas in the study area. The BCM calculates recharge by using a distributed-parameter, water-balance method and monthly climatic boundary conditions. The BCM requires geographic information system coverages of soil, geology, and topographic information with monthly time-varying climatic conditions of air temperature and precipitation. Potential evapotranspiration, snow accumulation, and snowmelt are distributed spatially with process models. When combined with surface properties of soil-water storage and saturated hydraulic conductivity of bedrock and alluvium, the potential water available for in-place recharge and runoff is calculated using monthly time steps using a grid scale of 866 feet (270 meters). The BCM was used with monthly climatic inputs from 1970 to 2004, and results were averaged to provide an estimate of the average annual recharge for the BARCAS study area. The model estimates 526,000 acre-feet of potential in-place recharge and approximately 398,000 acre-feet of potential runoff. Assuming 15 percent of the runoff becomes recharge, the model estimates average annual ground-water recharge for the BARCAS area of about 586,000 acre-feet. When precipitation is extrapolated to the long-term climatic record (1895-2006), average annual recharge is estimated to be 530,000 acre-feet, or about 9 percent less than the recharge estimated for 1970-2004.

  18. Big Bayou Creek and Little Bayou Creek Watershed Monitoring Program

    SciTech Connect

    Kszos, L.A.; Peterson, M.J.; Ryon; Smith, J.G.

    1999-03-01

    Biological monitoring of Little Bayou and Big Bayou creeks, which border the Paducah Site, has been conducted since 1987. Biological monitoring was conducted by University of Kentucky from 1987 to 1991 and by staff of the Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) from 1991 through March 1999. In March 1998, renewed Kentucky Pollutant Discharge Elimination System (KPDES) permits were issued to the US Department of Energy (DOE) and US Enrichment Corporation. The renewed DOE permit requires that a watershed monitoring program be developed for the Paducah Site within 90 days of the effective date of the renewed permit. This plan outlines the sampling and analysis that will be conducted for the watershed monitoring program. The objectives of the watershed monitoring are to (1) determine whether discharges from the Paducah Site and the Solid Waste Management Units (SWMUs) associated with the Paducah Site are adversely affecting instream fauna, (2) assess the ecological health of Little Bayou and Big Bayou creeks, (3) assess the degree to which abatement actions ecologically benefit Big Bayou Creek and Little Bayou Creek, (4) provide guidance for remediation, (5) provide an evaluation of changes in potential human health concerns, and (6) provide data which could be used to assess the impact of inadvertent spills or fish kill. According to the cleanup will result in these watersheds [Big Bayou and Little Bayou creeks] achieving compliance with the applicable water quality criteria.

  19. 'Tetl' Rock

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the panoramic camera on NASA's Mars Exploration Rover Spirit during the rover's trek through the 'Columbia Hills' at 'Gusev Crater,' shows the horizontally layered rock dubbed 'Tetl.' Scientists hope to investigate this rock in more detail, aiming to determine whether the rock's layering is volcanic or sedimentary in origin. If for some reason this particular rock is not favorably positioned for grinding and examination by the toolbox of instruments on the rover's robotic arm, Spirit will be within short reach of another similar rock, dubbed 'Coba.' Spirit took this image on its 264th martian day, or sol (Sept. 29, 2004). This is a false-color composite image generated from the panoramic camera's 750-, 530-, and 430-nanometer filters.

  20. LittleRockCreek SOIL SURVEY OF ATOKA COUNTY, OKLAHOMA

    E-print Network

    3800600 3800600 3800800 3800800 3801000 3801000 3801200 3801200 3801400 3801400 SOIL SURVEY OF ATOKA 200 400100 Meters Web Soil Survey 1.1 National Cooperative Soil Survey 3/17/2007 Page 1 of 3 #12;MAP INFORMATION SOIL SURVEY OF ATOKA COUNTY, OKLAHOMA Wes Watkins Agricultural Research and Extension Center

  1. 78 FR 62616 - Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-22

    ... Energy Regulatory Commission Salmon Creek Hydroelectric Company, Salmon Creek Hydroelectric Company, LLC; Notice of Transfer of Exemption 1. By letter filed September 23, 2013, Salmon Creek Hydroelectric Company informed the Commission that they have changed its name to Salmon Creek Hydroelectric Company, LLC for...

  2. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c...REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek, Wisconsin. The area within the...

  3. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c...REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek, Wisconsin. The area within the...

  4. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c...REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek, Wisconsin. The area within the...

  5. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c...REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek, Wisconsin. The area within the...

  6. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c...REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish Creek, Wisconsin. The area within the...

  7. 77 FR 42714 - Eagle Creek Hydropower, LLC, Eagle Creek Land Resources, LLC, Eagle Creek Water Resources, LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-20

    ...Resources, LLC; and Eagle Creek Water Resources, LLC. e. Name of...Hydropower, LLC, Eagle Creek Water Resources, LLC, Eagle Creek...the project's dam and draw water through a new 48-inch-diameter...Documents: Any filing must: (1) Bear in all capital letters the...

  8. PECONIC ESTUARY PROGRAM TIDAL CREEK STUDY

    EPA Science Inventory

    EEA evaluated ten tidal creeks throughout the Peconic Estuary representing a wide range of watershed variables. Primary focus was directed towards the collection and analysis of the macrobenthic invertebrate communities of these ten tidal creeks. Analysis of the macrobenthic comm...

  9. Art Rocks with Rock Art!

    ERIC Educational Resources Information Center

    Bickett, Marianne

    2011-01-01

    This article discusses rock art which was the very first "art." Rock art, such as the images created on the stone surfaces of the caves of Lascaux and Altimira, is the true origin of the canvas, paintbrush, and painting media. For there, within caverns deep in the earth, the first artists mixed animal fat, urine, and saliva with powdered minerals…

  10. ALLEGHENY FRONT AND HICKORY CREEK ROADLESS AREAS, PENNSYLVANIA.

    USGS Publications Warehouse

    Schweinfurth, Stanley P.; Girol, Vaughn P.

    1984-01-01

    On the basis of a mineral-resource survey the Allegheny Front and Hickory Creek Roadless Areas, Pennsylvania, have a substantiated potential for oil resources, a probable potential for gas resources, and little likelihood for the occurrence of coal and metallic mineral resources. The oil and gas in the Upper Devonian rocks are found in stratigraphic traps, that commonly are not evident from surface indications. The only sure method to determine if the Upper Devonian sandstones contain oil or gas at a specific site is to drill through the sequence and test the more favorable zones.

  11. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2006-01-01

    27 January 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows some of the light-toned, layered, sedimentary rock outcrops in northern Terby Crater. Terby is located along the north edge of Hellas Planitia. The sedimentary rocks might have been deposited in a greater, Hellas-filling sea -- or not. Today, the rocks are partly covered by dark-toned sediment and debris.

    Location near: 27.2oS, 285.3oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  12. Asotin Creek Model Watershed Plan

    SciTech Connect

    Browne, D.; Holzmiller, J.; Koch, F.; Polumsky, S.; Schlee, D.; Thiessen, G.; Johnson, C.

    1995-04-01

    The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon``. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity. The watershed coordinator for the Asotin County Conservation District led a locally based process that combined local concerns and knowledge with technology from several agencies to produce the Asotin Creek Model Watershed Plan.

  13. Temperature, size, and depth of the magma reservoir for the Taylor Creek Rhyolite, New Mexico

    USGS Publications Warehouse

    Duffield, W.A.; du Bray, E.A.

    1990-01-01

    The 55 km3 mid-Tertiary Taylor Creek Rhyolite in southwestern New Mexico consists of 20 lava domes and flows. This rhyolite is metaluminous to weakly peraluminous. Compositional zonation in feldspar phenocrysts is very minor and nonsystematic. The compositions of each feldspar species vary little throughout the suite of analyzed samples. This chemical homogeneity of phenocrysts reflects similar whole-rock homogeneity and suggests that the lavas were tapped from a single large reservoir of magma. Ages of sanidine phenocrysts determined using 40Ar/39Ar indicate that the Taylor Creek Rhyolite lavas were emplaced during a period of less than 0.42 my. and possibly less than 0.13 m.y., which is consistent with the single-reservoir scenario. Two-feldspar geothermometry suggests that Taylor Creek Rhyolite phenocrysts crystallized at about 775??C, at an assumed pressure of 2 kbar. Fe-Ti-oxide geothermometry suggests phenocryst growth at about 800??C. Experimental studies suggest that quartz and potassium-feldspar crystals that grow from H2O-undersaturated granitic magmas should exhibit resorption texture, a texture ubiquitous to Taylor Creek Rhyolite quartz and sanidine phenocrysts. We tentatively conclude that the Taylor Creek Rhyolite magma was H2O undersaturated and subliquidus at an unspecified pressure greater than 0.5 kbar during phenocryst growth and that Taylor Creek Rhyolite pyroclastic deposits formed because volatile saturation developed during the ascent of magma to sites of eruption. -from Authors

  14. CLOUD PEAK CONTIGUOUS, ROCK CREEK, PINEY CREEK, AND LITTLE GOOSE ROADLESS AREAS, WYOMING.

    USGS Publications Warehouse

    Segerstrom, Kenneth; Brown, Don S.

    1984-01-01

    On the basis of mineral surveys, study areas surrounding the Cloud Peak Primitive Area in northern Wyoming offer little promise for the occurrence of mineral or energy resources. The geologic setting precludes the existence of deposits of organic fuels. Nonmetallic commodities, such as feldspar, limestone, building stone, clay, sand, and gravel are present, but these materials are readily available nearby in large quantities in more accessible areas.

  15. TURKEY CREEK BASIN Kansas and Missouri

    E-print Network

    US Army Corps of Engineers

    TURKEY CREEK BASIN Kansas and Missouri MODIFICATION REQUEST Modification to the authorized total the Turkey Creek channel and runoff from the adjacent hillsides, and the current depth of flooding along in the past decade. Additionally, the Turkey Creek tunnel constructed in 1919 to divert the channel away from

  16. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Willow Creek. 9.85 Section 9.85 Alcohol...American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the...viticultural area described in this section is “Willow Creek.” (b) Approved map....

  17. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Willow Creek. 9.85 Section 9.85 Alcohol...American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the...viticultural area described in this section is “Willow Creek.” (b) Approved map....

  18. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Willow Creek. 9.85 Section 9.85 Alcohol...American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the...viticultural area described in this section is “Willow Creek.” (b) Approved map....

  19. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Willow Creek. 9.85 Section 9.85 Alcohol...American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the...viticultural area described in this section is “Willow Creek.” (b) Approved map....

  20. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Willow Creek. 9.85 Section 9.85 Alcohol...American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the...viticultural area described in this section is “Willow Creek.” (b) Approved map....

  1. Collaborative Monitoring in Walnut Creek, California1

    E-print Network

    Collaborative Monitoring in Walnut Creek, California1 Heidi Ballard,2 Ralph Kraetsch,3 and Lynn of the City of Walnut Creek, California. The program resulted from a collaboration of scientists at the University of California, Berkeley, a group of interested citizens known as the Walnut Creek Open Space

  2. Grizzly Bear Creek Flooding May 2015, SD

    USGS Multimedia Gallery

    Grizzly Bear Creek in Keystone, SD, on May 24, 2015. USGS streamgage 06403850 (Grizzly Bear Creek near Keystone, SD) showed the creek was more than one-half foot above flood stage on May 24. This streamgage is operated in cooperation with the METWARN (Rapid City/Pennington County Emer...

  3. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  4. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  5. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  6. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Willow Creek. 9.85 Section... THE TREASURY ALCOHOL AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  7. 27 CFR 9.85 - Willow Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Willow Creek. 9.85 Section... THE TREASURY LIQUORS AMERICAN VITICULTURAL AREAS Approved American Viticultural Areas § 9.85 Willow Creek. (a) Name. The name of the viticultural area described in this section is “Willow Creek.”...

  8. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Swan Creek. 9.211 Section 9.211 ...American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the...viticultural area described in this section is “Swan Creek”. For purposes of part 4 of...

  9. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Swan Creek. 9.211 Section 9.211 ...American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the...viticultural area described in this section is “Swan Creek”. For purposes of part 4 of...

  10. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Swan Creek. 9.211 Section 9.211 ...American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the...viticultural area described in this section is “Swan Creek”. For purposes of part 4 of...

  11. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Swan Creek. 9.211 Section 9.211 ...American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the...viticultural area described in this section is “Swan Creek”. For purposes of part 4 of...

  12. 27 CFR 9.211 - Swan Creek.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Swan Creek. 9.211 Section 9.211 ...American Viticultural Areas § 9.211 Swan Creek. (a) Name. The name of the...viticultural area described in this section is “Swan Creek”. For purposes of part 4 of...

  13. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  14. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  15. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  16. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  17. 33 CFR 80.760 - Horeshoe Point, FL to Rock Island, FL.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Horeshoe Point, FL to Rock Island... Rock Island, FL. (a) Except inside lines specifically described provided in this section, the 72 COLREGS shall apply on the bays, bayous, creeks, marinas, and rivers from Horseshoe Point to the...

  18. Rock Garden

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This false color composite image of the Rock Garden shows the rocks 'Shark' and 'Half Dome' at upper left and middle, respectively. Between these two large rocks is a smaller rock (about 0.20 m wide, 0.10 m high, and 6.33 m from the Lander) that was observed close-up with the Sojourner rover (see PIA00989).

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is a division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

  19. 77 FR 13592 - AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources, LLC, Eagle Creek Land...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-07

    ... Energy Regulatory Commission AER NY-Gen, LLC; Eagle Creek Hydro Power, LLC, Eagle Creek Water Resources... Power, LLC, Eagle Creek Water Resources, LLC, and Eagle Creek Land Resources, LLC (transferees) filed an... Resources, LLC, and Eagle Creek Land Resources, LLC, 65 Madison Avenue, Morristown, NJ 07960, (973)...

  20. "Sweet Little (White) Girls"? Sex and Fantasy across the Color Line and the Contestation of Patriarchal White Supremacy

    ERIC Educational Resources Information Center

    Godfrey, Phoebe

    2004-01-01

    The presence of the Little Rock Nine at Little Rock's Central High in September 1957 as a result of "Brown vs. the Board of Education" evoked anger, fear, and even panic among some parts of the white community, and many white women and girls responded with near hysteria. This article seeks to answer why. What was it about integration that provoked…

  1. OXYGEN AERATION AT NEWTOWN CREEK

    EPA Science Inventory

    A successful initial feasibility investigation of oxygen aeration at the 0.11-cu m/sec (2.5-mgd) municipal wastewater treatment plant in Batavia, New York, prompted a larger demonstration at New York City's 13.6-cu m/sec (310-mgd) Newtown Creek Plant. A 34-mo evaluation was perfo...

  2. Cement Creek Following Storm Event

    USGS Multimedia Gallery

    Cement Creek following storm event in July, 2004. Note the orange discoloration of the stream derived from weathering of bedrocks and from mined areas. This type of event happens frequently in the Animas Watershed near Silverton, Colorado. View is to the south, with Kendall Mountain in the distance....

  3. LINCOLN CREEK ROADLESS AREA, NEVADA.

    USGS Publications Warehouse

    John, David A.; Stebbins, Scott A.

    1984-01-01

    On the basis of a mineral survey, the Lincoln Creek Roadless Area, Nevada was determined to have little likelihood for the occurrence of mineral resources. Geologic terrane favorable for the occurrence of contact-metasomatic tungsten deposits exists, but no evidence for this type of mineralization was identified. The geologic setting precludes the occurrence of fossil fuels and no other energy resources were identified.

  4. Old Woman Creek Report Card

    E-print Network

    Hilderbrand, Robert H.

    and sediment pollution. However, during and after a storm, the creek will turn light brown from being laden streams in the area to reduce non-point source pollution entering Lake Erie. This program engages our health of Lake Erie. Much of the pollutants affecting the Lake come from the watersheds that drain to it

  5. Case Study: Goose Creek CISD 

    E-print Network

    White, D.

    2014-01-01

    • $4,866,124 project • $600k annual savings • 5,954,383 kWh annual savings IMPROVEMENTS • Lighting and water efficiency, computer power management, HVAC, controls redesign case study McKinstry first worked with Goose Creek CISD performing retro...

  6. Lida Abdul – White House , 2005

    E-print Network

    Cateforis, David; Dusenbury, Mary

    2006-05-01

    woman, is methodically painting white everything in her path—even the rocks and rubble on the ground. Eventually a ghost-like man, also clothed in black, enters the scene. He turns to face the whitewashed ruins and Abdul paints his back with the same...

  7. White Toenails

    MedlinePLUS

    The official consumer website of: Visit ACFAS.org | About ACFAS | Información en Español Advanced Search Home » Foot & Ankle Conditions » White Toenails Text Size Print Bookmark White Toenails White toenails can develop for several reasons. Trauma, such as when an object is dropped ...

  8. Analyses and description of geochemical samples, Mill Creek Wilderness Study Area, Giles County, Virginia

    USGS Publications Warehouse

    Mei, Leung; Lesure, Frank Gardner

    1978-01-01

    Semiquantitative emission spectrographic analyses for 64 elements on 62 stream sediment and 71 rock samples from Mill Creek Wilderness Study area, Giles County, Virginia, are reported here in detail. Locations for all samples are given in Universal Transverse Mercator (UTM) coordinates. Brief descriptions of rock samples are also included. Rocks analysed are mostly sandstone. Samples of hematitic sandstone of the Rose Hill Formation and limonite-cemented sandstone of the Rocky Gap Sandstone contain high values of iron; these rocks are submarginal iron resources. Some of the same iron-rich samples have a little more barium, copper, cobalt, lead, silver, and/or zinc then is in average sandstone, but they do not suggest the presence of economic deposits of these metals. No other obviously anomalous values related to mineralized rock are present in the data.

  9. Geologic map of the Redwood Creek drainage basin, Humboldt County, California

    USGS Publications Warehouse

    Harden, Deborah Reid; Kelsey, H.M.; Morrison, S.D.; Stephens, T.A.

    1982-01-01

    A 1:62,500-scale geologic map with 14 rock stratigraphic units and an accompanying explanatory text are used to describe the geology of the Redwood Creek drainage basin of northwestern California. A large part of Redwood National Park is located in the downstream part of this actively eroding drainage basin. The bedrock consists primarily of Mesozoic sedimentary and metamorphic rocks. The structurally complex Franciscan assemblage of rocks underlies most of the basin, but rocks of the Klammath Mountain tectonic province occurs in a small eastern part of the basin. Most major boundaries between Mesozoic rock units are north-northwest trending faults parallel to the regional structural trend. Extensive areas of surficial coastal plain sediments, landslide deposits, stream terrace deposits and modern alluvium are also present; these areas help identify loci of vigorous recent erosion. (USGS)

  10. Stream sediment detailed geochemical survey for Date Creek Basin, Arizona

    SciTech Connect

    Butz, T.R.; Tieman, D.J.; Grimes, J.G.; Bard, C.S.; Helgerson, R.N.; Pritz, P.M.

    1980-06-30

    Results of the Date Creek Basin detailed geochemical survey are reported. Field and laboratory data are reported for 239 stream sediment samples. Statistical and areal distributions of uranium and possible uranium-related variables are displayed. A generalized geologic map of the area is provided, and pertinent geologic factors which may be of significance in evaluating the potential for uranium mineralization are briefly discussed. Based on stream sediment geochemical data, significant concentrations of uranium are restricted to the Anderson Mine area. The 84th percentile concentrations of U-FL, U-NT, and U-FL/U-NT combined with low thorium/U-NT values reflect increased mobility and enrichment of uranium in the carbonate host rocks of that area. Elements characteristically associated with the uranium mineralization include lithium and arsenic. No well defined diffusion halos suggesting outliers of similar uranium mineralization were observed from the stream sediment data in other areas of the Date Creek Basin. Significant concentrations of U-FL or U-NT found outside the mine area are generally coincident with low U-FL/U-NT values and high concentrations of zirconium, titanium, and phosphorus. This suggests that the uranium is related to a resistate mineral assemblage derived from surrounding crystalline igneous and metamorphic rocks.

  11. Geologic controls of uranium mineralization in the Tallahassee Creek uranium district, Fremont County, Colorado

    SciTech Connect

    Dickinson, K.A.

    1981-10-01

    Two important orebodies have been defined by drilling in the Tallahassee Creek uranium district, Fremont County, Colorado. They are the Hansen orebody, which contains about 12 million kg of U/sub 3/O/sub 8/, and the Picnic Tree orebody, which contains about 1 million kg of U/sub 3/O/sub 8/. Host rock for the Hansen is the upper Eocene Echo Park Alluvium, and host rock for the Picnic Tree is the lower Oligocene Tallahassee Creek onglomerate. Average ore grade for both deposits is about 0.08 percent U/sub 3/O/sub 8/. The principal source rock for the uranium depsoits is the lower Oligocene Wall Mountain Tuff, although a younger volcanic rock, the Oligocene Thirtynine Mile Andesite, and Precambrian granitic rocks probably also contributed some uranium. Leaching and transportation of the uranium occurred in alkaline oxidizing ground water that developed during alteration of the ash in a semi-arid environment. The uranium was transported in the ground water to favorable sites where it was deposited in a reducing environment controlled by carbonaceous material and associated pyrite. Localization of the ore was controlled by ground-water flow conditions and by the distribution of organic matter in the host rock. Ground-water flow, which was apparently to the southeast in Echo Park Alluvium that is confined in the Echo Park graben, was impeded by a fault that offsets the southern end of the graben. This offset prevented efficient discharge into the ancestral Arkansas River drainage, and protected chemically reducing areas from destruction by the influx of large amounts of oxidizing ground water. The location of orebodies in the Echo Park Alluvium also may be related to areas where overlying rocks of low permeability were breached by erosion during deposition of the fluvial Tallahassee Creek Conglomerate allowing localized entry of uranium-bearing water.

  12. Do suspended sediment and bedload move progressively from the summit to the sea along Magela Creek, northern Australia?

    NASA Astrophysics Data System (ADS)

    Erskine, W. D.; Saynor, M. J.; Turner, K.; Whiteside, T.; Boyden, J.; Evans, K. G.

    2015-03-01

    Soil erosion rates on plots of waste rock at Ranger uranium mine and basin sediment yields have been measured for over 30 years in Magela Creek in northern Australia. Soil erosion rates on chlorite schist waste rock are higher than for mica schist and weathering is also much faster. Sediment yields are low but are further reduced by sediment trapping effects of flood plains, floodouts, billabongs and extensive wetlands. Suspended sediment yields exceed bedload yields in this deeply weathered, tropical landscape, but the amount of sand transported greatly exceeds that of silt and clay. Nevertheless, sand is totally stored above the topographic base level. Longitudinal continuity of sediment transport is not maintained. As a result, suspended sediment and bedload do not move progressively from the summit to the sea along Magela Creek and lower Magela Creek wetlands trap about 90.5% of the total sediment load input.

  13. Classic Rock

    ERIC Educational Resources Information Center

    Beem, Edgar Allen

    2004-01-01

    While "early college" programs designed for high-school-age students are beginning to proliferate nationwide, a small New England school has been successfully educating teens for nearly four decades. In this article, the author features Simon's Rock, a small liberal arts college located in the Great Barrington, Massachusetts, that has been…

  14. Research Rocks

    USGS Multimedia Gallery

    Dr. Alex Andronikov, a geologist from the University of Michigan Department of Geological Science, and Kelley Brumley, a geologist from Stanford University, sort through rocks that were dredged from the Arctic Ocean floor Sept. 9, 2009, aboard the Coast Guard Cutter Healy.The dredging is part of the...

  15. Rock Grinding

    USGS Multimedia Gallery

    Rocks from the Stillwater Mine are brought to the USGS in Denver, Colorado, where they are sledged and ground before entering the plasma melter at Zybek Advanced Products. __________ The USGS has created man-made moon dirt, or regolith, to help NASA prepare for upcoming moon explorations. Four ton...

  16. Stillwater Rocks

    USGS Multimedia Gallery

    Rocks from the Stillwater Mine are brought to the USGS in Denver, Colorado, where they are ground before entering the plasma melter at Zybek Advanced Products. __________ The USGS has created man-made moon dirt, or regolith, to help NASA prepare for upcoming moon explorations. Four tons of the sim...

  17. The geochemical record in rock glaciers

    USGS Publications Warehouse

    Steig, E.J.; Fitzpatrick, J.J.; Potter, N., Jr.; Clark, D.H.

    1998-01-01

    A 9.5 m ice core was extracted from beneath the surficial debris cover of a rock glacier at Galena Creek, northwestern Wyoming. The core contains clean, bubble-rich ice with silty debris layers spaced at roughly 20 cm intervals. The debris layers are similar in appearance to those in typical alpine glaciers, reflecting concentration of debris by melting at the surface during the summer ablation season. Profiles of stable isotope concentrations and electrical conductivity measurements provide independent evidence for melting in association with debris layers. These observations are consistent with a glacial origin for the ice, substantiating the glacigenic model for rock glacier formation. The deuterium excess profile in the ice indicates that the total depth of meltwater infiltration is less than the thickness of one annual layer, suggesting that isotope values and other geochemical signatures are preserved at annual resolution. This finding demonstrates the potential for obtaining useful paleoclimate information from rock glacier ice.

  18. Igneous Rocks

    NASA Astrophysics Data System (ADS)

    Doe, Bruce R.

    “Igneous Rocks was written for undergraduate geology majors who have had a year of college-level chemistry and a course in mineralogy … and for beginning graduate students. Geologists working in industry, government, or academia should find this text useful as a guide to the technical literature up to 1981 and as an overview of topics with which they have not worked but which may have unanticipated pertinence to their own projects.” So starts the preface to this textbook.As one who works part time in research on igneous rocks, especially as they relate to mineral deposits, I have been looking for such a book with this avowed purpose in a field that has a choking richness of evolving terminology and a bewildering volume of interdisciplinary literature. In addition to the standard topics of igneous petrology, the book contains a chapter on the role of igneous activity in the genesis of mineral deposits, its value to geothermal energy, and the potential of igneous rocks as an environment for nuclear waste disposal. These topics are presented rather apologetically in the preface, but the author is to be applauded for including this chapter. The apology shows just how new these interests are to petrology. Recognition is finally coming that, for example, mineral deposits are not “sports of nature,” a view held even by many economic geologists as recently as the early 1960's; instead they are perfectly ordinary geochemical features formed by perfectly ordinary geologic processes. In fact, the mineral deposits and their attendant alteration zones probably have as much to tell us about igneous rocks as the igneous rocks have to tell us about mineral deposits.

  19. PINE CREEK ROADLESS AREA, OREGON.

    USGS Publications Warehouse

    Walker, George W.; Denton, David K., Jr.

    1984-01-01

    Examination of the Pine Creek Roadless Area, Oregon indicates that there is little likelihood for the occurrence of energy or metallic mineral resources in the area. No mines or mineral prospects were identified during the investigation. Although nearby parts of Harney Basin are characterized by higher than normal heat flow, indicating that the region as a whole may have some as yet undefined potential for the occurrence of the geothermal energy resources, no potential for this resource was identified in the roadless area.

  20. Illite/smectite diagenesis and hydrocarbon generation in Cretaceous Mowry and Skull Creek Shales of northern Rocky Mountains-Great Plains region

    SciTech Connect

    Burtner, R.L.; Warner, M.A.

    1983-03-01

    The Lower Cretaceous Mowry and Skull Creek Shales and their equivalents are among the major source rocks in the northern Rocky Mountains-Great Plains region. They are the major source of hydrocarbons in the Lower Cretaceous Muddy Sandstone of the Powder River basin. This sandstone has a geographic distribution similar to that of the Mowry and much of the Skull Creek. Illite/smectite mixed-layer clay in the Mowry and Skull Creek Shales of eastern Montana and western North Dakota is unaltered. No significant amounts of hydrocarbons have ever been found in the Muddy Sandstone of this area. Hydrocarbons in the Muddy Sandstone occur within or immediately adjacent to areas in which the smectite component of the illite/smectite in the Mowry and Skull Creek Shales has undergone alteration to illite during burial diagenesis. Anomalous decreases in the total organic carbon content of the Mowry and Skull Creek Shales lie within areas of illite/smectite alteration and coincide with the deeper parts of structural basins which developed after deposition of the Mowry and Skull Creek. These regional variations in illite/smectite alteration and total organic carbon content reflect thermal maturation and are not provenance controlled. They are useful indicators of areas where the potential source rocks have been subjected to temperatures adequate to generate hydrocarbons. The degree of illite/smectite diagenesis in the Mowry and Skull Creek of the northern Rocky Mountains-Great Plains region is thus of exploration significance in the search of hydrocarbons in this area.

  1. 75 FR 5758 - Bridger-Teton National Forest, Big Piney Ranger District, WY; Piney Creeks Vegetation Treatment

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-04

    ...on the revision of the Forest Plan in 2008 and comprehensive evaluation reports for aspen, lodge pole pine, Douglas fir, spruce fir and white bark pine. The analysis area is approximately 20,000 acres within this watershed and includes the creeks...

  2. Exploiting the self-sourcing Cane Creek zone of the paradox formation with horizontal wells

    SciTech Connect

    Grummon, M. )

    1993-08-01

    The Cane Creek zone of the Paradox Formation produces oil and gas from fracture-induced permeability and porosity in the Big Flat/Lisbon area of the Paradox basin. Only one of approximately 110 vertical wildcats has been a commercial Cane Creek success, having recovered more than 900,000 bbl oil. Horizontal drilling significantly improves a wildcat success rate by increasing well-bore contact with near-vertical fractures. Six horizontal Cane Creek wells resulted in three discoveries, each with initial flow rates in excess of 1000 BOPD and potential reserves in excess of 500,000 bbl of oil per well. The Cane Creek Shale is the thickest and most productive of the 29 clastic intervals in the Paradox Formation. The reservoir is self-sourced from interbedded black sapropellic dolomites with up to 28% total organic carbon. Micro- and macrofractures, along with some matrix porosity, contribute to reservoir storage capacity, although the relative importance of each remains undetermined. Matrix permeability is very low. Overlying and underlying salt beds provide very effective seals. Well-bore communication with a network of natural fractures is essential to establishing commercial hydrocarbon production. Silty and sandy carbonates are the most fracture-prone lithofacies. The middle silty carbonate zone of the Cane Creek is the primary target for horizontal drilling because of the relative thickness of fracture-prone lithologies, the absence of interbedded anhydrites, and the presence of the best source-rock facies.

  3. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    USGS Publications Warehouse

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed. Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from Rosethorn Spring. The residence time of water discharging into the caves and from selected springs sampled as part of this study ranged from 10 to 25 years. Within the upper Snake Creek drainage, the results of this study show geochemical similarities between Snake Creek and Outhouse Spring, Spring Creek Spring, and Squirrel Spring Cave. The strontium isotope ratio (87Sr/86Sr) for intrusive rock samples representative of the Snake Creek drainage were similar to carbonate rock samples. The water sample collected from Snake Creek at the pipeline discharge point had lower strontium concentrations than the sample downstream and a similar 87Sr/86Sr value as the carbonate and intrusive rocks. The chemistry of the water sample was considered representative of upstream conditions in Snake Creek and indicates minimal influence of rock dissolution. The results of this study suggest that water discharging from Outlet Spring is not hydrologically connected to Snake Creek but rather is recharged at high altitude(s) within the Snake Creek drainage. These findings for Outlet Spring largely stem from the relatively high specific conductance and chloride concentration, the lightest deuterium (?D) and oxygen-18 (?18O) values, and the longest calculated residence time (60 to 90 years) relative to any other sample collected as part of this study. With the exception of water sampled from Outlet Spring, the residence time of water discharging into Squirrel Spring Cave and selected springs in the upper Snake Creek drainage was less than 30 years.

  4. Traveltime characteristics of Gore Creek and Black Gore Creek, upper Colorado River basin, Colorado

    USGS Publications Warehouse

    Gurdak, Jason J.; Spahr, Norman E.; Szmajter, Richard J.

    2002-01-01

    In the Rocky Mountains of Colorado, major highways are often constructed in stream valleys. In the event of a vehicular accident involving hazardous materials, the close proximity of highways to the streams increases the risk of contamination entering the streams. Recent population growth has contributed to increased traffic volume along Colorado highways and has resulted in increased movement of hazardous materials, particularly along Interstate 70. Gore Creek and its major tributary, Black Gore Creek, are vulnerable to such contamination from vehicular accidents along Interstate 70. Gore Creek, major tributary of the Eagle River, drains approximately 102 square miles, some of which has recently undergone significant urban development. The headwaters of Gore Creek originate in the Gore Range in the eastern part of the Gore Creek watershed. Gore Creek flows west to the Eagle River. Beginning at the watershed boundary on Vail Pass, southeast of Vail Ski Resort, Interstate 70 parallels Black Gore Creek and then closely follows Gore Creek the entire length of the watershed. Interstate 70 crosses Gore Creek and tributaries 20 times in the watershed. In the event of a vehicular accident involving a contaminant spill into Gore Creek or Black Gore Creek, a stepwise procedure has been developed for water-resource managers to estimate traveltimes of the leading edge and peak concentration of a conservative contaminant. An example calculating estimated traveltimes for a hypothetical contaminant release in Black Gore Creek is provided. Traveltime measurements were made during May and September along Black Gore Creek and Gore Creek from just downstream from the Black Lakes to the confluence with the Eagle River to account for seasonal variability in stream discharge. Fluorometric dye injection of rhodamine WT and downstream dye detection by fluorometry were used to measure traveltime characteristics of Gore Creek and Black Gore Creek. During the May traveltime measurements, discharges ranged from 82 cubic feet per second (ft3/s) at Black Gore Creek near Minturn (U.S. Geological Survey station number 09066000) to 724 ft3/s at Gore Creek at mouth near Minturn (U.S. Geological Survey station number 09066510), whereas during the September traveltime measurements, discharges ranged from 3.6 ft3/s at Black Gore Creek near Minturn to 62 ft3/s at Gore Creek at mouth near Minturn. Cumulative traveltimes for the peak dye concentration during the May traveltime measurements ranged from 3.45 hours (site 1 to site 3) in Black Gore Creek to 2.50 hours (site 8 to site 12) in Gore Creek, whereas cumulative traveltimes for the peak dye concentration during the September traveltime measurements ranged from 15.33 hours (site 1 to site 3) in Black Gore Creek to 8.65 hours (site 8 to site 12) in Gore Creek. During the September dye injections, beaver dams on Black Gore Creek, between site 1 and the confluence with Gore Creek, substantially delayed movement of the rhodamine WT. Estimated traveltimes were developed using relations established from linear-regression methods of relating measured peak traveltime to discharge during those measurements, which were obtained at Black Gore Creek near Minturn and Gore Creek at mouth near Minturn. Resulting estimated peak traveltimes for Black Gore Creek (sites 1 to 5) ranged from 5.4 to 0.4 hour for 20 to 200 ft3/s and for Gore Creek (sites 5 to 12), 5.5 to 0.3 hour for 20 to 800 ft3/s. Longitudinal-dispersion coefficients that were calculated for selected stream reaches ranged from 17.2 square feet per second at 4 ft3/s between sites 2 and 3 to 650 square feet per second at 144 ft3/s between sites 7 and 8. Longitudinal-dispersion coefficients are necessary variables for future stream-contaminant modeling in the Gore Creek watershed.

  5. 75 FR 10328 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-05

    ... exemption will not have a significant effect on the quality of the human environment (75 FR 5631; February 3... Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Exemption 1.0 Background Wolf... License No. NPF-42, which authorizes the operation of the Wolf Creek Generating Station (WCGS)....

  6. LIGHTNING CREEK, PACK RIVER, AND SAND CREEK, BONNER COUNTY, IDAHO - WATER QUALITY SUMMARY, 1978

    EPA Science Inventory

    In Water Year 1978, water quality studies were conducted on Lightning Creek, Pack River, and Sand Creek in Bonner County, Idaho (17010214, 17010213) to determine the present status of the streams. Water quality in Lightning Creek was generally very high. No violations of standa...

  7. DEEP CREEK AND MUD CREEK, TWIN FALLS, IDAHO. WATER QUALITY STATUS REPORT, 1986

    EPA Science Inventory

    Deep Creek and Mud Creek are located in Twin Falls County near Buhl, Idaho (17040212). From April through October, these creeks convey irrigation drainage water from the western part of the Twin Falls irrigation tract to the Snake River. During 1986, water quality surveys were ...

  8. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  9. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  10. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  11. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  12. 33 CFR 110.79c - Fish Creek Harbor, Fish Creek, Wisconsin.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Fish Creek Harbor, Fish Creek, Wisconsin. 110.79c Section 110.79c Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY ANCHORAGES ANCHORAGE REGULATIONS Special Anchorage Areas § 110.79c Fish Creek Harbor, Fish...

  13. 2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Salmon Creek Diversion Dam, overview, diversion weir center foreground, headworks overflow weir to center left, view to east - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  14. 1. Salmon Creek Diversion Dam, weir (to left), sand and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Salmon Creek Diversion Dam, weir (to left), sand and silt sluice gate (center), main canal headworks (to right), view to northwest - Salmon Creek Diversion Dam, Salmon Creek, Okanogan, Okanogan County, WA

  15. 76 FR 13524 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ...RM-11611] Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications...Media, Inc., allots FM Channel 258A at Willow Creek, California. Channel 258A can be allotted at Willow Creek, consistent with the minimum...

  16. Detail view of 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  17. Perspective view showing 850 plate girder span directly over creek, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Perspective view showing 85-0 plate girder span directly over creek, looking west. - New York, Chicago & St. Louis Railroad, Elk Creek Trestle, Spanning Elk Creek, south of Elk Park Road, Lake City, Erie County, PA

  18. Topographic view of the Spring Creek Bridge and Collier State ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Topographic view of the Spring Creek Bridge and Collier State Park, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  19. Approach view of the Spring Creek Bridge, view looking south. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking south. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  20. Elevation view of the Spring Creek Bridge, view looking east. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Elevation view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  1. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking east. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  2. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking northwest. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  3. General perspective view of the Spring Creek Bridge, view looking ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General perspective view of the Spring Creek Bridge, view looking southeast. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  4. Approach view of the Spring Creek Bridge, view looking north. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Approach view of the Spring Creek Bridge, view looking north. - Spring Creek Bridge, Spanning Spring Creek at Milepoint 253.98 on Oregon to California Highway (US Route 97), Chiloquin, Klamath County, OR

  5. 2. Deep Creek Road, old bridge at campground entrance. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Deep Creek Road, old bridge at campground entrance. - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  6. 1. Deep Creek Road, picnic pavilion Great Smoky Mountains ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Deep Creek Road, picnic pavilion - Great Smoky Mountains National Park Roads & Bridges, Deep Creek Road, Between Park Boundary near Bryson City & Deep Creek Campground, Gatlinburg, Sevier County, TN

  7. CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTH Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTH - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  8. CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTHWEST Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTHWEST - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  9. CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTH Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, NORTH ELEVATION, FACING SOUTH - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  10. CLOVER CREEK BRIDGE, SOUTH ELEVATION DETAIL, FACING NORTH NORTHEAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, SOUTH ELEVATION DETAIL, FACING NORTH NORTHEAST - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  11. CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTHWEST Generals Highway, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CLOVER CREEK BRIDGE, SOUTH ELEVATION, FACING NORTHWEST - Generals Highway, Clover Creek Bridge, Spanning Clover Creek on Generals Highway, approximately 22 miles northeast of Ash Mountain Entrance, Three Rivers, Tulare County, CA

  12. 3. Threequarter view of Oak Creek Bridge behind visitor center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Three-quarter view of Oak Creek Bridge behind visitor center facing southwest - Oak Creek Administrative Center, One half mile east of Zion-Mount Carmel Highway at Oak Creek, Springdale, Washington County, UT

  13. 59. Credit FM. Flood waters on South Battle Creek next ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. Credit FM. Flood waters on South Battle Creek next to powerhouse. Note height of water in relation to tailraces. - Battle Creek Hydroelectric System, Battle Creek & Tributaries, Red Bluff, Tehama County, CA

  14. 2. Big Creek Road, worm fence and road at trailhead. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Big Creek Road, worm fence and road at trailhead. - Great Smoky Mountains National Park Roads & Bridges, Big Creek Road, Between State Route 284 & Big Creek Campground, Gatlinburg, Sevier County, TN

  15. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...2011-07-01 2011-07-01 false Blackhole Creek, Md. 110.72 Section 110...Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River,...

  16. 33 CFR 110.72 - Blackhole Creek, Md.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...2010-07-01 2010-07-01 false Blackhole Creek, Md. 110.72 Section 110...Special Anchorage Areas § 110.72 Blackhole Creek, Md. The waters on the west side of Blackhole Creek, a tributary of Magothy River,...

  17. 77 FR 10960 - Drawbridge Operation Regulation; Snake Creek, Islamorada, FL

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-24

    ...USCG-2012-0047] Drawbridge Operation Regulation; Snake Creek, Islamorada, FL AGENCY: Coast Guard...from the regulation governing the operation of Snake Creek Bridge, mile 0.5, across Snake Creek, in Islamorada, Florida. The...

  18. Q00906010024 rock check dam

    E-print Network

    00906010024 rock check dam Q00906010025 rock check dam Q00906010021 rock check dam Q00906010022 rock check dam Q00906010027 rock check dam Q00906010026 rock check dam Q00906010018 rock check dam Q00906010023 rock check dam Q00906010011 rock check dam Q00906010008 rock check dam Q00906010007 rock check dam Q

  19. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Yakama Indian Nation, Annual Report 2002-2003.

    SciTech Connect

    Morris, Gregory

    2003-05-01

    This document represents the FY2002 BPA contract Statement of Work for the Yakama Nation (YN) portion of the project entitled 'Assessment of current and potential salmonid production in Rattlesnake Creek associated with restoration efforts'. The purpose of the project is to complete detailed surveys of water quality, fish populations, habitat conditions and riparian health in the Rattlesnake Creek sub-basin of the White Salmon River in south central Washington. Results of the surveys will be used to establish Rattlesnake Creek sub-basin baseline environmental factors prior to anticipated removal of Condit Dam in 2006 and enable cost-effective formulation of future watershed restoration strategies.

  20. Campbell Creek Research Houses: A Transformational Impact

    E-print Network

    Pennycook, Steve

    require occupancy simulation. Using home automation equipment the lighting, clothes washer and dryer easily do. Manufacturers and Suppliers The following partners have contributed to the Campbell Creek

  1. 77 FR 2493 - Special Local Regulations for Marine Events; Spa Creek and Annapolis Harbor, Annapolis, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-18

    The Coast Guard proposes to establish special local regulations during the swim segment of the ``TriRock Triathlon Series'', a marine event to be held on the waters of Spa Creek and Annapolis Harbor on May 12, 2012. These special local regulations are necessary to provide for the safety of life on navigable waters during the event. This action is intended to temporarily restrict vessel traffic in......

  2. Terby's Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    25 August 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows light-toned, layered, sedimentary rock outcrops in the crater, Terby. The crater is located on the north rim of Hellas Basin. If one could visit the rocks in Terby, one might learn from them whether they formed in a body of water. It is possible, for example, that Terby was a bay in a larger, Hellas-wide sea.

    Location near: 27.9oS, 285.7oW Image width: width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Winter

  3. Meridiani Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    16 September 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the complex surfaces of some of the light- and intermediate-toned sedimentary rock exposed by erosion in eastern Sinus Meridiani. Similar rocks occur at the Mars Exploration Rover, Opportunity, site, but they are largely covered by windblown sand and granules. The dark feature with a rayed pattern is the product of a meteor impact.

    Location near: 0.8oN, 355.2oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  4. Geochemical Investigation of Source Water to Cave Springs, Great Basin National Park, White Pine County, Nevada

    USGS Publications Warehouse

    Prudic, David E.; Glancy, Patrick A.

    2009-01-01

    Cave Springs supply the water for the Lehman Caves Visitor Center at Great Basin National Park, which is about 60 miles east of Ely, Nevada, in White Pine County. The source of water to the springs was investigated to evaluate the potential depletion caused by ground-water pumping in areas east of the park and to consider means to protect the supply from contamination. Cave Springs are a collection of several small springs that discharge from alluvial and glacial deposits near the contact between quartzite and granite. Four of the largest springs are diverted into a water-collection system for the park. Water from Cave Springs had more dissolved strontium, calcium, and bicarbonate, and a heavier value of carbon-13 than water from Marmot Spring at the contact between quartzite and granite near Baker Creek campground indicating that limestone had dissolved into water at Cave Springs prior to discharging. The source of the limestone at Cave Springs was determined to be rounded gravels from a pit near Baker, Nevada, which was placed around the springs during the reconstruction of the water-collection system in 1996. Isotopic compositions of water at Cave Springs and Marmot Spring indicate that the source of water to these springs primarily is from winter precipitation. Mixing of water at Cave Springs between alluvial and glacial deposits along Lehman Creek and water from quartzite is unlikely because deuterium and oxygen-18 values from a spring discharging from the alluvial and glacial deposits near upper Lehman Creek campground were heavier than the deuterium and oxygen-18 values from Cave Springs. Additionally, the estimated mean age of water determined from chlorofluorocarbon concentrations indicates water discharging from the spring near upper Lehman Creek campground is younger than that discharging from either Cave Springs or Marmot Spring. The source of water at Cave Springs is from quartzite and water discharges from the springs on the upstream side of the contact between quartzite and granite where the alluvial and glacial deposits are thin. Consequently, the potential for depletion of discharge at Cave Springs from ground-water pumping in Snake Valley east of the park is less than if the source of water was from alluvial and glacial deposits or carbonate rocks, which would be more directly connected to downstream pumping sites in Snake Valley.

  5. Geophysical Investigations of the Smoke Creek Desert and their Geologic Implications, Northwest Nevada and Northeast California

    USGS Publications Warehouse

    Ponce, David A.; Glen, Jonathan M.G.; Tilden, Janet E.

    2006-01-01

    The Smoke Creek Desert is a large basin about 100 km (60 mi) north of Reno near the California-Nevada border, situated along the northernmost parts of the Walker Lane Belt, a physiographic region defined by diverse topographic expression consisting of northweststriking topographic features and strike-slip faulting. Because geologic and geophysical framework studies play an important role in understanding the hydrogeology of the Smoke Creek Desert, a geophysical effort was undertaken to help determine basin geometry, infer structural features, and estimate depth to basement. In the northernmost parts of the Smoke Creek Desert basin, along Squaw Creek Valley, geophysical data indicate that the basin is shallow and that granitic rocks are buried at shallow depths throughout the valley. These granitic rocks are faulted and fractured and presumably permeable, and thus may influence ground-water resources in this area. The Smoke Creek Desert basin itself is composed of three large oval sub-basins, all of which reach depths to basement of up to about 2 km (1.2 mi). In the central and southern parts of the Smoke Creek Desert basin, magnetic anomalies form three separate and narrow EW-striking features. These features consist of high-amplitude short-wavelength magnetic anomalies and probably reflect Tertiary basalt buried at shallow depth. In the central part of the Smoke Creek Desert basin a prominent EW-striking gravity and magnetic prominence extends from the western margin of the basin to the central part of the basin. Along this ridge, probably composed of Tertiary basalt, overlying unconsolidated basin-fill deposits are relatively thin (< 400 m). The central part of the Smoke Creek Desert basin is also characterized by the Mid-valley fault, a continuous geologic and geophysical feature striking NS and at least 18-km long, possibly connecting with faults mapped in the Terraced Hills and continuing southward to Pyramid Lake. The Mid-valley fault may represent a lateral (east-west) barrier to ground-water flow. In addition, the Mid-valley fault may also be a conduit for along-strike (north-south) ground-water flow, channeling flow to the southernmost parts of the basin and the discharge areas north of Sand Pass.

  6. Depositional setting and diagenetic evolution of some Tertiary unconventional reservoir rocks, Uinta Basin, Utah.

    USGS Publications Warehouse

    Pitman, J.K.; Fouch, T.D.; Goldhaber, M.B.

    1982-01-01

    The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors

  7. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Navigable Waters 1 2011-07-01 2011-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0.3 at...

  8. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Navigable Waters 1 2012-07-01 2012-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0.3 at...

  9. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Navigable Waters 1 2010-07-01 2010-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0.3 at...

  10. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Navigable Waters 1 2013-07-01 2013-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0.3 at...

  11. 33 CFR 117.335 - Taylor Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Navigable Waters 1 2014-07-01 2014-07-01 false Taylor Creek. 117.335 Section 117.335 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.335 Taylor Creek. The draw of US441 bridge, mile 0.3 at...

  12. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  13. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  14. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  15. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  16. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  17. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of...

  18. SALMON RESEARCH AT DEER CREEK, CALIF.

    E-print Network

    SALMON RESEARCH AT DEER CREEK, CALIF. Marine Biological Laboratory L I B rt ja. R Y FEB 2 7 1952 FISN AND WILDLIFE SERVICE #12;#12;SALMON RESEARCH AT DEER CREEK, CALIF. Marine Biological Laboratory. January, 19^2 #12;?4 4t ^^'^^^'^''C^^Jtr^ShQsfa Lake SHASTA DAM KESWICK DAM UPPER SACRAMENTO AREA AND DEER

  19. Bacterial Monitoring for the Buck Creek Watershed 

    E-print Network

    2008-01-01

    in the watershed will aid in decreasing the impacts of E. coli on the creek. Additional information about the sources of bacteria in Buck Creek is needed before sound management measures can be recommended, developed and implemented into a feasible plan of action...

  20. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable...REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of the State highway bridge, mile...

  1. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable...REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of the State highway bridge, mile...

  2. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable...REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of the State highway bridge, mile...

  3. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  4. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  5. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  6. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  7. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw...

  8. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Navigable Waters 1 2011-07-01 2011-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile 0.8,...

  9. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Navigable Waters 1 2013-07-01 2013-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile 0.8,...

  10. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Navigable Waters 1 2010-07-01 2010-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile 0.8,...

  11. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Navigable Waters 1 2014-07-01 2014-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile 0.8,...

  12. 33 CFR 117.324 - Rice Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Navigable Waters 1 2012-07-01 2012-07-01 false Rice Creek. 117.324 Section 117.324 Navigation and Navigable...REGULATIONS Specific Requirements Florida § 117.324 Rice Creek. The CSX Railroad Swingbridge, mile 0.8,...

  13. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  14. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draws of the...

  15. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  16. 33 CFR 117.543 - Bear Creek.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Bear Creek. 117.543 Section 117.543 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Maryland § 117.543 Bear Creek. (a) The draw of the...

  17. Flooding on Hidewood Creek near Estelline, SD

    USGS Multimedia Gallery

    Localized flooding on Hidewood Creek near Estelline, SD, on June 23, 2013. Severe storms during June 21-22, 2013, in eastern South Dakota resulted in high flows in several streams across the area. The peak discharge on Hidewood Creek (streamgage 06479640) from this storm event was about 4,...

  18. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Navigable Waters 1 2010-07-01 2010-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable...REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of the State highway bridge, mile...

  19. 33 CFR 117.917 - Battery Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...Navigable Waters 1 2011-07-01 2011-07-01 false Battery Creek. 117.917 Section 117.917 Navigation and Navigable...REGULATIONS Specific Requirements South Carolina § 117.917 Battery Creek. The draw of the State highway bridge, mile...

  20. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Westchester Creek. 117.815 Section 117.815 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile...

  1. 33 CFR 117.815 - Westchester Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Westchester Creek. 117.815 Section 117.815 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New York § 117.815 Westchester Creek. The draw of the Bruckner Boulevard/Unionport Bridge, mile...

  2. 33 CFR 117.555 - College Creek.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...Navigable Waters 1 2010-07-01 2010-07-01 false College Creek. 117.555 Section 117.555 Navigation and Navigable...REGULATIONS Specific Requirements Maryland § 117.555 College Creek. The draws of the Naval Academy highway bridge,...

  3. RECLAMATION OF INDIAN AND ABRAMS CREEKS

    E-print Network

    RECLAMATION OF INDIAN AND ABRAMS CREEKS IN GREAT SMOKY MOUNTAINS NATIONAL PARK SPECIAL SCIENTIFIC A. Seaton, Secretary Fish and Wildlife Service, Arnie J. Suomela, Commissioner THE RECLAMATION OF INDIAN AND ABRAMS CREEKS GREAT SMOKY MOUNTAINS NATIONAL PARK « By Robert E . Lennon and Phillip

  4. Pine Creek Ranch; Annual Report 2002.

    SciTech Connect

    Berry, Mark E.

    2003-02-01

    This report gives information about the following four objectives: OBJECTIVE 1--Gather scientific baseline information for monitoring purposes and to assist in the development of management plans for Pine Creek Ranch; OBJECTIVE 2--Complete and implement management plans; OBJECTIVE 3--Protect, manage and enhance the assets and resources of Pine Creek Ranch; and OBJECTIVE 4--Deliverables.

  5. TOXICITY PERSISTENCE IN PRICKLY PEAR CREEK, MONTANA

    EPA Science Inventory

    Instream toxicity tests using the larval fathead minnow Pimephales promelas and the cladoceran Ceriodaphnia reticulata were conducted on Prickly Pear Creek, Montana waters to study toxicity persistence in a stream. The toxicity source was Spring Creek, a tributary of Prickly Pear...

  6. 33 CFR 117.741 - Raccoon Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Raccoon Creek. 117.741 Section 117.741 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.741 Raccoon Creek. (a) The draw of the Route 130 highway bridge, mile 1.8 at...

  7. 33 CFR 117.903 - Darby Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Darby Creek. 117.903 Section 117.903 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements Pennsylvania § 117.903 Darby Creek. (a) The draw of the CONRAIL Railroad Bridge, mile 0.3, at...

  8. 33 CFR 117.729 - Mantua Creek.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Mantua Creek. 117.729 Section 117.729 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY BRIDGES DRAWBRIDGE OPERATION REGULATIONS Specific Requirements New Jersey § 117.729 Mantua Creek. (a) The draw of the CONRAIL Railroad Bridge, mile 1.4 at...

  9. Sedimentary Rocks

    NASA Technical Reports Server (NTRS)

    2005-01-01

    6 November 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows outcrops of sedimentary rocks in a crater located just north of the Sinus Meridiani region. Perhaps the crater was once the site of a martian lake.

    Location near: 2.9oN, 359.0oW Image width: width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Autumn

  10. X.R.F ANALYSES OF GRANITOIDS AND ASSOCIATED ROCKS FROM SOUTH VICTORIA LAND, ANTARCTICA

    E-print Network

    #12;X.R.F ANALYSES OF GRANITOIDS AND ASSOCIATED ROCKS FROM SOUTH VICTORIA LAND, ANTARCTICA K ISSN 0375-8192 1987 #12;INTRODUCTION The granitoid rocks of South Victoria Land are represented in some) and I-type (igneous), as originally outlined by Chappell & White (1974) and more recently White

  11. Rock Driller

    NASA Technical Reports Server (NTRS)

    Peterson, Thomas M.

    2001-01-01

    The next series of planetary exploration missions require a method of extracting rock and soil core samples. Therefore a prototype ultrasonic core driller (UTCD) was developed to meet the constraints of Small Bodies Exploration and Mars Sample Return Missions. The constraints in the design are size, weight, power, and axial loading. The ultrasonic transducer requires a relatively low axial load, which is one of the reasons this technology was chosen. The ultrasonic generator breadboard section can be contained within the 5x5x3 limits and weighs less than two pounds. Based on results attained the objectives for the first phase were achieved. A number of transducer probes were made and tested. One version only drills, and the other will actually provide a small core from a rock. Because of a more efficient transducer/probe, it will run at very low power (less than 5 Watts) and still drill/core. The prototype generator was built to allow for variation of all the performance-effecting elements of the transducer/probe/end effector, i.e., pulse, duty cycle, frequency, etc. The heart of the circuitry is what will be converted to a surface mounted board for the next phase, after all the parameters have been optimized and the microprocessor feedback can be installed.

  12. Vanishing White Matter Disease

    MedlinePLUS

    ... Vanishing White Matter Disease What is Vanishing White Matter Disease? Vanishing White Matter Disease (VWM) is inherited ... about this). Other Clinical Names for Vanishing White Matter Disease Other clinical names of Vanishing White Matter ...

  13. 2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. CONTEMPORARY PHOTOGRAPH OF BIG CREEK POWERHOUSE NO. 3 TAKEN FROM SAME ANGLE AS CA-167-X-1. THREE ORIGINAL PENSTOCKS PLUS FOURTH AND FIFTH PENSTOCKS (VISIBLE TO LEFT OF ORIGINAL THREE), AND THREE ORIGINAL STANDPIPES COUPLED TO FOURTH STANDPIPE SHOWN BEHIND AND ABOVE POWERHOUSE BUILDING. VIEW TO NORTHEAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  14. 3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. OVERVIEW CONTEXTUAL VIEW OF BIG CREEK NO. 3 COMPLEX SHOWING SWITCHRACKS AND SUPPORT BUILDINGS TO PHOTO RIGHT OF POWERHOUSE, SAN JOAQUIN RIVER FLOWING IN PHOTO CENTER TO LOWER RIGHT, AND PENSTOCKS AND STANDPIPES IN BACKGROUND ABOVE POWERHOUSE. VIEW TO EAST. - Big Creek Hydroelectric System, Powerhouse 3 Penstock Standpipes, Big Creek, Big Creek, Fresno County, CA

  15. 77 FR 73650 - Peabody Trout Creek Reservoir LLC;

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-11

    ... Energy Regulatory Commission Peabody Trout Creek Reservoir LLC; Notice of Preliminary Permit Application... 30, 2012, Peabody Trout Creek Reservoir LLC (Peabody) filed an application for a preliminary permit... Creek Reservoir Hydroelectric Project (Trout Creek Reservoir Project or project) to be located on...

  16. 76 FR 13524 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-14

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... FM Channel 258A at Willow Creek, California. Channel 258A can be allotted at Willow Creek, consistent... of FM Allotments under California, is amended by adding Channel 258A at Willow Creek....

  17. Rock Climbing Scholarship Winners

    E-print Network

    Sin, Peter

    Highlights · Rock Climbing · TOEFL® · Scholarship Winners · Exit Test TheELIWeekly Rock Climbing An afternoon of extreme fun! On Saturday, July 25th, join us to spend the afternoon rock climbing! What: Come Rock Climb at the Gainesville Rock Gym. No experience necessary. Everyone is welcome! What to Wear

  18. 6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW OF BAMBOO GATE LEADING INTO WHITE GRAVEL AND ROCK CLUSTER GARDEN REMINISCENT OF RYOAN-JI TEMPLE GARDEN IN KYOTO - Kykuit, Japanese Gardens, 200 Lake Road, Pocantico Hills, Westchester County, NY

  19. Flood discharges and hydraulics near the mouths of Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek in the New River Gorge National River, West Virginia

    USGS Publications Warehouse

    Wiley, J.B.

    1994-01-01

    The U.S. Geological Survey, in cooperation with the National Park Service, studied the frequency and magnitude of flooding near the mouths of five tributaries to the New River in the New River Gorge National River. The 100-year peak discharge at each tributary was determined from regional frequency equations. The 100-year discharge at Wolf Creek, Craig Branch, Manns Creek, Dunloup Creek, and Mill Creek was 3,400 cubic feet per second, 640 cubic feet per second, 8,200 cubic feet per second, 7,100 cubic feet per second, and 9,400 cubic feet per second, respectively. Flood elevations for each tributary were determined by application of a steady-state, one-dimensional flow model. Manning's roughness coefficients for the stream channels ranged from 0.040 to 0.100. Bridges that would be unable to contain the 100-year flood within the bridge opening included: the State Highway 82 bridge on Wolf Creek, the second Fayette County Highway 25 bridge upstream from the confluence with New River on Dunloup Creek, and an abandoned log bridge on Mill Creek.

  20. 20. DETAIL VIEW OF A DRYLAID ROCK AND CONCRETE BAG ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. DETAIL VIEW OF A DRY-LAID ROCK AND CONCRETE BAG WALL (TY-3177-17) ON THE UPSLOPE SIDE OF KINGS CANYON ROAD AT CLEAR CREEK. LOCATED AT MILEPOST 2.5 (ACCORDING TO THE REVISED SITE RECORD FOR SITE TY-3177). PHOTO TAKEN FROM THE CENTER OF THE FEATURE, FACING SOUTH 30 EAST (1500). - Kings Canyon Road, Carson City, Carson City, NV

  1. 19. VIEW OF A DRYLAID ROCK AND CONCRETE BAG WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. VIEW OF A DRY-LAID ROCK AND CONCRETE BAG WALL (TY-3177-17) ON THE UPSLOPE SIDE OF KINGS CANYON ROAD AT CLEAR CREEK. LOCATED AT MILEPOST 2.5 (ACCORDING TO THE REVISED SITE RECORD FOR SITE TY-3177). PHOTO TAKEN FROM THE WEST END OF THE FEATURE, FACING SOUTH 6 EAST (174ø). - Kings Canyon Road, Carson City, Carson City, NV

  2. 78 FR 5798 - Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of Petition for Enforcement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-28

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Grouse Creek Wind Park, LLC, Grouse Creek Wind Park II, LLC; Notice of... Utility Regulatory Policies Act of 1978 (PURPA), Grouse Creek Wind Park, LLC and Grouse Creek Wind Park...

  3. Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek

    E-print Network

    Gray, Matthew

    1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

  4. Steel Creek wildlife: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Giffin, M.A.; Patterson, K.K.

    1988-03-01

    Reptile and amphibian populations in Steel Creek below L-Lake were assessed in monthly or quarterly sampling programs. Thirty-eight species of reptiles or amphibians were collected during 1987 in the Steel Creek corridor below the L-Lake impoundment, and in the delta and channel. Juvenile turtles and alligators, and larval amphibians were observed or collected during the study, indicating continued reproduction in Steel Creek. The reptile and amphibian populations in Steel Creek show no indication of any effect due to the impoundment of the lake or the operation of L-Reactor. Waterfowl and associated birds in Steel Creek below L-Lake were observed, in conjunction with other sampling programs, during winter--spring and fall--winter migrations. Nine species of waterfowl and five species of associated birds were observed in 1987 in the Steel Creek corridor below the L-Lake impoundment and in the delta and channel.

  5. Landowners lead successful Buck Creek restoration 

    E-print Network

    Boutwell, Kathryn S.

    2012-01-01

    manager for Buck Creek, said that in ????, landowners took the initiative to secure the scienti?c information needed to be?er evaluate both water quality in the creek as well as potential sources of bacteria across the watershed. Using funding secured...-Type text/plain; charset=ISO-8859-1 26 tx H2O Fall 2012 Story by Kathryn S. Boutwell Landowners in the Buck Creek watershed in the Texas Panhandle were the driving force behind the successful restoration of the watershed and its removal from...

  6. Panther Creek, Idaho, Habitat Rehabilitation, Final Report.

    SciTech Connect

    Reiser, Dudley W.

    1986-01-01

    The purpose of the project was to achieve full chinook salmon and steelhead trout production in the Panther Creek, Idaho, basin. Plans were developed to eliminate the sources of toxic effluent entering Panther Creek. Operation of a cobalt-copper mine since the 1930's has resulted in acid, metal-bearing drainage entering the watershed from underground workings and tailings piles. The report discusses plans for eliminating and/or treating the effluent to rehabilitate the water quality of Panther Creek and allow the reestablishment of salmon and trout spawning runs. (ACR)

  7. Layered Rocks in 'Columbia Hills'

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This black-and-white image shows the first layered rocks scientists have seen close up in Gusev Crater, where NASA's Mars Exploration Rover Spirit landed Jan. 4, 2004. While Spirit's twin rover, Opportunity, reached the stadium-size Endurance Crater on the other side of Mars and began exploring its many layered outcrops in early May, Spirit traveled more than 3.5 kilometers (2.2 miles) to get to this layered bedrock in the 'Columbia Hills.' Scientists are planning to conduct a study of these rocks to determine if they are volcanic or sedimentary in origin, and if they have been chemically altered. Spirit's panoramic camera took this image on sol 217 (Aug. 13, 2004).

  8. Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Underwood Conservation District, Annual Report 2002-2003.

    SciTech Connect

    White, Jim

    2004-02-01

    This project addresses existing habitat conditions, fish population status, and restoration priority sites within the Rattlesnake Creek watershed, a sub-basin of the White Salmon River. Our partners in this project are the United States Geological Service (USGS), and the Yakama Indian Nation (YIN). Underwood Conservation District (UCD) is involved in the project via accomplishment of water quality monitoring, sampling for stable isotopes, and characterization of the watershed geomorphology. These work items are part of an effort to characterize the stream and riparian habitat conditions in Rattlesnake Creek, to help guide habitat and fish restoration work. Water chemistry and temperature information is being collected both on Rattlesnake Creek, and on other tributaries and the main stem of the White Salmon River. Information on the entire system enables us to compare results obtained from Rattlesnake Creek with the rest of the White Salmon system. Water chemistry and temperature data have been collected in a manner that is comparable with data gathered in previous years. The results from data gathered in the 2001-2002 performance period are reported in appendix A at the end of this 2002-2003 report. Additional work being conducted as part of this study includes; an estimate of salmonid population abundance (YIN and USGS); a determination of fish species composition, distribution, and life history (YIN and USGS), and a determination of existing kinds, distribution, and severity of fish diseases (YIN and USGS). The overall objective is to utilize the above information to prioritize restoration efforts in Rattlesnake Creek.

  9. Steel Creek fish, L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1991

    SciTech Connect

    Sayers, R.E. Jr.; Mealing, H.G. III

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- Upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The lake has an average width of approximately 600 m and extends along the Steel Creek valley approximately 7000 m from the dam to the headwaters. Water level is maintained at a normal pool elevation of 58 m above mean sea level by overflow into a vertical intake tower that has multilevel discharge gates. The intake tower is connected to a horizontal conduit that passes through the dam and releases water into Steel Creek. The Steel Creek Biological Monitoring Program was designed to meet environmental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  10. Salt Marshes along Little Mosquito Creek

    USGS Multimedia Gallery

    Salt marshes along Little Mosquito Creek of Chincoteague Island. The salt marshes that make up Chincoteague Island are important habitat for migrating waterfowl. In addition, they serve an important role in protecting inland ecosystems and communities from oceanic storms....

  11. Weir Control at Beaver Creek below Linton

    USGS Multimedia Gallery

    Weir control at Beaver Creek below Linton, North Dakota.  For more information on the use of weirs to aid in the determination of streamflow, see volumes 1 and 2 of the USGS Water Supply Paper, Measurement and Computation of Streamflow....

  12. Distribution of gold, tellurium, silver, and mercury in part of the Cripple Creek district, Colorado

    USGS Publications Warehouse

    Gott, Garland Bayard; McCarthy, J.H.; Van Sickle, G.H.; McHugh, J.B.

    1967-01-01

    Geochemical exploration studies were undertaken in the Cripple Creek district to test the possibility that large low-grade gold deposits might be found. Surface rock samples taken throughout the district indicate that the volcanic rocks between the productive veins contain an average of about 0.6 ppm (part per million) gold. In an area above 3,800 feet long and 500 feet wide near the Cresson mine in the south-central part of the district, scattered surface samples show that the rocks contain an average of 2.5 ppm gold, equivalent to $2.50 per ton. Inasmuch as veins that contain more than 2.5 ppm may also exist in the area, systematic sampling by trenching and drilling is warranted.

  13. Post-Supereruption (18-19 Ma) Magmatic Reactivation Beneath the Silver Creek Caldera, Black Mountains, AZ

    NASA Astrophysics Data System (ADS)

    Mcdowell, S.; Miller, C. F.; Ferguson, C.

    2011-12-01

    The Silver Creek caldera, southern Black Mountains, AZ, is the source of the supereruption that produced the Miocene (18.8 Ma) Peach Spring Tuff (PST), an extensive ignimbrite found throughout much of northwestern Arizona, southern Nevada, and southeastern California. The caldera's eastern margin is intruded by a slightly younger (18.5 +/- 0.5 Ma), ~30 km2 complex of epizonal, intermediate to felsic plutonic rocks. Because it is the largest known suite of intrusive rocks associated with the Peach Spring supereruption and contiguous (~19.5-17.5 Ma) volcanic activity in the Black Mountains, the Silver Creek intrusive complex provides a valuable record of processes operating in the shallow crust in the aftermath of a major eruption and during a period of intense volcanic activity. Rocks in the Silver Creek intrusive complex have historically been divided into two units, the Moss porphyry and the Times porphyry, though the complex exhibits textural and compositional complexity that belies a simple two-unit classification scheme. Field observations and geochemical analysis indicate that the northern portion of the Silver Creek suite comprises porphyries and coarse-grained rocks with ~62 to ~68 wt. % SiO2 ("Moss porphyry"). Rounded, 2-10 cm enclaves (59 wt. % SiO2) with crenulate margins are sparse overall but locally abundant in this portion of the complex. The southern part of the complex consists of leucogranitic porphyry and coarse-grained granite with >70 wt. % SiO2 ("Times porphyry"). At the east/west-trending Times/Moss contact zone along Silver Creek, the coarse-grained component of the Times contains < 0.5-2 m-diameter, fine-grained enclaves with crenulate margins and compositions similar to that of the intermediate Moss to the north. Mafic, intermediate, and felsic porphyritic dikes crosscut the entire complex. Major and trace element compositions of the Silver Creek intrusive complex define a coherent and continuous array extending from the most mafic enclaves to the most silicic Times, consistent with their representing a broadly cogenetic suite. Our preliminary data reveal that the Times units are geochemically similar to rhyolitic pumice in PST outflow, while the Moss is geochemically comparable to voluminous trachydacite lava and tuff that erupted shortly before the PST. The geochemical and age data, combined with field evidence for mafic reheating and magma mixing, suggest that the Silver Creek intrusive complex records rapid reinvigoration of the magmatic system that fed the PST supereruption and its volcanic predecessors in the Black Mountains.

  14. Habitat Evaluation Procedures (HEP) Report; Calispell Creek Project, Technical Report 2004-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 13, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Calispell Creek property, an acquisition completed by the Kalispel Tribe of Indians in February 2004. Evaluation species and appropriate models include Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Calispell Creek Project provides a total of 138.17 Habitat Units (HUs) for the species evaluated. Emergent wetland habitat provides 5.16 HUs for mallard and muskrat. Grassland provides 132.02 HUs for mallard and Canada goose. Scrub-shrub vegetation provides 0.99 HUs for yellow warbler and white-tailed deer. The objective of using HEP at the Calispell Creek Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  15. Habitat Evaluation Procedures (HEP) Report; Tacoma Creek South Project, Technical Report 2003-2005.

    SciTech Connect

    Entz, Ray

    2005-02-01

    On July 6, 2004, the Habitat Evaluation Procedure (HEP) was used to determine baseline habitat suitability on the Tacoma Creek South property, an acquisition completed by the Kalispel Tribe of Indians in June 2004. Evaluation species and appropriate models include bald eagle, black-capped chickadee, Canada goose, mallard, muskrat, yellow warbler, and white-tailed deer. Habitat Suitability Index (HSI) values were visually estimated and agreed upon by all HEP team members. The Tacoma Creek South Project provides a total of 190.79 Habitat Units (HUs) for the species evaluated. Emergent wetlands provide 20.51 HUs for Canada goose, mallard, and muskrat. Grassland provides 1.65 HUs for Canada goose and mallard. Scrub-shrub vegetation provides 11.76 HUs for mallard, yellow warbler, and white-tailed deer. Conifer forest habitat provides 139.92 HUs for bald eagle, black-capped chickadee, and white-tailed deer. Deciduous forest also provides 19.15 HUs for bald eagle, black-capped chickadee, mallard, and white-tailed deer. The objective of using HEP at the Tacoma Creek South Project and other protected properties is to document the quality and quantity of available habitat for selected wildlife species. In this way, HEP provides information on the relative value of the same area at future points in time so that the effect of management activities on wildlife habitat can be quantified. When combined with other tools, the baseline HEP will be used to determine the most effective on-site management, restoration, and enhancement actions to increase habitat suitability for targeted species. The same process will be replicated every five years to quantitatively evaluate the effectiveness of management strategies in improving and maintaining habitat conditions while providing additional crediting to BPA for enhanced habitat values.

  16. GEOLOGIC AND GEOCHEMICAL INVESTIGATIONS OF THE MEAGER CREEK GEOTHERMAL SYSTEM, BRITISH COLUMBIA, CANADA

    SciTech Connect

    Moore, J.N.; Adams, M.C.; Stauder, J.J.

    1985-01-22

    Meager Creek is perhaps the most intensely explored geothermal system occurring in the Cascade and Garibaldi Volcanic Belts. This paper describes the results of new lithologic, petrographic, X-ray, isotopic, and geochemical investigations of core and cuttings from the Meager Creek wells. The data demonstrate that alteration related to the present geothermal system is superimposed on basement rocks which were metamorphosed and intruded by dioritic stocks prior to the onset of volcanism. The geothermal alteration developed mainly after emplacement of hypabyssal dikes associated with Meager Mountain volcanism and is characterized by mineral assemblages consisting primarily of sheet silicates, quartz, carbonate, hematite, iron oxides, pyrite, and minor epidote, potassium feldspar, actinolite and biotite. Permeabilities within the upper portions of the reservoir are low, reflecting filling of the fracture systems by carbonate. Petrographic observations suggest that sealing of the fractures accompanied hydrothermal brecciation and boiling of the fluids.

  17. White phosphorus

    Integrated Risk Information System (IRIS)

    White phosphorus ; CASRN 7723 - 14 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic

  18. White Tern

    USGS Multimedia Gallery

    The White Tern is one of eight seabird species whose population density and susceptibility to sea-level rise was studied on the French Frigate Shoals' Tern Island by biologists with the USGS Pacific Island Ecosystems Research Center's Northwestern Hawaiian Islands Climate Change Project.  ...

  19. V00306010057 rock check dam

    E-print Network

    ¬« ¬« ¬« ¬« ¬« XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063

  20. Multispectral analysis of limestone, dolomite, and granite, Mill Creek, Oklahoma

    NASA Technical Reports Server (NTRS)

    Rowan, L. C.; Watson, K.

    1970-01-01

    Spectral reflectance and thermal emission data were collected at the Mill Creek, Oklahoma test site during NASA missions 132 and 133 in June 1970. The data were collected by three aircraft flown several times during the diurnal cycle at altitudes of 150 to 17,000 m above mean terrain. Reflectance of the main rock types (limestone, dolomite, and granite) was determined from the data collected using a 12-channel multispectral scanner during mission 133 and from thermal infrared images recorded during mission 132 on an RS-7 scanner from 17,000 m above terrain. A preliminary rock recognition map was generated automatically using data collected from 900 m above terrain. The discrimination provided by the map is reasonably accurate. Misidentification occurred in areas of unusually high dolomite reflectivity. High altitude thermal infrared (10 to 12 micrometers) images show regional folds and faults distinguished by the presence of thermally contrasting materials. Linear and curvilinear structural features two to three times smaller than the nominal 17 m resolution could be detected.

  1. Chapter Eight Rock Varnish

    E-print Network

    Dorn, Ron

    Q Chapter Eight Rock Varnish Ronald I. Dorn 8.1 Introduction: Nature and General Characteristics, not natural rock exposures. Yet, rarely do we see the true colouration and appearance of natural rock faces without some masking by biogeochemical curtains. Geochemical sediments known as rock coat- ings (Table 8

  2. Rollerjaw Rock Crusher

    NASA Technical Reports Server (NTRS)

    Peters, Gregory; Brown, Kyle; Fuerstenau, Stephen

    2009-01-01

    The rollerjaw rock crusher melds the concepts of jaw crushing and roll crushing long employed in the mining and rock-crushing industries. Rollerjaw rock crushers have been proposed for inclusion in geological exploration missions on Mars, where they would be used to pulverize rock samples into powders in the tens of micrometer particle size range required for analysis by scientific instruments.

  3. 77 FR 56238 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Application for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-12

    ... From the Federal Register Online via the Government Printing Office NUCLEAR REGULATORY COMMISSION Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Application for Amendment to Facility Operating License AGENCY: Nuclear Regulatory Commission. ACTION: License amendment application; withdrawal. ADDRESSES: Please refer...

  4. Creek Women and the "Civilizing" of Creek Society, 1790-1820.

    ERIC Educational Resources Information Center

    Dysart, Jane E.

    Women in traditional Creek society, while making few decisions in the public domain, held almost absolute power in the domestic realm. When a Creek couple married, the husband moved into his wife's house and lived among her clan, her matrilineal kin. The house, household goods, fields, and children belonged to her. Boys were educated by their…

  5. 75 FR 5631 - Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... March 27, 2009 (74 FR 13967). There will be no change to radioactive effluents that affect radiation... impact [Part 73, Power Reactor Security Requirements, 74 FR 13926, 13967 (March 27, 2009)]. Therefore... Wolf Creek Nuclear Operating Corporation, Wolf Creek Generating Station; Environmental Assessment...

  6. Lithofacies, Age, and Sequence Stratigraphy of the Carboniferous Lisburne Group in the Skimo Creek Area, Central Brooks Range

    USGS Publications Warehouse

    Dumoulin, Julie A.; Whalen, Michael T.; Harris, Anita G.

    2008-01-01

    The Lisburne Group, a mainly Carboniferous carbonate succession that is widely distributed across northern Alaska, contains notable amounts of oil and gas at Prudhoe Bay. Detailed studies of the Lisburne in the Skimo Creek area, central Brooks Range, delineate its lithofacies, age, conodont biofacies, depositional environments, and sequence stratigraphy and provide new data on its hydrocarbon source-rock and reservoir potential, as well as its thermal history, in this area. We have studied the Lisburne Group in two thrust sheets of the Endicott Mountains allochthon, herein called the Skimo and Tiglukpuk thrust sheets. The southern, Skimo Creek section, which is >900 m thick, is composed largely of even-bedded to nodular lime mudstone and wackestone intercalated with intervals of thin- to thick-bedded bioclastic packstone and grainstone. Some parts of the section are partially to completely dolomitized and (or) replaced by chert. A distinctive, 30-m-thick zone of black, organic-rich shale, lime mudstone, and phosphorite is exposed 170 m below the top of the Lisburne. The uppermost 40 m of section is also distinctive and made up of dark shale, lime mudstone, spiculite, and glauconitic grainstone. The northern, Tiglukpuk Creek section, which is similar to the Skimo Creek section but only ~760 m thick, includes more packstone and grainstone and less organic-rich shale. Analyses of conodonts and foraminifers indicate that both sections range in age from late Early Mississippian (Osagean) through Early Pennsylvanian (early Morrowan) and document a hiatus of at least 15 m.y. at the contact between the Lisburne and the overlying Siksikpuk Formation. No evidence of subaerial exposure was observed along this contact, which may represent a submarine erosional surface. Lithofacies and biofacies imply that the Lisburne Group in the study area was deposited mainly in midramp to outer-ramp settings. Deepest water strata are mud rich and formed below storm or fair-weather wave base on the outer ramp to outer midramp; shallowest facies are storm, sand-wave, and shoal deposits of the inner midramp to inner ramp. A relatively diverse, open-marine fauna occurs throughout much of the Lisburne in the study area, but some beds also contain clasts typical of more restricted, shallow-water environments that were likely transported seaward by storms and currents. Radiolarians are abundant in the shale and phosphorite unit at Skimo Creek and also occur in equivalent strata at Tiglukpuk Creek; high gamma-ray response and elevated total organic-carbon contents (max 5?8 weight percent) also characterize this unit at Skimo Creek. Lithologic, faunal, and geochemical data all suggest that these rocks formed mainly in an outer-ramp to basinal setting with low sedimentation rates, high productivity, and poorly oxygenated bottom water. Shale and mudstone at the top of the Lisburne Group accumulated in a similarly sediment starved, mainly outer ramp environment but lack comparable evidence for high nutrient and low oxygen levels during deposition. Vertical shifts in rock types and faunas delineate numerous parasequences and six probable third-order sequences in the study area; the same sequences are also recognized in the Lisburne Group to the east. Transgressive-system tracts in these sequences generally fine upward, whereas highstand-system tracts coarsen upward. Sequences in the Tiglukpuk Creek section are mostly thinner, contain thinner and more numerous parasequences, and accumulated in somewhat shallower settings than those in the Skimo Creek section. These differences reflect the more seaward position and, thus, increased accommodation space of the Skimo Creek section relative to the Tiglukpuk Creek section during deposition. Organic-rich calcareous shale in the shale and phosphorite unit has a cumulative thickness of at least 15 m and a lateral extent of >50 km; this lithology is the best potential hydrocarbon source rock in the Lisburne Group

  7. Hydrologic characteristics of Bear Creek near Silver Hill and Buffalo River near St. Joe, Arkansas, 1999-2000

    USGS Publications Warehouse

    Petersen, Jim C.; Haggard, Brian E.; Green, W. Reed

    2002-01-01

    The Buffalo River and its tributary Bear Creek are in the White River Basin in the Ozark Plateaus in north-central Arkansas. Analysis of streamflow measurements and water-quality samples at a site on Bear Creek and a site on the Buffalo River in Searcy County, Arkansas, quantify differences between the two sites during calendar years 1999 and 2000. Streamflow and water quality also vary seasonally at each site. Mean annual streamflow was substantially larger at the Buffalo River site (836 and 719 cubic feet per second in 1999 and 2000) than at the Bear Creek site (56 and 63 cubic feet per second). However, during times of low flow, discharge of Bear Creek comprises a larger proportion of the flow of the Buffalo River. Concentrations of nutrients, fecal-indicator bacteria, dissolved organic carbon, and suspended sediment generally were greater in samples from Bear Creek than in samples from the Buffalo River. Statistically significant differences were detected in concentrations of nitrite plus nitrate, total nitrogen, dissolved phosphorus, orthophosphorus, total phosphorus, fecal coliform bacteria, and suspended sediment. Loads varied between sites, hydrologic conditions, seasons, and years. Loads were substantially higher for the Buffalo River than for Bear Creek (as would be expected because of the Buffalo?s higher streamflow). Loads contributed by surface runoff usually comprised more than 85 percent of the annual load. Constituent yields (loads divided by drainage area) were much more similar between sites than were loads. Flow-weighted concentrations and dissolved constituent yields generally were greater for Bear Creek than yields for the Buffalo River and flowweighted concentrations yields were higher than typical flow-weighted concentrations and yields in undeveloped basins, but lower than flow-weighted concentrations and yields at a site in a more developed basin.

  8. 76 FR 15972 - Cascade Creek, LLC; Notice of Preliminary Permit Application Accepted for Filing and Soliciting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ...Creek Hydroelectric Project (Cascade Creek project) to be located on Cascade Creek, Swan Lake, and Falls...powerhouse containing three turbines with a capacity of 70 megawatts...estimated annual generation of the Cascade Creek project would be...

  9. Maps showing ground-water conditions in the New Driver-Cave Creek area, Maricopa and Yavapai counties, Arizona; 1977

    USGS Publications Warehouse

    Littin, G.R.

    1979-01-01

    The New River-Cave Creek area includes about 500 square miles in central Arizona. The ground-water conditions vary greatly owing to large differences in rock type and extent of fracturing. Information shown on the maps includes depth to water, altitude of the water level, well depth, and specific conductance and fluoride concentration in the water. Scale 1:125,000. (Woodard-USGS)

  10. Baseline Characteristics of Jordan Creek, Juneau, Alaska

    USGS Publications Warehouse

    Host, Randy H.; Neal, Edward G.

    2004-01-01

    Anadromous fish populations historically have found healthy habitat in Jordan Creek, Juneau, Alaska. Concern regarding potential degradation to the habitat by urban development within the Mendenhall Valley led to a cooperative study among the City and Borough of Juneau, Alaska Department of Environmental Conservation, and the U.S. Geological Survey, that assessed current hydrologic, water-quality, and physical-habitat conditions of the stream corridor. Periods of no streamflow were not uncommon at the Jordan Creek below Egan Drive near Auke Bay stream gaging station. Additional flow measurements indicate that periods of no flow are more frequent downstream of the gaging station. Although periods of no flow typically were in March and April, streamflow measurements collected prior to 1999 indicate similar periods in January, suggesting that no flow conditions may occur at any time during the winter months. This dewatering in the lower reaches likely limits fish rearing and spawning habitat as well as limiting the migration of juvenile salmon out to the ocean during some years. Dissolved-oxygen concentrations may not be suitable for fish survival during some winter periods in the Jordan Creek watershed. Dissolved-oxygen concentrations were measured as low as 2.8 mg/L at the gaging station and were measured as low as 0.85 mg/L in a tributary to Jordan Creek. Intermittent measurements of pH and dissolved-oxygen concentrations in the mid-reaches of Jordan Creek were all within acceptable limits for fish survival, however, few measurements of these parameters were made during winter-low-flow conditions. One set of water quality samples was collected at six different sites in the Jordan Creek watershed and analyzed for major ions and dissolved nutrients. Major-ion chemistry showed Jordan Creek is calcium bicarbonate type water with little variation between sampling sites.

  11. Environmental setting of Maple Creek watershed, Nebraska

    USGS Publications Warehouse

    Fredrick, Brian S.; Linard, Joshua I.; Carpenter, Jennifer L.

    2006-01-01

    The Maple Creek watershed covers a 955-square-kilometer area in eastern Nebraska, which is a region dominated by agricultural land use. The Maple Creek watershed is one of seven areas currently included in a nationwide study of the sources, transport, and fate of water and chemicals in agricultural watersheds. This study, known as the topical study of 'Agricultural Chemicals: Sources, Transport, and Fate' is part of the National Water-Quality Assessment Program being conducted by the U.S. Geological Survey. The Program is designed to describe water-quality conditions and trends based on representative surface- and ground-water resources across the Nation. The objective of the Agricultural Chemicals topical study is to investigate the sources, transport, and fate of selected agricultural chemicals in a variety of agriculturally diverse environmental settings. The Maple Creek watershed was selected for the Agricultural Chemicals topical study because its watershed represents the agricultural setting that characterizes eastern Nebraska. This report describes the environmental setting of the Maple Creek watershed in the context of how agricultural practices, including agricultural chemical applications and irrigation methods, interface with natural settings and hydrologic processes. A description of the environmental setting of a subwatershed within the drainage area of Maple Creek is included to improve the understanding of the variability of hydrologic and chemical cycles at two different scales.

  12. Ichnotaxonomic assessment of Mazon Creek area trace fossils, Illinois, USA

    E-print Network

    LoBue, David J.

    2010-08-12

    The Francis Creek Shale Member (FCSM) of the Mid-Pennsylvanian Carbondale Formation along Mazon Creek in northern Illinois is known for soft-bodied organisms preserved within siderite concretions. Trace fossils, though less well known, also occur...

  13. 13. View of Sterling Creek Marsh looking southeast; looking at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Sterling Creek Marsh looking southeast; looking at canal going to the tree line - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  14. 15. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Detail view of Sterling Creek lettuce shed showing second floor support beams. - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  15. 1. View of Sterling Creek lettuce shed looking south, with ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Sterling Creek lettuce shed looking south, with road in foreground - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  16. 5. View of Sterling Creek lettuce shed looking northwest showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. View of Sterling Creek lettuce shed looking northwest showing office - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  17. 13. Detail view of Sterling Creek lettuce shed showing second ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Detail view of Sterling Creek lettuce shed showing second floor window sill - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  18. 12. Detail view of Sterling Creek lettuce shed showing floor ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Detail view of Sterling Creek lettuce shed showing floor joist and support beams - Richmond Hill Plantation, Sterling Creek Lettuce Shed, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  19. 4. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. View of Sterling Creek Marsh at low tide showing rubble at the entrance of the dam/bridge looking east - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  20. 3. View of Sterling Creek Marsh at low tide showing ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. View of Sterling Creek Marsh at low tide showing rubble at the entrance of dam/bridge looking southwest - Richmond Hill Plantation, Sterling Creek Marsh, East of Richmond Hill on Ford Neck Road, Richmond Hill, Bryan County, GA

  1. 1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. WATER ENTERING CONFLUENCE POOL FROM BEAR CREEK AT LEFT, AND FROM SANTA ANA RIVER THROUGH TUNNEL #0 AT RIGHT. VIEW TO NORTHEAST. - Santa Ana River Hydroelectric System, Bear Creek Diversion Dam & Confluence Pool, Redlands, San Bernardino County, CA

  2. Natural Iron-rich Acidic Spring Flowing into Cement Creek

    USGS Multimedia Gallery

    Photograph showing natural iron-rich acidic spring flowing into Cement Creek near Silverton, Colorado.  Similar natural springs contribute water to Cement Creek and other tributaries of the upper Animas River. ...

  3. 1. View of Laurel Creek Road, revetment wall and cliff ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of Laurel Creek Road, revetment wall and cliff looking S. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  4. 8. Double arch culvert on Laurel Creek Road looking WSW. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Double arch culvert on Laurel Creek Road looking WSW. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  5. 9. Double arch culvert on Laurel Creek Road looking ENE. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Double arch culvert on Laurel Creek Road looking ENE. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  6. 7. Elevation of single arch stone bridge on Laurel Creek ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Elevation of single arch stone bridge on Laurel Creek Road looking N. - Great Smoky Mountains National Park Roads & Bridges, Cades Cove Road & Laurel Creek Road, From Townsend Wye to Cades Cove, Gatlinburg, Sevier County, TN

  7. Detail view of Fanno Creek trestle, showing trestle substructure, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail view of Fanno Creek trestle, showing trestle substructure, view looking north - Oregon Electric Railroad, Fanno Creek Trestle, Garden Home to Wilsonville Segment, Milepost 34.7, Garden Home, Washington County, OR

  8. Door Creek Watershed Assessment: A Sub-Watershed Approach to

    E-print Network

    Bohnhoff, David

    Door Creek Watershed Assessment: A Sub-Watershed Approach to Nutrient Management for the Yahara Management Workshop 2009 #12;#12;ii Door Creek Watershed Assessment: A Sub-Watershed Approach to Nutrient...............................................................................................................3 CHAPTER 2 - WATERSHED FACTORS

  9. 33 CFR 117.719 - Glimmer Glass (Debbie's Creek).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...Waters 1 2013-07-01 2013-07-01 false Glimmer Glass (Debbie's Creek). 117.719 Section 117.719 Navigation... Specific Requirements New Jersey § 117.719 Glimmer Glass (Debbie's Creek). (a) The draw of the Monmouth...

  10. 33 CFR 117.719 - Glimmer Glass (Debbie's Creek).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...Waters 1 2014-07-01 2014-07-01 false Glimmer Glass (Debbie's Creek). 117.719 Section 117.719 Navigation... Specific Requirements New Jersey § 117.719 Glimmer Glass (Debbie's Creek). (a) The draw of the Monmouth...

  11. 33 CFR 117.719 - Glimmer Glass (Debbie's Creek).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...Waters 1 2012-07-01 2012-07-01 false Glimmer Glass (Debbie's Creek). 117.719 Section 117.719 Navigation... Specific Requirements New Jersey § 117.719 Glimmer Glass (Debbie's Creek). (a) The draw of the Monmouth...

  12. Aftereffect in rocks caused by preexisting irreversible deformations

    SciTech Connect

    Stavrogin, A.N.; Shirkes, O.A.

    1987-05-01

    In this paper, rock specimens cut as cores of a diameter of 30 mm, 80 mm in length, were subjected to irreversible deformation in a high hydrostatic pressure chamber according to Karman's procedure. The types of rocks investigated were white Koelga marble, non-burst-hazardous (NBH) sandstone from Donets Basin, limestone from Estonslanets deposit and brown coal from Shurab coal deposit. Marble specimens were subjected to the most extensive studies. The aftereffect curves are shown for each type of rock studied. Aftereffect deformations of rocks are basically creep flows occurring under the effect of residual stresses introduced into the rock material on the course of its irreversible deformation by a high hydrostatic pressure, according to the authors. The physical nature of the residual stresses in the rocks and the mechanism of their creation are examined at the level of structural elements (grains or crystals).

  13. Steel Creek fish: L-Lake/Steel Creek Biological Monitoring Program, January 1986--December 1987

    SciTech Connect

    Paller, M.H.; Heuer, J.H.; Kissick, L.A.

    1988-03-01

    Fish samples were collected from Steel Creek during 1986 and 1987 following the impoundment of the headwaters of the stream to form L-Lake, a cooling reservoir for L-Reactor which began operating late in 1985. Electrofishing and ichthyoplankton sample stations were located throughout the creek. Fykenetting sample stations were located in the creek mouth and just above the Steel Creek swamp. Larval fish and fish eggs were collected with 0.5 m plankton nets. Multivariate analysis of the electrofishing data suggested that the fish assemblages in Steel Creek exhibited structural differences associated with proximity to L-Lake, and habitat gradients of current velocity, depth, and canopy cover. The Steel Creek corridor, a lotic reach beginning at the base of the L-Lake embankment was dominated by stream species and bluegill. The delta/swamp, formed where Steel Creek enters the Savannah River floodplain, was dominated by fishes characteristic of slow flowing waters and heavily vegetated habitats. The large channel draining the swamp supported many of the species found in the swamp plus riverine and anadromous forms.

  14. Steel Creek water quality: L-Lake/Steel Creek Biological Monitoring Program, November 1985--December 1991

    SciTech Connect

    Bowers, J.A.; Kretchmer, D.W.; Chimney, M.J.

    1992-04-01

    The Savannah River Site (SRS) encompasses 300 sq mi of the Atlantic Coastal Plain in west-central South Carolina. The Savannah River forms the western boundary of the site. Five major tributaries of the Savannah River -- upper Three Runs Creek, Four Mile Creek, Pen Branch, Steel Creek, and Lower Three Runs Creek -- drain the site. All but Upper Three Runs Creek receive, or in the past received, thermal effluents from nuclear production reactors. In 1985, L Lake, a 400-hectare cooling reservoir, was built on the upper reaches of Steel Creek to receive effluent from the restart of L-Reactor, and protect the lower reaches from thermal impacts. The Steel Creek Biological Monitoring Program was designed to meet envirorunental regulatory requirements associated with the restart of L-Reactor and complements the Biological Monitoring Program for L Lake. This extensive program was implemented to address portions of Section 316(a) of the Clean Water Act. The Department of Energy (DOE) must demonstrate that the operation of L-Reactor will not significantly alter the established aquatic ecosystems.

  15. Stratigraphic permeability in the Baca geothermal system, Redondo Creek Area, Valles Caldera, New Mexico

    SciTech Connect

    Hulen, J.B.; Nielson, D.L.

    1982-10-01

    Synthesis of surface and borehole data from the Baca geothermal system, as defined by drilling to date in the Redondo Creek area of the Valles Caldera, New Mexico, indicates that thermal fluid flow in the system is partially controlled by distinct stratigraphic aquifers. These aquifers are relatively thin, laterally restricted beds of non-welded tuff and tuffaceous sandstone, confined primarily to the Quaternary Bandelier Tuff. Recognition of the role of these rocks in reservoir definition at Baca should improve chances for future geothermal discoveries in the Valles Caldera and similar settings elsewhere.

  16. T00706010013 rock check dam

    E-print Network

    XY! ¬« T00706010013 rock check dam T00706010014 rock check dam T00702040012 established vegetation, green hatch area T00706010002 rock check dam T00706010011 rock check dam T00703120010 rock berm T00703020003 base course berm T00706010004 rock check dam T00706010009 rock check dam T00703020008 base course

  17. V01406010015 rock check dam

    E-print Network

    XY! ¬« ¬« V01406010015 rock check dam V01406010014 rock check dam V01406010013 rock check dam 1501403010012 earthen berm V01403010008 earthen berm V01406010003 rock check dam V01406010004 rock check dam V01406010010 rock check dam V01406010011 rock check dam 15-0651 15-0307 15-0588 15-0532 15-0575 stormdrain 7160

  18. T00706010013 rock check dam

    E-print Network

    XY! ¬« T00706010013 rock check dam T00706010014 rock check dam T00702040012 established vegetation, green hatch area T00706010002 rock check dam T00706010011 rock check dam T00703120010 rock berm T00703020003 base course berm T00706010004 rock check dam T00706010009 rock check dam T00703010008 earthen berm

  19. H00306010022 rock check dam

    E-print Network

    XY! H00306010022 rock check dam H00302040017 established vegetation, green hatch area 15-009(c) 15-006(c) 3M-SMA-0.5 5.57 Acres H00306010029 rock check dam H00306010021 rock check dam H00306010020 rock check dam H00306010023 rock check dam H00306010019 rock check dam H00306010024 rock check dam H

  20. 1. OVERVIEW OF EXTREME EAST END OF BIG CREEK TOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. OVERVIEW OF EXTREME EAST END OF BIG CREEK TOWN ACROSS POWERHOUSE NO. 2 FOREBAY (POWERHOUSE NO. 1 AFTERBAY). TOWER CARRYING TRANSMISSION LINES FROM POWERHOUSE NO. 1 IS AT PHOTO CENTER. BEHIND TOWER IS BUILDING 103. TO PHOTO LEFT OF BUILDING 103 IS BUILDING 105. VIEW TO NORTH. - Big Creek Hydroelectric System, Big Creek Town, Operator House, Orchard Avenue south of Huntington Lake Road, Big Creek, Fresno County, CA

  1. Water-quality appraisal. Mammoth Creek and Hot Creek, Mono County, California

    SciTech Connect

    Setmire, J.G.

    1984-06-01

    A late summer reconnaissance in 1981 and a spring high-flow sampling in 1982 of Mammoth Creek and Hot Creek, located in the Mammoth crest area of the Sierra Nevada, indicated that three water-quality processes were occurring: (1) mineralization; (2) eutrophication; and (3) sedimentation. Limited areas of fecal contamination were also observed. Mineralization due primarily to geothermal springs increased dissolved-solids concentration downstream, which changed the chemical composition of the water. The percentage of calcium decreased gradually, the percentage of magnesium and sodium increased, and the percentage of fluoride, sulfate, and chloride fluctuated, but increased overall. These changes produced water quality in Mammoth Creek similar to that of the springs forming Hot Creek. Twin Lakes and the reach of Hot Creek below the fish hatchery showed evidence of eutrophication. Twin Lakes had floating mats of algae and a high dissolved-oxygen saturation of 147% at a pH of 9.2. Hot Creek had abundant growth of aquatic vascular plants and algae, dissolved-oxygen saturations ranging from 65% to 200%, algal growth potential of 30 milligrams per liter, nitrate concentration of 0.44 milligram per liter, and phosphate concentration of 0.157 milligram per liter. Sediment deposition was determined from detailed observations of bed-material composition, which showed that fine material was deposited at Sherwin Creek Road and downstream. Fecal contamination was indicated by fecal-coliform bacteria counts of 250 colonies per 100 milliliters and fecal-streptococcal bacteria counts greater than 1000 colonies per 100 milliliters. Although bacterial sampling was sporadic and incomplete, it did indicate adverse effects on water quality for the following beneficial uses that have been identified for Mammoth Creek and Hot Creek: (1) municipal supply; (2) cold-water habitat; and (3) contact and noncontact water recreation. 6 refs., 15 figs., 15 tabs.

  2. V00306010057 rock check dam

    E-print Network

    XY! 16-020 16-030(c) 16-026(l) 16-028(c) 16-026(l) V00306010057 rock check dam V00306010012 rock check dam V00306010040 rock check dam V00306010039 rock check dam V00306010058 rock check dam V00306010064 rock check dam V00306010061 rock check dam V00306010062 rock check dam V00306010063 rock check dam

  3. The relationship of geophysical measurements to engineering and construction parameters in the Straight Creek Tunnel pilot bore, Colorado

    USGS Publications Warehouse

    Scott, J.H.; Lee, F.T.; Carroll, R.D.; Robinson, C.S.

    1968-01-01

    Seismic-refraction and electrical-resistivity measurements made along the walls of the Straight Creek Tunnel pilot bore indicate that both a low-velocity and a high-resistivity layer exist in the disturbed rock surrounding the excavation. Seismic measurements were analyzed to obtain the thickness and seismic velocity of rock in the low-velocity layer, the velocity of rock behind the layer and the amplitude of seismic energy received at the detectors. Electrical-resistivity measurements were analyzed to obtain the thickness and electrical resistivity of the high-resistivity layer and the resistivity of rock behind the layer. The electrical resistivity and the seismic velocity of rock at depth, the thickness of rock in the low-velocity layer, and the relative amplitude of seismic energy were correlated against the following parameters, all of which are important in tunnel construction: height of the tension arch, stable vertical rock load, rock quality, rate of construction and cost per foot, percentage of lagging and blocking, set spacing, and type and amount of steel support required, The correlations were statistically meaningful, having correlation coefficients ranging in absolute value from about 0??7 to nearly 1??0. This finding suggests the possibility of predicting parameters of interest in tunnel construction from geophysical measurements made in feeler holes drilled ahead of a working face. Predictions might be based on correlations established either during the early stages of construction or from geophysical surveys in other tunnels of similar design in similar geologic environments. ?? 1968.

  4. DRAFT ENVIRONMENTAL ASSESSMENT1 PINE CREEK DAM, OKLAHOMA2

    E-print Network

    US Army Corps of Engineers

    #12;#12;DRAFT ENVIRONMENTAL ASSESSMENT1 PINE CREEK DAM, OKLAHOMA2 DAM SAFETY MODIFICATION3 &4 Environmental Assessment Pine Creek Dam, Oklahoma Dam Safety Modification & Interim Risk Reduction Measure and risk reduction measures necessary to correct structural and maintenance deficiencies of Pine Creek Dam

  5. 75 FR 8036 - Monitor-Hot Creek Rangeland Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-23

    ... Forest Service Monitor-Hot Creek Rangeland Project AGENCY: Forest Service, USDA. ACTION: Notice of intent... continued livestock grazing ] within the Monitor-Hot Creek Rangeland Project area. The analysis will... conditions within the Monitor-Hot Creek Rangeland Project area towards desired conditions. The project...

  6. 75 FR 63431 - Radio Broadcasting Services; Willow Creek, CA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... COMMISSION 47 CFR Part 73 Radio Broadcasting Services; Willow Creek, CA AGENCY: Federal Communications... allotment of FM Channel 258A at Willow Creek, California. Petitioner, the auction winner and permittee of Channel 253A, Willow Creek, has submitted an application to specify operation of the station on...

  7. 77 FR 73967 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-12

    ... Regulation; Bear Creek, Dundalk, MD'' in the Federal Register (77 FR 5201). The rulemaking concerned would... SECURITY Coast Guard 33 CFR Part 117 RIN 1625-AA09 Drawbridge Operation Regulation; Bear Creek, Dundalk, MD... highway bridge at Wise Avenue across Bear Creek, mile 3.4, between Dundalk and Sparrows Point, MD....

  8. 77 FR 5201 - Drawbridge Operation Regulation; Bear Creek, Dundalk, MD

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-02

    ...bridge at Wise Avenue across Bear Creek, mile 3.4, between...bridge at Wise Avenue across Bear Creek, mile 3.4 between Dundalk...position is 14 feet at mean high water. For those vessels, this regulation...as follows: Sec. 117.543 Bear Creek * * * * * (b) The...

  9. A Rainbow Trout Rests Among Cobble Substrate in Panther Creek

    USGS Multimedia Gallery

    A rainbow trout rests among cobble substrate in Panther Creek downstream of Big Deer Creek, central Idaho. Panther Creek was severely damaged by heavy metals released from mining and milling activities at the former Blackbird Mine, and water quality in this section of the stream was acutely lethal t...

  10. A Rainbow Trout Rests Among Substrate in Panther Creek

    USGS Multimedia Gallery

    A rainbow trout rests among substrate in Panther Creek upstream of Big Deer Creek, central Idaho. Panther Creek was severely damaged by heavy metals released from mining and milling activities at the former Blackbird Mine. USGS and other scientists compiled a 30-year record of recovery of the stream...

  11. Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program

    E-print Network

    #12;Bridge Creek Watershed Volunteer Lake Secchi Disk Monitoring Program 1996 DOE FRAP 1996-13 Ryan Creek Watershed Volunteer Lake Monitoring Program. Using a Secchi disk, volunteers collected water transparency data from 22 lakes in the Bridge Creek watershed. Secchi depth readings were collected between May

  12. Stratigraphic and structural implications of conodont and detrital zircon U-Pb ages from metamorphic rocks of the Coldfoot terrane, Brooks Range, Alaska

    USGS Publications Warehouse

    Moore, T.E.; Aleinikoff, J.N.; Harris, A.G.

    1997-01-01

    New paleontologic and isotopic data from the Emma Creek and Marion Creek schists of the Coldfoot terrane, Arctic Alaska superterrane, central Brooks Range, suggest Devonian and possibly younger ages of deposition for their sedimentary protoliths. Conodonts from marble of the Emma Creek schist, intruded by a roughly 392 Ma orthogneiss, are late Lochkovian (early Early Devonian, between about 408 and 396 Ma) and Silurian to Devonian at two other locations. Spherical to oblong detrital zircons from quartz-mica schist of the overlying Marion Creek schist yield mostly discordant U-Pb data suggestive of provenance ages of 3.0, 2.0-1.8, and 1.5-1.4 Ga; however, several euhedral grains of zircon from Marion Creek quartz-mica schist have concordant U-Pb ages from 370 to 360 Ma. The Marion Creek schist in our study area therefore is at least 26 m.y. younger than the Emma Creek schist. The age data imply that the protolith of the Emma Creek schist is age correlative with Devonian carbonate rocks in the Hammond and North Slope terranes, whereas the Marion Creek schist is age correlative with Upper Devonian and Lower Mississippian clastic sedimentary rocks of the Endicott Group in the Endicott Mountains terrane and shale and carbonate units in the De Long Mountains and Sheenjek River terranes. Consequently, tectonic models restoring the entire Coldfoot terrane beneath partly or wholly coeval rocks of the Hammond, Endicott Mountains, De Long Mountains, and Sheenjek River terranes of the Arctic Alaska superterrane require revision. Alternative reconstructions, including restoration of the Coldfoot terrane inboard of the Endicott Mountains terrane or outboard of the De Long Mountains and Sheenjek River terranes are plausible but require either larger amounts of shortening than previously suggested or indicate problematic facies relations. copyright. Published in 1997 by the American Geophysical Union.

  13. Lower Paleozoic Through Archean Detrital Zircon Ages From Metasedimentary Rocks of the Nome Group, Seward Peninsula, Alaska

    NASA Astrophysics Data System (ADS)

    Amato, J. M.; Miller, E. L.; Gehrels, G.

    2003-12-01

    Metamorphic rocks of Seward Peninsula have been divided into two groups based on their metamorphic grade and history: The Nome Group and the Kigluaik Group. Although it is sometime been assumed that the higher structural position of the Nome Group versus the Kigluaik Group indicates the Kigluaik Group is older, this relationship and the age of the protoliths of these rocks has never been well-established. The Nome Group includes (delete the) lower grade blueschist and greenschist facies rocks which are widespread across the Seward Peninsula (delete) Rock types include pelitic schist, more mafic chlorite-white mica-albite schist, marble, quartzite, and metabasite. An early metamorphic event (pre-120 Ma) occurred at high pressure and relatively low temperature, and is everywhere overprinted by younger deformation and greenschist facies Rare eclogite facies assemblages are preserved in metabasites, and garnet-glaucophane in some of the pelitic schists. The Kigluaik Group includes upper greenschist to granulite facies rocks that are exposed in the core of a gneiss dome. They record a younger event (~91 Ma) that occurred at higher temperatures and resulted in partial thermal overprinting of the Nome Group and upper greenschist to granulite facies assemblages forming in the Kigluaik Group. The Kigluaik Group and equivalent rocks in the Bendeleben and Darby Mountains represent at least in part similar protoliths to many of the units in the Nome Group (Till and Dumoulin, 1994). The boundary between the rocks of the Nome Group and those clearly affected by the second metamorphic event is placed arbitrarily at the "Biotite-in" isograd along the flanks of the gneiss dome. In order to assess the protolith ages and source rock ages for these units, detrital zircon ages were obtained from three samples from the Nome Group, with Kigluaik Group ages forthcoming. LA-MC-ICPMS U/Pb isotope analysis was used for dating. Two samples were collected from the western Kigluaik Mountains near Eldorado Creek and one further south along the Feather River. Each sample yielded 90-105 analyses and all uncertainties are 1 sigma. Chlorite schist MC-74 has a range of ages from the two youngest grains at 484 +/- 18 Ma and 510 +/- 7 Ma to 2984 +/- 2 Ma. Chlorite schist LMC-30 has a youngest grain at 521 +/- 2 Ma and an oldest grain of 2027 +/- 12. Quartz-mica schist LMC-58 also has a youngest grain at 521 +/- 2 Ma and an oldest grain of 2655 +/- 7 Ma. All three therefore have lower Paleozoic zircons, suggesting Lower Cambrian or younger depositional ages. Combining the data from all three rocks results in peaks on a cumulative probability plot at (in descending order of importance): 600 Ma, 683 Ma, 1593 Ma, 522 Ma, and 2985 Ma, with several smaller peaks between 774-1540 Ma and 1685-1960 Ma. Published ages from Nome Group orthogneisses are 680 Ma, suggesting the samples so far analyzed are likely in part sourced from local basement rocks that were eroded to provide ~680 Ma detrital zircons to sedimentary protoliths of part of the Nome Group.

  14. 78 FR 54674 - Notice of Intent To Prepare an Environmental Impact Statement for the Proposed Gold Rock Mine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-05

    ...Impact Statement for the Proposed Gold Rock Mine Project, White Pine County, NV...may submit comments related to the Gold Rock Mine Project by any of the following methods...Email: BLM_NV_EYDO_Midway_Gold_Rock_EIS@blm.gov Fax:...

  15. Effects of uncertainty in rock-physics models on reservoir parameter estimation using marine seismic AVA and CSEM data

    E-print Network

    Chen, Jinsong

    Effects of uncertainty in rock-physics models on reservoir parameter estimation using marineMobil Upstream Research Company Summary This study investigates the effects of uncertainty in rock- physics and density using the Xu-White model. To account for errors in the rock-physics models, we use two methods

  16. Rocks in Our Pockets

    ERIC Educational Resources Information Center

    Plummer, Donna; Kuhlman, Wilma

    2005-01-01

    To introduce students to rocks and their characteristics, teacher can begin rock units with the activities described in this article. Students need the ability to make simple observations using their senses and simple tools.

  17. Rocks and Minerals.

    ERIC Educational Resources Information Center

    Naturescope, 1987

    1987-01-01

    Provides background information on rocks and minerals, including the unique characteristics of each. Teaching activities on rock-hunting and identification, mineral configurations, mystery minerals, and growing crystals are provided. Reproducible worksheets are included for two of the activities. (TW)

  18. The Rock Cycle

    ERIC Educational Resources Information Center

    Singh, Raman J.; Bushee, Jonathan

    1977-01-01

    Presents a rock cycle diagram suitable for use at the secondary or introductory college levels which separates rocks formed on and below the surface, includes organic materials, and separates products from processes. (SL)

  19. Theory of wing rock

    NASA Technical Reports Server (NTRS)

    Hsu, C.-H.; Lan, C. E.

    1985-01-01

    Wing rock is one type of lateral-directional instabilities at high angles of attack. To predict wing rock characteristics and to design airplanes to avoid wing rock, parameters affecting wing rock characteristics must be known. A new nonlinear aerodynamic model is developed to investigate the main aerodynamic nonlinearities causing wing rock. In the present theory, the Beecham-Titchener asymptotic method is used to derive expressions for the limit-cycle amplitude and frequency of wing rock from nonlinear flight dynamics equations. The resulting expressions are capable of explaining the existence of wing rock for all types of aircraft. Wing rock is developed by negative or weakly positive roll damping, and sustained by nonlinear aerodynamic roll damping. Good agreement between theoretical and experimental results is obtained.

  20. Genetic evidence for two evolutionarily significant units of White Sands pupfish

    E-print Network

    Jones, Adam

    (1986) introduced the concept of the evolution- arily significant unit (ESU) to help guide conservation in southern New Mexico: Salt Creek, Malpais Spring and Mound Spring located on White Sands Missile Range of New Mexico. Genetic data have been used to guide the conservation efforts for this rare species. A. A

  1. HumanWildlife Interactions 5(2):321332, Fall 2011 Factors affecting white-tailed deer-

    E-print Network

    researchers have documented decreases in the intensity of deer-browse on soybean plants as the growing season-browse in double- and single-crop soybean fields in Little Creek, Delaware, during the 2005 to 2006 growing seasons at different growth stages. Although forage quality components were variable across the growing season, white

  2. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  3. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  4. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  5. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  6. 33 CFR 334.240 - Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Potomac River, Mattawoman Creek and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md. 334... and Chicamuxen Creek; U.S. Naval Surface Weapons Center, Indian Head Division, Indian Head, Md....

  7. Principles of rock deformation

    SciTech Connect

    Nicolas, A.

    1987-01-01

    This text focuses on the recent achievements in the analysis of rock deformation. It gives an analytical presentation of the essential structures in terms of kinetic and dynamic interpretation. The physical properties underlying the interpretation of rock structures are exposed in simple terms. Emphasized in the book are: the role of fluids in rock fracturing; the kinematic analysis of magnetic flow structures; the application of crystalline plasticity to the kinematic and dynamic analysis of the large deformation imprinted in many metamorphic rocks.

  8. The Dinner Creek Tuff: A Widespread Co-CRBG Ignimbrite Sheet in Eastern Oregon

    NASA Astrophysics Data System (ADS)

    Streck, M. J.; Ferns, M. F.; Ricker, C.; Handrich, T.

    2011-12-01

    Erosional remnants of ignimbrite sheets (>5,000 km2) are depicted either as minor units (e.g., Twt, Tt, or Tr) or included within larger volcanic/sedimentary units on many geologic quadrangle maps in eastern Oregon. Such maps provide analytical and detailed mapping targets for the purpose of correlating widespread outcrops and arriving at a more accurate picture of the eruptive and petrologic history of the magmas involved. In this study, we have targeted the mid-Miocene rhyolitic Dinner Creek Tuff which was previously considered to being restricted to an area ˜3000 km2 centered along the Malheur River. Numerous outcrops to the north that had been mapped by prior workers as generic Miocene welded tuff have now been sampled. Analytical results allow us to correlate exposures previously referred to as "Mascall" or "Pleasant Valley" tuff, unnamed tuff outcrops as well as tuff outcrops not previously mapped with the Dinner Creek Tuff, thus increasing the size of the Dinner Creek Tuff to an area of about 20,000 km2, rivaling the late Miocene Devine Canyon and Rattlesnake Tuffs in size (e.g. Streck and Ferns, 2004). Dinner Creek Tuff fallout extends from northern Nevada (Nash et al., 2006) to northern Union county, Oregon. Compositional, lithological, and age data show the Dinner Creek Tuff to consist of multiple cooling units erupted over a time span of ˜500,000 years. Duration of activity is defined by new Ar-Ar dates ranging from 15.9±0.13 to 15.38±0.17 (2?) Ma on feldspar separates. Welded tuff lithics with Dinner Creek Tuff compositions document reworking of older tuffs and are clear evidence for multiple ignimbrite eruptions. First eruptions were the most silicic, producing high-silica rhyolites. Later eruptions were more mafic, producing low silica rhyolite with ubiquitous dark pumices of dacitic to andesitic composition. Rhyolitic and intermediate magmas of Dinner Creek Tuff are crystal poor (1-5%) and Fe rich, carrying chemical fingerprints typical of other high temperature, A-type rhyolites of Oregon such as the Rattlesnake Tuff. The source area - yet to be mapped in detail - of the Dinner Creek Tuff lies between Castle Rock and Ironside Mountain and coincides with the hypothesized crustal magma reservoirs of the Columbia River Basalt group (CRBG) (Wolff et al., 2008). Given that the Dinner Creek eruptions coincide with the eruptions of the Grand Ronde Basalt member of the CRBG, it is plausible that these CRBG magmas provided the heat for crustal melting that formed the Dinner Creek Tuff. Nash, B.P., Perkins, M.E., Christensen, J.N. Lee, D-C., Halliday, A.N., 2006, Earth Planet Sci Let 247: 143-156. Streck, M.J., Ferns, M., 2004, U.S.G.S Open-File Report 2004-1222: 2-17 Wolff, J.A., Ramos, F.C., Hart, G.L., Patterson, J.D., Brandon, A.D., 2008, Nature Geosci 1: 177-180.

  9. Robotic Rock Classification and

    E-print Network

    Robotic Rock Classification and Autonomous Exploration Liam Pedersen #12;Acknowledgements for me to spend three summers at NASA's Ames Research Center working with him on rock classification to himself, a marvelous spectrometer with which to study rocks in Antarctica. Dr. Bill Cassidy's unstinting

  10. My Pet Rock

    ERIC Educational Resources Information Center

    Lark, Adam; Kramp, Robyne; Nurnberger-Haag, Julie

    2008-01-01

    Many teachers and students have experienced the classic pet rock experiment in conjunction with a geology unit. A teacher has students bring in a "pet" rock found outside of school, and the students run geologic tests on the rock. The tests include determining relative hardness using Mohs scale, checking for magnetization, and assessing luster.…

  11. PRETTY ROCKS Kevin Knight

    E-print Network

    Knight, Kevin

    PRETTY ROCKS Kevin Knight * * * Curator's note: this story apparently predates the destruction. Maxine dug rocks out of the ground and piled them up... The man thought to himself: Then one day recognized Maxine. She was half buried in dirt, and there were vast numbers of rocks piled nearby. She had

  12. Structural reinterpretation of Ruedi and Woody Creek quadrangles, Pitkin and Eagle Counties, Colorado: a central Colorado overthrust belt

    SciTech Connect

    Zoerner, F.P.

    1986-08-01

    The mountains northwest of Aspen, Colorado, are composed of Pennsylvanian through Triassic evaporites and molasse of the Eagle Valley, Belden, Minturn, Maroon, and State Bridge formations. Southwest of the Roaring Fork River and its tributary, Woody Creek, are Jurassic through Cretaceous sediments that unconformably overlie these older rocks. This entire sequence is located in the Elk Range thrust sheet. Along Woody Creek and the Roaring Fork River, Bryant and Freeman have mapped the continuation of the Castle Creek fault zone. These writers interpreted the fault zone as a southeast-dipping normal fault with a horst of Eagle Valley formation continuously present between the Pennsylvanian-Triassic and Cretaceous beds within the fault zone. Southwestward thrusting on a decollement within the Eagle Valley evaporite sequence would explain (1) its presence in the fault zone, (2) the 17,000 + ft of stratigraphic throw, and (3) the structural discordance across the fault zone. The author interprets the fault zone to be a northeast-dipping gravity slide that has been thrust off and possibly pushed by the Laramide Sawatch uplift. Cross sections through the area have similar geometry to those for the Elk Range and Hunters Hill thrusts to the south-southwest. The upturned heel is exposed along the Sawatch structural front between Hunter Creek (north of Aspen) and Lenado. These relationships suggest that another thrust paralleling the Fryingpan River is possible to the north. The author proposes the name Roaring fork thrust for the fault zone in the Woody Creek and Roaring Fork River valleys. The Castle Creek fault zone should be reserved for the fault zone in the drainage south of Aspen and the southwest projection of the Homestake shear zone, against which is appears to terminate.

  13. Geologic characteristics and movement of the Meadow Creek landslide, part of the Coal Hill landslide complex, western Kane County, Utah

    USGS Publications Warehouse

    Ashland, Francis X.; McDonald, Greg N.

    2010-01-01

    The Meadow Creek landslide, part of the Coal Hill landslide complex in western Kane County, Utah, is about 1.7 miles (2.7 km) wide and 1.3 miles (2.1 km) long and contains six smaller historical slides. The upper part of the Meadow Creek landslide is gently sloping and consists of displaced and back-rotated blocks of Cretaceous Dakota and Cedar Mountain Formations that form northeast- to locally east-trending ridges that are separated by sediment-filled half-grabens. The lower part of the landslide is gently to moderately sloping, locally incised, and consists of heterogeneous debris that overrides the Jurassic Carmel Formation near Meadow Creek. Monitoring using a survey-grade Global Positioning System (GPS) instrument detected movement of the southern part of the Meadow Creek landslide between October 2005 and October 2008, including movement of two of the historical slides-landslides 1 and 2. The most movement during the measurement period occurred within the limits of persistently moving landslide 1 and ranged from about 24 to 64 inches (61-163 cm). Movement of the abutting southern part of the Meadow Creek landslide ranged from approximately 6 to 10 inches (15-25 cm). State Route 9 crosses over approximately a mile (1.6 km) of the southern part of the Meadow Creek landslide, including landslide 1. The highway and its predecessor (State Route 15) have been periodically displaced and damaged by persistent movement of landslide 1. Most of the landslide characteristics, particularly its size, probable depth, and the inferred weak strength and low permeability of clay-rich gouge derived from the Dakota and Cedar Mountain Formations, are adverse to and pose significant challenges to landslide stabilization. Secondary hazards include piping-induced sinkholes along scarps and ground cracks, and debris flows and rock falls from the main-scarp escarpment.

  14. High flows at Bear Creek near Bear Creek Lake in Morrison, Colo.

    USGS Multimedia Gallery

    Photo taken by Heidi Koontz, USGS Communications, Friday, Sept. 13. Historic rains along Colorado's Front Range and resulting floodwaters heavily damaged a USGS streamgage at the Bear Creek Lake site and at least 14 other locations in the state. ...

  15. Habitat Projects Completed within the Asotin Creek Watershed, 1999 Completion Report.

    SciTech Connect

    Johnson, Bradley J.

    2000-01-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority in southeastern WA. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred seventy-six projects have been implemented through the ACMWP as of 1999. Twenty of these projects were funded in part through Bonneville Power Administration's 1999 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; thirty-eight were created with these structures. Three miles of stream benefited from riparian improvements such as vegetative plantings (17,000 trees and shrubs) and noxious weed control. Two sediment basin constructions, 67 acres of grass seeding, and seven hundred forty-five acres of minimum till were implemented to reduce sediment production and delivery to streams in the watershed.

  16. Habitat Projects Completed within the Asotin Creek Watershed, 1998 Completion Report.

    SciTech Connect

    Johnson, Bradley J.

    1999-11-01

    The Asotin Creek Model Watershed Program (ACMWP) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The Asotin Creek watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington. Snake River spring chinook salmon, summer steelhead and bull trout, which are listed under the Endangered Species Act (ESA), are present in the watershed. The ACMWP began coordinating habitat projects in 1995. Approximately two hundred forty-six projects have been implemented through the ACMWP as of 1998. Fifty-nine of these projects were funded in part through Bonneville Power Administration's 1998 Columbia Basin Fish and Wildlife Program. These projects used a variety of methods to enhance and protect watershed conditions. In-stream work for fish habitat included construction of hard structures (e.g. vortex rock weirs), meander reconstruction, placement of large woody debris (LWD) and whole trees and improvements to off-channel rearing habitat; one hundred thirty-nine pools were created with these structures. Three miles of stream benefited from riparian improvements such as fencing, vegetative plantings, and noxious weed control. Two alternative water developments were completed, providing off-stream-watering sources for livestock. 20,500 ft of upland terrace construction, seven sediment basin construction, one hundred eighty-seven acres of grass seeding, eight hundred fifty acres of direct seeding and eighteen sediment basin cleanouts were implemented to reduce sediment production and delivery to streams in the watershed.

  17. Intensive survey of the bay creek watershed, July 1992

    SciTech Connect

    Short, M.B.; Kelly, T.G.; Hefley, J.E.

    1995-05-01

    During July 1992, the Illinois Environmental Protection Agency conducted an intensive survey of the Bay Creek basin, a fifth order tributary in the Mississippi River North Central Basin. Bay Creek drains approximately 176.4 square miles primarily in Pike and a small portion of Calhoun counties. Four stations were sampled on the Bay Creek main stem and one on Honey Creek. The survey focused on macroinvertebrate communities, fish populations, instream habitat, fish tissue, sediment and water chemistry, and land use as well as a review of ambient water quality data from IEPA station KCA-01 near Nebo, Illinois, as tools to document the biological and chemical status of Bay Creek.

  18. Geochemical Indicators of Urban Development in Tributaries and Springs along the Bull Creek Watershed, Austin, TX

    NASA Astrophysics Data System (ADS)

    Senison, J. J.; Banner, J. L.; Reyes, D.; Sharp, J. M.

    2012-12-01

    Urbanization can cause significant changes to both flow and water quality in streams and tributaries. In the Austin, Texas, area, previous studies have demonstrated that streamwater strontium isotope compositions (87Sr/86Sr) correlate with measures of urbanization when comparing non-urbanized streams to their urban counterparts. The inclusion of municipal water into natural surface water is inferred from the mean 87Sr/86Sr value found in urbanized streams, which falls between the high value in treated municipal water and the lower values found in local surface streams sourcing from non-urbanized catchments. Fluoride is added to municipal tap water in the treatment process, and a correlation between 87Sr/86Sr and fluoride is observed in streamwater sampled from the watersheds around Austin. These relationships represent some of the principal findings reported in Christian et al. (2011). Current research is testing the hypothesis that municipal water influx in urban areas is a primary modifier of stream- and spring-water chemistry in a single watershed that contains a strong gradient in land use. We compare 87Sr/86Sr and other chemical constituents with potential contributing endmembers, such as municipal tap water and wastewater, local soil and rock leachates, and land use within the Bull Creek watershed. As a consequence of the history of land development, some Bull Creek tributaries are sourced and flow almost entirely in fully-developed areas, whereas others are located in protected natural areas. Thirteen tributaries were monitored and classified as either urbanized or non-urbanized based upon land use within the tributary catchment. Springs in the Bull Creek watershed were also sampled and are similarly classified. The Bull Creek watershed is composed of Lower Cretaceous limestone with significantly lower 87Sr/86Sr than that of municipal water taken from the Lower Colorado River, which is underlain in part by Precambrian rocks upstream of Austin. There are notable differences in urbanized vs. non-urbanized watersheds in mean concentrations of fluoride (urbanized: 0.27 ± 0.08 vs. non-urbanized: 0.19 ± 0.01 ppm), sodium (34.7 ± 17.3 vs. 8.4 ± 1.0 ppm), and potassium (2.9 ± 0.8 vs. 1.2 ± 0.2 ppm), consistent with higher concentrations in municipal water contributing to the urbanized tributaries. Springwater demonstrates similar divergences for these ions. 87Sr/86Sr for the springs falls within a narrow range for non-urbanized springs (0.7079-0.7081), similar to Cretaceous limestone values, whereas urbanized springs contain a larger range (0.7077-0.7087). These results are consistent with urbanization effects in the Bull Creek watershed.

  19. Breccia at the Apple Creek Formation

    USGS Multimedia Gallery

    USGS scientist Art Bookstrom hammers on limonite-stained breccia, cutting banded siltite of the Apple Creek Formation, exposed near the Uncle Sam portal of the Blackbird cobalt-copper mine, in the Salmon River Mountains of east-central Idaho....

  20. Alexander Creek in the Susitna Basin

    USGS Multimedia Gallery

    Researchers with the Alaska Fish and Game travel along Alexander Creek in the Susitna Basin of south-central Alaska. The team is on their way to a back country base-camp for a study examining the preferred diet of invasive northern pike (Esox lucius).  ...

  1. ELK CREEK STUDY, IDAHO COUNTY IDAHO, 1979

    EPA Science Inventory

    In Water Year 1979, the American River, the Red River, and Elk Creek in Idaho County (17060305) were studied to determine their present water quality and to obtain background information on effluent limitations development for the Elk City sewage treatment plant. Quarterly monit...

  2. How Fern Creek Is Beating Goliath

    ERIC Educational Resources Information Center

    Donovan, Margaret; Galatowitsch, Patrick; Hefferin, Keri; Highland, Shanita

    2013-01-01

    The "David" is Fern Creek Elementary, a small urban school in Orlando, Florida, that serves an overwhelmingly disadvantaged student population. The "Goliaths" are the mountains of problems that many inner-city students face--poverty, homelessness, mobility, instability, limited parent involvement, and violent neighborhood…

  3. MORES CREEK STUDY, BOISE COUNTY, IDAHO, 1979

    EPA Science Inventory

    In Water Year 1979, a water quality study was conducted on Mores Creek in Boise County, Idaho (17050112) to determine the present water quality of the stream and obtain background information on effluent limitations development for Idaho City. The study was designed for approxim...

  4. CAMAS CREEK STUDY, CAMAS COUNTY, IDAHO. 1979

    EPA Science Inventory

    The National Eutrophication Survey on Magic Reservoir determined that Camas Creek in Camas County, Idaho (17040220) contributed roughly 45% of the total phosphorus load and 34% of the total nitrogen load into Magic Reservoir. From this finding, a water quality study was conducte...

  5. Battle Creek Flooding May 2015, SD

    USGS Multimedia Gallery

    Following heavy rains, Battle Creek near Keystone (streamgage 06404000) peaked at about 1,500 cubic feet per second on May 24 and was about 1 foot below flood stage. This streamgage is operated in cooperation with the South Dakota Department of Natural Resources, Water Rights Division. Heavy rains i...

  6. Beaver Creek below Linton, North Dakota

    USGS Multimedia Gallery

    On March 29, 2011, USGS personel were using a Acoustic Doppler Current Profiler (ADCP) to measure streamflow, depth, and velocity of the Beaver Creek below Linton, ND measuring the steamflow. The streamflow was 189 cubic feet per second and stage approximately 13.82 feet....

  7. Ferricrete Formation at Base of Cement Creek

    USGS Multimedia Gallery

    Ferricrete (surficial deposits cemented by iron oxides) formation at the base of Cement Creek north of Silverton, Colorado. Red color is due to iron oxides. Ferricrete forms when pyrite and other sulfide minerals weather to form acidic iron-rich water that cements surficial mater...

  8. OROFINO CREEK STUDY, CLEARWATER COUNTY IDAHO, 1979

    EPA Science Inventory

    In Water Year 1979, a water quality study was conducted on Orofino Creek in Clearwater County, Idaho (17060306) to determine the present condition of the stream and to assess the impact of point and nonpoint sources. The study involved approximately bi-monthly monitoring for the...

  9. Beaver Creek Burn Area Precipitation Gage

    USGS Multimedia Gallery

    During August 2013, the Beaver Creek wildfire burned more than 114,000 acres near the south-central Idaho communities of Sun Valley, Ketchum, and Hailey. Partnering with Blaine County, the USGS installed a network of real-time precipitation gages in the burn area. Real-time information from the gage...

  10. Species status of Mill Creek Elliptio

    SciTech Connect

    Davis, G.M.; Mulvey, M.

    1993-12-31

    This report discusses environmental effects of the Savannah River Plant on aqautic populations in Mill Creek and surrounding tributaries. Of particular concern was the status of Elliptio. Genetics and phenotypic characteristics have shown that the current classification system is not adequate for these populations. The appendices characterize genetic variability at different loci, electrophoretic data, allele frequencies, sympatric species, and anatomical characters.

  11. Bereavement Rituals in the Muscogee Creek Tribe

    ERIC Educational Resources Information Center

    Walker, Andrea C.; Balk, David E.

    2007-01-01

    A qualitative, collective case study explores bereavement rituals in the Muscogee Creek tribe. Data from interviews with 27 participants, all adult members of the tribe, revealed consensus on participation in certain bereavement rituals. Common rituals included (a) conducting a wake service the night before burial; (b) never leaving the body alone…

  12. Washed Out Bridge, Snake Creek Near Whitesburg

    USGS Multimedia Gallery

    Tributary to Snake Creek, near Whitesburg, Georgia, showing a washed out bridge. When bridges such as this one collapse during a flood, it is rarely the pressure of the rushing water against the bridge that causes the bridge to fail. Rather, the rushing water erodes the ground underneath and surroun...

  13. Boulder Creek, Colo., at Flood Stage

    USGS Multimedia Gallery

    This bridge is at 75th Street east of Boulder showing Boulder Creek at flood stage (5000 cfs) on Friday, September 13, 2013. When looking west (upstream), the USGS streamgage is on the right. Numerous rivers flooded during a significant September 2013 rain event along Colorado's Front Range, damagi...

  14. Gold Creek: Preserving an Environmental Studies Center.

    ERIC Educational Resources Information Center

    Brooks, Suzanne

    In response to a Board of Trustees request for information and recommendations concerning the future use of the Gold Creek property owned by the Los Angeles Community College District, this report emphasizes that the use of this site for instructional field experiences enhances the quality of environmental education for the district's diverse…

  15. Drywell corrosion stopped at Oyster Creek

    SciTech Connect

    Lipford, B.L. ); Flynn, J.C.

    1993-11-01

    This article describes the detection of corrosion on the drywell containment vessel of Oyster Creek Nuclear Plant and the application of a protective coating to repair the drywell. The topics of the article include drywell design features, identification of the problem, initial action, drywell corrosion, failure of cathodic protection, long-term repair, and repair results.

  16. 78 FR 64003 - Notice of Availability of the Final Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal, Owyhee County, ID AGENCY: Bureau... Statement (EIS) for the Owyhee Field Office Jump Creek, Succor Creek and Cow Creek Watersheds grazing permit... Creek Watersheds Grazing Permit Renewal Final EIS are available for public inspection at Owyhee...

  17. 78 FR 26065 - Notice of Availability of the Draft Environmental Impact Statement for the Jump Creek, Succor...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-03

    ... Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal, ID AGENCY: Bureau of Land... Impact Statement (EIS) for the Jump Creek, Succor Creek, and Cow Creek Watersheds Grazing Permit Renewal... Creek Watersheds Grazing Permit Renewal by June 17, 2013. The BLM will announce meetings or hearings...

  18. Multiple Magmatic Events Over 40 Ma in the Fish Creek Mountains, North-central Great Basin, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Cousens, B.; Henry, C. D.; Stevens, C.; Varve, S.

    2011-12-01

    The Fish Creek Mountains, located in north-central Nevada south of Battle Mountain, is a site of multiple igneous events ranging from ca. 35 Ma to 1 Ma, covering most of the igneous history of the Great Basin of the western United States. Such extended volcanic activity allows for documentation of mantle sources and petrogenetic processes over time. Beginning approximately 50 Ma, the Great Basin experienced a magmatic front that began migrating southwestward across southern Idaho, central Oregon and into northern Nevada and Utah. Intermediate, "arc-like" andesite and dacite dominated volcanic activity in northeastern Nevada between about 45 and 36 Ma. By 34 Ma, a northwest-trending belt of rhyolitic ash-flow calderas began to develop through central Nevada, the "ignimbrite flare-up". Volcanism then migrated westwards towards the Sierra Nevada. In north-central Nevada, the oldest lavas are ca. 35 Ma basaltic andesites through rhyolites that are exposed in the western Shoshone Range, the eastern Tobin Range, and the northern and eastern Fish Creek Mountains. Plagioclase-rich andesites, dacite intrusions, and volcanic breccias occur in a belt along the western side of the Fish Creek Mountains. The bulk of the Fish Creek Mountains is composed of the 24.7 Ma Fish Creek Mountains rhyolitic tuff that is largely confined to an undeformed caldera structure. The caldera and tuff are anomalously young compared to nearby felsic centers such as the Caetano caldera (33.8Ma) and Shoshone Range (39-35 Ma) and relative to the southwest to west magmatic migration. The basal tuff is unwelded, with abundant pumice and lithic (primarily volcanic) fragments but only rare crystals. Sanidine and smoky quartz phenocrysts become more abundant upsection and glassy fiamme (hydrated to devitrified) are common, but the abundance of lithic fragments diminishes. 16-15 Ma volcanic rocks of the Northern Nevada Rift are exposed in the Battle Mountain area, ranging in composition from subalkaine basalt to rhyolite and rare trachyte. These rocks are linked to the Columbia River flood basalt event. Along the northwestern margin of the Fish Creek Mountains and in the center of the caldera complex are exposed late Pliocene to Quaternary lava flows and cinder cones of the Buffalo Valley volcanic field. The Buffalo Valley volcanic rocks are alkalic basalts that are locally vesicular, with rare plagioclase and olivine phenocrysts as well as plagioclase megacrysts up to several centimeters in size. Trace element and isotopic characteristics are similar to those of the Pliocene-Pleistocene Lunar Craters volcanic field in central Nevada. Ongoing geochemical analyses will outline variations in mantle sources and post-melting processes in the multiple volcanic systems of north-central Nevada.

  19. Pine Creek Ranch, FY 2001 Annual Report.

    SciTech Connect

    Berry, Mark E.

    2001-11-01

    Pine Creek Ranch was purchased in 1999 by the Confederated Tribes of Warm Springs using Bonneville Power Administration Fish and Wildlife Habitat Mitigation funds. The 25,000 acre property will be managed in perpetuity for the benefit of fish and wildlife habitat. Major issues include: (1) Restoring quality spawning and rearing habitat for stealhead. Streams are incised and fish passage barriers exist from culverts and possibly beaver dams. In addition to stealhead habitat, the Tribes are interested in overall riparian recovery in the John Day River system for wildlife habitat, watershed values and other values such as recreation. (2) Future grazing for specific management purposes. Past grazing practices undoubtedly contributed to current unacceptable conditions. The main stem of Pine Creek has already been enrolled in the CREP program administered by the USDA, Natural Resource Conservation Service in part because of the cost-share for vegetation restoration in a buffer portion of old fields and in part because of rental fees that will help the Tribes to pay the property taxes. Grazing is not allowed in the riparian buffer for the term of the contract. (3) Noxious weeds are a major concern. (4) Encroachment by western juniper throughout the watershed is a potential concern for the hydrology of the creek. Mark Berry, Habitat Manager, for the Pine Creek Ranch requested the Team to address the following objectives: (1) Introduce some of the field staff and others to Proper Functioning Condition (PFC) assessments and concepts. (2) Do a PFC assessment on approximately 10 miles of Pine Creek. (3) Offer management recommendations. (4) Provide guidelines for monitoring.

  20. T00406010008 rock check dam

    E-print Network

    XY! ¬« T00406010008 rock check dam T00406010009 rock check dam T00406010010 rock check dam T00406010011 rock check dam T-SMA-2.85 0.344 Acres 35-014(g) 35-016(n) T00406010005 rock check dam T00406010006 rock check dam T00403090004 curb T00402040007 established vegetation, green hatch area 7200 7200 7180