Science.gov

Sample records for whole-body vibration training

  1. [Sarcopenia and whole body vibration training: an overview].

    PubMed

    Kaeding, T S

    2009-04-01

    The loss of muscle mass, muscle strength and muscle endurance-capability in the elderly is summarized under the term 'sarcopenia'. This phenomenon is widespread in the older population and is a large financial burden for the health system. As a consequence of sarcopenia, functional and metabolic consequences occur. These among other things are associated with a loss of the independent lifestyle and the appearance of various age-related chronic diseases. An intervention with whole body vibration training can increase muscle strength, especially in older people with a low level of muscle strength, similar to resistance training. A strength increase is mainly attributed to improved inter- and intramuscular coordination. A muscle hypertrophy is also possibly realizable with people with low base level. A low injury-risk and the only rare appearance of side-effects makes whole body vibration training an interesting preventive intervention for older people. PMID:18726053

  2. Whole Body Vibration Training - Improving Balance Control and Muscle Endurance

    PubMed Central

    Ritzmann, Ramona; Kramer, Andreas; Bernhardt, Sascha; Gollhofer, Albert

    2014-01-01

    Exercise combined with whole body vibration (WBV) is becoming increasingly popular, although additional effects of WBV in comparison to conventional exercises are still discussed controversially in literature. Heterogeneous findings are attributed to large differences in the training designs between WBV and “control” groups in regard to training volume, load and type. In order to separate the additional effects of WBV from the overall adaptations due to the intervention, in this study, a four-week WBV training setup was compared to a matched intervention program with identical training parameters in both training settings except for the exposure to WBV. In a repeated-measures matched-subject design, 38 participants were assigned to either the WBV group (VIB) or the equivalent training group (CON). Training duration, number of sets, rest periods and task-specific instructions were matched between the groups. Balance, jump height and local static muscle endurance were assessed before and after the training period. The statistical analysis revealed significant interaction effects of group×time for balance and local static muscle endurance (p<0.05). Hence, WBV caused an additional effect on balance control (pre vs. post VIB +13%, p<0.05 and CON +6%, p?=?0.33) and local static muscle endurance (pre vs. post VIB +36%, p<0.05 and CON +11%, p?=?0.49). The effect on jump height remained insignificant (pre vs. post VIB +3%, p?=?0.25 and CON ±0%, p?=?0.82). This study provides evidence for the additional effects of WBV above conventional exercise alone. As far as balance and muscle endurance of the lower leg are concerned, a training program that includes WBV can provide supplementary benefits in young and well-trained adults compared to an equivalent program that does not include WBV. PMID:24587114

  3. Acute Effects of Loaded Whole Body Vibration Training on Performance

    PubMed Central

    Pojskic, Haris; Pagaduan, Jeffrey; Uzicanin, Edin; Babajic, Fuad; Muratovic, Melika; Tomljanovic, Mario

    2015-01-01

    Background: The application of whole body vibration (WBV) as a warm-up scheme has been receiving an increasing interest among practitioners. Objectives: The aim of this study was to determine the effect of loaded and unloaded WBV on countermovement jump, speed and agility. Patients and Methods: Twenty-one healthy male college football players (age: 20.14 ± 1.65 years; body height: 179.9 ± 8.34 cm; body mass: 74.4 ± 13.0 kg; % body fat: 9.45 ± 4.8) underwent randomized controlled trials that involved standing in a half squat position (ST), ST with 30% of bodyweight (ST + 30%), whole body vibration at f = 50 Hz, A = 4 mm (WBV), and WBV with 30% bodyweight (WBV + 30% BW) after a standardized warm-up. Post measures of countermovement jump, 15-m sprint, and modified t-test were utilized for analyses. Results: One way repeated measures ANOVA revealed a significant difference in the countermovement jump performance, F (3, 60 = 9.06, ?2 = 2.21, P = 0.000. Post-hoc showed that WBV + 30% BW posted significant difference compared to (P = 0.008), ST + 30% BW (P = 0.000) and WBV (P = 0.000). There was also a significant difference in the sprint times among interventions, F (3, 60) = 23.0, ?2 = 0.865, P = 0.000. Post hoc showed that WBV + 30% BW displayed significantly lower time values than ST (P = 0.000), ST + 30% BW (P = 0.000) and WBV (P = 0.000). Lastly, there was a significant difference in the agility performance across experimental conditions at F(2.01, 40.1) = 21.0, ?2 = 0.954, P = 0.000. Post hoc demonstrated that WBV have lower times than ST (P = 0.013). Also, WBV + 30% BW posted lower times compared to ST (P = 0.000), ST + 30% (P = 0.000) and WBV (P = 0.003). Conclusions: Additional external load of 30% bodyweight under WBV posted superior gains in countermovement jump, speed and agility compared to unloaded WBV, loaded non-WBV and unloaded non-WBV interventions. PMID:25883774

  4. Effects of Whole Body Vibration Training on Body Composition in Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Gonzalez-Aguero, Alejandro; Matute-Llorente, Angel; Gomez-Cabello, Alba; Casajus, Jose A.; Vicente-Rodriguez, German

    2013-01-01

    The present study aimed to determine the effect of 20 weeks of whole body vibration (WBV) on the body composition of adolescents with Down syndrome (DS). Thirty adolescent with DS were divided into two groups: control and WBV. Whole body, upper and lower limbs body fat and lean body mass were measured with dual energy X-ray absorptiometry (DXA)…

  5. Effects of whole body vibration training on body composition, skeletal muscle strength, and cardiovascular health

    PubMed Central

    Park, Song-Young; Son, Won-Mok; Kwon, Oh-Sung

    2015-01-01

    Whole body vibration training (WBVT) has been used as a supplement to conventional exercise training such as resistance exercise training to improve skeletal muscle strength, specifically, in rehabilitation field. Recently, this exercise modality has been utilized by cardiovascular studies to examine whether WBVT can be a useful exercise modality to improve cardiovascular health. These studies reported that WBVT has not only beneficial effects on muscular strength but also cardiovascular health in elderly and disease population. However, its mechanism underlying the beneficial effects of WBVT in cardiovascular health has not been well documented. Therefore, this review highlighted the impacts of WBVT on cardiovascular health, and its mechanisms in conjunction with the improved muscular strength and body composition in various populations.

  6. Whole-Body Vibration Training Effect on Physical Performance and Obesity in Mice

    PubMed Central

    Huang, Chi-Chang; Tseng, Tzu-Ling; Huang, Wen-Ching; Chung, Yi-Hsiu; Chuang, Hsiao-Li; Wu, Jyh-Horng

    2014-01-01

    The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity. PMID:25317067

  7. Whole-body vibration training effect on physical performance and obesity in mice.

    PubMed

    Huang, Chi-Chang; Tseng, Tzu-Ling; Huang, Wen-Ching; Chung, Yi-Hsiu; Chuang, Hsiao-Li; Wu, Jyh-Horng

    2014-01-01

    The purpose of this study was to verify the beneficial effects of whole-body vibration (WBV) training on exercise performance, physical fatigue and obesity in mice with obesity induced by a high-fat diet (HFD). Male C57BL/6 mice were randomly divided into two groups: normal group (n=6), fed standard diet (control), and experimental group (n=18), fed a HFD. After 4-week induction, followed by 6-week WBV of 5 days per week, the 18 obese mice were divided into 3 groups (n=6 per group): HFD with sedentary control (HFD), HFD with WBV at relatively low-intensity (5.6 Hz, 0.13 g) (HFD+VL) or high-intensity (13 Hz, 0.68 g) (HFD+VH). A trend analysis revealed that WBV increased the grip strength in mice. WBV also dose-dependently decreased serum lactate, ammonia and CK levels and increased glucose level after the swimming test. WBV slightly decreased final body weight and dose-dependently decreased weights of epididymal, retroperitoneal and perirenal fat pads and fasting serum levels of alanine aminotransferase, CK, glucose, total cholesterol and triacylglycerol. Therefore, WBV could improve exercise performance and fatigue and prevent fat accumulation and obesity-associated biochemical alterations in obese mice. It may be an effective intervention for health promotion and prevention of HFD-induced obesity. PMID:25317067

  8. Whole-body vibration training improves the walking ability of a moderately impaired child with cerebral palsy: a case study

    PubMed Central

    Yabumoto, Tamotsu; Shin, Sohee; Watanabe, Tsuneo; Watanabe, Yusuke; Naka, Toru; Oguri, Kazuo; Matsuoka, Toshio

    2015-01-01

    [Purpose] Strength training is recommended for children with cerebral palsy. However, it is difficult for moderately impaired children with cerebral palsy, who require crutches for ambulation, to participate in this type of training. The purpose of this study was to investigate whether whole-body vibration training is an effective method of strengthening in a moderately impaired child with cerebral palsy. [Subject and Methods] This report describes an 8-year-old Japanese boy with cerebral palsy, who was ambulatory with crutches. The subject participated in physical therapy twice a week for 5 weeks. Whole-body vibration training was selected to complement the standing practice. The patient’s crutch-walking ability, gross motor function, and spasticity were evaluated. [Results] The number of steps and walking duration were reduced in a 5-m walk test with crutches and gross motor function was improved. Further, the spasticity was reduced. [Conclusion] Whole-body vibration training is an effective physical therapy intervention in moderately impaired children with cerebral palsy, who are unable to walk without crutches. PMID:26504349

  9. Effects of Whole-Body Vibration Training on Bone-Free Lean Body Mass and Muscle Strength in Young Adults

    PubMed Central

    Osawa, Yusuke; Oguma, Yuko; Onishi, Shohei

    2011-01-01

    Resistance training with whole-body vibration (WBV) is becoming increasingly popular as an alternative to conventional resistance training or as supplementary training. Despite its growing popularity, the specific effects of WBV training on muscle morphology, strength, and endurance are not well understood, particularly in young adults. The aim of this study was to determine the effects of WBV training on bone-free lean body mass (BFLBM), and maximal muscle strength and endurance in healthy, untrained, young individuals. Eighteen healthy men and women (21-39 years) were randomly assigned to either a body-weight exercise with WBV (VT) group or a control exercise group without WBV (CON). Participants performed eight exercises per 40- min session on a vibration platform (VT group, frequency = 30-40 Hz; amplitude = 2 mm) twice weekly for 12 weeks. Anthropometry, total and regional BFLBM (trunks, legs, and arms) measured by dual- energy X-ray absorptiometry, and muscle strength and endurance measured by maximal isometric lumbar extension strength, maximal isokinetic knee extension and flexion strength, and the number of sit- ups performed were recorded and compared. Two-way repeated-measures ANOVA revealed no significant changes between the groups in any of the measured variables. We conclude that 12 weeks of body weight vibration exercise compared to body weight exercise alone does not provide meaningful changes to BFLBM or muscle performance in healthy young adults. Key points A randomized controlled trial was conducted to investigate the effects of body-weight exercise combined with whole-body vibration on bone-free lean body mass and maximal muscle strength and endurance in healthy young individuals. Body-weight exercises for lower extremities and trunk muscles were performed twice weekly for 12 weeks. Participants in the exercise with whole-body vibration group increased the vibration frequency from 30, 35, to 40 Hz at a constant amplitude of 2 mm during the trial. A 12-week body-weight exercise program with whole-body vibration did not significantly increase bone-free lean body mass in healthy young individuals, and no additional increases in maximal muscle strength and endurance were observed. PMID:24149301

  10. Effects of whole-body vibration training on bone-free lean body mass and muscle strength in young adults.

    PubMed

    Osawa, Yusuke; Oguma, Yuko; Onishi, Shohei

    2011-01-01

    Resistance training with whole-body vibration (WBV) is becoming increasingly popular as an alternative to conventional resistance training or as supplementary training. Despite its growing popularity, the specific effects of WBV training on muscle morphology, strength, and endurance are not well understood, particularly in young adults. The aim of this study was to determine the effects of WBV training on bone-free lean body mass (BFLBM), and maximal muscle strength and endurance in healthy, untrained, young individuals. Eighteen healthy men and women (21-39 years) were randomly assigned to either a body-weight exercise with WBV (VT) group or a control exercise group without WBV (CON). Participants performed eight exercises per 40- min session on a vibration platform (VT group, frequency = 30-40 Hz; amplitude = 2 mm) twice weekly for 12 weeks. Anthropometry, total and regional BFLBM (trunks, legs, and arms) measured by dual- energy X-ray absorptiometry, and muscle strength and endurance measured by maximal isometric lumbar extension strength, maximal isokinetic knee extension and flexion strength, and the number of sit- ups performed were recorded and compared. Two-way repeated-measures ANOVA revealed no significant changes between the groups in any of the measured variables. We conclude that 12 weeks of body weight vibration exercise compared to body weight exercise alone does not provide meaningful changes to BFLBM or muscle performance in healthy young adults. Key pointsA randomized controlled trial was conducted to investigate the effects of body-weight exercise combined with whole-body vibration on bone-free lean body mass and maximal muscle strength and endurance in healthy young individuals.Body-weight exercises for lower extremities and trunk muscles were performed twice weekly for 12 weeks.Participants in the exercise with whole-body vibration group increased the vibration frequency from 30, 35, to 40 Hz at a constant amplitude of 2 mm during the trial.A 12-week body-weight exercise program with whole-body vibration did not significantly increase bone-free lean body mass in healthy young individuals, and no additional increases in maximal muscle strength and endurance were observed. PMID:24149301

  11. Effects of Whole Body Vibration and Resistance Training on Bone Mineral Density and Anthropometry in Obese Postmenopausal Women

    PubMed Central

    Zaki, Moushira Erfan

    2014-01-01

    Objective. The aim of this study was to evaluate the impact of two exercise programs, whole body vibration and resistance training on bone mineral density (BMD) and anthropometry in obese postmenopausal women. Material and Methods. Eighty Egyptian obese postmenopausal women were enrolled in this study; their age ranged from 50 to 68 years. Their body mass index ranged (30–36?kg/m2). The exercise prescription consisted of whole body vibration (WBV) and resistance training. Bone mineral density (BMD) and anthropometrical parameters were measured at the beginning and at the end of the study. Changes from baseline to eight months in BMD and anthropometric parameters were investigated. Results. BMD at the greater trochanter, at ward's triangle, and at lumbar spine were significantly higher after physical training, using both WBV and resistive training. Moreover, both exercise programs were effective in BMI and waist to the hip ratio. Simple and multiple regression analyses showed significant associations between physical activity duration and BMD at all sites. The highest values of R2 were found for the models incorporating WBV plus BMI. Conclusion. The study suggests that both types of exercise modalities had a similar positive effect on BMD at all sites in obese postmenopausal women. Significant association was noted between physical activity and anthropometric variables and BMD measures at all sites. PMID:25136473

  12. [EFFECTS OF WHOLE-BODY VIBRATION TRAINING ON BODY COMPOSITION AND PHYSICAL FITNESS IN RECREATIONALLY ACTIVE YOUNG ADULTS].

    PubMed

    Martínez-Pardo, Esmeraldo; Martínez-Ruiz, Enrique; Alcaraz, Pedro E; Rubio-Arias, Jacobo A

    2015-01-01

    In the last decade, it has been suggested that whole- body vibration training (WBV) may increase neuromuscular performance and consequently affect the muscular improvement as either acute response to vibration or chronic adaptation training. Vibrating platforms generate frequencies from 5-45 Hz and vertical oscillations of 1-11 mm peak to peak, affecting more or less intensity acceleration changing by combining frequency and amplitude. Vibration training, in a session as various offers different results in regard to changes in body composition and in increasing the vertical jump, sprint, and the different manifestations of force development. These promising results await further research to establish parameters (duration, frequency and amplitude) with vibration stimulation in young active subjects. This literature review provides an update on the scientific evidence on the body vibrations in order to answer the question whether WBV, meaning the exercise by increasing the gravitational load collection, is a treatment option if the aim is to improve neuromuscular function, flexibility, balance, agility, coordination and body composition. PMID:26545648

  13. EFFECTS OF 6?WEEK WHOLE BODY VIBRATION TRAINING ON THE REFLEX RESPONSE OF THE ANKLE MUSCLES: A RANDOMIZED CONTROLLED TRIAL

    PubMed Central

    Rubio, Jacobo A.; Ramos, Domingo J.; Esteban, Paula; Mendizábal, Susana; Jiménez, Fernando

    2013-01-01

    Background: The ligament sprain of the lateral ankle is the most frequent injury that occurs when participating in sports. Whole body vibration (WBV) is a training method that has been recently introduced as a rehabilitative tool for treatment of athletes. It has been hypothesized that the transmission of mechanical oscillations from the vibrating platform may lead to physiological changes in muscle spindles, joint mechanoreceptors, as well as improve balance. Propose: The aim of this study was to assess the effects of a 6?week WBV training program on the reflex response mechanism of the peroneus longus (PL), peroneus brevis (PB) and anterior tibialis (AT) muscles in ankle inversion at 30º from horizontal, in a static position. Methods: This study was a single?blinded and randomized controlled trial. Forty?four healthy, physically active participants were randomly split into two groups: the experimental group (n = 26) (the WBV training) and control group (n = 18). Reaction time (RT), maximum electromyographic (EMG) peak (peak EMG), time to the maximum peak EMG (peak EMG time) and reflex electrical activity of all the muscles were assessed before and after the WBV training through surface EMG. Results: After 6?weeks WBV training, there were no significant changes in the variables analysed for all the muscles involved. Conclusion: A 6?week WBV training does not improve the reflex response mechanism of the lateral stabilizing muscles of the ankle. Level of evidence: 1b PMID:23439725

  14. Effect of 6 weeks of whole body vibration training on total and segmental body composition in healthy young adults.

    PubMed

    Rubio-Arias, J A; Esteban, P; Martínez, F; Ramos-Campo, D J; Mendizábal, S; Berdejo-Del-Fresno, D; Jiménez-Díaz, J F

    2015-12-01

    The applied use of new technologies to enhance performance and improve health has been increasing. Initially, whole body vibration training (WBVT) was used as system to improve elite athlete performance. However, this is also used to improve body composition, especially there is a great attention on the effectiveness of WBVT to reduce fat and body weight, with a potential increase in muscle tissue. The aim of this study was to investigate the effects of a 6-week vibration-training program on total and segmental body composition in a group of physically healthy participants. The final study sample included 64 healthy young adults. Subjects were randomly allocated into the control group (CG: n = 26; 16 males and 10 females) and the experimental group (EGWBVT: n = 38; 19 males and 19 females). The program lasted six weeks with a frequency of three sessions per week and each session varied in intensity. There were not found statistically significant differences in any of the body composition variables analysed. This study suggests that a six-week vibration-training program with an increasing intensity (7.2 g-32.6 g) in healthy young adults that are not overweight did not alter total and segmental body composition. PMID:26690036

  15. Changes in circulating angiogenic factors after an acute training bout before and after resistance training with or without whole-body-vibration training

    NASA Astrophysics Data System (ADS)

    Beijer, Åsa; Degens, Hans; May, Francisca; Bloch, Wilhelm; Rittweger, Joern; Rosenberger, Andre

    2012-07-01

    Both Resistance Exercise and Whole-Body-Vibration training are currently considered as countermeasures against microgravity-induced physiological deconditioning. Here we investigated the effects of whole-body vibration superimposed upon resistance exercise. Within this context, the present study focuses on changes in circulating angiogenic factors as indicators of skeletal muscle adaption. Methods: Twenty-six healthy male subjects (25.2 ± 4.2 yr) were included in this two-group parallel-designed study and randomly assigned to one of the training interventions: either resistance exercise (RE) or resistance vibration exercise (RVE). Participants trained 2-3 times per week for 6 weeks (completing 16 training sessions), where one session took 9 ± 1 min. Participants trained with weights on a guided barbell. The individual training load was set at 80% of their 1-Repetition-Maximum. Each training session consisted of three sets with 8 squats and 12 heel raises, following an incremental training design with regards to weight (RE and RVE) and vibration frequency (RVE only). The vibration frequency was increased from 20 Hz in the first week till 40 Hz during the last two weeks with 5-Hz weekly increments. At the first and 16 ^{th} training session, six blood samples (pre training and 2 min, 5 min, 15 min, 35 min and 75 min post training) were taken. Circulating levels of vascular endothelial growth factor (VEGF), Endostatin and Matrix Metalloproteinases -2 and -9 (MMPs) were determined in serum using Enzyme-linked Immunosorbent Assays. Results: MMP-2 levels increased by 7.0% (SE = 2.7%, P < 0.001) within two minutes after the exercise bout and then decreased to 5.7% below baseline (SE = 2.4%, P < 0.001) between 15 and 75 minutes post exercise. This response was comparable before and after the training programs (P = 0.70) and also between the two intervention groups (P = 0.42). Preliminary analyses indicate that a similar pattern applies to circulating MMP-9, VEGF and Endostatin levels. Conclusion: The present findings suggest 1) that resistance exercise, both with and without superimposed vibration, leads to a transient rise in circulating angiogenic factors, 2) which is not altered after a period of resistance exercise with or without vibration.

  16. Progressive-overload whole-body vibration training as part of periodized, off-season strength training in trained women athletes.

    PubMed

    Jones, Margaret T

    2014-09-01

    The purpose was to examine the effects of progressive-overload, whole-body vibration (WBV) training on strength and power as part of a 15-week periodized, strength training (ST) program. Eighteen collegiate women athletes with ?1 year of ST and no prior WBV training participated in the crossover design. Random assignment to 1 of the 2 groups followed pretests of seated medicine ball throw (SMBT), single-leg hop for distance (LSLH, RSLH), countermovement jump (CMJ), 3 repetition maximum (3RM) front squat (FS), pull-up (PU), and 3RM bench press (BP). Whole-body vibration was two 3-week phases of dynamic and static hold body weight exercises administered 2 d·wk in ST sessions throughout the 15-week off-season program. Total WBV exposure was 6 minutes broken into 30-second bouts with 60-second rest (1:2 work-to-relief ratio). Exercises, frequency, and amplitude progressed in intensity from the first 3-week WBV training to the second 3-week phase. Repeated-measures analysis of variances were used to analyze the SMBT, CMJ, LSLH, RSLH, FS, PU, and BP tests. Alpha level was p ? 0.05. Front squat, LSLH, and RSLH increased (p = 0.001) from pre- to posttest; FS increased from mid- to posttest. Pull-up increased (p = 0.008) from pre- to posttest. Seated medicine ball throw and BP showed a trend of increased performance from pre- to posttest (p = 0.11). Two 3-week phases of periodized, progressive-overload WBV + ST training elicited gains in strength and power during a 15-week off-season program. Greatest improvements in performance tests occurred in the initial WBV phase. Implementing WBV in conjunction with ST appears to be more effective in the early phases of training. PMID:24936902

  17. Does whole-body vibration training in the horizontal direction have effects on motor function and balance of chronic stroke survivors? A preliminary study

    PubMed Central

    Lee, GyuChang

    2015-01-01

    [Purpose] The objective of this study was to investigate the effects of whole-body vibration (WBV) in the horizontal direction on the motor function and balance of chronic stroke survivors. [Subjects and Methods] This study was a randomized controlled trial. Twenty-one individuals with chronic stroke from an inpatient rehabilitation center participated in the study. The participants were allocated to either the WBV training group or the control group. The WBV training group (n = 12) received whole-body vibration delivered in the horizontal direction (15?min/day, 3 times/week, 6 wks) followed by conventional rehabilitation (30?min/day, 5 times/week, 6 wks); the control group (n = 9) received conventional rehabilitation only (30?min/day, 5 times/week, 6 wks). Motor function was measured by using the Fugl-Meyer assessment, and balance was measured by using the Berg Balance Scale (BBS) and the Timed Up and Go (TUG) test before and after the interventions. [Results] After the interventions, all variables improved significantly compared with the baseline values in the WBV training group. In the control group, no significant improvements in any variables were noted. In addition, the BBS score in the WBV training group increased significantly compared with that in the control group. [Conclusion] WBV training with whole-body vibration delivered in the horizontal direction may be a potential intervention for improvement of motor function and balance in patients who previously experienced a stroke. PMID:25995573

  18. Whole body vibration alters proprioception in the trunk

    E-print Network

    Li, Lu; Lamis, Farhana; Wilson, Sara E.

    2008-01-01

    Occupational whole body vibration has long been associated with low back injuries. However, the mechanism of these injuries is not well understood. In this paper, the effect of whole body vibration on proprioception and dynamic stability...

  19. Whole-body vibration perception thresholds

    NASA Astrophysics Data System (ADS)

    Parsons, K. C.; Griffin, M. J.

    1988-03-01

    This paper presents the results of a series of laboratory experiments concerned with perception thresholds for whole-body vibration. The nature of absolute perception thresholds is discussed and a method of determining vibration thresholds, based upon signal detection theory, is proposed. Thresholds of subjects exposed to x-, y- and z-axis sinusoidal vibration were determined for sitting and standing subjects (from 2 to 100 Hz). Perception thresholds have also been determined for supine subjects exposed to vertical ( x-axis) sinusoidal vibration (10-63 Hz). In additional experiments the effects of complex (e.g., random) vibration and the effects of duration on the perception thresholds were investigated. The relation between perception thresholds and vibration levels, said by subjects to be unacceptable if they occurred in their own homes, was investigated as well as the effects of subjects' personality and the visual and acoustic conditions in the laboratory. For the vertical vibration of seated subjects no significant differences were found between the responses of male and female subjects. Significant differences were found between perception thresholds for sitting and standing postures. The median threshold was approximately 0·01 m/s 2 r.m.s. between 2 and 100 Hz. Perception thresholds for x-axis and y-axis vibration were not significantly different in either sitting or standing subjects but significant differences in thresholds were found between sitting and standing positions for both x-axis and y-axis vibration. Subjects tended to be more sensitive to vibration when lying than when sitting or standing. The results suggested that the perception of random vibrations can be predicted from a knowledge of the perception of its component vibrations. The number of cycles of vibration did not affect perception thresholds for vibration durations of more than about 0·25 s. Some assessments suggested that vibration at more than twice the perception threshold may not be acceptable if it occurs in the home.

  20. Alternative to traditional stretching methods for flexibility enhancement in well-trained combat athletes: local vibration versus whole-body vibration

    PubMed Central

    2015-01-01

    This study aimed to compare the effect of local vibration (LV) and whole body vibration (WBV) on lower body flexibility and to assess whether vibration treatments were more effective than traditionally used static and dynamic stretching methods. Twenty-four well-trained male combat athletes (age: 22.7 ± 3.3 years) performed four exercise protocols – LV (30 Hz, 4 mm), WBV (30 Hz, 4 mm), static stretching (SS), and dynamic stretching (DS) – in four sessions of equal duration 48 hours apart in a randomized, balanced order. During a 15-minute recovery after each protocol, subjects performed the stand and reach test (S&R) at the 15th second and the 2nd, 4th, 6th, 8th, 10th and 15th minute. There was a similar change pattern in S&R scores across the 15-minute recovery after each protocol (p = 0.572), remaining significantly elevated throughout the recovery. A significant main protocol effect was found for absolute change in S&R scores relative to baseline (p = 0.015). These changes were statistically greater in LV than WBV and DS. Changes in SS were not significantly different from LV, but were consistently lower than LV with almost moderate effect sizes. After LV, a greater percentage of subjects increased flexibility above the minimum detectable change compared to other protocols. Subjects with high flexibility (n = 12) benefited more from LV compared with other methods (effect size ? 0.862). In conclusion, LV was an effective alternative exercise modality to acutely increase lower extremity flexibility for well-trained athletes compared with WBV and traditional stretching exercises. PMID:26424926

  1. Whole-body vibration exercise in postmenopausal osteoporosis

    PubMed Central

    Mieszkowski, Jan; Niespodzi?ski, Bart?omiej; Ciechanowska, Katarzyna

    2015-01-01

    The report of the World Health Organization (WHO) of 2008 defines osteoporosis as a disease characterized by low bone mass and an increased risk of fracture. Postmenopausal osteoporosis is connected to the decrease in estrogens concentration as a result of malfunction of endocrine ovarian function. Low estrogens concentration causes increase in bone demineralization and results in osteoporosis. Physical activity, as a component of therapy of patients with osteoporosis, has been used for a long time now. One of the forms of safe physical activity is the vibration training. Training is to maintain a static position or execution of specific exercises involving the appropriate muscles on a vibrating platform, the mechanical vibrations are transmitted to the body of the patient. According to the piezoelectric theory, pressure induces bone formation in the electrical potential difference, which acts as a stimulant of the process of bone formation. Whole body vibration increases the level of growth hormone and testosterone in serum, preventing sarcopenia and osteoporosis. The aim of this study was to review the literature on vibration exercise in patients with postmenopausal osteoporosis based on the PubMed and Medline database. While searching the database, the following key words were used ‘postmenopausal osteoporosis’ and ‘whole-body vibration exercise’. PMID:26327887

  2. Whole body vibration and cerebral palsy: a systematic review

    PubMed Central

    Duquette, Sean A.; Guiliano, Anthony M.; Starmer, David J.

    2015-01-01

    Purpose: The goal of this review is to evaluate the effects of whole body vibration on outcomes in patients with cerebral palsy. The findings in this review may help clinicians make evidence informed decisions on the use of whole body vibration for cerebral palsy. Methods: A systematic search was conducted on April 29, 2014.The following search terms were used to search of several databases: (whole body vibration OR whole-body vibration OR whole body-vibration OR WBV) AND (cerebral palsy). Articles that met the inclusion criteria were assessed using the Scottish intercollegiate guidelines network (SIGN) rating system to assess the methodology and bias of the articles for randomized control trials. Results: The search produced 25 articles, of which 12 duplicates were identified and removed. Another seven articles were not considered since they did not fit the inclusion criteria, leaving a total of five studies for review. Four of the articles analyzed the effects of WBV in children while the other study focused on adults with cerebral palsy. There was one low quality article, four acceptable quality articles and one high quality article when assessed using the SIGN criteria. Conclusions: It appears that whole body vibration has the potential to provide symptomatic relief for patients with cerebral palsy. Whole body vibration may improve spasticity, muscle strength and coordination. There is a lack of research to conclusively determine whether it does alter bone mineral density. PMID:26500358

  3. Potential beneficial effects of whole-body vibration for muscle recovery after exercise.

    PubMed

    Kosar, Angela C; Candow, Darren G; Putland, Jessica T

    2012-10-01

    Whole-body vibration is an emerging strategy used by athletes and exercising individuals to potentially accelerate muscle recovery. The vibration elicits involuntary muscle stretch reflex contractions leading to increased motor unit recruitment and synchronization of synergist muscles, which may lead to greater training adaptations over time. Intense exercise training, especially eccentric muscle contractions, will inevitably lead to muscle damage and delayed onset muscle soreness, which may interfere with the maintenance of a planned training program. Whole-body vibration before and after exercise shows promise for attenuating muscle soreness and may be considered as an adjunct to traditional therapies (i.e., massage, cryotherapy) to accelerate muscle recovery. PMID:22130390

  4. Wireless Network for Measurement of Whole-Body Vibration

    PubMed Central

    Koenig, Diogo; Chiaramonte, Marilda S.; Balbinot, Alexandre

    2008-01-01

    This article presents the development of a system integrated to a ZigBee network to measure whole-body vibration. The developed system allows distinguishing human vibrations of almost 400Hz in three axes with acceleration of almost 50g. The tests conducted in the study ensured the correct functioning of the system for the project's purpose.

  5. Impact of L-citrulline supplementation and whole-body vibration training on arterial stiffness and leg muscle function in obese postmenopausal women with high blood pressure.

    PubMed

    Figueroa, Arturo; Alvarez-Alvarado, Stacey; Ormsbee, Michael J; Madzima, Takudzwa A; Campbell, Jeremiah C; Wong, Alexei

    2015-03-01

    Aging is associated with increased arterial stiffness (pulse wave velocity, PWV) and muscle strength/mass loss. Exercise training alone is not always effective to improve PWV and lean mass (LM) in older women. To investigate the independent and combined effects of whole-body vibration training (WBVT) and L-citrulline supplementation on PWV and muscle function in women, forty-one postmenopausal women aged 58 ± 3 years and body mass index (34 ± 2 kg/m(2)) were randomly assigned to the following groups: WBVT, L-citrulline, and WBVT + L-citrulline for 8 weeks. WBVT consisted of four leg exercises three times weekly. Aortic (cfPWV) and leg (faPWV) PWV, leg LM index, leg strength, and body fat percentage (BF%) were measured before and after the interventions. WBVT + L-citrulline decreased cfPWV (-0.91 ± 0.21 m/s, P < 0.01) compared to both groups. All interventions decreased faPWV (P < 0.05) similarly. Leg LM index increased (2.7 ± 0.5%, P < 0.001) after WBVT + L-citrulline compared with L-citrulline. Both WBVT interventions increased leg strength (~37%, P < 0.001) compared to L-citrulline while decreased BF% (~2.0%, P < 0.01). Reductions in cfPWV were correlated with increases in leg LM index (r = -0.63, P < 0.05). Our findings suggest that leg muscle strength and arterial stiffness can be improved after WBVT, but its combination with L-citrulline supplementation enhanced benefits on aortic stiffness and leg LM. Therefore, WBVT + L-citrulline could be an intervention for improving arterial stiffness and leg muscle function in obese postmenopausal women with prehypertension or hypertension, thereby reducing their cardiovascular and disability risk. PMID:25636814

  6. Measurement of Whole-Body Vibration Exposure from Garbage Trucks

    NASA Astrophysics Data System (ADS)

    Maeda, S.; Morioka, M.

    1998-08-01

    Japanese garbage truck drivers are exposed to mechanical whole-body vibration during their work. Some drivers have suffered from low back pain from this vibration. However, there is no evidence of a relationship between the whole-body vibration from the garbage trucks and low back pain or occupational disease, due to the lack of investigations. A field study was conducted in order to characterize the health risks associated with garbage truck work. Three different types of truck were tested at different loadings and on different road surfaces, with the vibrations measured at the driver/seat interface (x,y, andz-axes). The vibrations were compared with the health risk guidance according to Annex B of ISO 2631-1 [1]. The findings of this study indicated that Japanese garbage truck drivers should not operate trucks for 2.5 h in a day, under current working conditions.

  7. The acute effects of different training loads of whole body vibration on flexibility and explosive strength of lower limbs in divers.

    PubMed

    Dallas, G; Paradisis, G; Kirialanis, P; Mellos, V; Argitaki, P; Smirniotou, A

    2015-09-01

    The purpose of this study was to examine the acute effects of different vibration loads (frequency and amplitude) of whole-body vibration (WBV) on flexibility and explosive strength of lower limbs in springboard divers. Eighteen male and female divers, aged 19 ± 2 years, volunteered to perform 3 different WBV protocols in the present study. To assess the vibration effect, flexibility and explosive strength of lower limbs were measured before (Pre), immediately after (Post 1) and 15 min after the end of vibration exposure (Post 15). Three protocols with different frequencies and amplitudes were used in the present study: a) low vibration frequency and amplitude (30 Hz/2 mm); b) high vibration frequency and amplitude (50 Hz/4 mm); c) a control protocol (no vibration). WBV protocols were performed on a Power Plate platform, whereas the no vibration divers performed the same protocol but with the vibration platform turned off. A two-way ANOVA 3 x 3 (protocol × time) with repeated measures on both factors was used. The level of significance was set at p < 0.05. Univariate analyses with simple contrasts across time were selected as post hoc tests. Intraclass coefficients (ICC) were used to assess the reliability across time. The results indicated that flexibility and explosive strength of lower limbs were significantly higher in both WBV protocols compared to the no vibration group (NVG). The greatest improvement in flexibility and explosive strength, which occurred immediately after vibration treatment, was maintained 15 min later in both WBV protocols, whereas NVG revealed a significant decrease 15 min later, in all examined strength parameters. In conclusion, a bout of WBV significantly increased flexibility and explosive strength in competitive divers compared with the NVG. Therefore, it is recommended to incorporate WBV as a method to increase flexibility and vertical jump height in sports where these parameters play an important role in the success outcome of these sports. PMID:26424927

  8. The acute effects of different training loads of whole body vibration on flexibility and explosive strength of lower limbs in divers

    PubMed Central

    Paradisis, G; Kirialanis, P; Mellos, V; Argitaki, P; Smirniotou, A

    2015-01-01

    The purpose of this study was to examine the acute effects of different vibration loads (frequency and amplitude) of whole-body vibration (WBV) on flexibility and explosive strength of lower limbs in springboard divers. Eighteen male and female divers, aged 19 ± 2 years, volunteered to perform 3 different WBV protocols in the present study. To assess the vibration effect, flexibility and explosive strength of lower limbs were measured before (Pre), immediately after (Post 1) and 15 min after the end of vibration exposure (Post 15). Three protocols with different frequencies and amplitudes were used in the present study: a) low vibration frequency and amplitude (30 Hz/2 mm); b) high vibration frequency and amplitude (50 Hz/4 mm); c) a control protocol (no vibration). WBV protocols were performed on a Power Plate platform, whereas the no vibration divers performed the same protocol but with the vibration platform turned off. A two-way ANOVA 3 x 3 (protocol × time) with repeated measures on both factors was used. The level of significance was set at p < 0.05. Univariate analyses with simple contrasts across time were selected as post hoc tests. Intraclass coefficients (ICC) were used to assess the reliability across time. The results indicated that flexibility and explosive strength of lower limbs were significantly higher in both WBV protocols compared to the no vibration group (NVG). The greatest improvement in flexibility and explosive strength, which occurred immediately after vibration treatment, was maintained 15 min later in both WBV protocols, whereas NVG revealed a significant decrease 15 min later, in all examined strength parameters. In conclusion, a bout of WBV significantly increased flexibility and explosive strength in competitive divers compared with the NVG. Therefore, it is recommended to incorporate WBV as a method to increase flexibility and vertical jump height in sports where these parameters play an important role in the success outcome of these sports. PMID:26424927

  9. The measurement of whole body vibration in the workplace.

    PubMed

    Helmkamp, J C; Redmond, G R; Cottington, E M

    1985-01-01

    A measurement system was developed to assess the amount of whole body vibration to which workers are exposed during routine operation of machinery in an industrial setting. This system is discussed in terms of plant structural design, production levels, direction and intensity of vibrational forces, measuring equipment, proper measurement technique and field application. Comparison of field data with ANSI and ISO fatigue-decreased proficiency boundaries indicated that small press operators were not at an increased risk for impaired work efficiency. Limitations of the field survey are presented and application of this system to other occupational environments is discussed. PMID:4025146

  10. Acute effects of stochastic resonance whole body vibration

    PubMed Central

    Elfering, Achim; Zahno, Jasmine; Taeymans, Jan; Blasimann, Angela; Radlinger, Lorenz

    2013-01-01

    AIM: To investigate the acute effects of stochastic resonance whole body vibration (SR-WBV) training to identify possible explanations for preventive effects against musculoskeletal disorders. METHODS: Twenty-three healthy, female students participated in this quasi-experimental pilot study. Acute physiological and psychological effects of SR-WBV training were examined using electromyography of descending trapezius (TD) muscle, heart rate variability (HRV), different skin parameters (temperature, redness and blood flow) and self-report questionnaires. All subjects conducted a sham SR-WBV training at a low intensity (2 Hz with noise level 0) and a verum SR-WBV training at a higher intensity (6 Hz with noise level 4). They were tested before, during and after the training. Conclusions were drawn on the basis of analysis of variance. RESULTS: Twenty-three healthy, female students participated in this study (age = 22.4 ± 2.1 years; body mass index = 21.6 ± 2.2 kg/m2). Muscular activity of the TD and energy expenditure rose during verum SR-WBV compared to baseline and sham SR-WBV (all P < 0.05). Muscular relaxation after verum SR-WBV was higher than at baseline and after sham SR-WBV (all P < 0.05). During verum SR-WBV the levels of HRV were similar to those observed during sham SR-WBV. The same applies for most of the skin characteristics, while microcirculation of the skin of the middle back was higher during verum compared to sham SR-WBV (P < 0.001). Skin redness showed significant changes over the three measurement points only in the middle back area (P = 0.022). There was a significant rise from baseline to verum SR-WBV (0.86 ± 0.25 perfusion units; P = 0.008). The self-reported chronic pain grade indicators of pain, stiffness, well-being, and muscle relaxation showed a mixed pattern across conditions. Muscle and joint stiffness (P = 0.018) and muscular relaxation did significantly change from baseline to different conditions of SR-WBV (P < 0.001). Moreover, muscle relaxation after verum SR-WBV was higher than after sham SR-WBV (P < 0.05). CONCLUSION: Verum SR-WBV stimulated musculoskeletal activity in young healthy individuals while cardiovascular activation was low. Training of musculoskeletal capacity and immediate increase in musculoskeletal relaxation are potential mediators of pain reduction in preventive trials. PMID:24147265

  11. Neuromuscular fatigue induced by whole-body vibration exercise.

    PubMed

    Maffiuletti, Nicola A; Saugy, Jonas; Cardinale, Marco; Micallef, Jean-Paul; Place, Nicolas

    2013-06-01

    The aim of this study was to examine the magnitude and the origin of neuromuscular fatigue induced by half-squat static whole-body vibration (WBV) exercise, and to compare it to a non-WBV condition. Nine healthy volunteers completed two fatiguing protocols (WBV and non-WBV, randomly presented) consisting of five 1-min bouts of static half-squat exercise with a load corresponding to 50 % of their individual body mass. Neuromuscular fatigue of knee and ankle muscles was investigated before and immediately after each fatiguing protocol. The main outcomes were maximal voluntary contraction (MVC) torque, voluntary activation, and doublet peak torque. Knee extensor MVC torque decreased significantly (P < 0.01) and to the same extent after WBV (-23 %) and non-WBV (-25 %), while knee flexor, plantar flexor, and dorsiflexor MVC torque was not affected by the treatments. Voluntary activation of knee extensor and plantar flexor muscles was unaffected by the two fatiguing protocols. Doublet peak torque decreased significantly and to a similar extent following WBV and non-WBV exercise, for both knee extensors (-25 %; P < 0.01) and plantar flexors (-7 %; P < 0.05). WBV exercise with additional load did not accentuate fatigue and did not change its causative factors compared to non-WBV half-squat resistive exercise in recreationally active subjects. PMID:23344670

  12. NEUROMOTOR RESPONSE TO WHOLE BODY VIBRATION TRANSMISSIBILITY IN THE HORIZONTAL DIRECTION AND ITS MATHEMATICAL MODEL

    E-print Network

    Hanumanthareddygari, Vinay

    2010-09-02

    Recent studies of whole body vibration in seated postures have suggested that the neuromotor system may play a role in the etiology of low back disorders. A number of researchers have modeled whole body vibration transmission to the low back, spine...

  13. Signal Processing Methods for Removing the Effects of Whole Body Vibration upon Speech

    NASA Technical Reports Server (NTRS)

    Bitner, Rachel M.; Begault, Durand R.

    2014-01-01

    Humans may be exposed to whole-body vibration in environments where clear speech communications are crucial, particularly during the launch phases of space flight and in high-performance aircraft. Prior research has shown that high levels of vibration cause a decrease in speech intelligibility. However, the effects of whole-body vibration upon speech are not well understood, and no attempt has been made to restore speech distorted by whole-body vibration. In this paper, a model for speech under whole-body vibration is proposed and a method to remove its effect is described. The method described reduces the perceptual effects of vibration, yields higher ASR accuracy scores, and may significantly improve intelligibility. Possible applications include incorporation within communication systems to improve radio-communication systems in environments such a spaceflight, aviation, or off-road vehicle operations.

  14. Effects of whole body vibration on hormonal & functional indices in patients with multiple sclerosis

    PubMed Central

    Ebrahimi, Ali; Eftekhari, Elham; Etemadifar, Masoud

    2015-01-01

    Background & objectives: Multiple sclerosis (MS) is a neurodegenerative disease, which affects the patients’ mobility, and exercise training is considered to be beneficial for these patients. The aim of this study was to determine the effects of 10 wk of low intensity exercise and whole body vibration (WBV) training on fatigue, quality of life, functional and physical indices, and serum levels of ghrelin, leptin, and testosterone in MS patients. Methods: Thirty four MS patients with mild to moderate disability were recruited and randomly divided into two groups, the training group (n=17) and control group (n=17). Patients in the training group did low intensity exercise and WBV training programme three times a week for 10 wk. The control group continued their routine life. Intended variables like expanded disability status scale (EDSS), fatigue, quality of life, functional and physical indices consisted of balance, walking speed, functional mobility, functional muscle endurance, and walking endurance, and serum levels of ghrelin, leptin, and testosterone were measured before and after the protocol. Results: Thirty subjects completed the study (23 females, 7 males; mean age =38.80 ± 9.50 yr). Statistical analysis demonstrated that EDSS in the WBV training group was significantly decreased (P=0.01), balance (P=0.01), and walking endurance significantly increased (P=0.01) in MS patients (P<0.05). Interpretation & conclusions: The results suggest that low intensity exercise and WBV training have some beneficial impact on functional and physical indices of MS patients. PMID:26609037

  15. Effects of quadriceps strength after static and dynamic whole-body vibration exercise.

    PubMed

    Bush, Jill A; Blog, Gabriel L; Kang, Jie; Faigenbaum, Avery D; Ratamess, Nicholas A

    2015-05-01

    Numerous studies have shown performance benefits including whole-body vibration (WBV) as a training modality or an acute exercise protocol when used as a component of the resistance training program. Some studies have indicated that performing dynamic exercises as compared with static position exercises while exposed to WBV might be beneficial; however, evidence is lacking. Thus, the purpose of this study was to determine if an acute bout of dynamic versus static squats performed during WBV results in increase in quadriceps force production by means of dynamic isokinetic knee extension and flexion exercise. Nonresistance-trained healthy young men and women (N = 21) of 18-25 years participated in 4 protocols with 2-week rest in-between. Protocol 1 consisted of 5 sets of 10 dynamic squats without vibration; Protocol 2: 5 sets of 30-second static squats without vibration; Protocol 3: 5 sets of 10 dynamic squats with 30-Hz WBV for a total of 2.5 minutes; and Protocol 4: 5 sets of 30-second static squats with 30-Hz WBV for a total of 2.5 minutes. Prestrength tests (1 set of 4 repetitions at 100° · s(-1) for the knee extension exercise) was performed within 5 minutes of starting each protocol, and poststrength testing was performed within 1 minute of completing each protocol. Strength outcomes were analyzed by repeated measures analysis of variance with a significance level set at p ? 0.05. A significant decrease in strength was observed after dynamic and static squats without WBV (p = 0.002); an increase in strength after dynamic squats with WBV (p = 0.003); and a decrease in strength after static squats with WBV (p = 0.003). The inclusion of WBV to dynamic resistance exercise can be an added modality to increase strength. Whole-body vibration can have varied effects in altering muscle strength in untrained individuals according to the type of resistance training performed. As a dynamic squat with WBV seems to immediately potentiate neuromuscular functioning, the combination of dynamic exercises and WBV could be used as a potential warm-up procedure before resistance exercise. PMID:25268289

  16. Hematuria in a runner after treatment with whole body vibration: a case report.

    PubMed

    Franchignoni, F; Vercelli, S; Ozçakar, L

    2013-06-01

    The use of whole body vibration (WBV) for therapeutic purposes is far from being standardized and the training protocols reported in the literature vary considerably. Currently, the optimal threshold for a beneficial effect is undetermined, and caution regarding potential health risks due to WBV is always necessary. In this case report, we present a 34-year-old otherwise healthy elite athlete (steeplechase runner) who suffered two episodes of hematuria (HT) after WBV training. Shortly after the third WBV, he had an episode of bright red urine. Seven days later, following the next WBV session (and again before his daily running session), a reddish-colored urine reappeared. Our patient was advised to stop WBV training and to take fluid before and during exertion. He did not experience any episode of HT during a 1-year follow-up with periodic check-ups, in spite of the continuation of his sporting career. The concomitance of the two types of trauma - daily running and WBV - could have been critical in this case for producing HT. In particular, we think that platforms providing side-alternating vibration (such as the Galileo platform) may pose some health risks if the feet are positioned too far from the axis of rotation. PMID:22590988

  17. Whole body vibration in mountain-rescue operations

    NASA Astrophysics Data System (ADS)

    Alberti, E.; Chiappa, D.; Moschioni, G.; Saggin, B.; Tarabini, M.

    2006-12-01

    In mountain-rescue operations injured people are generally exposed to vibrations and shocks that can be potential causes of physical conditions worsening. Such vibrations can derive both from patient's body manipulations (e.g. when it is being loaded and immobilized on a stretcher) and from forces coming from the transport devices and vehicles. Despite the general feeling that during this kind of operations the levels of transmitted vibrations to the injured can be quite large and potentially dangerous, there is practically no study in literature providing reliable parameters (i.e. measurements) to support or dismiss these beliefs. This paper reports the results of a measurement campaign carried-out in order to outline, identify and quantify the excitations a human body is exposed to, during typical transportation phases related to mountain-rescue operations. The work mainly presents and discusses the experimental setup with the aim of focusing on the problems related to this kind of measurements; the results of the experimental campaign carried-out for the measurement of the vibrations undergone by a human body during a simulated rescue operation are presented and discussed as well. Such simulation includes three phases of transportation: on a hand-held stretcher, on an ambulance and on a helicopter. The work is not intended to supply a complete characterization and analysis of vibrations transmission during any rescue operation but just to provide a preliminary overview and to define a measurement method that can be applied for a more comprehensive characterization. With such aims measurements were carried out in on-field situations stated as "typical" by rescue experts and data then analyzed both with standard procedures and algorithms (e.g. ISO 2631s weighting curves) and with the commonly used statistical indexes; in the analysis it is important to be aware that standardized measurement procedures and indexes, created to verify comfort or health-risks of workers, might not fit the case of a generic patient who experienced a serious mountain accident. The work includes also a laboratory activity mainly related to mechanical characterization of the stretcher used in the field tests. The most interesting result of the study is the comparison of the vibration levels in the various rescue phases that, even when using different indicators, shows that the most critical issue is due to hand transportation despite the bad judgment usually expressed for helicopter flight.

  18. EFFECTS OF WHOLE BODY VIBRATION ON STRENGTH AND JUMPING PERFORMANCE IN VOLLEYBALL AND BEACH VOLLEYBALL PLAYERS

    PubMed Central

    Zmijewski, P.; Jimenez-Olmedo, J.M.; Jové-Tossi, M.A.; Martínez-Carbonell, A.; Suárez-Llorca, C.; Andreu-Cabrera, E.

    2014-01-01

    The primary aim of this study was to examine the effects of 6-week strength training with whole body vibration (WBV) on leg strength and jumping performance in volleyball and beach volleyball players. Twenty-three sub-elite male volleyball (VB; n=12) and beach volleyball players (BVB; n=11) aged 21.2±3.0 years were divided into two groups and subjected to 6 weeks of strength training (three one-hour sessions per week): (I) 12 players (6 VB and 6 BVB players) underwent training with WBV (30-40 Hz, 1.7-2.5 mm, 3.0-5.7 g), and (II) 11 players (6 VB and 5 BVB players) underwent traditional strength training. Squat jump (SJ) and countermovement squat jump (CMJ) measurements by the Ergo Tester contact platform and maximum leg press test (1RM) were conducted. Three-factor (2 time x 2 WBV use x 2 discipline) analysis of variance for SJ, CMJ and 1RM revealed a significant time main effect (p<0.001), a WBV use effect (p<0.001) and a discipline effect (p<0.001). Significantly greater improvements in the SJ (p<0.001) and CMJ (p<0.001) and in 1RM (p<0.001) were found in the WBV training groups than in traditional training groups. Significant 3-way interaction effects (training, WBV use, discipline kind) were also found for SJ, CMJ and 1RM (p=0.001, p<0.001, p=0.001, respectively). It can be concluded that implementation of 6-week WBV training in routine practice in volleyball and beach volleyball players increases leg strength more and leads to greater improvement in jump performance than traditional strength training, but greater improvements can be expected in beach volleyball players than in volleyball players. PMID:25187676

  19. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review

    PubMed Central

    Collado-Mateo, Daniel; Adsuar, Jose C.; Olivares, Pedro R.; del Pozo-Cruz, Borja; Parraca, Jose A.; del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  20. Effects of Whole-Body Vibration Therapy in Patients with Fibromyalgia: A Systematic Literature Review.

    PubMed

    Collado-Mateo, Daniel; Adsuar, Jose C; Olivares, Pedro R; Del Pozo-Cruz, Borja; Parraca, Jose A; Del Pozo-Cruz, Jesus; Gusi, Narcis

    2015-01-01

    Objective. To review the literature on the effects of whole-body vibration therapy in patients with fibromyalgia. Design. Systematic literature review. Patients. Patients with fibromyalgia. Methods. An electronic search of the literature in four medical databases was performed to identify studies on whole-body vibration therapy that were published up to the 15th of January 2015. Results. Eight articles satisfied the inclusion and exclusion criteria and were analysed. According to the Dutch CBO guidelines, all selected trials had a B level of evidence. The main outcomes that were measured were balance, fatigue, disability index, health-related quality of life, and pain. Whole-body vibration appeared to improve the outcomes, especially balance and disability index. Conclusion. Whole-body vibration could be an adequate treatment for fibromyalgia as a main therapy or added to a physical exercise programme as it could improve balance, disability index, health-related quality of life, fatigue, and pain. However, this conclusion must be treated with caution because the paucity of trials and the marked differences between existing trials in terms of protocol, intervention, and measurement tools hampered the comparison of the trials. PMID:26351517

  1. Changes in postural sway frequency and complexity in altered sensory environments following whole body vibrations.

    PubMed

    Dickin, D Clark; McClain, Matthew A; Hubble, Ryan P; Doan, Jon B; Sessford, David

    2012-10-01

    Studies assessing whole body vibration (WBV) have produced largely positive effects, with some neutral, on postural control with frequencies between 25 and 40 Hz. However no conclusive evidence indicates that 25-40 Hz elicits the optimal beneficial effects. To address this issue, a larger range of vibration intensity (10-50 Hz at peak-to-peak amplitudes of 2 and 5mm) was employed while increasing the postural complexity (altered somatosensory and/or visual information) to assess acute effects of 4-min of WBV on postural control. Twelve healthy young adults underwent postural assessment at four time intervals (prior to, immediately following and 10 and 20 min post WBV). Findings revealed both postural sway frequency and sway complexity/regularity were affected by WBV. Baseline posture demonstrated increased sway frequency (p=.04) following WBV with no changes in sway complexity. When the support surface was altered, changes in both the frequency and complexity of sway were elicited (p=.027, .002, respectively). When both somatosensory and visual information were altered delayed improvements in postural control were elicited (p=.05 and .01, for frequency and complexity, respectively). Given the differential acute effects as a function of postural task complexity, future longitudinal studies could determine the overall training effect on sway frequency and complexity. PMID:22516837

  2. Physiological response to whole-body vibration in athletes and sedentary subjects.

    PubMed

    Gojanovic, B; Feihl, F; Gremion, G; Waeber, B

    2014-01-01

    Whole-body vibration (WBV) is a new exercise method, with good acceptance among sedentary subjects. The metabolic response to WBV has not been well documented. Three groups of male subjects, inactive (SED), endurance (END) and strength trained (SPRINT) underwent a session of side-alternating WBV composed of three 3-min exercises (isometric half-squat, dynamic squat, dynamic squat with added load), and repeated at three frequencies (20, 26 and 32 Hz). VO(2), heart rate and Borg scale were monitored. Twenty-seven healthy young subjects (10 SED, 8 SPRINT and 9 END) were included. When expressed in % of their maximal value recorded in a treadmill test, both the peak oxygen consumption (VO(2)) and heart rate (HR) attained during WBV were greatest in the SED, compared to the other two groups (VO(2): 59.3 % in SED vs 50.8 % in SPRINT and 48.0 % in END, p<0.01; HR 82.7 % in SED vs 80.4 % in SPRINT and 72.4 % in END, p<0.05). In conclusions, the heart rate and metabolic response to WBV differs according to fitness level and type, exercise type and vibration frequency. In SED, WBV can elicit sufficient cardiovascular response to benefit overall fitness and thus be a potentially useful modality for the reduction of cardiovascular risk. PMID:25157652

  3. The Effects of Whole Body Vibration on Mobility and Balance in Parkinson Disease: a Systematic Review

    PubMed Central

    Sharififar, Sharareh; Coronado, Rogelio A.; Romero, Sergio; Azari, Hassan; Thigpen, Mary

    2014-01-01

    Whole body vibration (WBV) is a contemporary treatment modality that holds promise as an exercise training method in health–compromised individuals. A growing number of studies on individuals with Parkinson Disease are examining whether WBV improves balance and functional mobility. However, interpreting WBV studies is challenging since there is variability in the manner in which WBV intervention is conducted. The primary goal of this systematic review was to investigate the effect of WBV on improving mobility and balance as measured by a battery of clinical tests, in patients with Parkinson disease. Studies based on WBV parameters were characterized and a systematic search of peer-reviewed literature in five major databases was conducted. Randomized-controlled trials investigating the effects of WBV in patients with a Parkinson diagnosis and no cognitive impairment were included. A total of six publications met the inclusion criteria. Overall, studies demonstrated mixed results in favor of WBV for improving balance or mobility. The majority of studies seem to suggest a favorable benefit following WBV for mobility and balance, but not when compared to other active intervention or placebo. There was variability in the manner in which WBV intervention was applied. Variations among the six studies included: duration of intervention and rest, follow-up period, type of control groups, frequency of vibration, number of treatment sessions and sex distribution of subjects. Future research is needed to investigate the effects of different types of equipment and treatment dosage in individuals with Parkinson disease. PMID:25031483

  4. Occurrence of fatigue induced by a whole-body vibration session is not frequency dependent.

    PubMed

    Raphael, Zory F; Wesley, Aulbrook; Daniel, Keir A; Olivier, Serresse

    2013-09-01

    The aim of this study was to determine whether neuromuscular adaptations (magnitude and location) induced by isometric exercise performed on an oscillating platform are dependent on whole-body vibration (WBV) frequency. Eleven young men performed 4 separate fatigue sessions of static squatting exercise at 3 frequencies of WBV (V20, V40, and V60) and 1 session without vibration (V0). Isometric torque and electromyographic activity of the vastus lateralis, rectus femoris, and biceps femoris were recorded during maximal voluntary and evoked contractions of the knee extensor muscles before and after each fatigue session to examine both peripheral and central adaptations. Isometric torque decreased significantly after each of the 4 frequency sessions (V0: -9.4 ± 6.1%, p = 0.003; V20: -8.1 ± 9.9%, p = 0.010; V40: -11.9 ± 12.7%, p = 0.011; and V60: -7.8 ± 9.2%, p = 0.001, respectively), but this reduction was not significantly different between frequencies. The torque produced by evoked contraction significantly decreased from pre-exercise values after each session (V0: -14.9 ± 15.6%, p = 0.012; V20: -15.8 ± 16.4%, p = 0.010; V40: -21.0 ± 14.3%, p = 0.004; and V60: -17.3 ± 11.6%, p = 0.005, respectively); however, there was no effect of vibration frequency. In both conditions, the maximal voluntary contraction torque reduction observed was mainly attributable to peripheral fatigue and was not because of central modifications of the neuromuscular system. The present study demonstrates that the frequency of vibration does not significantly influence the magnitude and location of neuromuscular fatigue, suggesting that adding WBV to static squat exercise (on a vertically oscillating platform) does not provide an additional training stimulus. PMID:23249822

  5. Microcirculation of skeletal muscle adapts differently to a resistive exercise intervention with and without superimposed whole-body vibrations.

    PubMed

    Beijer, Åsa; Degens, Hans; Weber, Tobias; Rosenberger, André; Gehlert, Sebastian; Herrera, Frankyn; Kohl-Bareis, Matthias; Zange, Jochen; Bloch, Wilhelm; Rittweger, Jörn

    2015-11-01

    Whole-body vibration (WBV) training is commonly practiced and may enhance peripheral blood flow. Here, we investigated muscle morphology and acute microcirculatory responses before and after a 6-week resistive exercise training intervention without (RE) or with (RVE) simultaneous whole-body vibrations (20 Hz, 6 mm peak-to-peak amplitude) in 26 healthy men in a randomized, controlled parallel-design study. Total haemoglobin (tHb) and tissue oxygenation index (TOI) were measured in gastrocnemius muscle (GM) with near-infrared spectroscopy (NIRS). Whole-body oxygen consumption (VO2 ) was measured via spirometry, and skeletal muscle morphology was determined in soleus (SOL) muscle biopsies. Our data reveal that exercise-induced muscle deoxygenation both before and after 6 weeks training was similar in RE and RVE (P = 0·76), although VO2 was 20% higher in the RVE group (P<0·001). The RVE group showed a 14%-point increase in reactive hyperaemia (P = 0·007) and a 27% increase in blood volume (P<0·01) in GM after 6 weeks of training. The number of capillaries around fibres was increased by 15% after 6 weeks training in both groups (P<0·001) with no specific effect of superimposed WBV (P = 0·61). Neither of the training regimens induced fibre hypertrophy in SOL. The present findings suggest an increased blood volume and vasodilator response in GM as an adaptation to long-term RVE, which was not observed after RE alone. We conclude that RVE training enhances vasodilation of small arterioles and possibly capillaries. This effect might be advantageous for muscle thermoregulation and the delivery of oxygen and nutrients to exercising muscle and removal of carbon dioxide and metabolites. PMID:25041226

  6. Effect of Whole-Body Vibration on Speech. Part 2; Effect on Intelligibility

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.

    2011-01-01

    The effect on speech intelligibility was measured for speech where talkers reading Diagnostic Rhyme Test material were exposed to 0.7 g whole body vibration to simulate space vehicle launch. Across all talkers, the effect of vibration was to degrade the percentage of correctly transcribed words from 83% to 74%. The magnitude of the effect of vibration on speech communication varies between individuals, for both talkers and listeners. A worst case scenario for intelligibility would be the most sensitive listener hearing the most sensitive talker; one participant s intelligibility was reduced by 26% (97% to 71%) for one of the talkers.

  7. Neuromuscular response of the trunk to inertial based sudden perturbations following whole body vibration exposure.

    PubMed

    MacIntyre, Danielle; Cort, Joel A

    2014-12-01

    The effects of whole body vibration exposure on the neuromuscular responses following inertial-based trunk perturbations were examined. Kinematic and surface EMG (sEMG) data were collected while subjects were securely seated on a robotic platform. Participants were either exposed to 10 min of vibration or not, which was followed by sudden inertial trunk perturbations with and without timing and direction knowledge. Amplitude of sEMG was analyzed for data collected during the vibration protocol, whereas the onset of sEMG activity and lumbar spine angle were analyzed for the perturbation protocol. Data from the vibration protocol did not show a difference in amplitude of sEMG for participants exposed to vibration and those not. The perturbation protocol data showed that those not exposed to vibration had a 14% faster muscle onset, despite data showing no difference in fatigue level. PMID:25241645

  8. The effects of whole-body vibration on the Wingate test for anaerobic power when applying individualized frequencies.

    PubMed

    Surowiec, Rachel K; Wang, Henry; Nagelkirk, Paul R; Frame, Jeffrey W; Dickin, D Clark

    2014-07-01

    Recently, individualized frequency (I-Freq) has been introduced with the notion that athletes may elicit a greater reflex response at differing levels (Hz) of vibration. The aim of the study was to evaluate acute whole-body vibration as a feasible intervention to increase power in trained cyclists and evaluate the efficacy of using I-Freq as an alternative to 30Hz, a common frequency seen in the literature. Twelve highly trained, competitive male cyclists (age, 29.9 ± 10.0 years; body height, 175.4 ± 7.8 cm; body mass, 77.3 ± 13.9 kg) participated in the study. A Wingate test for anaerobic power was administered on 3 occasions: following a control of no vibration, 30 Hz, or I-freq. Measures of peak power, average power (AP), and the rate of fatigue were recorded and compared with the vibration conditions using separate repeated measures analysis of variance. Peak power, AP, and the rate of fatigue were not significantly impacted by either the 30 Hz or I-Freq vibration interventions (p > 0.05). Given the trained status of the individuals in this study, the ability to elicit an acute response may have been muted. Future studies should further refine the vibration parameters used and assess changes in untrained or recreationally trained populations. PMID:24378660

  9. Predicting discomfort from whole-body vertical vibration when sitting with an inclined backrest.

    PubMed

    Basri, Bazil; Griffin, Michael J

    2013-05-01

    Current methods for evaluating seat vibration to predict vibration discomfort assume the same frequency weightings and axis multiplying factors can be used at the seat surface and the backrest irrespective of the backrest inclination. This experimental study investigated the discomfort arising from whole-body vertical vibration when sitting on a rigid seat with no backrest and with a backrest inclined at 0° (upright), 30°, 60°, and 90° (recumbent). Within each of these five postures, 12 subjects judged the discomfort caused by vertical sinusoidal whole-body vibration (at frequencies from 1 to 20 Hz at magnitudes from 0.2 to 2.0 m s(-2) r.m.s.) relative to the discomfort produced by a reference vibration (8 Hz at 0.4 m s(-2) r.m.s.). With 8-Hz vertical vibration, the subjects also judged vibration discomfort with each backrest condition relative to the vibration discomfort with no backrest. The locations in the body where discomfort was experienced were determined for each frequency at two vibration magnitudes. Equivalent comfort contours were determined for the five conditions of the backrest and show how discomfort depends on the frequency of vibration, the presence of the backrest, and the backrest inclination. At frequencies greater than about 8 Hz, the backrest increased vibration discomfort, especially when inclined to 30°, 60°, or 90°, and there was greater discomfort at the head or neck. At frequencies around 5 and 6.3 Hz there was less vibration discomfort when sitting with an inclined backrest. PMID:23190680

  10. Fluid dynamic aspects of cardiovascular behavior during low-frequency whole-body vibration

    NASA Technical Reports Server (NTRS)

    Nerem, R. M.

    1973-01-01

    The behavior of the cardiovascular system during low frequency whole-body vibration, such as encountered by astronauts during launch and reentry, is examined from a fluid mechanical viewpoint. The vibration characteristics of typical manned spacecraft and other vibration environments are discussed, and existing results from in vivo studies of the hemodynamic aspects of this problem are reviewed. Recent theoretical solutions to related fluid mechanical problems are then used in the interpretation of these results and in discussing areas of future work. The results are included of studies of the effects of vibration on the work done by the heart and on pulsatile flow in blood vessels. It is shown that important changes in pulse velocity, the instantaneous velocity profile, mass flow rate, and wall shear stress may occur in a pulsatile flow due to the presence of vibration. The significance of this in terms of changes in peripheral vascular resistance and possible damage to the endothelium of blood vessels is discussed.

  11. Whole-body vibration applied during upper body exercise improves performance.

    PubMed

    Marín, Pedro J; Herrero, Azael J; Milton, John G; Hazell, Tom J; García-López, David

    2013-07-01

    Whole-body vibration (WBV) training has exercisers perform static and dynamic resistance training exercises on a ground-based platform. Exposure to WBV exposure has demonstrated benefits and no effect on lower body strength, power, and performance. The aim of this study was to determine if WBV exposure (50 Hz, 2.51 mm) has any potentiating effects postexercise by measuring the kinematic variables of a set of upper body elbow-extensor exercise (70% one-repetition maximum [1RM]) to volitional exhaustion. Sixteen recreationally active students (12 male and 4 female) performed 3 different experimental conditions on separate days. Each condition had the subjects perform 1 set of elbow-extension exercise to fatigue with 1 of 3 WBV treatments: WBV simultaneously during the set (AE); 60 seconds after application of WBV for 30 seconds (RE); and no WBV (CTRL). Kinematic parameters of each repetition were monitored by linking a rotary encoder to the highest load plate. The mean velocity and acceleration throughout the set and perceived exertion were analyzed. A significant increase (p < 0.05) was observed in the mean velocity for the whole set in the AE condition vs. the CTRL condition. The mean acceleration was significantly higher (p < 0.05) in the AE condition in comparison with RE (increased by 45.3%) and CTRL (increased by 50.4%) conditions. The positive effect induced by WBV on upper-limb performance is only achieved when the stimulus is applied during the exercise. However, WBV applied 60 seconds before upper body exercise results in no benefit. PMID:23085972

  12. Display strobing: An effective countermeasure against visual blur from whole-body vibration

    NASA Astrophysics Data System (ADS)

    Adelstein, Bernard D.; Kaiser, Mary K.; Beutter, Brent R.; McCann, Robert S.; Anderson, Mark R.

    2013-11-01

    Crews and equipment in aerospace vehicles, including spacecraft at launch, can be exposed to significant vibration. Prior to this study, we examined the ability of vibrating observers to read alphanumeric symbology on stationary (i.e., non-vibrating) flight-relevant display formats and noted performance degradation with increasing vibration amplitude and decreasing font size. Here we test the efficacy of a display strobing countermeasure for the reading decrements caused by the same 12-Hz whole-body vibration in the surge (chest-to-spine) direction applied in our prior studies. To produce the strobe countermeasure, we triggered the backlight of a stationary liquid crystal diode (LCD) display panel to flash in synchrony with the 12-Hz vibration of the observer's seat while experimentally varying both the strobe duty cycle and phase angle between the strobe onset and the vibration cycle zero-crossings. Strobing proved an effective countermeasure, restoring reading error rates during 0.7g (6.9 m/s2 half-amplitude) whole-body vibration to levels indistinguishable from those achieved under the non-strobed (equivalent luminance) non-vibrating baseline condition and improving response times although not fully to the baseline. While we noted differences in the "preferred" phase angle of individual observers, on average, no overall effect of phase angle was detected. Likewise, no effect was seen for the two duty cycles and their respective equivalent luminance levels. Further studies are needed to determine the efficacy of strobing for multi-axis and multi-frequency vibration, and for displays with moving images.

  13. Acute Effects of Whole-Body Vibration on Trunk and Neck Muscle Activity in Consideration of Different Vibration Loads

    PubMed Central

    Perchthaler, Dennis; Hauser, Simon; Heitkamp, Hans-Christian; Hein, Tobias; Grau, Stefan

    2015-01-01

    The intention of this study was to systematically analyze the impact of biomechanical parameters in terms of different peak-to-peak displacements and knee angles on trunk and neck muscle activity during whole-body vibration (WBV). 28 healthy men and women (age 23 ± 3 years) performed four static squat positions (2 peak-to-peak displacements x 2 knee angles) on a side alternating vibration platform with and without vibration stimulus. Surface electromyography (EMG) was used to record the neuromuscular activity of the erector spinae muscle, the rectus abdominis muscle, and of the splenius muscle. EMG levels normalized to maximal voluntary contractions ranged between 3.2 – 27.2 % MVC during WBV. The increase in muscle activity caused by WBV was significant, particularly for the back muscles, which was up to 19.0 % MVC. The impact of the factor ‘condition’ (F-values ranged from 13.4 to 132.0, p ? 0.001) and of the factor ‘peak-to-peak displacement’ (F-values ranged from 6.4 to 69.0 and p-values from < 0.001 to 0.01) were statistically significant for each muscle tested. However, the factor ‘knee angle’ only affected the back muscles (F-value 10.3 and 7.3, p ? 0.01). The results of this study should give more information for developing effective and safe training protocols for WBV treatment of the upper body. Key points The maximum levels of muscle activity were significantly reached at high amplitudes at a vibration frequency of 30 Hz. WBV leads to a higher muscle activation of the lower back muscles than of the abdominal muscles. Both knee angles of 30° and 45° have similar effects on the vibration load and represent safe positions to prevent any actual harm. Certain combinations of the biomechanical variables have similar effects on the level of muscle activity. PMID:25729303

  14. Measurement of whole-body vibration exposure from speed control humps

    NASA Astrophysics Data System (ADS)

    Khorshid, E.; Alkalby, F.; Kamal, H.

    2007-07-01

    The main objective of speed control humps is to introduce shocks and high vibration levels when a car passes over them if its speed is higher than the allowable limit. Hump geometry is a major factor in altering the level of these shocks and specifying the speed limit. However, there is no study of the relationship between whole body vibration due to passing over a speed control hump and lower back pain or occupational diseases. In this study, an experimental investigation is conducted to evaluate health risks associated with different geometry speed control humps. Vibration levels and shocks are measured by a seat pad accelerometer placed under the driver's seat to evaluate hazard risks on the human body's lower back. The assessment is based on two standard methods of measuring whole body vibration: the British standard BS 6841 and the new ISO/DIS standard 2631-5. These methods are used to assess the effects of vehicle type, passenger location in the vehicle, vehicle speed, and speed control hump geometry. It was found that circular speed control humps currently installed on many public roads should be modified in order to eliminate hazards. Two newly designed speed humps were proved to be less hazardous than circular speed control humps.

  15. Modeling of Spinal Column of Seated Human Body under Exposure to Whole-Body Vibration

    NASA Astrophysics Data System (ADS)

    Tamaoki, Gen; Yoshimura, Takuya; Kuriyama, Kaoru; Nakai, Kazuma

    In vehicle systems occupational drivers might expose themselves to vibration for a long time. This may cause illness of the spinal column such as low back pain. Therefore, it is necessary to evaluate the influence of vibration to the spinal column. Thus the modeling of seated human body is conducted in order to evaluate the effect of whole-body vibration to the spinal column. This model has the spinal column and the support structures such as the muscles of the back and the abdomen. The spinal column is made by the vertebrae and the intervertebral disks that are considered the rigid body and the rotational spring and damper respectively. The parameter of this model is decided by the literature and the body type of the subject with respect to the mass and the model structure. And stiffness and damping parameters are searched by fitting the model simulation results to the experimental measured data with respect to the vibration transmissibilities from the seat surface to the spinal column and the head and with respect to the driving-point apparent mass. In addition, the natural modes of the model compare with the result of experimental modal analysis. The influence of the abdomen and the muscles of the back are investigated by comparing three models with respect to above vibration characteristics. Three model are the proposed model, the model that has the spinal column and the model that has the muscles of the back in addition to the spinal column.

  16. The Influence of Whole-Body Vibration on Creatine Kinase Activity and Jumping Performance in Young Basketball Players

    ERIC Educational Resources Information Center

    Fachina, Rafael; da Silva, Antônio; Falcão, William; Montagner, Paulo; Borin, João; Minozzo, Fábio; Falcão, Diego; Vancini, Rodrigo; Poston, Brach; de Lira, Claudio

    2013-01-01

    Purpose: To quantify creatine kinase (CK) activity changes across time following an acute bout of whole-body vibration (WBV) and determine the association between changes in CK activity and jumping performance. Method: Twenty-six elite young basketball players were assigned to 3 groups: 36-Hz and 46-Hz vibration groups (G36 and G46, respectively)…

  17. Acute Effects of Whole Body Vibration on Inhibition in Healthy Children

    PubMed Central

    den Heijer, Anne E.; Groen, Yvonne; Fuermaier, Anselm B. M.; van Heuvelen, Marieke J. G.; van der Zee, Eddy A.; Tucha, Lara; Tucha, Oliver

    2015-01-01

    Objectives Whole Body Vibration (WBV) is a passive exercise method known to have beneficial effects on various physical measures. Studies on adults furthermore demonstrated beneficial effects of WBV treatment on cognition (e.g. inhibition). The present study replicated these findings in healthy children and examined acute effects of WBV treatment on inhibition. Methods Fifty-five healthy children (aged 8–13) participated in this within-subject design study. WBV treatment was applied by having the children sit on a chair mounted to a vibrating platform. After each condition (vibration vs. non-vibration), inhibition was measured by using the Stroop Color-Word Interference Test. Repeated measures analyses were applied in order to explore the effects of WBV treatment on inhibition, and correlations were computed between the treatment effect and participant characteristics in order to explore individual differences in treatment sensitivity. Results Three-minute WBV treatments had significant beneficial effects on inhibition in this sample of healthy children. Especially the repeated application (three times) of WBV treatment appeared beneficial for cognition. Stronger WBV treatment effects were correlated with higher intelligence and younger age, but not with symptoms of Attention Deficit Hyperactivity Disorder (ADHD). Conclusions This study demonstrates that especially repeated WBV treatment improves inhibition in healthy children. As this cognitive function is often impaired in children with developmental disorders (e.g. ADHD), future studies should further explore the effects, working mechanism and potential applicability of WBV treatment for this target group. PMID:26524188

  18. Comparison of sEMG processing methods during whole-body vibration exercise.

    PubMed

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P<0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMGRMS during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMGRMS was corrected for the bias (ICC?0.931, %LOA?32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMGRMS for the bias as this procedure improved its performance. PMID:26565598

  19. Adaptations in physiological properties of rat motor units following 5 weeks of whole-body vibration.

    PubMed

    Lochy?ski, Dawid; B?czyk, Marcin; Kaczmarek, Dominik; R?dowicz, Maria Jolanta; Celichowski, Jan; Krutki, Piotr

    2013-09-01

    The purpose of the study was to determine the effects of 5-week whole-body vibration (WBV) on contractile parameters and force-frequency relationship of functionally isolated motor units of the rat medial gastrocnemius muscle: fast fatigable (FF), fast fatigue-resistant (FR), and slow (S). Moreover, myosin heavy chain isoform content was quantified. Following WBV, the maximum tetanic force of FF units was increased by ?25%. The twitch half-relaxation time in all types of motor units and the twitch contraction time in FR units were shortened. The twitch-to-tetanus force ratio was decreased and the force-frequency curves were shifted rightwards in S and FR units. Myosin heavy chain distribution was not changed. These findings suggest modifications of the excitation-contraction coupling towards shortening of a twitch contraction. The observed increase in force of FF units may contribute to gains in muscle dynamic strength reported following WBV treatment. PMID:23905655

  20. Whole-body vibration and ergonomic study of US railroad locomotives

    NASA Astrophysics Data System (ADS)

    Johanning, Eckardt; Landsbergis, Paul; Fischer, Siegfried; Christ, Eberhard; Göres, Benno; Luhrman, Raymond

    2006-12-01

    US locomotive operators have exposure to multi-axis whole-body vibration (WBV) and shocks while seated. This study assessed operator-related and ergonomic seating design factors that may have confounding or mitigating influence on WBV exposure and its effects. Vibration exposure was measured according to international guidelines (ISO 2631-1; 1997); ergonomic work place factors and vibration effects were studied with a cross-sectional survey instrument distributed to a randomly selected group of railroad engineers ( n=2546) and a control group; and during vehicle inspections. The survey response rate was 47% for the RR engineers ( n=1195) and 41% for the controls ( n=323). Results of the mean basic vibration measurements were for the x, y, z-direction and vector sum 0.14, 0.22, 0.28 and 0.49 m/s 2 respectively; almost all crest factors (CF), MTVV and VDV values were above the critical ratios given in ISO 2631-1. The prevalence of serious neck and lower back disorders among locomotive engineers was found to be nearly double that of the sedentary control group without such exposure. Railroad engineers rated their seats mostly unacceptable regarding different adjustment and comfort aspects (3.02-3.51; scale 1=excellent to 4=unacceptable), while the control group rated their chairs more favorably (1.96-3.44). Existing cab and seat design in locomotives can result in prolonged forced awkward spinal posture of the operator combined with WBV exposure. In a logistic regression analysis, time at work being bothered by vibration (h/day) was significantly associated with an increased risk of low back pain, shoulder and neck pain, and sciatic pain among railroad engineers. Customized vibration attenuation seats and improved cab design of the locomotive controls should be further investigated.

  1. Non-linear dual-axis biodynamic response to vertical whole-body vibration

    NASA Astrophysics Data System (ADS)

    Nawayseh, N.; Griffin, M. J.

    2003-11-01

    Seated human subjects have been exposed to vertical whole-body vibration so as to investigate the non-linearity in their biodynamic responses and quantify the response in directions other than the direction of excitation. Twelve males were exposed to random vertical vibration in the frequency range 0.25-25 Hz at four vibration magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 r.m.s.). The subjects sat in four sitting postures having varying foot heights so as to produce differing thigh contact with the seat (feet hanging, feet supported with maximum thigh contact, feet supported with average thigh contact, and feet supported with minimum thigh contact). Forces were measured in the vertical, fore-and-aft, and lateral directions on the seat and in the vertical direction at the footrest. The characteristic non-linear response of the human body with reducing resonance frequency at increasing vibration magnitudes was seen in all postures, but to a lesser extent with minimum thigh contact. Appreciable forces in the fore-and-aft direction also showed non-linearity, while forces in the lateral direction were low and showed no consistent trend. Forces at the feet were non-linear with a multi-resonant behaviour and were affected by the position of the legs. The decreased non-linearity with the minimum thigh contact posture suggests the tissues of the buttocks affect the non-linearity of the body more than the tissues of the thighs. The forces in the fore-and-aft direction are consistent with the body moving in two directions when exposed to vertical vibration. The non-linear behaviour of the body, and the considerable forces in the fore-aft direction should be taken into account when optimizing vibration isolation devices.

  2. Selected health risks caused by long-term, whole-body vibration.

    PubMed

    Seidel, H

    1993-04-01

    The problem of a "vibration disease" caused by low-frequency whole-body vibration (wbv) is critically discussed. Disorders of the nervous, circulatory, and digestive systems are interpreted not to be predominantly wbv-specific, but to be related to the totality of working conditions. Long-term wbv exposure can probably contribute to the pathogenesis of disorders of female reproductive organs (menstrual disturbances, anomalies of position) and disturbances of pregnancy (abortions, stillbirths). Animal experiments suggest harmful effects on the fetus. WBV has a minor synergistic effect on the development of noise-induced hearing loss. Degenerative changes of the spine are more prevalent among wbv-exposed workers. Model calculations demonstrate an increased spinal load in pregnant women exposed to wbv or self-induced vibration, and illustrate a possibility for the comparison of data on stress, strain, and strength. The analysis of individual exposure-effect relationships is suggested as a future approach for evaluating potential occupation-related diseases. PMID:8480768

  3. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging.

    PubMed

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I; Nikolov, Hristo N; Holdsworth, David W

    2015-08-21

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 ?m diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1?mm, with precision as small as??±10 ?m, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice. PMID:26248045

  4. Quantification of mouse in vivo whole-body vibration amplitude from motion-blur using x-ray imaging

    NASA Astrophysics Data System (ADS)

    Hu, Zhengyi; Welch, Ian; Yuan, Xunhua; Pollmann, Steven I.; Nikolov, Hristo N.; Holdsworth, David W.

    2015-08-01

    Musculoskeletal effects of whole-body vibration on animals and humans have become an intensely studied topic recently, due to the potential of applying this method as a non-pharmacological therapy for strengthening bones. It is relatively easy to quantify the transmission of whole-body mechanical vibration through the human skeletal system using accelerometers. However, this is not the case for small-animal pre-clinical studies because currently available accelerometers have a large mass, relative to the mass of the animals, which causes the accelerometers themselves to affect the way vibration is transmitted. Additionally, live animals do not typically remain motionless for long periods, unless they are anesthetized, and they are required to maintain a static standing posture during these studies. These challenges provide the motivation for the development of a method to quantify vibrational transmission in small animals. We present a novel imaging technique to quantify whole-body vibration transmission in small animals using 280 ?m diameter tungsten carbide beads implanted into the hind limbs of mice. Employing time-exposure digital x-ray imaging, vibrational amplitude is quantified based on the blurring of the implanted beads caused by the vibrational motion. Our in vivo results have shown this technique is capable of measuring vibration amplitudes as small as 0.1?mm, with precision as small as??±10 ?m, allowing us to distinguish differences in the transmitted vibration at different locations on the hindlimbs of mice.

  5. Uncertainty in the evaluation of occupational exposure to whole-body vibration

    NASA Astrophysics Data System (ADS)

    Pinto, Iole; Stacchini, Nicola

    2006-12-01

    Uncertainties associated with field assessments of daily exposure to whole-body vibration (WBV) have been investigated in four categories of work vehicles (fork lift trucks, wheel loaders, garbage trucks, buses) in different working conditions. A total of 50 vehicles were included in the study. WBV exposures were measured in different field conditions in marble quarries, marble laboratories, dockyards, paper mills, transportation and public utilities: over 700 individual vibration measurements were analysed to quantify relevant uncertainty components due to changes in the operators' working methods, variations in the characteristics and conditions of the machines, changes in the characteristics of the travelling surface, uncertainty in the evaluation of exposure duration, and systematic errors due to measurement equipment. The methods used in the study to calculate measurement uncertainties are in accordance with the ISO publication "Guide to the Expression of Uncertainty in Measurement". The study made it possible to isolate major sources of uncertainty in field assessment of daily exposures to WBV. The investigation revealed that, in all the field conditions, differences in the characteristics of the machines and/or in working cycles were the most relevant uncertainty components. The overall relative uncertainty p in WBV field assessment was in the range 14% < p<32%, whereas the relative uncertainty caused by transducer and measurement equipment in a correctly calibrated system is less than 4%.

  6. Whole Body Vibration Exercises and the Improvement of the Flexibility in Patient with Metabolic Syndrome

    PubMed Central

    Sá-Caputo, Danúbia da Cunha; Ronikeili-Costa, Pedro; Carvalho-Lima, Rafaelle Pacheco; Bernardo, Luciana Camargo; Bravo-Monteiro, Milena Oliveira; Costa, Rebeca; de Moraes-Silva, Janaina; Paiva, Dulciane Nunes; Machado, Christiano Bittencourt; Mantilla-Giehl, Paula; Arnobio, Adriano; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2014-01-01

    Vibrations produced in oscillating/vibratory platform generate whole body vibration (WBV) exercises, which are important in sports, as well as in treating diseases, promoting rehabilitation, and improving the quality of life. WBV exercises relevantly increase the muscle strength, muscle power, and the bone mineral density, as well as improving the postural control, the balance, and the gait. An important number of publications are found in the PubMed database with the keyword “flexibility” and eight of the analyzed papers involving WBV and flexibility reached a level of evidence II. The biggest distance between the third finger of the hand to the floor (DBTFF) of a patient with metabolic syndrome (MS) was found before the first session and was considered to be 100%. The percentages to the other measurements in the different sessions were determined to be related to the 100%. It is possible to see an immediate improvement after each session with a decrease of the %DBTFF. As the presence of MS is associated with poorer physical performance, a simple and safe protocol using WBV exercises promoted an improvement of the flexibility in a patient with MS. PMID:25276434

  7. Effect of whole body vibration on the postural control of the spine in sitting.

    PubMed

    Arora, Neha; Graham, Ryan B; Grenier, Sylvain G

    2015-04-01

    Stability is defined by the ability to return to the initial (or unperturbed) state following a perturbation and hence can be assessed by quantifying the post-perturbation response. This response may be divided into two phases: an initial passive response phase, dependent upon both the steady state of the system and the system's intrinsic mechanical properties; and a recovery phase, dependent upon active control and reflexes. These two phases overlap and interact with each other. Whole body vibration (WBV) is assumed to influence neuro-sensory functions and perhaps both response stages. The current study observed the effect of WBV on several novel response factors that quantify the two phases in response to an external perturbation. The results indicate a significant effect of vibration exposure on: (1) the normalized maximum distance traveled by center of pressure (COP) from the neutral seated posture, and (2) the normalized time to maximum distance (?), such that B and ? increased after WBV exposure and decreased after sitting without WBV. These changes may be indicative of passive visco-elastic changes caused by WBV exposure on the spinal tissues which has been indicated as a creep deformation of tissues post-exposure. This change may make the spine vulnerable to injury. Similar trends were noticed in the variables calculated from center of mass data. PMID:25544340

  8. Whole-body vibration-induced muscular reflex: Is it a stretch-induced reflex?

    PubMed Central

    Cakar, Halil Ibrahim; Cidem, Muharrem; Sebik, Oguz; Yilmaz, Gizem; Karamehmetoglu, Safak Sahir; Kara, Sadik; Karacan, Ilhan; Türker, Kemal S?tk?

    2015-01-01

    [Purpose] Whole-body vibration (WBV) can induce reflex responses in muscles. A number of studies have reported that the physiological mechanisms underlying this type of reflex activity can be explained by reference to a stretch-induced reflex. Thus, the primary objective of this study was to test whether the WBV-induced muscular reflex (WBV-IMR) can be explained as a stretch-induced reflex. [Subjects and Methods] The present study assessed 20 healthy males using surface electrodes placed on their right soleus muscle. The latency of the tendon reflex (T-reflex) as a stretch-induced reflex was compared with the reflex latency of the WBV-IMR. In addition, simulations were performed at 25, 30, 35, 40, 45, and 50?Hz to determine the stretch frequency of the muscle during WBV. [Results] WBV-IMR latency (40.5 ± 0.8?ms; 95% confidence interval [CI]: 39.0–41.9?ms) was significantly longer than T-reflex latency (34.6 ± 0.5?ms; 95% CI: 33.6–35.5?ms) and the mean difference was 6.2?ms (95% CI of the difference: 4.7–7.7?ms). The simulations performed in the present study demonstrated that the frequency of the stretch signal would be twice the frequency of the vibration. [Conclusion] These findings do not support the notion that WBV-IMR can be explained by reference to a stretch-induced reflex. PMID:26310784

  9. Influence of Combined Whole-Body Vibration Plus G-Loading on Visual Performance

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Beutter, Brent Robert; Kaiser, Mary K.; McCann, Robert S.; Stone, Leland S.; Anderson, Mark R.; Renema, Fritz; Paloski, William H.

    2009-01-01

    Recent engineering analyses of the integrated Ares-Orion stack show that vibration levels for Orion crews have the potential to be much higher than those experienced in Gemini, Apollo, and Shuttle vehicles. Of particular concern to the Constellation Program (CxP) is the 12 Hz thrust oscillation (TO) that the Ares-I rocket develops during the final 20 seconds preceding first-stage separation, at maximum G-loading. While the structural-dynamic mitigations being considered can assure that vibration due to TO is reduced to below the CxP crew health limit, it remains to be determined how far below this limit vibration must be reduced to enable effective crew performance during launch. Moreover, this "performance" vibration limit will inform the operations concepts (and crew-system interface designs) for this critical phase of flight. While Gemini and Apollo studies provide preliminary guidance, the data supporting the historical limits were obtained using less advanced interface technologies and very different operations concepts. In this study, supported by the Exploration Systems Mission Directorate (ESMD) Human Research Program, we investigated display readability-a fundamental prerequisite for any interaction with electronic crew-vehicle interfaces-while observers were subjected to 12 Hz vibration superimposed on the 3.8 G loading expected for the TO period of ascent. Two age-matched groups of participants (16 general population and 13 Crew Office) performed a numerical display reading task while undergoing sustained 3.8 G loading and whole-body vibration at 0, 0.15, 0.3, 0.5, and 0.7 g in the eyeballs in/out (x-axis) direction. The time-constrained reading task used an Orion-like display with 10- and 14-pt non-proportional sans-serif fonts, and was designed to emulate the visual acquisition and processing essential for crew system monitoring. Compared to the no-vibration baseline, we found no significant effect of vibration at 0.15 and 0.3 g on task error rates (ER) or response times (RT). Significant degradations in both ER and RT, however, were observed at 0.5 and 0.7 g for 10-pt, and at 0.7 g for 14-pt font displays. These objective performance measures were mirrored by participants' subjective ratings. Interestingly, we found that the impact of vibration on ER increased with distance from the center of the display, but only for vertical displacements. Furthermore, no significant ER or RT aftereffects were detected immediately following vibration, regardless of amplitude. Lastly, given that our reading task required no specialized spaceflight expertise, our finding that effects were not statistically distinct between our two groups is not surprising. The results from this empirical study provide initial guidance for evaluating the display readability trade-space between text-font size and vibration amplitude. However, the outcome of this work should be considered preliminary in nature for a number of reasons: 1. The single 12 Hz x-axis vibration employed was based on earlier load-cycle models of the induced TO environment at the end of Ares-I first stage flight. Recent analyses of TO mitigation designs suggest that significant concurrent off-axis vibration may also occur. 2. The shirtsleeve environment in which we tested fails to capture the full kinematic and dynamic complexity of the physical interface between crewmember and the still-to-bematured helmet-suit-seat designs, and the impact these will have for vibration transmission and consequent performance. 3. By examining performance in this reading and number processing task, we are only assessing readability, a first and necessary step that in itself does not directly address the performance of more sophisticated operational tasks such as vehicle-health monitoring or manual control of the vehicle.

  10. Acute and Chronic Whole-Body Vibration Exercise does not Induce Health-Promoting Effects on The Blood Profile

    PubMed Central

    Theodorou, Anastasios A.; Gerodimos, Vassilis; Karatrantou, Konstantina; Paschalis, Vassilis; Chanou, Konstantina; Jamurtas, Athanasios Z.; Nikolaidis, Michalis G.

    2015-01-01

    Whole-body vibration (WBV) exercise is an alternative, popular and easy exercise that can be followed by general public. Therefore, the aim of the present study was to investigate the influence of acute and chronic WBV exercise on health-related parameters. Twenty-eight women were allocated into a control group (n=11, mean ±SEM: age, 43.5 ±1.5 yr; body mass, 66.1 ±3.1 kg; height, 160.6 ±1.5 cm) and a vibration group (n=17, mean ±SEM: age, 44.0 ±1.0 yr; body mass, 67.1 ±2.2 kg; height, 162.5 ±1.5 cm). After baseline assessments, participants of the experimental group performed WBV training 3 times/week for 8 weeks. Before and after the chronic WBV exercise, the participants of the vibration group performed one session of acute WBV exercise. Blood chemistry measurements (hematology, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, glucose, insulin, triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B and lipoprotein, thiobarbituric-acid reactive substances, protein carbonyls, total antioxidant capacity, uric acid, albumin and bilirubin) were assessed pre-exercise and post-exercise at the first and eighth week of WBV exercise in both control and vibration groups. The results failed to support any effect of both acute and chronic WBV exercise on biochemical health-related parameters. However, it seems that WBV exercise is a safe way of training without a negative impact on muscle and liver functionality. PMID:26240654

  11. Acute and Chronic Whole-Body Vibration Exercise does not Induce Health-Promoting Effects on The Blood Profile.

    PubMed

    Theodorou, Anastasios A; Gerodimos, Vassilis; Karatrantou, Konstantina; Paschalis, Vassilis; Chanou, Konstantina; Jamurtas, Athanasios Z; Nikolaidis, Michalis G

    2015-06-27

    Whole-body vibration (WBV) exercise is an alternative, popular and easy exercise that can be followed by general public. Therefore, the aim of the present study was to investigate the influence of acute and chronic WBV exercise on health-related parameters. Twenty-eight women were allocated into a control group (n=11, mean ±SEM: age, 43.5 ±1.5 yr; body mass, 66.1 ±3.1 kg; height, 160.6 ±1.5 cm) and a vibration group (n=17, mean ±SEM: age, 44.0 ±1.0 yr; body mass, 67.1 ±2.2 kg; height, 162.5 ±1.5 cm). After baseline assessments, participants of the experimental group performed WBV training 3 times/week for 8 weeks. Before and after the chronic WBV exercise, the participants of the vibration group performed one session of acute WBV exercise. Blood chemistry measurements (hematology, creatine kinase, lactate dehydrogenase, aspartate aminotransferase, alanine aminotransferase, C-reactive protein, glucose, insulin, triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, apolipoprotein A1, apolipoprotein B and lipoprotein, thiobarbituric-acid reactive substances, protein carbonyls, total antioxidant capacity, uric acid, albumin and bilirubin) were assessed pre-exercise and post-exercise at the first and eighth week of WBV exercise in both control and vibration groups. The results failed to support any effect of both acute and chronic WBV exercise on biochemical health-related parameters. However, it seems that WBV exercise is a safe way of training without a negative impact on muscle and liver functionality. PMID:26240654

  12. The effects of whole body vibration on static balance, spinal curvature, pain, and disability of patients with low back pain

    PubMed Central

    Yang, Jinmo; Seo, Dongkwon

    2015-01-01

    [Purpose] The purpose of this study was to investigate the impact of whole body vibration (WBV) on static balance, spinal curvature, pain, and the disability of patients with chronic lower back pain. [Subjects and Methods] The subjects were of 40 patients, who were randomly assigned to WBV and control groups. Twenty-five minutes of lumbar stability training and 5 minutes of WBV were conducted for the WBV group, and 30 minutes of lumbar stability training was conducted for the control group. The training was conducted three times per week for a total of 6 weeks. Static balance, spinal curvature, pain, and disability were measured before and after the intervention. [Results] After the intervention, the WBV group showed a significant differences in static balance, spinal curvature, pain, and disability. The control group presented significant differences in pain, and disability. In the comparison of the two groups, the WBV group showed more significant improvements in the fall index and pain. [Conclusion] WBV can be recommended for the improvement of the balance ability and pain of chronic lower back pain patients. PMID:25931735

  13. A whole body vibration perception map and associated acceleration loads at the lower leg, hip and head.

    PubMed

    Sonza, Anelise; Völkel, Nina; Zaro, Milton A; Achaval, Matilde; Hennig, Ewald M

    2015-07-01

    Whole-body vibration (WBV) training has become popular in recent years. However, WBV may be harmful to the human body. The goal of this study was to determine the acceleration magnitudes at different body segments for different frequencies of WBV. Additionally, vibration sensation ratings by subjects served to create perception vibration magnitude and discomfort maps of the human body. In the first of two experiments, 65 young adults mean (± SD) age range of 23 (± 3.0) years, participated in WBV severity perception ratings, based on a Borg scale. Measurements were performed at 12 different frequencies, two intensities (3 and 5 mm amplitudes) of rotational mode WBV. On a separate day, a second experiment (n = 40) included vertical accelerometry of the head, hip and lower leg with the same WBV settings. The highest lower limb vibration magnitude perception based on the Borg scale was extremely intense for the frequencies between 21 and 25 Hz; somewhat hard for the trunk region (11-25 Hz) and fairly light for the head (13-25 Hz). The highest vertical accelerations were found at a frequency of 23 Hz at the tibia, 9 Hz at the hip and 13 Hz at the head. At 5 mm amplitude, 61.5% of the subjects reported discomfort in the foot region (21-25 Hz), 46.2% for the lower back (17, 19 and 21 Hz) and 23% for the abdominal region (9-13 Hz). The range of 3-7 Hz represents the safest frequency range with magnitudes less than 1 g(*)sec for all studied regions. PMID:25962379

  14. Effect of whole body vibration frequency on neuromuscular activity in ACL-deficient and healthy males

    PubMed Central

    Giombini, A; Menotti, F; Piccinini, A; Fagnani, F; Di Cagno, A; Macaluso, A; Pigozzi, F

    2015-01-01

    Whole-body vibration (WBV) has been shown to enhance muscle activity via reflex pathways, thus having the potential to contrast muscle weakness in individuals with rupture of the anterior cruciate ligament (ACL). The present study aimed to compare the magnitude of neuromuscular activation during WBV over a frequency spectrum from 20 to 45 Hz between ACL-deficient and healthy individuals. Fifteen males aged 28±4 with ACL rupture and 15 age-matched healthy males were recruited. Root mean square (RMS) of the surface electromyogram from the vastus lateralis in both limbs was computed during WBV in a static half-squat position at 20, 25, 30, 35, 40 and 45 Hz, and normalized to the RMS while maintaining the half-squat position without vibration. The RMS of the vastus lateralis in the ACL-deficient limb was significantly greater than in the contralateral limb at 25, 30, 35 and 40 Hz (P<0.05) and in both limbs of the healthy participants (dominant limb at 25, 30, 35, 40 and 45 Hz, P<0.05; non dominant limb at 20, 25, 30, 35, 40 and 45 Hz, P<0.05). The greater neuromuscular activity in the injured limb compared to the uninjured limb of the ACL-deficient patients and to both limbs of the healthy participants during WBV might be due to either augmented excitatory or reduced inhibitory neural inflow to motoneurons of the vastus lateralis through the reflex pathways activated by vibratory stimuli. The study provides optimal WBV frequencies which might be used as reference values for ACL-deficient patients. PMID:26424928

  15. Validity of self reported occupational exposures to hand transmitted and whole body vibration

    PubMed Central

    Palmer, K.; Haward, B.; Griffin, M.; Bendall, H.; Coggon, D.

    2000-01-01

    OBJECTIVES—To assess the accuracy with which workers report their exposure to occupational sources of hand transmitted (HTV) and whole body vibration (WBV).?METHODS—179 Workers from various jobs involving exposure to HTV or WBV completed a self administered questionnaire about sources of occupational exposure to vibration in the past week. They were then observed at work over 1 hour, after which they completed a second questionnaire concerning their exposures during this observation period. The feasibility of reported sources of exposure during the past week was examined by questioning managers and by inspection of tools and machines in the workplace. The accuracy of reported sources and durations of exposure in the 1 hour period were assessed relative to what had been observed.?RESULTS—The feasibility of exposure in the previous week was confirmed for 97% of subjects who reported exposure to HTV, and for 93% of subjects who reported exposure to WBV. The individual sources of exposure reported were generally plausible, but occupational use of cars was substantially overreported, possibly because of confusion with their use in travel to and from work. The accuracy of exposures reported during the observation period was generally high, but some sources of HTV were confused—for example, nailing and stapling guns reported as riveting hammers, and hammer drills not distinguished from other sorts of drill. Workers overestimated their duration of exposure to HTV by a median factor of 2.5 (interquartile range (IQR) 1.6-5.9), but estimated durations of exposure were more accurate when the exposure was relatively continuous rather than for intermittent short periods. Reported durations of exposure to WBV were generally accurate (median ratio of reported to observed time 1.1, IQR 1.0-1.2).?CONCLUSIONS—Sources of recent occupational exposure to vibration seem to be reported with reasonable accuracy, but durations of exposure to HTV are systematically overestimated, particularly when the exposure is intermittent and for short periods. This raises the possibility that dose-response relations may have been biased in some of the studies on which exposure standards might be based, and that the levels in currently proposed standards may be too high. Future studies should pay attention to this source of error during data collection.???Keywords: vibration; exposure; assessment; validity PMID:10810109

  16. Impairment in Extinction of Contextual and Cued Fear Following Post-Training Whole-Body Irradiation

    PubMed Central

    Olsen, Reid H. J.; Marzulla, Tessa; Raber, Jacob

    2014-01-01

    Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24?h later. Animals were given 2?weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2?weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2?weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall. PMID:25071488

  17. Impairment in extinction of contextual and cued fear following post-training whole-body irradiation.

    PubMed

    Olsen, Reid H J; Marzulla, Tessa; Raber, Jacob

    2014-01-01

    Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24?h later. Animals were given 2?weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2?weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2?weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall. PMID:25071488

  18. The acute effect of whole body vibration on repeated shuttle-running in young soccer players.

    PubMed

    Padulo, J; Di Giminiani, R; Ibba, G; Zarrouk, N; Moalla, W; Attene, G; Migliaccio, G M; Pizzolato, F; Bishop, D; Chamari, K

    2014-01-01

    The aim of this study was to investigate the acute effects of whole-body vibration (WBV) on Repeated Sprint Ability (RSA). Seventeen male soccer players (16.71±0.47 y) performed three RSA tests (Randomized crossover study design). The second RSA test was done with WBV (RSA2) to assess the effect of WBV. The studied variables were: best time (BT), worst time (WT), total time (TT), the fatigue index (FI) of RSA, and post-test blood lactate (BLa). ANOVA with repeated measures showed no differences between RSA1 and RSA3, while there were significant differences in all variables studied. TT= [RSA2 0.93% and 1.68% lower than RSA1 and RSA3 respectively; p<0.05], BLa= [RSA2 16.97% and 14.73% greater than RSA1 and RSA3 respectively; p<0.001], WT= [RSA2 1.90% and 2.93% lower than RSA1 and RSA3 respectively; p<0.01], and FI?= [RSA2 30.64% and 40.15% lower than RSA1 and RSA3 respectively; p<0.0001]. When comparing individual sprints, WBV showed a significant effect at the 5th sprint: RSA2 2.29% and 2.95% lower than RSA1 and RSA3 respectively (p<0.005), while at the 6th sprint: RSA2 2.75% and 4.09% lower than RSA1 and RSA3 respectively; p<0.005. In conclusion, when applying WBV during the recovery periods of Repeated Sprint Ability efforts, most of the performance variables improved. PMID:23780902

  19. Wearable Ballistocardiography: Preliminary Methods for Mapping Surface Vibration Measurements to Whole Body Forces

    PubMed Central

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T.

    2015-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements—such as taken with a weighing scale system—to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  20. Wearable ballistocardiography: preliminary methods for mapping surface vibration measurements to whole body forces.

    PubMed

    Wiens, Andrew; Etemadi, Mozziyar; Klein, Liviu; Roy, Shuvo; Inan, Omer T

    2014-01-01

    The recent resurgence of ballistocardiogram (BCG) measurement and interpretation technologies has led to a wide range of powerful tools available for unobtrusively assessing mechanical aspects of cardiovascular health at home. Researchers have demonstrated a multitude of modern BCG measurement modalities, including beds, chairs, weighing scales, and wearable approaches. However, many modalities produce significant variations in the morphology of the measured BCG, creating confusion in the analysis and interpretation of the signals. This paper creates a framework for comparing wearable BCG measurements to whole body measurements--such as taken with a weighing scale system--to eventually allow the same analysis and interpretation tools that have been developed for whole body systems to be applied in the future to wearable systems. To the best of our knowledge, it represents the first attempt to morphologically compare vertical acceleration recordings measured on different locations on the torso to whole body displacements measured by BCG instrumentation. PMID:25571158

  1. The impact of self-reported exposure to whole-body-vibrations on the risk of disability pension among men: a 15 year prospective study

    PubMed Central

    2010-01-01

    Background Whole-body-vibrations are often associated with adverse health effect but the long term effects are less known. This study investigates the association between occupational exposures to whole-body vibrations, and subsequent transition to disability pension. Methods A total of 4215 male employees were followed up for subsequent disability pension retirement. Exposure to whole-body-vibration was self-reported while new cases of disability pension were retrieved from a national register. Results The hazard ratio (HR) for disability pension retirement among men exposed to whole-body-vibrations was 1.61 (95% confidence interval (CI) 1.07-2.40) after adjustment for age, smoking habits, BMI, physical job demands and awkward work postures. In our model, with the available explanatory variables, 5.6% of the male disability pension cases were attributable to whole-body-vibrations. Conclusions Exposure to whole-body-vibrations predicts subsequent disability pension retirement. Continued reduction of whole-body-vibrations may reduce the number of new cases of disability pension. PMID:20525268

  2. Individual and combined effects of noise-like whole-body vibration and parathyroid hormone treatment on bone defect repair in ovariectomized mice.

    PubMed

    Matsumoto, Takeshi; Sato, Daisuke; Hashimoto, Yoshihiro

    2016-01-01

    The effectiveness of intermittent administration of parathyroid hormone and exposure to whole-body vibration on osteoporotic fracture healing has been previously investigated, but data on their concurrent use are lacking. Thus, we evaluated the effects of intermittent administration of parathyroid hormone, whole-body vibration, and their combination on bone repair in osteoporotic mice. Noise-like whole-body vibration with a broad frequency range was used instead of conventional sine-wave whole-body vibration at a specific frequency. Mice were ovariectomized at 9?weeks of age and subjected to drill-hole surgery in the right tibial diaphysis at 11?weeks. The animals were divided into four groups (n?=?12 each): a control group, and groups treated with intermittent administration of parathyroid hormone, noise-like whole-body vibration, and both. From postoperative day 2, the groups treated with intermittent administration of parathyroid hormone and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were subcutaneously administered parathyroid hormone at a dose of 30?µg/kg/day. The groups treated with noise-like whole-body vibration and groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration were exposed to noise-like whole-body vibration at a root mean squared acceleration of 0.3g and frequency components of 45-100?Hz for 20?min/day. Following 18?days of interventions, the right tibiae were harvested, and the regenerated bone was analyzed by micro-computed tomography and nanoindentation testing. Compared with the control group, callus volume fraction was 40% higher in groups treated with intermittent administration of parathyroid hormone and 73% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and callus thickness was 35% wider in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration. Indentation modulus was 46% higher in groups treated with noise-like whole-body vibration and 43% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration, and hardness was 31% higher in groups treated with both intermittent administration of parathyroid hormone and noise-like whole-body vibration compared with the control group. There was no interaction between the two treatments for both structure and mechanical indexes. The main effects of intermittent administration of parathyroid hormone and noise-like whole-body vibration on bone repair included increased bone formation and enhanced mechanical function of regenerated bone, respectively. The combined treatment resulted in further regeneration of bone with high indentation modulus and hardness, suggesting the therapeutic potential of the combined use of noise-like whole-body vibration and intermittent administration of parathyroid hormone for enhancing osteoporotic bone healing. PMID:26586525

  3. Effects of Short-Period Whole-Body Vibration of 20 Hz on Selected Blood Biomarkers in Wistar Rats.

    PubMed

    Monteiro, Milena de Oliveira Bravo; de Sá-Caputo, Danúbia da Cunha; Carmo, Fernanda Santos do; Bernardo, Raquel Mattos; Pacheco, Raphaelle; Arnóbio, Adriano; Guimarães, Carlos Alberto Sampaio; Bernardo, Luciana Camargo; Santos-Filho, Sebastião David; Asad, Nasser Ribeiro; Unger, Marianne; Marin, Pedro Jesus; Bernardo-Filho, Mario

    2015-08-31

    There is a growing interest in the use of vibration generated by oscillating/vibratory platforms - also known as whole-body vibration (WBV) - for achieving therapeutic, preventative and/or physical performance goals. This study investigated the effects of vibration generated by an oscillating platform on the concentration of blood biomarkers in rats. Wistar rats (n = 8) were divided in 2 groups, sedated and individually positioned on an oscillating platform. The experimental group (EG) was subjected to vibrations of 20 Hz for one min per day for one week while the control group (CG) experienced no vibration. Samples of heparinized whole blood were drawn by cardiac puncture for biochemical analysis. Concentrations of total cholesterol, triglycerides, HDL, LDL, VLDL, glucose, CK, albumin, alkaline phosphates, TGP, TGO, ?GT, lipase, amylase, urea and creatinine were determined. White blood cell count and a platelet hemogram were also performed. Following seven sessions of exposure to the vibration, a significant (P < 0.05) reduction in ?GT, VLDL and leukocytes was found. A weekly 1-min/day exposure of 20 Hz vibration can was shown to alter the concentrations of selected blood biomarkers in rats. The action mechanism associated with these effects seems highly complex, but the findings might contribute to the understanding of these mechanisms related to the exposure to 20 Hz vibration. PMID:26211644

  4. Whole-body vibration improves functional capacity and quality of life in patients with severe chronic obstructive pulmonary disease (COPD): a pilot study

    PubMed Central

    Braz Júnior, Donato S; Dornelas de Andrade, Arméle; Teixeira, Andrei S; Cavalcanti, Cléssyo A; Morais, André B; Marinho, Patrícia EM

    2015-01-01

    Background Exercise intolerance is a common development in patients with chronic obstructive pulmonary disease (COPD). There is little data on the use of an isolated program using vibration platform training on functional capacity in these patients, which is an area that deserves investigation. Aim To investigate the effect of training on a vibrating platform (whole-body vibration [WBV]) on functional performance and quality of life of subjects with COPD. Methods A randomized controlled crossover pilot study with eleven subjects with COPD (forced expiratory volume in 1 second [FEV1]% predicted =14.63±11.14; forced vital capacity [FVC]% predicted =48.84±15.21; FEV1/FVC =47.39±11.63) underwent a 12-week WBV training program. Participants were randomized into the intervention group (IG) undergoing three sessions per week for a total of 12 weeks and control group (CG) without intervention. We evaluated the 6-minute walk test (6MWT), distance walked (DW), duration of the walk (TW), and index of perceived exertion (IPE), quality of life using St George’s Respiratory Questionnaire (SGRQ) and developed a 12-week program of training on a vibrating platform. Results The mean age was 62.91±8.82 years old (72.7% male). The DW increased at the end of training with a difference between groups of 75 m; all domains of the SGRQ improved at the end of training. The effect size Cohen’s d ranged from small to large for all the measured results. Conclusion These preliminary results suggest that WBV may potentially be a safe and feasible way to improve functional capacity in the 6MWT of patients with COPD undergoing a training program on the vibrating platform as well as in all domains of the SGRQ quality of life. However, further studies with a larger number of patients are needed to establish the long-term effect on functional capacity and quality of life in these patients. PMID:25624756

  5. The effect of warm-up with whole-body vibration vs. cycle ergometry on isokinetic dynamometry.

    PubMed

    Kelly, Stephen B; Alvar, Brent A; Black, Laurie E; Dodd, Daniel J; Carothers, Kyle F; Brown, Lee E

    2010-11-01

    The purpose of this study was to compare the effects of warm-up protocols using either whole-body vibration (WBV) or cycle ergometry (CE) on peak torque at 3 different isokinetic speeds and on fatigue in the knee extension exercise. Twenty-seven recreationally trained (age = 23.59 ± 3.87 years) men (n = 14) and women (n = 13) were tested at 3 different isokinetic speeds (60, 180, 300°·s-1) after either WBV or CE warm-up. The WBV consisted of intermittent bouts of 30 seconds of isometric squats at various degrees of hip and knee flexion for a total of 5 minutes. The CE consisted of 5 minutes of pedaling a cycle ergometer at 65-85% of age-predicted max heart rate. Comparisons between the warm-up conditions were analyzed using repeated measures analysis of variance. For the fatigue comparison, subjects completed 50 continuous concentric knee extensions at 240°·s-1. Means from the first 3 repetitions were compared to means from the final 3 repetitions to establish a fatigue index. Conditions were compared through an independent T-test. No significant (p > 0.05) differences were discovered between warm-up conditions at any speed or on the fatigue index. Means were virtually identical at 60°·s-1 (WBV = 142.14 ± 43.61 ft lb-1; CE = 140.64 ± 42.72 ft lb-1), 180° s-1 (WBV = 93.88 ± 35.18 ft lb-1; CE = 96.36 ± 31.53 ft lb-1), and 300°·s-1 (WBV = 78.36 ± 26.04 ft lb-1; CE = 80.13 ± 26.08), and on fatigue percentage (WBV = 51.14 ± 10.06%; CE = 52.96 ± 9.19%). These data suggest that the more traditional 5-minute cycle ergometer warm-up elicits results comparable to a less common vibration warm-up. The findings of this study are that these modalities are comparable under the tested conditions. PMID:20940645

  6. Low-magnitude high-frequency loading, by whole-body vibration, accelerates early implant osseointegration in ovariectomized rats

    PubMed Central

    LIANG, YONG-QIANG; QI, MENG-CHUN; XU, JIANG; XU, JUAN; LIU, HUA-WEI; DONG, WEI; LI, JIN-YUAN; HU, MIN

    2014-01-01

    Osteoporosis deteriorates jaw bone quality and may compromise early implant osseointegration and early implant loading. The influence of low-magnitude, high-frequency (LMHF) vibration on peri-implant bone healing and implant integration in osteoporotic bones remains poorly understood. LMHF loading via whole-body vibration (WBV) for 8 weeks has previously been demonstrated to significantly enhance bone-to-implant contact, peri-implant bone fraction and implant mechanical properties in osteoporotic rats. In the present study, LMHF loading by WBV was performed in osteoporotic rats, with a loading duration of 4 weeks during the early stages of bone healing. The results indicated that 4-week LMHF loading by WBV partly reversed the negative effects of osteoporosis and accelerated early peri-implant osseointegration in ovariectomized rats. PMID:25270245

  7. A model analysis of internal loads, energetics, and effects of wobbling mass during the whole-body vibration.

    PubMed

    Yue, Z; Mester, J

    2002-05-01

    The internal loads, energetics, and the effects of wobbling mass during the whole-body vibration are studied in terms of analysis and comparison of two models: one is a system of four degrees-of-freedom with rigid and wobbling masses in both lower body and upper body (Model A), while the other one (Model B) is a system of three degrees-of-freedom with a rigid upper body and is otherwise identical to Model A. The main findings are the following: (1) The wobbling mass in the upper body is able to reduce the total internal load on the rigid mass of the upper body considerably. (2) "Partial" internal loads on a certain part of the body may be even larger than the total load on the same part of the body because of the phase differences among the partial loads. Therefore, a full consideration of safety during the whole-body vibration has to take not only the total, but also all the partial internal loads into account. (3) The fluctuation of power input and the fluctuation of mechanical energy could be much larger than the fluctuation of dissipation rate. (4) For frequencies higher than the resonance frequency range, the amplitude of the oscillation of the centre of mass of the body is so reduced that only the change of elastic potential energy dominates in the change of mechanical energy. Thus, a simple picture of energy flow is obtained as follows: for approximately one half of the oscillation period, the energy flows from the vibrator into the human body and is mainly stored in the muscle-tendon system, while for the remaining approximate half of the period, the energy flows from the muscle-tendon system back to the vibrator with a slightly smaller amount because a small part of the flown-in energy has been dissipated. PMID:11955503

  8. Apparent Mass and Absorbed Power during Exposure to Whole-Body Vibration and Repeated Shocks

    NASA Astrophysics Data System (ADS)

    MANSFIELD, N. J.; HOLMLUND, P.; LUNDSTRÖM, R.

    2001-11-01

    Exposure to mechanical shocks might pose a greater health risk than exposure to continuous vibration. Previous studies have investigated subjective responses, muscle activity or transmission of vibration to the spine or head during shock. If there is a difference between biomechanic responses of the seated body to shocks when compared to continuous vibration, then this may indicate a more, or less, hazardous vibration waveform. This paper presents measurements of apparent mass and absorbed power during exposure to random vibration, repeated shocks and combinations of shocks and random vibration. Eleven male and 13 female subjects were exposed to 15 vibration conditions generated using an electro-dynamic shaker. Subjects were exposed to five 20 s acceleration waveforms with nominally identical power spectra (random vibration, equally spaced shocks, unequally spaced shocks, random combined with equally spaced shocks, random combined with unequally spaced shocks) at each of 0·5, 1·0 and 1·5 m/s2r.m.s. The general shapes of the apparent mass or absorbed power curves were not affected by stimulus type, indicating that the biomechanical response of the body is fundamentally the same when exposed to shocks or random vibration. Two non-linear effects were observed: apparent mass resonance frequencies were slightly higher for exposure to shocks; apparent mass and absorbed power resonance frequencies decreased with increases in vibration magnitude for each stimulus type. It is concluded that the two non-linear mechanisms operate simultaneously: a stiffening effect during exposure to shocks and a softening effect as vibration magnitudes increase. Total absorbed powers were greatest for shock stimuli and least for random vibration.

  9. Non-linear dual-axis biodynamic response to fore-and-aft whole-body vibration

    NASA Astrophysics Data System (ADS)

    Nawayseh, N.; Griffin, M. J.

    2005-04-01

    Seated subjects have participated in two experiments with fore-and-aft whole-body vibration to investigate dynamic responses at the seat and footrest in the direction of vibration and in other directions. In the first experiment, 12 males were exposed to fore-and-aft random vibration (0.25-20 Hz) at four magnitudes (0.125, 0.25, 0.625, and 1.25 m s -2 rms) while sitting on a seat with no backrest in four postures with varying foot heights to produce differing thigh contact with the seat (feet hanging, feet supported with maximum thigh contact, feet supported with average thigh contact, and feet supported with minimum thigh contact). In the second experiment, six subjects were exposed to three vibration magnitudes (0.125, 0.25, 0.625 m s -2 rms) in the average thigh contact posture, both with and without a rigid backrest. Forces were measured in the vertical, fore-and-aft, and lateral directions on the supporting seat surface (in the first experiment) and in the fore-and-aft and vertical directions at the footrest (in the second experiment). On the seat, there were three vibration modes in the fore-and-aft apparent mass on the seat at frequencies below 10 Hz in all postures (around 1 Hz, between 1 and 3 Hz, and between 3 and 5 Hz); large vertical forces were dependent on foot support while lateral forces were relatively small. At the feet, the fore-and-aft apparent mass showed a resonance between 3 and 5 Hz, which increased in frequency and magnitude when a backrest was used. The fore-and-aft vibration produced high vertical forces at the footrest. At frequencies below resonance, the backrest reduced vertical and fore-and-aft forces at the footrest. On the seat and the footrest, the forces showed a nonlinear characteristic that varied between postures. The presence of appreciable vertical forces indicate that during fore-and-aft excitation the body moved in two dimensions. It is concluded that forces in directions other than the direction of excitation should be taken into account when considering biodynamic responses to fore-and-aft whole-body vibration.

  10. Transmission of Vertical Whole Body Vibration to the Human Body Juha Kiiski,1

    E-print Network

    , osteoporosis, safety INTRODUCTION EXPERIMENTAL STUDIES HAVE shown that low-amplitude high frequency vibration, was embraced as a novel means to prevent osteoporosis and related fragility fractures.(6,7) There- after

  11. The ISO standard: Guide for the evaluation of human exposure to whole-body vibration

    NASA Technical Reports Server (NTRS)

    Vongierke, H. E.

    1975-01-01

    The international guideline is discussed in terms of safety and human tolerance. Charts for equal subjective vibration intensity, subjective judgement of equal fatigue, and severe discomfort boundaries are included.

  12. The Effect of Whole Body Horizontal Vibration in Position Sense and Dynamic Stability of the Spine

    E-print Network

    Lamis, Farhana

    2008-06-09

    Vibration Protocol ............................................. 43 2.6 Washout Protocol...................................................................................... 45 2.7 Data Analysis............................................................................................... 45 2.7.1 Reposition Sense Test....................................................................... 45 2.7.2 Sudden Loading Test ........................................................................ 46 2.7.3 Statistical Analysis...

  13. INDIVIDUAL OPTIMAL FREQUENCY IN WHOLE BODY VIBRATION: EFFECT OF PROTOCOL, JOINT ANGLE AND FATIGUING EXERCISE.

    PubMed

    Carlucci, Flaminia; Felici, Francesco; Piccinini, Alberto; Haxhi, Jonida; Sacchetti, Massimo

    2013-04-12

    Recent studies have shown the importance of individualizing the vibration intervention in order to produce greater effects on the neuromuscular system in less time. The purpose of this study was to assess theindividualoptimalvibration frequency (O.V.F.)corresponding to the highestmuscle activation (RMSmax) duringvibrationat differentfrequencies, comparing different protocols. Twenty-nine university students underwent 3 Continuous (C) and 2 Random (R) different vibrating protocols, maintaining a squat position on a vibration platform. The C protocol lasted 50 seconds and involved the succession of ascending frequencies from 20 to 55 Hz, every 5 seconds. The same protocol was performed twice, having the knee angle at 120° (C) and 90° (C90), in order to assess the effect of joint angle, and after a fatiguing squatting exercise (CF) to evaluate the influence of fatigue on O.V.F. assessment. In therandomprotocols vibration time was 20 seconds with a 2-minute (R2) and a 4-minute (R4) pauses between tested frequencies. Muscle activation and O.V.F. values did not differ significantly in the C, R2 and R4 protocols. RMSmax was higher in C90 (p< 0.001) and in CF (p = 0.04) compared to the Cprotocol. Joint angle and fatiguing exercise had no effect on optimalvibration frequency. In conclusion, the shorter C protocol produced similar myoelectrical activity in the R2 and the R4 protocols and therefore could be equally valid in identifying the O.V.F. with considerable time efficiency. Knee joint angle and fatiguing exercise had an effect on sEMG response during vibration but did not affect significantly O.V.F. identification. PMID:23588483

  14. Psychophysical relationships characterizing human response to whole-body sinusoidal vertical vibration

    NASA Technical Reports Server (NTRS)

    Leatherwood, J. D.; Dempsey, T. K.

    1976-01-01

    An experimental investigation determined that the psychophysical relationships between subjective discomfort evaluations to vibratory stimuli and subjective evaluations of the intensity of vibratory stimuli can be expressed in a linear fashion. Furthermore, significant differences were found to exist between discomfort and intensity subjective response for several but not all discrete frequencies investigated. The implication of these results is that ride quality criteria based upon subjective evaluation of vibration intensity should be applied cautiously in the development of criteria for human comfort.

  15. Characterization of the frequency and muscle responses of the lumbar and thoracic spines of seated volunteers during sinusoidal whole body vibration.

    PubMed

    Baig, Hassam A; Dorman, Daniel B; Bulka, Ben A; Shivers, Bethany L; Chancey, Valeta C; Winkelstein, Beth A

    2014-10-01

    Whole body vibration has been postulated to contribute to the onset of back pain. However, little is known about the relationship between vibration exposure, the biomechanical response, and the physiological responses of the seated human. The aim of this study was to measure the frequency and corresponding muscle responses of seated male volunteers during whole body vibration exposures along the vertical and anteroposterior directions to define the transmissibility and associated muscle activation responses for relevant whole body vibration exposures. Seated human male volunteers underwent separate whole body vibration exposures in the vertical (Z-direction) and anteroposterior (X-direction) directions using sinusoidal sweeps ranging from 2 to 18?Hz, with a constant amplitude of 0.4?g. For each vibration exposure, the accelerations and displacements of the seat and lumbar and thoracic spines were recorded. In addition, muscle activity in the lumbar and thoracic spines was recorded using electromyography (EMG) and surface electrodes in the lumbar and thoracic region. Transmissibility was determined, and peak transmissibility, displacement, and muscle activity were compared in each of the lumbar and thoracic regions. The peak transmissibility for vertical vibrations occurred at 4?Hz for both the lumbar (1.55?±?0.34) and thoracic (1.49?±?0.21) regions. For X-directed seat vibrations, the transmissibility ratio in both spinal regions was highest at 2?Hz but never exceeded a value of 1. The peak muscle response in both spinal regions occurred at frequencies corresponding to the peak transmissibility, regardless of the direction of imposed seat vibration: 4?Hz for the Z-direction and 2-3?Hz for the X-direction. In both vibration directions, spinal displacements occurred primarily in the direction of seat vibration, with little off-axis motion. The occurrence of peak muscle responses at frequencies of peak transmissibility suggests that such frequencies may induce greater muscle activity, leading to muscle fatigue, which could be a contributing mechanism of back pain. PMID:25010637

  16. Additive effect of repeated bouts of individualized frequency whole body vibration on postural stability in young adults.

    PubMed

    Dickin, D Clark; Heath, Jacqueline E

    2014-08-01

    Whole body vibration (WBV) has been shown to improve force and power output as well as flexibility and speed, with improvements suggested to result from reduced electromechanical delays, improved rate of force development, and sensitivity of muscle spindles. Fixed frequency studies on postural control have been somewhat equivocal; however, individualized frequency protocols have shown promising results in other motor tasks. To assess this, 18 healthy young adults experienced three 4-minute WBV sessions with postural control assessed before vibration, after multiple exposures, and during recovery, with altered levels of sensory information available to the participants. Sway velocity, sway path length, and sway area were assessed in each environment. Study findings revealed that stability was impacted following WBV, with more challenging environments eliciting improvements persisting for 20 minutes. When the environment was less challenging, postural stability was impaired; however, the effects dissipated quickly (10-20 min). It was determined that exposure to individualized frequency WBV served to impair postural control when the challenge was low, but resulted in heightened stability when the overall challenge was high and vestibular information was needed for stability. PMID:24603631

  17. Vehicle design influences whole body vibration exposures: effect of the location of the front axle relative to the cab.

    PubMed

    Blood, Ryan P; Rynell, Patrik W; Johnson, Peter W

    2011-06-01

    Using a repeated measure design, this study compared differences in whole body vibration (WBV) exposures among 13 drivers who drove a truck with the cab over the front axle (cab-over design) and a truck with the cab situated behind the front axle (non-cab-over design). The drivers drove both trucks over a standardized route that comprised three distinct segments: a freeway segment, a city street segment with stop-and-go driving (traffic lights), and a city street segment without traffic lights. A portable WBV data acquisition system collected tri-axial time-weighted and raw WBV data per ISO 2631-1 and 2631-5 standards. Simultaneous global positioning system (GPS) data were also collected to compare vehicle speeds. The GPS data indicated that there were no speed differences between the two vehicles. However, average and impulsive z-axis vibration levels were significantly higher for the cab-over design than for the non-cab-over design. In addition, significant WBV exposure differences between road types were found, with the freeway segments having the lowest exposures and the city street segments without traffic lights having the highest exposures. Vehicle type and the associated WBV exposures should be considered when purchasing vehicles to be used by full-time professional vehicle operators. PMID:21623531

  18. Whole-body Vibration Exposure Intervention among Professional Bus and Truck Drivers: A Laboratory Evaluation of Seat-suspension Designs.

    PubMed

    Blood, Ryan P; Yost, Michael G; Camp, Janice E; Ching, Randal P

    2015-01-01

    Long-term exposure to seated whole-body vibration (WBV) is one of the leading risk factors for the development of low back disorders. Professional bus and truck drivers are regularly exposed to continuous WBV, since they spend the majority of their working hours driving heavy vehicles. This study measured WBV exposures among professional bus and truck drivers and evaluated the effects of seat-suspension designs using simulated field-collected data on a vibration table. WBV exposures were measured and compared across three different seat designs: an air-ride bus seat, an air-ride truck seat, and an electromagnetically active (EM-active) seat. Air-ride seats use a compressed-air bladder to attenuate vibrations, and they have been in operation throughout the transportation industry for many years. The EM-active seat is a relatively new design that incorporates a microprocessor-controlled actuator to dampen vibration. The vibration table simulated seven WBV exposure scenarios: four segments of vertical vibration and three scenarios that used field-collected driving data on different road surfaces-a city street, a freeway, and a section of rough roadway. The field scenarios used tri-axial WBV data that had been collected at the seat pan and at the driver's sternum, in accordance with ISO 2631-1 and 2631-5. This study found that WBV was significantly greater in the vertical direction (z-axis) than in the lateral directions (x-and y-axes) for each of the three road types and each of the three types of seats. Quantitative comparisons of the results showed that the floor-to-seat-pan transmissibility was significantly lower for the EM-active seat than for either the air-ride bus seat or the air-ride truck seat, across all three road types. This study also demonstrated that seat-suspension designs have a significant effect on the vibrations transmitted to vehicle operators, and the study's results may prove useful in designing future seat suspensions. PMID:25625530

  19. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training

    PubMed Central

    Vigelsø, Andreas; Andersen, Nynne B; Dela, Flemming

    2014-01-01

    Citrate synthase (CS) activity is a validated biomarker for mitochondrial density in skeletal muscle. CS activity is also used as a biochemical marker of the skeletal muscle oxidative adaptation to a training intervention, and a relationship between changes in whole body aerobic capacity and changes in CS activity is often assumed. However, this relationship and absolute values of CS and maximal oxygen uptake (V.O2max) has never been assessed across different studies. A systematic PubMed search on literature published from 1983 to 2013 was performed. The search profile included: citrate, synthase, human, skeletal, muscle, training, not electrical stimulation, not in-vitro, not rats. Studies that reported changes in CS activity and V.O2max were included. Different training types and subject populations were analyzed independently to assess correlation between relative changes in V.O2max and CS activity. 70 publications with 97 intervention groups were included. There was a positive (r = 0.45) correlation (P < 0.001) between the relative change in V.O2max and the relative change in CS activity. All reported absolute values of CS and V.O2max did not correlate (r =- 0.07, n = 148, P = 0.4). Training induced changes in whole body oxidative capacity is matched by changes in muscle CS activity in a nearly 1:1 relationship. Absolute values of CS across different studies cannot be compared unless a standardized analytical method is used by all laboratories. PMID:25057335

  20. Acute effects of whole body vibration during passive standing on soleus H-reflex in subjects with and without spinal cord injury

    E-print Network

    Popovic, Milos R.

    with and without spinal cord injury Dimitry G. Sayenko1 , Kei Masani1 , Milad Alizadeh-Meghrazi1,2 , Milos R in a standing frame on the soleus H-reflex among men with and without spinal cord injury (SCI). In spinal cord cord injuries, whole body vibration, neuromuscular plasticity, motoneuronal excitability, soleus H

  1. Numerical assessment of fore-and-aft suspension performance to reduce whole-body vibration of wheel loader drivers

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Mistrot, Pierre

    2006-12-01

    While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.

  2. The effects of two different frequencies of whole-body vibration on knee extensors strength in healthy young volunteers: a randomized trial.

    PubMed

    Esmaeilzadeh, S; Akpinar, M; Polat, S; Yildiz, A; Oral, A

    2015-12-01

    The aim of this study was to investigate the effects of two different frequencies of whole-body vibration (WBV) training on knee extensors muscle strength in healthy young volunteers. Twenty-two eligible healthy untrained young women aged 22-31 years were allocated randomly to the 30-Hz (n=11) and 50-Hz (n=11) groups. They participated in a supervised WBV training program that consisted of 24 sessions on a synchronous vertical vibration platform (peak-to-peak displacement: 2-4 mm; type of exercises: semi-squat, one-legged squat, and lunge positions on right leg; set numbers: 2-24) three times per week for 8 weeks. Isometric and dynamic strength of the knee extensors were measured prior to and at the end of the 8-week training. In the 30-Hz group, there was a significant increase in the maximal voluntary isometric contraction (p=0.039) and the concentric peak torque (p=0.018) of knee extensors and these changes were significant (p<0.05) compared with the 50-Hz group. In addition, the eccentric peak torque of knee extensors was increased significantly in both groups (p<0.05); however, there was no significant difference between the two groups (p=0.873). We concluded that 8 weeks WBV training in 30 Hz was more effective than 50 Hz to increase the isometric contraction and dynamic strength of knee extensors as measured using peak concentric torque and equally effective with 50 Hz in improving eccentric torque of knee extensors in healthy young untrained women. PMID:26636279

  3. Effects of whole-body vertical shock-type vibration on human ability for fine manual control.

    PubMed

    Nakamura, H; Haverkamp, M

    1991-11-01

    The effects of vertical (z-axis) whole-body shock-type vibration on the ability for fine manual control were examined. The amplitudes and frequency of the shocks was varied, but a constant frequency-weighted acceleration of 1.25 m/s2 r.m.s. was maintained. The examination of the shock's effects was carried out using an experimental system that simulated the actual workplace of earth-moving machinery. Control was measured using a first-order pursuit tracking-test, in which a seated subject was asked to use both hands to direct a cursor on a monitor using a steering wheel. Although the magnitude of shocks (peak amplitude of 6-10 m/s2) and the number of shocks per unit time (shock cycle of 10-40 s) were varied, and two types of shock (symmetric and asymmetric) used, no shock effect could be found by calculating an integrated square of tracking error during the whole exposure time. The tracking error only increased significantly during the moments that the subjects were exposed to a symmetrically shaped shock that reached the highest peak value (for the experiment) of 10 m/s2. The results suggested that shocks with peak amplitudes below defined value induce no evident effect on the steering of vehicles. PMID:1800104

  4. Wavelet analysis of lumbar muscle oxygenation signals during whole-body vibration: implications for the development of localized muscle fatigue.

    PubMed

    Li, Zengyong; Zhang, Ming; Chen, Guoqiang; Luo, Site; Liu, Feifei; Li, Jianping

    2012-08-01

    The objective of this study was to assess the effects of whole-body vibration (WBV) on lumbar muscle oxygenation oscillations in healthy men based on the wavelet transform of near-infrared spectroscopy signals. Twelve healthy participants were exposed to WBV at frequencies of 3, 4.5 and 6 Hz while muscle oxygenation signal was monitored before, during and recovery from WBV. With spectral analysis based on wavelet transform of NIR signal, six frequency intervals were identified (I, 0.005-0.0095 Hz; II, 0.0095-0.02 Hz; III, 0.02-0.06 Hz; IV, 0.06-0.16 Hz; V, 0.16-0.40 Hz and VI, 0.40-2.0 Hz). It was found that the muscle oxygenation oscillations at 4.5 Hz in the frequency intervals I, II and III was lower during WBV compared with that of at 3 Hz. Present results demonstrated WBV at 4.5 Hz induced lower oscillatory activities than that of at 3 Hz. The lower oscillatory activities might indicate a decrease in the efficiency of oxygen supply to the oxygenated tissue and such mechanism might contribute to the development of local muscle fatigue. PMID:22210560

  5. a Modal Analysis of Whole-Body Vertical Vibration, Using a Finite Element Model of the Human Body

    NASA Astrophysics Data System (ADS)

    Kitazaki, S.; Griffin, M. J.

    1997-02-01

    A two-dimensional model of human biomechanical responses to whole-body vibration has been developed, by using the finite element method. Beam, spring and mass elements were used to model the spine, viscera, head, pelvis and buttocks tissue in the mid-sagittal plane. The model was developed by comparison of the vibration mode shapes with those previously measured in the laboratory. At frequencies below 10 Hz, the model produced seven modes which coincided well with the measurements. The principal resonance of the driving point response at about 5 Hz consisted of an entire body mode, in which the head, spinal column and the pelvis move almost rigidly, with axial and shear deformation of tissue beneath the pelvis occurring in phase with a vertical visceral mode. The second principal resonance at about 8 Hz corresponded to a rotational mode of the pelvis, with a possible contribution from a second visceral mode. A shift of the principal resonance of the driving point response, when changing posture, was achieved only by changing the axial stiffness of the buttocks tissue. It is suggested that an increase in contact area between the buttocks and the thighs and the seat surface, when changing posture from erect to slouched, may decrease the axial stiffness beneath the pelvis, with a non-linear force-deflection relationship of tissue resulting in decreases in the natural frequencies. A change in posture from erect to slouched also increased shear deformation of tissue beneath the pelvis in the entire body mode, and the natural frequency was decreased as a result of the much lower shear stiffness of tissue compared to the axial stiffness.

  6. Bone mineral density, microarchitectural and mechanical alterations of osteoporotic rat bone under long-term whole-body vibration therapy.

    PubMed

    Xie, Pengfei; Tang, Zhurong; Qing, Fangzhu; Chen, Xuening; Zhu, Xiangdong; Fan, Yujiang; Yang, Xiao; Zhang, Xingdong

    2016-01-01

    Low-magnitude, high-frequency whole body vibration (WBV) is receiving increasing interest as a non-pharmacological anti-osteoporosis approach. However, the long-term effect of WBV therapy is seldom studied. In this study, the efficacy of 16-week WBV (0.3g, 30Hz) on bone mineral density (BMD), microarchitectural parameters and mechanical properties of ovariectomized rat femur were examined by in vivo peripheral quantitative computed tomography (pQCT), ex vivo micro-computed tomography (µCT), dynamic mechanical analysis (DMA) and fracture test. To the best of our knowledge, 16 weeks of WBV administration (20min/day) is currently the longest duration on rodent. The longitudinal BMD change showed that positive effect of WBV on ovariectomized rat femoral neck diminished with prolonged administration duration. In addition, 16-week of WBV treatment was found to cause significantly reduction in the mean BMD, trabecular BMD (Tb.BMD), trabecular bone volume ration (BV/TV), trabecular number (Tb.N) and maximum load in femoral neck of ovariectomized rat. Metaphyseal Tb.BMD and BV/TV were also significantly decreased in WBV treated ovariectomized group than non-treated controls. Whole-femur DMA was demonstrated as a sensitive tool in distinguishing osteoporotic femur from healthy aged-matched controls, in terms of decreased storage modulus (E') and loss factor (tan ?). However, E' and tan ? are not enhanced by 16-week WBV treatment. Together, these findings indicate that administration duration played an important role in the effect of WBV. 16-week WBV may exacerbate trabecular bone loss in ovariectomized rat femur, especially in trabecular-rich femoral neck region. An optimal WBV protocol including administration duration should be established prior to long-term clinical practice. PMID:26398779

  7. Single-dose effects of whole body vibration on quadriceps strength in individuals with motor-incomplete spinal cord injury.

    PubMed

    Bosveld, Rick; Field-Fote, Edelle C

    2015-11-01

    Context Paresis associated with motor-incomplete spinal cord injury (SCI) impairs function. Whole body vibration (WBV) may increase strength by activating neuromuscular circuits. Objective We assessed effects of a single session of WBV on lower extremity strength in individuals with motor-incomplete SCI. Design A single-session blinded randomized controlled trial. Setting Rehabilitation research laboratory. Participants Subjects (n = 25; age 49.7 ± 12.5 years) had chronic SCI (>1 year) and were able to stand for at least 45 seconds. Interventions Subjects were randomized either to WBV (n = 13) consisting of four 45-second bouts with 1-minute intervening rest periods (frequency: 50 Hz, amplitude: 2 mm) or to sham electrical stimulation (n = 12). Outcome measures Maximal voluntary isometric quadriceps force was measured with a fixed dynamometer. A modified Five-Time-Sit-To-Stand (FTSTS) test was used to assess functional lower extremity strength. Measures were made at pre-test, immediate post-test, and delayed post-test 20 minutes later. Results At immediate post-test, change in voluntary isometric force in the WBV group was 1.12 kg greater than in the sham group. The within-group change for the WBV group was significant with a moderate effect size (P = 0.05; ES = 0.60). No force-related changes were observed in the sham group. The modified FTSTS scores improved in both groups, suggesting that this measure was subject to practice effects. Conclusion Evidence from the present study suggests that even a single session of WBV is associated with a meaningful short-term increase in quadriceps force-generating capacity in persons with motor-incomplete SCI. The multi-session use of WBV as part of a strengthening program deserves exploration. PMID:25664489

  8. Effect of whole body vibration therapy on circulating serotonin levels in an ovariectomized rat model of osteoporosis

    PubMed Central

    Wei, Qiu-Shi; Huang, Li; Chen, Xian-Hong; Wang, Hai-Bin; Sun, Wei-Shan; Huo., Shao-Chuan; Li, Zi-Qi; Deng, Wei-Min

    2014-01-01

    Objective(s): Studies have reported that whole body vibration (WBV) played a vital role in bone remodeling. Circulating serotonin is also involved in negative regulating bone mass in rodents and humans. However, both WBV and inhibition of serotonin biosynthesis may suppress receptor activator of nuclear factor-kappaB ligand (RANKL)-induced osteoclastogenesis in vitro. The purpose of the current study was to investigate the effect of WBV therapy on the levels of serum serotonin in ovariectomized rats. Materials and Methods: Thirty-six-month-old female Sprague Dawley rats weighing 276.15±37.75 g were ovariectomized to induce osteoporosis, and another ten rats underwent sham operation to establish sham control (SHAM) group. After 3 months, ovariectomized rats were divided into three subgroups and then separately treated with WBV, Alendronate (ALN) and normal saline (OVX), SHAM group was given normal saline. After 6 weeks of treatment, rats were sacrificed. Serum serotonin, RANKL, bone turnover markers, and bone mineral density (BMD), bone strength were evaluated. Results: The serum serotonin level was significantly lower in WBV group than OVX and ALN groups (P<0.05 and P<0.001). RANKL levels significantly decreased in WBV and ALN groups compared to OVX group (P<0.001 for both). BMD and biomechanical parameters of femur significantly increased (P<0.05 for both) and bone turnover levels decreased (P<0.001 for both) in WBV group compared to OVX group. Conclusion: These data indicated that WBV enhanced the bone strength and BMD in ovariectomized rats most likely by reducing the levels of circulating serotonin. PMID:24592309

  9. The Fate of Mrs Robinson: Criteria for Recognition of Whole-Body Vibration Injury as AN Occupational Disease

    NASA Astrophysics Data System (ADS)

    HULSHOF, C. T. J.; VAN DER LAAN, G.; BRAAM, I. T. J.; VERBEEK, J. H. A. M.

    2002-05-01

    Several recently published critical reviews conclude that there is strong epidemiological evidence for a relationship between occupational exposure to whole-body vibration (WBV), low back pain (LBP) and back disorders. Whether this exposure is only a modest or a substantial risk factor for the onset and recurrence of LBP is still a matter of debate. In spite of this controversy, four European Union countries have decided to recognize and compensate LBP and certain spinal disorders as an occupational disease. In this paper, we review the criteria currently in use for the recognition of this occupational disease. A search of the literature was performed; additional information was obtained in work visits to national occupational disease institutes in Germany, France and Belgium, in annual reports and national statistics on occupational diseases. Belgium was the first country to add WBV injury to the official list of occupational diseases (1978), followed by Germany (1993), the Netherlands (1997), and France (1999). The incidence of newly recognized cases in 1999 varied considerably: 763 in Belgium, 269 in France, 16 in Germany, and 10 reported cases in the Netherlands. The findings of this review indicate that significant differences exist in the established and applied diagnostic and exposure criteria in the four EU countries. This is illustrated by the case of Mrs Robinson, a 41-year-old forklift driver with LBP, who would probably get recognition and compensation in the Netherlands and Belgium but would be rejected in France and Germany. The development of uniform internationally accepted criteria is recommended, also from an epidemiological point of view, as many data are collected in the process of recognition of this occupational disease.

  10. Effect of 6 months of whole body vibration on lumbar spine bone density in postmenopausal women: a randomized controlled trial

    PubMed Central

    Lai, Chung-Liang; Tseng, Shiuan-Yu; Chen, Chung-Nan; Liao, Wan-Chun; Wang, Chun-Hou; Lee, Meng-Chih; Hsu, Pi-Shan

    2013-01-01

    Background The issue of osteoporosis-induced fractures has attracted the world’s attention. Postmenopausal women are particularly at risk for this type of fracture. The nonmedicinal intervention for postmenopausal women is mainly exercise. Whole body vibration (WBV) is a simple and convenient exercise. There have been some studies investigating the effect of WBV on osteoporosis; however, the intervention models and results are different. This study mainly investigated the effect of high-frequency and high-magnitude WBV on the bone mineral density (BMD) of the lumbar spine in postmenopausal women. Methods This study randomized 28 postmenopausal women into either the WBV group or the control group for a 6-month trial. The WBV group received an intervention of high-frequency (30 Hz) and high-magnitude (3.2 g) WBV in a natural full-standing posture for 5 minutes, three times per week, at a sports center. Dual-energy X-ray absorptiometry was used to measure the lumbar BMD of the two groups before and after the intervention. Results Six months later, the BMD of the WBV group had significantly increased by 2.032% (P=0.047), while that of the control group had decreased by 0.046% (P=0.188). The comparison between the two groups showed that the BMD of the WBV group had increased significantly (P=0.016). Conclusion This study found that 6 months of high-frequency and high-magnitude WBV yielded significant benefits to the BMD of the lumbar spine in postmenopausal women, and could therefore be provided as an alternative exercise. PMID:24348029

  11. Acute whole body UVA irradiation combined with nitrate ingestion enhances time trial performance in trained cyclists.

    PubMed

    Muggeridge, David J; Sculthorpe, Nicholas; Grace, Fergal M; Willis, Gareth; Thornhill, Laurence; Weller, Richard B; James, Philip E; Easton, Chris

    2015-08-01

    Dietary nitrate supplementation has been shown to increase nitric oxide (NO) metabolites, reduce blood pressure (BP) and enhance exercise performance. Acute exposure to ultraviolet (UV)-A light also increases NO bioavailability and reduces BP. We conducted a randomized, counterbalanced placebo-controlled trial to determine the effects of UV-A light alone and in combination with nitrate on the responses to sub-maximal steady-state exercise and time trial (TT) performance. Nine cyclists (VO2max 53.1 ± 4.4 ml/kg/min) completed five performance trials comprising 10 min submaximal steady-state cycling followed by a 16.1 km TT. Following a familiarization the final four trials were preceded, in random order, by either (1) Nitrate gels (NIT)?+ UV-A, (2) Placebo (PLA)?+ UV-A, (3) NIT + Sham light (SHAM) and (4) PLA + SHAM (control). The NIT gels (2 × 60 ml gels,?~8.1 mmol nitrate) or a low-nitrate PLA were ingested 2.5 h prior to the trial. The light exposure consisted of 20 J/cm(2) whole body irradiation with either UV-A or SHAM light. Plasma nitrite was measured pre- and post-irradiation and VO2 was measured continuously during steady-state exercise. Plasma nitrite was higher for NIT + SHAM (geometric mean (95% CI), 332 (292-377) nM; P = 0.029) and NIT + UV-A (456 (312-666) nM; P = 0.014) compared to PLA + SHAM (215 (167-277) nM). Differences between PLA + SHAM and PLA + UV-A (282 (248-356) nM) were small and non-significant. During steady-state exercise VO2 was reduced following NIT + UVA (P = 0.034) and tended to be lower in NIT + SHAM (P = 0.086) but not PLA + UV-A (P = 0.381) compared to PLA + SHAM. Performance in the TT was significantly faster following NIT + UV-A (mean ± SD 1447 ± 41 s P = 0.005; d = 0.47), but not PLA + UV-A (1450 ± 40 s; d = 0.41) or NIT + SHAM (1455 ± 47 s; d = 0.28) compared to PLA + SHAM (1469 ± 52 s). These findings demonstrate that exposure to UV-A light alone does not alter the physiological responses to exercise or improve performance in a laboratory setting. A combination of UV-A and NIT, however, does improve cycling TT performance in this environment, which may be due to a larger increase in NO availability. PMID:25289793

  12. A summary of current Bureau research into the effects of whole-body vibration and shock on operators of underground mobile equipment

    SciTech Connect

    Love, A.C.; Unger, R.L.; Bobick, T.G.; Fowkes, R.S.

    1992-01-01

    This report discusses current research by the U.S. Bureau of Mines on the effects of whole-body vibration (WBV) and shock on underground mobile equipment operators. The highlights of a comprehensive literature review of WBV, shock, and seating are presented. Factors discussed include health and physiological effects, comfort, performance, and fatigue. Vibration data were collected from shuttle cars and ramcars at several underground coal mines in Pennsylvania, Ohio, and Illinois. The data were formatted so that they could be used to drive the Bureau's motion platform, and to compare them with ANSI S3-1979, Guide for the Evaluation of Human Exposure to Whole-Body Vibration. Human subject testing in the Bureau's vibration research laboratory evaluated the effects of two different seat angles and of the presence or absence of vibration and of foam padding on heart rate, blood pressure, and subjective discomfort. Only vibration significantly increased heart rate and systolic and mean blood pressures. Vibration and a steel seat had a significant effect on subjective discomfort. The apparatus used for these tests and the experimental procedures are described in detail. Recommendations are made for additional research on the exposure of underground mining machine operators to WBV and shock.

  13. Effect of whole-body vibration on calcaneal quantitative ultrasound measurements in postmenopausal women: a randomized controlled trial.

    PubMed

    Slatkovska, Lubomira; Beyene, Joseph; Alibhai, Shabbir M H; Wong, Queenie; Sohail, Qazi Z; Cheung, Angela M

    2014-12-01

    The purpose of this study was to examine the effect of whole-body vibration (WBV) on calcaneal quantitative ultrasound (QUS) measurements; which has rarely been examined. We conducted a single-centre, 12-month, randomized controlled trial. 202 postmenopausal women with BMD T score between -1.0 and -2.5, not receiving bone medications, were asked to stand on a 0.3 g WBV platform oscillating at either 90- or 30-Hz for 20 consecutive minutes daily, or to serve as controls. Calcium and vitamin D was provided to all participants. Calcaneal broadband attenuation (BUA), speed of sound, and QUS index were obtained as pre-specified secondary endpoints at baseline and 12 months by using a Hologic Sahara Clinical Bone Sonometer. 12-months of WBV did not improve QUS parameters in any of our analyses. While most of our analyses showed no statistical differences between the WBV groups and the control group, mean calcaneal BUA decreased in the 90-Hz (-0.4 [95% CI -1.9 to 1.2] dB MHz(-1)) and 30-Hz (-0.7 [95% CI -2.3 to 0.8] dB MHz(-1)) WBV groups and increased in the control group (1.3 [95% CI 0.0-2.6] dB MHz(-1)). Decreases in BUA in the 90-, 30-Hz or combined WBV groups were statistically different from the control group in a few of the analyses including all randomized participants, as well as in analyses excluding participants who had missing QUS measurement and those who initiated hormone therapy or were <80% adherent. Although there are consistent trends, not all analyses reached statistical significance. 0.3 g WBV at 90 or 30 Hz prescribed for 20 min daily for 12 months did not improve any QUS parameters, but instead resulted in a statistically significant, yet small, decrease in calcaneal BUA in postmenopausal women in several analyses. These unexpected findings require further investigation. PMID:25388526

  14. Effects of whole-body low-intensity resistance training with slow movement and tonic force generation on muscular size and strength in young men.

    PubMed

    Tanimoto, Michiya; Sanada, Kiyoshi; Yamamoto, Kenta; Kawano, Hiroshi; Gando, Yuko; Tabata, Izumi; Ishii, Naokata; Miyachi, Motohiko

    2008-11-01

    Our previous study showed that relatively low-intensity (approximately 50% one-repetition maximum [1RM]) resistance training (knee extension) with slow movement and tonic force generation (LST) caused as significant an increase in muscular size and strength as high-intensity (approximately 80% 1RM) resistance training with normal speed (HN). However, that study examined only local effects of one type of exercise (knee extension) on knee extensor muscles. The present study was performed to examine whether a whole-body LST resistance training regimen is as effective on muscular hypertrophy and strength gain as HN resistance training. Thirty-six healthy young men without experience of regular resistance training were assigned into three groups (each n = 12) and performed whole-body resistance training regimens comprising five types of exercise (vertical squat, chest press, latissimus dorsi pull-down, abdominal bend, and back extension: three sets each) with LST (approximately 55-60% 1RM, 3 seconds for eccentric and concentric actions, and no relaxing phase); HN (approximately 80-90% 1RM, 1 second for concentric and eccentric actions, 1 second for relaxing); and a sedentary control group (CON). The mean repetition maximum was eight-repetition maximum in LST and HN. The training session was performed twice a week for 13 weeks. The LST training caused significant (p < 0.05) increases in whole-body muscle thickness (6.8 +/- 3.4% in a sum of six sites) and 1RM strength (33.0 +/- 8.8% in a sum of five exercises) comparable with those induced by HN training (9.1 +/- 4.2%, 41.2 +/- 7.6% in each measurement item). There were no such changes in the CON group. The results suggest that a whole-body LST resistance training regimen is as effective for muscular hypertrophy and strength gain as HN resistance training. PMID:18978616

  15. High-frequency and low-magnitude whole body vibration with rest days is more effective in improving skeletal micro-morphology and biomechanical properties in ovariectomised rodents.

    PubMed

    Ma, Renshi; Zhu, Dong; Gong, He; Gu, Guishan; Huang, Xu; Gao, Jia zi; Zhang, Xizheng

    2012-01-01

    We explored the optimal regime in preventing or treating bone loss, using ovariectomised rodents loaded by mechanical stimuli with rest days during the loading cycle. Eighty-four Sprague-Dawley rats, aged 6 months, were randomly divided into 7 groups after bilateral ovariectomy. Mechanical vibration with 1-day rest (ML1R), with 3-day rest (ML3R), with 5-day rest (ML5R), with 7-day rest (ML7R), daily loading (DL), comparing the ovariectomised group (OVX) with baseline (BCL) measurements. After a recovery of one week, all the rodents were loaded daily by whole body vibration at 35 Hz and 0.25 g for 15 minutes. Eight weeks later, a three-point bending test of the radius and micro-CT scanning of the femoral head were performed after animal sacrifice. Large improvements in biomechanical properties occurred in all the experimental groups for failure load, elastic modulus and deflection, while a significantly enhanced efficacy was detected in ML7R compared with daily loading (p<0.05). In micro-CT scanning, bone volume fraction, trabecular thickness, number and separation were improved by the regime in all experimental groups, while ML7R showed a significant improvement over daily loading (p<0.05). Early bone loss in human subjects may be improved by high-frequency and low-magnitude whole body vibration with rest days or daily stimuli. Mechanical stimulus with a 7-day rest was more effective in improving biomechanical properties and micro-morphology compared with daily loading. This may have clinical implications in relation to the prevention and treatment of hip fractures, and in postoperative management following hip arthroplasty. PMID:22344486

  16. Whole body motion-detection tasks can yield much lower thresholds than direction-recognition tasks: implications for the role of vibration

    PubMed Central

    Chaudhuri, Shomesh E.; Karmali, Faisal

    2013-01-01

    Earlier spatial orientation studies used both motion-detection (e.g., did I move?) and direction-recognition (e.g., did I move left/right?) paradigms. The purpose of our study was to compare thresholds measured with motion-detection and direction-recognition tasks on a standard Moog motion platform to see whether a substantial fraction of the reported threshold variation might be explained by the use of different discrimination tasks in the presence of vibrations that vary with motion. Thresholds for the perception of yaw rotation about an earth-vertical axis and for interaural translation in an earth-horizontal plane were determined for four healthy subjects with standard detection and recognition paradigms. For yaw rotation two-interval detection thresholds were, on average, 56 times smaller than two-interval recognition thresholds, and for interaural translation two-interval detection thresholds were, on average, 31 times smaller than two-interval recognition thresholds. This substantive difference between recognition thresholds and detection thresholds is one of our primary findings. For motions near our measured detection threshold, we measured vibrations that matched previously established vibration thresholds. This suggests that vibrations contribute to whole body motion detection. We also recorded yaw rotation thresholds on a second motion device with lower vibration and found direction-recognition and motion-detection thresholds that were not significantly different from one another or from the direction-recognition thresholds recorded on our Moog platform. Taken together, these various findings show that yaw rotation recognition thresholds are relatively unaffected by vibration when moderate (up to ?0.08 m/s2) vibration cues are present. PMID:24068754

  17. Short-term lower-body plyometric training improves whole body BMC, bone metabolic markers, and physical fitness in early pubertal male basketball players.

    PubMed

    Zribi, Anis; Zouch, Mohamed; Chaari, Hamada; Bouajina, Elyes; Ben Nasr, Hela; Zaouali, Monia; Tabka, Zouhair

    2014-02-01

    The effects of a 9-week lower-body plyometric training program on bone mass, bone markers and physical fitness was examined in 51 early pubertal male basketball players divided randomly into a plyometric group (PG: 25 participants) and a control group (CG: 26 participants). Areal bone mineral density (aBMD), bone mineral content (BMC), and bone area (BA) in the whole body, L2-L4 vertebrae, and in total hip, serum levels of osteocalcin (Oc) and C-terminal telopeptide fragment of Type I collagen (CTx), jump, sprint and power abilities were assessed at baseline and 9 weeks. Group comparisons were done by independent student's t-test between means and analyses of (ANOVA) and covariance (ANCOVA), adjusting for baseline values. PG experienced a significant increase in Oc (p < .01) and all physical fitness except for the 5-jump test. However, there was no improvement in aBMD, BMC and BA in any measured site, except in whole body BMC of the PG. A positive correlation was observed between percentage increase (?%) of physical fitness and those of (Oc) for the PG. In summary, biweekly sessions of lower body plyometric training program were successful for improving whole body BMC, bone formation marker (Oc) and physical fitness in early pubertal male basketball players. PMID:24018349

  18. Short-Term Lower-Body Plyometric Training Improves Whole-Body BMC, Bone Metabolic Markers, and Physical Fitness in Early Pubertal Male Basketball Players.

    PubMed

    Zribi, Anis; Zouch, Mohamed; Chaari, Hamada; Bouajina, Elyes; Ben Nasr, Hela; Zaouali, Monia; Tabka, Zouhair

    2014-02-01

    The effects of a 9-week lower-body plyometric training program on bone mass, bone markers and physical fitness was examined in 51 early pubertal male basketball players divided randomly into a plyometric group (PG: 25 participants) and a control group (CG: 26 participants). Areal bone mineral density (aBMD), bone mineral content (BMC), and bone area (BA) in the whole body, L2-L4 vertebrae, and in total hip, serum levels of osteocalcin (Oc) and C-terminal telopeptide fragment of Type I collagen (CTx), jump, sprint and power abilities were assessed at baseline and 9 weeks. Group comparisons were done by independent student's t-test between means and analyses of (ANOVA) and covariance (ANCOVA), adjusting for baseline values. PG experienced a significant increase in Oc (p < .01) and all physical fitness except for the 5-jump test. However, there was no improvement in aBMD, BMC and BA in any measured site, except in whole body BMC of the PG. A positive correlation was observed between percentage increase (?%) of physical fitness and those of (Oc) for the PG. In summary, biweekly sessions of lower body plyometric training program were successful for improving whole body BMC, bone formation marker (Oc) and physical fitness in early pubertal male basketball players. PMID:24662116

  19. Assessment of whole-body vibration exposures and influencing factors for quarry haul truck drivers and loader operators

    PubMed Central

    Mayton, Alan G.; Jobes, Christopher C.; Gallagher, Sean

    2015-01-01

    To further assess vibration exposure on haul trucks (HTs) and front-end wheel loaders (FELs), follow-up investigations were conducted at two US crushed stone operations. The purpose was to: 1) evaluate factors such as load/no-load conditions, speed, load capacity, vehicle age, and seat transmissibility relative to vibration exposure; 2) compare exposure levels with existing ISO/ANSI and EUGPG guidelines. Increasing HT speed increased recorded vibration at the chassis and seat as expected. Neither vehicle load nor vehicle speed increased transmissibility. Increasing HT size and age did show transmissibility decreasing. HT dominant-axis wRMS levels (most often the y-axis, lateral or side-to-side direction) were predominantly within the health guidance caution zone (HGCZ). However, several instances showed vibration dose value (VDV) above the exposure limit value (ELV) for the ISO/ANSI guidelines. VDV levels (all dominant x-axis or fore-aft) were within and above the HGCZ for the EUGPG and above the HGCZ for ISO/ANSI guidelines. PMID:26361493

  20. Back Disorder Intervention Strategies for Mass Transit Operators Exposed to Whole-Body VIBRATION—COMPARISON of Two Transit System Approaches and Practices

    NASA Astrophysics Data System (ADS)

    Johanning, E.

    1998-08-01

    Occupational long-term whole-body vibration (WBV) has been recognized as a major risk factor for low back disorders, one of the most important reasons for medical impairment and early permanent disability among mass transit operators. Although no firm health and safety vibration exposure threshold limits have been established, the available data suggests that rail vehicle operators would probably fall under the proposed WBV “action levels” of the EU directive provisions for protection from physical hazards. This provision calls for technical, administrative and medical controls. This paper examines and compares the current conditions, provisions and plans of two major mass transit systems, the New Yorker MTA and the Munich MVV. The available data, information and publications (English/German) on working conditions, vibration exposure, epidemiology and intervention strategies (primary and secondary prevention) for rail bound mass transit workers were reviewed. Results strongly suggest that the MTA transit system has currently and in the near future no effective and meaningful controls in place to significantly reduce the WBV exposure of subway operators. It appears that the MVV system has more and better control measures in place to reduce harmful effects of WBV. Results of a scientific evaluation of a participatory, collaborative project in the MVV system suggest that the MVV may have developed a successful method of a “condition prevention” (Verhältnisprävention)—and “behavioral prevention” (Verhaltensprävention) intervention strategy, which appears beneficial for WBV exposed workers with existing low back pain. Long-term outcomes and benefits need to be assessed further.

  1. Long-term effects of whole-body vibration on motor unit contractile function and myosin heavy chain composition in the rat medial gastrocnemius.

    PubMed

    ?ochy?ski, D; Kaczmarek, D; R?dowicz, M J; Celichowski, J; Krutki, P

    2013-12-01

    Structural and physiological mechanisms underling functional adaptations of a muscle to chronic whole-body vibration (WBV) are poorly understood. The study aimed at examining the contractile properties of motor units and the myosin heavy chain (MHC) expression in rat medial gastrocnemius muscle in response to 3- or 6-month periods of the WBV. The three-month WBV induced modifications of contractile properties principally in slow (S) and fast resistant to fatigue (FR) motor units. In S units an increase in the maximum tetanus force, a reduction in the twitch force and a decrease in the twitch-to-tetanus force ratio were found. In FR units a shortening in the twitch time parameters, a decrease in the twitch-to-tetanus ratio and an increase in the fatigue resistance were observed. In addition, a decrease in the type I and an increase in the type IIax MHC content were revealed. The six-month WBV caused a decrease in the twitch-to-tetanus force ratio in S and FR units. Other structural and physiological changes in MU properties previously seen were no longer apparent. In conclusion, responses to the long-term WBV stimulus vary between particular types of motor units, what suggests that multiple adaptive processes in muscle tissue are involved. PMID:24292613

  2. The development of an intervention programme to reduce whole-body vibration exposure at work induced by a change in behaviour: a study protocol

    PubMed Central

    Tiemessen, Ivo JH; Hulshof, Carel TJ; Frings-Dresen, Monique HW

    2007-01-01

    Background Whole body vibration (WBV) exposure at work is common and studies found evidence that this exposure might cause low back pain (LBP). A recent review concluded there is a lack of evidence of effective strategies to reduce WBV exposure. Most research in this field is focussed on the technical implications, although changing behaviour towards WBV exposure might be promising as well. Therefore, we developed an intervention programme to reduce WBV exposure in a population of drivers with the emphasis on a change in behaviour of driver and employer. The hypothesis is that an effective reduction in WBV exposure, in time, will lead to a reduction in LBP as WBV exposure is a proxy for an increased risk of LBP. Methods/Design The intervention programme was developed specifically for the drivers of vibrating vehicles and their employers. The intervention programme will be based on the most important determinants of WBV exposure as track conditions, driving speed, quality of the seat, etc. By increasing knowledge and skills towards changing these determinants, the attitude, social influence and self-efficacy (ASE) of both drivers and employers will be affected having an effect on the level of exposure. We used the well-known ASE model to develop an intervention programme aiming at a change or the intention to change behaviour towards WBV exposure. The developed programme consists of: individual health surveillance, an information brochure, an informative presentation and a report of the performed field measurements. Discussion The study protocol described is advantageous as the intervention program actively tries to change behaviour towards WBV exposure. The near future will show if this intervention program is effective by showing a decrease in WBV exposure. PMID:18005400

  3. Whole-Body Electromyostimulation to Fight Osteopenia in Elderly Females: The Randomized Controlled Training and Electrostimulation Trial (TEST-III)

    PubMed Central

    von Stengel, Simon; Bebenek, Michael

    2015-01-01

    Whole-body electromyostimulation (WB-EMS) has been shown to be effective in increasing muscle strength and mass in elderly women. Because of the interaction of muscles and bones, these adaptions might be related to changes in bone parameters. 76 community-living osteopenic women 70 years and older were randomly assigned to either a WB-EMS group (n = 38) or a control group (CG: n = 38). The WB-EMS group performed 3 sessions every 14 days for one year while the CG performed gymnastics containing identical exercises without EMS. Primary study endpoints were bone mineral density (BMD) at lumbar spine (LS) and total hip (thip) as assessed by DXA. After 54 weeks of intervention, borderline nonsignificant intergroup differences were determined for LS-BMD (WB-EMS: 0.6 ± 2.5% versus CG ?0.7 ± 2.5%, P = .051) but not for thip-BMD (WB-EMS: ?1.1 ± 1.9% versus CG: ?0.8 ± 2.3%, P = .771). With respect to secondary endpoints, there was a gain in lean body mass (LBM) of 1.5% (P = .006) and an increase in grip strength of 8.4% (P = .000) in the WB-EMS group compared to CG. WB-EMS effects on bone are less pronounced than previously reported effects on muscle mass. However, for subjects unable or unwilling to perform intense exercise programs, WB-EMS may be an option for maintaining BMD at the LS. PMID:25785225

  4. The effect of a whole body exercise programme and dragon boat training on arm volume and arm circumference in women treated for breast cancer.

    PubMed

    Lane, K; Jespersen, D; McKenzie, D C

    2005-09-01

    The purpose of this study was to examine the effect of a whole body exercise programme and dragon boat training on changes in arm volume in breast cancer survivors. A total of 16 female breast cancer survivors with no clinical history of lymphoedema volunteered. The 20-week exercise programme consisted of resistance and aerobic exercise with the addition of dragon boat training at week 8. Arm circumference at two sites (CIRC10, CIRC15), arm volume (VOL), and upper body strength (1-RM) were measured at baseline (T1), week 8 (T2), and week 20 (T3). All statistical tests were two-sided (alpha < or = 0.05). No significant differences between the ipsilateral and contralateral upper extremities at any of the three time points were found. All variables significantly increased from T1 to T3 (CIRC10: difference, d = 0.49 cm, 95% confidence interval, CI = 0.25-0.73, P = 0.000; CIRC15: d = 1.33 cm, CI = 0.78-1.88, P = 0.000; VOL: d = 100 mL, CI = 69-130, P = 0.000). As well, 1-RM significantly increased from T1 to T3 (d = 10.8 kg, CI = 5.6-16.1; P = 0.000). In summary, participation in a whole body exercise programme and dragon boat training resulted in a significant increase in upper extremity volume over time. However, the changes were consistent for both arms and the significant gain in upper body muscular strength likely accounted for the increase in arm volume. PMID:16098120

  5. Whole-body vibration as a mode of dyspnoea free physical activity: a community-based proof-of-concept trial

    PubMed Central

    2013-01-01

    Background The potential of whole-body vibration (WBV) as a mode of dyspnoea free physical activity for people with chronic obstructive pulmonary disease (COPD) is unknown among community-based settings. Furthermore, the acute effects of WBV on people with COPD have not been profiled in community-based settings. The aim of this community-based proof-of-concept trial was to describe acute effects of WBV by profiling subjective and objective responses to physical activity. Findings Seventeen community-dwelling older adults with COPD were recruited to participate in two sessions; WBV and sham WBV (SWBV). Each session consisted of five one-minute bouts interspersed with five one-minute passive rest periods. The gravitational force was ~2.5?g for WBV and ~0.0?g for SWBV. Reliability of baseline dyspnoea, heart rate, and oxygen saturation was first established and then profiled for both sessions. Acute responses to both WBV and SWBV were compared with repeated measures analysis of variance and repeated contrasts. Small changes in dyspnoea and oxygen saturation lacked subjective and clinical meaningfulness. One session of WBV and SWBV significantly increased heart rate (p???0.02), although there was no difference among WBV and SWBV (p?=?0.67). Conclusions This community-based proof-of-concept trial showed that a session of WBV can be completed with the absence of dyspnoea for people with COPD. Furthermore, there were no meaningful differences among WBV and SWBV for heart rate and oxygen saturation. There is scope for long-term community-based intervention research using WBV given the known effects of WBV on peripheral muscle function and functional independence. PMID:24209408

  6. Vibration or balance training on neuromuscular performance in osteopenic women.

    PubMed

    Stolzenberg, N; Belavý, D L; Rawer, R; Felsenberg, D

    2013-11-01

    Maintaining neuromuscular function in older age is an important topic for aging societies, especially for older women with low bone density who may be at risk of falls and bone fracture. This randomized controlled trial investigated the effect of resistive exercise with either whole-body vibration training (VIB) or coordination/balance training (BAL) on neuromuscular function (countermovement jump, multiple 1-leg hopping, sit-to-stand test). 68 postmenopausal women with osteopenia or osteoporosis were recruited for the study. 57 subjects completed the 9-month, twice weekly, intervention period. All subjects conducted 30?min of resistance exercise each training day. The VIB-group performed additional training on the Galileo vibration exercise device. The BAL-group performed balance training. An "intent-to-treat" analysis showed greater improvement in the VIB-group for peak countermovement power (p=0.004). The mean [95% confidence interval] effect size for this parameter was a ?+?0.9[0.3 to 1.5] W/kg greater change in VIB than BAL after 9 months. In multiple 1-leg hopping, a significantly better performance in the VIB-group after the intervention period was seen on a "per-protocol" analysis only. Both groups improved in the sit-to-stand test. The current study provides evidence that short-duration whole-body vibration exercise can have a greater impact on some aspects of neuromuscular function in post-menopausal women with low bone density than proprioceptive training. PMID:23549694

  7. Early Adolescence: Whole Body Learning.

    ERIC Educational Resources Information Center

    Cannon, Roger K., Jr.; Padilla, Michael J.

    1982-01-01

    "Whole body" denotes using the entire body to sense and experience a concept or idea. Typical whole body learning activities involve use of several senses: muscle sense, temperature, pain, pressure, and sense of equilibrium. Four whole body science activities are described, including identifying trees by touch. (Author/JN)

  8. [Strength training with superimposed vibrations].

    PubMed

    Schlumberger, A; Salin, D; Schmidtbleicher, D

    2001-03-01

    To examine the effects of strength training with superimposed vibrations ten subjects trained over a period of six weeks (three sessions per week) one leg with back squats and superimposed vibrations and the other leg with traditional squats. In each training session participants performed 4 sets with 8-12 repetitions. Before and after the training period maximum strength and rate of force development were measured. The results show that both training modes induced comparable and statistical significant increases in maximum strength (vibration training +6.5%, traditional training +6.2%. The slight increases in rate of force development in both groups didn't reach statistical significance. As a consequence it seems that strength training with superimposed vibrations for the leg extensor chain is not superior to a traditional training mode. PMID:11338657

  9. Hanford whole body counting manual

    SciTech Connect

    Palmer, H.E.; Rieksts, G.A.; Lynch, T.P.

    1990-06-01

    This document describes the Hanford Whole Body Counting Program as it is administered by Pacific Northwest Laboratory (PNL) in support of the US Department of Energy--Richland Operations Office (DOE-RL) and its Hanford contractors. Program services include providing in vivo measurements of internally deposited radioactivity in Hanford employees (or visitors). Specific chapters of this manual deal with the following subjects: program operational charter, authority, administration, and practices, including interpreting applicable DOE Orders, regulations, and guidance into criteria for in vivo measurement frequency, etc., for the plant-wide whole body counting services; state-of-the-art facilities and equipment used to provide the best in vivo measurement results possible for the approximately 11,000 measurements made annually; procedures for performing the various in vivo measurements at the Whole Body Counter (WBC) and related facilities including whole body counts; operation and maintenance of counting equipment, quality assurance provisions of the program, WBC data processing functions, statistical aspects of in vivo measurements, and whole body counting records and associated guidance documents. 16 refs., 48 figs., 22 tabs.

  10. Ground vibrations from heavy freight trains

    NASA Astrophysics Data System (ADS)

    Dawn, T. M.

    1983-03-01

    Ground vibration from heavy freight trains on good quality welded track are found to have only a weak dependence on train speed above 30 km/h. At the site on which these tests were carried out a critical speed was found at which the vibration reached a peak. The frequencies of vibration produced appear to be functions of track and vehicle dimensions and the critical speed occurs at the coincidence of sleeper passage frequency and the total vehicle on track resonance frequency.

  11. High-Intensity Interval Training with Vibration as Rest Intervals Attenuates Fiber Atrophy and Prevents Decreases in Anaerobic Performance

    PubMed Central

    Mueller, Sandro Manuel; Aguayo, David; Zuercher, Matthias; Fleischmann, Oliver; Boutellier, Urs; Auer, Maria; Jung, Hans H.; Toigo, Marco

    2015-01-01

    Aerobic high-intensity interval training (HIT) improves cardiovascular capacity but may reduce the finite work capacity above critical power (W?) and lead to atrophy of myosin heavy chain (MyHC)-2 fibers. Since whole-body vibration may enhance indices of anaerobic performance, we examined whether side-alternating whole-body vibration as a replacement for the active rest intervals during a 4x4 min HIT prevents decreases in anaerobic performance and capacity without compromising gains in aerobic function. Thirty-three young recreationally active men were randomly assigned to conduct either conventional 4x4 min HIT, HIT with 3 min of WBV at 18 Hz (HIT+VIB18) or 30 Hz (HIT+VIB30) in lieu of conventional rest intervals, or WBV at 30 Hz (VIB30). Pre and post training, critical power (CP), W?, cellular muscle characteristics, as well as cardiovascular and neuromuscular variables were determined. W? (?14.3%, P = 0.013), maximal voluntary torque (?8.6%, P = 0.001), rate of force development (?10.5%, P = 0.018), maximal jumping power (?6.3%, P = 0.007) and cross-sectional areas of MyHC-2A fibers (?6.4%, P = 0.044) were reduced only after conventional HIT. CP, V?O2peak, peak cardiac output, and overall capillary-to-fiber ratio were increased after HIT, HIT+VIB18, and HIT+VIB30 without differences between groups. HIT-specific reductions in anaerobic performance and capacity were prevented by replacing active rest intervals with side-alternating whole-body vibration, notably without compromising aerobic adaptations. Therefore, competitive cyclists (and potentially other endurance-oriented athletes) may benefit from replacing the active rest intervals during aerobic HIT with side-alternating whole-body vibration. Trial Registration ClinicalTrials.gov Identifier: NCT01875146 PMID:25679998

  12. WHOLE BODY COUNTING AND NEUTRON ACTIVATION ANALYSIS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition of the human body can be described using a number of different models. The most basic is the atomic model. This chapter describes several nuclear-based techniques that have been used to obtain direct in vivo chemical assays of the whole body of humans. In particular, the body's co...

  13. Whole body MRI in paediatric oncology.

    PubMed

    Canale, S; Vilcot, L; Ammari, S; Lemery, M; Bidault, F; Balleyguier, C; Caramella, C; Dromain, C

    2014-06-01

    Whole body MRI provides excellent contrast resolution imaging and is an interesting alternative to nuclear medicine examinations in paediatric oncology because it does not involve exposure to radiation. This technique, now feasible in clinical practice, helps to evaluate metastatic spread and response to treatment, which are of great prognostic interest. Numerous studies have demonstrated the non-inferiority of this technique when compared to nuclear medicine examinations. However, there is still a need to standardize indications in each type of cancer and at every stage of it. This article first discusses the technical principles of whole body MRI, then reviews current clinical applications for the modality in children, and finally, discusses future useful developments for paediatric oncology. PMID:24704147

  14. The acute effects of vibration training on balance and stability amongst soccer players.

    PubMed

    Cloak, Ross; Nevill, Alan; Wyon, Matthew

    2016-02-01

    Acute whole body vibration training (WBVT) is a tool used amongst coaches to improve performance prior to activity. Its effects on other fitness components, such as balance and stability, along with how different populations respond are less well understood. The aim of the current research is to determine the effect of acute WBVT on balance and stability amongst elite and amateur soccer players. Forty-four healthy male soccer players (22 elite and 22 amateur) were assigned to a treatment or control group. The intervention group then performed 3 × 60 seconds static squat on vibration platform at 40 Hz (±4 mm) with Y balance test (YBT) scores and dynamic postural stability index (DPSI) measured pre and post. DPSI was significantly lower in the elite players in the acute WBVT compared to amateur players (F1, 40= 6.80; P = 0.013). YBT anterior reach distance showed a significant improvement in both amateur and elite players in the acute WBVT group (F1, 40= 32.36; P < 0.001). The improvement in DPSI amongst the elite players indicates a difference in responses to acute high frequency vibration between elite and amateur players during a landing stability task. The results indicate that acute WBVT improves anterior YBT reach distances through a possible improvement in flexibility amongst both elite and amateur players. In conclusion, acute WBVT training appears to improve stability amongst elite soccer players in comparison to amateur players, the exact reasoning behind this difference requires further investigation. PMID:25357208

  15. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  16. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  17. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  18. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution of radionuclides in the body by means of a wide-aperture...

  19. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  20. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  1. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  2. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  3. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  4. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  5. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  6. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  7. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nuclear whole body scanner. 892.1330 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear whole body scanner is a device intended to measure and image the distribution...

  8. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nuclear whole body counter. 892.1130 Section 892...) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear whole body counter is a device intended to measure the amount of radionuclides in...

  9. Physical activity counteracts increased whole-body protein breakdown in chronic obstructive pulmonary disease patients.

    PubMed

    Petersen, A M W; Mittendorfer, B; Magkos, F; Iversen, M; Pedersen, B K

    2008-10-01

    Chronic obstructive pulmonary disease (COPD) is associated with increased whole body protein breakdown and low-grade systemic inflammation. We aimed to determine if physical training of patients with COPD induces anti-inflammatory effects and decreases whole-body protein breakdown. Nineteen subjects with severe (FEV(1)=31+/-1) COPD were randomized into a training group (n=9) and a control group (n=10). Twenty healthy subjects were studied for baseline comparison. The "COPD training" group participated in an outpatient rehabilitation program consisting of endurance training (walking at 85% of VO(2max)) twice weekly for 7 weeks plus daily home-based training. Maximum walking distance increased by almost 70% in the training group after 7 weeks of training. At baseline, the concentrations of C-reactive protein (CRP) and IL-18 in plasma were increased in subjects with COPD compared with healthy subjects (P<0.05) and leucine rate of appearance (R(a)) was approximately 15% greater (P<0.05) in subjects with COPD. Training had no effect on the plasma concentration of inflammatory markers but decreased leucine R(a) in subjects with COPD by approximately 10% (P<0.05). In conclusion, 7 weeks of physical training markedly improved endurance in patients with COPD and accelerated whole-body protein breakdown in patients with COPD was attenuated by physical training independent of changes in inflammatory markers. PMID:18067517

  10. Normative data for regional sweat sodium concentration and whole-body sweating rate in athletes.

    PubMed

    Baker, Lindsay B; Barnes, Kelly A; Anderson, Melissa L; Passe, Dennis H; Stofan, John R

    2016-02-01

    The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na(+)]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15-50°C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na(+)] on the dorsal mid-forearm. Whole-body sweat [Na(+)] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na(+)] and predicted whole-body sweat [Na(+)] were 43.6 ± 18.2 (12.6-104.8) mmol · L(-1) and 35.9 ± 10.4 (18.2-70.8) mmol · L(-1), respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26-5.73) L · h(-1) and 15.3 ± 6.8 (3.3-69.7) ml · kg(-1) · h(-1), respectively. This retrospective analysis provides normative data for athletes' forearm and predicted whole-body sweat [Na(+)] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions. PMID:26070030

  11. Whole-body Motion Planning Building Blocks for Intelligent Systems

    E-print Network

    Toussaint, Marc

    Chapter 1 Whole-body Motion Planning ­ Building Blocks for Intelligent Systems M. Gienger, M, we review some elements we consider to be important for a movement control and planning architecture. We first explain the whole-body control concept, which is the underlying basis for the subsequent

  12. Ground borne vibrations from high speed trains 

    E-print Network

    Connolly, David

    2013-11-28

    A consequence of high speed rail transportation is the generation of elevated ground borne vibrations. This thesis presents several original contributions towards the prediction of these vibrations. Firstly, a new three ...

  13. Estimating whole-body fish PCB concentrations from fillet data

    SciTech Connect

    Rigg, D.; Hohreiter, D.; Strause, K.; Brown, M.; Barnes, C.

    1995-12-31

    A study was designed to assess a potentially cost-effective method for generating both types of data from single fish specimens. The method is based on the testable hypothesis that whole-body PCE concentrations are predictable from fillet PCB concentrations and fillet and whole-body lipid concentrations. The study involved the collection of small-mouth bass (Micropterus dolomieui) and carp (Cyprinus carpio) from several locations in the Kalamazoo River (Michigan) watershed to represent a range in PCB exposure. PCB and lipid concentrations were determined in aliquots of homogenized fillets and remaining carcasses. Wet-weight total PCB concentrations in carp ranged from 0.06 to 17 mg/kg in fillets, and from 0.11 to 14 mg/kg for remaining carcass; small-mouth bass ranged from 0.08 to 5.8 mg/kg in fillets, and from 0.21 to 13.2 mg/kg for remaining carcass. Whole-body PCB concentrations predicted using fillet PCB concentrations and fillet and carcass lipid concentrations accounted for 94% and 88% of the variability in measured whole-body small-mouth and whole-body carp concentrations, respectively. Predicted and measured whole-body PCB concentrations had a correlation of 91% for small-mouth bass, and 84% for carp. These results demonstrate that value of the lipid-based model in predicting whole-body PCB concentrations from measured fillet PCB concentrations and lipid concentrations in fillet and remaining carcass.

  14. Design strategies for whole body interactive performance systems 

    E-print Network

    Lympouridis, Evangelos

    2012-01-01

    This practice-led research investigates a design framework within an artistic context for the implementation of Whole Body Interactive (WBI) performance systems that employ real-time motion capture technology. Following ...

  15. 21 CFR 892.1130 - Nuclear whole body counter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1130 Nuclear whole body counter. (a) Identification. A nuclear...

  16. 21 CFR 892.1330 - Nuclear whole body scanner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1330 Nuclear whole body scanner. (a) Identification. A nuclear...

  17. RANKL is downregulated in bone cells by physical activity (treadmill and vibration stimulation training) in rat with glucocorticoid-induced osteoporosis.

    PubMed

    Pichler, Karin; Loreto, Carla; Leonardi, Rosalia; Reuber, Tobias; Weinberg, Annelie Martina; Musumeci, Giuseppe

    2013-09-01

    The aim of this study was to investigate bone tissue and plasma levels of RANKL and OPG in rats with prednisolone-induced osteoporosis and to evaluate the outcomes of physical activity on the skeletal system by treadmill and vibration platform training. Osteoporosis is a disease characterised by low bone mass and structural deterioration of bone tissue leading to bone fragility. Vibration exercise is a new and effective measure to prevent muscular atrophy and osteoporosis. The animals were divided into 5 groups. 1: control rats; 2: rats with osteoporosis receiving prednisolone; 3: rats receiving prednisolone and treadmill training; 4: rats receiving prednisolone and vibration stimulation training; 5: rats receiving prednisolone, treadmill and vibration stimulation training. For bone evaluations we used whole-body scans, histology and histomorphometric analysis. RANKL and OPG expression was evaluated by immunohistochemistry and biochemical analysis. After treatment, our data demonstrated that RANKL expression was significantly increased in groups 2 and 3 and decreased in groups 4 and 5. Conversely, OPG expression was significantly decreased in groups 2 and 3 and increased in groups 4 and 5. In conclusion, our findings suggest that mechanical stimulation inhibits the activity of RANKL. This finding provides new insights into the occurrence and progression of osteoporosis. PMID:23553492

  18. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting

    SciTech Connect

    James, H.M.; Fabricius, P.J.; Dykes, P.W.

    1987-09-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition.

  19. Measurement of whole body cellular and collagen nitrogen, potassium, and other elements by neutron activation and whole body counting.

    PubMed

    James, H M; Fabricius, P J; Dykes, P W

    1987-01-01

    Whole body nitrogen can be measured by neutron activation analysis with an acceptable radiation dose; it is an index of body protein which, in normal subjects, is 65% cellular protein and 35% extracellular connective collagen. Whole body potassium can be measured by whole body counting without irradiating the subject; it is an index of body cell mass. We measured whole body nitrogen, potassium, extracellular water, intracellular water, and fat-folds. The differences between 37 malnourished patients and five normal subjects suggested that the patients had 9 kg less cell mass than normal, but no difference in extracellular mass. Measurements were made on eight patients before and after 14 days of total parenteral nutrition; balance of nitrogen intake and excretion also was measured. The changes were consistent with mean increases of 3 kg of cellular mass and 3 kg of fat with no change of extracellular mass. The accuracy and sensitivity of the whole body measurements need further confirmation for use in patients with changing body composition. Where tissue wasting is largely from the cellular compartment, potassium could be a more sensitive index of wasting than nitrogen. Multielement analysis of nitrogen, potassium, chlorine, and carbon will probably be valuable in elucidating body composition in malnutrition. PMID:3118069

  20. Whole body MRI and PET/CT in haematological malignancies

    PubMed Central

    Lin, Chieh; Luciani, Alain; Itti, Emmanuel; Haioun, Corinne

    2007-01-01

    Abstract The usefulness of whole body magnetic resonance imaging (MRI) and positron emission tomography (PET)/computed tomography (CT) in haematological malignancies is reviewed. PET/CT combining functional and anatomical information is currently a valuable tool in the management of patients with lymphoma, especially in the assessment of early treatment response. MRI is advantageous in evaluating bone marrow involvement and therefore plays an important role in clinical decision making for patients with myeloma. The development of whole body functional MR studies is underway and can potentially complement the PET/CT for better patient care. PMID:17921084

  1. Theoretical and experimental study of vibration, generated by monorail trains

    NASA Astrophysics Data System (ADS)

    Rybak, Samuil A.; Makhortykh, Sergey A.; Kostarev, Stanislav A.

    2002-11-01

    Monorail transport as all other city transport vehicles is the source of high noise and vibration levels. It is less widespread than cars or underground transport but its influence in modern cities enhances. Now in Moscow the first monorail road with trains on tires is designed, therefore the problem of vibration and noise assessments and prediction of its impact on the residential region appears. To assess the levels of generated vibration a physical model of interaction in the system wagon-tire-road coating-viaduct-soil has been proposed and then numerically analyzed. The model is based on the known from publications facts of automobile transport vibration and our own practice concerning underground trains vibration generation. To verify computer simulation results and adjust model parameters the series of measurements of noise and vibration near experimental monorail road was carried out. In the report the results of calculations and measurements will be presented and some outcomes of possible acoustical ecologic situation near monorail roads will be proposed.

  2. Student Attitudes to Whole Body Donation Are Influenced by Dissection

    ERIC Educational Resources Information Center

    Cahill, Kevin C.; Ettarh, Raj R.

    2008-01-01

    Given the important role that anatomical dissection plays in the shaping of medical student attitudes to life and death, these attitudes have not been evaluated in the context of whole body donation for medical science. First year students of anatomy in an Irish university medical school were surveyed by questionnaire before and after the initial…

  3. Small-animal whole-body photoacoustic tomography: a review

    PubMed Central

    Xia, Jun; Wang, Lihong V.

    2014-01-01

    With the wide use of small animals for biomedical studies, in vivo small-animal whole-body imaging plays an increasingly important role. Photoacoustic tomography (PAT) is an emerging whole-body imaging modality that shows great potential for preclinical research. As a hybrid technique, PAT is based on the acoustic detection of optical absorption from either endogenous tissue chromophores, such as oxy-hemoglobin and deoxy-hemoglobin, or exogenous contrast agents. Because ultrasound scatters much less than light in tissue, PAT generates high-resolution images in both the optical ballistic and diffusive regimes. Using near-infrared light, which has relatively low blood absorption, PAT can image through the whole body of small animals with acoustically defined spatial resolution. Anatomical and vascular structures are imaged with endogenous hemoglobin contrast, while functional and molecular images are enabled by the wide choice of exogenous optical contrasts. This paper reviews the rapidly growing field of small-animal whole-body PAT and highlights studies done in the past decade. PMID:24108456

  4. REGIONAL AND WHOLE BODY COMPOSITION AND BIOELECTRICAL IMPEDANCE ANALYSIS (BIA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study determined the symmetry of regional (half) body composition and then related any dissymmetry to differences in bioelectrical impedance (Z). Seventy-three volunteers (45 women, 28 men) were measured for whole body Z at 50 kHz and body composition by pencil beam dual x-ray absorptiometry. Z...

  5. Aerobic fitness level does not modulate changes in whole-body protein turnover produced by unaccustomed increases in energy expenditure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of a sudden increase in energy expenditure (EE) on whole-body protein turnover vary between studies, and the possibility that fitness level modulates those responses has not been fully investigated. We hypothesized that aerobically trained individuals may exhibit adaptations that protec...

  6. History and development of whole body counting in Brazil

    SciTech Connect

    Paschoa, A.S.; Nogueira de Oliveira, C.A.; Lourenco, M.C.; Lipsztein, J.L.; Guidicini, O.Y.M.; Antunes, I.M.

    1993-12-31

    The first whole body counter (WBC) built in Brazil used sugar as shielding material, and for this reason became internationally known as the {open_quotes}Sugar Bowl.{close_quotes} The main purpose of building that first WBC was to detect natural gamma emitters other than {sup 40}K in the inhabitants of Guarapari, then a small fishing village with a population not greater than 6,000 people, suspected of having long-lived contamination with natural radionuclides of the {sup 232}Th and {sup 238}U series. However, the Sugar Bowl was also used to whole body count the workers of a gas mantle factory. This paper reviews the history behind the construction and uses of the Sugar Bowl, as well as presents a brief view of the basic characteristics of the subsequent WBCs built in Brazil. A total of 12 WBCs have been in existence in this country until today.

  7. The development of a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Kay, F. J.

    1973-01-01

    The whole-body algorithm is envisioned as a mathematical model that utilizes human physiology to simulate the behavior of vital body systems. The objective of this model is to determine the response of selected body parameters within these systems to various input perturbations, or stresses. Perturbations of interest are exercise, chemical unbalances, gravitational changes and other abnormal environmental conditions. This model provides for a study of man's physiological response in various space applications, underwater applications, normal and abnormal workloads and environments, and the functioning of the system with physical impairments or decay of functioning components. Many methods or approaches to the development of a whole-body algorithm are considered. Of foremost concern is the determination of the subsystems to be included, the detail of the subsystems and the interaction between the subsystems.

  8. Whole-body diffusion-weighted imaging in lymphoma

    PubMed Central

    Itti, E.; Luciani, A.; Haioun, C.; Meignan, M.

    2010-01-01

    Abstract The current evidence regarding the usefulness of whole-body diffusion-weighted magnetic resonance imaging (DWI) in lymphoma is reviewed. DWI is capable of combining anatomical and functional information and is becoming a valuable tool in oncology, in particular for staging purposes. DWI may prove to be a useful biomarker in clinical decision making for patients with lymphoma. Large-scaled prospective studies are needed to confirm these preliminary results. PMID:20880782

  9. Five-Day Whole-Body Cryostimulation, Blood Inflammatory Markers, and Performance in High-Ranking Professional Tennis Players

    PubMed Central

    Ziemann, Ewa; Olek, Robert Antoni; Kujach, Sylwester; Grzywacz, Tomasz; Antosiewicz, J?drzej; Garsztka, Tomasz; Laskowski, Rados?aw

    2012-01-01

    Context Tournament season can provoke overreaching syndrome in professional tennis players, which may lead to deteriorated performance. Thus, appropriate recovery methods are crucial for athletes in order to sustain high-level performance and avoid injuries. We hypothesized that whole-body cryostimulation could be applied to support the recovery process. Objective To assess the effects of 5 days of whole-body cryostimulation combined with moderate-intensity training on immunologic, hormonal, and hematologic responses; resting metabolic rate; and tennis performance in a posttournament season. Design Controlled laboratory study. Setting National Olympic Sport Centre. Patients or Other Participants Twelve high-ranking professional tennis players. Intervention(s) Participants followed a moderate-intensity training program. A subgroup was treated with the 5-day whole-body cryostimulation (?120°C) applied twice a day. The control subgroup participated in the training only. Main Outcome Measure(s) Pretreatment and posttreatment blood samples were collected and analyzed for tumor necrosis factor ?, interleukin 6, testosterone, cortisol, and creatine kinase. Resting metabolic rate and performance of a tennis drill were also assessed. Results Proinflammatory cytokine (tumor necrosis factor ?) decreased and pleiotropic cytokine (interleukin 6) and cortisol increased in the group exposed to cryostimulation. In the same group, greater stroke effectiveness during the tennis drill and faster recovery were observed. Neither the training program nor cryostimulation affected resting metabolic rate. Conclusions Professional tennis players experienced an intensified inflammatory response after the completed tournament season, which may lead to overreaching. Applying whole-body cryostimulation in conjunction with moderate-intensity training was more effective for the recovery process than the training itself. The 5-day exposure to cryostimulation twice a day ameliorated the cytokine profile, resulting in a decrease in tumor necrosis factor ? and an increase in interleukin 6. PMID:23182015

  10. Superconducting magnets for whole body magnetic resonance imaging

    SciTech Connect

    Murphy, M.F.

    1989-03-01

    Superconducting magnets have achieved preeminence in the magnetic resonance imaging (MRI) industry. Further growth in this market will depend on reducing system costs, extending medical applications, and easing the present siting problem. New magnet designs from Oxford address these issues. Compact magnets are economical to build and operate. Two 4 Tesla whole body magnets for research in magnetic resonance spectroscopy (MRS) are now in operation. Active-Shield magnets, by drastically reducing the magnetic fringe fields, will allow MRI systems with superconducting magnets to be located in previously inaccessible sites.

  11. Physiological responses during whole body suspension of adult rats

    NASA Technical Reports Server (NTRS)

    Steffen, J. M.; Fell, R. D.; Musacchia, X. J.

    1987-01-01

    The objective of this study was to characterize responses of adult rats to one and two weeks of whole body suspension. Body weights and food and water intakes were initially reduced during suspension, but, while intake of food and water returned to presuspension levels, body weight remained depressed. Diuresis was evident, but only during week two. Hindlimb muscle responses were differential, with the soleus exhibiting the greatest atrophy and the EDL a relative hypertrophy. These findings suggest that adult rats respond qualitatively in a manner similar to juveniles during suspension.

  12. Ground vibration generated by trains in underground tunnels

    NASA Astrophysics Data System (ADS)

    Forrest, J. A.; Hunt, H. E. M.

    2006-07-01

    A popular method used to reduce vibration transmitted from underground railways into nearby buildings is floating-slab track, whereby a concrete slab supporting the two rails is mounted on rubber bearings or steel springs to isolate it from the tunnel invert. This paper adds a track model to a previously developed three-dimensional tunnel model in order to assess the effectiveness of floating-slab track. A slab beam coupled to the tunnel in the wavenumber domain, with the slab bearings represented by an elastic layer, is examined first. A second beam representing the two rails together is then coupled to the slab, and axle masses representing a train are added to the rail beam. Power-spectral densities and RMS levels of soil vibration due to random roughness-displacement excitation between the masses and the rail beam are calculated. Analytical techniques are used to minimise the computational requirements of the model. The results demonstrate the inadequacy of simple mass-spring and Winkler-beam models with rigid foundations for the assessment of the vibration-isolation performance of railway track. They suggest that the achievable insertion loss is modest and that floating the track slab may in fact cause increased transmission of vibration under certain conditions.

  13. Whole-Body Motion Planning for Pivoting Based Manipulation by Humanoids

    E-print Network

    Lamiraux, Florent

    Whole-Body Motion Planning for Pivoting Based Manipulation by Humanoids Eiichi Yoshida, Mathieu here a whole-body motion planner that allows a humanoid robot to autonomously plan a pivoting strategy manipulations involving the whole-body and fine coordination between legs, arms and torso motions. We introduce

  14. Whole-body Motion Planning with Centroidal Dynamics and Full Kinematics

    E-print Network

    Tedrake, Russ

    Whole-body Motion Planning with Centroidal Dynamics and Full Kinematics Hongkai Dai, Andr´es Valenzuela and Russ Tedrake Abstract-- To plan dynamic, whole-body motions for robots, one conventionally for this is the difficulty in planning complex whole-body dynamic motions at interac- tive rates when the environment

  15. Whole-Body Task Planning for a Humanoid Robot: a Way to Integrate Collision Avoidance

    E-print Network

    Lamiraux, Florent

    Whole-Body Task Planning for a Humanoid Robot: a Way to Integrate Collision Avoidance S. Whole-Body Task Motion Planning The problem of inverse kinematics for a humanoid robot, or any be taken care of. [12] proposes a whole-body motion planning method that deals with obstacle avoidance

  16. Kinetic Brain Analysis and Whole-Body Imaging in Monkey of [11

    E-print Network

    Pike, Victor W.

    Kinetic Brain Analysis and Whole-Body Imaging in Monkey of [11 C]MNPA: A Dopamine Agonist]MNPA to human subjects based on whole-body imaging in monkeys. Brain PET scans were acquired for 90 min thigh. Regions of interest were drawn on compressed planar whole-body images to identify organs

  17. Fast-response whole body indirect calorimeters for infants.

    PubMed

    Moon, J K; Jensen, C L; Butte, N F

    1993-01-01

    Portable whole body indirect calorimeters were constructed for full-term (2.5- to 8-kg) and preterm (1- to 2.5-kg) infants. A new calibration system significantly increased the accuracy of flowmeters and gas analyzers. Performance tests with N2 and CO2 infusions and butane combustion demonstrated that the error of individual measurements of O2 consumption and CO2 production were within +/- 2%. The measured error was close to the theoretical uncertainty of approximately +/- 1% calculated from test results of the flowmeters and gas analyzers. System response to a step change in butane combustion rate exceeded 90% within 2 min. Error of +/- 2% and response of 2 min are likely to be the practical lower limits for whole body infant indirect calorimeters with current technology. The calorimeters demonstrated a rapid increase in O2 consumption after feeding (preterm infants) and in the transition from non-rapid-eye-movement to rapid-eye-movement sleep stages (full-term infants). PMID:8444731

  18. Further studies of human whole-body radiofrequency absorption rates.

    PubMed

    Hill, D A

    1985-01-01

    Further studies of human whole-body radiofrequency (RF) absorption rates were carried out using a TEM-cell exposure system. Experiments were done at one frequency near the grounded resonance frequency (approximately 40 MHz), and at several below-resonance frequencies. Absorption rates are small for the K and H orientations of the body, even when grounded. For the body trunk in an E orientation, the absorption rate of a sitting person is about half of the rate for the same person standing with arms at the sides; the latter in turn is about half the rate for the same subject standing with arms over the head. Two-body interactions cause no increase in absorption rates for grounded people. They do, however, increase the absorption rates for subjects in an E orientation in free space; the largest interaction occurs when one subject is lambda/2 behind the other (as seen by the incident wave). When these results are applied to practical occupational exposure situations, the whole-body specific absorption rate does not exceed the ANSI limit of 0.4 W/kg for exposures permitted by the ANSI standard (C95.1-1982) at frequencies from 7 to 40 MHz. PMID:3977967

  19. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy. PMID:24937778

  20. A Portable Stereo Vision System for Whole Body Surface Imaging

    PubMed Central

    Yu, Wurong; Xu, Bugao

    2009-01-01

    This paper presents a whole body surface imaging system based on stereo vision technology. We have adopted a compact and economical configuration which involves only four stereo units to image the frontal and rear sides of the body. The success of the system depends on a stereo matching process that can effectively segment the body from the background in addition to recovering sufficient geometric details. For this purpose, we have developed a novel sub-pixel, dense stereo matching algorithm which includes two major phases. In the first phase, the foreground is accurately segmented with the help of a predefined virtual interface in the disparity space image, and a coarse disparity map is generated with block matching. In the second phase, local least squares matching is performed in combination with global optimization within a regularization framework, so as to ensure both accuracy and reliability. Our experimental results show that the system can realistically capture smooth and natural whole body shapes with high accuracy. PMID:20161620

  1. Between-centre variability versus variability over time in DXA whole body measurements evaluated using a whole body phantom.

    PubMed

    Louis, Olivia; Verlinde, Siska; Thomas, Muriel; De Schepper, Jean

    2006-06-01

    This study aimed to compare the variability of whole body measurements, using dual energy X-ray absorptiometry (DXA), among geographically distinct centres versus that over time in a given centre. A Hologic-designed 28 kg modular whole body phantom was used, including high density polyethylene, gray polyvinylchloride and aluminium. It was scanned on seven Hologic QDR 4500 DXA devices, located in seven centres and was also repeatedly (n=18) scanned in the reference centre, over a time span of 5 months. The mean between-centre coefficient of variation (CV) ranged from 2.0 (lean mass) to 5.6% (fat mass) while the mean within-centre CV ranged from 0.3 (total mass) to 4.7% (total area). Between-centre variability compared well with within-centre variability for total area, bone mineral content and bone mineral density, but was significantly higher for fat (p<0.001), lean (p<0.005) and total mass (p<0.001). Our results suggest that, even when using the same device, the between-centre variability remains a matter of concern, particularly where body composition is concerned. PMID:16513312

  2. Learning new parts for landmark localization in whole-body CT scans.

    PubMed

    Potesil, Vaclav; Kadir, Timor; Brady, Michael

    2014-04-01

    The goal of this work is to reliably and accurately localize anatomical landmarks in 3-D computed tomography scans, particularly for the deformable registration of whole-body scans, which show huge variation in posture, and the spatial distribution of anatomical features. Parts-based graphical models (GM) have shown attractive properties for this task because they capture naturally anatomical relationships between landmarks. Unfortunately, standard GMs are learned from manually annotated training images and the quantity of landmarks is limited by the high cost of expert annotation. We propose a novel method that automatically learns new corresponding landmarks from a database of 3-D whole-body CT scans, using a limited initial set of expert-labeled ground-truth landmarks. The newly learned landmarks, called B-landmarks, are used to build enriched GMs. We compare our method of deformable registration based on such GM landmarks to a conventional deformable registration method and to a "baseline" state-of-the-art GM. The results show our method finds new relevant anatomical correspondences and improves by up to 35% the matching accuracy of highly variable skeletal and soft-tissue landmarks of clinical interest. PMID:24710153

  3. Suitability of Kinect for measuring whole body movement patterns during exergaming.

    PubMed

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J; Postema, Klaas; Verkerke, Gijsbertus J; Lamoth, Claudine J C

    2014-09-22

    Exergames provide a challenging opportunity for home-based training and evaluation of postural control in the elderly population, but affordable sensor technology and algorithms for assessment of whole body movement patterns in the home environment are yet to be developed. The aim of the present study was to evaluate the use of Kinect, a commonly available video game sensor, for capturing and analyzing whole body movement patterns. Healthy adults (n=20) played a weight shifting exergame under five different conditions with varying amplitudes and speed of sway movement, while 3D positions of ten body segments were recorded in the frontal plane using Kinect and a Vicon 3D camera system. Principal Component Analysis (PCA) was used to extract and compare movement patterns and the variance in individual body segment positions explained by these patterns. Using the identified patterns, balance outcome measures based on spatiotemporal sway characteristics were computed. The results showed that both Vicon and Kinect capture >90% variance of all body segment movements within three PCs. Kinect-derived movement patterns were found to explain variance in trunk movements accurately, yet explained variance in hand and foot segments was underestimated and overestimated respectively by as much as 30%. Differences between both systems with respect to balance outcome measures range 0.3-64.3%. The results imply that Kinect provides the unique possibility of quantifying balance ability while performing complex tasks in an exergame environment. PMID:25173920

  4. Whole-Body MRI in Children: Current Imaging Techniques and Clinical Applications

    PubMed Central

    2015-01-01

    Whole-body magnetic resonance imaging (MRI) is increasingly used in children to evaluate the extent and distribution of various neoplastic and non-neoplastic diseases. Not using ionizing radiation is a major advantage of pediatric whole-body MRI. Coronal and sagittal short tau inversion recovery imaging is most commonly used as the fundamental whole-body MRI protocol. Diffusion-weighted imaging and Dixon-based imaging, which has been recently incorporated into whole-body MRI, are promising pulse sequences, particularly for pediatric oncology. Other pulse sequences may be added to increase diagnostic capability of whole-body MRI. Of importance, the overall whole-body MRI examination time should be less than 30-60 minutes in children, regardless of the imaging protocol. Established and potentially useful clinical applications of pediatric whole-body MRI are described. PMID:26355493

  5. Vibration Platform Training in Women at Risk for Symptomatic Knee Osteoarthritis

    PubMed Central

    Segal, Neil A.; Glass, Natalie A.; Shakoor, Najia; Wallace, Robert

    2013-01-01

    Objective To determine whether a platform exercise program with vibration is more effective than the platform exercise alone for improving lower limb muscle strength and power in women age 45-60 with risk factors for knee osteoarthritis (OA). Design Randomized, controlled study Setting Academic center Participants 48 women age 45-60 years old with risk factors for knee OA (history of knee injury or surgery or BMI?25kg/m2). Interventions Subjects were randomized to a twice weekly lower limb exercise program (quarter squat, posterolateral leg lifts, calf raises) on either a vertically vibrating (35Hz, 2mm), or a non-vibrating platform. Main Outcome Measurements The main outcome measures included change in isokinetic quadriceps strength, leg press power, and stair climb power by 12 weeks. Results 39 out of 48 enrolled participants completed the study (26 vibration and 13 control exercise). Nine participants discontinued the study after randomization mainly due to lack of time. There were no intergroup differences in age, BMI, or activity level. Isokinetic knee extensor strength did not significantly improve in either group. Leg press power improved by 92.0±69.7 W in the vibration group (p<.0001) and 58.2±96.2 W in the control group (p=0.0499), but did not differ between groups (p=0.2262). Stair climb power improved by 53.4±64.7 W in the vibration group (p=0.0004) and 55.7±83.3 W in the control group (p=0.0329), but did not differ between groups (p=0.9272). Conclusions Whole body vibration platforms have been marketed for increasing strength and power. In this group of asymptomatic middle-aged women with risk factors for knee OA, addition of vibration to a 12-week exercise program did not result in significantly greater improvement in lower limb strength or power than participation in the exercise program without vibration. PMID:22981005

  6. A hybrid modelling approach for predicting ground vibration from trains

    NASA Astrophysics Data System (ADS)

    Triepaischajonsak, N.; Thompson, D. J.

    2015-01-01

    The prediction of ground vibration from trains presents a number of difficulties. The ground is effectively an infinite medium, often with a layered structure and with properties that may vary greatly from one location to another. The vibration from a passing train forms a transient event, which limits the usefulness of steady-state frequency domain models. Moreover, there is often a need to consider vehicle/track interaction in more detail than is commonly used in frequency domain models, such as the 2.5D approach, while maintaining the computational efficiency of the latter. However, full time-domain approaches involve large computation times, particularly where three-dimensional ground models are required. Here, a hybrid modelling approach is introduced. The vehicle/track interaction is calculated in the time domain in order to be able t account directly for effects such as the discrete sleeper spacing. Forces acting on the ground are extracted from this first model and used in a second model to predict the ground response at arbitrary locations. In the present case the second model is a layered ground model operating in the frequency domain. Validation of the approach is provided by comparison with an existing frequency domain model. The hybrid model is then used to study the sleeper-passing effect, which is shown to be less significant than excitation due to track unevenness in all the cases considered.

  7. Applications of quantitative whole body autoradiographic technique in radiopharmaceutical research

    SciTech Connect

    Som, P.; Oster, Z.H.; Yonekura, Y.; Meyer, M.A.; Fand, I.; Brill, A.B.

    1982-01-01

    The routine evaluation of radiopharmaceuticals involves dissecting tissue distribution studies (DTDS) and gamma or positron imaging. DTDS have the following disadvantages: since not all tissues can always be sampled, sites of radiopharmaceutical uptake may be missed and because the procedure involves weighing of dissected tissue samples, the spatial resolution of this method is low and determined by the smallest amount that can be weighed accurately. Gamma camera imaging and positron emission tomography though more comprehensive in evaluating the global distribution of a compound, have relative low spatial resolution. Whole body autoradiography of small animals has a much higher spatial resolution as compared to the above and depicts the global distribution of radiopharmaceuticals. A computer-assisted quantification method of WBARG applied to positron, beta, and gamma emitters will complement the method by producing quantitative values comparable to those obtained by dissection and direct tissue counting, with the advantages of depicting the global distribution at high spatial resolution.

  8. Integrated Whole Body MR/PET: Where Are We?

    PubMed Central

    Yoo, Hye Jin; Lee, Jae Sung

    2015-01-01

    Whole body integrated magnetic resonance imaging (MR)/positron emission tomography (PET) imaging systems have recently become available for clinical use and are currently being used to explore whether the combined anatomic and functional capabilities of MR imaging and the metabolic information of PET provide new insight into disease phenotypes and biology, and provide a better assessment of oncologic diseases at a lower radiation dose than a CT. This review provides an overview of the technical background of combined MR/PET systems, a discussion of the potential advantages and technical challenges of hybrid MR/PET instrumentation, as well as collection of possible solutions. Various early clinical applications of integrated MR/PET are also addressed. Finally, the workflow issues of integrated MR/PET, including maximizing diagnostic information while minimizing acquisition time are discussed. PMID:25598673

  9. Whole-body mathematical model for simulating intracranial pressure dynamics

    NASA Technical Reports Server (NTRS)

    Lakin, William D. (Inventor); Penar, Paul L. (Inventor); Stevens, Scott A. (Inventor); Tranmer, Bruce I. (Inventor)

    2007-01-01

    A whole-body mathematical model (10) for simulating intracranial pressure dynamics. In one embodiment, model (10) includes 17 interacting compartments, of which nine lie entirely outside of intracranial vault (14). Compartments (F) and (T) are defined to distinguish ventricular from extraventricular CSF. The vasculature of the intracranial system within cranial vault (14) is also subdivided into five compartments (A, C, P, V, and S, respectively) representing the intracranial arteries, capillaries, choroid plexus, veins, and venous sinus. The body's extracranial systemic vasculature is divided into six compartments (I, J, O, Z, D, and X, respectively) representing the arteries, capillaries, and veins of the central body and the lower body. Compartments (G) and (B) include tissue and the associated interstitial fluid in the intracranial and lower regions. Compartment (Y) is a composite involving the tissues, organs, and pulmonary circulation of the central body and compartment (M) represents the external environment.

  10. An analytical model for ground vibrations from accelerating trains

    NASA Astrophysics Data System (ADS)

    Karlström, Anders

    2006-06-01

    An analytical approach is used to investigate ground vibrations due to accelerating and decelerating trains. The ground is modelled as a stratified half-space with linearly viscoelastic layers. On top of the ground, a rectangular embankment is placed, supporting the rails and the sleepers. The rails are modelled as Euler-Bernoulli beams where the propagating forces (wheel loads) are acting and the sleepers are modelled with an anisotropic Kirchhoff plate. The solution is based on Fourier transforms in time and along the track. In the transverse direction the field in the embankment is developed in Fourier series and the fields in the ground with Fourier transforms. The resulting numerical scheme is efficient and displacements for a wide frequency spectrum can be considered. Numerical examples are given for an X2 train that operates at the site Ledsgard in Sweden. In particular, the effects of the wheel traction from the driving wheel pairs or the braking wheels (all wheels) are accounted for. The results at some instantaneous train speeds are compared to corresponding constant train speeds.

  11. Effects of Low-Volume, High-Intensity Whole-Body Calisthenics on Army ROTC Cadets.

    PubMed

    Gist, Nicholas H; Freese, Eric C; Ryan, Terence E; Cureton, Kirk J

    2015-05-01

    Our objective was to determine the effects of high-intensity interval training (HIT) on fitness in Army Reserve Officers' Training Corps cadets. Twenty-six college-aged (20.5 ± 1.7 years) participants completed 4 weeks of exercise training 3 days · wk(-1) consisting of either approximately 60 minutes of typical physical training or HIT whole-body calisthenics involving 4 to 7 sets of 30-second "all out" burpees separated by 4 minutes of active recovery. Several pre- and postintervention fitness variables were compared. We observed no changes across time or differences between groups in aerobic capacity, anaerobic capacity, or Army Physical Fitness Test performance (p > 0.05). However, there was a significant Group × Time interaction (p = 0.015) for skeletal muscle mitochondrial function (Tc: time constant of recovery). For the typical physical training group, we observed improved mitochondrial function (Tc decreased 2.4 ± 4.6 seconds; Cohen's d = -0.51); whereas, mitochondrial function decreased in HIT (Tc increased 2.4 ± 4.6 seconds; d = 0.50). HIT sustained fitness despite the short duration and reduced volume of activity. A program that includes HIT as part of a larger program may be well suited for maintaining fitness in moderately trained armed forces personnel without access to equipment. PMID:25939101

  12. Modelling and simulation of an infant's whole body plethysmograph.

    PubMed

    Amezzane, Ilham; Awada, Ali; Sawan, Mohamad; Bellemare, François

    2006-09-01

    In this paper, we describe a computational model dedicated to building an apnoea monitoring system for newborn babies. The proposed model is based on whole body plethysmography, which involves non-invasive measurement of lung ventilation indirectly from the pressure deflections generated when a subject breathes inside a chamber of fixed volume (Bert in C R Soc Biol Paris 20:22-23, 1868). The computational model simulates thermal and environmental flow conditions occurring in the neonate chamber, especially steady state flow with heat transfer and carbon dioxide (CO2) transport during the exhalation phase. This permits the variance of all critical parameters and the analysis of their effects on the distributions of interest. The main objective is to study thermal and air quality comfort conditions under which infants can be monitored for long-term periods. The method deploys computational fluid dynamics techniques and parametric modelling which, by allowing input parameters to be modulated, represent a more efficient and flexible analytical tool than previous experimental techniques. Simulation data reveal that the largest flow rates occur in areas near the openings with slight formation of air recirculation zones; temperature distribution shows signs of stratification, with higher temperatures than the supplied air, CO2 distribution presents acceptable air quality level and predicted mean vote index affords a relatively acceptable thermal comfort level. This analytical approach can be considered as innovative, and can find a new application in clinical infant apnoea monitoring in a way that allows determination of the optimal location for placing a sensor to detect respiration activity without any contact with the infant's body, and without any risk, in contrast to available whole body plethysmography techniques previously tested in infants (Fleming et al. in J Appl Physiol 55:1924-1931, 1983). PMID:16941102

  13. Whole-body cryotherapy: empirical evidence and theoretical perspectives.

    PubMed

    Bleakley, Chris M; Bieuzen, François; Davison, Gareth W; Costello, Joseph T

    2014-01-01

    Whole-body cryotherapy (WBC) involves short exposures to air temperatures below -100°C. WBC is increasingly accessible to athletes, and is purported to enhance recovery after exercise and facilitate rehabilitation postinjury. Our objective was to review the efficacy and effectiveness of WBC using empirical evidence from controlled trials. We found ten relevant reports; the majority were based on small numbers of active athletes aged less than 35 years. Although WBC produces a large temperature gradient for tissue cooling, the relatively poor thermal conductivity of air prevents significant subcutaneous and core body cooling. There is weak evidence from controlled studies that WBC enhances antioxidant capacity and parasympathetic reactivation, and alters inflammatory pathways relevant to sports recovery. A series of small randomized studies found WBC offers improvements in subjective recovery and muscle soreness following metabolic or mechanical overload, but little benefit towards functional recovery. There is evidence from one study only that WBC may assist rehabilitation for adhesive capsulitis of the shoulder. There were no adverse events associated with WBC; however, studies did not seem to undertake active surveillance of predefined adverse events. Until further research is available, athletes should remain cognizant that less expensive modes of cryotherapy, such as local ice-pack application or cold-water immersion, offer comparable physiological and clinical effects to WBC. PMID:24648779

  14. Whole-body counting in the Marshall Islands

    SciTech Connect

    Sun, L.C.; Clinton, J.; Kaplan, E.; Meinhold, C.B.

    1991-01-01

    In 1978 the Marshall Islands Radiological Safety Program was organized to perform radiation measurements and assess radiation doses for the people of the Bikini, Enewetak, Rongelap and Utirik Atolls. One of the major field components of this program is whole- body counting (WBC). WBC is used to monitor the quantity of gamma- emitting radionuclides present in individuals. A primary objective of the program was to establish {sup 137}Cesium body contents among the Enewetak, Rongelap and Utirik populations. {sup 137}Cs was the only gamma-emitting fission radionuclide detected in the 1,967 persons monitored. {sup 137}Cs body burdens tended to increase with age for both sexes, and were higher in males. The average {sup 137}Cs dose Annual Effective Dose for the three populations was as follows: For Enewetak, the dose was 22{+-}4 {mu}Sv. For Utirik, the dose was 33{+-} 3 {mu}Sv. Since 1985 the Rongelap people have been self-exiled to Mejatto. Biological elimination should have reduced their dose to virtually zero, and the measured dose was 2{+-}2 {mu}Sv. If they had remained on Rongelap Island, the calculated dose would have been 99 {mu}Sv, which is about one-third of the background dose. 7 refs., 1 tab. (MHB)

  15. Distribution of transglutaminase family members in mouse whole body sections.

    PubMed

    Tatsukawa, Hideki; Abe, Natsumi; Ohashi, Shintaro; Hitomi, Kiyotaka

    2015-11-27

    Transglutaminases (TGs) comprise a protein family in which the members catalyze the formation of isopeptide bonds between glutamine and lysine residues in various proteins. Eight enzymes have been identified and designated as factor XIII (FXIII) and TG1-7. Expression studies of four major members, i.e., FXIII, TG1, TG2, and TG3, have been performed in a relatively large number of mammalian tissues in comparison with those on the other isozymes. The structural and biochemical characteristics of these individual isozymes and expression analyses of TG family in some tissue extracts have been reported, but there have been no simultaneous comparative analyses of both their mRNA and protein expression patterns in tissues distributions. Thus, we developed novel experimental systems for in situ hybridization using cryofilm attached to whole body sections of neonatal mice, thereby obtaining data regarding the tissue distributions of the major TG isozymes. In this study, we performed the first detailed comparative analysis of the mRNA and protein distribution studies of TG family members in a wide range of mouse tissues. These data will be helpful for elucidating the unknown physiological and pathological functions of TGs. PMID:26456644

  16. Polyarteritis nodosa: MDCT as a 'One-Stop Shop' Modality for Whole-Body Arterial Evaluation

    SciTech Connect

    Tsai, W.-L.; Tsai, I-C.; Lee Tain; Hsieh, C.-W.

    2008-07-15

    Polyarteritis nodosa is a rare disease, which is characterized by aneurysm formation and occlusion in the arteries of multiple systems. Due to its extensive involvement, whole-body evaluation is necessary for diagnosis and treatment monitoring. We report a case of polyarteritis nodosa using multidetector-row computed tomography (MDCT) as a 'one-stop shop' modality for whole-body arterial evaluation. With precise protocol design, MDCT can be used as a reliable noninvasive modality providing comprehensive whole-body arterial evaluation.

  17. Contribution of anaerobic energy expenditure to whole body thermogenesis

    PubMed Central

    Scott, Christopher B

    2005-01-01

    Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production) although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis). An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure. PMID:15958171

  18. Transcriptional analysis of a whole-body form of long-term habituation in Aplysia californica.

    PubMed

    Holmes, Geraldine; Herdegen, Samantha; Schuon, Jonathan; Cyriac, Ashly; Lass, Jamie; Conte, Catherine; Calin-Jageman, Irina E; Calin-Jageman, Robert J

    2014-01-01

    Habituation is the simplest form of learning, but we know little about the transcriptional mechanisms that encode long-term habituation memory. A key obstacle is that habituation is relatively stimulus-specific and is thus encoded in small sets of neurons, providing poor signal/noise ratios for transcriptional analysis. To overcome this obstacle, we have developed a protocol for producing whole-body long-term habituation of the siphon-withdrawal reflex (SWR) of Aplysia californica. Specifically, we constructed a computer-controlled brushing apparatus to apply low-intensity tactile stimulation over the entire dorsal surface of Aplysia at regular intervals. We found that 3 d of training (10 rounds of stimulation/day; each round = 15 min brushing at a 10-sec ISI; 15-min rest between rounds) produces habituation with several characteristics favorable for mechanistic investigation. First, habituation is widespread, with SWR durations reduced whether the reflex is evoked by tactile stimulation to the head, tail, or the siphon. Second, long-term habituation is sensitive to the pattern of training, occurring only when brushing sessions are spaced out over 3 d rather than massed into a single session. Using a custom-designed microarray and quantitative PCR, we show that long-term habituation produces long-term up-regulation of an apparent Aplysia homolog of cornichon, a protein important for glutamate receptor trafficking. Our training paradigm provides a promising starting point for characterizing the transcriptional mechanisms of long-term habituation memory. PMID:25512573

  19. AUTOMATIC HOT SPOT DETECTION AND SEGMENTATION IN WHOLE BODY FDG-PET IMAGES Haiying Guan1

    E-print Network

    California at Santa Barbara, University of

    AUTOMATIC HOT SPOT DETECTION AND SEGMENTATION IN WHOLE BODY FDG-PET IMAGES Haiying Guan1 , Toshiro a system for automatic hot spots detection and segmentation in whole body FDG-PET images. The main, and by late 1990s, a large body of literature have clearly shown that FDG-PET imaging is essential

  20. A high protein diet upregulated whole-body protein turnover during energy deficit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of higher protein diets and sustained energy deficit (ED) on whole-body protein turnover (WBPTO) are not well described. This study examined whether dietary protein level influences whole-body protein breakdown (Ra), non-oxidative leucine disposal (NOLD), and oxidation (Ox) during ED. ...

  1. Neuromotor Transmissibility of Horizontal Seatpan Vibration

    E-print Network

    Channamallu, Raghu Ram

    2007-12-16

    Exposure to occupational whole body vibration (WBV) is associated with low back pain disorders, musculoskeletal disorders, and degeneration of spine. Transmission of vibration to the neuromotor system may play a role in the etiology...

  2. Optimization of Training Sets for Neural-Net Processing of Characteristic Patterns from Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    Artificial neural networks have been used for a number of years to process holography-generated characteristic patterns of vibrating structures. This technology depends critically on the selection and the conditioning of the training sets. A scaling operation called folding is discussed for conditioning training sets optimally for training feed-forward neural networks to process characteristic fringe patterns. Folding allows feed-forward nets to be trained easily to detect damage-induced vibration-displacement-distribution changes as small as 10 nm. A specific application to aerospace of neural-net processing of characteristic patterns is presented to motivate the conditioning and optimization effort.

  3. Influence of Whole-Body Electrostimulation on Human Red Blood Cell Deformability.

    PubMed

    Filipovic, Andre; Kleinöder, Heinz; Plück, Denise; Hollmann, Wildor; Bloch, Wilhelm; Grau, Marijke

    2015-09-01

    Red blood cell-nitric oxide synthase (RBC-NOS)-dependent NO production is essential for the maintenance of RBC deformability, which is known to improve oxygen supply to the working tissue. Electrostimulation of the whole body (WB-EMS) has been shown to improve maximal strength, springiness, and jumping power of trained and untrained athletes. To examine whether these 2 parameters are associated, this study, for the first time, aimed to investigate the effects of an 18-week dynamic WB-EMS program on RBC deformability in addition to maximal strength performance (1 repetition maximum [1RM]) in elite soccer players. Fifteen test persons were assigned in either WB-EMS group (EG, n = 10) or training group (TG, n = 5). Next to their weekly training sessions, EG performed 3 × 10 squat jumps under the influence of WB-EMS twice per week between weeks 1 and 14 and once per week between weeks 14 and 18. Training group only performed 3 × 10 squat jumps. Performance was assessed by a maximal strength test on the leg press machine (1RM). Subjects were tested at baseline and after weeks 7, 14, and 18 with blood sampling before (Pre), 15-30 minutes after (Post), and 24 hours after (24-hour Post) the training. The results showed that maximal strength was significantly improved in EG (p < 0.01). Maximum RBC deformability (EImax) increased on EMS stimulus in EG while it remained unaffected in the TG. Acute increase in EImax at baseline was explained by an increase in RBC-NOS activation while chronic increase of deformability must be caused by different, yet unknown, mechanisms. EImax decreased between weeks 14 and 18 suggesting that 1 WB-EMS session per week is not sufficient to alter deformability (EImax). In contrast, the deformability at low shear stress (EI 3 Pa), comparable with conditions found in the microcirculation, significantly increased in EG until week 14, whereas in TG deformability only, increased until week 7 due to increasing training volume after the winter break. The results indicate that WB-EMS represents a useful and time-saving addition to conventional training sessions to improve RBC deformability and possibly oxygen supply to the working tissue and thus promoting general force components in high performance sport. PMID:26308832

  4. Does whole-body cryotherapy improve vertical jump recovery following a high-intensity exercise bout?

    PubMed Central

    Vieira, Amilton; Bottaro, Martim; Ferreira-Junior, Joao B; Vieira, Carlos; Cleto, Vitor A; Cadore, Eduardo L; Simões, Herbert G; Carmo, Jake Do; Brown, Lee E

    2015-01-01

    Whole-body cryotherapy (WBC) has been used as a recovery strategy following different sports activities. Thus, the aim of the study reported here was to examine the effect of WBC on vertical jump recovery following a high-intensity exercise (HIE) bout. Twelve trained men (mean ± standard deviation age = 23.9±5.9 years) were randomly exposed to two different conditions separated by 7 days: 1) WBC (3 minutes of WBC at ?110°C immediately after the HIE) and 2) control (CON; no WBC after the HIE). The HIE consisted of six sets of ten repetitions of knee extensions at 60° · s?1 concentric and 180° · s?1 eccentric on an isokinetic dynamometer. The vertical jump test was used to evaluate the influence of HIE on lower extremity muscular performance. The vertical jump was performed on a force platform before HIE (T1) and 30 minutes after (T2) the WBC and CON conditions. As a result of HIE, jump height, muscle power, and maximal velocity (Vmax) had significant decreases between T1 and T2, however no significance was found between the WBC and CON conditions. The results indicate that one session of WBC had no effect on vertical jump following an HIE compared with a CON condition. WBC may not improve muscle-function (dependent on stretch-shortening cycle) recovery in very short periods (ie, 30 minutes) following HIE. PMID:25750548

  5. Problems associated with the establishment of a whole body counter at a university reactor 

    E-print Network

    Fairchild, Gregory R

    1999-01-01

    A widd variety of difficulties can arise in bringing a ics. whole body counting chair into operation for screening radiation workers. Problems can arise in the mechanical operation of the chair, in fabrication of phantom source bottles...

  6. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging methods and protocols have become widely adapted to a variety of tissues and species. However, the mass spectrometry imaging literature contains minimal information on whole-body cryosection preparation for the zebrafish (Danio rerio), a model organism ...

  7. Impact of whole-body computed tomography on mortality and surgical management of severe blunt trauma

    PubMed Central

    2012-01-01

    Introduction The mortality benefit of whole-body computed tomography (CT) in early trauma management remains controversial and poorly understood. The objective of this study was to assess the impact of whole-body CT compared with selective CT on mortality and management of patients with severe blunt trauma. Methods The FIRST (French Intensive care Recorded in Severe Trauma) study is a multicenter cohort study on consecutive patients with severe blunt trauma requiring admission to intensive care units from university hospital trauma centers within the first 72 hours. Initial data were combined to construct a propensity score to receive whole-body CT and selective CT used in multivariable logistic regression models, and to calculate the probability of survival according to the Trauma and Injury Severity Score (TRISS) for 1,950 patients. The main endpoint was 30-day mortality. Results In total, 1,696 patients out of 1,950 (87%) were given whole-body CT. The crude 30-day mortality rates were 16% among whole-body CT patients and 22% among selective CT patients (p = 0.02). A significant reduction in the mortality risk was observed among whole-body CT patients whatever the adjustment method (OR = 0.58, 95% CI: 0.34-0.99 after adjustment for baseline characteristics and post-CT treatment). Compared to the TRISS predicted survival, survival significantly improved for whole-body CT patients but not for selective CT patients. The pattern of early surgical and medical procedures significantly differed between the two groups. Conclusions Diagnostic whole-body CT was associated with a significant reduction in 30-day mortality among patients with severe blunt trauma. Its use may be a global indicator of better management. PMID:22687140

  8. Training Data Optimized and Conditioned to Learn Characteristic Patterns of Vibrating Blisks and Fan Blades

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2001-01-01

    At the NASA Glenn Research Center, we have been training artificial neural networks to interpret the characteristic patterns (see the leftmost image) generated from electronic holograms of vibrating structures. These patterns not only visualize the vibration properties of structures, but small changes in the patterns can indicate structural changes, cracking, or damage. Neural networks detect these small changes well. Our objective has been to adapt the neural-network, electronic-holography combination for inspecting components in Glenn's Spin Rig.

  9. Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.

    PubMed

    Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing

    2015-12-01

    Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. PMID:26254076

  10. Vibrations of Railroad Due to The Passage of The Underground Train

    NASA Astrophysics Data System (ADS)

    Konowrocki, Robert; Bajer, Czes?aw

    2010-03-01

    In the paper we present results of vibration measurements in the train and on the base of the railroad in tunnels of Warsaw Underground. Measurements were performed at straight and curved sections of the track. The paper is focused on the influence of the lateral slip in rail/wheel contact zone on the generation of vibrations and a noise. Vibrations were analyzed in terms of accelerations, velocities or displacements as a function of time and frequency. Results ware compared with the experiment of rolling of the wheel with lateral sleep. In both cases we observed double periodic oscillations.

  11. Effect of whole-body and local heating on cutaneous vasoconstrictor responses in humans

    NASA Technical Reports Server (NTRS)

    Wilson, Thad E.; Cui, Jian; Crandall, Craig G.

    2002-01-01

    Animal studies suggest that alpha-adrenergic-mediated vasoconstriction is compromised during whole-body heating. The purpose of this study was to identify whether whole-body heating and/or local surface heating reduce cutaneous alpha-adrenergic vasoconstrictor responsiveness in human skin. Protocol I: Six subjects were exposed to neutral skin temperature (i.e., 34 degrees C), whole-body heating, and local heating of forearm skin to increase skin blood flow to the same relative magnitude as that observed during whole-body heating. Protocol II: In eight subjects forearm skin was locally heated to 34, 37, 40, and 42 degrees C. During both protocols, alpha-adrenergic vasoconstrictor responsiveness was assessed by local delivery of norepinephrine (NE) via intradermal microdialysis. Skin blood flow was continuously monitored over each microdialysis membrane via laser-Doppler flowmetry. In protocol I, whole-body and local heating caused similar increases in cutaneous vascular conductance (CVC). The EC50 (log NE dose) of the dose-response curves for both whole body (-4.2 +/- 0.1 M) and local heating (-4.7 +/- 0.4 M) were significantly greater (i.e., high dose required to cause 50% reduction in CVC) relative to neutral skin temperature (- 5.6 +/- 0.0 M; P<0.05 for both). In both local and whole-body heated conditions CVC did not return to pre-heating values even at the highest dose of NE. In protocol II, calculated EC50 for 34, 37, 40, and 42 degrees C local heating was - 5.5 +/- 0.4, -4.6 +/- 0.3, -4.5 +/- 0.3, - 4.2 +/- 0.4 M, respectively. Statistical analyses revealed that the EC50 for 37,40 and 42 degrees C were significantly greater than the EC50 for 34 degrees C. These results indicate that even during administration of high concentrations of NE, alpha-adrenergic vasoconstriction does not fully compensate for local heating and whole-body heating induced vasodilatation in young, healthy subjects. Moreover, these data suggest that elevated local temperatures, above 37 degrees C, and whole-body heating similarly attenuate cutaneous alpha-adrenergic vasoconstriction responsiveness.

  12. Whole body exposure at 2100 MHz induced by plane wave of random incidences in a population

    NASA Astrophysics Data System (ADS)

    Conil, Emmanuelle; Hadjem, Abdelhamid; El Habachi, Aimad; Wiart, J.

    2010-11-01

    In this article, the whole body exposure induced by plane wave coming from a random direction of arrival is analyzed at 2100 MHz. This work completes previous studies on the influence of different parameters on the whole body exposure (such as morphology, frequency or usage in near field). The Visible Human phantom has been used to build a surrogate model to predict the whole body exposure depending on the highlighted surface of the phantom and on the direction of arrival of the incident plane wave. For the Visible Human, the error on the whole body averaged Specific Absorption Rate (SAR) is on average 4%. The surrogate model is applied to other 3D anthropomorphic phantoms for a frontal incidence with an averaged error of 10%. The great interest of the surrogate model is the possibility to apply a Monte Carlo process to assess probability distribution function of a population. A recent French anthropometric database of more than 3500 adults is used to build the probability distribution function of the whole body SAR for a random direction of arrival.

  13. Reciprocal influence of masticatory apparatus, craniofacial structure and whole body homeostasis.

    PubMed

    Lee, Yong-Keun; Moon, Hyung-Joo

    2012-12-01

    There are evidences that the evolution into Homo erectus was partially induced by masticatory muscular dystrophy caused by a gene mutation, which in turn increased brain capacity and led to bipedalism. It is generally accepted that the morphology and function of mammalian skull are partially controlled by epigenetic mechanisms. Archeologic evidences support that the masticatory apparatus have influenced the mechanical stress distribution in hominin skull, and consequently changed craniofacial morphology and function. Even after evolution into H. erectus, alterations in food properties by civilization and cultural preferences have caused modification of human masticatory pattern and accordingly craniofacial structure. Since there are evidences that prehuman and human masticatory apparatus has been influenced the craniofacial and whole body morphology and function, this apparatus in turn might influence whole body homeostasis. Plausible reciprocal influencing mechanisms of the masticatory apparatus on the whole body homeostasis might be (1) direct mechanical influence on the craniofacial structure, (2) distortion of cerebrospinal fluid circulation, and/or (3) several neural/humoral routes. Based on these backgrounds, the hypothesis of the present study is that the morphology and function of masticatory apparatus influence the whole body homeostasis and these interactions are reciprocal. Therefore, human masticatory apparatus, at the present time, should be kept in its physiological status to maintain the whole body homeostasis. We recommend basic and clinical approaches to confirm this hypothesis. PMID:22981594

  14. Whole body mechanics differ among running and cutting maneuvers in skilled athletes.

    PubMed

    Havens, Kathryn L; Sigward, Susan M

    2015-09-01

    Quick changes of direction during running (cutting) represent a whole body mechanical challenge, as they require deceleration and translation of the body during ongoing movement. While much is known with respect to whole body demands during walking turns, whole body mechanics and anticipatory adjustments necessary for cutting are unclear. As the ability to rapidly change direction is critical to athletes' success in many sports, a better understanding of whole body adjustments made during cuts is needed. Whole body center of mass velocity and position during the approach and execution steps of three tasks (straight running, 45° sidestep cut, and 90° sidestep cut) performed as fast as possible were compared in 25 healthy soccer athletes. Repeated measure ANOVA revealed that overall, braking and translation were greater during the cuts compared to the straight run. Interestingly, with systematically increased cut angle, disproportionately greater braking but proportionately greater translation was observed. Anticipatory adjustments made prior to the execution of the cuts suggested that individuals evenly distributed the deceleration and redirection demands across steps of the 45° cut but prioritized deceleration over translation during the approach step of the 90° cut. PMID:25149902

  15. Comprehensive diagnosis of whole-body acid-base and fluid-electrolyte disorders using a mathematical model and whole-body base excess.

    PubMed

    Wolf, Matthew B

    2015-08-01

    A mathematical model of whole-body acid-base and fluid-electrolyte balance was used to provide information leading to the diagnosis and fluid-therapy treatment in patients with complex acid-base disorders. Given a set of measured laboratory-chemistry values for a patient, a model of their unique, whole-body chemistry was created. This model predicted deficits or excesses in the masses of Na(+), K(+), Cl(-) and H2O as well as the plasma concentration of unknown or unmeasured species, such as ketoacids, in diabetes mellitus. The model further characterized the acid-base disorder by determining the patient's whole-body base excess and quantitatively partitioning it into ten components, each contributing to the overall disorder. The results of this study showed the importance of a complete set of laboratory measurements to obtain sufficient accuracy of the quantitative diagnosis; having only a minimal set, just pH and PCO2, led to a large scatter in the predicted results. A computer module was created that would allow a clinician to achieve this diagnosis at the bedside. This new diagnostic approach should prove to be valuable in the treatment of the critically ill. PMID:25281215

  16. Characterisation of Brachycephalic Obstructive Airway Syndrome in French Bulldogs Using Whole-Body Barometric Plethysmography

    PubMed Central

    Liu, Nai-Chieh; Sargan, David R.; Adams, Vicki J.; Ladlow, Jane F.

    2015-01-01

    Brachycephalic obstructive airway syndrome (BOAS) is an important health and welfare problem in several popular dog breeds. Whole-body barometric plethysmography (WBBP) is a non-invasive method that allows safe and repeated quantitative measurements of respiratory cycles on unsedated dogs. Here respiratory flow traces in French bulldogs from the pet population were characterised using WBBP, and a computational application was developed to recognise affected animals. Eighty-nine French bulldogs and twenty non-brachycephalic controls underwent WBBP testing. A respiratory functional grading system was used on each dog based on respiratory signs (i.e. respiratory noise, effort, etc.) before and after exercise. For development of an objective BOAS classifier, functional Grades 0 and I were considered to have insignificant clinical signs (termed here BOAS-) and Grades II and III to have significant signs (termed here BOAS+). A comparison between owner-perception of BOAS and functional grading revealed that 60 % of owners failed to recognise BOAS in dogs that graded BOAS+ in this study.WBBP flow traces were found to be significantly different between non-brachycephalic controls and Grade 0 French bulldogs; BOAS- and BOAS+ French bulldogs. A classifier was developed using quadratic discriminant analysis of the respiratory parameters to distinguish BOAS- and BOAS + French bulldogs, and a BOAS Index was calculated for each dog. A cut-off value of the BOAS Index was selected based on a receiver operating characteristic (ROC) curve. Sensitivity, specificity, positive predictive value, and negative predictive value of the classifier on the training group (n=69) were 0.97, 0.93, 0.95, and 0.97, respectively. The classifier was validated using a test group of French bulldogs (n=20) with an accuracy of 0.95. WBBP offers objective screening for the diagnosis of BOAS in French Bulldogs. The technique may be applied to other brachycephalic breeds affected by BOAS, and possibly to other respiratory disease in dogs. PMID:26079684

  17. Reducing whole-body vibration and musculoskeletal injury with a new car seat

    E-print Network

    {Department of Radiology and kDepartment of Biomedical Engineering, Northwestern University, 645 N. Michigan-axis of the lumbar spine and ITs by 43.0% (p 5 0.05) and 34.5% (p 5 0.01). This reduction in WBV allows more, may reduce the risk of WBV-related musculoskeletal disorders among drivers. Keywords: Whole

  18. Modelling resonances of the standing body exposed to vertical whole-body vibration: Effects of posture

    NASA Astrophysics Data System (ADS)

    Subashi, G. H. M. J.; Matsumoto, Y.; Griffin, M. J.

    2008-10-01

    Lumped parameter mathematical models representing anatomical parts of the human body have been developed to represent body motions associated with resonances of the vertical apparent mass and the fore-and-aft cross-axis apparent mass of the human body standing in five different postures: 'upright', 'lordotic', 'anterior lean', 'knees bent', and 'knees more bent'. The inertial and geometric parameters of the models were determined from published anthropometric data. Stiffness and damping parameters were obtained by comparing model responses with experimental data obtained previously. The principal resonance of the vertical apparent mass, and the first peak in the fore-and-aft cross-axis apparent mass, of the standing body in an upright posture (at 5-6 Hz) corresponded to vertical motion of the viscera in phase with the vertical motion of the entire body due to deformation of the tissues at the soles of the feet, with pitch motion of the pelvis out of phase with pitch motion of the upper body above the pelvis. Upward motion of the body was in phase with the forward pitch motion of the pelvis. Changing the posture of the upper body had minor effects on the mode associated with the principal resonances of the apparent mass and cross-axis apparent mass, but the mode changed significantly with bending of the legs. In legs-bent postures, the principal resonance (at about 3 Hz) was attributed to bending of the legs coupled with pitch motion of the pelvis in phase with pitch motion of the upper body. In this mode, extension of the legs was in phase with the forward pitch motion of the upper body and the upward vertical motion of the viscera.

  19. Whole-Body Vibration Exercise for Knee Osteoarthritis: A Systematic Review and Meta-Analysis

    PubMed Central

    Li, Xin; Wang, Xue-Qiang; Chen, Bing-Lin; Huang, Ling-Yan; Liu, Yu

    2015-01-01

    Objectives. To assess the effects of WBV exercise on patients with KOA. Methods. Eight databases including Pubmed, EMBASE, Cochrane Library, CINAHL, Web of Science, the Physiotherapy Evidence Database, CNKI, and Wanfang were searched up to November 2014. Randomized controlled trials (RCTs) of WBV for KOA were eligible. The outcomes were pain intensity, functional performances, self-reported status, adverse events, and muscle strength. A meta-analysis was conducted. Results. Five trials with 168 participants provided data for the meta-analysis. No significant difference was shown in pain intensity and self-reported status between WBV and other forms of exercise. Improvement in functional performance (evaluated by BBS; WMD, 2.96; 95% CI, 1.29 to 4.62; P = 0.0005) was greater in WBV group, but the other parameters of functional performance (including 6MWT and TGUG) revealed no statistically significant difference. Adverse events were only reported in one trial and no significant difference was discovered in muscle strength. The overall quality of evidence was very low. Conclusion. Currently there is only limited evidence that suggested that WBV is effective in the treatment of KOA. Large, well-designed RCTs with better designs are needed. PMID:26347287

  20. Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers

    ERIC Educational Resources Information Center

    Liu, Bin; Luo, Jiong

    2015-01-01

    Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…

  1. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-01-01

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  2. Whole-body autoradiographic microimaging: Applications in radiopharmaceutical and drug research

    SciTech Connect

    Som, P.; Sacker, D.F.

    1991-12-31

    The whole-body autoradiographic (WBARG) microimaging technique is used for evaluation of the temporo-spatial distribution of radiolabeled molecules in intact animals as well as to determine the sites of accumulation of parent compounds and their metabolites. This technique is also very useful to determine the metabolism of a compound, toxicity, and effects of therapeutic interventions on the distribution of a compound in the whole body, by studying animals at different time intervals after injection of the radiolabeled compound. This report discusses various aspects of WBARG.

  3. Insulin and amino acids stimulate whole body protein synthesis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin and amino acids (AA) stimulate muscle protein synthesis in neonatal pigs. To determine the effects of insulin and AA on whole body protein turnover, hyperinsulinemic (0 and 100 ng/(kg[0.66]/min))-euglycemic-AA clamps were performed during euaminoacidemia or hyperaminoacidemia in fasted 7-d-...

  4. Whole-Body Motion Planning for Manipulation of Articulated Objects Felix Burget Armin Hornung Maren Bennewitz

    E-print Network

    Eckmiller, Rolf

    Bennewitz Abstract-- Humanoid service robots performing complex object manipulation tasks need to plan whole-body motions that satisfy a variety of constraints: The robot must keep its balance, self a drawer, a door, and picking up an object. The experiments demonstrate the ability of our framework

  5. DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING

    EPA Science Inventory

    DETECTION OF WHOLE BODY OXIDATIVE STRESS IN URINE USING OXYGEN-18 LABELING. R Slade, J L McKee and G E Hatch. PTB, ETD, NHEERL, ORD, USEPA, Research Triangle Park, NC, USA.
    Reliable non-invasive markers for detecting oxidative stress in vivo are currently not available. We pr...

  6. Solid anthropomorphic infant whole body DXA phantom: Design, evaluation, and multisite testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dual energy X-ray absorptiometry (DXA) requires phantoms for quality control and cross-calibration. No commercially available phantoms are designed specifically for infant whole-body scanning. We fabricated a phantom closely matching a 7-kg human infant in body habitus using PVC, nylon-mix, and poly...

  7. Does plasma HDL-C concentration interact with whole-body cholesterol metabolism?

    PubMed

    Leança, C C; Nunes, V S; Nakandakare, E R; de Faria, E C; Quintao, E C R

    2013-04-01

    This review examines the interactions between plasma high density lipoprotein (HDL) metabolism and whole-body cholesterol economy. More specifically, this review addresses three questions: 1) does plasma HDL-C concentration correlate with the parameters of whole-body cholesterol metabolism? 2) Do variations in cholesterol metabolism interfere with plasma HDL-C concentrations? 3) Are the markers of cholesterol synthesis and intestinal absorption specifically under the control of plasma HDL? The following answers were provided to each question, respectively: 1) plasma HDL influences whole-body cholesterol synthesis rate but the evidence that HDL modifies the total amount of cholesterol absorbed by the intestine is not clearly supported by present investigations; 2) there are suggestions that changes in whole body cholesterol metabolism rates do not interfere with plasma HDL-C concentrations; 3) markers of cholesterol synthesis and absorption may specifically be controlled by plasma HDL-C concentrations regarding the genetic causes of extremely low HDL-C concentrations, although within the general population plasma HDL-C concentration is likely ascribed to insulin resistance or diabetes mellitus. PMID:23333727

  8. Albumin and whole-body protein synthesis respond differently to intraperitoneal and oral amino acids.

    PubMed

    Tjiong, H L; Fieren, M W; Rietveld, T; Wattimena, J L; Schierbeek, H; Huijmans, J G M; Hop, W C; Swart, G R; van den Berg, J W

    2007-08-01

    Patients with peritoneal dialysis are at risk for malnutrition and hypoalbuminemia, which are indicators of poor outcome. Recently, it was shown that dialysis solutions containing amino acids (AAs) and glucose improve protein anabolism in peritoneal dialysis patients. We determined if the same solutions could increase the fractional synthesis rate of albumin along with whole-body protein synthesis. Changes in the fractional albumin synthetic rate reflect acute change in hepatic albumin synthesis. A random-order cross-over study compared the effects of Nutrineal (AA source) plus Physioneal (glucose) dialysate with Physioneal alone dialysate. Eight patients in the overnight fasting state were compared to 12 patients in the daytime-fed state. Fractional albumin synthetic rate and whole-body protein synthesis were determined simultaneously using a primed-continuous infusion of L-[1-(13)C]-leucine. Fractional albumin synthesis on AAs plus glucose dialysis did not differ significantly from that on glucose alone in the fasting or the fed state. Protein intake by itself (fed versus fasting) failed to induce a significant increase in the fractional synthetic rate of albumin. Conversely, the oral protein brought about a significant stimulation of whole-body protein synthesis. Our findings show that the supply of AAs has different effects on whole-body protein synthesis and the fractional synthetic rate of albumin. PMID:17554255

  9. AMMONIA ABATEMENT SYSTEM FOR WHOLE-BODY SMALL ANIMAL INHALATION EXPOSURES TO ACID MODELS

    EPA Science Inventory

    Conducting whole-body acid aerosol inhalation exposures of laboratory animals is complicated by ammonia arising from the excrement of the test animals which is sufficient to completely neutralize much of the acid aerosol. he neutralization of acid by ammonia con only be controlle...

  10. Strain differences in whole-body protein turnover in the chicken embryo.

    PubMed

    Muramatsu, T; Hiramoto, K; Okumura, J

    1990-03-01

    1. Whether or not there is a strain difference in embryonic whole-body protein turnover rates was tested using the chicken embryos of Rhode Island Red carrying a sex-linked dwarf gene (dwarf), White Leghorn (layer), and White Cornish X White Plymouth Rock (broiler) strains on day 12 of incubation. 2. Whole-body protein synthesis was estimated by injecting L-[15N]-phenylalanine either intraperitoneally or intravenously on day 12 of incubation in order to investigate the effect of the route of isotope administration. The results showed that the values for fractional and absolute synthesis rates were approximately 13% higher by intravenous injection than by intraperitoneal injection. 3. Whole-body protein turnover, both in terms of fractional and absolute rates, was significantly faster in dwarf than in broiler embryos, with intermediate values in layer embryos, although no growth differences were observed on day 12. 4. Difference in egg weight, measured before incubation, did not affect protein turnover. 5. It was concluded that the strain difference manifested in whole-body protein turnover of the chicken embryo would probably be a reflection of differences in genetic background. PMID:1693873

  11. Immunosuppression by whole-body irradiation and its effect on oedema in experimental cerebral ischaemia.

    PubMed

    Strachan, R D; Kane, P J; Cook, S; Chambers, I R; Clayton, C B; Mendelow, A D

    1992-09-01

    The effect of global immunosuppression by sublethal whole body X-irradiation on the development of cerebral oedema was assessed 24 h after right middle cerebral artery occlusion in the rat. Irradiation produced a significant leukopenia and thrombocytopaenia, and significantly reduced cortical oedema when compared to non-irradiated control animals. PMID:1414243

  12. Prolonged bed rest decreases skeletal muscle and whole body protein synthesis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Lane, H. W.; Stuart, C. A.; Davis-Street, J.; Wolfe, R. R.

    1996-01-01

    We sought to determine the extent to which the loss of lean body mass and nitrogen during inactivity was due to alterations in skeletal muscle protein metabolism. Six male subjects were studied during 7 days of diet stabilization and after 14 days of stimulated microgravity (-6 degrees bed rest). Nitrogen balance became more negative (P < 0.03) during the 2nd wk of bed rest. Leg and whole body lean mass decreased after bed rest (P < 0.05). Serum cortisol, insulin, insulin-like growth factor I, and testosterone values did not change. Arteriovenous model calculations based on the infusion of L-[ring-13C6]-phenylalanine in five subjects revealed a 50% decrease in muscle protein synthesis (PS; P < 0.03). Fractional PS by tracer incorporation into muscle protein also decreased by 46% (P < 0.05). The decrease in PS was related to a corresponding decrease in the sum of intracellular amino acid appearance from protein breakdown and inward transport. Whole body protein synthesis determined by [15N]alanine ingestion on six subjects also revealed a 14% decrease (P < 0.01). Neither model-derived nor whole body values for protein breakdown change significantly. These results indicate that the loss of body protein with inactivity is predominantly due to a decrease in muscle PS and that this decrease is reflected in both whole body and skeletal muscle measures.

  13. DETECTION OF RADIOFREQUENCY RADIATION-INDUCED WHOLE BODY HEATING FOLLOWING CHEMICAL IMPAIRMENT OF THERMOREGULATION

    EPA Science Inventory

    Heating by radiofrequency (RF) radiation at high intensities can cause biological changes by whole-body hyperthermia or by altered thermal gradients within the body. However, there have been reports of effects at low intensities of RF radiation without evidence of increased tempe...

  14. Intensity non-uniformity correction in multi-section whole body MRI

    E-print Network

    Whelan, Paul F.

    Intensity non-uniformity correction in multi-section whole body MRI Kevin Robinson , Ovidiu Ghita, Paul F. Whelan Vision Systems Laboratory, School of Electronic Engineering, Dublin City University, which is designed to correct for the non-uniformities while preserving the integrity of the data

  15. Moving along the Mental Number Line: Interactions between Whole-Body Motion and Numerical Cognition

    ERIC Educational Resources Information Center

    Hartmann, Matthias; Grabherr, Luzia; Mast, Fred W.

    2012-01-01

    Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants…

  16. Optimization of Whole-body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    EPA Science Inventory

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature lacks information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in devel...

  17. Knowledge, Attitude, and Practices regarding Whole Body Donation among Medical Professionals in a Hospital in India

    ERIC Educational Resources Information Center

    Ballala, Kirthinath; Shetty, Avinash; Malpe, Surekha Bhat

    2011-01-01

    Voluntary body donation has become an important source of cadavers for anatomical study and education. The objective of this study was to assess knowledge, attitude, and practice (KAP) regarding whole body donation among medical professionals in a medical institute in India. A cross sectional study was conducted at Kasturba Hospital, Manipal,…

  18. PERSISTENCE OF LYMPHOCYTES WITH DECENTRIC CHROMOSOMES FOLLOWING WHOLE-BODY X IRRADIATION OF MICE

    EPA Science Inventory

    Thirty-six male C57B1/6 mice were whole-body x-irradiated with 3 Gy to generate lymphocytes with dicentric chromosomes to study the Persistence of these lymphocytes in the spleen and peripheral blood to estimate the lifespan of mature 8- and 7-cells. lood and spleen were removed ...

  19. Muscle contributions to whole-body sagittal plane angular momentum during walking

    E-print Network

    Muscle contributions to whole-body sagittal plane angular momentum during walking R.R. Neptune n into swing. In human walking, the primary mechanism to regulate angular momentum is muscle force generation. Muscles accelerate body segments and generate ground reaction forces that alter angular momentum about

  20. Head Exposure to Cold during Whole-Body Cryostimulation: Influence on Thermal Response and Autonomic Modulation

    PubMed Central

    Louis, Julien; Schaal, Karine; Bieuzen, François; Le Meur, Yann; Filliard, Jean-Robert; Volondat, Marielle; Brisswalter, Jeanick; Hausswirth, Christophe

    2015-01-01

    Recent research on whole-body cryotherapy has hypothesized a major responsibility of head cooling in the physiological changes classically reported after a cryostimulation session. The aim of this experiment was to verify this hypothesis by studying the influence of exposing the head to cold during whole-body cryostimulation sessions, on the thermal response and the autonomic nervous system (ANS). Over five consecutive days, two groups of 10 participants performed one whole-body cryostimulation session daily, in one of two different systems; one exposing the whole-body to cold (whole-body cryostimulation, WBC), and the other exposing the whole-body except the head (partial-body cryostimulation, PBC).10 participants constituted a control group (CON) not receiving any cryostimulation. In order to isolate the head-cooling effect on recorded variables, it was ensured that the WBC and PBC systems induced the same decrease in skin temperature for all body regions (mean decrease over the 5 exposures: -8.6°C±1.3°C and -8.3±0.7°C for WBC and PBC, respectively), which persisted up to 20-min after the sessions (P20). The WBC sessions caused an almost certain decrease in tympanic temperature from Pre to P20 (-0.28 ±0.11°C), while it only decreased at P20 (-0.14±0.05°C) after PBC sessions. Heart rate almost certainly decreased after PBC (-8.6%) and WBC (-12.3%) sessions. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely to almost certainly increased after PBC (RMSSD:+49.1%, HF: +123.3%) and WBC (RMSSD: +38.8%, HF:+70.3%). Plasma norepinephrine concentration was likely increased in similar proportions after PBC and WBC, but only after the first session. Both cryostimulation techniques stimulated the ANS with a predominance of parasympathetic tone activation from the first to the fifth session and in slightly greater proportion with WBC than PBC. The main result of this study indicates that the head exposure to cold during whole-body cryostimulation may not be the main factor responsible for the effects of cryostimulation on the ANS. PMID:25915642

  1. Effect of fatigue on the precision of a whole-body pointing task.

    PubMed

    Schmid, M; Schieppati, M; Pozzo, T

    2006-01-01

    We addressed the issue of the possible degradation of the aiming precision of a whole-body pointing task, when movement coordination is deranged by selective fatigue of the postural task component. The protocol involved continuous repetition (0.1 Hz frequency) of rapid whole-body pointing trials toward a target located beyond arm length, starting from stance and requiring knee flexion. Six healthy human subjects repeated the trials until exhaustion. Such repetition led to electromyography signs of fatigue in rectus femoris (active in body lowering and raising), but not in deltoid (prime mover for arm reaching component). Rectus femoris fatigue affected the equilibrium control strategy, since the anteroposterior displacement of the center of foot pressure was reduced during the fatigued compared with the initial trials. Conversely, the precision of the aiming movement was unaffected by the rectus femoris fatigue in spite of changes in finger trajectory. Trunk inclination at the end of whole-body pointing task and hip and shoulder marker trajectories were unaffected by rectus femoris fatigue. Control experiments were made, whereby fatiguing repetitions of the postural component of the task were performed without finger pointing, except in the first and last five complete whole-body pointing trials. The results were not different from those of the main protocol, except for a transient change in finger trajectory in the very first trial after fatigue. The CNS takes into account the state of postural muscles' fatigue and the concurrently ensuing equilibrium constraints in order to appropriately modify whole-body pointing strategy and keep pointing precision at the target. PMID:16504410

  2. An information theoretic view of the scheduling problem in whole-body CAD

    NASA Astrophysics Data System (ADS)

    Zhan, Yiqiang; Zhou, Xiang Sean; Krishnan, Arun

    2008-03-01

    Emerging whole-body imaging technologies push computer aided detection/diagnosis (CAD) to scale up to a whole-body level, which involves multiple organs or anatomical structure. To be exploited in this paper is the fact that the various tasks in whole-body CAD are often highly dependent (e.g., the localization of the femur heads strongly predicts the position of the iliac bifurcation of the aorta). One way to effectively employ task dependency is to schedule the tasks such that outputs of some tasks are used to guide the others. In this sense, optimal task scheduling is key to improve overall performance of a whole-body CAD system. In this paper, we propose a method for task scheduling that is optimal in an information-theoretic sense. The central idea is to schedule tasks in such an order that each operation achieves maximum expected information gain over all the tasks. The formulation embeds two intuitive principles: (1) a task with higher confidence tends to be scheduled earlier; (2) a task with higher predictive power for other tasks tends to be scheduled earlier. More specifically, task dependency is modeled by conditional probability; the outcome of each task is assumed to be probabilistic as well; and the objective function is based on the reduction of the summed conditional entropy over all tasks. The validation is carried out on a challenging CAD problem, multi-organ localization in whole-body CT. Compared to unscheduled and ad hoc scheduled organ detection/localization, our scheduled execution achieves higher accuracy with much less computation time.

  3. Criteria for acceptable levels of the Shinkansen Super Express train noise and vibration in residential areas

    NASA Astrophysics Data System (ADS)

    Yamanaka, K.; Nakagawa, T.; Kobayashi, F.; Kanada, S.; Tanahashi, M.; Muramatsu, T.; Yamada, S.

    1982-10-01

    A survey of 1187 housewives living in 18 areas along the Shinkansen Super Express (bullet train) railway was conducted by means of a self-administered health questionnaire (modified Cornell Medical Index). In addition, geographically corresponding measurements of noise level and vibration intensity were taken. The relationship of noise and vibration to positive responses (health complaints) related to bodily symptoms, illness and emotional disturbances was analyzed. The factors which correlated with an increase in the average number of positive responses included noise, vibration, age and health status. Such factors as marital status, educational level, part time work, duration of inhabitancy and occupation of the head of the houshold correlated poorly with the number of positive responses. Unhealthy respondents compared to healthy respondents are more frequently affected by noise and vibration. The rate of positive responses in the visual, respiratory, cardiovascular, digestive and nervous systems, sleep disturbances and emotional disturbances increased accordingly as noise and vibration increased. Combined effects of noise and vibration stimuli on the total number of positive responses (an indicator of general health) were found. This study has produced results indicating that the maximum permissible noise level should not exceed 70 dB(A) in the residential areas along the Shinkansen railway.

  4. FMS Scores Change With Performers' Knowledge of the Grading Criteria-Are General Whole-Body Movement Screens Capturing "Dysfunction"?

    PubMed

    Frost, David M; Beach, Tyson A C; Callaghan, Jack P; McGill, Stuart M

    2015-11-01

    Frost, DM, Beach, TAC, Callaghan, JP, and McGill, SM. FMS scores change with performers' knowledge of the grading criteria-Are general whole-body movement screens capturing "dysfunction"? J Strength Cond Res 29(11): 3037-3044, 2015-Deficits in joint mobility and stability could certainly impact individuals' Functional Movement Screen (FMS) scores; however, it is also plausible that the movement patterns observed are influenced by the performers' knowledge of the grading criteria. Twenty-one firefighters volunteered to participate, and their FMS scores were graded before and immediately after receiving knowledge of the movement patterns required to achieve a perfect score on the FMS. Standardized verbal instructions were used to administer both screens, and the participants were not provided with any coaching or feedback. Time-synchronized sagittal and frontal plane videos were used to grade the FMS. The firefighters significantly (p < 0.001) improved their FMS scores from 14.1 (1.8) to 16.7 (1.9) when provided with knowledge pertaining to the specific grading criteria. Significant improvements (p < 0.05) were also noted in the deep squat (1.4 [0.7]-2.0 [0.6]), hurdle step (2.1 [0.4]-2.4 [0.5]), in-line lunge (2.1 [0.4]-2.7 [0.5]), and shoulder mobility (1.8 [0.8]-2.4 [0.7]) tests. Because a knowledge of a task's grading criteria can alter a general whole-body movement screen score, FMS or otherwise, observed changes may not solely reflect "dysfunction." The instant that individuals are provided with coaching and feedback regarding their performance on a particular task, the task may lose its utility to evaluate the transfer of training or predict musculoskeletal injury risk. PMID:26502271

  5. A vibration monitoring acquisition and diagnostic system for helicopter drive train bench tests

    NASA Astrophysics Data System (ADS)

    Dousis, Dimitri A.

    An automated drive train test stand vibration monitoring system called VMADS has been developed by Bell Helicopter Textron, Inc., and has been installed at Bell's transmission bench test facility. VMADS provides the operator with warning and alarm indications for preselected degraded conditions, and acquires vibration data to be used by engineers to improve the diagnostics for better fault detection and fault isolation. VMADS is used as a test bed for new monitoring and diagnostic algorithm evaluation and validation, a necessary step to ensure development of accurate, reliable integrated health usage monitoring systems for the Bell rotorcraft fleet. This paper highlights the VMADS features for helicopter and tiltrotor aircraft drive train bench test monitoring and diagnostics and discusses supportive ongoing health and usage monitoring activities at BHTI, both military and commercial for enhanced safety and reduced maintenance costs. Bell is translating VMADS developed capability to airborne applications, while simultaneously enhancing the original VMADS capabilities.

  6. Optimization of Training Sets For Neural-Net Processing of Characteristic Patterns From Vibrating Solids

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J. (Inventor)

    2006-01-01

    An artificial neural network is disclosed that processes holography generated characteristic pattern of vibrating structures along with finite-element models. The present invention provides for a folding operation for conditioning training sets for optimally training forward-neural networks to process characteristic fringe pattern. The folding pattern increases the sensitivity of the feed-forward network for detecting changes in the characteristic pattern The folding routine manipulates input pixels so as to be scaled according to the location in an intensity range rather than the position in the characteristic pattern.

  7. Brain-machine interfacing control of whole-body humanoid motion

    PubMed Central

    Bouyarmane, Karim; Vaillant, Joris; Sugimoto, Norikazu; Keith, François; Furukawa, Jun-ichiro; Morimoto, Jun

    2014-01-01

    We propose to tackle in this paper the problem of controlling whole-body humanoid robot behavior through non-invasive brain-machine interfacing (BMI), motivated by the perspective of mapping human motor control strategies to human-like mechanical avatar. Our solution is based on the adequate reduction of the controllable dimensionality of a high-DOF humanoid motion in line with the state-of-the-art possibilities of non-invasive BMI technologies, leaving the complement subspace part of the motion to be planned and executed by an autonomous humanoid whole-body motion planning and control framework. The results are shown in full physics-based simulation of a 36-degree-of-freedom humanoid motion controlled by a user through EEG-extracted brain signals generated with motor imagery task. PMID:25140134

  8. Functional Fluorescently Labeled Bithiazole ?F508-CFTR Corrector Imaged in Whole Body Slices in Mice

    PubMed Central

    Davison, Holly R.; Taylor, Stephanie; Drake, Chris; Phuan, Puay-Wah; Derichs, Nico; Yao, Chenjuan; Jones, Ella F.; Sutcliffe, Julie; Verkman, A. S.; Kurth, Mark J.

    2011-01-01

    We previously reported the identification and structure-activity analysis of bithiazole-based correctors of defective cellular processing of the cystic fibrosis-causing CFTR mutant, ?F508-CFTR. Here, we report the synthesis and uptake of a functional, fluorescently labeled bithiazole corrector. Following synthesis and functional analysis of four bithiazole-fluorophore conjugates, we found that 5, a bithazole-based BODIPY conjugate, had low micromolar potency for correction of defective ?F508-CFTR cellular misprocessing, with comparable efficacy to benchmark corrector corr-4a. Intravenous administration of 5 to mice established its stability in extrahepatic tissues for tens of minutes. By fluorescence imaging of whole-body frozen slices, fluorescent corrector 5 was visualized strongly in gastrointestinal organs, with less in lung and liver. Our results provide proof-of-concept for mapping the biodistribution of a ?F508-CFTR corrector by fluorophore labeling and fluorescence imaging of whole-body slices. PMID:22034937

  9. Animal physiology. Whole-body endothermy in a mesopelagic fish, the opah, Lampris guttatus.

    PubMed

    Wegner, Nicholas C; Snodgrass, Owyn E; Dewar, Heidi; Hyde, John R

    2015-05-15

    Endothermy (the metabolic production and retention of heat to warm body temperature above ambient) enhances physiological function, and whole-body endothermy generally sets mammals and birds apart from other animals. Here, we describe a whole-body form of endothermy in a fish, the opah (Lampris guttatus), that produces heat through the constant "flapping" of wing-like pectoral fins and minimizes heat loss through a series of counter-current heat exchangers within its gills. Unlike other fish, opah distribute warmed blood throughout the body, including to the heart, enhancing physiological performance and buffering internal organ function while foraging in the cold, nutrient-rich waters below the ocean thermocline. PMID:25977549

  10. Glucose metabolism in mice during and after whole-body hyperthermia

    SciTech Connect

    Schubert, B.; Streffer, C.; Tamulevicius, P.

    1982-06-01

    Researchers studied glucose turnover in male inbred mice during and after whole-body hyperthermia for 1 hour at 40 degrees or 41 degrees C by giving them injections of (/sup 14/C)glucose with and without a glucose load and measuring the expired /sup 14/Co/sub 2/. Expiration of /sup 14/CO/sub 2/ was increased during hyperthermia but decreased considerably afterward. The latter effect was enhanced by a glucose load. This inhibition depended on the glucose concentration. Metabolic studies showed a depletion of several glycolytic metabolites, especially glycogen and lactate, after whole-body hyperthermia. Combined treatment of hyperthermia and a glucose injection 1 hour later led to an increased level of glucose 6-phosphate, which indicated a block in glycolysis between glucose 6-phosphate and fructose 1,6-diphosphate. This inhibition did not occur when glucose was given before the hyperthermia treatment. Lactate accumulation was not observed under any conditions.

  11. MRI compatible small animal monitoring and trigger system for whole body scanners.

    PubMed

    Herrmann, Karl-Heinz; Pfeiffer, Norman; Krumbein, Ines; Herrmann, Lutz; Reichenbach, Jürgen R

    2014-03-01

    Performing magnetic resonance imaging (MRI) experiments with small animals requires continuous monitoring of vital parameters, especially the respiration rate. Clinical whole-body MR scanners represent an attractive option for preclinical imaging as dedicated animal scanners are cost-intensive in both investment and maintenance, thus limiting their availability. Even though impressive image quality is achievable with clinical MR systems in combination with special coils, their built-in physiologic monitoring and triggering units are often not suited for small animal imaging. In this work, we present a simple, MRI compatible low cost solution to monitor the respiration and heart rate of small animals in a clinical whole-body MR scanner. The recording and processing of the biosignals as well as the optimisation of the respiratory trigger generation is decribed. Additionally rat and mouse in-vivo MRI experiments are presented to illustrate the effectiveness of the monitoring and respiratory trigger system in suppressing motion artifacts. PMID:23962379

  12. Vestibular-Somatosensory Interactions: Effects of Passive Whole-Body Rotation on Somatosensory Detection

    PubMed Central

    Ferrè, Elisa Raffaella; Kaliuzhna, Mariia; Herbelin, Bruno; Haggard, Patrick; Blanke, Olaf

    2014-01-01

    Vestibular signals are strongly integrated with information from several other sensory modalities. For example, vestibular stimulation was reported to improve tactile detection. However, this improvement could reflect either a multimodal interaction or an indirect interaction driven by vestibular effects on spatial attention and orienting. Here we investigate whether natural vestibular activation induced by passive whole-body rotation influences tactile detection. In particular, we assessed the ability to detect faint tactile stimuli to the fingertips of the left and right hand during spatially congruent or incongruent rotations. We found that passive whole-body rotations significantly enhanced sensitivity to faint shocks, without affecting response bias. Critically, this enhancement of somatosensory sensitivity did not depend on the spatial congruency between the direction of rotation and the hand stimulated. Thus, our results support a multimodal interaction, likely in brain areas receiving both vestibular and somatosensory signals. PMID:24466064

  13. Multispectral optoacoustic tomography (MSOT) scanner for whole-body small animal imaging.

    PubMed

    Ma, Rui; Taruttis, Adrian; Ntziachristos, Vasilis; Razansky, Daniel

    2009-11-23

    A major difficulty arising from whole-body optoacoustic imaging is the long acquisition times associated with recording signals from multiple spatial projections. The acquired signals are also generally weak and the signal-to-noise-ratio is low, problems often solved by signal averaging, which complicates acquisition and increases acquisition times to an extent that makes many in vivo applications challenging or even impossible. Herein we present a fast acquisition multispectral optoacoustic tomography (MSOT) scanner for whole-body visualization of molecular markers in small animals. Multi-wavelength illumination offers the possibility to resolve exogenously administered fluorescent probes, biomarkers, and other intrinsic and exogenous chromophores. The system performance is determined in phantom experiments involving molecular probes and validated by imaging of small animals of various scales. PMID:19997381

  14. Whole body and tissue blood volumes of two strains of rainbow trout (Oncorhynchus mykiss )

    USGS Publications Warehouse

    Gingerich, W.H.; Pityer, R.A.; Rach, J.J.

    1990-01-01

    1. Estimates of apparent packed cell, plasma and total blood volumes for the whole body and for 13 selected tissues were compared between Kamloops and Wytheville strains of rainbow trout (Oncorhynchus mykiss) by the simultaneous injection of two vascular tracers, radiolabeled trout erythrocytes (51Cr-RBC) and radioiodated bovine serum albumin (125I-BSA). 2. Whole body total blood volume, plasma volume and packed cell volume were slightly, but not significantly greater in the Wytheville trout, whereas, the apparent plasma volumes and total blood volumes in 4 of 13 tissues were significantly greater in the Kamloops strain. 3. Differences were most pronounced in highly perfused organs, such as the liver and kidney and in organs of digestion such as the stomach and intestines. 4. Differences in blood volumes between the two strains may be related to the greater permeability of the vascular membranes in the Kamloops strain fish.

  15. MONICA: A Compact, Portable Dual Gamma Camera System for Mouse Whole-Body Imaging

    PubMed Central

    Xi, Wenze; Seidel, Jurgen; Karkareka, John W.; Pohida, Thomas J.; Milenic, Diane E.; Proffitt, James; Majewski, Stan; Weisenberger, Andrew G.; Green, Michael V.; Choyke, Peter L.

    2009-01-01

    Introduction We describe a compact, portable dual-gamma camera system (named “MONICA” for MObile Nuclear Imaging CAmeras) for visualizing and analyzing the whole-body biodistribution of putative diagnostic and therapeutic single photon emitting radiotracers in animals the size of mice. Methods Two identical, miniature pixelated NaI(Tl) gamma cameras were fabricated and installed “looking up” through the tabletop of a compact portable cart. Mice are placed directly on the tabletop for imaging. Camera imaging performance was evaluated with phantoms and field performance was evaluated in a weeklong In-111 imaging study performed in a mouse tumor xenograft model. Results Tc-99m performance measurements, using a photopeak energy window of 140 keV ± 10%, yielded the following results: spatial resolution (FWHM at 1-cm), 2.2-mm; sensitivity, 149 cps/MBq (5.5 cps/?Ci); energy resolution (FWHM), 10.8%; count rate linearity (count rate vs. activity), r2 = 0.99 for 0–185 MBq (0–5 mCi) in the field-of-view (FOV); spatial uniformity, < 3% count rate variation across the FOV. Tumor and whole-body distributions of the In-111 agent were well visualized in all animals in 5-minute images acquired throughout the 168-hour study period. Conclusion Performance measurements indicate that MONICA is well suited to whole-body single photon mouse imaging. The field study suggests that inter-device communications and user-oriented interfaces included in the MONICA design facilitate use of the system in practice. We believe that MONICA may be particularly useful early in the (cancer) drug development cycle where basic whole-body biodistribution data can direct future development of the agent under study and where logistical factors, e.g. limited imaging space, portability, and, potentially, cost are important. PMID:20346864

  16. Effect of angiotensin II on vascular resistance in whole-body perfused dogfish.

    PubMed

    Opdyke, D F; Wilde, D W; Holcombe, R F

    1982-01-01

    1. The effect of angiotensin II (AII), norepinephrine (NE), epinephrine (E) and isoproterenol (ISO) was observed on the branchial and systemic circulations in a whole-body-pump perfused dogfish preparation. 2. NE and E increased systemic blood flow resistance, but decreased branchial resistance. 3. ISO decreased both systematic and branchial blood flow resistance. 4. AII had no significant effect on either branchial or systemic resistance. PMID:6128179

  17. Retrospective respiration-gated whole-body photoacoustic computed tomography of mice

    NASA Astrophysics Data System (ADS)

    Xia, Jun; Chen, Wanyi; Maslov, Konstantin; Anastasio, Mark A.; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is an emerging technique that has a great potential for preclinical whole-body imaging. To date, most whole-body PAT systems require multiple laser shots to generate one cross-sectional image, yielding a frame rate of <1 Hz. Because a mouse breathes at up to 3 Hz, without proper gating mechanisms, acquired images are susceptible to motion artifacts. Here, we introduce, for the first time to our knowledge, retrospective respiratory gating for whole-body photoacoustic computed tomography. This new method involves simultaneous capturing of the animal's respiratory waveform during photoacoustic data acquisition. The recorded photoacoustic signals are sorted and clustered according to the respiratory phase, and an image of the animal at each respiratory phase is reconstructed subsequently from the corresponding cluster. The new method was tested in a ring-shaped confocal photoacoustic computed tomography system with a hardware-limited frame rate of 0.625 Hz. After respiratory gating, we observed sharper vascular and anatomical images at different positions of the animal body. The entire breathing cycle can also be visualized at 20 frames/cycle.

  18. Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Zhang, R.; Levine, B. D.

    2000-01-01

    The purpose of this project was to identify whether dynamic baroreflex regulation of heart rate (HR) is altered during whole body heating. In 14 subjects, dynamic baroreflex regulation of HR was assessed using transfer function analysis. In normothermic and heat-stressed conditions, each subject breathed at a fixed rate (0. 25 Hz) while beat-by-beat HR and systolic blood pressure (SBP) were obtained. Whole body heating significantly increased sublingual temperature, HR, and forearm skin blood flow. Spectral analysis of HR and SBP revealed that the heat stress significantly reduced HR and SBP variability within the high-frequency range (0.2-0.3 Hz), reduced SBP variability within the low-frequency range (0.03-0.15 Hz), and increased the ratio of low- to high-frequency HR variability (all P < 0.01). Transfer function gain analysis showed that the heat stress reduced dynamic baroreflex regulation of HR within the high-frequency range (from 1.04 +/- 0.06 to 0.54 +/- 0.6 beats. min(-1). mmHg(-1); P < 0.001) without significantly affecting the gain in the low-frequency range (P = 0.63). These data suggest that whole body heating reduced high-frequency dynamic baroreflex regulation of HR associated with spontaneous changes in blood pressure. Reduced vagal baroreflex regulation of HR may contribute to reduced orthostatic tolerance known to occur in humans during heat stress.

  19. Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling.

    PubMed

    Srivastava, Mansi; Mazza-Curll, Kathleen L; van Wolfswinkel, Josien C; Reddien, Peter W

    2014-05-19

    Whole-body regeneration is widespread in the Metazoa, yet little is known about how underlying molecular mechanisms compare across phyla. Acoels are an enigmatic phylum of invertebrate worms that can be highly informative about many questions in bilaterian evolution, including regeneration. We developed the three-banded panther worm, Hofstenia miamia, as a new acoelomorph model system for molecular studies of regeneration. Hofstenia were readily cultured, with accessible embryos, juveniles, and adults for experimentation. We developed molecular resources and tools for Hofstenia, including a transcriptome and robust systemic RNAi. We report the identification of molecular mechanisms that promote whole-body regeneration in Hofstenia. Wnt signaling controls regeneration of the anterior-posterior axis, and Bmp-Admp signaling controls regeneration of the dorsal-ventral axis. Perturbation of these pathways resulted in regeneration-abnormal phenotypes involving axial feature duplication, such as the regeneration of two heads following Wnt perturbation or the regeneration of ventral cells in place of dorsal ones following bmp or admp RNAi. Hofstenia regenerative mechanisms are strikingly similar to those guiding regeneration in planarians. However, phylogenetic analyses using the Hofstenia transcriptome support an early branching position for acoels among bilaterians, with the last common ancestor of acoels and planarians being the ancestor of the Bilateria. Therefore, these findings identify similar whole-body regeneration mechanisms in animals separated by more than 550 million years of evolution. PMID:24768051

  20. Analysis of adipose tissue distribution using whole-body magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Schwarz, Tobias; Dinkel, Julien; Delorme, Stefan; Teucher, Birgit; Kaaks, Rudolf; Meinzer, Hans-Peter; Heimann, Tobias

    2011-03-01

    Obesity is an increasing problem in the western world and triggers diseases like cancer, type two diabetes, and cardiovascular diseases. In recent years, magnetic resonance imaging (MRI) has become a clinically viable method to measure the amount and distribution of adipose tissue (AT) in the body. However, analysis of MRI images by manual segmentation is a tedious and time-consuming process. In this paper, we propose a semi-automatic method to quantify the amount of different AT types from whole-body MRI data with less user interaction. Initially, body fat is extracted by automatic thresholding. A statistical shape model of the abdomen is then used to differentiate between subcutaneous and visceral AT. Finally, fat in the bone marrow is removed using morphological operators. The proposed method was evaluated on 15 whole-body MRI images using manual segmentation as ground truth for adipose tissue. The resulting overlap for total AT was 93.7% +/- 5.5 with a volumetric difference of 7.3% +/- 6.4. Furthermore, we tested the robustness of the segmentation results with regard to the initial, interactively defined position of the shape model. In conclusion, the developed method proved suitable for the analysis of AT distribution from whole-body MRI data. For large studies, a fully automatic version of the segmentation procedure is expected in the near future.

  1. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    PubMed

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study, was employed along with extensive Monte Carlo simulations and an initial clinical (18)F-deoxyglucose patient dataset to validate and demonstrate the potential of the proposed statistical estimation methods. Both simulated and clinical results suggest that hybrid regression in the context of whole-body Patlak Ki imaging considerably reduces MSE without compromising high CNR. Alternatively, for a given CNR, hybrid regression enables larger reductions than OLS in the number of dynamic frames per bed, allowing for even shorter acquisitions of ~30 min, thus further contributing to the clinical adoption of the proposed framework. Compared to the SUV approach, whole-body parametric imaging can provide better tumor quantification, and can act as a complement to SUV, for the task of tumor detection. PMID:24080994

  2. A three-dimensional tunnel model for calculation of train-induced ground vibration

    NASA Astrophysics Data System (ADS)

    Forrest, J. A.; Hunt, H. E. M.

    2006-07-01

    The frequency range of interest for ground vibration from underground urban railways is approximately 20 to 100 Hz. For typical soils, the wavelengths of ground vibration in this frequency range are of the order of the spacing of train axles, the tunnel diameter and the distance from the tunnel to nearby building foundations. For accurate modelling, the interactions between these entities therefore have to be taken into account. This paper describes an analytical three-dimensional model for the dynamics of a deep underground railway tunnel of circular cross-section. The tunnel is conceptualised as an infinitely long, thin cylindrical shell surrounded by soil of infinite radial extent. The soil is modelled by means of the wave equations for an elastic continuum. The coupled problem is solved in the frequency domain by Fourier decomposition into ring modes circumferentially and a Fourier transform into the wavenumber domain longitudinally. Numerical results for the tunnel and soil responses due to a normal point load applied to the tunnel invert are presented. The tunnel model is suitable for use in combination with track models to calculate the ground vibration due to excitation by running trains and to evaluate different track configurations.

  3. Quantitative analysis of drug effects at the whole-body level: a case study for glucose metabolism in malaria patients.

    PubMed

    Snoep, Jacky L; Green, Kathleen; Eicher, Johann; Palm, Daniel C; Penkler, Gerald; du Toit, Francois; Walters, Nicolas; Burger, Robert; Westerhoff, Hans V; van Niekerk, David D

    2015-12-01

    We propose a hierarchical modelling approach to construct models for disease states at the whole-body level. Such models can simulate effects of drug-induced inhibition of reaction steps on the whole-body physiology. We illustrate the approach for glucose metabolism in malaria patients, by merging two detailed kinetic models for glucose metabolism in the parasite Plasmodium falciparum and the human red blood cell with a coarse-grained model for whole-body glucose metabolism. In addition we use a genome-scale metabolic model for the parasite to predict amino acid production profiles by the malaria parasite that can be used as a complex biomarker. PMID:26614654

  4. Focusing of Rayleigh waves generated by high-speed trains under the condition of ground vibration boom

    E-print Network

    Krylov, Victor V

    2015-01-01

    In the present paper, the effects of focusing of Rayleigh waves generated by high speed trains in the supporting ground under the condition of ground vibration boom are considered theoretically. These effects are similar to the effects of focusing of sound waves radiated by aircraft under the condition of sonic boom. In particular, if a railway track has a bend to provide the possibility of changing direction of train movement, the Rayleigh surface waves generated by high-speed trains under the condition of ground vibration boom may become focused. This results in concentration of their energy along a simple caustic line at one side of the track and in the corresponding increase in ground vibration amplitudes. The effect of focusing of Rayleigh waves may occur also if a train moves along a straight line with acceleration and its current speed is higher than Rayleigh wave velocity in the ground. The obtained results are illustrated by numerical calculations.

  5. Quantifying Postural Control during Exergaming Using Multivariate Whole-Body Movement Data: A Self-Organizing Maps Approach

    PubMed Central

    van Diest, Mike; Stegenga, Jan; Wörtche, Heinrich J.; Roerdink, Jos B. T. M; Verkerke, Gijsbertus J.; Lamoth, Claudine J. C.

    2015-01-01

    Background Exergames are becoming an increasingly popular tool for training balance ability, thereby preventing falls in older adults. Automatic, real time, assessment of the user’s balance control offers opportunities in terms of providing targeted feedback and dynamically adjusting the gameplay to the individual user, yet algorithms for quantification of balance control remain to be developed. The aim of the present study was to identify movement patterns, and variability therein, of young and older adults playing a custom-made weight-shifting (ice-skating) exergame. Methods Twenty older adults and twenty young adults played a weight-shifting exergame under five conditions of varying complexity, while multi-segmental whole-body movement data were captured using Kinect. Movement coordination patterns expressed during gameplay were identified using Self Organizing Maps (SOM), an artificial neural network, and variability in these patterns was quantified by computing Total Trajectory Variability (TTvar). Additionally a k Nearest Neighbor (kNN) classifier was trained to discriminate between young and older adults based on the SOM features. Results Results showed that TTvar was significantly higher in older adults than in young adults, when playing the exergame under complex task conditions. The kNN classifier showed a classification accuracy of 65.8%. Conclusions Older adults display more variable sway behavior than young adults, when playing the exergame under complex task conditions. The SOM features characterizing movement patterns expressed during exergaming allow for discriminating between young and older adults with limited accuracy. Our findings contribute to the development of algorithms for quantification of balance ability during home-based exergaming for balance training. PMID:26230655

  6. Effect of sway on image fidelity in whole-body digitizing

    NASA Astrophysics Data System (ADS)

    Corner, Brian D.; Hu, Anmin

    1998-03-01

    For 3D digitizers to be useful data collection tools in scientific and human factors engineering applications, the models created from scan data must match the original object very closely. Factors such as ambient light, characteristics of the object's surface, and object movement, among others can affect the quality of the image produced by any 3D digitizing system. Recently, Cyberware has developed a whole body digitizer for collecting data on human size and shape. With a digitizing time of about 15 seconds, the effect subject movement, or sway, on model fidelity is an important issue to be addressed. The effect of sway is best measured by comparing the dimensions of an object of known geometry to the model of the same object captured by the digitizer. Since it is difficult to know the geometry of a human body accurately, it was decided to compare an object of simple geometry to its digitized counterpart. Preliminary analysis showed that a single cardboard tube would provide the best artifact for detecting sway. A tube was attached to the subjects using supports that allowed the cylinder to stand away from the body. The stand-off was necessary to minimize occluded areas. Multiple scans were taken of 1 subject and the cylinder extracted from the images. Comparison of the actual cylinder dimensions to those extracted from the whole body images found the effect of sway to be minimal. This follows earlier findings that anthropometric dimensions extracted from whole body scans are very close to the same dimensions measured using standard manual methods. Recommendations for subject preparation and stabilization are discussed.

  7. Whole body massage for reducing anxiety and stabilizing vital signs of patients in cardiac care unit

    PubMed Central

    Adib-Hajbaghery, Mohsen; Abasi, Ali; Rajabi-Beheshtabad, Rahman

    2014-01-01

    Background: Patients admitted in coronary care units face various stressors. Ambiguity of future life conditions and unawareness of caring methods intensifies the patients’ anxiety and stress. This study was conducted to assess the effects of whole body massage on anxiety and vital signs of patients with acute coronary disorders. Methods: A randomized controlled trial was conducted on 120 patients. Patients were randomly allocated into two groups. The intervention group received a session of whole body massage and the control group received routine care. The levels of State, Trait and overall anxiety and vital signs were assessed in both groups before and after intervention. Independent sample t-test, paired t-test, Chi-square and Fischer exact tests were used for data analysis. Results: The baseline overall mean score of anxiety was 79.43±29.34 in the intervention group and was decreased to 50.38±20.35 after massage therapy (p=0.001). However, no significant changes were occurred in the overall mean anxiety in the control group during the study. The baseline diastolic blood pressure was 77.05±8.12 mmHg and was decreased to 72.18±9.19 mmHg after the intervention (p=0.004). Also, significant decreases were occurred in heart rate and respiration rate of intervention group after massage therapy (p=0.001). However, no significant changes were occurred in vital signs of the control group during the study. Conclusion: The results suggest that whole body massage was effective in reducing anxiety and stabilizing vital signs of patients with acute coronary disorders. PMID:25405113

  8. Bone remodelling biomarkers after whole body cryotherapy (WBC) in elite rugby players.

    PubMed

    Galliera, Emanuela; Dogliotti, Giada; Melegati, Gianluca; Corsi Romanelli, Massimiliano M; Cabitza, Paolo; Banfi, Giuseppe

    2013-08-01

    Whole body cryotherapy (WBC) consists of a brief exposure to extreme cold air (-110°C) in a controlled chamber and it is applied in sports medicine to improve recovery from musculoskeletal trauma. The aim of this study is to better define the beneficial effect of WCB on the musculoskeletal system of athletes, in particular on bone remodelling. Remodelling osteoimmunological biomarkers OPG, RANKL and RANK were measured after WBC treatment in 10 male rugby players randomly selected from the Italian National team. OPG levels were increased significantly, supporting the view that WBC induces an osteogenic effect. Further studies evaluating the effect of WBC on bone metabolism are desirable. PMID:23000054

  9. Whole-body effective half-lives for radiolabeled antibodies and related issues

    SciTech Connect

    Kaurin, D.G.L.; Carsten, A.L.; Baum, J.W.; Barber, D.E.

    1996-08-01

    Radiolabeled antibodies (RABs) are being developed and used in medical imaging and therapy in rapidly increasing numbers. Data on the whole body half effective half-lives were calculated from external dose rates obtained from attending physicians and radiation safety officers at participating institutions. Calculations were made using exponential regression analysis of data from patients receiving single and multiple administrations. Theses data were analyzed on the basis of age, sex, isotope label, radiation energy, antibody type, disease treated, administration method, and number of administrations.

  10. Appearance of cell fragments in thymus after a whole-body X-irradiation of rat

    SciTech Connect

    Ohyama, H.; Yamada, T.

    1983-01-01

    Changes in surface architecture and three dimensional structure of rat thymus cortex were examined by scanning electron microscopy (SEM) after a whole-body X-irradiation. The samples of thymus prepared from rats 4 to 8 hr after a 400 R irradiation were observed by SEM. Normal thymocytes, having tiny microvilli and shallow ridges, decreased in number after irradiation, with a corresponding increase in radiation damaged round shaped cells with occasional protrusions and pores. With time after irradiation, smaller spherical fragments of cells having smooth or porous surfaces increased in number.

  11. Absolute accuracy of the Cyberware WB4 whole-body scanner

    NASA Astrophysics Data System (ADS)

    Daanen, Hein A. M.; Taylor, Stacie E.; Brunsman, Matthew A.; Nurre, Joseph H.

    1997-03-01

    The Cyberware WB4 whole body scanner is one of the first scanning systems in the world that generates a high resolution data set of the outer surface of the human body. The Computerized Anthropometric Research and Design (CARD) Laboratory of Wright-Patterson AFB intends to use the scanner to enable quick and reliable acquisition of anthropometric data. For this purpose, a validation study was initiated to check the accuracy, reliability and errors of the system. A calibration object, consisting of two boxes and a cylinder, was scanned in several locations in the scanning space. The object dimensions in the resulting scans compared favorably to the actual dimensions of the calibration object.

  12. Waveform-Sampling Electronics for a Whole-Body Time-of-Flight PET Scanner

    PubMed Central

    Ashmanskas, W. J.; LeGeyt, B. C.; Newcomer, F. M.; Panetta, J. V.; Ryan, W. A.; Van Berg, R.; Wiener, R. I.; Karp Fellow, J. S.

    2014-01-01

    Waveform sampling is an appealing technique for instruments requiring precision time and pulse-height measurements. Sampling each PMT waveform at oscilloscope-like rates of several gigasamples per second enables one to process PMT signals digitally, which in turn makes it straightforward to optimize timing resolution and amplitude (energy and position) resolution in response to calibration effects, pile-up effects, and other systematic sources of waveform variation. We describe a system design and preliminary implementation that neatly maps waveform-sampling technology onto the LaPET prototype whole-body time-of-flight PET scanner that serves as the platform for testing this new technology. PMID:25484379

  13. Incidentally Visualization of the Thymus on Whole-Body Iodine Scintigraphy

    PubMed Central

    Haghighatafshar, Mahdi; Farhoudi, Farinaz

    2015-01-01

    Abstract Radioiodine uptake is not commonly seen by the thymus gland. On the contrary, the gland is slowly replaced by fat after puberty. Herein, we present 2 patients with papillary thyroid carcinoma, follicular variant, and cervical lymph node involvement. After total/near-total thyroidectomy, the patients received 131I for ablation therapy. On posttreatment radioiodine scintigraphy, mediastinal 131I uptake was noted that finally was histologically/anatomically diagnosed as thymus gland uptake. It should be borne in mind as a potential cause of false-positive whole-body 131I scintigraphy. PMID:26131804

  14. Establishment and testing of a whole body counter for the Texas A&M Nuclear Science Center 

    E-print Network

    Baca, Bernadette Doris

    1997-01-01

    The establishment and testing of a whole body counter would benefit the Texas A&M Nuclear Science Center (NSC) Health Physics staff and workers by allowing better assessment of a worker's internal exposure. Presently NSC relies exclusively...

  15. Transient infiltration of neutrophils into the thymus following whole-body X-ray irradiation in IL-10 knockout mice

    SciTech Connect

    Fujiwara, Hiroya; Yamazaki, Takahiro; Uzawa, Akiko; Nagata, Kisaburo; Kobayashi, Yoshiro

    2008-05-02

    IL-10 is known to suppress the inflammatory responses in a variety of experimental models. Because we previously found that whole-body X-irradiation causes massive apoptosis in the thymus and transient infiltration of neutrophils, in this study, we examined whether or not IL-10 is involved in the regulation of neutrophil infiltration upon whole-body X-ray irradiation using IL-10 knockout mice. Although IL-10 was induced in the thymus on whole-body X-ray irradiation, apoptosis of thymocytes, neutrophil infiltration, and MIP-2 and KC production in the thymus were not affected by an IL-10 deficiency. Coculturing of bone marrow-derived macrophages with late apoptotic cells caused MIP-2 production, which was also not affected by an IL-10 deficiency. These results suggest the uniqueness of the inflammatory response induced by whole-body X-ray irradiation, which does not seem to be regulated by IL-10.

  16. Restrictions in systemic and locomotor skeletal muscle perfusion, oxygen supply and VO2 during high-intensity whole-body exercise in humans.

    PubMed

    Mortensen, Stefan P; Damsgaard, Rasmus; Dawson, Ellen A; Secher, Niels H; González-Alonso, José

    2008-05-15

    Perfusion to exercising skeletal muscle is regulated to match O(2) delivery to the O(2) demand, but this regulation might be compromised during or approaching maximal whole-body exercise as muscle blood flow for a given work rate is blunted. Whether muscle perfusion is restricted when there is an extreme metabolic stimulus to vasodilate during supramaximal exercise remains unknown. To examine the regulatory limits of systemic and muscle perfusion in exercising humans, we measured systemic and leg haemodynamics, O(2) transport, and , and estimated non-locomotor tissue perfusion during constant load supramaximal cycling (498 +/- 16 W; 110% of peak power; mean +/- S.E.M.) in addition to both incremental cycling and knee-extensor exercise to exhaustion in 13 trained males. During supramaximal cycling, cardiac output (Q), leg blood flow (LBF), and systemic and leg O(2) delivery and reached peak values after 60-90 s and thereafter levelled off at values similar to or approximately 6% (P < 0.05) below maximal cycling, while upper body blood flow remained unchanged (approximately 5.5 l min(-1)). In contrast, Q and LBF increased linearly until exhaustion during one-legged knee-extensor exercise accompanying increases in non-locomotor tissue blood flow to approximately 12 l min(-1). At exhaustion during cycling compared to knee-extensor exercise, Q, LBF, leg vascular conductance, leg O(2) delivery and leg for a given power were reduced by 32-47% (P < 0.05). In conclusion, locomotor skeletal muscle perfusion is restricted during maximal and supramaximal whole-body exercise in association with a plateau in Q and limb vascular conductance. These observations suggest that limits of cardiac function and muscle vasoconstriction underlie the inability of the circulatory system to meet the increasing metabolic demand of skeletal muscles and other tissues during whole-body exercise. PMID:18372307

  17. The AMP-activated protein kinase ?2 catalytic subunit controls whole-body insulin sensitivity

    PubMed Central

    Viollet, Benoit; Andreelli, Fabrizio; Jørgensen, Sebastian B.; Perrin, Christophe; Geloen, Alain; Flamez, Daisy; Mu, James; Lenzner, Claudia; Baud, Olivier; Bennoun, Myriam; Gomas, Emmanuel; Nicolas, Gaël; Wojtaszewski, Jørgen F.P.; Kahn, Axel; Carling, David; Schuit, Frans C.; Birnbaum, Morris J.; Richter, Erik A.; Burcelin, Rémy; Vaulont, Sophie

    2003-01-01

    AMP-activated protein kinase (AMPK) is viewed as a fuel sensor for glucose and lipid metabolism. To better understand the physiological role of AMPK, we generated a knockout mouse model in which the AMPK?2 catalytic subunit gene was inactivated. AMPK?2–/– mice presented high glucose levels in the fed period and during an oral glucose challenge associated with low insulin plasma levels. However, in isolated AMPK?2–/– pancreatic islets, glucose- and L-arginine–stimulated insulin secretion were not affected. AMPK?2–/– mice have reduced insulin-stimulated whole-body glucose utilization and muscle glycogen synthesis rates assessed in vivo by the hyperinsulinemic euglycemic clamp technique. Surprisingly, both parameters were not altered in mice expressing a dominant-negative mutant of AMPK in skeletal muscle. Furthermore, glucose transport was normal in incubated isolated AMPK?2–/– muscles. These data indicate that AMPK?2 in tissues other than skeletal muscles regulates insulin action. Concordantly, we found an increased daily urinary catecholamine excretion in AMPK?2–/– mice, suggesting altered function of the autonomic nervous system that could explain both the impaired insulin secretion and insulin sensitivity observed in vivo. Therefore, extramuscular AMPK?2 catalytic subunit is important for whole-body insulin action in vivo, probably through modulation of sympathetic nervous activity. PMID:12511592

  18. Calibration of the Accuscan II In Vivo System for Whole Body Counting

    SciTech Connect

    Orval R. Perry; David L. Georgeson

    2011-08-01

    This report describes the April 2011 calibration of the Accuscan II HpGe In Vivo system for whole body counting. The source used for the calibration was a NIST traceable BOMAB manufactured by DOE as INL2006 BOMAB containing Eu-154, Eu-155, Eu-152, Sb-125 and Y-88 with energies from 27 keV to 1836 keV with a reference date of 11/29/2006. The actual usable energy range was 86.5 keV to 1597 keV on 4/21/2011. The BOMAB was constructed inside the Accuscan II counting 'tub' in the order of legs, thighs, abdomen, thorax/arms, neck, and head. Each piece was taped to the backwall of the counter. The arms were taped to the thorax. The phantom was constructed between the v-ridges on the backwall of the Accuscan II counter. The energy and efficiency calibrations were performed using the INL2006 BOMAB. The calibrations were performed with the detectors in the scanning mode. This report includes an overview introduction and records for the energy/FWHM and efficiency calibration including performance verification and validation counting. The Accuscan II system was successfully calibrated for whole body counting and verified in accordance with ANSI/HPS N13.30-1996 criteria.

  19. Late response to whole-lung irradiation alone and with whole-body hyperthermia in dogs

    SciTech Connect

    Gillette, S.M.; Gillette, E.L.; Dawson, C.A.

    1997-02-01

    The late effects of whole-lung irradiation with and without whole-body hyperthermia were studied in beagle dogs. The reference doses ranged from 18 to 49.5 Gy given in 1.5-Gy fractions over 6 weeks. Whole-body hyperthermia was given in three 2-h treatments to a deep rectal temperature of 42.0{degrees}C. Radiation was given simultaneously with hyperthermia on those days. Physiological and histopathological responses were evaluated. Physiological changes included decreases in cardiac output, systemic blood pressure, dynamic compliance and serotonin uptake. Early changes included an increase in extravascular water and total protein in the lavage. These changes were considered mild, were compensated for and occurred only in dogs receiving doses of 40.5 Gy or greater given in 1.5-Gy fractions over 6 weeks. Histopathological change were typical of irradiated lung and included pleural fibrosis, interstitial fibrosis, fibrotic foci, and peribronchial and perivascular fibrosis. There was no enhancement of late injury to lung by hyperthermia seen in this study. 17 refs., 3 figs., 2 tabs.

  20. Design and operation of a whole-body monitoring system for the Goiania radiation accident

    SciTech Connect

    Oliveira, C.A.; Lourenco, M.C.; Dantas, B.M.; Lucena, E.A. )

    1991-01-01

    With as many individuals involved in the Goiania 137Cs accident who had high levels of internal contamination, it was necessary to improvise a whole-body counter installation in loco. The in-vivo counting system was located in a 4.0 X 3.5 X 3.5-m room, where seven layers of 2-mm lead sheets with dimensions of 2.0 m X 1.0 m were overlaid on the floor at loci that were equidistant from the walls. A 20-cm diameter NaI (Tl) detector was installed at a height of 2.05 m above the floor at the center of the room. The detector was shielded and collimated with 5 cm of lead. The enormous amounts of activity in the subjects required the detector to be positioned at a height of 2.05 m. Subjects were required to wear disposable clothing and lie on a reclining, fiberglass chair. Counting time for the subjects was 2 min (live-time). The minimum detectable 137Cs activity for this counting time was 7.3 kBq* (0.05 significance level). Besides the accident victims, all individuals who had direct or indirect contact with contaminated people or areas were also monitored. More than 300 people of both sexes, with ages varying from a few months to 72 y, were measured for whole-body radioactivity. The observed activities ranged from less than the minimum detectable activity (MDA) to 59 MBq.

  1. Enhancement of committed hematopoietic stem cell colony formation by nandrolone decanoate after sublethal whole body irradiation

    SciTech Connect

    Gallicchio, V.S.; Chen, M.G.; Watts, T.D.

    1984-11-01

    The ability of an anabolic steroid, nandrolone decanoate, to increase committed topoietic stem cell (CFU-gm, CFU-e, and BFU-e) colony formation after sublethal irradiation was evaluated. Immediately after receiving whole body irradiation and on the next two days, each mouse was injected intraperitoneally with nandrolone decanoate (1.25 mg) in propylene glycol. Irradiated control mice received only propylene glycol. Compared to controls, drug-treated mice showed marked peripheral blood leukocytosis and more stable packed red cell volume. Drug-treated mice also demonstrated increased erythropoiesis, as CFU-e/BFU-e concentrations from both marrow (9% to 581%) and spleen (15% to 797%) were elevated. Granulopoiesis was increased similarly, as CFU-gm concentrations from marrow (38% to 685%) and spleen (9% to 373%) were elevated. These results demonstrate that nandrolone decanoate enhances hematopoietic stem cell recovery after sublethal whole body irradiation. This suggests that following hematopoietic suppression, nandrolone decanoate may stimulate the recovery of hematopoiesis at the stem cell level and in peripheral blood.

  2. Whole-body live mouse imaging by hybrid reflection-mode ultrasound and optoacoustic tomography.

    PubMed

    Mer?ep, Elena; Burton, Neal C; Claussen, Jing; Razansky, Daniel

    2015-10-15

    We present a hybrid preclinical imaging scanner that optimally supports image acquisition in both reflection-mode ultrasonography and optoacoustic (OA) tomography modes. The system comprises a quasi-full-ring tomographic geometry capable of the simultaneous dual-mode imaging through entire cross sections of mice with in-plane spatial resolution in the range of 150 and 350 ?m in the respective OA and ultrasound (US) imaging modes with an imaging speed of up to 10 two-dimensional frames per second. Three-dimensional whole-body data is subsequently rendered by rapid scanning of the imaged plane. The system further incorporates rapid laser wavelength tuning for real-time acquisition of multispectral OA data, which enables studies of longitudinal dynamics as well as fast kinetics and biodistribution of contrast agents. In vivo imaging performance is demonstrated by label-free hybrid anatomical scans through living mice, as well as real-time visualization of optical contrast agent perfusion. By setting new standards for whole-body tomographic imaging performance in both the OA and pulse-echo US modes, the developed hybrid imaging approach is expected to benefit numerous applications where the availability of high-quality structural information provided by the tomographic reflection-mode US can ease interpretation of the functional and molecular imaging results attained by the OA modality. PMID:26469584

  3. Hematological Profile and Martial Status in Rugby Players during Whole Body Cryostimulation

    PubMed Central

    Lombardi, Giovanni; Lanteri, Patrizia; Porcelli, Simone; Mauri, Clara; Colombini, Alessandra; Grasso, Dalila; Zani, Viviana; Bonomi, Felice Giulio; Melegati, Gianluca; Banfi, Giuseppe

    2013-01-01

    Cold-based therapies are commonly applied to alleviate pain symptoms secondary to inflammatory diseases, but also to treat injuries or overuse, as done in sports rehabilitation. Whole body cryotherapy, a relatively new form of cold therapy, consists of short whole-body exposure to extremely cold air (?110°C to ?140°C). Cryostimulation is gaining wider acceptance as an effective part of physical therapy to accelerate muscle recovery in rugby players. The aim of this study was to evaluate the effect of repeated cryostimulation sessions on the hematological profile and martial status markers in professional rugby players. Twenty-seven professional rugby players received 2 daily cryostimulation treatments for 7 consecutive days. Blood samples were collected before and after administration of the cryotherapic protocol and hematological profiles were obtained. No changes in the leukocyte count or composition were seen. There was a decrease in the values for erythrocytes, hematocrit, hemoglobin and mean corpuscular hemoglobin content, and an increase in mean corpuscular volume and red cell distribution width. Platelet count and mean volume remained unchanged. Serum transferrin and ferritin decreased, while soluble transferrin receptor increased. Serum iron and transferrin saturation were unchanged, as was reticulocyte count, whereas the immature reticulocyte fraction decreased substantially. In conclusion, in this sample of professional rugby players, cryostimulation modified the hematological profile, with a reduction in erythrocyte count and hemoglobinization paralleled by a change in martial status markers. PMID:23383348

  4. Optimization of Whole-Body Zebrafish Sectioning Methods for Mass Spectrometry Imaging

    PubMed Central

    Nelson, Kimberly A.; Daniels, Gabrielle J.; Fournie, John W.; Hemmer, Michael J.

    2013-01-01

    Mass spectrometry imaging (MSI) methods and protocols have become widely adapted to a variety of tissues and species. However, the MSI literature contains minimal information on whole-body cryosection preparation for the zebrafish (ZF; Danio rerio), a model organism routinely used in developmental, toxicity, and carcinogenicity studies. The optimal medium for embedding and cryosectioning a whole organism or soft-tissue specimen for histological examination is a synthetic polymer mixture that is incompatible with MSI as a result of ion suppression. We describe the optimal methods and results for embedding and cryosectioning whole-body ZF for MALDI-MSI. We evaluated 13 distinct embedding media formulations and found a supportive hydrogel with the consistency of cartilage to be the optimal embedding medium. The hydrogel medium does not interfere with MSI data collection, aids in tissue stability, is readily available for purchase, and is easy to prepare and handle during cryosectioning. Additionally, we decreased the matrix cluster interference commonly caused by ?-cyano-4-hydroxycinnamic acid by adding ammonium phosphate to the solvent spray solution. The optimized methods developed in our laboratory produced high-quality cryosections, as well as high-quality mass spectral images of sectioned ZF. PMID:23997659

  5. Whole body MRI: Improved Lesion Detection and Characterization With Diffusion Weighted Techniques

    PubMed Central

    Attariwala, Rajpaul; Picker, Wayne

    2013-01-01

    Diffusion-weighted imaging (DWI) is an established functional imaging technique that interrogates the delicate balance of water movement at the cellular level. Technological advances enable this technique to be applied to whole-body MRI. Theory, b-value selection, common artifacts and target to background for optimized viewing will be reviewed for applications in the neck, chest, abdomen, and pelvis. Whole-body imaging with DWI allows novel applications of MRI to aid in evaluation of conditions such as multiple myeloma, lymphoma, and skeletal metastases, while the quantitative nature of this technique permits evaluation of response to therapy. Persisting signal at high b-values from restricted hypercellular tissue and viscous fluid also permits applications of DWI beyond oncologic imaging. DWI, when used in conjunction with routine imaging, can assist in detecting hemorrhagic degradation products, infection/abscess, and inflammation in colitis, while aiding with discrimination of free fluid and empyema, while limiting the need for intravenous contrast. DWI in conjunction with routine anatomic images provides a platform to improve lesion detection and characterization with findings rivaling other combined anatomic and functional imaging techniques, with the added benefit of no ionizing radiation. PMID:23960006

  6. Rat Cardiovascular Responses to Whole Body Suspension: Head-down and Non-Head-Down Tilt

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, Joseph M.; Dombrowski, Judy

    1992-01-01

    The rat whole body suspension technique mimics responses seen during exposure to microgravity and was evaluated as a model for cardiovascular responses with two series of experiments. In one series, changes were monitored in chronically catheterized rats during 7 days of Head-Down Tilt (HDT) or Non-Head-Down Tilt (N-HDT) and after several hours of recovery. Elevations of mean arterial (MAP), systolic, and diastolic pressures of approx. 20 % (P less than 0.05) in HDT rats began as early as day 1 and were maintained for the duration of suspension. Pulse pressures were relatively unaffected, but heart rates were elevated approx. 10 %. During postsuspension (2-7 h), most cardiovascular parameters returned to presuspension levels. N-HDT rats exhibited elevations chiefly on days 3 and 7. In the second series, blood pressure was monitored in 1- and 3-day HDT and N-HDT rats to evaluate responses to rapid head-up tilt. MAP, systolic and diastolic pressures, and HR were elevated (P less than 0.05) in HDT and N-HDT rats during head-up tilt after 1 day of suspension, while pulse pressures remained un changed. HDT rats exhibited elevated pretilt MAP and failed to respond to rapid head-up tilt with further increase of MAP on day 3, indicating some degree of deconditioning. The whole body suspended rat may be useful as a model to better understand responses of rats exposed to microgravity.

  7. Responses of primate caudal parabrachial nucleus and Kolliker-fuse nucleus neurons to whole body rotation

    NASA Technical Reports Server (NTRS)

    Balaban, Carey D.; McGee, David M.; Zhou, Jianxun; Scudder, Charles A.

    2002-01-01

    The caudal aspect of the parabrachial (PBN) and Kolliker-Fuse (KF) nuclei receive vestibular nuclear and visceral afferent information and are connected reciprocally with the spinal cord, hypothalamus, amygdala, and limbic cortex. Hence, they may be important sites of vestibulo-visceral integration, particularly for the development of affective responses to gravitoinertial challenges. Extracellular recordings were made from caudal PBN cells in three alert, adult female Macaca nemestrina through an implanted chamber. Sinusoidal and position trapezoid angular whole body rotation was delivered in yaw, roll, pitch, and vertical semicircular canal planes. Sites were confirmed histologically. Units that responded during rotation were located in lateral and medial PBN and KF caudal to the trochlear nerve at sites that were confirmed anatomically to receive superior vestibular nucleus afferents. Responses to whole-body angular rotation were modeled as a sum of three signals: angular velocity, a leaky integration of angular velocity, and vertical position. All neurons displayed angular velocity and integrated angular velocity sensitivity, but only 60% of the neurons were position-sensitive. These responses to vertical rotation could display symmetric, asymmetric, or fully rectified cosinusoidal spatial tuning about a best orientation in different cells. The spatial properties of velocity and integrated velocity and position responses were independent for all position-sensitive neurons; the angular velocity and integrated angular velocity signals showed independent spatial tuning in the position-insensitive neurons. Individual units showed one of three different orientations of their excitatory axis of velocity rotation sensitivity: vertical-plane-only responses, positive elevation responses (vertical plane plus ipsilateral yaw), and negative elevation axis responses (vertical plane plus negative yaw). The interactions between the velocity and integrated velocity components also produced variations in the temporal pattern of responses as a function of rotation direction. These findings are consistent with the hypothesis that a vestibulorecipient region of the PBN and KF integrates signals from the vestibular nuclei and relay information about changes in whole-body orientation to pathways that produce homeostatic and affective responses.

  8. Design Study of a Whole-Body PET Scanner with Improved Spatial and Timing Resolution

    PubMed Central

    Surti, S.; Shore, Adam R.; Karp, Joel S.

    2013-01-01

    Current state-of-art whole-body PET scanners achieve a system spatial resolution of 4–5 mm with limited sensitivity. Since the reconstructed spatial resolution and image quality are limited by the count statistics, there has not been a significant push for developing higher resolution whole-body PET scanners. Our goal in this study is to investigate the impact of improved spatial resolution together with time-of-flight (TOF) capability on lesion uptake estimation and lesion detectability, two important tasks in whole-body oncologic studies. The broader goal of this project is the development of a new state-of-art TOF PET scanner operating within an MRI while pushing the technology in PET system design. We performed Monte Carlo simulations to test the effects of crystal size (4 mm and 2.6 mm wide crystals), TOF timing resolution (300ps and 600ps), and 2-level depth-of-interaction (DOI) capability. Spatial resolution was calculated by simulating point sources in air at multiple positions. Results show that smaller crystals produced improved resolution, while degradation of resolution due to parallax error could be reduced with a 2-level DOI detector. Lesion phantoms were simulated to measure the contrast recovery coefficient (CRC) and area under the LROC curve (ALROC) for 0.5 cm diameter lesions with 6:1 activity uptake relative to the background. Smaller crystals produce higher CRC, leading to increased ALROC values or a reduction in scan time. Improved timing resolution provides faster CRC convergence and once again leads to an increase in ALROC value or reduced scan time. Based on our choice of timing resolution and crystal size, improved timing resolution (300ps) with larger crystals (4 mm wide) has similar ALROC as smaller crystals (2.6 mm wide) with 600ps timing resolution. A 2-level DOI measurement provides some CRC and ALROC improvement for lesions further away from the center, leading to a more uniform performance within the imaging field-of-view (FOV). Given a choice between having either an improved spatial resolution, improved timing resolution, or DOI capability, improved spatial or timing resolution provide an overall higher ALROC relative to a 2-level DOI detector. PMID:24379455

  9. Design Study of a Whole-Body PET Scanner with Improved Spatial and Timing Resolution.

    PubMed

    Surti, S; Shore, Adam R; Karp, Joel S

    2013-07-01

    Current state-of-art whole-body PET scanners achieve a system spatial resolution of 4-5 mm with limited sensitivity. Since the reconstructed spatial resolution and image quality are limited by the count statistics, there has not been a significant push for developing higher resolution whole-body PET scanners. Our goal in this study is to investigate the impact of improved spatial resolution together with time-of-flight (TOF) capability on lesion uptake estimation and lesion detectability, two important tasks in whole-body oncologic studies. The broader goal of this project is the development of a new state-of-art TOF PET scanner operating within an MRI while pushing the technology in PET system design. We performed Monte Carlo simulations to test the effects of crystal size (4 mm and 2.6 mm wide crystals), TOF timing resolution (300ps and 600ps), and 2-level depth-of-interaction (DOI) capability. Spatial resolution was calculated by simulating point sources in air at multiple positions. Results show that smaller crystals produced improved resolution, while degradation of resolution due to parallax error could be reduced with a 2-level DOI detector. Lesion phantoms were simulated to measure the contrast recovery coefficient (CRC) and area under the LROC curve (ALROC) for 0.5 cm diameter lesions with 6:1 activity uptake relative to the background. Smaller crystals produce higher CRC, leading to increased ALROC values or a reduction in scan time. Improved timing resolution provides faster CRC convergence and once again leads to an increase in ALROC value or reduced scan time. Based on our choice of timing resolution and crystal size, improved timing resolution (300ps) with larger crystals (4 mm wide) has similar ALROC as smaller crystals (2.6 mm wide) with 600ps timing resolution. A 2-level DOI measurement provides some CRC and ALROC improvement for lesions further away from the center, leading to a more uniform performance within the imaging field-of-view (FOV). Given a choice between having either an improved spatial resolution, improved timing resolution, or DOI capability, improved spatial or timing resolution provide an overall higher ALROC relative to a 2-level DOI detector. PMID:24379455

  10. Protein metabolism in alcoholism: effects on specific tissues and the whole body.

    PubMed

    Preedy, V R; Reilly, M E; Patel, V B; Richardson, P J; Peters, T J

    1999-01-01

    Ethanol is one of the few nutrients that is profoundly toxic. Alcohol causes both whole-body and tissue-specific changes in protein metabolism. Chronic ethanol missuse increases nitrogen excretion with concomitant loss of lean tissue mass. Even acute doses of alcohol elicit increased nitrogen excretion. The loss of skeletal muscle protein (i.e., chronic alcoholic myopathy) is one of several adverse reactions to alcohol and occurs in up to two-thirds of all ethanol misusers. There are a variety of other diseases and tissue abnormalities that are entirely due to ethanol-induced changes in the amounts of individual proteins or groups of tissue proteins; for example, increased hepatic collagen in cirrhosis, reduction in myosin in cardiomyopathy, and loss of skeletal collagen in osteoporosis. Ethanol induces changes in protein metabolism in probably all organ or tissue systems. Clinical studies in alcoholic patients without overt liver disease show reduced rates of skeletal muscle protein synthesis though whole-body protein turnover does not appear to be significantly affected. Protein turnover studies in alcohol misusers are, however, subject to artifactual misinterpretations due to non-abstinence, dual substance misuse (e.g., cocaine or tobacco), specific nutritional deficiencies, or the presence of overt organ dysfunction. As a consequence, the most reliable data examining the effects of alcohol on protein metabolism is derived from animal studies, where nutritional elements of the dosing regimen can be strictly controlled. These studies indicate that, both chronically and acutely, alcohol causes reductions in skeletal muscle protein synthesis, as well as of skin, bone, and the small intestine. Chronically, animal studies also show increased urinary nitrogen excretion and loss of skeletal muscle protein. With respect to skeletal muscle, the reductions in protein synthesis do not appear to be due to the generation of reactive oxygen species, are not prevented with nitric oxide synthase inhibitors, and may be indirectly mediated by the reactive metabolite acetaldehyde. Changes in skeletal muscle protein metabolism have profound implications for whole body physiology, while protein turnover changes in organs such as the heart (exemplified by complex alterations in protein profiles) have important implications for cardiovascular function and morbidity. PMID:10422097

  11. Whole body and regional body composition changes following 10-day hypoxic confinement and unloading-inactivity.

    PubMed

    Debevec, Tadej; McDonnell, Adam C; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-03-01

    Future planetary habitats will expose inhabitants to both reduced gravity and hypoxia. This study investigated the effects of short-term unloading and normobaric hypoxia on whole body and regional body composition (BC). Eleven healthy, recreationally active, male participants with a mean (SD) age of 24 (2) years and body mass index of 22.4 (3.2) kg·m(-2) completed the following 3 10-day campaigns in a randomised, cross-over designed protocol: (i) hypoxic ambulatory confinement (HAMB; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), (ii) hypoxic bed rest (HBR; FIO2 = 0.147 (0.008); PIO2 = 93.8 (0.9) mm Hg), and (iii) normoxic bed rest (NBR; FIO2 = 0.209; PIO2 = 133.5 (0.7) mm Hg). Nutritional requirements were individually precalculated and the actual intake was monitored throughout the study protocol. Body mass, whole body, and regional BC were assessed before and after the campaigns using dual-energy X-ray absorptiometry. The calculated daily targeted energy intake values were 2071 (170) kcal for HBR and NBR and 2417 (200) kcal for HAMB. In both HBR and NBR campaigns the actual energy intake was within the targeted level, whereas in the HAMB the intake was lower than targeted (-8%, p < 0.05). Body mass significantly decreased in all 3 campaigns (-2.1%, -2.8%, and -2.0% for HAMB, HBR, and NBR, respectively; p < 0.05), secondary to a significant decrease in lean mass (-3.8%, -3.8%, -4.3% for HAMB, HBR, and NBR, respectively; p < 0.05) along with a slight, albeit not significant, increase in fat mass. The same trend was observed in the regional BC regardless of the region and the campaign. These results demonstrate that, hypoxia per se, does not seem to alter whole body and regional BC during short-term bed rest. PMID:24552383

  12. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned above. The most striking result preliminarily is that both strains of mice show a greater number of genes changing at the lowest dose of exposure for their respective pathways.

  13. Whole-Body Diffusion-weighted Imaging in Hodgkin Lymphoma and Diffuse Large B-Cell Lymphoma.

    PubMed

    Toledano-Massiah, Sarah; Luciani, Alain; Itti, Emmanuel; Zerbib, Pierre; Vignaud, Alexandre; Belhadj, Karim; Baranes, Laurence; Haioun, Corinne; Lin, Chieh; Rahmouni, Alain

    2015-01-01

    Whole-body imaging, in particular molecular imaging with fluorine 18 ((18)F)-fluorodeoxyglucose (FDG) positron emission tomography (PET), is essential to management of lymphoma. The assessment of disease extent provided by use of whole-body imaging is mandatory for planning appropriate treatment and determining patient prognosis. Assessment of treatment response allows clinicians to tailor the treatment strategy during therapy if necessary and to document complete remission at the end of treatment. Because of rapid technical developments, such as echo-planar sequences, parallel imaging, multichannel phased-array surface coils, respiratory gating, and moving examination tables, whole-body diffusion-weighted (DW) magnetic resonance (MR) imaging that reflects cell density is now feasible in routine clinical practice. Whole-body DW MR imaging allows anatomic assessment as well as functional and quantitative evaluation of tumor sites by calculation of the apparent diffusion coefficient (ADC). Because of their high cellularity and high nucleus-to-cytoplasm ratio, lymphomatous lesions have low ADC values and appear hypointense on ADC maps. As a result, whole-body DW MR imaging with ADC mapping has become a promising tool for lymphoma staging and treatment response assessment. The authors review their 4 years of experience with 1.5-T and 3-T whole-body DW MR imaging used with (18)F-FDG PET/computed tomography at baseline, interim, and end of treatment in patients with Hodgkin lymphoma and diffuse large B-cell lymphoma and discuss the spectrum of imaging findings and potential pitfalls, limitations, and challenges associated with whole-body DW MR imaging in these patients. PMID:25815803

  14. 2.5D Finite/infinite Element Approach for Simulating Train-Induced Ground Vibrations

    NASA Astrophysics Data System (ADS)

    Yang, Y. B.; Hung, H. H.; Kao, J. C.

    2010-05-01

    The 2.5D finite/infinite element approach for simulating the ground vibrations by surface or underground moving trains will be briefly summarized in this paper. By assuming the soils to be uniform along the direction of the railway, only a two-dimensional profile of the soil perpendicular to the railway need be considered in the modeling. Besides the two in-plane degrees of freedom (DOFs) per node conventionally used for plane strain elements, an extra DOF is introduced to account for the out-of-plane wave transmission. The profile of the half-space is divided into a near field and a semi-infinite far field. The near field containing the train loads and irregular structures is simulated by the finite elements, while the far field covering the soils with infinite boundary by the infinite elements, by which due account is taken of the radiation effects for the moving loads. Enhanced by the automated mesh expansion procedure proposed previously by the writers, the far field impedances for all the lower frequencies are generated repetitively from the mesh created for the highest frequency considered. Finally, incorporated with a proposed load generation mechanism that takes the rail irregularity and dynamic properties of trains into account, an illustrative case study was performed. This paper investigates the vibration isolation effect of the elastic foundation that separates the concrete slab track from the underlying soil or tunnel structure. In addition, the advantage of the 2.5D approach was clearly demonstrated in that the three-dimensional wave propagation effect can be virtually captured using a two-dimensional finite/infinite element mesh. Compared with the conventional 3D approach, the present approach appears to be simple, efficient and generally accurate.

  15. The effect of gamma-rays on the hemoglobin of whole-body irradiated mice

    NASA Astrophysics Data System (ADS)

    Ashry, H. A.; Selim, N. S.; El-Behay, A. Z.

    1994-07-01

    Changes in the UV-visible absorption spectrum of mouse hemoglobin as a result of whole body irradiation were studied. White albino adult mice were exposed to a Cs-137 ?-source at a dose rate of 47.5 Gy/h to different absorbed dose values ranging from 1 to 8 Gy. Blood specimens were taken 24 h after irradiation. The UV-visible absorption spectra of hemoglobin of irradiated and control mice were measured in the wavelength range from 200 to 700 nm. The obtained results showed significant changes in the bands measured at 340 nm, in the Soret band measured at 410 nm, also, the ?- and ?-bands measured at 537 and 572 nm showed significant decrease in intensity with the absorbed dose increase. The absorbance measured at 630 nm showed no significant changes. The radiation effect on the animal hemoglobin was discussed on the basis of the obtained results.

  16. Intercomparison of whole-body averaged SAR in European and Japanese voxel phantoms

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter J.; Hirata, Akimasa; Nagaoka, Tomoaki

    2008-10-01

    This paper provides an intercomparison of the HPA male and female models, NORMAN and NAOMI with the National Institute of Information and Communications Technology (NICT) male and female models, TARO and HANAKO. The calculations of the whole-body SAR in these four phantoms were performed at the HPA, at NICT and at the Nagoya Institute of Technology (NIT). These were for a plane wave with a vertically aligned electric field incident upon the front of the body from 30 MHz to 3 GHz for isolated conditions. As well as investigating the general differences through this frequency range, particular emphasis was placed on the assumptions of how dielectric properties are assigned to tissues (particularly skin and fat) and the consequence of using different algorithms for calculating SAR at the higher frequencies.

  17. Recombinant human thrombopoietin promotes hematopoietic reconstruction after severe whole body irradiation

    PubMed Central

    Wang, Chao; Zhang, Bowen; Wang, Sihan; Zhang, Jing; Liu, Yiming; Wang, Jingxue; Fan, Zeng; Lv, Yang; Zhang, Xiuyuan; He, Lijuan; Chen, Lin; Xia, Huanzhang; Li, Yanhua; Pei, Xuetao

    2015-01-01

    Recombinant human thrombopoietin (rHuTPO) is a drug that is used clinically to promote megakaryocyte and platelet generation. Here, we report the mitigative effect of rHuTPO (administered after exposure) against severe whole body irradiation in mice. Injection of rHuTPO for 14 consecutive days following exposure significantly improved the survival rate of lethally irradiated mice. RHuTPO treatment notably increased bone marrow cell density and LSK cell numbers in the mice after sub-lethal irradiation primarily by promoting residual HSC proliferation. In lethally irradiated mice with hematopoietic cell transplantation, rHuTPO treatment increased the survival rate and enhanced hematopoietic cell engraftment compared with the placebo treatment. Our observations indicate that recombinant human TPO might have a therapeutic role in promoting hematopoietic reconstitution and HSC engraftment. PMID:26403418

  18. Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease

    SciTech Connect

    Coon , Steven; Stark, Azadeh; Peterson, Edward; Gloi, Aime; Kortsha, Gene; Pounds, Joel G.; Chettle, D. R.; Gorell, Jay M.

    2006-12-01

    We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure.

  19. Optimal self-calibration of tomographic reconstruction parameters in whole-body small animal optoacoustic imaging

    PubMed Central

    Mandal, Subhamoy; Nasonova, Elena; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-01

    In tomographic optoacoustic imaging, multiple parameters related to both light and ultrasound propagation characteristics of the medium need to be adequately selected in order to accurately recover maps of local optical absorbance. Speed of sound in the imaged object and surrounding medium is a key parameter conventionally assumed to be uniform. Mismatch between the actual and predicted speed of sound values may lead to image distortions but can be mitigated by manual or automatic optimization based on metrics of image sharpness. Although some simple approaches based on metrics of image sharpness may readily mitigate distortions in the presence of highly contrasting and sharp image features, they may not provide an adequate performance for smooth signal variations as commonly present in realistic whole-body optoacoustic images from small animals. Thus, three new hybrid methods are suggested in this work, which are shown to outperform well-established autofocusing algorithms in mouse experiments in vivo. PMID:25431756

  20. Whole-body diffusion magnetic resonance imaging in the assessment of lymphoma.

    PubMed

    Lin, Chieh; Luciani, Alain; Itti, Emmanuel; Haioun, Corinne; Safar, Violaine; Meignan, Michel; Rahmouni, Alain

    2012-01-01

    The current evidence regarding the usefulness of whole-body diffusion-weighted magnetic resonance imaging (diffusion MRI) in the assessment of lymphoma is reviewed. Diffusion MRI combining both anatomical and bio-physiological information is currently under investigation as a valuable tool in the oncology field including lymphoma, not only for staging but also for the assessment of response. Representative images for each purpose are shown. Diffusion MRI requires no administration of contrast medium and does not use ionizing radiation, which could be particularly advantageous for repeat follow-up surveillance in lymphoma patients. Diffusion MRI may prove to be a useful biomarker in clinical decision making for patients with lymphoma. Large-scale prospective studies are warranted to further establish its complementary value to the current standard of care, [(18)F]fluorodeoxyglucose positron emission tomography/computed tomography. PMID:23022623

  1. Whole-body diffusion magnetic resonance imaging in the assessment of lymphoma

    PubMed Central

    Lin, Chieh; Luciani, Alain; Itti, Emmanuel; Haioun, Corinne; Safar, Violaine; Meignan, Michel

    2012-01-01

    Abstract The current evidence regarding the usefulness of whole-body diffusion-weighted magnetic resonance imaging (diffusion MRI) in the assessment of lymphoma is reviewed. Diffusion MRI combining both anatomical and bio-physiological information is currently under investigation as a valuable tool in the oncology field including lymphoma, not only for staging but also for the assessment of response. Representative images for each purpose are shown. Diffusion MRI requires no administration of contrast medium and does not use ionizing radiation, which could be particularly advantageous for repeat follow-up surveillance in lymphoma patients. Diffusion MRI may prove to be a useful biomarker in clinical decision making for patients with lymphoma. Large-scale prospective studies are warranted to further establish its complementary value to the current standard of care, [18F]fluorodeoxyglucose positron emission tomography/computed tomography. PMID:23022623

  2. Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo

    PubMed Central

    Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.

    2012-01-01

    Abstract. We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6??s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder. PMID:22612121

  3. Tumor glucose metabolism imaged in vivo in small animals with whole-body photoacoustic computed tomography

    PubMed Central

    Chatni, Muhammad Rameez; Xia, Jun; Sohn, Rebecca; Maslov, Konstantin; Guo, Zijian; Zhang, Yu; Wang, Kun; Xia, Younan; Anastasio, Mark; Arbeit, Jeffrey; Wang, Lihong V.

    2012-01-01

    Abstract. With the increasing use of small animals for human disease studies, small-animal whole-body molecular imaging plays an important role in biomedical research. Currently, none of the existing imaging modalities can provide both anatomical and glucose molecular information, leading to higher costs of building dual-modality systems. Even with image co-registration, the spatial resolution of the molecular imaging modality is not improved. Utilizing a ring-shaped confocal photoacoustic computed tomography system, we demonstrate, for the first time, that both anatomy and glucose uptake can be imaged in a single modality. Anatomy was imaged with the endogenous hemoglobin contrast, and glucose metabolism was imaged with a near-infrared dye-labeled 2-deoxyglucose. PMID:22894495

  4. Thresholds for the perception of whole-body linear sinusoidal motion in the horizontal plane

    NASA Technical Reports Server (NTRS)

    Mah, Robert W.; Young, Laurence R.; Steele, Charles R.; Schubert, Earl D.

    1989-01-01

    An improved linear sled has been developed to provide precise motion stimuli without generating perceptible extraneous motion cues (a noiseless environment). A modified adaptive forced-choice method was employed to determine perceptual thresholds to whole-body linear sinusoidal motion in 25 subjects. Thresholds for the detection of movement in the horizontal plane were found to be lower than those reported previously. At frequencies of 0.2 to 0.5 Hz, thresholds were shown to be independent of frequency, while at frequencies of 1.0 to 3.0 Hz, thresholds showed a decreasing sensitivity with increasing frequency, indicating that the perceptual process is not sensitive to the rate change of acceleration of the motion stimulus. The results suggest that the perception of motion behaves as an integrating accelerometer with a bandwidth of at least 3 Hz.

  5. Effect of hydrofluoric acid on glucose metabolism of the mouse studied by whole-body autoradiography.

    PubMed Central

    Watanabe, M; Yoshida, Y; Watanabe, M; Shimada, M; Kurimoto, K

    1975-01-01

    Distribution of radioactive carbon from [U-14C]glucose in the mouse poisoned by hydrofluoric acid has been studied by whole-body autoradiography. Under normal conditions, the highest autoradiographic density was found in the Harder's gland, palatine gland, sublingual gland, large intestinal mucosa, and many regions of the central nervous system 30 minutes after intraperitoneal injection of [U-14C]glucose. On the other hand, after hydrofluoric acid poisoning, it was found that (1) the radioactivity of brain was unchanged throughout all the poisoning; (2) the liver, renal cortex, lung, and blood showed an increase in radioactivity at 180 minutes of poisoning; (3) the abdominal cavity showed a tendency to residual radioactivity with the poisoning; (4) by contrast, Harder's gland, the palatine gland, sublingual gland, and large intestinal mucosa showed a decrease in radioactivity at 180 minutes of poisoning. Images PMID:1201258

  6. Whole body diffusion weighted MRI--a new view of myeloma.

    PubMed

    Messiou, Christina; Kaiser, Martin

    2015-10-01

    The recent consensus statement from the International Myeloma Working Group has introduced the role of whole body (WB) magnetic resonance imaging (MRI) into the management pathway for patients with multiple myeloma. The speed, coverage and high sensitivity of WB diffusion weighted (DW)-MRI and the unique capability to quantify both burden of disease and response to treatment has led to increasing implementation at leading centres worldwide for imaging malignant marrow disease, both primary and metastatic. WB DW-MRI is likely to have a significant impact on management decisions and pathways for patients with multiple myeloma. This review will introduce the basic principles of DW-MRI, present current evidence for patients with myeloma and will discuss practicalities and exciting future applications. PMID:26013304

  7. Whole-body imaging of the distribution of mercury released from dental fillings into monkey tissues

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Leininger, R.W.; Vimy, M.J.; Lorscheider, F.L. )

    1990-11-01

    The fate of mercury (Hg) released from dental silver amalgam tooth fillings into human mouth air is uncertain. A previous report about sheep revealed uptake routes and distribution of amalgam Hg among body tissues. The present investigation demonstrates the bodily distribution of amalgam Hg in a monkey whose dentition, diet, feeding regimen, and chewing pattern closely resemble those of humans. When amalgam fillings, which normally contain 50% Hg, are made with a tracer of radioactive {sup 203}Hg and then placed into monkey teeth, the isotope appears in high concentration in various organs and tissues within 4 wk. Whole-body images of the monkey revealed that the highest levels of Hg were located in the kidney, gastrointestinal tract, and jaw. The dental profession's advocacy of silver amalgam as a stable tooth restorative material is not supported by these findings.

  8. Design of POSICAM: A high resolution multislice whole body positron camera

    SciTech Connect

    Mullani, N.A.; Wong, W.H.; Hartz, R.K.; Bristow, D.; Gaeta, J.M.; Yerian, K.; Adler, S.; Gould, K.L.

    1985-01-01

    A high resolution (6mm), multislice (21) whole body positron camera has been designed with innovative detector and septa arrangement for 3-D imaging and tracer quantitation. An object of interest such as the brain and the heart is optimally imaged by the 21 simultaneous image planes which have 12 mm resolution and are separated by 5.5 mm to provide adequate sampling in the axial direction. The detector geometry and the electronics are flexible enough to allow BaF/sub 2/, BGO, GSO or time of flight BaF/sub 2/ scintillators. The mechanical gantry has been designed for clinical applications and incorporates several features for patient handling and comfort. A large patient opening of 58 cm diameter with a tilt of +-30/sup 0/ and rotation of +-20/sup 0/ permit imaging from different positions without moving the patient. Multiprocessor computing systems and user-friendly software make the POSICAM a powerful 3-D imaging device. 7 figs.

  9. Pitfalls of I-131 whole body scan interpretation: bronchogenic cyst and mucinous cystadenoma.

    PubMed

    Agriantonis, Demetrios J; Hall, Lance; Wilson, Michael A

    2008-05-01

    Whole body iodine scans are routinely performed in the nuclear medicine department as part of the management of differentiated thyroid carcinoma. Similarly, radioactive iodine has a well-established role as an adjunct to thyroidectomy in the treatment of these patients. A thorough understanding of the normal, benign, and pathologic biodistribution of iodine is imperative for the nuclear medicine physician. This knowledge leads to the accurate determination of the presence of metastatic or recurrent carcinoma, and may even facilitate the accurate detection of an undiagnosed condition. Above all, correct image interpretation avoids unnecessary therapeutic doses. The authors describe 2 unusual examples of false positive findings in fluid-filled cavities that showcase the variety of nonmalignant entities one may encounter when interpreting metastatic surveys. PMID:18431144

  10. Ergometer within a whole-body plethysmograph to evaluate performance of guinea pigs under toxic atmospheres

    SciTech Connect

    Malek, D.E.; Alarie, Y. )

    1989-11-01

    A guinea pig ergometer was constructed within an enclosure, with inlet and outlet ports for continuous ventilation, designed so that the enclosure would work as a whole-body plethysmograph as well as an inhalation exposure chamber. This system provided continuous measurement of tidal volume, respiratory frequency, oxygen uptake, and carbon dioxide output which enabled an evaluation of performance in terms of distance traveled over time with the animals running at a known speed and constant oxygen uptake. The effects of CO or HCl in running versus sedentary animals were investigated using this apparatus. For CO, exercise increased the rapidity of the onset of incapacitation as would be predicted by the increase in metabolic rate. HCl produced a more severe incapacitating effect in exercising animals that was out of proportion with the increase in minute volume induced by exercise.

  11. Experimental study of pharmacokinetics of external, whole-body bathing application of ivermectin.

    PubMed

    Miyajima, Atsushi; Komoda, Masayo; Akagi, Keita; Yuzawa, Kaoru; Yoshimasu, Takashi; Yamamoto, Yosuke; Hirota, Takashi

    2015-01-01

    As a novel method improving the safety of conventional oral ivermectin (IVM) for scabies treatment, we conceived an idea called the "whole-body bathing method". In this method, the patients would bathe themselves in a bathing fluid containing IVM at an effective concentration. To evaluate the feasibility of the method, we investigated the IVM concentration in the skin and plasma after bathing rats in a fluid containing 100 ng/mL of IVM. After the bathing, the concentration of IVM in the skin was more than 400 ng/g wet weight and was maintained until 8 h after the bathing. The concentration was clearly higher than that in patients taking IVM p.o. as previously reported; IVM was not detected in plasma in the present study. Thus, the method would be a preferable drug delivery system for the skin application of IVM compared with p.o. administration. PMID:25492083

  12. Skeletal muscle response to spaceflight, whole body suspension, and recovery in rats

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Fell, R. D.; Dombrowski, M. J.

    1990-01-01

    The effects of a 7-day spaceflight (SF), 7- and 14-day-long whole body suspension (WBS), and 7-day-long recovery on the muscle weight and the morphology of the soleus and the extensor digitorum longus (EDL) of rats were investigated. It was found that the effect of 7-day-long SF and WBS were highly comparable for both the soleus and the EDL, although the soleus muscle from SF rats showed greater cross-sectional area reduction than that from WBS rats. With a longer duration of WBS, there was a continued reduction in cross-sectional fast-twitch fiber area. Muscle plasticity, in terms of fiber and capillary responses, showed differences in responses of the two types of muscles, indicating that antigravity posture muscles are highly susceptible to unloading.

  13. Calorie restriction increases fatty acid synthesis and whole body fat oxidation rates.

    PubMed

    Bruss, Matthew D; Khambatta, Cyrus F; Ruby, Maxwell A; Aggarwal, Ishita; Hellerstein, Marc K

    2010-01-01

    Calorie restriction (CR) increases longevity and retards the development of many chronic diseases, but the underlying metabolic signals are poorly understood. Increased fatty acid (FA) oxidation and reduced FA synthesis have been hypothesized to be important metabolic adaptations to CR. However, at metabolic steady state, FA oxidation must match FA intake plus synthesis; moreover, FA intake is low, not high, during CR. Therefore, it is not clear how FA dynamics are altered during CR. Accordingly, we measured food intake patterns, whole body fuel selection, endogenous FA synthesis, and gene expression in mice on CR. Within 2 days of CR being started, a shift to a cyclic, diurnal pattern of whole body FA metabolism occurred, with an initial phase of elevated endogenous FA synthesis [respiratory exchange ratio (RER) >1.10, lasting 4-6 h after food provision], followed by a prolonged phase of FA oxidation (RER = 0.70, lasting 18-20 h). CR mice oxidized four times as much fat per day as ad libitum (AL)-fed controls (367 +/- 19 vs. 97 +/- 14 mg/day, P < 0.001) despite reduced energy intake from fat. This increase in FA oxidation was balanced by a threefold increase in adipose tissue FA synthesis compared with AL. Expression of FA synthase and acetyl-CoA carboxylase mRNA were increased in adipose and liver in a time-dependent manner. We conclude that CR induces a surprising metabolic pattern characterized by periods of elevated FA synthesis alternating with periods of FA oxidation disproportionate to dietary FA intake. This pattern may have implications for oxidative damage and disease risk. PMID:19887594

  14. A database of whole-body action videos for the study of action, emotion, and untrustworthiness.

    PubMed

    Keefe, Bruce D; Villing, Matthias; Racey, Chris; Strong, Samantha L; Wincenciak, Joanna; Barraclough, Nick E

    2014-12-01

    We present a database of high-definition (HD) videos for the study of traits inferred from whole-body actions. Twenty-nine actors (19 female) were filmed performing different actions-walking, picking up a box, putting down a box, jumping, sitting down, and standing and acting-while conveying different traits, including four emotions (anger, fear, happiness, sadness), untrustworthiness, and neutral, where no specific trait was conveyed. For the actions conveying the four emotions and untrustworthiness, the actions were filmed multiple times, with the actor conveying the traits with different levels of intensity. In total, we made 2,783 action videos (in both two-dimensional and three-dimensional format), each lasting 7 s with a frame rate of 50 fps. All videos were filmed in a green-screen studio in order to isolate the action information from all contextual detail and to provide a flexible stimulus set for future use. In order to validate the traits conveyed by each action, we asked participants to rate each of the actions corresponding to the trait that the actor portrayed in the two-dimensional videos. To provide a useful database of stimuli of multiple actions conveying multiple traits, each video name contains information on the gender of the actor, the action executed, the trait conveyed, and the rating of its perceived intensity. All videos can be downloaded free at the following address: http://www-users.york.ac.uk/~neb506/databases.html. We discuss potential uses for the database in the analysis of the perception of whole-body actions. PMID:24584971

  15. Clinical value of whole-body magnetic resonance imaging in health screening of general adult population

    PubMed Central

    Tarnoki, David Laszlo; Tarnoki, Adam Domonkos; Richter, Antje; Karlinger, Kinga; Berczi, Viktor; Pickuth, Dirk

    2015-01-01

    Background Whole-body magnetic resonance imaging (WB-MRI) and angiography (WB-MRA) has become increasingly popular in population-based research. We evaluated retrospectively the frequency of potentially relevant incidental findings throughout the body. Materials and methods 22 highly health-conscious managers (18 men, mean age 47±9 years) underwent WB-MRI and WB-MRA between March 2012 and September 2013 on a Discovery MR750w wide bore 3 Tesla device (GE Healthcare) using T1 weighted, short tau inversion recovery (STIR) and diffusion weighted imaging (DWI) acquisitions according to a standardized protocol. Results A suspicious (pararectal) malignancy was detected in one patient which was confirmed by an endorectal sonography. Incidental findings were described in 20 subjects, including hydrocele (11 patients), benign bony lesion (7 patients) and non-specific lymph nodes (5 patients). Further investigations were recommended in 68% (ultrasound: 36%, computed tomography: 28%, mammography: 9%, additional MRI: 9%). WB-MRA were negative in 16 subjects. Vascular normal variations were reported in 23%, and a 40% left proximal common carotid artery stenosis were described in one subject. Conclusions WB-MRI and MRA lead to the detection of clinically relevant diseases and unexpected findings in a cohort of healthy adults that require further imaging or surveillance in 68%. WB-MR imaging may play a paramount role in health screening, especially in the future generation of (epi)genetic based screening of malignant and atherosclerotic disorders. Our study is the first which involved a highly selected patient group using a high field 3-T wide bore magnet system with T1, STIR, MRA and whole-body DWI acquisitions as well. PMID:25810696

  16. Fully automated shape model positioning for bone segmentation in whole-body CT scans

    NASA Astrophysics Data System (ADS)

    Fränzle, A.; Sumkauskaite, M.; Hillengass, J.; Bäuerle, T.; Bendl, R.

    2014-03-01

    Analysing osteolytic and osteoblastic bone lesions in systematically affected skeletons, e.g. in multiple myeloma or bone metastasis, is a complex task. Quantification of the degree of bone destruction needs segmentation of all lesions but cannot be managed manually. Automatic bone lesion detection is necessary. Our future objective is comparing modified bones with healthy shape models. For applying model based strategies successfully, identification and position information of single bones is necessary. A solution to these requirements based on bone medullary cavities is presented in this paper. Medullary cavities are useful for shape model positioning since they have similar position and orientation as the bone itself but can be separated more easily. Skeleton segmentation is done by simple thresholding. Inside the skeleton medullary cavities are segmented by a flood filling algorithm. The filled regions are considered as medullary cavity objects. To provide automatic shape model selection, medullary cavity objects are assigned to bone structures with pattern recognition. To get a good starting position for shape models, principal component analysis of medullary cavities is performed. Bone identification was tested on 14 whole-body low-dose CT scans of multiple myeloma patients. Random forest classification assigns medullary cavities of long bones to the corresponding bone (overall accuracy 90%). Centroid and first principal component of medullary cavity are sufficiently similar to those of bone (mean centroid difference 21.7 mm, mean difference angle 1.54° for all long bones of one example patient) and therefore suitable for shape model initialization. This method enables locating long bone structures in whole-body CT scans and provides useful information for a reasonable shape model initialization.

  17. Whole-body amino acid composition of adult fancy ranchu goldfish (Carassius auratus).

    PubMed

    Snellgrove, Donna L; Alexander, Lucille G

    2011-10-01

    Aqua feeds should be formulated to provide complete and balanced nutrition to achieve optimal health and growth in fish, including adequate levels of essential amino acids (EAA). There are few or no data relating to the EAA requirements for ornamental fish species, with the majority of quantitative data for these nutrients being available for commercially farmed fish. The determination of EAA requirements is usually established through dose-response studies, which can be costly and time consuming, especially if determining the requirement for many amino acids (AA). An alternative method for predicting the EAA of fish, which is also relatively fast and inexpensive, is the assessment of whole-body AA composition. A total of eight goldfish with a mean wet weight of 34.2 (SEM 1.4) g were obtained as a result of a routine cull by breeders. The fish were freeze-dried and AA was content analysed by hydrolysis or performic 'acid' oxidation. EAA values ranged between 0.97 (SEM 0.02) for tryptophan and 7.9 (SEM 0.14) for lysine (g/100 g AA). Compositional data were also used to estimate the essential amino acid ratios of these fish. The findings are in agreement with those for juvenile common goldfish, suggesting that there are no differences in whole-body AA composition between juvenile and adult, or fancy and common goldfish. However, these indices do not provide a quantitative total amount of each AA required by the fish, but can be used proportionally to provide guidelines to formulate diets for ornamental species. PMID:22005403

  18. Dietary crude protein intake influences rates of whole-body protein synthesis in weanling horses.

    PubMed

    Tanner, S L; Wagner, A L; Digianantonio, R N; Harris, P A; Sylvester, J T; Urschel, K L

    2014-11-01

    The objective of this study was to measure whole-body protein kinetics in weanling horses receiving forage and one of two different concentrates: (1) commercial crude protein (CCP) concentrate, which with the forage provided 4.1?g CP/kg bodyweight (BW)/day (189?mg lysine (Lys)/kg BW/day), and (2) recommended crude protein (RCP) concentrate which, with the same forage, provided 3.1?g CP/kg BW/day (194?mg Lys/kg BW/day). Blood samples were taken to determine the response of plasma amino acid concentrations to half the daily concentrate allocation. The next day, a 2 h-primed, constant infusion of [(13)C]sodium bicarbonate and a 4 h-primed, constant infusion of [1-(13)C]phenylalanine were used with breath and blood sampling to measure breath (13)CO2 and blood [(13)C]phenylalanine enrichment. Horses on the CCP diet showed an increase from baseline in plasma isoleucine, leucine, lysine, threonine, valine, alanine, arginine, asparagine, glutamine, ornithine, proline, serine, and tyrosine at 120?min post-feeding. Baseline plasma amino acid concentrations were greater with the CCP diet for histidine, isoleucine, leucine, threonine, valine, asparagine, proline, and serine. Phenylalanine, lysine, and methionine were greater in the plasma of horses receiving the RCP treatment at 0 and 120?min. Phenylalanine intake was standardized between groups; however, horses receiving the RCP diet had greater rates of phenylalanine oxidation (P?=?0.02) and lower rates of non-oxidative phenylalanine disposal (P?=?0.04). Lower whole-body protein synthesis indicates a limiting amino acid in the RCP diet. PMID:24973006

  19. Amino acid supplementation does not alter whole-body phenylalanine kinetics in Arabian geldings.

    PubMed

    Urschel, Kristine L; Geor, Raymond J; Hanigan, Mark D; Harris, Pat A

    2012-03-01

    Stable isotope infusion methods have not been extensively used in horses to study protein metabolism. The objectives were to develop infusion and sampling methodologies for [1-(13)C] phenylalanine and apply these methods to determine whether the addition of supplemental amino acids to a control diet affected whole-body phenylalanine kinetics in mature horses. Arabian geldings were studied using a 6-h primed (9 ?mol/kg), constant (6 ?mol?·?kg(-1)?·?h(-1)) i.v. infusion of L-[1-(13)C] phenylalanine, with blood and breath sampled every 30 min, to measure whole-body phenylalanine kinetics in response to receiving the control diet (n = 12) or the control diet supplemented with equimolar amounts of glutamate (+Glu; 55 mg?·?kg(-1)?·?d(-1); n = 5), leucine (+Leu; 49 mg?·?kg(-1)?·?d(-1); n = 5), lysine (+Lys; 55 mg?·?kg(-1)?·?d(-1); n = 5), or phenylalanine (+Phe; 62 mg?·?kg(-1)?·?d(-1); n = 6). The plasma concentrations of the supplemented amino acid in horses receiving the +Leu, +Lys, and +Phe diets were 58, 53, and 36% greater, respectively, than for the control treatment (P < 0.05). Isotopic plateau was attained in blood [1-(13)C] phenylalanine and breath (13)CO(2) enrichments by 60 and 270 min, respectively. Phenylalanine flux (+20%) and oxidation (+110%) were greater (P < 0.05) in horses receiving the +Phe treatment than in those fed the control diet. There was no effect of treatment diet on nonoxidative phenylalanine disposal or phenylalanine release from protein breakdown. The developed methods are a valuable way to study protein metabolism and assess dietary amino acid adequacy in horses and will provide a useful tool for studying amino acid requirements in the future. PMID:22259192

  20. Whole-body recruitment of glycocalyx volume during intravenous adenosine infusion

    PubMed Central

    Brands, Judith; van Haare, Judith; Vink, Hans; VanTeeffelen, Jurgen W G E

    2013-01-01

    Adenosine-mediated recruitment of microvascular volume in heart and muscle has been suggested to include, in addition to vasodilation of resistance vessels, an increased accessibility of the endothelial glycocalyx for flowing plasma as a result of an impairment of its barrier properties. The aim of the current study was to investigate the effect of systemic intravenous administration of adenosine on the glycocalyx-dependent exclusion of circulating blood at a whole-body level. In anesthetized goats (N = 6), systemic blood-excluded glycocalyx volume was measured by comparing the intravascular distribution volume of the suggested glycocalyx accessible tracer dextrans with a molecular weight of 40 kDa (Dex-40) to that of circulating plasma, derived from the dilution of labeled red blood cells and large vessel hematocrit. Systemic glycocalyx volume was determined at baseline and during intravenous infusion of adenosine (157 ± 11.6 ?g/kg min?1). Blood-inaccessible glycocalyx volume decreased from 458.1 ± 95.5 to 18.1 ± 62.2 mL (P < 0.01) during adenosine administration. While circulating plasma volume did not change significantly (617.1 ± 48.5 vs. 759.2 ± 47.9 mL, NS), the decrease in blood-excluded glycocalyx volume was associated with a decrease in Dex-40 distribution volume (from 1075.2 ± 71.0 to 777.3 ± 60.0 mL, P < 0.01). Intravenous administration of adenosine is associated with a robust impairment of whole-body glycocalyx barrier properties, reflected by a greatly reduced exclusion of circulating blood compared to small dextrans. The observed decrease in Dex-40 distribution volume suggests that the reduction in glycocalyx volume coincides with a reduction in tracer-accessible vascular volume. PMID:24303174

  1. Effects of postexercise milk consumption on whole body protein balance in youth.

    PubMed

    Volterman, Kimberly A; Obeid, Joyce; Wilk, Boguslaw; Timmons, Brian W

    2014-11-15

    In adults, adding protein to a postexercise beverage increases muscle protein turnover and replenishes amino acid stores. Recent focus has shifted toward the use of bovine-based milk and milk products as potential postexercise beverages; however, little is known about how this research translates to the pediatric population. Twenty-eight (15 girls) pre- to early pubertal (PEP, 7-11 yr) and mid- to late-pubertal (MLP, 14-17 yr) children consumed an oral dose of [(15)N]glycine prior to performing 2 × 20-min cycling bouts at 60% V?O(2 peak) in a warm environment (34.5°C, 47.3% relative humidity). Following exercise, participants consumed either water (W), a carbohydrate-electrolyte solution (CES), or skim milk (SM) in a randomized, cross-over fashion in a volume equal to 100% of their body mass loss during exercise. Whole body nitrogen turnover (Q), protein synthesis (S), protein breakdown (B), and whole body protein balance (WBPB) were measured over 16 h. Protein intake from SM was 0.40 ± 0.10 g/kg. Over 16 h, Q and S were significantly greater (P < 0.01) with SM than W and CES. B demonstrated a trend for a main effect for beverage (P = 0.063). WBPB was more negative (P < 0.01) with W and CES than with SM. In the SM trial, WBPB was positive in PEP, although it remained negative in MLP. Boys exhibited significantly more negative WBPB than girls (P < 0.05). Postexercise milk consumption enhances WBPB compared with W and CES; however, additional protein intake may be required to sustain a net anabolic environment over 16 h. PMID:25257865

  2. Oral branched-chain amino acids decrease whole-body proteolysis

    NASA Technical Reports Server (NTRS)

    Ferrando, A. A.; Williams, B. D.; Stuart, C. A.; Lane, H. W.; Wolfe, R. R.

    1995-01-01

    BACKGROUND: This study reports the effects of ingesting branched-chain amino acids (leucine, valine, and isoleucine) on protein metabolism in four men. METHODS: To calculate leg protein synthesis and breakdown, we used a new model that utilized the infusion of L-[ring-13C6]phenylalanine and the sampling of the leg arterial-venous difference and muscle biopsies. In addition, protein-bound enrichments provided for the direct calculation of muscle fractional synthetic rate. Four control subjects ingested an equivalent amount of essential amino acids (threonine, methionine, and histidine) to discern the effects of branched-chain amino acid nitrogen vs the effects of essential amino acid nitrogen. Each drink also included 50 g of carbohydrate. RESULTS: Consumption of the branched-chain and the essential amino acid solutions produced significant threefold and fourfold elevations in their respective arterial concentrations. Protein synthesis and breakdown were unaffected by branched-chain amino acids, but they increased by 43% (p < .05) and 36% (p < .03), respectively, in the group consuming the essential amino acids. However, net leg balance of phenylalanine was unchanged by either drink. Direct measurement of protein synthesis by tracer incorporation into muscle protein (fractional synthetic rate) revealed no changes within or between drinks. Whole-body phenylalanine flux was significantly suppressed by each solution but to a greater extent by the branched-chain amino acids (15% and 20%, respectively) (p < .001). CONCLUSIONS: These results suggest that branched-chain amino acid ingestion suppresses whole-body proteolysis in tissues other than skeletal muscle in normal men.

  3. Whole-body angular momentum during stair walking using passive and powered lower-limb prostheses.

    PubMed

    Pickle, Nathaniel T; Wilken, Jason M; Aldridge, Jennifer M; Neptune, Richard R; Silverman, Anne K

    2014-10-17

    Individuals with a unilateral transtibial amputation have a greater risk of falling compared to able-bodied individuals, and falling on stairs can lead to serious injuries. Individuals with transtibial amputations have lost ankle plantarflexor muscle function, which is critical for regulating whole-body angular momentum to maintain dynamic balance. Recently, powered prostheses have been designed to provide active ankle power generation with the goal of restoring biological ankle function. However, the effects of using a powered prosthesis on the regulation of whole-body angular momentum are unknown. The purpose of this study was to use angular momentum to evaluate dynamic balance in individuals with a transtibial amputation using powered and passive prostheses relative to able-bodied individuals during stair ascent and descent. Ground reaction forces, external moment arms, and joint powers were also investigated to interpret the angular momentum results. A key result was that individuals with an amputation had a larger range of sagittal-plane angular momentum during prosthetic limb stance compared to able-bodied individuals during stair ascent. There were no significant differences in the frontal, transverse, or sagittal-plane ranges of angular momentum or maximum magnitude of the angular momentum vector between the passive and powered prostheses during stair ascent or descent. These results indicate that individuals with an amputation have altered angular momentum trajectories during stair walking compared to able-bodied individuals, which may contribute to an increased fall risk. The results also suggest that a powered prosthesis provides no distinct advantage over a passive prosthesis in maintaining dynamic balance during stair walking. PMID:25213178

  4. Side-Alternating Vibration Training for Balance and Ankle Muscle Strength in Untrained Women

    PubMed Central

    Spiliopoulou, Styliani I.; Amiridis, Ioannis G.; Tsigganos, Georgios; Hatzitaki, Vassilia

    2013-01-01

    Context: Side-alternating vibration (SAV) may help reduce the risk of falling by improving body balance control. Such training has been promoted as a strength-training intervention because it can increase muscle activation through an augmented excitatory input from the muscle spindles. Objective: To determine the effect of SAV training on static balance during 3 postural tasks of increasing difficulty and lower limb strength. Design: Randomized controlled clinical trial. Setting: Laboratory. Patients or Other Participants: A total of 21 healthy women were divided into training (n = 11; age = 43.35 ± 4.12 years, height = 169 ± 6.60 cm, mass = 68.33 ± 11.90 kg) and control (n = 10; age = 42.31 ± 3.73 years, height = 167 ± 4.32 cm, mass = 66.29 ± 10.74 kg) groups. Intervention(s): The training group completed a 9-week program during which participants performed 3 sessions per week of ten 15-second isometric contractions with a 30-second active rest of 3 exercises (half-squat, wide-stance squat, 1-legged half-squat) on an SAV plate (acceleration = 0.91–16.3g). The control group did not participate in any form of exercise over the 9-week period. Main Outcome Measure(s): We evaluated isokinetic and isometric strength of the knee extensors and flexors and ankle plantar flexors, dorsiflexors, and evertors. Static balance was assessed using 3 tasks of increasing difficulty (quiet bipedal stance, tandem stance, 1-legged stance). The electromyographic activity of the vastus lateralis, semitendinosus, medial gastrocnemius, tibialis anterior, and peroneus longus was recorded during postural task performance, baseline and pretraining, immediately posttraining, and 15 days posttraining. Results: After training in the training group, ankle muscle strength improved (P = .03), whereas knee muscle strength remained unaltered (P = .13). Improved ankle-evertor strength was observed at all angular velocities (P = .001). Postural sway decreased in both directions but was greater in the mediolateral (P < .001) than anteroposterior (P = .02) direction. The electromyographic activity of the peroneus longus increased during the sharpened tandem (P = .001) and 1-legged tasks (P = .007). No changes were seen in the control group for any measures. Conclusions: The SAV training could enhance ankle muscle strength and reduce postural sway during static balance performance. The reduction in mediolateral sway could be associated with the greater use of ankle evertors due to their strength improvement. PMID:23914911

  5. Estimation of Radiation Doses in the Marshall Islands Based on Whole Body Counting of Cesium-137 (137Cs) and Plutonium Urinalysis

    SciTech Connect

    Daniels, J; Hickman, D; Kehl, S; Hamilton, T

    2007-06-11

    Under the auspices of the U.S. Department of Energy (USDOE), researchers from the Lawrence Livermore National Laboratory (LLNL) have recently implemented a series of initiatives to address long-term radiological surveillance needs at former nuclear test sites in the Republic of the Marshall Islands (RMI). The aim of this radiological surveillance monitoring program (RSMP) is to provide timely radiation protection for individuals in the Marshall Islands with respect to two of the most important internally deposited fallout radionuclides-cesium-137 ({sup 137}Cs) and long-lived isotopes 239 and 240 of plutonium ({sup 239+240}Pu) (Robison et al., 1997 and references therein). Therefore, whole-body counting for {sup 137}Cs and a sensitive bioassay for the presence of {sup 239+240}Pu excreted in urine were adopted as the two most applicable in vivo analytical methods to assess radiation doses for individuals in the RMI from internally deposited fallout radionuclides (see Hamilton et al., 2006a-c; Bell et al., 2002). Through 2005, the USDOE has established three permanent whole-body counting facilities in the Marshall Islands: the Enewetak Radiological Laboratory on Enewetak Atoll, the Utrok Whole-Body Counting Facility on Majuro Atoll, and the Rongelap Whole-Body Counting Facility on Rongelap Atoll. These whole-body counting facilities are operated and maintained by trained Marshallese technicians. Scientists from LLNL provide the technical support and training necessary for maintaining quality assurance for data acquisition and dose reporting. This technical basis document summarizes the methodologies used to calculate the annual total effective dose equivalent (TEDE; or dose for the calendar year of measurement) based on whole-body counting of internally deposited {sup 137}Cs and the measurement of {sup 239+240}Pu excreted in urine. Whole-body counting provides a direct measure of the total amount (or burden) of {sup 137}Cs present in the human body at the time of measurement. The amount of {sup 137}Cs detected is often reported in activity units of kilo-Becquerel (kBq), where 1 kBq equals 1000 Bq and 1 Bq = 1 nuclear transformation per second (t s{sup -1}). [However, in the United States the Curie (Ci) continues to be used as the unit of radioactivity; where 1 Ci = 3.7 x 10{sup 10} Bq.] The detection of {sup 239}Pu and {sup 240}Pu in bioassay (urine) samples indicates the presence of internally deposited (systemic) plutonium in the body. Urine samples that are collected in the Marshall Islands from volunteers participating in the RSMP are transported to LLNL, where measurements for {sup 239+240}Pu are performed using a state-of-the-art technology based on Accelerator Mass Spectrometry (AMS) (Hamilton et al., 2004, 2007; Brown et al., 2004). The urinary excretion of plutonium by RSMP volunteers is usually described in activity units, expressed as micro-Becquerel ({micro}Bq) of {sup 239+240}Pu (i.e., representing the sum of the {sup 239}Pu and {sup 240}Pu activity) excreted (lost) per day (d{sup -1}), where 1 {micro}Bq d{sup -1} = 10{sup -6} Bq d{sup -1} and 1 Bq = 1 t s{sup -1}. The systemic burden of plutonium is then estimated from biokinetic relationships as described by the International Commission on Radiological Protection (e.g., see ICRP, 1990). In general, nuclear transformations are accompanied by the emission of energy and/or particles in the form of gamma rays ({gamma}), beta particles ({beta}), and/or alpha particles ({alpha}). Tissues in the human body may adsorb these emissions, where there is a potential for any deposited energy to cause biological damage. The general term used to quantify the extent of any radiation exposure is referred to as the dose. The equivalent dose is defined by the average absorbed dose in an organ or tissue weighted by the average quality factor for the type and energy of the emission causing the dose. The effective dose equivalent (EDE; as applied to the whole body), is the sum of the average dose equivalent for each tissue weighted by each applicable tissue-specific weighing factor

  6. A study to define a set of requirements for cleansing agents for use in the Space Station whole body shower

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The objective of this research is to define a set of requirements for a whole body cleansing agent to be used in the Space Station Whole Body Shower System. In addition, cleansing agent candidates are to be identified that are likely to satisfy requirements defined in the first part of the study. It is understood that the main reason for having a Whole Body Shower is to satisfy the physiological, psychological and social needs of the crew throughout the duration of duty in the Space Station. The cleansing agent must also be compatible with the vortex water/gas separator and the water reclamation system. To accomplish these goals the study was divided into six tasks.

  7. Hologic QDR 2000 whole-body scans: a comparison of three combinations of scan modes and analysis software

    NASA Technical Reports Server (NTRS)

    Spector, E.; LeBlanc, A.; Shackelford, L.

    1995-01-01

    This study reports on the short-term in vivo precision and absolute measurements of three combinations of whole-body scan modes and analysis software using a Hologic QDR 2000 dual-energy X-ray densitometer. A group of 21 normal, healthy volunteers (11 male and 10 female) were scanned six times, receiving one pencil-beam and one array whole-body scan on three occasions approximately 1 week apart. The following combinations of scan modes and analysis software were used: pencil-beam scans analyzed with Hologic's standard whole-body software (PB scans); the same pencil-beam analyzed with Hologic's newer "enhanced" software (EPB scans); and array scans analyzed with the enhanced software (EA scans). Precision values (% coefficient of variation, %CV) were calculated for whole-body and regional bone mineral content (BMC), bone mineral density (BMD), fat mass, lean mass, %fat and total mass. In general, there was no significant difference among the three scan types with respect to short-term precision of BMD and only slight differences in the precision of BMC. Precision of BMC and BMD for all three scan types was excellent: < 1% CV for whole-body values, with most regional values in the 1%-2% range. Pencil-beam scans demonstrated significantly better soft tissue precision than did array scans. Precision errors for whole-body lean mass were: 0.9% (PB), 1.1% (EPB) and 1.9% (EA). Precision errors for whole-body fat mass were: 1.7% (PB), 2.4% (EPB) and 5.6% (EA). EPB precision errors were slightly higher than PB precision errors for lean, fat and %fat measurements of all regions except the head, although these differences were significant only for the fat and % fat of the arms and legs. In addition EPB precision values exhibited greater individual variability than PB precision values. Finally, absolute values of bone and soft tissue were compared among the three combinations of scan and analysis modes. BMC, BMD, fat mass, %fat and lean mass were significantly different between PB scans and either of the EPB or EA scans. Differences were as large as 20%-25% for certain regional fat and BMD measurements. Additional work may be needed to examine the relative accuracy of the scan mode/software combinations and to identify reasons for the differences in soft tissue precision with the array whole-body scan mode.

  8. Prognostic value of the /sup 131/I whole-body scan in postsurgical therapy for differentiated thyroid cancer

    SciTech Connect

    Pupi, A.; Castagnoli, A.; Morotti, A.; La Cava, G.; Meldolesi, U.

    1983-08-01

    Seventy-two patients affected by differentiated thyroid cancer underwent whole-body scan seven days after the postsurgical thyroablative treatment with /sup 131/I. In 40 patients this scanning did not reveal any area of /sup 131/I uptake outside the residual thyroid parenchyma. During the follow-up period, no signs of functioning tumors were detected in these patients and therefore, there was no need for further therapeutic treatment with radioiodine. From this results it is legitimate to conclude that whole-body scan control can be significantly postponed without diagnostic inaccuracy for those patients whose postthyroablative scans do not reveal diffuse tumor localizations.

  9. A new method for calculating the distribution of radioactivity in man measured with a whole-body counter

    SciTech Connect

    Novario, R.; Conte, L. )

    1990-05-01

    A whole-body counter with a scanning bed and two opposite (antero-posterior) probes was used to obtain profiles of count rates of radioactivity held in the whole body. The distribution of the activity in the patient was calculated by solving an overdetermined system (more equations than unknowns) of linear equations with the Chebyshev method, the least-squares method, and an iterative method. The iterative method gave the best results, especially in the case of distributions with peaks of radioactivity. Some in-vivo applications of the method are presented.

  10. The Human Monitoring Laboratory's whole body counter: monitoring the liquid nitrogen level as a quality control tool.

    PubMed

    Kramer, Gary H; Hauck, Barry M

    2007-11-01

    The Human Monitoring Laboratory (HML) has developed a method to measure the liquid nitrogen boil-off rate from the whole body counter's single dewar as a function of time. The device consists of a commercially available instrument that was modified to fit the HML's whole body counter's dewar; unfortunately, the modification was not perfect requiring an alternative approach to using the maximum fill value. The boil-off rate is now measured by taking two measurements and calculating the loss rate. Resulting boil-off rates are plotted on a control chart so that long-term trends can be easily assessed. PMID:18049247

  11. [The influence of vibration training in combination with general magnetotherapy on dynamics of performance efficiency in athletes].

    PubMed

    Mikheev, A A; Volchkova, O A; Voronitski?, N E

    2010-01-01

    The objective of this study was to evaluate effects of a combined treatment including vibrostimulation and magnetotherapy on the working capacity of athletes. Participants of the study were 8 male judo wrestlers. It was shown that implementation of a specialized training program comprising seances of vibration loading and general magnetotherapy 40 and 60 min in duration respectively during 3 consecutive days produced marked beneficial effect on the hormonal status of the athletes. Specifically, the three-day long treatment resulted in a significant increase of blood cortisol and testosterone levels considered to be an objective sign of improved performance parameters in athletes engaged in strength and speed sports. The optimal length of vibration training during 3 days of specialized training is estimated at 20 to 40 minutes supplemented by general magnetotherapy for 60 minutes. PMID:21328901

  12. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    SciTech Connect

    Petibon, Yoann; Syrkina, Aleksandra; Huang, Chuan; Ouyang, Jinsong; Li, Quanzheng; El Fakhri, Georges; Reese, Timothy G.; Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth Street, Charlestown, Massachusetts 02129 ; Chen, Yen-Lin; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114

    2014-04-15

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and{sup 18}F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion at the lung-liver interface. Heterogeneous tumor structures delineation was substantially improved. Enhancements offered by PSF modeling were more important when correcting for motion at the same time. Conclusions: The results suggest that the proposed quantitative PET-MR methods can significantly enhance the performance of tumor diagnosis and staging as compared to conventional methods. This approach may enable utilization of the full potential of the scanner in oncologic studies of both the lower abdomen, with moving lesions, as well as other parts of the body unaffected by motion.

  13. Relative role of motion and PSF compensation in whole-body oncologic PET-MR imaging

    PubMed Central

    Petibon, Yoann; Huang, Chuan; Ouyang, Jinsong; Reese, Timothy G.; Li, Quanzheng; Syrkina, Aleksandra; Chen, Yen-Lin; El Fakhri, Georges

    2014-01-01

    Purpose: Respiratory motion and partial-volume effects are the two main sources of image degradation in whole-body PET imaging. Simultaneous PET-MR allows measurement of respiratory motion using MRI while collecting PET events. Improved PET images may be obtained by modeling respiratory motion and point spread function (PSF) within the PET iterative reconstruction process. In this study, the authors assessed the relative impact of PSF modeling and MR-based respiratory motion correction in phantoms and patient studies using a whole-body PET-MR scanner. Methods: An asymmetric exponential PSF model accounting for radially varying and axial detector blurring effects was obtained from point source acquisitions performed in the PET-MR scanner. A dedicated MRI acquisition protocol using single-slice steady state free-precession MR acquisitions interleaved with pencil-beam navigator echoes was developed to track respiratory motion during PET-MR studies. An iterative ordinary Poisson fully 3D OSEM PET reconstruction algorithm modeling all the physical effects of the acquisition (attenuation, scatters, random events, detectors efficiencies, PSF), as well as MR-based nonrigid respiratory deformations of tissues (in both emission and attenuation maps) was developed. Phantom and 18F-FDG PET-MR patient studies were performed to evaluate the proposed quantitative PET-MR methods. Results: The phantom experiment results showed that PSF modeling significantly improved contrast recovery while limiting noise propagation in the reconstruction process. In patients with soft-tissue static lesions, PSF modeling improved lesion contrast by 19.7%–109%, enhancing the detectability and assessment of small tumor foci. In a patient study with small moving hepatic lesions, the proposed reconstruction technique improved lesion contrast by 54.4%–98.1% and reduced apparent lesion size by 21.8%–34.2%. Improvements were particularly important for the smallest lesion undergoing large motion at the lung-liver interface. Heterogeneous tumor structures delineation was substantially improved. Enhancements offered by PSF modeling were more important when correcting for motion at the same time. Conclusions: The results suggest that the proposed quantitative PET-MR methods can significantly enhance the performance of tumor diagnosis and staging as compared to conventional methods. This approach may enable utilization of the full potential of the scanner in oncologic studies of both the lower abdomen, with moving lesions, as well as other parts of the body unaffected by motion. PMID:24694156

  14. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH oxidase 4 (NOX4) mRNA expression and reactive oxygen species (ROS) production. In addition, the increased production of ROS in HSCs was associated with a significant reduction in HSC quiescence and an increase in DNA damage. These findings indicate that exposure to proton radiation can lead to long-term HSC injury, probably in part by radiation-induced oxidative stress. PMID:25635345

  15. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    SciTech Connect

    Frohwein, Lynn J. Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal imaging routines including different standard MRI sequences.

  16. Whole-body protein turnover of a carnivore, Felis silvestris catus.

    PubMed

    Russell, K; Lobley, G E; Millward, D J

    2003-01-01

    The cat (Felis silvestris catus) has a higher dietary protein requirement than omnivores and herbivores, thought to be due to metabolic inflexibility. An aspect of metabolic flexibility was examined with studies of whole-body protein turnover at two levels of dietary protein energy, moderate protein (MP; 20 %) and high protein (HP; 70 %), in five adult cats in a crossover design. Following a 14 d pre-feed period, a single intravenous dose of [15N]glycine was administered and cumulative excretion of the isotope in urine and faeces determined over 48 h. N flux increased (P<0.005) with dietary protein, being 56 (se 5) mmol N/kg body weight (BW) per d for cats fed the MP diet and 146 (se 8) mmol N/kg BW per d for cats fed the HP diet. Protein synthesis was higher (P<0.05) on the HP diet (75 (se 10) mmol N/kg BW per d; 6.6 (se 1) g protein/kg BW per d) than the MP diet (38 (se 5) mmol N/kg BW per d; 3.4 (se 0.4) g protein/kg BW per d). Protein breakdown was higher (P<0.05) on the HP diet (72 (se 8) mmol N/kg BW per d; 6.3 (se 0.7) g protein/kg BW per d) than the MP diet (44 (se 3) mmol N/kg BW per d; 3.9 (se 0.3) g protein/kg BW per d). Compared with other species the rate of whole-body protein synthesis in the well-nourished cat (9.7 (se 1.3) g protein/kg BW0.75 per d) is at the lower end of the range. These results show that feline protein turnover adapts to dietary protein as has been shown in other species and demonstrates metabolic flexibility. Further work is required to determine exactly why cats have such a high protein requirement. PMID:12568662

  17. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  18. Hematological and TGF-beta variations after whole-body proton irradiation

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.

  19. Comparative study reveals better far-red fluorescent protein for whole body imaging

    PubMed Central

    Luker, K.E.; Pata, P.; Shemiakina, I.I.; Pereverzeva, A.; Stacer, A.C.; Shcherbo, D.S.; Pletnev, V.Z.; Skolnaja, M.; Lukyanov, K.A.; Luker, G.D.; Pata, I.; Chudakov, D.M.

    2015-01-01

    Genetically encoded far-red and near-infrared fluorescent proteins enable efficient imaging in studies of tumorigenesis, embryogenesis, and inflammation in model animals. Here we report comparative testing of available GFP-like far-red fluorescent proteins along with a modified protein, named Katushka2S, and near-infrared bacterial phytochrome-based markers. We compare fluorescence signal and signal-to-noise ratio at various excitation wavelength and emission filter combinations using transiently transfected cell implants in mice, providing a basis for rational choice of optimal marker(s) for in vivo imaging studies. We demonstrate that the signals of various far-red fluorescent proteins can be spectrally unmixed based on different signal-to-noise ratios in different channels, providing the straightforward possibility of multiplexed imaging with standard equipment. Katushka2S produced the brightest and fastest maturing fluorescence in all experimental setups. At the same time, signal-to-noise ratios for Katushka2S and near-infrared bacterial phytochrome, iRFP720 were comparable in their optimal channels. Distinct spectral and genetic characteristics suggest this pair of a far-red and a near-infrared fluorescent protein as an optimal combination for dual color, whole body imaging studies in model animals. PMID:26035795

  20. Joint minimization of uplink and downlink whole-body exposure dose in indoor wireless networks.

    PubMed

    Plets, D; Joseph, W; Vanhecke, K; Vermeeren, G; Wiart, J; Aerts, S; Varsier, N; Martens, L

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  1. Digimouse: a 3D whole body mouse atlas from CT and cryosection data

    NASA Astrophysics Data System (ADS)

    Dogdas, Belma; Stout, David; Chatziioannou, Arion F.; Leahy, Richard M.

    2007-02-01

    We have constructed a three-dimensional (3D) whole body mouse atlas from coregistered x-ray CT and cryosection data of a normal nude male mouse. High quality PET, x-ray CT and cryosection images were acquired post mortem from a single mouse placed in a stereotactic frame with fiducial markers visible in all three modalities. The image data were coregistered to a common coordinate system using the fiducials and resampled to an isotropic 0.1 mm voxel size. Using interactive editing tools we segmented and labelled whole brain, cerebrum, cerebellum, olfactory bulbs, striatum, medulla, masseter muscles, eyes, lachrymal glands, heart, lungs, liver, stomach, spleen, pancreas, adrenal glands, kidneys, testes, bladder, skeleton and skin surface. The final atlas consists of the 3D volume, in which the voxels are labelled to define the anatomical structures listed above, with coregistered PET, x-ray CT and cryosection images. To illustrate use of the atlas we include simulations of 3D bioluminescence and PET image reconstruction. Optical scatter and absorption values are assigned to each organ to simulate realistic photon transport within the animal for bioluminescence imaging. Similarly, 511 keV photon attenuation values are assigned to each structure in the atlas to simulate realistic photon attenuation in PET. The Digimouse atlas and data are available at http://neuroimage.usc.edu/Digimouse.html.

  2. Design, fabrication and acceptance testing of a zero gravity whole body shower, volume 1

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The effort to design whole body shower for the space station prototype is reported. Clothes and dish washer/dryer concepts were formulated with consideration given to integrating such a system with the overall shower design. Water recycling methods to effect vehicle weight savings were investigated and it was concluded that reusing wash and/or rinse water resulted in weight savings which were not sufficient to outweigh the added degree of hardware complexity. The formulation of preliminary and final designs for the shower are described. A detailed comparison of the air drag vs. vacuum pickup method was prepared that indicated the air drag concept results in more severe space station weight penalties; therefore, the preliminary system design was based on utilizing the vacuum pickup method. Tests were performed to determine the optimum methods of storing, heating and sterilizing the cleansing agent utilized in the shower; it was concluded that individual packages of pre-sterilized cleansing agent should be used. Integration features with the space station prototype system were defined and incorporated into the shower design as necessary.

  3. Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice.

    PubMed

    Patwardhan, Sachin; Bloch, Sharon; Achilefu, Samuel; Culver, Joseph

    2005-04-01

    We present a fast scanning fluorescence optical tomography system for imaging the kinetics of probe distributions through out the whole body of small animals. Configured in a plane parallel geometry, the system scans a source laser using a galvanometer mirror pair (tauswitch~1ms) over flexible source patterns, and detects excitation and emission light using a high frame rate low noise, 5 MHz electron multiplied charge-coupled device (EMCCD) camera. Phantom studies were used to evaluate resolution, linearity, and sensitivity. Time dependent (deltat=2.2 min.) in vivo imaging of mice was performed following injections of a fluorescing probe (indocyanine green). The capability to detect differences in probe delivery route was demonstrated by comparing an intravenous injection, versus an injection into a fat pocket (retro orbital injection). Feasibility of imaging the distribution of tumor-targeted molecular probes was demonstrated by imaging a breast tumor-specific near infrared polypeptide in MDA MB 361 tumor bearing nude mice. A tomography scan, at 24 hour post injection, revealed preferential uptake in the tumor relative to surrounding tissue. PMID:19495147

  4. Development of an LSI for Tactile Sensor Systems on the Whole-Body of Robots

    NASA Astrophysics Data System (ADS)

    Muroyama, Masanori; Makihata, Mitsutoshi; Nakano, Yoshihiro; Matsuzaki, Sakae; Yamada, Hitoshi; Yamaguchi, Ui; Nakayama, Takahiro; Nonomura, Yutaka; Fujiyoshi, Motohiro; Tanaka, Shuji; Esashi, Masayoshi

    We have developed a network type tactile sensor system, which realizes high-density tactile sensors on the whole-body of nursing and communication robots. The system consists of three kinds of nodes: host, relay and sensor nodes. Roles of the sensor node are to sense forces and, to encode the sensing data and to transmit the encoded data on serial channels by interruption handling. Relay nodes and host deal with a number of the encoded sensing data from the sensor nodes. A sensor node consists of a capacitive MEMS force sensor and a signal processing/transmission LSI. In this paper, details of an LSI for the sensor node are described. We designed experimental sensor node LSI chips by a commercial 0.18µm standard CMOS process. The 0.18µm LSIs were supplied in wafer level for MEMS post-process. The LSI chip area is 2.4mm × 2.4mm, which includes logic, CF converter and memory circuits. The maximum clock frequency of the chip with a large capacitive load is 10MHz. Measured power consumption at 10MHz clock is 2.23mW. Experimental results indicate that size, response time, sensor sensitivity and power consumption are all enough for practical tactile sensor systems.

  5. Liver LXR? expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice

    PubMed Central

    Zhang, Yuan; Breevoort, Sarah R.; Angdisen, Jerry; Fu, Mingui; Schmidt, Daniel R.; Holmstrom, Sam R.; Kliewer, Steven A.; Mangelsdorf, David J.; Schulman, Ira G.

    2012-01-01

    Liver X receptors (LXR? and LXR?) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXR? in hepatocytes. Liver-specific deletion of LXR? in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXR? for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXR? increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXR?, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXR? eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease. PMID:22484817

  6. Model based predictive design of post patient collimation for whole body CT scanners

    NASA Astrophysics Data System (ADS)

    Prakash, Prakhar; Boudry, John

    2015-03-01

    Scatter presents as a significant source of image artifacts in cone beam CT (CBCT) and considerable effort has been devoted to measuring the magnitude and influence of scatter. Scatter management includes both rejection and correction approaches, with anti-scatter grids (ASGs) commonly employed as a scatter rejection strategy. This work employs a Geant41,2 driven Monte Carlo model to investigate the impact of different ASG designs on scatter rejection performance across a range of scanner coverage along the patient axis. Scatter rejection is quantified in terms of scatter to primary ratio (SPR). One-dimensional (1D) ASGs (grid septa running parallel to patient axis) are compared across a range of septa height, septa width and septa material. Results indicate for a given septa width and patient coverage, SPR decreases with septa height but demonstrates diminishing returns for larger height values. For shorter septa heights, higher Z materials (e.g., Tungsten) exhibit superior scatter rejection to relatively lower Z materials (e.g., Molybdenum). For taller septa heights, the material difference is not as significant. SPR has a relatively weak dependence on septa width, with thicker septa giving lower SPR values at a given scanner coverage. The results are intended to serve as guide for designing post patient collimation for whole body CT scanners. Since taller grids with high Z materials pose a significant manufacturing cost, it is necessary to evaluate optimal ASG designs to minimize material and machining costs and to meet scatter rejection specifications at given patient coverage.

  7. Whole-body cortisol response of zebrafish to acute net handling stress

    PubMed Central

    Ramsay, Jennifer M.; Feist, Grant W.; Varga, Zoltán M.; Westerfield, Monte; Kent, Michael L.; Schreck, Carl B.

    2014-01-01

    Zebrafish, Danio rerio, are frequently handled during husbandry and experimental procedures in the laboratory, yet little is known about the physiological responses to such stressors. We measured the whole-body cortisol levels of adult zebrafish subjected to net stress and air exposure at intervals over a 24 h period; cortisol recovered to near control levels by about 1 h post-net-stress (PNS). We then measured cortisol at frequent intervals over a 1 h period. Cortisol levels were more than 2-fold higher in net stressed fish at 3 min PNS and continued to increase peaking at 15 min PNS, when cortisol levels were 6-fold greater than the control cortisol. Mean cortisol declined from 15 to 60 min PNS, and at 60 min, net-stressed cortisol was similar to control cortisol. Because the age of fish differed between studies, we examined resting cortisol levels of fish of different ages (3, 7, 13, and 19 months). The resting cortisol values among tanks with the same age fish differed significantly but there was no clear effect of age. Our study is the first to report the response and recovery of cortisol after net handling for laboratory-reared zebrafish. PMID:25587201

  8. The megakaryocyte DNA content and platelet formation after the sublethal whole body irradiation of rats

    SciTech Connect

    Tanum, G.

    1984-04-01

    The DNA content of rat bone marrow megakaryocytes (MK) was studied by Feulgen photometry, following whole body irradiation with 2 Gy. The DNA measurements were preceded by acetylcholinesterase staining to avoid missing the smaller 2N-8N MK. The number of 2N-8N MK declined immediately following irradiation, whereas the number of 16N-64N MK remained normal for 4 days before decreasing. The number of 2N-8N and 16N-64N MK reached minimum around days 7 and 10, respectively, and thereafter increased to supranormal values at days 14 and 20, respectively. Platelet production, measured by /sup 35/S incorporation into platelets, increased during the first 4 days, then decreased to minimum about day 10. A rise to supranormal values was present at day 20. All values were about normal 30 days after exposure. The observed pattern may be explained as follows: Most of the 16N-64N MK survive the applied dose and maintain their ability to produce platelets. Some of the 2N-4N and 8N MK survive irradiation and transform into platelet-producing MK. No influx of cells from the MK stem cell compartment into the MK compartment can be observed before day 7 after irradiation. One explanation for this time lag may be that thrombocytopenia, which does not occur before then, is an essential stimulus for MK stem cell activation.

  9. An optimized whole-body cortisol quantification method for assessing stress levels in larval zebrafish.

    PubMed

    Yeh, Chen-Min; Glöck, Mario; Ryu, Soojin

    2013-01-01

    Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish. PMID:24223943

  10. An Optimized Whole-Body Cortisol Quantification Method for Assessing Stress Levels in Larval Zebrafish

    PubMed Central

    Yeh, Chen-Min; Glöck, Mario; Ryu, Soojin

    2013-01-01

    Glucocorticoids serve important regulatory functions for many physiological processes and are critical mediators of the stress response. The stress response is a set of bodily processes aimed at counteracting a state of threatened homeostasis. Proper stress response is critical for the survival of an animal, however prolonged or abnormal stress response can be detrimental and is implicated in a number of human diseases such as depression and metabolic diseases. To dissect the underlying mechanism of this complex and important response, the zebrafish, Danio rerio offer important advantages such as ease of genetic manipulations and high-throughput behavioral analyses. However, there is a paucity of suitable methods to measure stress level in larval zebrafish. Therefore, an efficient low-cost method to monitor stress hormone levels will greatly facilitate stress research in zebrafish larvae. In this study, we optimized sample collection as well as cortisol extraction methods and developed a home-made ELISA protocol for measuring whole-body cortisol level in zebrafish larvae. Further, using our customized protocols, we characterized the response of larval zebrafish to a variety of stressors. This assay, developed for efficient cortisol quantification, will be useful for systematic and large-scale stress analyses in larval zebrafish. PMID:24223943

  11. Measurement of the whole-body 137Cs in residents around the Chernobyl nuclear power plant.

    PubMed

    Morita, Naoko; Takamura, Noboru; Ashizawa, Kiyoto; Shimasaki, Tatsuya; Yamashita, Shunichi; Okumura, Yutaka

    2005-01-01

    To understand the current situation of internal radiation exposure in the population around the Chernobyl Nuclear Power Plant (CNPP), we examined the 137Cs body burden in six residents of Belarus, Ukraine and Russia in 2002 and 2004 using the whole-body counter (WBC) at Nagasaki University (Japan). The data were compared with those of our previous study performed in 1993-1994 using the same method. In 2002 and 2004, peaks of 137Cs were detected in two residents from Gomel, which was heavily contaminated by the CNPP accident, one from Minsk (Belarus) and one from Kiev (Ukraine), but another resident from Minsk showed no 137Cs peaks. The results of the present study suggests that residents around the CNPP are still exposed to chronic 137Cs internal irradiation, probably due to the daily consumption of contaminated domestic foods, but the risk of any disease by the irradiation is quite low. Long-term follow-up of WBC around the CNPP is useful and may contribute to radiation safety regulation together with a reduction of unnecessary radiophobia for the residents. PMID:15703186

  12. Environmental Assessment for the new Whole Body Counter facility at the Savannah River Site

    SciTech Connect

    Not Available

    1993-01-01

    The U.S. Department of Energy proposes to construct and operate a new in-vivo counting facility at the Savannah River Site for the monitoring of employees for internal radionuclides. The proposed facility, titled the new Whole Body Counter (WBC) facility, would house both the existing and additional new invivo counting equipment and facility support operations. The proposed facility would be sited and located in an area of the SRS in which background radiation levels are sufficiently low to assure accurate in-vivo counts and a location that would assure ease of access for occupational workers. This Environmental Assessment has been prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, and the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CPR Parts 1500-1508). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. The proposed action has independent utility to the Savannah River operations and will be necessary to support plant activities regardless of the makeup of the future mission at the site. As such, the proposed new WBC facility is treated as part of the preliminary Reconfiguration Programmatic Environmental Impact Statement ``No Action`` alternative.

  13. Portable document format file showing the surface models of cadaver whole body.

    PubMed

    Shin, Dong Sun; Chung, Min Suk; Park, Jin Seo; Park, Hyung Seon; Lee, Sangho; Moon, Young Lae; Jang, Hae Gwon

    2012-08-01

    In the Visible Korean project, 642 three-dimensional (3D) surface models have been built from the sectioned images of a male cadaver. It was recently discovered that popular PDF file enables users to approach the numerous surface models conveniently on Adobe Reader. Purpose of this study was to present a PDF file including systematized surface models of human body as the beneficial contents. To achieve the purpose, fitting software packages were employed in accordance with the procedures. Two-dimensional (2D) surface models including the original sectioned images were embedded into the 3D surface models. The surface models were categorized into systems and then groups. The adjusted surface models were inserted to a PDF file, where relevant multimedia data were added. The finalized PDF file containing comprehensive data of a whole body could be explored in varying manners. The PDF file, downloadable freely from the homepage (http://anatomy.co.kr), is expected to be used as a satisfactory self-learning tool of anatomy. Raw data of the surface models can be extracted from the PDF file and employed for various simulations for clinical practice. The technique to organize the surface models will be applied to manufacture of other PDF files containing various multimedia contents. PMID:22876049

  14. Stability of the translocation frequency following whole-body irradiation measured in rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Lucas, J. N.; Hill, F. S.; Burk, C. E.; Cox, A. B.; Straume, T.

    1996-01-01

    Chromosome translocations are persistent indicators of prior exposure to ionizing radiation and the development of 'chromosome painting' to efficiently detect translocations has resulted in a powerful biological dosimetry tool for radiation dose reconstruction. However, the actual stability of the translocation frequency with time after exposure must be measured before it can be used reliably to obtain doses for individuals exposed years or decades previously. Human chromosome painting probes were used here to measure reciprocal translocation frequencies in cells from two tissues of 8 rhesus monkeys (Macaca mulatta) irradiated almost three decades previously. Six of the monkeys were exposed in 1965 to whole-body (fully penetrating) radiation and two were unexposed controls. The primates were irradiated as juveniles to single doses of 0.56, 1.13, 2.00, or 2.25 Gy. Blood lymphocytes (and skin fibroblasts from one individual) were obtained for cytogenetic analysis in 1993, near the end of the animals' lifespans. Results show identical dose-response relationships 28 y after exposure in vivo and immediately after exposure in vitro. Because chromosome aberrations are induced with identical frequencies in vivo and in vitro, these results demonstrate that the translocation frequencies induced in 1965 have not changed significantly during the almost three decades since exposure. Finally, our emerging biodosimetry data for individual radiation workers are now confirming the utility of reciprocal translocations measured by FISH in radiation dose reconstruction.

  15. Dynamics of Delayed p53 Mutations in Mice Given Whole-Body Irradiation at 8 Weeks

    SciTech Connect

    Okazaki, Ryuji; Ootsuyama, Akira; Kakihara, Hiroyo; Mabuchi, Yo; Matsuzaki, Yumi; Michikawa, Yuichi; Imai, Takashi; Norimura, Toshiyuki

    2011-01-01

    Purpose: Ionizing irradiation might induce delayed genotoxic effects in a p53-dependent manner. However, a few reports have shown a p53 mutation as a delayed effect of radiation. In this study, we investigated the p53 gene mutation by the translocation frequency in chromosome 11, loss of p53 alleles, p53 gene methylation, p53 nucleotide sequence, and p53 protein expression/phosphorylation in p53{sup +/+} and p53{sup +/-} mice after irradiation at a young age. Methods and Materials: p53{sup +/+} and p53{sup +/-} mice were exposed to 3 Gy of whole-body irradiation at 8 weeks of age. Chromosome instability was evaluated by fluorescence in situ hybridization analysis. p53 allele loss was evaluated by polymerase chain reaction, and p53 methylation was evaluated by methylation-specific polymerase chain reaction. p53 sequence analysis was performed. p53 protein expression was evaluated by Western blotting. Results: The translocation frequency in chromosome 11 showed a delayed increase after irradiation. In old irradiated mice, the number of mice that showed p53 allele loss and p53 methylation increased compared to these numbers in old non-irradiated mice. In two old irradiated p53{sup +/-} mice, the p53 sequence showed heteromutation. In old irradiated mice, the p53 and phospho-p53 protein expressions decreased compared to old non-irradiated mice. Conclusion: We concluded that irradiation at a young age induced delayed p53 mutations and p53 protein suppression.

  16. Risk communication with Fukushima residents affected by the Fukushima Daiichi accident at whole-body counting

    SciTech Connect

    Gunji, I.; Furuno, A.; Yonezawa, R.; Sugiyama, K.

    2013-07-01

    After the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power plant accident, the Tokai Research and Development Center of the Japan Atomic Energy Agency (JAEA) have had direct dialogue as risk communication with Fukushima residents who underwent whole-body counting examination (WBC). The purpose of the risk communication was to exchange information and opinions about radiation in order to mitigate Fukushima residents' anxiety and stress. Two kinds of opinion surveys were performed: one survey evaluated residents' views of the nuclear accident itself and the second survey evaluated the management of WBC examination as well as the quality of JAEA's communication skills on risks. It appears that most Fukushima residents seem to have reduced their anxiety level after the direct dialogue. The results of the surveys show that Fukushima residents have the deepest anxiety and concern about their long-term health issues and that they harbor anger toward the government and TEPCO. On the other hand, many WBC patients and patients' relatives have expressed gratitude for help in reducing their feelings of anxiety.

  17. Whole-Body In Vivo Monitoring of Inflammatory Diseases Exploiting Human Interleukin 6-Luciferase Transgenic Mice.

    PubMed

    Hayashi, Makiko; Takai, Jun; Yu, Lei; Motohashi, Hozumi; Moriguchi, Takashi; Yamamoto, Masayuki

    2015-10-15

    Chronic inflammation underlies the pathological progression of various diseases, and thus many efforts have been made to quantitatively evaluate the inflammatory status of the diseases. In this study, we generated a highly sensitive inflammation-monitoring mouse system using a bacterial artificial chromosome (BAC) clone containing extended flanking sequences of the human interleukin 6 gene (hIL6) locus, in which the luciferase (Luc) reporter gene is integrated (hIL6-BAC-Luc). We successfully monitored lipopolysaccharide-induced systemic inflammation in various tissues of the hIL6-BAC-Luc mice using an in vivo bioluminescence imaging system. When two chronic inflammatory disease models, i.e., a genetic model of atopic dermatitis and a model of experimental autoimmune encephalomyelitis (EAE), were applied to the hIL6-BAC-Luc mice, luciferase bioluminescence was specifically detected in the atopic skin lesion and central nervous system, respectively. Moreover, the Luc activities correlated well with the disease severity. Nrf2 is a master transcription factor that regulates antioxidative and detoxification enzyme genes. Upon EAE induction, the Nrf2-deficient mice crossed with the hIL6-BAC-Luc mice exhibited enhanced neurological symptoms concomitantly with robust luciferase luminescence in the neuronal tissue. Thus, whole-body in vivo monitoring using the hIL6-BAC-Luc transgenic system (WIM-6 system) provides a new and powerful diagnostic tool for real-time in vivo monitoring of inflammatory status in multiple different disease models. PMID:26283726

  18. Luminescent proteins for high-speed single-cell and whole-body imaging.

    PubMed

    Saito, Kenta; Chang, Y-F; Horikawa, Kazuki; Hatsugai, Noriyuki; Higuchi, Yuriko; Hashida, Mitsuru; Yoshida, Yu; Matsuda, Tomoki; Arai, Yoshiyuki; Nagai, Takeharu

    2012-01-01

    The use of fluorescent proteins has revolutionized our understanding of biological processes. However, the requirement for external illumination precludes their universal application to the study of biological processes in all tissues. Although light can be created by chemiluminescence, light emission from existing chemiluminescent probes is too weak to use this imaging modality in situations when fluorescence cannot be used. Here we report the development of the brightest luminescent protein to date, Nano-lantern, which is a chimera of enhanced Renilla luciferase and Venus, a fluorescent protein with high bioluminescence resonance energy transfer efficiency. Nano-lantern allows real-time imaging of intracellular structures in living cells with spatial resolution equivalent to fluorescence and sensitive tumour detection in freely moving unshaved mice. We also create functional indicators based on Nano-lantern that can image Ca(2+), cyclic adenosine monophosphate and adenosine 5'-triphosphate dynamics in environments where the use of fluorescent indicators is not feasible. These luminescent proteins allow visualization of biological phenomena at previously unseen single-cell, organ and whole-body level in animals and plants. PMID:23232392

  19. Single-Cell Phenotyping within Transparent Intact Tissue Through Whole-Body Clearing

    PubMed Central

    Yang, Bin; Treweek, Jennifer B.; Kulkarni, Rajan P.; Deverman, Benjamin E.; Chen, Chun-Kan; Lubeck, Eric; Shah, Sheel; Cai, Long; Gradinaru, Viviana

    2014-01-01

    SUMMARY Understanding the structure-function relationships at cellular, circuit, and organ-wide scale requires 3D anatomical and phenotypical maps, currently unavailable for many organs across species. At the root of this knowledge gap is the absence of a method that enables whole-organ imaging. Herein we present techniques for tissue clearing in which whole organs and bodies are rendered macromolecule-permeable and optically-transparent, thereby exposing their cellular structure with intact connectivity. We describe PACT, a protocol for passive tissue clearing and immunostaining of intact organs; RIMS, a refractive index matching media for imaging thick tissue; and PARS, a method for whole-body clearing and immunolabeling. We show that in rodents PACT, RIMS, and PARS are compatible with endogenous-fluorescence, immunohistochemistry, RNA single-molecule FISH, long-term storage, and microscopy with cellular and subcellular resolution. These methods are applicable for high-resolution, high-content mapping and phenotyping of normal and pathological elements within intact organs and bodies. PMID:25088144

  20. Joint Minimization of Uplink and Downlink Whole-Body Exposure Dose in Indoor Wireless Networks

    PubMed Central

    Plets, D.; Joseph, W.; Vanhecke, K.; Vermeeren, G.; Wiart, J.; Aerts, S.; Varsier, N.; Martens, L.

    2015-01-01

    The total whole-body exposure dose in indoor wireless networks is minimized. For the first time, indoor wireless networks are designed and simulated for a minimal exposure dose, where both uplink and downlink are considered. The impact of the minimization is numerically assessed for four scenarios: two WiFi configurations with different throughputs, a Universal Mobile Telecommunications System (UMTS) configuration for phone call traffic, and a Long-Term Evolution (LTE) configuration with a high data rate. Also, the influence of the uplink usage on the total absorbed dose is characterized. Downlink dose reductions of at least 75% are observed when adding more base stations with a lower transmit power. Total dose reductions decrease with increasing uplink usage for WiFi due to the lack of uplink power control but are maintained for LTE and UMTS. Uplink doses become dominant over downlink doses for usages of only a few seconds for WiFi. For UMTS and LTE, an almost continuous uplink usage is required to have a significant effect on the total dose, thanks to the power control mechanism. PMID:25793213

  1. Whole-body cortisol response of zebrafish to acute net handling stress

    USGS Publications Warehouse

    Ramsay, J.M.; Feist, G.W.; Varga, Z.M.; Westerfield, M.; Kent, M.L.; Schreck, C.B.

    2009-01-01

    Zebrafish, Danio rerio, are frequently handled during husbandry and experimental procedures in the laboratory, yet little is known about the physiological responses to such stressors. We measured the whole-body cortisol levels of adult zebrafish subjected to net stress and air exposure at intervals over a 24 h period; cortisol recovered to near control levels by about 1 h post-net-stress (PNS). We then measured cortisol at frequent intervals over a 1 h period. Cortisol levels were more than 2-fold higher in net stressed fish at 3 min PNS and continued to increase peaking at 15 min PNS, when cortisol levels were 6-fold greater than the control cortisol. Mean cortisol declined from 15 to 60 min PNS, and at 60 min, net-stressed cortisol was similar to control cortisol. Because the age of fish differed between studies, we examined resting cortisol levels of fish of different ages (3, 7, 13, and 19 months). The resting cortisol values among tanks with the same age fish differed significantly but there was no clear effect of age. Our study is the first to report the response and recovery of cortisol after net handling for laboratory-reared zebrafish. ?? 2009 Elsevier B.V.

  2. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy

    PubMed Central

    Haurigot, Virginia; Marcó, Sara; Ribera, Albert; Garcia, Miguel; Ruzo, Albert; Villacampa, Pilar; Ayuso, Eduard; Añor, Sònia; Andaluz, Anna; Pineda, Mercedes; García-Fructuoso, Gemma; Molas, Maria; Maggioni, Luca; Muñoz, Sergio; Motas, Sandra; Ruberte, Jesús; Mingozzi, Federico; Pumarola, Martí; Bosch, Fatima

    2013-01-01

    For most lysosomal storage diseases (LSDs) affecting the CNS, there is currently no cure. The BBB, which limits the bioavailability of drugs administered systemically, and the short half-life of lysosomal enzymes, hamper the development of effective therapies. Mucopolysaccharidosis type IIIA (MPS IIIA) is an autosomic recessive LSD caused by a deficiency in sulfamidase, a sulfatase involved in the stepwise degradation of glycosaminoglycan (GAG) heparan sulfate. Here, we demonstrate that intracerebrospinal fluid (intra-CSF) administration of serotype 9 adenoassociated viral vectors (AAV9s) encoding sulfamidase corrects both CNS and somatic pathology in MPS IIIA mice. Following vector administration, enzymatic activity increased throughout the brain and in serum, leading to whole body correction of GAG accumulation and lysosomal pathology, normalization of behavioral deficits, and prolonged survival. To test this strategy in a larger animal, we treated beagle dogs using intracisternal or intracerebroventricular delivery. Administration of sulfamidase-encoding AAV9 resulted in transgenic expression throughout the CNS and liver and increased sulfamidase activity in CSF. High-titer serum antibodies against AAV9 only partially blocked CSF-mediated gene transfer to the brains of dogs. Consistently, anti-AAV antibody titers were lower in CSF than in serum collected from healthy and MPS IIIA–affected children. These results support the clinical translation of this approach for the treatment of MPS IIIA and other LSDs with CNS involvement. PMID:23863627

  3. Whole-body Response for Pedestrian Impact with a Generic Sedan Buck.

    PubMed

    Foreman, Jason L; Joodaki, Hamad; Forghani, Ali; Riley, Patrick O; Bollapragada, Varun; Lessley, David J; Overby, Brian; Heltzel, Sara; Kerrigan, Jason R; Crandall, Jeff R; Yarboro, Seth; Weiss, David B

    2015-11-01

    To serve as tools for assessing injury risk, the biofidelity of whole-body pedestrian impact dummies should be validated against reference data from full-scale pedestrian impact tests. To facilitate such evaluations, a simplified generic vehicle-buck has been recently developed that is designed to have characteristics representative of a generic small sedan. Three 40 km/h pedestrian-impact tests have been performed, wherein Post Mortem Human Surrogates (PMHS) were struck laterally in a mid-gait stance by the buck. Corridors for select trajectory measures derived from these tests have been published previously. The goal of this study is to act as a companion dataset to that study, describing the head velocities, body region accelerations (head, spine, pelvis, lower extremities), angular velocities, and buck interaction forces, and injuries observed during those tests. Scaled, transformed head accelerations exceeded 80 g prior to head contact with the windshield for two of the three tests. Head xaxis angular velocity exceeded 40 rad/s prior to head contact for all three tests. In all cases the peak resultant head velocity relative to the vehicle was greater than the initial impact speed of the vehicle. Corridors of resultant head velocity relative to the vehicle were also developed, bounded by the velocities observed in these tests combined with those predicted to occur if the PMHS necks were perfectly rigid. These results, along with the other kinematic and kinetic data presented, provide a resource for future pedestrian dummy development and evaluation. PMID:26660753

  4. Comparison of the effects of partial-or-whole-body exposures to 16O particles on cognitive performance in rats

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies using a ground-based system (NASA Space Radiation Laboratory) to study the effects of exposure to particles of high energy and charge (HZE particles) on cognitive performance have interchangeably used whole-body exposures or exposures restricted to the head of the subject. It is possible th...

  5. Acute IGF-I infusion stimulates whole body protein synthesis but does not reduce proteolysis in neonates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Skeletal muscle protein synthesis increases in response to a physiological rise in total insulin-like growth factor I (IGF-I) in neonatal pigs. To determine the response of whole body protein synthesis and degradation to IGF-I, fasted 7-day-old pigs (n=4/dose) were infused with IGF-I (0, 20, or 50 ...

  6. Feto-maternal vitamin D status and infant whole-body bone mineral content in the first weeks of life

    Technology Transfer Automated Retrieval System (TEKTRAN)

    BACKGROUND/OBJECTIVES: Compromised vitamin D status is common in pregnancy and may have adverse impacts on fetal development. The purpose of this study was to investigate the association of infant whole-body bone mineral content (WBBMC) at 8–21 days of age with feto-maternal vitamin D status in a mu...

  7. WHOLE-BODY DOSIMETRY OF MICROWAVE RADIATION IN SMALL ANIMALS: THE EFFECT OF BODY MASS AND EXPOSURE GEOMETRY

    EPA Science Inventory

    Whole-body absorption of 2450-MHz radiation was measured in rats that ranged from 6 to 440 grams and mice that ranged from 30 to 50 grams. Simultaneous exposure of groups of animals in varying numbers and various configurations were made under free-field conditions in an electric...

  8. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During construction of the whole body counter (WBC) at the Children’s Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Car...

  9. Alterations in Whole-Body Insulin Sensitivity Resulting From Repeated Eccentric Exercise of a Single Muscle Group: A Pilot Investigation.

    PubMed

    Gonzalez, Javier T; Barwood, Martin J; Goodall, Stuart; Thomas, Kevin; Howatson, Glyn

    2015-08-01

    Unaccustomed eccentric exercise using large muscle groups elicits soreness, decrements in physical function and impairs markers of whole-body insulin sensitivity; although these effects are attenuated with a repeated exposure. Eccentric exercise of a small muscle group (elbow flexors) displays similar soreness and damage profiles in response to repeated exposure. However, it is unknown whether damage to small muscle groups impacts upon whole-body insulin sensitivity. This pilot investigation aimed to characterize whole-body insulin sensitivity in response to repeated bouts of eccentric exercise of the elbow flexors. Nine healthy males completed two bouts of eccentric exercise separated by 2 weeks. Insulin resistance (updated homeostasis model of insulin resistance, HOMA2-IR) and muscle damage profiles (soreness and physical function) were assessed before, and 48 h after exercise. Matsuda insulin sensitivity indices (ISI Matsuda) were also determined in 6 participants at the same time points as HOMA2-IR. Soreness was elevated, and physical function impaired, by both bouts of exercise (both p < .05) but to a lesser extent following bout 2 (time x bout interaction, p < .05). Eccentric exercise decreased ISI Matsuda after the first but not the second bout of eccentric exercise (time x bout interaction p < .05). Eccentric exercise performed with an isolated upper limb impairs whole-body insulin sensitivity after the first, but not the second, bout. PMID:25675160

  10. Automated quantification of adipose and skeletal muscle tissue in whole-body MRI data for epidemiological studies

    NASA Astrophysics Data System (ADS)

    Wald, Diana; Teucher, Birgit; Dinkel, Julien; Kaaks, Rudolf; Delorme, Stefan; Meinzer, Hans-Peter; Heimann, Tobias

    2012-03-01

    The ratio between the amount of adipose and skeletal muscle tissue is an important determinant of metabolic health. Recent developments in MRI technology allow whole body scans to be performed for accurate assessment of body composition. In the present study, a total of 194 participants underwent a 2-point Dixon MRI sequence of the whole body. A fully automated image segmentation method quantifies the amount of adipose and skeletal muscle tissue by applying standard image processing techniques including thresholding, region growing and morphological operators. The adipose tissue is further divided into subcutaneous and visceral adipose tissue by using statistical shape models. All images were visually inspected. The quantitative analysis was performed on 44 whole-body MRI data using manual segmentations as ground truth data. We achieved 3.3% and 6.3% of relative volume difference between the manual and automated segmentation of subcutaneous and visceral adipose tissue, respectively. The validation of skeletal muscle tissue segmentation resulted in a relative volume difference of 7.8 +/- 4.2% and a volumetric overlap error of 6.4 +/- 2.3 %. To our knowledge, we are first to present a fully automated method which quantifies adipose and skeletal muscle tissue in whole-body MRI data. Due to the fully automated approach, results are deterministic and free of user bias. Hence, the software can be used in large epidemiological studies for assessing body fat distribution and the ratio of adipose to skeletal muscle tissue in relation to metabolic disease risk.

  11. Stimulation of whole body protein synthesis by insulin in neonates is dependent on the pattern of amino acids available

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insulin stimulates muscle protein synthesis in neonatal pigs. To determine insulin's effects on whole body protein turnover, (13)C-leucine was infused for 4 hr during hyperinsulinemic (0, 30, 100, 1000 ng/(kg(0.66)/min))-euglycemic-euaminoacidemic clamps in fasted 7-d-old pigs (n=5/dose). Trophami...

  12. The Dissection Room Experience: A Factor in the Choice of Organ and Whole Body Donation--A Nigerian Survey

    ERIC Educational Resources Information Center

    Anyanwu, Emeka G.; Obikili, Emmanuel N.; Agu, Augustine U.

    2014-01-01

    The psychosocial impact of human dissection on the lives of medical and health science students has been noted. To assess the impact of the dissection room experience on one's willingness to become a whole body and organ donor, the attitudes of 1,350 students and professionals from the medical, health, and non-health related disciplines to…

  13. Whole-body PET parametric imaging employing direct 4D nested reconstruction and a generalized non-linear Patlak model

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Rahmim, Arman

    2014-03-01

    Graphical analysis is employed in the research setting to provide quantitative estimation of PET tracer kinetics from dynamic images at a single bed. Recently, we proposed a multi-bed dynamic acquisition framework enabling clinically feasible whole-body parametric PET imaging by employing post-reconstruction parameter estimation. In addition, by incorporating linear Patlak modeling within the system matrix, we enabled direct 4D reconstruction in order to effectively circumvent noise amplification in dynamic whole-body imaging. However, direct 4D Patlak reconstruction exhibits a relatively slow convergence due to the presence of non-sparse spatial correlations in temporal kinetic analysis. In addition, the standard Patlak model does not account for reversible uptake, thus underestimating the influx rate Ki. We have developed a novel whole-body PET parametric reconstruction framework in the STIR platform, a widely employed open-source reconstruction toolkit, a) enabling accelerated convergence of direct 4D multi-bed reconstruction, by employing a nested algorithm to decouple the temporal parameter estimation from the spatial image update process, and b) enhancing the quantitative performance particularly in regions with reversible uptake, by pursuing a non-linear generalized Patlak 4D nested reconstruction algorithm. A set of published kinetic parameters and the XCAT phantom were employed for the simulation of dynamic multi-bed acquisitions. Quantitative analysis on the Ki images demonstrated considerable acceleration in the convergence of the nested 4D whole-body Patlak algorithm. In addition, our simulated and patient whole-body data in the postreconstruction domain indicated the quantitative benefits of our extended generalized Patlak 4D nested reconstruction for tumor diagnosis and treatment response monitoring.

  14. Perchlorate exposure does not modulate temporal variation of whole-body thyroid and androgen hormone content in threespine stickleback.

    PubMed

    Gardell, Alison M; Dillon, Danielle M; Smayda, Lauren C; von Hippel, Frank A; Cresko, William A; Postlethwait, John H; Buck, C Loren

    2015-08-01

    Previously we showed that exposure of threespine stickleback (Gasterosteus aculeatus) to the endocrine disruptor perchlorate results in pronounced structural changes in thyroid and gonad, while surprisingly, whole-body thyroid hormone concentrations remain unaffected. To test for hormone titer variations on a finer scale, we evaluated the interactive effects of time (diel and reproductive season) and perchlorate exposure on whole-body contents of triiodothyronine (T3), thyroxine (T4), and 11-ketotestosterone (11-KT) in captive stickleback. Adult stickleback were exposed to 100ppm perchlorate or control water and sampled at 4-h intervals across the 24-hday and at one time-point (1100h) weekly across the reproductive season (May-July). Neither whole-body T3 nor T4 concentration significantly differed across the day in control or perchlorate treated stickleback. Across the reproductive season, whole-body T3 concentration remained stable while T4 significantly increased. However, neither hormone concentration was significantly affected by perchlorate, verifying our previous studies. The concentration of whole-body 11-KT, a major fish androgen, displayed significant diel variation and also steadily declined across the reproductive season in untreated males; perchlorate exposure did not influence the concentration of 11-KT in either diel or reproductive season schedules. Diel and reproductive season variations in 11-KT content in male stickleback are likely related to reproductive physiology and behavior. The observed increase in T4 content across the reproductive season may be reflective of increased energy investment in reproduction near the end of the life cycle. PMID:25733204

  15. Whole-Body Lifetime Occupational Lead Exposure and Risk of Parkinson’s Disease

    PubMed Central

    Coon, Steven; Stark, Azadeh; Peterson, Edward; Gloi, Aime; Kortsha, Gene; Pounds, Joel; Chettle, David; Gorell, Jay

    2006-01-01

    Background Several epidemiologic studies have suggested an association between Parkinson’s disease (PD) and exposure to heavy metals using subjective exposure measurements. Objectives We investigated the association between objective chronic occupational lead exposure and the risk of PD. Methods We enrolled 121 PD patients and 414 age-, sex-, and race-, frequency-matched controls in a case–control study. As an indicator of chronic Pb exposure, we measured concentrations of tibial and calcaneal bone Pb stores using 109Cadmium excited K-series X-ray fluorescence. As an indicator of recent exposure, we measured blood Pb concentration. We collected occupational data on participants from 18 years of age until the age at enrollment, and an industrial hygienist determined the duration and intensity of environmental Pb exposure. We employed physiologically based pharmacokinetic modeling to combine these data, and we estimated whole-body lifetime Pb exposures for each individual. Logistic regression analysis produced estimates of PD risk by quartile of lifetime Pb exposure. Results Risk of PD was elevated by > 2-fold [odds ratio = 2.27 (95% confidence interval, 1.13–4.55); p = 0.021] for individuals in the highest quartile for lifetime lead exposure relative to the lowest quartile, adjusting for age, sex, race, smoking history, and coffee and alcohol consumption. The associated risk of PD for the second and third quartiles were elevated but not statistically significant at the ? = 0.05 level. Conclusions These results provide an objective measure of chronic Pb exposure and confirm our earlier findings that occupational exposure to Pb is a risk factor for PD. PMID:17185278

  16. The whole body cryostimulation modifies irisin concentration and reduces inflammation in middle aged, obese men.

    PubMed

    Dulian, Katarzyna; Laskowski, Rados?aw; Grzywacz, Tomasz; Kujach, Sylwester; Flis, Damian J; Smaruj, Miros?aw; Ziemann, Ewa

    2015-12-01

    The anti-inflammatory effect induced by exposure to low temperature might trigger the endocrine function of muscle and fat tissue. Thus, the aim of this study was to investigate the influence of the whole body cryostimulation (CRY) on irisin, a myokine which activates oxygen consumption in fat cells as well as thermogenesis. In addition, the relationship between hepcidin (Hpc) - hormone regulating iron metabolism, and inflammation was studied. A group of middle aged men (n = 12, 38 ± 9 years old, BMI > 30 kg m(-2)) participated in the study. Subjects were exposed to a series of 10 sessions in a cryogenic chamber (once a day at 9:30 am, for 3 min, at temperature -110 °C). Blood samples were collected before the first cryostimulation and after completing the last one. Prior to treatment body composition and fitness level were determined. The applied protocol of cryostimulation lead to rise the blood irisin in obese non-active men (338.8 ± 42.2 vs 407.6 ± 118.5 ng mL(-1)), whereas has no effect in obese active men (371.5 ± 30.0 vs 343.3 ± 47.6 ng mL(-1)). Values recorded 24 h after the last cryo-session correlated significantly with the fat tissue, yet inversely with the skeletal muscle mass. Therefore, we concluded the subcutaneous fat tissue to be the main source of irisin in response to cold exposures. The applied cold treatment reduced the high sensitivity C-reactive protein (hsCRP) and Hpc concentration confirming its anti-inflammatory effect. PMID:26475491

  17. [Investigating patients with differentiated thyroid carcinoma and elevated serum thyroglobulin but negative whole-body scan].

    PubMed

    Rosário, Pedro Weslley S; Maia, Flávia Coimbra P; Barroso, Alvaro Luís; Purisch, Saulo

    2005-04-01

    Findings of elevated thyroglobulin (Tg) and a negative whole-body scan (WBS) are not uncommon during the follow-up of differentiated thyroid carcinoma. In 12% of our patients submitted to thyroidectomy and radioiodine with Tg >10 ng/ml during hypothyroidism had a negative diagnostic WBS. This finding generally corresponds to a false-negative WBS. Inadequate preparation in terms of iodine exposure and insufficient elevation of TSH should be excluded. Micrometastases which do not accumulate sufficient iodine to be detected by low radioiodine activity and the loss of the capacity to express the sodium/iodine symporter explain many cases. In patients with elevated Tg, metastases can be identified after the administration of a therapeutic radioiodine dose, with this procedure being indicated in cases with Tg >10 ng/ml during hypothyroidism or >5 ng/ml after recombinant TSH, after exclusion of lung and cervical macrometastases. In the present study, 5 of 7 patients with these criteria showed ectopic uptake on post-therapy WBS. If the post-therapy scan is negative or reveals discrete uptake in the thyroid bed, other methods (e.g. FDG PET) can be performed, and the physician should not insist on radioiodine therapy. If WBS detect lymph node metastases, surgery is indicated, while in cases of diffuse lung metastases radioiodine is indicated until the occurrence of a negative WBS or normalization of stimulated Tg levels. Patients with a positive post-therapy scan may show a significant reduction in Tg, with even complete remission in some cases after radioiodine, but the impact of this treatment on mortality remains controversial. PMID:16184253

  18. Sesamol attenuates genotoxicity in bone marrow cells of whole-body ?-irradiated mice.

    PubMed

    Kumar, Arun; Selvan, Tamizh G; Tripathi, Akanchha M; Choudhary, Sandeep; Khan, Shahanshah; Adhikari, Jawahar S; Chaudhury, Nabo K

    2015-09-01

    Ionising radiation causes free radical-mediated damage in cellular DNA. This damage is manifested as chromosomal aberrations and micronuclei (MN) in proliferating cells. Sesamol, present in sesame seeds, has the potential to scavenge free radicals; therefore, it can reduce radiation-induced cytogenetic damage in cells. The aim of this study was to investigate the radioprotective potential of sesamol in bone marrow cells of mice and related haematopoietic system against radiation-induced genotoxicity. A comparative study with melatonin was designed for assessing the radioprotective potential of sesamol. C57BL/6 mice were administered intraperitoneally with either sesamol or melatonin (10 and 20mg/kg body weight) 30 min prior to 2-Gy whole-body irradiation (WBI) and sacrificed after 24h. Total chromosomal aberrations (TCA), MN and cell cycle analyses were performed using bone marrow cells. The comet assay was performed on bone marrow cells, splenocytes and lymphocytes. Blood was drawn to study haematological parameters. Prophylactic doses of sesamol (10 and 20mg/kg) in irradiated mice reduced TCA and micronucleated polychromatic erythrocyte frequency in bone marrow cells by 57% and 50%, respectively, in comparison with radiation-only groups. Sesamol-reduced radiation-induced apoptosis and facilitated cell proliferation. In the comet assay, sesamol (20mg/kg) treatment reduced radiation-induced comets (% DNA in tail) compared with radiation only (P < 0.05). Sesamol also increased granulocyte populations in peripheral blood similar to melatonin. Overall, the radioprotective efficacy of sesamol was found to be similar to that of melatonin. Sesamol treatment also showed recovery of relative spleen weight at 24h of WBI. The results strongly suggest the radioprotective efficacy of sesamol in the haematopoietic system of mice. PMID:25863274

  19. Temperature Profile and Outcomes of Neonates Undergoing Whole Body Hypothermia for Neonatal Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Shankaran, Seetha; Laptook, Abbot R.; McDonald, Scott A.; Higgins, Rosemary D.; Tyson, Jon E.; Ehrenkranz, Richard A.; Das, Abhik; Sant’Anna, Guilherme; Goldberg, Ronald N.; Bara, Rebecca; Walsh, Michele C.

    2011-01-01

    BACKGROUND Decreases below target temperature were noted among neonates undergoing cooling in the NICHD Neonatal Research Network Trial of whole body hypothermia for neonatal hypoxic-ischemic encephalopathy. OBJECTIVE To examine the temperature profile and impact on outcome among ? 36 week gestation neonates randomized at ? 6 hours of age targeting esophageal temperature of 33.5°C for 72 hours. DESIGN/SETTING/PATIENTS Infants with intermittent temperatures recorded < 32.0°C during induction and maintenance of cooling were compared to all other cooled infants and relationship with outcome at 18 months was evaluated. RESULTS There were no differences in stage of encephalopathy, acidosis, or 10 minute Apgar scores between infants with temperatures < 32.0°C during induction (n=33) or maintenance (n=10) and all other infants who were cooled (n=58); however birth weight was lower and need for blood pressure support higher among infants with temperatures < 32.0 °C compared to all other cooled infants. No increase in acute adverse events were noted among infants with temperatures < 32.0 °C and hours spent < 32°C were not associated with the primary outcome of death or moderate/severe disability or the Bayley II Mental Developmental Index at 18 months. CONCLUSION Term infants with a lower birth weight are at risk for decreasing temperatures < 32.0°C while undergoing body cooling using a servo controlled system. This information suggests extra caution during the application of hypothermia as these lower birth weight infants are at risk for overcooling. Our findings may assist in planning additional trials of lower target temperature for neonatal hypoxic-ischemic encephalopathy. PMID:21499182

  20. Whole body periodic acceleration is an effective therapy to ameliorate muscular dystrophy in mdx mice.

    PubMed

    Altamirano, Francisco; Perez, Claudio F; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R; Allen, Paul D; Adams, Jose A; Lopez, Jose R

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca(2+) and Na(+) overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca(2+) and Na(+) overload, diminished abnormal sarcolemmal Ca(2+) entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway. PMID:25181488

  1. The use of esmolol in whole-body hyperthermia: cardiovascular effects.

    PubMed

    Berry, J M; Michalsen, A; Nagle, V; Bull, J M

    1997-01-01

    Whole-body hyperthermia (WBH) is a well-described investigational adjunct to systemic chemotherapy for the treatment of advanced malignancies. The hemodynamic consequences of this physiologic state may include tachycardia, which can produce acute myocardial ischemia in patients with coronary artery disease. Ischemic heart disease is currently considered a contraindication to WBH. We chose to investigate the consequences of using a new beta 1-adrenergic antagonist, esmolol, to attempt to control the tachycardia associated with WBH. After institutional approval and patient consent, nine consecutive patients with normal cardiac function presenting for WBH with carboplatin infusion were studied. Along with standard monitors, radial arterial and oximetric thermodilution pulmonary artery catheters were placed. Patients were sedated and heated in a radiant warmer (Enthermics). Spontaneous ventilation was maintained and hemodynamic data were gathered at 37 degrees C, and at 41.8 degrees C (before, during and after esmolol infusion). Heart rate and cardiac output increased (by 46% (p = 0.001) and 35% (p = 0.04) respectively) while mean arterial pressure and systemic vascular resistance fell (by 18% (p = 0.02) and 44% (p = 0.006) respectively) during hyperthermia. Heart rate was significantly reduced during esmolol administration (mean dose 180 micrograms/kg/min) in the absence of changes in cardiac index and calculated oxygen delivery. Ventricular filling pressures and stroke work were unchanged. No heart failure, pulmonary edema, or other adverse event was observed. Hemodynamic changes seen during esmolol administration were completely reversed 15 min after the infusion was stopped. We conclude that the administration of moderate doses of esmolol is safe for this population of patients undergoing WBH, and that this technique raises the question of whether patients with ischemic heart disease could safely undergo WBH. PMID:9222810

  2. Human Ghrelin Mitigates Intestinal Injury and Mortality after Whole Body Irradiation in Rats

    PubMed Central

    Wang, Zhimin; Yang, Weng Lang; Jacob, Asha; Aziz, Monowar; Wang, Ping

    2015-01-01

    Widespread use of ionizing radiation has led to the realization of the danger associated with radiation exposure. Although studies in radiation countermeasures were initiated a half century ago, an effective therapy for a radiomitigator has not been identified. Ghrelin is a gastrointestinal hormone, and administration of ghrelin is protective in animal models of injuries including radiation combined injury. To test whether ghrelin can be protective in whole body irradiaton (WBI) alone, male Sprague Dawley (SD) rats were treated with human ghrelin (20 nmol/rat) daily for 6 days starting at either 24 h or 48 h after 10 Gray (Gy) WBI and survival outcome was examined. The 10 Gy WBI produced a LD70/30 model in SD rats (30% survival in 30 days). The survival rate in rats treated with ghrelin starting at 24 h was significantly improved to 63% and when treatment was initiated at 48 h, the survival remained at 61%. At 7 days post WBI, plasma ghrelin was significantly reduced from the control value. Ghrelin treatment starting at 24 h after WBI daily for 6 days improved histological appearance of the intestine, reduced gut permeability, serum endotoxin levels and bacterial translocation to the liver by 38%, 42% and 61%, respectively at day 7 post WBI. Serum glucose and albumin were restored to near control levels with treatment. Ghrelin treatment also attenuated WBI-induced intestinal apoptosis by 62% as evidenced by TUNEL staining. The expression of anti-apoptotic cell regulator Bcl-xl was decreased by 38% in the vehicle and restored to 75% of the control with ghrelin treatment. Increased expression of intestinal CD73 and pAkt were observed with ghrelin treatment, indicating protection of the intestinal epithelium after WBI. These results indicate that human ghrelin attenuates intestinal injury and mortality after WBI. Thus, human ghrelin can be developed as a novel mitigator for radiation injury. PMID:25671547

  3. The effects of whole-body compression garments on prolonged high-intensity intermittent exercise.

    PubMed

    Sear, Joshua A; Hoare, Trent K; Scanlan, Aaron T; Abt, Grant A; Dascombe, Benjamin J

    2010-07-01

    The current study investigated the effects of wearing whole-body compression garments (WBCGs) on prolonged high-intensity intermittent exercise (PHIIE) performance. Eight male team-sport athletes ([X +/- SD] 20.6 +/- 1.2 years; 72.9 +/- 5.9 kg; 57.5 +/- 3.7 ml.kg.min) completed a prescribed 45-minute PHIIE protocol on a nonmotorized treadmill in randomly assigned WBCG and control (typical soccer apparel) conditions. Subjects were given verbal and visual cues for movement categories, and they followed set target speeds, except when instructed of a variable run or sprint where the aim was to run as fast as possible. Total distance, velocity-specific distance, and high-intensity self-paced running speeds were taken as performance indicators. Heart rate, VO(2), tissue oxygenation index (TOI), and tissue hemoglobin index (nTHi) were continuously monitored across the protocol. Blood-lactate concentration ([BLa(-)]) was measured every 15 minutes. Magnitude-based inferences suggested that wearing WBCGs provided moderate strength likely improvements in total distance covered (5.42 +/- 0.63 vs. 5.88 +/- 0.64 km; 88:10:2%; and eta = 0.6) and low-intensity activity distance (4.21 +/- 0.51 vs. 4.56 +/- 0.57 km; 83:14:3%; and eta = 0.6) compared with the control. A similar likely increase was also observed in the average TOI of the WBCG condition (53.5 +/- 8.3% vs. 55.8 +/- 7.2%; 87:11:2%; and eta = 0.6). The current data demonstrated that wearing WBCGs likely increased physical performance, possibly because of improvements in muscle oxygenation and associated metabolic benefits. Therefore, wearing WBCGs during PHIIE may benefit the physical performance of team-sport athletes by likely metabolic changes within the muscle between high-intensity efforts. PMID:20555284

  4. Non-Hsp genes are essential for HSF1-mediated maintenance of whole body homeostasis.

    PubMed

    Hayashida, Naoki

    2015-10-23

    Mammalian tissues are always exposed to diverse threats from pathological conditions and aging. Therefore, the molecular systems that protect the cells from these threats are indispensable for cell survival. A variety of diseases, including neurodegenerative diseases, cause intracellular damage and disturb homeostasis. Heat shock transcription factor 1 (HSF1) positively regulates heat shock protein (Hsp) and maintains the precise folding of proteins. Moreover, HSF1 induces the non-Hsp genes expression, and degrades damaged/misfolded protein. Recently, my colleagues and I revealed non-Hsp genes have more protective roles than Hsps at the cellular level. However, whether these protective systems are similarly important to cellular defense in each tissue is still elusive. In this study, I compared polyglutamine (polyQ) protein aggregations/inclusion development in each tissue of WT- and HSF1KO-Huntington's disease (HD) mice, and examined the expression of the eight non-Hsp HSF1 target genes that have a strong suppressive effect on polyQ protein aggregation. Of these genes, Nfatc2, Pdzk3, Cryab, Csrp2, and Prame were detected in most tissues, but the other genes were not. Surprisingly, the obvious effect of HSF1 deficiency on the expression of these five genes was detected in only heart, spleen, and stomach. In addition, polyQ protein aggregations/inclusion was not detected in any tissues of WT-HD and HSF1KO-HD mice, but higher level of pre-aggregative polyQ protein was detected in HSF1KO-HD tissues. These results indicate non-Hsp genes are indispensable for the maintenance of intracellular homeostasis in mammalian tissues, resulting in whole body homeostasis. PMID:26251235

  5. A new whole-body vapor exposure chamber for protection performance research on chemical protective ensembles.

    PubMed

    Duncan, E J Scott; Dickson, Eva F Gudgin

    2003-01-01

    A chemical vapor exposure chamber was designed to permit the study of whole-body vapor exposure of individuals wearing full protective clothing and equipment systems. A methodology also was developed to quantify the vapor protection performance of chemical protective ensembles (CPE) under safe and validated laboratory procedures. The principal research objectives were to (1) provide a methodology to accurately assess the performance of CPE and equipment under different environmental and chemical vapor challenge conditions; (2) quantify the vapor protection on a per body region basis; (3) have a systems level tool to aid in the research and development of more effective CPE for use in chemical biological environments; and (4) have a safe and reliable means of qualifying new CPE on the basis of vapor protection. Although designed for the evaluation of military-style protective equipment, the procedures apply equally to other styles of CPE used by civilian agencies such as firefighters, police, and hazmat units. The chamber and methodology were specifically designed to examine the vapor protection performance of clothing ensembles, including the details of protection variation over the body. A variety of exposure conditions appropriate to indoor and outdoor scenarios are possible, including the effects of wind, temperature, and relative humidity. Protection performance results from a number of individuals wearing typical military-style CPE are presented. These results demonstrate that there is no such thing as a unique protection performance level obtained for a given CPE. Rather, the individual and the ensemble interact differently in each situation, resulting in a protection performance distribution for individuals, and for groups of wearers, even under a standardized set of exposure conditions. PMID:12688845

  6. Accuracy and Reproducibility of Adipose Tissue Measurements in Young Infants by Whole Body Magnetic Resonance Imaging

    PubMed Central

    Bauer, Jan Stefan; Noël, Peter Benjamin; Vollhardt, Christiane; Much, Daniela; Degirmenci, Saliha; Brunner, Stefanie; Rummeny, Ernst Josef; Hauner, Hans

    2015-01-01

    Purpose MR might be well suited to obtain reproducible and accurate measures of fat tissues in infants. This study evaluates MR-measurements of adipose tissue in young infants in vitro and in vivo. Material and Methods MR images of ten phantoms simulating subcutaneous fat of an infant’s torso were obtained using a 1.5T MR scanner with and without simulated breathing. Scans consisted of a cartesian water-suppression turbo spin echo (wsTSE) sequence, and a PROPELLER wsTSE sequence. Fat volume was quantified directly and by MR imaging using k-means clustering and threshold-based segmentation procedures to calculate accuracy in vitro. Whole body MR was obtained in sleeping young infants (average age 67±30 days). This study was approved by the local review board. All parents gave written informed consent. To obtain reproducibility in vivo, cartesian and PROPELLER wsTSE sequences were repeated in seven and four young infants, respectively. Overall, 21 repetitions were performed for the cartesian sequence and 13 repetitions for the PROPELLER sequence. Results In vitro accuracy errors depended on the chosen segmentation procedure, ranging from 5.4% to 76%, while the sequence showed no significant influence. Artificial breathing increased the minimal accuracy error to 9.1%. In vivo reproducibility errors for total fat volume of the sleeping infants ranged from 2.6% to 3.4%. Neither segmentation nor sequence significantly influenced reproducibility. Conclusion With both cartesian and PROPELLER sequences an accurate and reproducible measure of body fat was achieved. Adequate segmentation was mandatory for high accuracy. PMID:25706876

  7. Performance evaluation of the whole-body PET scanner ECAT EXACT HR{sup +}

    SciTech Connect

    Adam, L.E.; Zaers, J.; Ostertag, H.; Trojan, H.

    1996-12-31

    The performance parameters of the whole-body PET scanner ECAT EXACT HR{sup +} were determined following the standard proposed by the International Electrotechnical Commission (IEC). The tests were expanded by some measurements concerning the accuracy of the correction algorithms and the geometric fidelity of the reconstructed images. The scanner consists of 32 rings, each with 576 BGO detectors (4.05 x 4.39 x 30 mm{sup 3}) covering an axial field-of-view of 15.5 cm and a patient port of 56.2 cm. The transaxial resolution in the 2D (3D) mode is 4.5 (4.3) mm at the center. It increases to 8.9 (8.3) mm radially and to 5.8 (5.2) mm tangentially at a radial distance of r = 20 cm. The average axial resolution varies between 4.9 (4.1) mm FWHM at the center and 8.8 (8.1) mm at r = 20 cm. The system sensitivity for true events is 5.85 (26.4) cps/Bq/ml (measured with a 20 cm cylinder phantom). The 50% dead-time losses where reached for a true event count rate of 286 (500) kcps at an activity concentration of 74 (25) kBq/ml. The system scatter fraction is 0.24 (0.35). The correction algorithms work reliable, except for the 3D attenuation correction. The ECAT EXACT HR{sup +} has a good and nearly isotropic spatial resolution. Due to the small detector elements, however, it has a low slice sensitivity which is a limiting factor for image quality.

  8. Non-Hsp genes are essential for HSF1-mediated maintenance of whole body homeostasis

    PubMed Central

    Hayashida, Naoki

    2015-01-01

    Mammalian tissues are always exposed to diverse threats from pathological conditions and aging. Therefore, the molecular systems that protect the cells from these threats are indispensable for cell survival. A variety of diseases, including neurodegenerative diseases, cause intracellular damage and disturb homeostasis. Heat shock transcription factor 1 (HSF1) positively regulates heat shock protein (Hsp) and maintains the precise folding of proteins. Moreover, HSF1 induces the non-Hsp genes expression, and degrades damaged/misfolded protein. Recently, my colleagues and I revealed non-Hsp genes have more protective roles than Hsps at the cellular level. However, whether these protective systems are similarly important to cellular defense in each tissue is still elusive. In this study, I compared polyglutamine (polyQ) protein aggregations/inclusion development in each tissue of WT- and HSF1KO-Huntington’s disease (HD) mice, and examined the expression of the eight non-Hsp HSF1 target genes that have a strong suppressive effect on polyQ protein aggregation. Of these genes, Nfatc2, Pdzk3, Cryab, Csrp2, and Prame were detected in most tissues, but the other genes were not. Surprisingly, the obvious effect of HSF1 deficiency on the expression of these five genes was detected in only heart, spleen, and stomach. In addition, polyQ protein aggregations/inclusion was not detected in any tissues of WT-HD and HSF1KO-HD mice, but higher level of pre-aggregative polyQ protein was detected in HSF1KO-HD tissues. These results indicate non-Hsp genes are indispensable for the maintenance of intracellular homeostasis in mammalian tissues, resulting in whole body homeostasis. PMID:26251235

  9. Changes in plasma apolipoproteins following whole-body irradiation in rabbit

    SciTech Connect

    Feliste, R.; Dousset, N.; Carton, M.; Douste-Blazy, L.

    1981-09-01

    Male New Zealand white rabbits were whole-body-irradiated with a linear electron accelerator at 800 rad (LD/sub 50/ in 30 days). This treatment induced a pronounced hypertriglyceridemia. The apoprotein composition of very low density lipoproteins (VLDL, d < 1.006 g/ml) and high-density lipoproteins (HDL, d = 1.063 - 1.21 g/ml) from irradiated rabbits was studied and compared to those of normal rabbits. Significant changes were observed in both very low density apolipoproteins and high-density apolipoproteins. (1) In the VLDL fraction from irradiated rabbits, there appeared in high proportion two apolipoproteins with electrophoretic mobility in urea/polyacrylamide gels similar to apoA-I and A-II but which were distinctly different in their apparent molecular weights, their isoelectric points, and their amino acid composition from these latter proteins. These proteins had apparent molecular weights of about 10,000. They focused into three bands with pI values of 6.1, 6.4, and 6.6. Their amino acid composition was characterized by a very low content of threonine and serine and a high content of aspartic acid, glycine, alanine, and arginine. In addition, a marked increase of an apolipoprotein with an apparent molecular weight of about 43,000 and with an amino acid composition similar to rat apoA-IV was also observed in rabbit VLDL after irradiation. Apolipoprotein C constituents with slowmobility decreased significantly. (2) The irradiated rabbit HDL apolipoproteins showed an important increase of the proteins with molecular weight 10,000 and isoelectric points 6.1, 6.4, and 6.6. Compared to normal rabbit HDL apolipoproteins, a significant decrease of apoA-IV occurred. These modifications were also observed with lower radiation doses (200 and 400 rad).

  10. Whole Body Periodic Acceleration Is an Effective Therapy to Ameliorate Muscular Dystrophy in mdx Mice

    PubMed Central

    Altamirano, Francisco; Perez, Claudio F.; Liu, Min; Widrick, Jeffrey; Barton, Elisabeth R.; Allen, Paul D.; Adams, Jose A.; Lopez, Jose R.

    2014-01-01

    Duchenne muscular dystrophy (DMD) is a genetic disorder caused by the absence of dystrophin in both skeletal and cardiac muscles. This leads to severe muscle degeneration, and dilated cardiomyopathy that produces patient death, which in most cases occurs before the end of the second decade. Several lines of evidence have shown that modulators of nitric oxide (NO) pathway can improve skeletal muscle and cardiac function in the mdx mouse, a mouse model for DMD. Whole body periodic acceleration (pGz) is produced by applying sinusoidal motion to supine humans and in standing conscious rodents in a headward-footward direction using a motion platform. It adds small pulses as a function of movement frequency to the circulation thereby increasing pulsatile shear stress to the vascular endothelium, which in turn increases production of NO. In this study, we examined the potential therapeutic properties of pGz for the treatment of skeletal muscle pathology observed in the mdx mouse. We found that pGz (480 cpm, 8 days, 1 hr per day) decreased intracellular Ca2+ and Na+ overload, diminished serum levels of creatine kinase (CK) and reduced intracellular accumulation of Evans Blue. Furthermore, pGz increased muscle force generation and expression of both utrophin and the carboxy-terminal PDZ ligand of nNOS (CAPON). Likewise, pGz (120 cpm, 12 h) applied in vitro to skeletal muscle myotubes reduced Ca2+ and Na+ overload, diminished abnormal sarcolemmal Ca2+ entry and increased phosphorylation of endothelial NOS. Overall, this study provides new insights into the potential therapeutic efficacy of pGz as a non-invasive and non-pharmacological approach for the treatment of DMD patients through activation of the NO pathway. PMID:25181488

  11. Discrimination among spawning aggregations of lake herring from Lake Superior using whole-body morphometric characters

    USGS Publications Warehouse

    Hoff, Michael H.

    2004-01-01

    The lake herring (Coregonus artedi) was one of the most commercially and ecologically valuable Lake Superior fishes, but declined in the second half of the 20th century as the result of overharvest of putatively discrete stocks. No tools were previously available that described lake herring stock structure and accurately classified lake herring to their spawning stocks. The accuracy of discriminating among spawning aggregations was evaluated using whole-body morphometrics based on a truss network. Lake herring were collected from 11 spawning aggregations in Lake Superior and two inland Wisconsin lakes to evaluate morphometrics as a stock discrimination tool. Discriminant function analysis correctly classified 53% of all fish from all spawning aggregations, and fish from all but one aggregation were classified at greater rates than were possible by chance. Discriminant analysis also correctly classified 66% of fish to nearest neighbor groups, which were groups that accounted for the possibility of mixing among the aggregations. Stepwise discriminant analysis showed that posterior body length and depth measurements were among the best discriminators of spawning aggregations. These findings support other evidence that discrete stocks of lake herring exist in Lake Superior, and fishery managers should consider all but one of the spawning aggregations as discrete stocks. Abundance, annual harvest, total annual mortality rate, and exploitation data should be collected from each stock, and surplus production of each stock should be estimated. Prudent management of stock surplus production and exploitation rates will aid in restoration of stocks and will prevent a repeat of the stock collapses that occurred in the middle of the 20th century, when the species was nearly extirpated from the lake.

  12. Anatomy by whole body dissection: a focus group study of students’ learning experience

    PubMed Central

    Burgess, Annette; Ramsey-Stewart, George

    2015-01-01

    Background The social construction of knowledge within medical education is essential for learning. Students’ interactions within groups and associated learning artifacts can meaningfully impact learning. Situated cognition theory poses that knowledge, thinking, and learning are located in experience. In recent years, there has been a reported decline in time spent on anatomy by whole body dissection (AWBD) within medical programs. However, teaching by surgeons in AWBD provides unique opportunities for students, promoting a deeper engagement in learning. In this study, we apply situated cognition theory as a conceptual framework to explore students’ perceptions of their learning experience within the 2014 iteration of an 8-week elective AWBD course. Methods At the end of the course, all students (n=24) were invited to attend one of three focus groups. Framework analysis was used to code and categorize data into themes. Results In total, 20/24 (83%) students participated in focus groups. Utilizing situated cognition theory as a conceptual framework, we illustrate students’ learning experiences within the AWBD course. Students highlighted opportunities to create and reinforce their own knowledge through active participation in authentic dissection tasks; guidance and clinical context provided by surgeons as supervisors; and the provision of an inclusive learning community. Conclusion Situated cognition theory offers a valuable lens through which to view students’ learning experience in the anatomy dissection course. By doing so, the importance of providing clinical relevance to medical teaching is highlighted. Additionally, the value of having surgeons teach AWBD and the experience they share is illustrated. The team learning course design, with varying teaching methods and frequent assessments, prompting student–student and student–teacher interaction, was also beneficial for student learning. PMID:26345392

  13. Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay

    NASA Astrophysics Data System (ADS)

    Degrande, G.; Schevenels, M.; Chatterjee, P.; Van de Velde, W.; Hölscher, P.; Hopman, V.; Wang, A.; Dadkah, N.

    2006-06-01

    This paper reports on the results of in situ vibration measurements that have been performed within the frame of the CONVURT project at a site in Regent's Park on the Bakerloo line of London Underground during 35 passages of a test train at a speed between 20 and 50 km/h. Vibration measurements have been performed on the axle boxes of the test train, on the rails, on the tunnel invert and tunnel wall, and in the free field, both at the surface and at a depth of 15 m. Measurements have also been made on floors and columns of two buildings in a row of Regency houses at a distance of 70 m from the tunnel. Prior to these vibration measurements, the dynamic soil characteristics have been determined by in situ and laboratory testing. Rail and wheel roughness have been measured and the track characteristics have been determined by rail receptance and wave decay measurements. Time histories and one-third octave band RMS spectra of the measured velocities are discussed and the variation of the peak particle velocity and the frequency content as a function of the train speed and the distance to the tunnel are elaborated.

  14. Brain and whole-body imaging in nonhuman primates with C]MeS-IMPY, a candidate radioligand for -amyloid plaques

    E-print Network

    Pike, Victor W.

    Brain and whole-body imaging in nonhuman primates with [11 C]MeS-IMPY, a candidate radioligand in nonhuman primate brain and to estimate radiation exposure from serial whole-body images. Eight PET studies Hong, Victor W. Pike, Robert B. Innis Molecular Imaging Branch, National Institute of Mental Health

  15. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET

    NASA Astrophysics Data System (ADS)

    Karakatsanis, Nicolas A.; Zhou, Yun; Lodge, Martin A.; Casey, Michael E.; Wahl, Richard L.; Zaidi, Habib; Rahmim, Arman

    2015-11-01

    We recently developed a dynamic multi-bed PET data acquisition framework to translate the quantitative benefits of Patlak voxel-wise analysis to the domain of routine clinical whole-body (WB) imaging. The standard Patlak (sPatlak) linear graphical analysis assumes irreversible PET tracer uptake, ignoring the effect of FDG dephosphorylation, which has been suggested by a number of PET studies. In this work: (i) a non-linear generalized Patlak (gPatlak) model is utilized, including a net efflux rate constant kloss, and (ii) a hybrid (s/g)Patlak (hPatlak) imaging technique is introduced to enhance contrast to noise ratios (CNRs) of uptake rate Ki images. Representative set of kinetic parameter values and the XCAT phantom were employed to generate realistic 4D simulation PET data, and the proposed methods were additionally evaluated on 11 WB dynamic PET patient studies. Quantitative analysis on the simulated Ki images over 2 groups of regions-of-interest (ROIs), with low (ROI A) or high (ROI B) true kloss relative to Ki, suggested superior accuracy for gPatlak. Bias of sPatlak was found to be 16–18% and 20–40% poorer than gPatlak for ROIs A and B, respectively. By contrast, gPatlak exhibited, on average, 10% higher noise than sPatlak. Meanwhile, the bias and noise levels for hPatlak always ranged between the other two methods. In general, hPatlak was seen to outperform all methods in terms of target-to-background ratio (TBR) and CNR for all ROIs. Validation on patient datasets demonstrated clinical feasibility for all Patlak methods, while TBR and CNR evaluations confirmed our simulation findings, and suggested presence of non-negligible kloss reversibility in clinical data. As such, we recommend gPatlak for highly quantitative imaging tasks, while, for tasks emphasizing lesion detectability (e.g. TBR, CNR) over quantification, or for high levels of noise, hPatlak is instead preferred. Finally, gPatlak and hPatlak CNR was systematically higher compared to routine SUV values.

  16. Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation

    NASA Technical Reports Server (NTRS)

    Gdowski, G. T.; McCrea, R. A.; Peterson, B. W. (Principal Investigator)

    1999-01-01

    Single-unit recordings were obtained from 107 horizontal semicircular canal-related central vestibular neurons in three alert squirrel monkeys during passive sinusoidal whole-body rotation (WBR) while the head was free to move in the yaw plane (2.3 Hz, 20 degrees /s). Most of the units were identified as secondary vestibular neurons by electrical stimulation of the ipsilateral vestibular nerve (61/80 tested). Both non-eye-movement (n = 52) and eye-movement-related (n = 55) units were studied. Unit responses recorded when the head was free to move were compared with responses recorded when the head was restrained from moving. WBR in the absence of a visual target evoked a compensatory vestibulocollic reflex (VCR) that effectively reduced the head velocity in space by an average of 33 +/- 14%. In 73 units, the compensatory head movements were sufficiently large to permit the effect of the VCR on vestibular signal processing to be assessed quantitatively. The VCR affected the rotational responses of different vestibular neurons in different ways. Approximately one-half of the units (34/73, 47%) had responses that decreased as head velocity decreased. However, the responses of many other units (24/73) showed little change. These cells had signals that were better correlated with trunk velocity than with head velocity. The remaining units had responses that were significantly larger (15/73, 21%) when the VCR produced a decrease in head velocity. Eye-movement-related units tended to have rotational responses that were correlated with head velocity. On the other hand, non-eye-movement units tended to have rotational responses that were better correlated with trunk velocity. We conclude that sensory vestibular signals are transformed from head-in-space coordinates to trunk-in-space coordinates on many secondary vestibular neurons in the vestibular nuclei by the addition of inputs related to head rotation on the trunk. This coordinate transformation is presumably important for controlling postural reflexes and constructing a central percept of body orientation and movement in space.

  17. USTUR WHOLE BODY CASE 0269: DEMONSTRATING EFFECTIVENESS OF I.V. CA-DTPA FOR PU

    SciTech Connect

    James, Anthony C.; Sasser , Lyle B.; Stuit, Dorothy B.; Glover, Samuel E.; Carbaugh, Eugene H.

    2008-01-28

    This whole body donation case (USTUR Registrant) involved a single acute inhalation of an acidic Pu(NO3)4 solution in the form of an aerosol ‘mist.’ Chelation treatment with i.v. Ca-EDTA was initiated on the day of the intake, and continued intermittently over 6 months. After 2½ years with no further treatment, a course of i.v. Ca-DTPA was administered. A total of 400 measurements of 239+240Pu excreted in urine were recorded; starting on the first day (both before and during the initial Ca-EDTA chelation), and continuing for 37 years. This sampling included all intervals of chelation. In addition, 91 measurements of 239+240Pu-in-feces were recorded over this whole period. The Registrant died about 38 years after the intake, at age 79 y, with extensive carcinomatosis secondary to adenocarcinoma of the prostate gland. At autopsy, all major soft tissue organs were harvested for radiochemical analyses of their 238Pu, 239+240Pu and 241Am content. Also, all types of bone (comprising about half the skeleton) were harvested for radiochemical analyses, as well as samples of skin, subcutaneous fat and muscle. This comprehensive dataset has been applied to derive ‘chelation-enhanced’ transfer rates in the ICRP Publication 67 plutonium biokinetic model, representing the behaviour of blood-borne and tissue-incorporated plutonium during intervals of therapy. The resulting model of the separate effects of i.v. Ca-EDTA and Ca-DTPA chelation shows that the therapy administered in this case succeeded in reducing substantially the long-term burden of plutonium in all body organs, except for the lungs. The calculated reductions in organ content at the time of death are approximately 40% for the liver, 60% for other soft tissues (muscle, skin, glands, etc.), 50% for the kidneys, and 50% for the skeleton. Essentially all of the substantial reduction in skeletal burden occurred in trabecular bone. This modeling exercise demonstrated that 3-y-delayed Ca-DTPA therapy was as effective as promptly administered Ca-EDTA.

  18. Endothelin-1 as a master regulator of whole-body Na+ homeostasis.

    PubMed

    Speed, Joshua S; Heimlich, J Brett; Hyndman, Kelly A; Fox, Brandon M; Patel, Vivek; Yanagisawa, Masashi; Pollock, Jennifer S; Titze, Jens M; Pollock, David M

    2015-12-01

    The current study was designed to determine whether vascular endothelial-derived endothelin-1 (ET-1) is important for skin Na(+) buffering. In control mice (C57BL/6J), plasma Na(+) and osmolarity were significantly elevated in animals on high- vs. low-salt (HS and LS, respectively) intake. The increased plasma Na(+) and osmolarity were associated with increased ET-1 mRNA in vascular tissue. There was no detectable difference in skin Na(+):H2O in HS fed mice (0.119 ± 0.005 mM vs. 0.127 ± 0.007 mM; LS vs. HS); however, skin Na(+):H2O was significantly increased by blockade of the endothelin type A receptor with ABT-627 (0.116 ± 0.006 mM vs. 0.137 ± 0.007 mM; LS vs. HS; half-maximal inhibitory concentration, 0.055 nM). ET-1 peptide content in skin tissue was increased in floxed control animals on HS (85.9 ± 0.9 pg/mg vs. 106.4 ± 6.8 pg/mg; P < 0.05), but not in vascular endothelial cell endothelin-1 knockout (VEET KO) mice (76.4 ± 5.7 pg/mg vs. 65.7 ± 7.9 pg/mg; LS vs. HS). VEET KO mice also had a significantly elevated skin Na(+):H2O (0.113 ± 0.007 mM vs. 0.137 ± 0.005 mM; LS vs. HS; P < 0.05). Finally, ET-1 production was elevated in response to increasing extracellular osmolarity in cultured human endothelial cells. These data support the hypothesis that increased extrarenal vascular ET-1 production in response to HS intake is mediated by increased extracellular osmolarity and plays a critical role in regulating skin storage of Na(+).-Speed, J. S., Heimlich, J. B., Hyndman, K. A., Fox, B. M., Patel, V., Yanagisawa, M., Pollock, J. S., Titze, J. M., Pollock, D. M. Endothelin-1 as a master regulator of whole-body Na(+) homeostasis. PMID:26268928

  19. Breath biomarkers of whole-body gamma irradiation in the Göttingen minipig.

    PubMed

    Phillips, Michael; Cataneo, Renee N; Chaturvedi, Anirudh; Kaplan, Peter D; Libardoni, Mark; Mundada, Mayur; Patel, Urvish; Thrall, Karla D; Zhang, Xiang

    2015-05-01

    There is widespread interest in the development of tools to estimate radiation exposures. Exhaled breath provides a novel matrix for assessing biomarkers that could be correlated with exposures. The use of exhaled breath for estimating radiation exposure is warranted, as studies have shown that external exposure to ionizing radiation causes oxidative stress that accelerates lipid peroxidation of polyunsaturated fatty acids, liberating alkanes and alkane metabolites that are excreted in the breath as volatile organic compounds (VOCs). As a proof of principle study, small groups (n = 4) of Göttingen minipigs were whole-body irradiated with gamma rays delivered by a 60Co source at absorbed doses of 0, 0.25, 0.5, 0.75, 1, 1.25, 2, and 4 Gy. Additional groups (n = 4) were treated with lipopolysaccharide (LPS) or granulocyte colony stimulating factor (G-CSF), with and without concurrent 60Co exposure, at an absorbed dose of 1 Gy. Breath and background air VOC samples were collected on days -3, -2, -1, 0 pre-irradiation, then at 0.25, 24, 48, 72, and 168 h post-irradiation. VOCs were analyzed by automated thermal desorption with two-dimensional gas chromatography and time-of-flight mass spectrometry (ATD GCxGC TOF MS). The results show significant changes in 58 breath VOCs post-irradiation, mainly consisting of methylated and other derivatives of alkanes, alkenes, and benzene. Using a multivariate combination of these VOCs, a radiation response function was constructed, which was significantly elevated at 15 min post irradiation and remained elevated throughout the study (to 168 h post irradiation). As a binary test of radiation absorbed doses ? 0.25 Gy, the radiation response function distinguished irradiated animals from shams (0 Gy) with 83-84% accuracy. A randomly derived radiation response function was robust: When half of the biomarkers were removed, accuracy was 75%. An optimally derived function with two biomarkers was 82% accurate. As a binary test of radiation absorbed doses ? 0.5 Gy, the radiation response function identified irradiated animals with an accuracy of 87% at 15 min post irradiation and 75.5% at 168 h post irradiation. Treatment with LPS and G-CSF did not affect the radiation response function. This proof-of-principle study supports the hypothesis that breath VOCs may be used for estimating radiation exposures. Further studies will be required to validate the sensitivity and specificity of these potential biomarkers. PMID:25811151

  20. Study report on interfacing major physiological subsystem models: An approach for developing a whole-body algorithm

    NASA Technical Reports Server (NTRS)

    Fitzjerrell, D. G.; Grounds, D. J.; Leonard, J. I.

    1975-01-01

    Using a whole body algorithm simulation model, a wide variety and large number of stresses as well as different stress levels were simulated including environmental disturbances, metabolic changes, and special experimental situations. Simulation of short term stresses resulted in simultaneous and integrated responses from the cardiovascular, respiratory, and thermoregulatory subsystems and the accuracy of a large number of responding variables was verified. The capability of simulating significantly longer responses was demonstrated by validating a four week bed rest study. In this case, the long term subsystem model was found to reproduce many experimentally observed changes in circulatory dynamics, body fluid-electrolyte regulation, and renal function. The value of systems analysis and the selected design approach for developing a whole body algorithm was demonstrated.

  1. The promise of nuclear medicine technology: status and future perspective of high-resolution whole-body PET.

    PubMed

    Schäfers, Klaus P

    2008-06-01

    Positron emission tomography has rapidly emerged over the past 50+ years resulting in highly sophisticated tools for medical diagnosis. However, spatial resolution is still one of the drawbacks of PET. Modern whole-body PET devices provide a spatial resolution in the range of 4-6mm FWHM. Physical constraints are equally responsible for limited spatial resolution as factors caused by geometrical effects or by detector crystal properties. This paper focuses on the question why it is still a major challenge--despite the invention of new crystals and readout electronics--to build a high-resolution whole-body PET system for humans. Physical constraints are discussed and possible solutions for high-resolution PET are presented. PMID:18328760

  2. Variations in recovery and readaptation to load bearing conditions after space flight and whole body suspension in the rat

    NASA Technical Reports Server (NTRS)

    Musacchia, X. J.; Steffen, J. M.; Stepke, B.

    1991-01-01

    Result are presented on studies of the effects of space flight and simulated microgravity on the cardiovascular and electrolyte characteristics, the adrenal gland weight, and hormonal responses of rats flown aboard Cosmos-605 and -782 or exposed to whole-body tail suspension. Results indicate an age-independent decrease in circulating antinatriuretic factor (ANF) in suspended rats, indicating that ANF may not significantly contribute to the sustained elevated bariuresis and diuresis observed in chronic head-down-suspended rats.

  3. Identification of Possible Candidate Biomarkers for Local or Whole Body Radiation Exposure in C57BL/6 Mice

    SciTech Connect

    Lee, Hae-June; Lee, Minyoung; Kang, Chang-Mo; Jeoung, Dooil; Bae, Sangwoo; Cho, Chul-Koo; Lee, Yun-Sil

    2007-11-15

    Purpose: Specific genes expressed as a result of whole body exposure to {gamma}-radiation have been previously identified. In this study, we examined the genes further as possible biomarkers for the blood lymphocytes of C57BL/6 mice after whole body or local irradiation of the thorax, abdomen, and left subphrenic area. Methods and Materials: We performed reverse transcriptase-polymerase chain reaction and real-time reverse transcriptase-polymerase chain reaction analysis of genes encoding platelet membrane glycoprotein IIb, protein tyrosine kinase, sialyltransferase, and Cu/ZnSOD in blood lymphocytes, lung tissue, spleen, and intestines. The protein expression in blood lymphocytes was confirmed by Western blot analysis. Results: The expression of platelet membrane glycoprotein IIb, protein tyrosine kinase, sialyltransferase, and Cu/ZnSOD was significantly greater after 3 days as a result of 1 Gy of whole body irradiation. Moreover, local irradiation to the thorax, abdomen, or left subphrenic area, which are frequently exposed to therapeutic radiation doses, showed a tendency toward radiation-induced increased expression of these genes in both the blood and the locally irradiated organs. Western blot analysis also corroborated these results. Conclusion: Platelet membrane glycoprotein IIb, protein tyrosine kinase, sialyltransferase, and Cu/ZnSOD might be candidates for biomarkers of radiation exposure. However, additional experiments are required to reveal the relationship between the expression levels and the prognostic effects after irradiation.

  4. Relationship between the {sup 137}Cs whole-body counting results and soil and food contamination in farms near Chernobyl

    SciTech Connect

    Takatsuji, Toshihiro; Sato, Hitoshi; Takada, Jun

    2000-01-01

    The authors measured the radioactivity in the soil and child food samples from farms near Mogilev (56--270 GBq km{sup {minus}2} {sup 137}Cs), Gomel (36--810 GBq km{sup {minus}2} {sup 137}Cs), and Klincy (59--270 GBq km{sup {minus}2} {sup 137}Cs), who had whole-body {sup 137}Cs counting results measured as part of a health examination in the Chernobyl Sasakawa Health and Medical Cooperation Project. Soil contamination on the family farm seems to be the main source of human contamination because most of the people in the area live on small farms and they and their domestic animals eat crops from the farms. A clear correlation was found between the children's whole-body {sup 137}Cs counting results and the radioactivity in their food (correlation coefficient: 0.76; confidence level of correlation: 3.2 x 10{sup {minus}9}). There were also significant correlations between the whole-body {sup 137}Cs counting results and both the radioactivity of the soil samples (correlation coefficient: 0.22; confidence level of correlation: 0.0107) and the average contamination level of their current residence (correlation coefficient: 0.20; confidence level of correlation: 0.0174).

  5. Viable tumor tissue detection in murine metastatic breast cancer by whole-body MRI and multispectral analysis.

    PubMed

    Barck, Kai H; Willis, Brandon; Ross, Jed; French, Dorothy M; Filvaroff, Ellen H; Carano, Richard A D

    2009-12-01

    Whole-body MRI combined with a semiautomated hierarchical multispectral image analysis technique was evaluated as a method for detecting viable tumor tissue in a murine model of metastatic breast cancer (4T1 cell line). Whole-body apparent diffusion coefficient, T(2), and proton density maps were acquired in this study. The viable tumor tissue segmentation included three-stage k-means clustering of the parametric maps, morphologic operations, application of a size threshold, and reader discrimination of the segmented objects. The segmentation results were validated by histologic evaluation, and the detection accuracy of the technique was evaluated at three size thresholds (15, 100, and 500 voxels). The accuracy was 88.9% for a 500-voxel size threshold, and the area under receiver operating characteristic curve was 0.84. The regions of segmented viable tumor tissue within the primary tumors were found mostly on the periphery of the tumors in agreement with the histologic findings. The presented technique was found capable of detecting metastases and segmenting the viable tumor from necrotic regions within tumors found in this model. It offers a noninvasive, whole-body, viable tumor tissue detection method for preclinical and potentially clinical applications such as tumor screening and evaluating therapeutic efficacy. PMID:19859948

  6. Whole-body protein turnover reveals the cost of detoxification of secondary metabolites in a vertebrate browser.

    PubMed

    Au, Jessie; Marsh, Karen J; Wallis, Ian R; Foley, William J

    2013-10-01

    The detoxification limitation hypothesis predicts that the metabolism and biotransformation of plant secondary metabolites (PSMs) elicit a cost to herbivores. There have been many attempts to estimate these costs to mammalian herbivores in terms of energy, but this ignores what may be a more important cost-increases in protein turnover and concomitant losses of amino acids. We measured the effect of varying dietary protein concentrations on the ingestion of two PSMs (1,8 cineole-a monoterpene, and benzoic acid-an aromatic carboxylic acid) by common brushtail possums (Trichosurus vulpecula). The dietary protein concentration had a small effect on how much cineole possums ingested. In contrast, protein had a large effect on how much benzoate they ingested, especially at high dietary concentrations of benzoate. This prompted us to measure the effects of dietary protein and benzoate on whole-body protein turnover using the end-product method following an oral dose of [(15)N] glycine. Increasing the concentration of dietary protein in diets without PSMs improved N balance but did not influence whole-body protein turnover. In contrast, feeding benzoate in a low-protein diet pushed animals into negative N balance. The concomitant increases in the rates of whole-body protein turnover in possums eating diets with more benzoate were indicative of a protein cost of detoxification. This was about 30 % of the dietary N intake and highlights the significant effects that PSMs can have on nutrient metabolism and retention. PMID:23640139

  7. Physical Exercise Combined with Whole-Body Cryotherapy in Evaluating the Level of Lipid Peroxidation Products and Other Oxidant Stress Indicators in Kayakers

    PubMed Central

    Sutkowy, Pawe?; Augusty?ska, Beata; Wo?niak, Alina; Rakowski, Andrzej

    2014-01-01

    The influence of exercise combined with whole-body cryotherapy (WBC) on the oxidant/antioxidant balance in healthy men was assessed. The study included 16 kayakers of the Polish National Team, aged 22.7 ± 2.6, subjected to WBC (?120°C–?145°C; 3?min) twice a day for the first 10 days of a 19-day physical training cycle: pre exercise morning stimulation and post exercise afternoon recovery. Blood samples were taken on Day 0 (baseline) and on Days 5, 11 and 19. The serum concentration of malondialdehyde (MDA), conjugated dienes (CD), thiobarbituric acid reactive substances (TBARS), protein carbonyls, vitamin E, urea, cortisol, and testosterone were determined, along with the glutathione peroxidase (GPx) activity, the total antioxidant capacity (TAC), and morphological blood parameters. On 5th day of exercise/WBC, the baseline GPx activity decreased by 15.1% (P < 0.05), while on 19th day, it increased by 19.7% (P < 0.05) versus Day 5. On Day 19 TBARS concentration decreased versus baseline and Day 5 (by 15.9% and 17.4%, resp.; P < 0.01). On 19 Day urea concentration also decreased versus 11 Day; however, on 5th and 11th days the level was higher versus baseline. Combining exercise during longer training cycles with WBC may be advantageous. PMID:24864189

  8. Dual X-Ray Absorptiometry Whole Body Composition of Bone Tissue in Rheumatoid Arthritis – a Cross-Sectional Study

    PubMed Central

    POPESCU, Claudiu; BOJINCA, Violeta; OPRIS, Daniela; IONESCU, Ruxandra

    2015-01-01

    Objectives: Previous studies of bone tissue in rheumatoid arthritis (RA) using dual X-ray absorptiometry (DXA) concentrated on regions of interest that were used to diagnose osteoporosis. This study aimed to compare the whole body bone tissue (wbBT) of RA patients with healthy subjects and to identify the RA variables which significantly predict wbBT. Methods: The study was cross-sectionally designed to include postmenopausal RA patients and age-matched healthy female controls. All 107 RA patients and all 104 controls underwent clinical examination, laboratory tests and whole body DXA composition, which recorded total and regional bone indices. Non-parametric standard statistical test and regression models after data normalization were used to assess correlations, associations and differences. Results: Compared to controls, RA patients had significantly lower whole body and regional bone mass (14.9 kg compared to 15.5 kg; p = 0.031). Disease duration (r = -0.402 ; p < 0.001), C-reactive protein (r = -0.279; p = 0.015) and inflammation (2.5% wbBT compared to 2.9%; p = 0.043), radiographic damage (14.3 kg compared to 16.2 kg; p < 0.001), disease activity scores (r = -0.275 ; p = 0.018 for HAQ) are significantly correlated/associated with lower wbBT. Clinical structural damage is associated with lower wbBT and it can significantly predict them (R2 = 0.014; p = 0.001), while glucocorticoid treatment, even in low doses, was associated with lower wbBT percent (2.6% compared to 2.8%; p = 0.045). Treatment with biologics was associated with a lower rate of whole body osteoporosis (0% compared to 22.2%; p = 0.013). Conclusions: The main associated factors with the generalized bone loss in female RA patients are disease duration and disease activity. Clinical structural damage is the most powerful predictor of the whole body bone loss. These results suggest a general disturbance of skeletal bone metabolism in RA and could explain a greater risk of fragility fractures of non-central sites (e.g. ribs, tibia, ankles etc.) compared to post-menopause osteoporosis. PMID:26225145

  9. Harvesting energy from the vibration of a passing train using a single-degree-of-freedom oscillator

    NASA Astrophysics Data System (ADS)

    Gatti, G.; Brennan, M. J.; Tehrani, M. G.; Thompson, D. J.

    2016-01-01

    With the advent of wireless sensors, there has been an increasing amount of research in the area of energy harvesting, particularly from vibration, to power these devices. An interesting application is the possibility of harvesting energy from the track-side vibration due to a passing train, as this energy could be used to power remote sensors mounted on the track for strutural health monitoring, for example. This paper describes a fundamental study to determine how much energy could be harvested from a passing train. Using a time history of vertical vibration measured on a sleeper, the optimum mechanical parameters of a linear energy harvesting device are determined. Numerical and analytical investigations are both carried out. It is found that the optimum amount of energy harvested per unit mass is proportional to the product of the square of the input acceleration amplitude and the square of the input duration. For the specific case studied, it was found that the maximum energy that could be harvested per unit mass of the oscillator is about 0.25 J/kg at a frequency of about 17 Hz. The damping ratio for the optimum harvester was found to be about 0.0045, and the corresponding amplitude of the relative displacement of the mass is approximately 5 mm.

  10. An assessment of annual whole-body occupational radiation exposure in Ireland (1996-2005).

    PubMed

    Colgan, P A; Currivan, L; Fenton, D

    2008-01-01

    Whole-body occupational exposure to artificial radiation sources in Ireland for the years 1996-2005 has been reviewed. Dose data have been extracted from the database of the Radiological Protection Institute of Ireland, which contains data on >95% of monitored workers. The data have been divided into three sectors: medical, industrial and education/research. Data on exposure to radon in underground mines and show caves for the years 2001-05 are also presented. There has been a continuous increase in the number of exposed workers from 5980 in 1996 to 9892 in 2005. Over the same time period, the number of exposed workers receiving measurable doses has decreased from 676 in 1996 to 189 in 2005 and the collective dose has also decreased from 227.1 to 110.3 man millisievert (man mSv). The collective dose to workers in the medical sector has consistently declined over the 10-y period of the study while that attributable to the industrial sector has remained reasonably static. In the education/research sector, the collective dose typically represents 5% or less of the total collective dose from all practices. Over the 10 y of the study, a total of 77 914 annual dose records have been accumulated, but only 4040 (<6%) of these represent measurable radiation doses in any given year. Over the same time period, there were 283 instances in which exposed workers received individual annual doses >1 mSv and 21 of these exceeded 5 mSv. Most of the doses >1 mSv were received by individuals working in diagnostic radiology (which also includes interventional radiology) in hospitals and site industrial radiography. There has been only one instance of a dose above the annual dose limit of 20 mSv. Evaluating the data for the period 2001-05 separately, the average annual collective dose from the medical, industrial and educational/research sectors are approximately 60, 70 and 2 man mSv with the average dose per exposed worker who received a measurable dose being 0.32, 0.79 and 0.24 mSv, respectively. Diagnostic radiology and site industrial radiography each represents >60% of the collective dose in their respective sectors. Available data on radon exposure in one underground mine and in three show caves indicate an annual collective dose of 75 man mSv from these work activities. By comparison, previous estimates of exposure of Irish air crew to cosmic radiation have given rise to an estimated collective dose of 12 000 man mSv. It can be concluded therefore that the natural radioactivity sources account for well >90% of all occupational exposure in Ireland. This evaluation does not include an estimate of exposure to radon in above-ground workplaces-these data are currently being evaluated and their inclusion will increase both the total occupational collective dose as well as the percentage of that dose due to natural radiation. PMID:17562657

  11. Whole-Body CT in Haemodynamically Unstable Severely Injured Patients – A Retrospective, Multicentre Study

    PubMed Central

    Huber-Wagner, Stefan; Biberthaler, Peter; Häberle, Sandra; Wierer, Matthias; Dobritz, Martin; Rummeny, Ernst; van Griensven, Martijn; Kanz, Karl-Georg; Lefering, Rolf

    2013-01-01

    Background The current common and dogmatic opinion is that whole-body computed tomography (WBCT) should not be performed in major trauma patients in shock. We aimed to assess whether WBCT during trauma-room treatment has any effect on the mortality of severely injured patients in shock. Methods In a retrospective multicenter cohort study involving 16719 adult blunt major trauma patients we compared the survival of patients who were in moderate, severe or no shock (systolic blood pressure 90–110,<90 or >110 mmHg) at hospital admission and who received WBCT during resuscitation to those who did not. Using data derived from the 2002–2009 version of TraumaRegister®, we determined the observed and predicted mortality and calculated the standardized mortality ratio (SMR) as well as logistic regressions. Findings 9233 (55.2%) of the 16719 patients received WBCT. The mean injury severity score was 28.8±12.1. The overall mortality rate was 17.4% (SMR ?=?0.85, 95%CI 0.81–0.89) for patients with WBCT and 21.4% (SMR?=?0.98, 95%CI 0.94–1.02) for those without WBCT (p<0.001). 4280 (25.6%) patients were in moderate shock and 1821 (10.9%) in severe shock. The mortality rate for patients in moderate shock with WBCT was 18.1% (SMR 0.85, CI95% 0.78–0.93) compared to 22.6% (SMR 1.03, CI95% 0.94–1.12) to those without WBCT (p<0.001, p?=?0.002 for the SMRs). The mortality rate for patients in severe shock with WBCT was 42.1% (SMR 0.99, CI95% 0.92–1.06) compared to 54.9% (SMR 1.10, CI95% 1.02–1.16) to those without WBCT (p<0.001, p?=?0.049 for the SMRs). Adjusted logistic regression analyses showed that WBCT is an independent predictor for survival that significantly increases the chance of survival in patients in moderate shock (OR?=?0.73; 95%CI 0.60–0.90, p?=?0.002) as well as in severe shock (OR?=?0.67; 95%CI 0.52–0.88, p?=?0.004). The number needed to scan related to survival was 35 for all patients, 26 for those in moderate shock and 20 for those in severe shock. Conclusions WBCT during trauma resuscitation significantly increased the survival in haemodynamically stable as well as in haemodynamically unstable major trauma patients. Thus, the application of WBCT in haemodynamically unstable severely injured patients seems to be safe, feasible and justified if performed quickly within a well-structured environment and by a well-organized trauma team. PMID:23894365

  12. Techniques for undertaking dual-energy X-ray absorptiometry whole-body scans to estimate body composition in tall and/or broad subjects.

    PubMed

    Nana, Alisa; Slater, Gary J; Hopkins, Will G; Burke, Louise M

    2012-10-01

    Dual-energy X-ray absorptiometry (DXA) is becoming a popular tool to measure body composition, owing to its ease of operation and comprehensive analysis. However, some people, especially athletes, are taller and/or broader than the active scanning area of the DXA bed and must be scanned in sections. The aim of this study was to investigate the reliability of DXA measures of whole-body composition summed from 2 or 3 partial scans. Physically active young adults (15 women, 15 men) underwent 1 whole-body and 4 partial DXA scans in a single testing session under standardized conditions. The partial scanning areas were head, whole body from the bottom of the chin down, and right and left sides of the body. Body-composition estimates from whole body were compared with estimates from summed partial scans to simulate different techniques to accommodate tall and/or broad subjects relative to the whole-body scan. Magnitudes of differences in the estimates were assessed by standardization. In simulating tall subjects, summation of partial scans that included the head scan overestimated whole-body composition by ~3 kg of lean mass and ~1 kg of fat mass, with substantial technical error of measurement. In simulating broad subjects, summation of right and left body scans produced no substantial differences in body composition than those of the whole-body scan. Summing partial DXA scans provides accurate body-composition estimates for broad subjects, but other strategies are needed to accommodate tall subjects. PMID:23011648

  13. The effects of low-frequency vibrations on hepatic profile of blood

    NASA Astrophysics Data System (ADS)

    Damijan, Z.

    2008-02-01

    Body vibrations training has become popular in sports training, fitness activity, it is still a rare form of physical rehabilitation.. Vibrations are transmitted onto the whole body or some body parts of an exercising person via a vibration platform subjected to mechanical vertical vibrations. During the training session a participant has to maintain his body position or do exercises that engage specific muscles whilst vibrations of the platform are transmitted onto the person's body. This paper is the continuation of the earlier study covering the effects of low-frequency vibrations on selected physiological parameters of the human body. The experiments were conducted to find the answer to the question if vibration exposure (total duration of training sessions 6 hours 20 min) should produce any changes in hepatic profile of blood. Therefore a research program was undertaken at the University of Science and Technology AGH UST to investigate the effects of low-frequency vibration on selected parameters of hepatic profile of human blood. Cyclic fluctuations of bone loading were induced by the applied harmonic vibration 3.5 Hz and amplitude 0.004 m. The experiments utilizing two vibrating platforms were performed in the Laboratory of Structural Acoustics and Biomedical Engineering AGH-UST. The applied vibrations were harmless and not annoying, in accordance with the standard PN-EN ISO 130901-1, 1998. 23 women volunteers had 19 sessions on subsequent working days, at the same time of day. during the tests the participants remained in the standing position, passive. The main hypothesis has it that short-term low-frequency vibration exposure might bring about the changes of the hepatic profile of blood, including: bilirubin (BILIRUBIN), alkaline phosphatase (Alp), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and albumin (ALBUMIN) levels. Research data indicate the low-frequency vibrations exposure produces statistically significant decrease of bilirubin level [umol/l] in blood serum from 14.05 to 9.70 for 82% of participants, the probability level being p = 0.000041.

  14. GPR measurements and estimation for road subgrade damage caused by neighboring train vibration load

    NASA Astrophysics Data System (ADS)

    Zhao, Yonghui; Lu, Gang; Ge, Shuangcheng

    2015-04-01

    Generally, road can be simplified as a three-layer structure, including subgrade, subbase and pavement. Subgrade is the native material underneath a constructed road. It is commonly compacted before the road construction, and sometimes stabilized by the addition of asphalt, lime or other modifiers. As the mainly supporting structure, subgrade damage would lead in pavement settlement, displacement and crack. Assessment and monitoring of the subgrade condition currently involves trial pitting and subgrade sampling. However there is a practical limit on spatial density at which trail pits and cores can be taken. Ground penetrating radar (GPR) has been widely used to characterize highway pavement profiling, concrete structure inspection and railroad track ballast estimation. GPR can improve the economics of road maintenance. Long-term train vibration load might seriously influence the stability of the subgrade of neighboring road. Pavement settlement and obvious cracks have been found at a municipal road cross-under a railway with culvert box method. GPR test was conducted to estimate the subgrade and soil within 2.0 m depth for the further road maintenance. Two survey lines were designed in each lane, and total 12 GPR sections have been implemented. Considering both the penetrating range and the resolution, a antenna with a 500 MHz central frequency was chosen for on-site GPR data collection. For data acquisition, we used the default operating environment and scanning parameters for the RAMAC system: 60kHz transmission rate, 50 ns time window, 1024 samples per scan and 0.1 m step-size. Continuous operation was used; the antenna was placed on the road surface and slowly moved along the road. The strong surrounding disturbance related to railroad and attachments, might decrease the reliability of interpretation results. Some routine process methods (including the background removing, filtering) have been applied to suppress the background noise. Additionally, attribute analysis is an important tool that focused on the multi-properties of the signal. Here, cross-correlation attribute analysis has been applied for GPR profile interpretation. It compares one trace with surrounding traces to determine degrees of similar, and improves the difference between the reflected wave from detection target and its surrounding mediums, which makes it easy to detect the anomaly that couldn't be found in original GPR time profile. It's possible to identify sections of subgrade in good or worse condition, which may require specific maintenance or trail pitting investigation.

  15. The Influence of Shc Proteins and Aging on Whole Body Energy Expenditure and Substrate Utilization in Mice

    PubMed Central

    Stern, Jennifer H.; Kim, Kyoungmi; Ramsey, Jon J.

    2012-01-01

    While it has been proposed that Shc family of adaptor proteins may influence aging by regulating insulin signaling and energy metabolism, the overall impact of Shc proteins on whole body energy metabolism has yet to be elucidated. Thus, the purpose of this study was to determine the influence of Shc proteins and aging on whole body energy metabolism in a mouse model under ambient conditions (22°C) and acute cold exposure (12°C for 24 hours). Using indirect respiration calorimetry, we investigated the impact of Shc proteins and aging on EE and substrate utilization (RQ) in p66 Shc?/? (ShcKO) and wild-type (WT) mice. Calorimetry measurements were completed in 3, 15, and 27 mo mice at 22°C and 12°C. At both temperatures and when analyzed across all age groups, ShcKO mice demonstrated lower 24 h total EE values than that of WT mice when EE data was expressed as either kJ per mouse, or adjusted by body weight or crude organ mass (ORGAN) (P?0.01 for all). The ShcKO mice also had higher (P<0.05) fed state RQ values than WT animals at 22°C, consistent with an increase in glucose utilization. However, Shc proteins did not influence age-related changes in energy expenditure or RQ. Age had a significant impact on EE at 22°C, regardless of how EE data was expressed (P<0.05), demonstrating a pattern of increase in EE from age 3 to 15 mo, followed by a decrease in EE at 27 mo. These results indicate a decline in whole body EE with advanced age in mice, independent of changes in body weight (BW) or fat free mass (FFM). The results of this study indicate that both Shc proteins and aging should be considered as factors that influence energy expenditure in mice. PMID:23144971

  16. Resonance behaviour of whole-body averaged specific energy absorption rate (SAR) in the female voxel model, NAOMI

    NASA Astrophysics Data System (ADS)

    Dimbylow, Peter

    2005-09-01

    Finite-difference time-domain (FDTD) calculations have been performed of the whole-body averaged specific energy absorption rate (SAR) in a female voxel model, NAOMI, under isolated and grounded conditions from 10 MHz to 3 GHz. The 2 mm resolution voxel model, NAOMI, was scaled to a height of 1.63 m and a mass of 60 kg, the dimensions of the ICRP reference adult female. Comparison was made with SAR values from a reference male voxel model, NORMAN. A broad SAR resonance in the NAOMI values was found around 900 MHz and a resulting enhancement, up to 25%, over the values for the male voxel model, NORMAN. This latter result confirmed previously reported higher values in a female model. The effect of differences in anatomy was investigated by comparing values for 10-, 5- and 1-year-old phantoms rescaled to the ICRP reference values of height and mass which are the same for both sexes. The broad resonance in the NAOMI child values around 1 GHz is still a strong feature. A comparison has been made with ICNIRP guidelines. The ICNIRP occupational reference level provides a conservative estimate of the whole-body averaged SAR restriction. The linear scaling of the adult phantom using different factors in longitudinal and transverse directions, in order to match the ICRP stature and weight, does not exactly reproduce the anatomy of children. However, for public exposure the calculations with scaled child models indicate that the ICNIRP reference level may not provide a conservative estimate of the whole-body averaged SAR restriction, above 1.2 GHz for scaled 5- and 1-year-old female models, although any underestimate is by less than 20%.

  17. Vibration on board and health effects.

    PubMed

    Jensen, Anker; Jepsen, Jørgen Riis

    2014-01-01

    There is only limited knowledge of the exposure to vibrations of ships' crews and their risk of vibration-induced health effects. Exposure to hand-arm vibrations from the use of vibrating tools at sea does not differ from that in the land-based trades. However, in contrast to most other work places, seafarers are also exposed to vibrations to the feet when standing on vibrating surfaces on board. Anecdotal reports have related the development of "white feet" to local exposure to vibration, e.g. in mining, but this connection has not been investigated in the maritime setting. As known from studies of the health consequences of whole body vibrations in land-transportation, such exposure at sea may affect ships' passengers and crews. While the relation of back disorders to high levels of whole body vibration has been demonstrated among e.g. tractor drivers, there are no reported epidemiological evidence for such relation among seafarers except for fishermen, who, however, are also exposed to additional recognised physical risk factors at work. The assessment and reduction of vibrations by naval architects relates to technical implications of this impact for the ships' construction, but has limited value for the estimation of health risks because they express the vibration intensity differently that it is done in a medical context. PMID:25231326

  18. The utility of whole-body diffusion-weighted MRI for delineating regions of interest in PET

    NASA Astrophysics Data System (ADS)

    Blackledge, M. D.; Koh, D. M.; Collins, D. J.; Chua, S.; Leach, M. O.

    2013-02-01

    In this technological report, we investigate the utility of whole-body diffusion-weighted MRI (WBDWI) as a prior for defining regions of interest (ROI) in PET data. Due to its comparatively high resolution and excellent lesion-to-background ratio, semi-automatic segmentation is possible in WBDWI. Following rigid registration of PET to WBDWI, a simple, fast and automatic algorithm can be used to define ROIs in PET data. This approach is applied to a test cohort of patients diagnosed with lymphoma who underwent both 18FDG-PET/CT and WBDWI studies to demonstrate its potential application.

  19. Whole body counter surveys of Miharu-town school children for four consecutive years after the Fukushima NPP accident

    E-print Network

    Hayano, Ryugo S; Miyazaki, Makoto; Satou, Hideo; Sato, Katsumi; Masaki, Shin; Sakuma, Yu

    2015-01-01

    Comprehensive whole-body counter surveys of Miharu town school children have been conducted for four consecutive years, in 2011-2014. This represents the only long-term sampling-bias-free study of its type conducted after the Fukushima Dai-ichi accident. For the first time in 2014, a new device called the Babyscan, which has a low $^{134/137}$Cs MDA of $Analysis of a questionnaire filled out by the children's parents regarding their food and water consumption shows that the majority of Miharu children regularly consume local and/or home-grown rice and vegetables. This however does not increase the body burden.

  20. Postmortem whole-body computed tomography angiography visualizing vascular rupture in a case of fatal car crash.

    PubMed

    Flach, Patricia M; Ross, Steffen G; Bolliger, Stephan A; Preiss, Ulrich S; Thali, Michael J; Spendlove, Danny

    2010-01-01

    In addition to the increasingly significant role of multislice computed tomography in forensic pathology, the performance of whole-body computed tomography angiography provides outstanding results. In this case, we were able to detect multiple injuries of the parenchymal organs in the upper abdomen as well as lesions of the brain parenchyma and vasculature of the neck. The radiologic findings showed complete concordance with the autopsy and even supplemented the autopsy findings in areas that are difficult to access via a manual dissection (such as the vasculature of the neck). This case shows how minimally invasive computed tomography angiography can serve as an invaluable adjunct to the classic autopsy procedure. PMID:20073614

  1. A whole body counter for an emergency and occupational monitoring of an internal contamination with low energy photon emitters

    NASA Astrophysics Data System (ADS)

    Fantínová, K.; Fojtík, P.; Pfeiferová, V.

    2015-11-01

    A whole-body counter in SÚRO (NRPI) Prague, Czech Republic has been upgraded recently with the goal to enhance its capability of a safe, smooth, accurate and reproducible positioning of detectors for whole- and partial-body counting. The counter is intended especially for counting of low energy gamma emitters in various organs and tissues of the human body. Counting efficiency calibration of a four-detector system installed in the shielded room has been performed by means of physical and voxel phantoms. The consistency of in vivo bioassay data of three internal contamination cases long-term monitored in the Institute is shown.

  2. Detection of microscopic diffusion anisotropy on a whole-body MR system with double wave vector imaging.

    PubMed

    Lawrenz, Marco; Finsterbusch, Jürgen

    2011-11-01

    Double-wave-vector diffusion-weighting experiments can detect diffusion anisotropy on a microscopic level which, e.g., could distinguish lower fiber densities from reduced fiber coherence. The underlying signal difference between parallel and orthogonal wave vector orientations has been observed on vertical-bore MR systems (?500 mT m(-1) ); however, numerical simulations reveal that it is expected to be considerably reduced for typical whole-body MR gradient pulse durations. Here, pig spinal cord tissue and a reference fluid phantom were investigated on a 3 T clinical MR system (40 mT m(-1) ). By averaging over different absolute wave vector orientations, signal variations caused by experimental imperfections like background gradient fields and eddy currents were minimized and a rotationally invariant anisotropy measure could be assessed. A significant microscopic anisotropy was observed in gray and white matter tissue even in the plane perpendicular to the cord which is consistent with previous vertical-bore experiments. Thus, it is demonstrated that double-wave-vector experiments can investigate the microscopic anisotropy on whole-body MR systems. PMID:21488098

  3. Neuroprotective effect of EGb761® and low-dose whole-body ?-irradiation in a rat model of Parkinson's disease.

    PubMed

    El-Ghazaly, Mona A; Sadik, Nermin Ah; Rashed, Engy R; Abd-El-Fattah, Amal A

    2015-12-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. The present study was undertaken to investigate the pretreatment effects of standardized Ginkgo biloba extract (EGb761(®)) and low-dose whole-body ?-irradiation on the neurological dysfunction in the reserpine model of PD. Male Wistar rats were pretreated orally with EGb761 or fractionated low-dose whole-body ?-irradiation or their combination, then subjected to intraperitoneal injection of reserpine (5 mg/kg body weight) 24 h after the final dose of EGb761 or radiation. Reserpine injection resulted in the depletion of striatal dopamine (DA) level, increased catalepsy score, increased oxidative stress indicated via depletion of glutathione (GSH), increased malondialdehyde (MDA) and iron levels, decreased DA metabolites metabolizing enzymes; indicated by inhibition by glutathione-S-transferase, and nicotinamide adenine dinucleotide phosphate (NADPH)-quinone oxidoreductase (NQO) activities, mitochondrial dysfunction; indicated by declined complex I activity, and adenosine triphosphate (ATP) level and increased apoptosis; indicated by decreased mitochondrial B cell lymphoma-2 (Bcl-2) protein level and by transmission electron microscope. EGb761 and low-dose ?-radiation ameliorated the reserpine-induced state of oxidative stress, mitochondrial dysfunction, and apoptosis in brain. It can be concluded that EGb761, a widely used herbal medicine and low dose of ?-irradiation have protective effects for combating Parkinsonism possibly via replenishment of GSH levels. PMID:23696346

  4. Cutaneous noradrenaline measured by microdialysis in complex regional pain syndrome during whole-body cooling and heating.

    PubMed

    Terkelsen, Astrid J; Gierthmühlen, Janne; Petersen, Lars J; Knudsen, Lone; Christensen, Niels J; Kehr, Jan; Yoshitake, Takashi; Madsen, Caspar S; Wasner, Gunnar; Baron, Ralf; Jensen, Troels S

    2013-09-01

    Complex regional pain syndrome (CRPS) is characterised by autonomic, sensory, and motor disturbances. The underlying mechanisms of the autonomic changes in CPRS are unknown. However, it has been postulated that sympathetic inhibition in the acute phase with locally reduced levels of noradrenaline is followed by an up-regulation of alpha-adrenoceptors in chronic CRPS leading to denervation supersensitivity to catecholamines. This exploratory study examined the effect of cutaneous sympathetic activation and inhibition on cutaneous noradrenaline release, vascular reactivity, and pain in CRPS patients and in healthy volunteers. Seven patients and nine controls completed whole-body cooling (sympathetic activation) and heating (sympathetic inhibition) induced by a whole-body thermal suit with simultaneous measurement of the skin temperature, skin blood flow, and release of dermal noradrenaline. CRPS pain and the perceived skin temperature were measured every 5 min during thermal exposure, while noradrenaline was determined from cutaneous microdialysate collected every 20 min throughout the study period. Cooling induced peripheral sympathetic activation in patients and controls with significant increases in dermal noradrenaline, vasoconstriction, and reduction in skin temperature. The main findings were that the noradrenaline response did not differ between patients and controls or between the CRPS hand and the contralateral unaffected hand, suggesting that the evoked noradrenaline release from the cutaneous sympathetic postganglionic fibres is preserved in chronic CRPS patients. PMID:23357619

  5. Revisiting the Body-Schema Concept in the Context of Whole-Body Postural-Focal Dynamics

    PubMed Central

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory–motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  6. Revisiting the body-schema concept in the context of whole-body postural-focal dynamics.

    PubMed

    Morasso, Pietro; Casadio, Maura; Mohan, Vishwanathan; Rea, Francesco; Zenzeri, Jacopo

    2015-01-01

    The body-schema concept is revisited in the context of embodied cognition, further developing the theory formulated by Marc Jeannerod that the motor system is part of a simulation network related to action, whose function is not only to shape the motor system for preparing an action (either overt or covert) but also to provide the self with information on the feasibility and the meaning of potential actions. The proposed computational formulation is based on a dynamical system approach, which is linked to an extension of the equilibrium-point hypothesis, called Passive Motor Paradigm: this dynamical system generates goal-oriented, spatio-temporal, sensorimotor patterns, integrating a direct and inverse internal model in a multi-referential framework. The purpose of such computational model is to operate at the same time as a general synergy formation machinery for planning whole-body actions in humanoid robots and/or for predicting coordinated sensory-motor patterns in human movements. In order to illustrate the computational approach, the integration of simultaneous, even partially conflicting tasks will be analyzed in some detail with regard to postural-focal dynamics, which can be defined as the fusion of a focal task, namely reaching a target with the whole-body, and a postural task, namely maintaining overall stability. PMID:25741274

  7. FDTD analysis of body-core temperature elevation in children and adults for whole-body exposure

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Asano, Takayuki; Fujiwara, Osamu

    2008-09-01

    The temperature elevations in anatomically based human phantoms of an adult and a 3-year-old child were calculated for radio-frequency whole-body exposure. Thermoregulation in children, however, has not yet been clarified. In the present study, we developed a computational thermal model of a child that is reasonable for simulating body-core temperature elevation. Comparison of measured and simulated temperatures revealed thermoregulation in children to be similar to that of adults. Based on this finding, we calculated the body-core temperature elevation in a 3-year-old child and an adult for plane-wave exposure at the basic restriction in the international guidelines. The body-core temperature elevation in the 3-year-old child phantom was 0.03 °C at a whole-body-averaged specific absorption rate of 0.08 W kg-1, which was 35% smaller than in the adult female. This difference is attributed to the child's higher body surface area-to-mass ratio.

  8. Wind-chill equations predicting whole-body heat loss for a range of typical civilian outdoor clothing ensembles.

    PubMed

    Wyon, D P

    1989-01-01

    A thermal manikin with constant skin temperature and a wind-chill tunnel with constant air temperatures and wind speeds were used to measure whole-body heat loss for seven ensembles chosen to represent the full range of civilian outdoor clothing in use for everyday, nonsporting wear. Equations fitting the data with correlation coefficients exceeding 0.99 were derived for each ensemble, and diagrams were produced with these equations to interpolate and extend the range of conditions. The conditions studied were those resulting in total heat loss from 50 to 250 W.m-2, so very little extrapolation was required. The wind-chill equivalent temperature (with reference to 2 m.s-1), based on the average value for all seven ensembles, showed good agreement on this measure. The values predicted on the basis of whole-body heat loss through clothing were shown to be much lower than those predicted from the Siple wind-chill index for unprotected skin. PMID:2609124

  9. Utilization of 3-D elastic transformation in the registration of chest x-ray CT and whole body PET

    SciTech Connect

    Tai, Yuan-Chuan; Hoh, C.K.; Hoffman, E.J.

    1996-12-31

    X-ray CT is widely used for detection and localization of lesions in the thorax. Whole Body PET with 18-FDG is becoming accepted for staging of cancer because of its ability to detect malignancy. Combining information from these two modalities has a significant value to improve lung cancer staging and treatment planning. Due to the non-rigid nature of the thorax and the differences in the acquisition conventions, the subject is stretched non-uniformly and the images of these two modalities requires non-rigid transformation for proper registration. Techniques to register chest x-ray CT and Whole Body PET images were developed and evaluated. Accuracy of 3-D elastic transformation was tested by phantom study. Studies on patients with lung carcinoma were used to validate the technique in localizing the 18-FDG uptake and in correlating PET to x-ray CT images. The fused images showed an accurate alignment and provided confident identification of the detailed anatomy of the CT with the functional information of the PET images.

  10. Skeletal muscle AMP-activated protein kinase ?1H151R overexpression enhances whole body energy homeostasis and insulin sensitivity.

    PubMed

    Schönke, Milena; Myers, Martin G; Zierath, Juleen R; Björnholm, Marie

    2015-10-01

    AMP-activated protein kinase (AMPK) is a major sensor of energy homeostasis and stimulates ATP-generating processes such as lipid oxidation and glycolysis in peripheral tissues. The heterotrimeric enzyme consists of a catalytic ?-subunit, a ?-subunit that is important for enzyme activity, and a noncatalytic ?-subunit that binds AMP and activates the AMPK complex. We generated a skeletal muscle Cre-inducible transgenic mouse model expressing a mutant ?1-subunit (AMPK?1(H151R)), resulting in chronic AMPK activation. The expression of the predominant AMPK?3 isoform in skeletal muscle was reduced in extensor digitorum longus (EDL) muscle (81-83%) of AMPK?1(H151R) transgenic mice, whereas the abundance and phosphorylation of the AMPK target acetyl-CoA carboxylase was increased in tibialis anterior muscle. Glycogen content was increased 10-fold in gastrocnemius muscle. Whole body carbohydrate oxidation was increased by 11%, and whereas glucose tolerance was unaffected, insulin sensitivity was increased in AMPK?1(H151R) transgenic mice. Furthermore, perigonadal white adipose tissue mass and serum leptin were reduced in female AMPK?1(H151R) transgenic mice by 38 and 51% respectively. Conversely, in male AMPK?1(H151R) transgenic mice, food intake was increased (14%), but body weight and body composition were unaltered, presumably because of increased energy expenditure. In conclusion, transgenic activation of skeletal muscle AMPK?1 in this model plays an important sex-specific role in skeletal muscle metabolism and whole body energy homeostasis. PMID:26306597

  11. Influence of detector pixel size, TOF resolution and DOI on image quality in MR-compatible whole-body PET

    NASA Astrophysics Data System (ADS)

    Thoen, Hendrik; Keereman, Vincent; Mollet, Pieter; Van Holen, Roel; Vandenberghe, Stefaan

    2013-09-01

    The optimization of a whole-body PET system remains a challenging task, as the imaging performance is influenced by a complex interaction of different design parameters. However, it is not always clear which parameters have the largest impact on image quality and are most eligible for optimization. To determine this, we need to be able to assess their influence on image quality. We performed Monte-Carlo simulations of a whole-body PET scanner to predict the influence on image quality of three detector parameters: the TOF resolution, the transverse pixel size and depth-of-interaction (DOI)-correction. The inner diameter of the PET scanner was 65 cm, small enough to allow physical integration into a simultaneous PET-MR system. Point sources were used to evaluate the influence of transverse pixel size and DOI-correction on spatial resolution as function of radial distance. To evaluate the influence on contrast recovery and pixel noise a cylindrical phantom of 35 cm diameter was used, representing a large patient. The phantom contained multiple hot lesions with 5 mm diameter. These lesions were placed at radial distances of 50, 100 and 150 mm from the center of the field-of-view, to be able to study the effects at different radial positions. The non-prewhitening (NPW) observer was used for objective analysis of the detectability of the hot lesions in the cylindrical phantom. Based on this analysis the NPW-SNR was used to quantify the relative improvements in image quality due to changes of the variable detector parameters. The image quality of a whole-body PET scanner can be improved significantly by reducing the transverse pixel size from 4 to 2.6 mm and improving the TOF resolution from 600 to 400 ps and further from 400 to 200 ps. Compared to pixel size, the TOF resolution has the larger potential to increase image quality for the simulated phantom. The introduction of two layer DOI-correction only leads to a modest improvement for the spheres at radial distance of 150 mm from the center of the transaxial FOV.

  12. Comparison of systemic plutonium deposition estimates from urinalysis and autopsy data in five whole-body donors

    SciTech Connect

    Kathren, R.L.; McInroy, J.F. )

    1991-04-01

    The systemic deposition of (239 + 240)Pu was determined by postmortem radiochemical analysis of the tissues from five whole-body donors to the United States Transuranium Registry (USTR). All were males with intakes typically occurring many years prior to death. The postmortem radiochemical results were compared with estimates of systemic deposition made with 13 different biokinetic models using urinary excretion data obtained during life. In general, estimates made with older biokinetic models were severalfold greater than those obtained from radiochemical analysis of the tissues. For all five cases, agreement within a factor of two with the tissue analysis results was obtained with two of the biokinetic models evaluated: the Langham power function model as modified by Leggett and Eckerman and the two compartment exponential model proposed in ICRP Publication Nos. 19 and 30.

  13. The GGNG peptides: novel myoactive peptides isolated from the gut and the whole body of the earthworms.

    PubMed

    Oumi, T; Ukena, K; Matsushima, O; Ikeda, T; Fujita, T; Minakata, H; Nomoto, K

    1995-11-22

    Three novel bioactive peptides, which were structurally related to each other, were purified and chemically identified from two species of the earthworms, Eisenia foetida and Pheretima vittata. One peptide was isolated from the gut tissue of E. foetida, and the other two were purified from the whole body of E. foetida and P. vittata, respectively. These peptides consisted of 17 or 18 amino acid residues and were named GGNG peptides after their unique, common structure of the C-termini. These GGNG peptides augmented both tension and frequency of spontaneous contractions of isolated gut preparations of E. foetida, and also elicited contractions of other annelidan tissues such as the polychaete esophagus and the leech vagina. However, they showed no activity on molluscan or arthropodan tissues, suggesting that GGNG peptides may be peculiar to annelids. No peptides homologous to GGNG peptides have been known so far in any living organisms. PMID:7488182

  14. NOTE: Influence of electromagnetic polarization on the whole-body averaged SAR in children for plane-wave exposures

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Ito, Naoki; Fujiwara, Osamu

    2009-02-01

    The present study investigated the whole-body averaged specific absorption rate (WBSAR) in an infant model with the finite-difference time-domain method. The focus of the present study is the effect of polarization of incident electromagnetic waves on the WBSAR. This is because most previous studies investigated the WBSAR for plane-wave exposure with a vertically aligned electric field. Our computational results revealed that the WBSAR for plane-wave exposure with a vertically aligned electric field is smaller than that with a horizontally aligned electric field for frequencies above 2 GHz. The main reason for this difference is attributed to be the component of the surface area perpendicular to the electric field of the incident wave.

  15. From Whole-body Sections Down to Cellular Level, Multiscale Imaging of Phospholipids by MALDI Mass Spectrometry*

    PubMed Central

    Chaurand, Pierre; Cornett, Dale S.; Angel, Peggi M.; Caprioli, Richard M.

    2011-01-01

    Significant progress in instrumentation and sample preparation approaches have recently expanded the potential of MALDI imaging mass spectrometry to the analysis of phospholipids and other endogenous metabolites naturally occurring in tissue specimens. Here we explore some of the requirements necessary for the successful analysis and imaging of phospholipids from thin tissue sections of various dimensions by MALDI time-of-flight mass spectrometry. We address methodology issues relative to the imaging of whole-body sections such as those cut from model laboratory animals, sections of intermediate dimensions typically prepared from individual organs, as well as the requirements for imaging areas of interests from these sections at a cellular scale spatial resolution. We also review existing limitations of MALDI imaging MS technology relative to compound identification. Finally, we conclude with a perspective on important issues relative to data exploitation and management that need to be solved to maximize biological understanding of the tissue specimen investigated. PMID:20736411

  16. Whole-body F-18 sodium fluoride PET-CT in a patient with renal cell carcinoma.

    PubMed

    Bhargava, Peeyush; Hanif, Muzammil; Nash, Carey

    2008-12-01

    A 59-year-old male with metastatic renal cell cancer presented with pain in the right heel. Radiographs showed a large lytic lesion in the right calcaneus, suspicious for bone metastasis. For a comprehensive morphologic and scintigraphic evaluation, a whole-body F-18 sodium fluoride (NaF) PET-CT was acquired. All lytic lesions seen on the CT showed intense peripheral fluoride uptake. Five fluoride avid lesions were not seen on the CT scan. Eight foci of mild to moderate fluoride activity were identified as degenerative joint disease on the CT scan. Intense peripheral NaF uptake was seen in the lytic lesion in the right calcaneus, which was later proven by needle biopsy to be metastasis from renal cell cancer. PMID:19033802

  17. A Generic Integrated Physiologically based Whole-body Model of the Glucose-Insulin-Glucagon Regulatory System

    PubMed Central

    Schaller, S; Willmann, S; Lippert, J; Schaupp, L; Pieber, T R; Schuppert, A; Eissing, T

    2013-01-01

    Models of glucose metabolism are a valuable tool for fundamental and applied medical research in diabetes. Use cases range from pharmaceutical target selection to automatic blood glucose control. Standard compartmental models represent little biological detail, which hampers the integration of multiscale data and confines predictive capabilities. We developed a detailed, generic physiologically based whole-body model of the glucose-insulin-glucagon regulatory system, reflecting detailed physiological properties of healthy populations and type 1 diabetes individuals expressed in the respective parameterizations. The model features a detailed representation of absorption models for oral glucose, subcutaneous insulin and glucagon, and an insulin receptor model relating pharmacokinetic properties to pharmacodynamic effects. Model development and validation is based on literature data. The quality of predictions is high and captures relevant observed inter- and intra-individual variability. In the generic form, the model can be applied to the development and validation of novel diabetes treatment strategies. PMID:23945606

  18. Dental silver tooth fillings: A source of mercury exposure revealed by whole-body image scan and tissue analysis

    SciTech Connect

    Hahn, L.J.; Kloiber, R.; Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L. )

    1989-12-01

    Mercury (Hg) vapor is released from dental silver tooth fillings into human mouth air after chewing, but its possible uptake routes and distribution among body tissues are unknown. This investigation demonstrates that when radioactive 203Hg is mixed with dental Hg/silver fillings (amalgam) and placed in teeth of adult sheep, the isotope will appear in various organs and tissues within 29 days. Evidence of Hg uptake, as determined by whole-body scanning and measurement of isotope in specific tissues, revealed three uptake sites: lung, gastrointestinal, and jaw tissue absorption. Once absorbed, high concentrations of dental amalgam Hg rapidly localize in kidneys and liver. Results are discussed in view of potential health consequences from long-term exposure to Hg from this dental material.

  19. Treatment with inhibitors of the NF-kappaB pathway improves whole body tension development in the mdx mouse.

    PubMed

    Siegel, Ashley L; Bledsoe, Cathy; Lavin, Jesse; Gatti, Francesca; Berge, Jonas; Millman, Gregory; Turin, Eric; Winders, W Tyler; Rutter, John; Palmeiri, Beniamino; Carlson, C George

    2009-02-01

    The whole body tension (WBT) method was used to evaluate the hypothesis that long term treatment with NF-kappaB inhibitors improves the total forward pulling tension exerted by the limb musculature of the mdx mouse. Mdx mice exhibited significantly reduced WBT values and more profound weakening during the course of generating multiple forward pulling movements than age-matched nondystrophic mice. Long term treatment with the NF-kappaB inhibitor pyrrolidine dithiocarbamate (PDTC) did not significantly reduce nuclear p65 activation in the costal diaphragm, but increased WBT by 12% in mature (12 month) mice. Daily treatment (30 days) of 1 month old mdx mice with the inhibitor ursodeoxycholic acid (UDCA) reduced costal diaphragm nuclear p65 activation by 40% and increased WBT by 21%. These results indicate that treatment with NF-kappaB inhibitors improves WBT in the mdx mouse and further establishes the utility of the WBT procedure in assessing therapeutic efficacy. PMID:19054675

  20. Radioiodine Contamination Artifacts and Unusual Patterns of Accumulation in Whole-body I-131 Imaging: A Case Series

    PubMed Central

    Ozcan Kara, Pelin; Gunay, Emel Ceylan; Erdogan, Alihan

    2014-01-01

    Introduction: Radioactive iodine has been used for more than 50 years for the treatment of thyroid diseases. Differentiated thyroid cancers have the ability to trap iodine. Therefore, radioiodine can be used both diagnostically and therapeutically. In the follow-up of patients, it is critical to interpret radioiodine scans correctly. Case Presentation: Non-physiological Iodine-131 (I-131) extra-thyroidal uptake detected on post-therapy or diagnostic I-131 scanning are not always interpreted as functioning metastatic thyroid cancer. Conclusions: This study provides detailed information and case samples of radiodine contamination artifacts and non-physiological, non-metastatic extra-thyroidal I-131 accumulation in whole-body I-131 imaging. PMID:24696698

  1. Variations in plasma ceruloplasmin and whole body retention of sup 67 Cu in guinea pigs recovering from vitamin C deficiency

    SciTech Connect

    Hosestenbach, R.D. Jr.; Harris, E.D. )

    1991-03-15

    Parallels may be drawn between the symptoms of scurvy and copper deficiency. This realization led the authors to examine the effects of ascorbic acid supplementation on plasma ceruloplasmin and whole body turnover of copper in scorbutic guinea pigs. Weanling guinea pigs were fed an ascorbate free semi-purified diet for 10-14 days then randomly divided into 3 treatment groups receiving oral supplementation of ascorbic acid at levels: deficient, normal, and excess. In two experiments with different groups of animals, the plasma ceruloplasmin IU, measured by p-phenylenediamine oxidase activity, was significantly higher in the deficient groups, 53.5 {plus minus} 7.7 and 41.2 {plus minus} 9.2, than in the normal and excess groups, 18.3 {plus minus} 7.7, 21.6 {plus minus} 2.6 and 30.2 {plus minus} 9.2, 18.3 {plus minus} 2.6, respectively. {sup 67}Cu was administered intraperitoneally and whole body gamma radiation was measured at 24 h intervals to determine excretion and retention rates of the 3 treatment groups. A higher retention of {sup 67}Cu was observed in the deficient group, t1/2 = 4.8 days compared to 2.6 and 1.6 in the normal and excess groups, respectively. The affect of ascorbic acid on the regulatory mechanism of copper retention, either directly or indirectly, and the increase in plasma ceruloplasmin activity indicates ascorbic acid may perform a functional role in copper utilization in a biological system.

  2. A formula for human average whole-body SARwb under diffuse fields exposure in the GHz region

    NASA Astrophysics Data System (ADS)

    Bamba, A.; Joseph, W.; Vermeeren, G.; Thielens, A.; Tanghe, E.; Martens, L.

    2014-12-01

    A simple formula to determine the human average whole-body SAR (SARwb) under realistic propagation conditions is proposed in the GHz region, i.e. from 1.45 GHz to 5.8 GHz. The methodology is based on simulations of ellipsoidal human body models. Only the exposure (incident power densities) and the human mass are needed to apply the formula. Diffuse scattered illumination is addressed for the first time and the possible presence of a Line-of-Sight (LOS) component is addressed as well. As validation, the formula is applied to calculate the average whole-body SARwb in 3D heterogeneous phantoms, i.e. the virtual family (34 year-old male, 26 year-old female, 11 year-old girl, and 6 year-old boy) and the results are compared with numerical ones—using the Finite-Difference Time-Domain (FDTD) method—at 3 GHz. For the LOS exposure, the average relative error varies from 28% to 12% (resp. 14-12%) for the vertical polarization (resp. horizontal polarization), depending on the heteregeneous phantom. Regarding the diffuse illumination, relative errors of -39.40%, -11.70%, 10.70%, and 10.60% are obtained for the 6 year-old boy, 11 year-old girl, 26 year-old female, and 34 year-old male, respectively. The proposed formula estimates well (especially for adults) the SARwb induced by diffuse illumination in realistic conditions. In general, the correctness of the formula improves when the human mass increases. Keeping the uncertainties of the FDTD simulations in mind, the proposed formula might be important for the dosimetry community to assess rapidly and accurately the human absorption of electromagnetic radiation caused by diffuse fields in the GHz region. Finally, we show the applicability of the proposed formula to personal dosimetry for epidemiological research.

  3. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise

    PubMed Central

    Pageaux, Benjamin; Marcora, Samuele M.; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue –17 ± 15%, control –15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue –6 ± 9%, control –6 ± 7%, p = 0.013) and resting twitch (mental fatigue –30 ± 14%, control –32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort. PMID:25762914

  4. NOTE: Individual radiation therapy patient whole-body phantoms for peripheral dose evaluations: method and specific software

    NASA Astrophysics Data System (ADS)

    Alziar, I.; Bonniaud, G.; Couanet, D.; Ruaud, J. B.; Vicente, C.; Giordana, G.; Ben-Harrath, O.; Diaz, J. C.; Grandjean, P.; Kafrouni, H.; Chavaudra, J.; Lefkopoulos, D.; de Vathaire, F.; Diallo, I.

    2009-09-01

    This study presents a method aimed at creating radiotherapy (RT) patient-adjustable whole-body phantoms to permit retrospective and prospective peripheral dose evaluations for enhanced patient radioprotection. Our strategy involves virtual whole-body patient models (WBPM) in different RT treatment positions for both genders and for different age groups. It includes a software tool designed to match the anatomy of the phantoms with the anatomy of the actual patients, based on the quality of patient data available. The procedure for adjusting a WBPM to patient morphology includes typical dimensions available in basic auxological tables for the French population. Adjustment is semi-automatic. Because of the complexity of the human anatomy, skilled personnel are required to validate changes made in the phantom anatomy. This research is part of a global project aimed at proposing appropriate methods and software tools capable of reconstituting the anatomy and dose evaluations in the entire body of RT patients in an adapted treatment planning system (TPS). The graphic user interface is that of a TPS adapted to obtain a comfortable working process. Such WBPM have been used to supplement patient therapy planning images, usually restricted to regions involved in treatment. Here we report, as an example, the case of a patient treated for prostate cancer whose therapy planning images were complemented by an anatomy model. Although present results are preliminary and our research is ongoing, they appear encouraging, since such patient-adjusted phantoms are crucial in the optimization of radiation protection of patients and for follow-up studies.

  5. A Whole-Body Physiologically Based Pharmacokinetic Model of Gefitinib in Mice and Scale-Up to Humans.

    PubMed

    Bi, Youwei; Deng, Jiexin; Murry, Daryl J; An, Guohua

    2016-01-01

    Gefitinib (Iressa) is a selective and potent EGFR tyrosine kinase inhibitor. It received an accelerated FDA approval in 2003 for the treatment of patients with nonsmall cell lung cancer (NSCLC) and represents the first-line therapy for NSCLC with EGFR mutations. In the work presented herein, the disposition of gefitinib was investigated extensively in mouse in both plasma and 11 organs (liver, heart, lung, spleen, gut, brain, skin, fat, eye, kidney, and muscle) after a single IV dose of 20 mg/kg. Gefitinib demonstrated extensive distribution in most tissues, except for the brain, and tissue to plasma partition coefficients (K pt) ranged from 0.71 (brain) to 40.5 (liver). A comprehensive whole-body physiologically based pharmacokinetic (PBPK) model of gefitinib in mice was developed, which adequately captured gefitinib concentration-time profiles in plasma and various tissues. Predicted plasma and tissue AUC values agreed well with the values calculated using the noncompartmental analysis (<25% difference). The PBPK model was further extrapolated to humans after taking into account the interspecies differences in physiological parameters. The simulated concentrations in human plasma were in line with the observed concentrations in healthy volunteers and patients with solid malignant tumors after both IV infusion and oral administration. Considering the extensive tissue distribution of gefitinib, plasma concentration may not be an ideal surrogate marker for gefitinib exposure at the target site or organ of toxicity (such as the skin). Since our whole-body PBPK model can predict gefitinib concentrations not only in plasma but also in various organs, our model may have clinical applications in efficacy and safety assessment of gefitinib. PMID:26559435

  6. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  7. Whole-Body Cryostimulation - Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men - Significance of the Number of Sessions

    PubMed Central

    Lubkowska, Anna; Do??gowska, Barbara; Szygu?a, Zbigniew

    2012-01-01

    It is claimed that WBC (whole-body cryotherapy) enhances the resistance of the human body, also thanks to the beneficial effect on the antioxidant system. Accordingly, this research aimed to evaluate the effect of a series of whole-body cryostimulations on the level of non-enzymatic antioxidants and the activity of antioxidant enzymes in healthy men. The study was carried out on 30 young and healthy men aged 27.8±6.1 years with average body mass index and peak oxygen consumption (46.34±6.15 ml kg?1 •min?1). The participants were daily exposed for 3 minutes to cryogenic temperatures (?130°C). Blood samples were obtained in the morning before cryostimulation, again 30 min after exposure and the following day in the morning, during the 1st, 10th and 20th session. Analysis concerned changes in plasma concentrations of total protein, albumin, glucose, uric acid and ceruloplasmin, and the most important components of the antioxidant system in red blood cells: superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, reduced and oxidized glutathione. To assess the oxidative stress level the 8-isoprostane concentration in plasma was measured. The obtained results indicate that cryogenic temperatures in repeated daily treatments result in changes in the peroxidant and antioxidant status. These changes seem to depend on the number of cryostimulations. After 20 daily treatments there was an increase in SOD, SOD:CAT ratio, a decrease in the concentration of reduced and oxidized glutathione and in the activity of GPx. It could be possible that differences in the activity of GSSG-R after 20 treatments depended on the body mass index of participants. PMID:23077506

  8. Effects of Dietary Garlic Powder on Growth, Feed Utilization and Whole Body Composition Changes in Fingerling Sterlet Sturgeon, Acipenser ruthenus

    PubMed Central

    Lee, Dong-Hoon; Lim, Seong-Ryul; Han, Jung-Jo; Lee, Sang-Woo; Ra, Chang-Six; Kim, Jeong-Dae

    2014-01-01

    A 12 week growth study was carried out to investigate the supplemental effects of dietary garlic powder (GP) on growth, feed utilization and whole body composition changes of fingerling sterlet sturgeon Acipenser ruthenus (averaging weight, 5.5 g). Following a 24-h fasting, 540 fish were randomly distributed to each of 18 tanks (30 fish/tank) under a semi-recirculation freshwater system. The GP of 0.5% (GP0.5), 1% (GP1), 1.5% (GP1.5), 2% (GP2) and 3% (GP3) was added to the control diet (GP0) containing 43% protein and 16% lipid. After the feeding trial, weight gain (WG) of fish fed GP1.5, GP2 and GP3 were significantly higher (p<0.05) than those of fish fed GP0, GP0.5 and GP1. Feed efficiency and specific growth rate (SGR) showed a similar trend to WG. Protein efficiency ratio of fish fed GP1.5, GP2, and GP3 were significantly higher (p<0.05) than those of fish groups fed the other diets. A significant difference (p<0.05) was found in whole body composition (moisture, crude protein, crude lipid, ash, and fiber) of fish at the end of the experiment. Significantly higher (p<0.05) protein and lipid retention efficiencies (PRE and LRE) were also found in GP1.5, GP2, and GP3 groups. Broken-line regression model analysis and second order polynomial regression model analysis relation on the basis of SGR and WG indicated that the dietary optimal GP level could be greater than 1.77% and 1.79%, but less than 2.95% and 3.18% in fingerling sterlet sturgeon. The present study suggested that dietary GP for fingerling sterlet sturgeon could positively affect growth performance and protein retention. PMID:25178374

  9. Image quality assessment of LaBr3-based whole-body 3D PET scanners: a Monte Carlo evaluation

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.; Muehllehner, G.

    2004-10-01

    The main thrust for this work is the investigation and design of a whole-body PET scanner based on new lanthanum bromide scintillators. We use Monte Carlo simulations to generate data for a 3D PET scanner based on LaBr3 detectors, and to assess the count-rate capability and the reconstructed image quality of phantoms with hot and cold spheres using contrast and noise parameters. Previously we have shown that LaBr3 has very high light output, excellent energy resolution and fast timing properties which can lead to the design of a time-of-flight (TOF) whole-body PET camera. The data presented here illustrate the performance of LaBr3 without the additional benefit of TOF information, although our intention is to develop a scanner with TOF measurement capability. The only drawbacks of LaBr3 are the lower stopping power and photo-fraction which affect both sensitivity and spatial resolution. However, in 3D PET imaging where energy resolution is very important for reducing scattered coincidences in the reconstructed image, the image quality attained in a non-TOF LaBr3 scanner can potentially equal or surpass that achieved with other high sensitivity scanners. Our results show that there is a gain in NEC arising from the reduced scatter and random fractions in a LaBr3 scanner. The reconstructed image resolution is slightly worse than a high-Z scintillator, but at increased count-rates, reduced pulse pileup leads to an image resolution similar to that of LSO. Image quality simulations predict reduced contrast for small hot spheres compared to an LSO scanner, but improved noise characteristics at similar clinical activity levels.

  10. Relationship between whole-body macronutrient oxidative partitioning and pancreatic insulin secretion/?-cell function in non-diabetic humans

    PubMed Central

    Galgani, J. E.; Mizgier, M. L.; Mari, A.; Ravussin, E.

    2014-01-01

    Background Glucose-stimulated insulin secretion correlates inversely with the degree of whole-body insulin sensitivity suggesting a crosstalk between peripheral organs and pancreas. Such sensing mechanism could be mediated by changes in glucose flux (uptake, oxidation or storage) in peripheral tissues that may drive insulin secretion. Aim To relate whole-body non-protein respiratory quotient (npRQ), an index of macronutrient oxidative partitioning, with insulin secretion and ?-cell function in non-diabetic individuals. Methods Macronutrient oxidation was measured after an overnight fast and for 4 hours after a 75-g oral glucose tolerance test (OGTT) in 30 participants (15/15 males/females; 35±12 y; 27±4 kg/m2). Furthermore, npRQ was assessed for 24 hours in a metabolic chamber. Insulin secretion was estimated by deconvolution of serum C-peptide concentration (fasting and 4-h OGTT) and from 24-h urinary C-peptide excretion corrected for energy intake (metabolic chamber). ?-cell function parameters were obtained by mathematical modelling, while insulin sensitivity was determined by a euglycemic-hyperinsulinemic clamp (120 mU·m?2·min). Results Insulin secretion (from 24-h urinary C-peptide) correlated inversely with 24-h npRQ (r=?0.61; p=0.001), even after controlling for insulin sensitivity, energy balance, age and body mass index (r=?0.52; p=0.01). In turn, insulin secretion (from serum C-peptide) was not associated with fasting or OGTT npRQ. However, fasting npRQ was positively correlated with rate sensitivity (r=0.40; p<0.05) and marginally with glucose sensitivity (r=0.34; p=0.08). Conclusion Macronutrient oxidative partitioning, specifically glucose oxidation, might play a role on the regulation of insulin secretion. Further studies should aim at identifying the signals linking these processes. PMID:25176602

  11. Reflex vasoconstriction in aged human skin increasingly relies on Rho kinase-dependent mechanisms during whole body cooling

    PubMed Central

    Jennings, John D.; Holowatz, Lacy A.; Kenney, W. Larry

    2009-01-01

    Primary human aging may be associated with augmented Rho kinase (ROCK)-mediated contraction of vascular smooth muscle and ROCK-mediated inhibition of nitric oxide synthase (NOS). We hypothesized that the contribution of ROCK to reflex vasoconstriction (VC) is greater in aged skin. Cutaneous VC was elicited by 1) whole body cooling [mean skin temperature (Tsk) = 30.5°C] and 2) local norepinephrine (NE) infusion (1 × 10?6 M). Four microdialysis fibers were placed in the forearm skin of eight young (Y) and eight older (O) subjects for infusion of 1) Ringer solution (control), 2) 3 mM fasudil (ROCK inhibition), 3) 20 mM NG-nitro-l-arginine methyl ester (NOS inhibition), and 4) both ROCK + NOS inhibitors. Red cell flux was measured by laser-Doppler flowmetry over each site. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and normalized to baseline CVC (%?CVCbaseline). VC was reduced at the control site in O during cooling (Y, ?34 ± 3; and O, ?18 ± 3%?CVCbaseline; P < 0.001) and NE infusion (Y, ?53 ± 4, and O, ?41 ± 9%?CVCbaseline; P = 0.006). Fasudil attenuated VC in both age groups during mild cooling; however, this reduction remained only in O but not in Y skin during moderate cooling (Y, ?30 ± 5; and O, ?7 ± 1%?CVCbaseline; P = 0.016) and was not altered by NOS inhibition. Fasudil blunted NE-mediated VC in both age groups (Y, ?23 ± 4; and O, ?7 ± 3%?CVCbaseline; P < 0.01). Cumulatively, these data indicate that reflex VC is more reliant on ROCK in aged skin such that approximately half of the total VC response to whole body cooling is ROCK dependent. PMID:19717729

  12. {sup 137}Cs exposure in the Marshallese populations: An assessment based on whole-body counting measurements (1989-1994)

    SciTech Connect

    Sun, L.C.; Clinton, J.H.; Kaplan, E.

    1997-07-01

    The Marshall Islands were the site of numerous tests of nuclear weapons by the United States. From 1946 to 1958, nuclear devices were detonated at Enemetak and Bikini Atolls. Following the inadvertent contamination of the northern islands downwind of the 1954 Bravo Test, Brookhaven National Laboratory became involved in the medical care and the radiological safety of the affected populations. One important technique employed in assessing the internally deposited radionuclides is whole-body counting. To estimate current and future exposures to 1376, data from 1989 to 1994 were analyzed and are reported in this paper. During this period, 3,618 measurements were made for the Marshallese. The cesium body contents were assumed to result from a series of chronic intakes. Also, it was assumed that cesium activity in the body reaches a plateau that is maintained over 365 d. We estimated the annual effective dose rate for each population, derived from the recommendations of the International Commission on Radiological Protection. The average {sup 137}Cs uptake measured by the whole-body counting method varies from one population to another; it was consistent with measurements of external exposure rate. The analysis. though based on limited data, indicates that there is no statistical support for a seasonal effect on {sup 137}Cs uptake. The critical population group for cesium uptake is adult males. Within the 5-y monitoring period, all internal exposures to {sup 137}Cs mere less than 0.2 mSv y{sup -1}. Similarly, a persistent average cesium effective dose rate of 2 {mu}Sv y{sup -1} was determined for Majuro residents. 73 refs., 6 figs., 10 tabs.

  13. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise.

    PubMed

    Pageaux, Benjamin; Marcora, Samuele M; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue -17 ± 15%, control -15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue -6 ± 9%, control -6 ± 7%, p = 0.013) and resting twitch (mental fatigue -30 ± 14%, control -32 ± 10%, p < 0.001) in both conditions. These findings reject our hypothesis and confirm previous findings that mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort. PMID:25762914

  14. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation

    PubMed Central

    Gagnon, Daniel; Jay, Ollie; Kenny, Glen P

    2013-01-01

    Although the requirements for heat dissipation during exercise are determined by the necessity for heat balance, few studies have considered them when examining sweat production and its potential modulators. Rather, the majority of studies have used an experimental protocol based on a fixed percentage of maximum oxygen uptake (%). Using multiple regression analysis, we examined the independent contribution of the evaporative requirement for heat balance (Ereq) and % to whole-body sweat rate (WBSR) during exercise. We hypothesised that WBSR would be determined by Ereq and not by %. A total of 23 males performed two separate experiments during which they exercised for 90 min at different rates of metabolic heat production (200, 350, 500 W) at a fixed air temperature (30°C, n= 8), or at a fixed rate of metabolic heat production (290 W) at different air temperatures (30, 35, 40°C, n= 15 and 45°C, n= 7). Whole-body evaporative heat loss was measured by direct calorimetry and used to calculate absolute WBSR in grams per minute. The conditions employed resulted in a wide range of Ereq (131–487 W) and % (15–55%). The individual variation in non-steady-state (0–30 min) and steady-state (30–90 min) WBSR correlated significantly with Ereq (P < 0.001). In contrast, % correlated negatively with the residual variation in WBSR not explained by Ereq, and marginally increased (?2%) the amount of total variability in WBSR described by Ereq alone (non-steady state: R2= 0.885; steady state: R2= 0.930). These data provide clear evidence that absolute WBSR during exercise is determined by Ereq, not by %. Future studies should therefore use an experimental protocol which ensures a fixed Ereq when examining absolute WBSR between individuals, irrespective of potential differences in relative exercise intensity. PMID:23459754

  15. Whole-body imaging of HER2/neu-overexpressing tumors using scFv-antibody conjugated quantum dots

    NASA Astrophysics Data System (ADS)

    Balalaeva, Irina V.; Zdobnova, Tatiana A.; Brilkina, Anna A.; Krutova, Irina M.; Stremovskiy, Oleg A.; Lebedenko, Elena N.; Vodeneev, Vladimir V.; Turchin, Ilya V.; Deyev, Sergey M.

    2010-02-01

    Semiconductor quantum dots (QDs) are widely used in different fields of bioscience and biotechnology due to their unique optical properties. QDs can be used as fluorescent markers for optical detection and monitoring of deeply located tumors in vivo after specific labeling achieved by conjugating of QDs with targeting molecules. In this work the possibilities of intravital tumor labeling with QDs and subsequent in vivo tumor imaging were estimated. The experiments were run on immunodeficient nu/nu mice bearing human breast carcinoma SKBR-3, overexpressing surface protein HER2/neu. We used quantum dots Qdot 705 ITK (Invitrogen, USA) linked to anti-HER2/neu 4D5 scFv antibody. Antibody scFv fragments as a targeting agent for directed delivery of fluorophores possess significant advantages over full-size antibodies due to their small size, lower cross-reactivity and immunogenicity. QDs were bound to 4D5 scFv by barnase-barstar system (bn-bst) analogous to the streptavidin-biotidin system. Whole-body images were obtained using diffuse fluorescence tomography (DFT) setup with low-frequency modulation and transilluminative configuration of scanning, created at the Institute of Applied Physics of RAS, Russia). DFT-results were confirmed ex vivo by confocal microscopy. We report the results of in vivo whole-body tumor imaging with QDs complexes as contrasting agents. Intravital images of QDs-labeled tumors were obtained using specific tumor cells targeting and fluorescence transilluminative imaging method, while "passive" QD-labeling failed to mark effectively the tumor.

  16. Activation of mTORC1 in skeletal muscle regulates whole-body metabolism through FGF21.

    PubMed

    Guridi, Maitea; Tintignac, Lionel A; Lin, Shuo; Kupr, Barbara; Castets, Perrine; Rüegg, Markus A

    2015-01-01

    Skeletal muscle is the largest organ, comprising 40% of the total body lean mass, and affects whole-body metabolism in multiple ways. We investigated the signaling pathways involved in this process using TSCmKO mice, which have a skeletal muscle-specific depletion of TSC1 (tuberous sclerosis complex 1). This deficiency results in the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1), which enhances cell growth by promoting protein synthesis. TSCmKO mice were lean, with increased insulin sensitivity, as well as changes in white and brown adipose tissue and liver indicative of increased fatty acid oxidation. These differences were due to increased plasma concentrations of fibroblast growth factor 21 (FGF21), a hormone that stimulates glucose uptake and fatty acid oxidation. The skeletal muscle of TSCmKO mice released FGF21 because of mTORC1-triggered endoplasmic reticulum (ER) stress and activation of a pathway involving PERK (protein kinase RNA-like ER kinase), eIF2? (eukaryotic translation initiation factor 2?), and ATF4 (activating transcription factor 4). Treatment of TSCmKO mice with a chemical chaperone that alleviates ER stress reduced FGF21 production in muscle and increased body weight. Moreover, injection of function-blocking antibodies directed against FGF21 largely normalized the metabolic phenotype of the mice. Thus, sustained activation of mTORC1 signaling in skeletal muscle regulated whole-body metabolism through the induction of FGF21, which, over the long term, caused severe lipodystrophy. PMID:26554817

  17. Influence of pregnancy stage and fetus position on the whole-body and local exposure of the fetus to RF-EMF

    NASA Astrophysics Data System (ADS)

    Varsier, N.; Dahdouh, S.; Serrurier, A.; De la Plata, J.-P.; Anquez, J.; Angelini, E. D.; Bloch, I.; Wiart, J.

    2014-09-01

    This paper analyzes the influence of pregnancy stage and fetus position on the whole-body and brain exposure of the fetus to radiofrequency electromagnetic fields. Our analysis is performed using semi-homogeneous pregnant woman models between 8 and 32 weeks of amenorrhea. By analyzing the influence of the pregnancy stage on the environmental whole-body and local exposure of a fetus in vertical position, head down or head up, in the 2100?MHz frequency band, we concluded that both whole-body and average brain exposures of the fetus decrease during the first pregnancy trimester, while they advance during the pregnancy due to the rapid weight gain of the fetus in these first stages. From the beginning of the second trimester, the whole-body and the average brain exposures are quite stable because the weight gains are quasi proportional to the absorbed power increases. The behavior of the fetus whole-body and local exposures during pregnancy for a fetus in the vertical position with the head up were found to be of a similar level, when compared to the position with the head down they were slightly higher, especially in the brain.

  18. The effect of single extremity-vibration on the serum sclerostin level

    PubMed Central

    Cakar, Halil Ibrahim; Cidem, Muharrem; Karacan, Ilhan; Kara, Sadik

    2015-01-01

    [Purpose] Sclerostin is mechanosensitive protein that is produced exclusively by osteocytes. It was reported that the plasma sclerostin level increases in the 10th minute after the application of Whole-Body Vibration. The aim of this study was to determine whether single extremity-vibration induces any change in the serum sclerostin level. [Subjects and Methods] Eight healthy young-adult volunteers were recruited for this pilot study. The participants sat on a chair with their left hip and knee joints flexed at 90 degrees. The lower leg was exposed to vibration: 40?Hz, 4?mm, 60 s. Blood samples were collected before and after the vibration. The serum sclerostin levels were blindly measured in dual-controlled blood samples. [Results] The serum sclerostin level before vibration was 328.2±589.9?pg/ml, and it showed no significant change after vibration. [Conclusion] Unlike Whole-Body Vibration, Single-Extremity Vibration did not affect the serum sclerostin level significantly. This finding can be explained by the limited bone volume exposed to vibration. Bone volume exposed to vibration is less during Single-Extremity Vibration than during Whole-Body Vibration. PMID:26311933

  19. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner

    NASA Astrophysics Data System (ADS)

    Surti, S.; Karp, J. S.

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25?mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22?mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72?cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10?min for imaging a 100?cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72?cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18?cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3?mm (as opposed to 4?mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15?mm thick crystal leads to lower lesion detectability than a 20?mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15?mm thick crystals can provide similar or better performance than that achieved by a detector using 20?mm thick crystals.

  20. Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans

    SciTech Connect

    Shiraishi, Junji; Li Qiang; Appelbaum, Daniel; Pu Yonglin; Doi, Kunio

    2007-01-15

    Bone scintigraphy is the most frequent examination among various diagnostic nuclear medicine procedures. It is a well-established imaging modality for the diagnosis of osseous metastasis and for monitoring osseous tumor response to chemotherapy and radiation therapy. Although the sensitivity of bone scan examinations for detection of bone abnormalities has been considered to be relatively high, it is time consuming to identify multiple lesions such as bone metastases of prostate and breast cancers. In addition, it is very difficult to detect subtle interval changes between two successive abnormal bone scans, because of variations in patient conditions, the accumulation of radioisotopes during each examination, and the image quality of gamma cameras. Therefore, we developed a new computer-aided diagnostic (CAD) scheme for the detection of interval changes in successive whole-body bone scans by use of a temporal subtraction image which was obtained with a nonlinear image-warping technique. We carried out 58 pairs of successive bone scans in which each scan included both posterior and anterior views. We determined 107 'gold-standard' interval changes among the 58 pairs based on the consensus of three radiologists. Our computerized scheme consisted of seven steps, i.e., initial image density normalization on each image, image matching for the paired images, temporal subtraction by use of the nonlinear image-warping technique, initial detection of interval changes by use of temporal-subtraction images, image feature extraction of candidates of interval changes, rule-based tests by use of 16 image features for removing some false positives, and display of the computer output for identified interval changes. One hundred seven gold standard interval changes included 71 hot lesions (uptake was increased compared with the previous scan, or there was new uptake in the current scan) and 36 cold lesions (uptake was decreased or disappeared) for anterior and posterior views. The overall sensitivity in the detection of interval changes, including both hot and cold lesions evaluated by use of the resubstitution and the leave-one-case-out methods, were 95.3%, with 5.97 false positives per view, and 83.2% with 6.02, respectively. The temporal subtraction image for successive whole-body bone scans has the potential to enhance the interval changes between two images, which also can be quantified. Furthermore, the CAD scheme for the detection of interval changes by use of temporal subtraction images would be useful in assisting radiologists' interpretation on successive bone scan images.

  1. Impact of detector design on imaging performance of a long axial field-of-view, whole-body PET scanner.

    PubMed

    Surti, S; Karp, J S

    2015-07-01

    Current generation of commercial time-of-flight (TOF) PET scanners utilize 20-25?mm thick LSO or LYSO crystals and have an axial FOV (AFOV) in the range of 16-22?mm. Longer AFOV scanners would provide increased intrinsic sensitivity and require fewer bed positions for whole-body imaging. Recent simulation work has investigated the sensitivity gains that can be achieved with these long AFOV scanners, and has motivated new areas of investigation such as imaging with a very low dose of injected activity as well as providing whole-body dynamic imaging capability in one bed position. In this simulation work we model a 72?cm long scanner and prioritize the detector design choices in terms of timing resolution, crystal size (spatial resolution), crystal thickness (detector sensitivity), and depth-of-interaction (DOI) measurement capability. The generated list data are reconstructed with a list-mode OSEM algorithm using a Gaussian TOF kernel that depends on the timing resolution and blob basis functions for regularization. We use lesion phantoms and clinically relevant metrics for lesion detectability and contrast measurement. The scan time was fixed at 10?min for imaging a 100?cm long object assuming a 50% overlap between adjacent bed positions. Results show that a 72?cm long scanner can provide a factor of ten reduction in injected activity compared to an identical 18?cm long scanner to get equivalent lesion detectability. While improved timing resolution leads to further gains, using 3?mm (as opposed to 4?mm) wide crystals does not show any significant benefits for lesion detectability. A detector providing 2-level DOI information with equal crystal thickness also does not show significant gains. Finally, a 15?mm thick crystal leads to lower lesion detectability than a 20?mm thick crystal when keeping all other detector parameters (crystal width, timing resolution, and DOI capability) the same. However, improved timing performance with 15?mm thick crystals can provide similar or better performance than that achieved by a detector using 20?mm thick crystals. PMID:26108352

  2. Parasympathetic Activity and Blood Catecholamine Responses Following a Single Partial-Body Cryostimulation and a Whole-Body Cryostimulation

    PubMed Central

    Hausswirth, Christophe; Schaal, Karine; Le Meur, Yann; Bieuzen, François; Filliard, Jean-Robert; Volondat, Marielle; Louis, Julien

    2013-01-01

    The aim of this study was to compare the effects of a single whole-body cryostimulation (WBC) and a partial-body cryostimulation (PBC) (i.e., not exposing the head to cold) on indices of parasympathetic activity and blood catecholamines. Two groups of 15 participants were assigned either to a 3-min WBC or PBC session, while 10 participants constituted a control group (CON) not receiving any cryostimulation. Changes in thermal, physiological and subjective variables were recorded before and during the 20-min after each cryostimulation. According to a qualitative statistical analysis, an almost certain decrease in skin temperature was reported for all body regions immediately after the WBC (mean decrease±90% CL, -13.7±0.7°C) and PBC (-8.3±0.3°C), which persisted up to 20-min after the session. The tympanic temperature almost certainly decreased only after the WBC session (-0.32±0.04°C). Systolic and diastolic blood pressures were very likely increased after the WBC session, whereas these changes were trivial in the other groups. In addition, heart rate almost certainly decreased after PBC (-10.9%) and WBC (-15.2%) sessions, in a likely greater proportion for WBC compared to PBC. Resting vagal-related heart rate variability indices (the root-mean square difference of successive normal R-R intervals, RMSSD, and high frequency band, HF) were very likely increased after PBC (RMSSD: +54.4%, HF: +138%) and WBC (RMSSD: +85.2%, HF: +632%) sessions without any marked difference between groups. Plasma norepinephrine concentrations were likely to very likely increased after PBC (+57.4%) and WBC (+76.2%), respectively. Finally, cold and comfort sensations were almost certainly altered after WBC and PBC, sensation of discomfort being likely more pronounced after WBC than PBC. Both acute cryostimulation techniques effectively stimulated the autonomic nervous system (ANS), with a predominance of parasympathetic tone activation. The results of this study also suggest that a whole-body cold exposure induced a larger stimulation of the ANS compared to partial-body cold exposure. PMID:23991134

  3. Single Whole-Body Cryostimulation Procedure versus Single Dry Sauna Bath: Comparison of Oxidative Impact on Healthy Male Volunteers

    PubMed Central

    2015-01-01

    Exposure to extreme heat and cold is one of the environmental factors whose action is precisely based on the mechanisms involving free radicals. Fluctuations in ambient temperature are among the agents that toughen the human organism. The goal of the study was to evaluate the impact of extremely high (dry sauna, DS) and low (whole-body cryostimulation, WBC) environmental temperatures on the oxidant-antioxidant equilibrium in the blood of healthy male subjects. The subjects performed a single DS bath (n = 10; 26.2 ± 4.6 years) and a single WBC procedure (n = 15; 27.5 ± 3.1 years). In the subjects' blood taken immediately before and 20?min after the interventions, the activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and the concentration of thiobarbituric acid reactive substances in erythrocytes (TBARSer) and blood plasma (TBARSpl) were determined. Single WBC and DS procedures induced an increase in the activity of SOD and GPx, as well as SOD and CAT, respectively. The SOD activity was higher after WBC than after DS. Extremely high and low temperatures probably induce the formation of reactive oxygen species in the organisms of healthy men and, therefore, disturb the oxidant-antioxidant balance. PMID:25866782

  4. Arabinoxylan rice bran (MGN-3/Biobran) provides protection against whole-body ?-irradiation in mice via restoration of hematopoietic tissues

    PubMed Central

    Ghoneum, Mamdooh; Badr El-Din, Nariman K.; Abdel Fattah, Salma M.; Tolentino, Lucilene

    2013-01-01

    The aim of the current study is to examine the protective effect of MGN-3 on overall maintenance of hematopoietic tissue after ?-irradiation. MGN-3 is an arabinoxylan from rice bran that has been shown to be a powerful antioxidant and immune modulator. Swiss albino mice were treated with MGN-3 prior to irradiation and continued to receive MGN-3 for 1 or 4 weeks. Results were compared with mice that received radiation (5 Gy ? rays) only, MGN-3 (40 mg/kg) only and control mice (receiving neither radiation nor MGN-3). At 1 and 4 weeks post-irradiation, different hematological, histopathological and biochemical parameters were examined. Mice exposed to irradiation alone showed significant depression in their complete blood count (CBC) except for neutrophilia. Additionally, histopathological studies showed hypocellularity of their bone marrow, as well as a remarkable decrease in splenic weight/relative size and in number of megakaryocytes. In contrast, pre-treatment with MGN-3 resulted in protection against irradiation-induced damage to the CBC parameters associated with complete bone marrow cellularity, as well as protection of the aforementioned splenic changes. Furthermore, MGN-3 exerted antioxidative activity in whole-body irradiated mice, and provided protection from irradiation-induced loss of body and organ weight. In conclusion, MGN-3 has the potential to protect progenitor cells in the bone marrow, which suggests the possible use of MGN-3/Biobran as an adjuvant treatment to counteract the severe adverse side effects associated with radiation therapy. PMID:23287771

  5. The distribution of ( sup 14 C)acrylamide in rainbow trout studied by whole-body autoradiography

    SciTech Connect

    Waddell, W.J.; Lech, J.J.; Marlowe, C.; Kleinow, K.M.; Friedman, M.A. )

    1990-01-01

    The distribution of (2,3-{sup 14}C)acrylamide was studied in fingerling rainbow trout by whole-body autoradiography. Fish weighing approximately 7 g were injected ip with 3.2 mg/kg ({sup 14}C)acrylamide (0.1 microCi/g). One group of fish was kept in a fresh flowing water tank and frozen in dry ice/hexane 22 hr after injection; another group was placed in a separate tank of fresh flowing water and frozen 120 hr after treatment. A third group of fish served as nontreated controls. The autoradiographs of the fish at 22 hr show the highest concentration of radioactivity in the kidney, urinary bladder, blood, gallbladder, intestinal contents, and lens of eye. Lesser amounts of radioactivity are seen in the CNS, liver, and gills. Very low concentrations are seen in muscle. By 120 hr the only high concentrations are seen in gallbladder and lens of the eye. Lesser amounts are seen in the sclera, vertebrae, CNS, kidney, wall of intestine, and discrete spots in subcutaneous tissue presumed to be chromatophores. Low amounts are seen in muscle, the tissue usually consumed by man.

  6. Development of Swimming Human Simulation Model Considering Rigid Body Dynamics and Unsteady Fluid Force for Whole Body

    NASA Astrophysics Data System (ADS)

    Nakashima, Motomu; Satou, Ken; Miura, Yasufumi

    The purpose of this study is to develop a swimming human simulation model considering rigid body dynamics and unsteady fluid force for the whole body, which will be utilized to analyze various dynamical problems in human swimming. First, the modeling methods and their formulations for the human body and the fluid force are respectively described. Second, experiments to identify the coefficients of the normal drag and the added mass are conducted by use of an experimental setup, in which a limb model rotates in the water, and its rotating angle and the bending moment at the root are measured. As the result of the identification, the present model for the fluid force was found to have satisfactory performance in order to represent the unsteady fluctuations of the experimental data, although it has 10% error. Third, a simulation for the gliding position is conducted in order to identify the tangential drag coefficient. Finally, a simulation example of standard six beat front crawl swimming is shown. The swimming speed of the simulation became a reasonable value, indicating the validity of the present simulation model, although it is 7.5% lower than the actual swimming.

  7. Whole-body counter surveys of Miharu-town school children for four consecutive years after the Fukushima NPP accident

    PubMed Central

    HAYANO, Ryugo S.; TSUBOKURA, Masaharu; MIYAZAKI, Makoto; SATOU, Hideo; SATO, Katsumi; MASAKI, Shin; SAKUMA, Yu

    2015-01-01

    Comprehensive whole-body counter surveys of Miharu-town school children have been conducted for four consecutive years, in 2011–2014. This represents the only long-term sampling-bias-free study of its type conducted after the Fukushima Dai-ichi accident. For the first time in 2014, a new device called the Babyscan, which has a low 134/137Cs MDA of <50 Bq/body, was used to screen the children shorter than 130 cm. No child in this group was found to have detectable level of radiocesium. Using the MDAs, upper limits of daily intake of radiocesium were estimated for each child. For those screened with the Babyscan, the upper intake limits were found to be ?1 Bq/day for 137Cs. Analysis of a questionnaire filled out by the children’s parents regarding their food and water consumption shows that the majority of Miharu children regularly consume local and/or home-grown rice and vegetables. This however does not increase the body burden. PMID:25765011

  8. Whole-body imaging of a hypercholesterolemic female zebrafish by using synchrotron X-ray micro-CT.

    PubMed

    Seo, Eunseok; Lim, Jae-Hong; Seo, Seung Jun; Lee, Sang Joon

    2015-02-01

    Zebrafish has been used as a powerful model system in biological and biomedical studies studying development and diseases. Comparative, functional, and developmental studies on zebrafish morphology require precise visualization of 3D morphological structures. Few methods that can visualize whole-volume of zebrafish tissues are available because optical bio-imaging methods are limited by pigmentation and hard tissues. To overcome these limitations, the 3D microstructures of a hypercholesterolemic zebrafish model are visualized using synchrotron X-ray micro-computed tomography (SR-?CT). The model spatial resolution ranged from sub- to several microns. The microstructures of various zebrafish organs are observed by combining high-contrast staining (osmium tetroxide and uranyl acetate) and embedding a protocol to enhance the image contrast of soft tissues. Furthermore, blood vessels are identified using a barium sulfate injection technique. The internal organs and cells, such as liver, intestine, oocytes, and adipocytes, of a hypercholesterolemic zebrafish are compared with those of normal organs and cells. The SR-?CT is useful for understanding the pathogenesis of circulatory vascular diseases by detecting the modifications in the 3D morphological structures of the whole body of the zebrafish. This bio-imaging technique can be readily used to study other disease models. PMID:25521241

  9. A COMPUTER-CONTROLLED WHOLE-BODY INHALATION EXPOSURE SYSTEM FOR THE OIL DISPERSANT COREXIT EC9500A

    PubMed Central

    Goldsmith, William Travis; McKinney, Walter; Jackson, Mark; Law, Brandon; Bledsoe, Toni; Siegel, Paul; Cumpston, Jared; Frazer, David

    2015-01-01

    An automated whole-body inhalation exposure system capable of exposing 12 individually housed rats was designed to examine the potential adverse health effects of the oil dispersant COREXIT EC9500A, used extensively during the Deepwater Horizon oil spill. A computer–controlled syringe pump injected the COREXIT EC9500A into an atomizer where droplets and vapor were formed and mixed with diluent air. The aerosolized COREXIT EC9500A was passed into a customized exposure chamber where a calibrated light-scattering instrument estimated the real-time particle mass concentration of the aerosol in the chamber. Software feedback loops controlled the chamber aerosol concentration and pressure throughout each exposure. The particle size distribution of the dispersant aerosol was measured and shown to have a count median aerodynamic diameter of 285 nm with a geometric standard deviation of 1.7. The total chamber concentration (particulate + vapor) was determined using a modification of the acidified methylene blue spectrophotometric assay for anionic surfactants. Tests were conducted to show the effectiveness of closed loop control of chamber concentration and to verify chamber concentration homogeneity. Five automated 5-h animal exposures were performed that produced controlled and consistent COREXIT EC9500A concentrations (27.1 ± 2.9 mg/m3, mean ± SD). PMID:21916743

  10. Uncertainty of GHz-band Whole-body Average SARs in Infants based on their Kaup Indices

    NASA Astrophysics Data System (ADS)

    Miwa, Hironobu; Hirata, Akimasa; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi

    We previously showed that a strong correlation exists between the absorption cross section and the body surface area of a human for 0.3-2GHz far field exposure, and proposed a formula for estimating whole-body-average specific absorption rates (WBA-SARs) in terms of height and weight. In this study, to evaluate variability in the WBA-SARs in infants based on their physique, we derived a new formula including Kaup indices of infants, which are being used to check their growth, and thereby estimated the WBA-SARs in infants with respect to their age from 0 month to three years. As a result, we found that under the same height/weight, the smaller the Kaup indices are, the larger the WBA-SARs become, and that the variability in the WBA-SARs is around 15% at the same age. To validate these findings, using the FDTD method, we simulated the GHz-band WBA-SARs in numerical human models corresponding to infants with age of 0, 1, 3, 6 and 9 months, which were obtained by scaling down the anatomically based Japanese three-year child model developed by NICT (National Institute of Information and Communications Technology). Results show that the FDTD-simulated WBA-SARs are smaller by 20% compared to those estimated for infants having the median height and the Kaup index of 0.5 percentiles, which provide conservative WBA-SARs.

  11. Effect of hyperglucagonemia on whole-body leucine metabolism in immature pigs before and during a meal

    SciTech Connect

    Ostaszewski, P.; Nissen, S. )

    1988-03-01

    Leucine metabolism was measured isotopically in 12 immature female pigs to assess the effect of acute hyperglucagonemia on leucine kinetics in both the fed and fasting states. After an overnight fast, immature pigs were infused with {alpha}-({sup 3}H)ketoisocaproate and ({sup 14}C)leucine. After a 2-h equilibration period, an infusion of either saline or 7 pg {center dot} kg{sup {minus}1} {center dot} min{sup {minus}1} of glucagon was begun, which increased plasma glucagon from {approximately}140 to {approximately}640 pg/ml and doubled the insulin concentrations. Two hours later, pigs were fed small meals to which (5,5,5-{sup 2}H{sub 3})leucine was added to trace absorption. By subtracting absorption from total leucine flux, an estimate of endogenous proteolysis during the meal was made. In the fasting state, glucagon increased proteolysis and increased oxidation. No significant glucagon-related changes in any other flux parameters occurred in the fasting state. Ingestion of the meals caused oxidation to increase 41% in control animals, whereas in glucagon-infused animals, oxidation increased 84%. Additional, animals infused with glucagon suppressed endogenous proteolysis 43% after the meal compared with 55% decrease in control animals. These data indicate that glucagon stimulates whole-body proteolysis in both the fasting and fed states.

  12. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data

    NASA Astrophysics Data System (ADS)

    Shypailo, R. J.; Ellis, K. J.

    2011-05-01

    During construction of the whole body counter (WBC) at the Children's Nutrition Research Center (CNRC), efficiency calibration was needed to translate acquired counts of 40K to actual grams of potassium for measurement of total body potassium (TBK) in a diverse subject population. The MCNP Monte Carlo n-particle simulation program was used to describe the WBC (54 detectors plus shielding), test individual detector counting response, and create a series of virtual anthropomorphic phantoms based on national reference anthropometric data. Each phantom included an outer layer of adipose tissue and an inner core of lean tissue. Phantoms were designed for both genders representing ages 3.5 to 18.5 years with body sizes from the 5th to the 95th percentile based on body weight. In addition, a spherical surface source surrounding the WBC was modeled in order to measure the effects of subject mass on room background interference. Individual detector measurements showed good agreement with the MCNP model. The background source model came close to agreement with empirical measurements, but showed a trend deviating from unity with increasing subject size. Results from the MCNP simulation of the CNRC WBC agreed well with empirical measurements using BOMAB phantoms. Individual detector efficiency corrections were used to improve the accuracy of the model. Nonlinear multiple regression efficiency calibration equations were derived for each gender. Room background correction is critical in improving the accuracy of the WBC calibration.

  13. Adiponectin Corrects High-Fat Diet–Induced Disturbances in Muscle Metabolomic Profile and Whole-Body Glucose Homeostasis

    PubMed Central

    Liu, Ying; Turdi, Subat; Park, Taesik; Morris, Nicholas J.; Deshaies, Yves; Xu, Aimin; Sweeney, Gary

    2013-01-01

    We provide here a detailed and comprehensive analysis of skeletal muscle metabolomic profiles in response to adiponectin in adiponectin knockout (AdKO) mice after high-fat–diet (HFD) feeding. Hyperinsulinemic-euglycemic clamp studies showed that adiponectin administration corrected HFD-induced defects in post/basal insulin stimulated Rd and insulin signaling in skeletal muscle. Lipidomic profiling of skeletal muscle from HFD-fed mice indicated elevated triacylglycerol and diacylglycerol species (16:0–18:1, 18:1, and 18:0–18:2) as well as acetyl coA, all of which were mitigated by adiponectin. HFD induced elevated levels of various ceramides, but these were not significantly altered by adiponectin. Adiponectin corrected the altered branched-chain amino acid metabolism caused by HFD and corrected increases across a range of glycerolipids, fatty acids, and various lysolipids. Adiponectin also reversed induction of the pentose phosphate pathway by HFD. Analysis of muscle mitochondrial structure indicated that adiponectin treatment corrected HFD-induced pathological changes. In summary, we show an unbiased comprehensive metabolomic profile of skeletal muscle from AdKO mice subjected to HFD with or without adiponectin and relate these to changes in whole-body glucose handling, insulin signaling, and mitochondrial structure and function. Our data revealed a key signature of relatively normalized muscle metabolism across multiple metabolic pathways with adiponectin supplementation under the HFD condition. PMID:23238294

  14. Whole-body counter surveys of Miharu-town school children for four consecutive years after the Fukushima NPP accident

    NASA Astrophysics Data System (ADS)

    Hayano, Ryugo S.; Tsubokura, Masaharu; Miyazaki, Makoto; Satou, Hideo; Sato, Katsumi; Masaki, Shin; Sakuma, Yu

    Comprehensive whole-body counter surveys of Miharu town school children have been conducted for four consecutive years, in 2011-2014. This represents the only long-term sampling-bias-free study of its type conducted after the Fukushima Dai-ichi accident. For the first time in 2014, a new device called the Babyscan, which has a low $^{134/137}$Cs MDA of $< 50$ Bq/body, was used to screen the children shorter than 130 cm. No child in this group was found to have detectable level of radiocesium. Using the MDAs, upper limits of daily intake of radiocesium were estimated for each child. For those screened with the Babyscan, the upper intake limits were found to be <1 Bq/day for $^{137}$Cs. Analysis of a questionnaire filled out by the children's parents regarding their food and water consumption shows that the majority of Miharu children regularly consume local and/or home-grown rice and vegetables. This however does not increase the body burden.

  15. Effects of Whole-Body Cryotherapy in Comparison with Other Physical Modalities Used with Kinesitherapy in Rheumatoid Arthritis

    PubMed Central

    Gizi?ska, Ma?gorzata; Rutkowski, Rados?aw; Romanowski, Wojciech; Lewandowski, Jacek; Straburzy?ska-Lupa, Anna

    2015-01-01

    Whole-body cryotherapy (WBC) has been frequently used to supplement the rehabilitation of patients with rheumatoid arthritis (RA). The aim of this study was to compare the effect of WBC and traditional rehabilitation (TR) on clinical parameters and systemic levels of IL-6, TNF-? in patients with RA. The study group comprised 25 patients who were subjected to WBC (?110°C) and 19 patients who underwent a traditional rehabilitation program. Some clinical variables and levels of interleukin-6 (IL-6) and tumor necrosis factor-? (TNF-?) were used to assess the outcomes. After therapy both groups exhibited similar improvement in pain, disease activity, fatigue, time of walking, and the number of steps over a distance of 50?m. Only significantly better results were observed in HAQ in TR group (p < 0.05). However, similar significant reduction in IL-6 and TNF-? level was observed. The results showed positive effects of a 2-week rehabilitation program for patients with RA regardless of the kind of the applied physical procedure. PMID:26576422

  16. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  17. Modified wind chill temperatures determined by a whole body thermoregulation model and human-based facial convective coefficients

    NASA Astrophysics Data System (ADS)

    Shabat, Yael Ben; Shitzer, Avraham; Fiala, Dusan

    2014-08-01

    Wind chill equivalent temperatures (WCETs) were estimated by a modified Fiala's whole body thermoregulation model of a clothed person. Facial convective heat exchange coefficients applied in the computations concurrently with environmental radiation effects were taken from a recently derived human-based correlation. Apart from these, the analysis followed the methodology used in the derivation of the currently used wind chill charts. WCET values are summarized by the following equation: Results indicate consistently lower estimated facial skin temperatures and consequently higher WCETs than those listed in the literature and used by the North American weather services. Calculated dynamic facial skin temperatures were additionally applied in the estimation of probabilities for the occurrence of risks of frostbite. Predicted weather combinations for probabilities of "Practically no risk of frostbite for most people," for less than 5 % risk at wind speeds above 40 km h-1, were shown to occur at air temperatures above -10 °C compared to the currently published air temperature of -15 °C. At air temperatures below -35 °C, the presently calculated weather combination of 40 km h-1/-35 °C, at which the transition for risks to incur a frostbite in less than 2 min, is less conservative than that published: 60 km h-1/-40 °C. The present results introduce a fundamentally improved scientific basis for estimating facial skin temperatures, wind chill temperatures and risk probabilities for frostbites over those currently practiced.

  18. Whole-body exposure to 2.45 GHz electromagnetic fields does not alter radial-maze performance in rats.

    PubMed

    Cassel, Jean-Christophe; Cosquer, Brigitte; Galani, Rodrigue; Kuster, Niels

    2004-11-01

    Mobile communication is based on utilization of electromagnetic fields (EMFs) in the frequency range of 0.3-300 GHz. Human and animal studies suggest that EMFs, which are in the 0.1 MHz-300 GHz range, might interfere with cognitive processes. In 1994, a report by Lai et al. [Bioelectromagnetics 15 (1994) 95-104] showed that whole-body exposure of rats to pulsed 2.45 GHz microwaves (2 micros pulse width, 500 pps, and specific absorption rate [SAR] 0.6 W/kg) for 45 min resulted in altered spatial working memory assessed in a 12-arm radial-maze task. Surprisingly, there has been only one attempt to replicate this experiment so far [Bioelectromagnetics 25 (2004) 49-57]; confirmation of the Lai et al. experiment failed. In the present study, rats were tested in a 12-arm radial-maze subsequently to a daily exposure to 2.45 GHz microwaves (2 micros pulse width, 500 pps, and SAR 0.6 W/kg) for 45 min. The performance of exposed rats was comparable to that found in sham-exposed or in naive rats (no contact with the exposure system). Regarding the methodological details provided by Lai et al. on their testing protocol, our results might suggest that the microwave-induced behavioral alterations measured by these authors might have had more to do with factors liable to performance bias than with spatial working memory per se. PMID:15325777

  19. Proc. 3rd International Conference on Networked Sensing Systems (INSS 2006), pp. 55-60, Rosemont, Illinois (USA), May, 2006. A Whole Body Artificial Skin

    E-print Network

    Shinoda, Hiroyuki

    , Illinois (USA), May, 2006. A Whole Body Artificial Skin Based on Cell-Bridge Networking System Takayuki a tactile sensor skin as one of applications of the system. In this application, the cells are not only within its sensing area. The resulting robot skin is soft, stretchable, and able to cover a large area

  20. Evidence of associations between feto-maternal vitamin D status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newborn whole body bone mineral content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In spite of a high prevalence of vitamin D inadequacy in pregnant women and neonates, relationships among vitamin D status [25(OH)D], parathyroid hormone (PTH), bone specific alkaline phosphatase (BALP), and whole body bone mineral content (WBBMC) in the newborn are poorly characterized. The purpose...

  1. Brain and Whole-Body Imaging in Rhesus Monkeys of 11C-NOP-1A, a Promising PET Radioligand for

    E-print Network

    Pike, Victor W.

    of diseases such as pain, drug and alcohol abuse, anxiety, depression, and Parkinson disease (2,5). NOPBrain and Whole-Body Imaging in Rhesus Monkeys of 11C-NOP-1A, a Promising PET Radioligand exposure to organs of the body. In the blocked scans, a selective nonradioactive NOP receptor antagonist

  2. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz.

    PubMed

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-21

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg(-1), the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate. PMID:18523344

  3. Computational model for calculating body-core temperature elevation in rabbits due to whole-body exposure at 2.45 GHz

    NASA Astrophysics Data System (ADS)

    Hirata, Akimasa; Sugiyama, Hironori; Kojima, Masami; Kawai, Hiroki; Yamashiro, Yoko; Fujiwara, Osamu; Watanabe, Soichi; Sasaki, Kazuyuki

    2008-06-01

    In the current international guidelines and standards with regard to human exposure to electromagnetic waves, the basic restriction is defined in terms of the whole-body average-specific absorption rate. The rationale for the guidelines is that the characteristic pattern of thermoregulatory response is observed for the whole-body average SAR above a certain level. However, the relationship between energy absorption and temperature elevation was not well quantified. In this study, we improved our thermal computation model for rabbits, which was developed for localized exposure on eye, in order to investigate the body-core temperature elevation due to whole-body exposure at 2.45 GHz. The effect of anesthesia on the body-core temperature elevation was also discussed in comparison with measured results. For the whole-body average SAR of 3.0 W kg-1, the body-core temperature in rabbits elevates with time, without becoming saturated. The administration of anesthesia suppressed body-core temperature elevation, which is attributed to the reduced basal metabolic rate.

  4. Determination of Total Mercury in Whole-Body Fish and Fish Muscle Plugs Collected from the South Fork of the Humboldt River, Nevada, September 2005

    USGS Publications Warehouse

    May, Thomas W.; Brumbaugh, William G.

    2007-01-01

    This report presents the results of a study by the U.S. Geological Survey, done in cooperation with the U.S. Bureau of Reclamation, to determine mercury concentrations in whole-body fish and fish muscle plugs from the South Fork of the Humboldt River near Elko in the Te-Moak Indian Reservation. A single muscle plug was collected from beneath the dorsal fin area in each of the three whole-body fish samples. After homogenization and lyophilization of the muscle plugs and whole-body fish samples, mercury concentrations were determined with a direct mercury analyzer utilizing the process of thermal combustion-gold amalgamation atomic absorption spectroscopy. Mercury concentrations in whole-body fish ranged from 0.048 to 0.061 microgram per gram wet weight, and 0.061 to 0.082 microgram per gram wet weight in muscle plugs. All sample mercury concentrations were well below the U.S. Environmental Protection Agency's fish consumption advisory of 0.30 microgram per gram wet weight.

  5. Torsional Vibration Analysis of Reciprocating Compressor Trains driven by Induction Motors

    NASA Astrophysics Data System (ADS)

    Brunelli, M.; Fusi, A.; Grasso, F.; Pasteur, F.; Ussi, A.

    2015-08-01

    The dynamic study of electric motor driven compressors, for Oil&Gas (O&G) applications, are traditionally performed in two steps separating the mechanical and the electrical systems. The packager conducts a Torsional Vibration Analysis (TVA) modeling the mechanical system with a lumped parameter scheme, without taking into account the electrical part. The electric motor supplier later performs a source current pulsation analysis on the electric motor system, based on the TVA results. The mechanical and the electrical systems are actually linked by the electromagnetic effect. The effect of the motor air-gap on TVA has only recently been taken into account by adding a spring and a damper between motor and ground in the model. This model is more accurate than the traditional one, but is applicable only to the steady-state condition and still fails to consider the reciprocal effects between the two parts of the system. In this paper the torsional natural frequencies calculated using both the traditional and the new model have been compared. Furthermore, simulation of the complete system has been achieved through the use of LMS AMESim, multi-physics, one-dimensional simulation software that simultaneously solves the shafts rotation and electric motor voltage equation. Finally, the transient phenomena that occur during start-up have been studied.

  6. Design Concepts for Zero-G Whole Body Cleansing on ISS Alpha. Part 2; Individual Design Project; Degree awarded by International Space Univ., 1997

    NASA Technical Reports Server (NTRS)

    Mohanty, Susmita

    2001-01-01

    This document was originally published in 1997 as a International Space University Master of Space Studies student's project. While the specifics may be a little dated, the results gleaned are still relevant and valid. Johnson Space Center is now abuzz with preparations for the International Space Station. The work on the various systems for the U.S. Habitation Module will begin in 1998. As a prelude, the Flight Crew Support Division perceived the need to take a closer, more critical took at planning the Whole Body Cleansing function for ISS. This report is an endeavour to retrieve all data available on whole body cleansing mechanisms used, past and present, by the Russians and the Americans, analyze it and create design concepts for products/product systems for zero-g whole body cleansing on ISS Alpha, for typical duration of about 90 days. This report takes a close look at the Skylab collapsible shower, the Mir shower/sauna, the full body cleansing methods currently in use onboard the Space Shuttle and Mir and at the Whole Body Shower designed and tested for Space Station Freedom. It attempts to "listen" carefully to what the Mir astronauts (Norm Thagard, Shannon Lucid and John Blaha) have to say about their personal hygiene experiences during their recent stays on Mir. The findings in the report call for a change in paradigm. What is good for Earth conditions is not necessarily good for Zero-g! It concludes that a shower is not a good idea for the ISS. The final concept that is proposed reflects very strongly what the Mir astronauts would like to have and to use onboard a station like the ISS, The report concludes with directions of how to take the "idea" further and realize it in the form of a product system for Whole Body Cleansing onboard the ISS.

  7. The use of comparative {sup 137}Cs body burden estimates from environmental data/models and whole body counting to evaluate diet models for the ingestion pathway

    SciTech Connect

    Robison, W.L.; Sun, C.

    1997-07-01

    Rongelap and Utirik Atolls were contaminated on 1 March 1954, by a U.S. nuclear test at Bikini Atoll code named BRAVO. The people at both atolls were removed from their atolls in the first few days after the detonation and were returned to their atolls at different times. Detailed studies have been carried out over the years by Lawrence Livermore National Laboratory (LLNL) to determine the radiological conditions at the atolls and estimate the doses to the populations. The contribution of each exposure pathway and radionuclide have been evaluated. All dose assessments show that the major potential contribution to the estimated dose is {sup 137}Cs uptake via the terrestrial food chain. Brookhaven National Laboratory (BNL) has carried out an extensive whole body counting program at both atolls over several years to directly measure the {sup 137}Cs body burden. Here we compare the estimates of the body burdens from the LLNL environmental method with body burdens measured by the BNL whole body counting method. The combination of the results from both methods is used to evaluate proposed diet models to establish more realistic dose assessments. Very good agreement is achieved between the two methods with a diet model that includes both local and imported foods. Other diet models greatly overestimate the body burdens (i.e., dose) observed by whole body counting. The upper 95% confidence limit of interindividual variability around the population mean value based on the environmental method is similar to that calculated from direct measurement by whole body counting. Moreover, the uncertainty in the population mean value based on the environmental method is in very good agreement with the whole body counting data. This provides additional confidence in extrapolating the estimated doses calculated by the environmental method to other islands and atolls. 46 refs., 8 figs., 5 tabs.

  8. A Comparison of Molecular and Histopathological Changes in Mouse Intestinal Tissue Following Whole-Body Proton- or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Mangala, Lingegowda; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    2010-01-01

    There are many consequences following exposure to the space radiation environment which can adversely affect the health of a crew member. Acute radiation syndrome (ARS) involving nausea and vomiting, damage to radio-sensitive tissue such as the blood forming organs and gastrointestinal tract, and cancer are some of these negative effects. The space radiation environment is ample with protons and contains gamma rays as well. Little knowledge exists to this point, however, regarding the effects of protons on mammalian systems; conversely several studies have been performed observing the effects of gamma rays on different animal models. For the research presented here, we wish to compare our previous work looking at whole-body exposure to protons using a mouse model to our studies of mice experiencing whole-body exposure to gamma rays as part of the radio-adaptive response. Radio-adaptation is a well-documented phenomenon in