Sample records for wilt fusarium oxysporum

  1. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea

    PubMed Central

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun

    2015-01-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1?), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea.

  2. First Report on Fusarium Wilt of Zucchini Caused by Fusarium oxysporum, in Korea.

    PubMed

    Choi, In-Young; Kim, Ju-Hee; Lee, Wang-Hyu; Park, Ji-Hyun; Shin, Hyeon-Dong

    2015-06-01

    Fusarium wilt of zucchini in Jeonju, Korea, was first noticed in May 2013. Symptoms included wilting of the foliage, drying and withering of older leaves, and stunting of plants. Infected plants eventually died during growth. Based on morphological characteristics and phylogenetic analyses of the molecular markers (internal transcribed spacer rDNA and translation elongation factor 1?), the fungus was identified as Fusarium oxysporum. Pathogenicity of a representative isolate was demonstrated via artificial inoculation, and it satisfied Koch's postulates. To our knowledge, this is the first report of F. oxysporum causing wilt of zucchini in Korea. PMID:26190927

  3. Fusarium wilt of lentil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of lentil is caused by the soil borne fungus Fusaium oxysporum f. sp. lentis. The pathogen is widespread. The disease shows symptoms of wilting, and stunted plants. Other symptoms include wilting of top leaves resemble water deficiency, shrinking and curling of leaves from the lower...

  4. Inoculum Densities of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita in Relation to the Development of Fusarium Wilt and the Phenology of Cotton Plants (Gossypium hirsutum).

    PubMed

    Devay, J E; Gutierrez, A P; Pullman, G S; Wakeman, R J; Garber, R H; Jeffers, D P; Smith, S N; Goodell, P B; Roberts, P A

    1997-03-01

    ABSTRACT Development of Fusarium wilt in upland cotton (Gossypium hirsutum) usually requires infections of plants by both Meloidogyne incognita and Fusarium oxysporum f. sp. vasinfectum. In this study, the soil densities of M. incognita and F. oxysporum f. sp. vasinfectum and the incidence of Fusarium wilt in three field sites were determined in 1982-1984. Multiple regression analysis of percent incidence of Fusarium wilt symptoms on population densities of M. incognita and F. oxysporum f. sp. vasinfectum yielded a significant fit (R (2) = 0.64) only on F. oxysporum f. sp. vasinfectum. Significant t-values for slope were also obtained for the interaction of M. incognita and F. oxysporum f. sp. vasinfectum, but densities of M. incognita and F. oxysporum f. sp. vasinfectum were also related on a log(10) scale. The physiological time of appearance of first foliar symptoms of Fusarium wilt, based on a degree-days threshold of 11.9 degrees C (53.5 degrees F), was used as a basis for determining disease progress curves and the phenology of cotton plant growth and development. Effects of Fusarium wilt on plant height and boll set were determined in three successive years. Increases in both of these plant characteristics decreased or stopped before foliar symptoms were apparent. Seed cotton yields of plant cohorts that developed foliar wilt symptoms early in the season (before 2,000 F degree-days) were variable but not much different in these years. This contrasted with cohorts of plants that first showed foliar symptoms late in the season (after 2,400 F degree-days) and cohorts of plants that showed no foliar symptoms of wilt. Regression analyses for 1982-1984 indicated moderate to weak correlations (r = 0.16-0.74) of the time of appearance of the first foliar symptoms and seed cotton yields. PMID:18945178

  5. [Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].

    PubMed

    Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

    2014-07-01

    Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was significantly higher than that of YM42. In conclusion, intercropping influenced the microbial activity and substrate utilization of soil microorganisms, altered the microbial community diversity in rhizosphere of faba bean, reduced the amount of F. oxysporum and disease index of faba bean fusarium wilt, and promoted faba bean growth. Effects of intercropping on disease control were influenced by the intercropped wheat variety, suggesting that the differences of root exudates of wheat were important factors that affected soil-borne diseases control in intercropping. PMID:25345048

  6. Extracellular chitinases of fluorescent pseudomonads antifungal to Fusarium oxysporum f. sp. dianthi causing carnation wilt.

    PubMed

    Ajit, Naosekpam Singh; Verma, Rajni; Shanmugam, V

    2006-04-01

    Vascular wilt of carnation caused by Fusarium oxysporum f. sp. dianthi (Prill. & Delacr.) W. C. Synder & H.N. Hans inflicts substantial yield and quality loss to the crop. Mycolytic enzymes such as chitinases are antifungal and contribute significantly to the antagonistic activity of fluorescent pseudomonads belonging to plant-growth-promoting rhizobacteria. Fluorescent pseudomonads antagonistic to the vascular wilt pathogen were studied for their ability to grow and produce chitinases on different substrates. Bacterial cells grown on chitin-containing media showed enhanced growth and enzyme production with increased anti-fungal activity against the pathogen. Furthermore, the cell-free bacterial culture filtrate from chitin-containing media also significantly inhibited the mycelial growth. Both the strains and their cell-free culture filtrate from chitin-amended media showed the formation of lytic zones on chitin agar, indicating chitinolytic ability. Extracellular proteins of highly antagonistic bacterial strain were isolated from cell-free extracts of media amended with chitin and fungal cell wall. These cell-free conditioned media contained one to seven polypeptides. Western blot analysis revealed two isoforms of chitinase with molecular masses of 43 and 18.5 kDa. Further plate assay for mycelial growth inhibition showed the 43-kDa protein to be antifungal. The foregoing studies clearly established the significance of chitinases in the antagonism of fluorescent pseudomonads, showing avenues for possible exploitation in carnation wilt management. PMID:16550458

  7. Inhibitory Effect of Algal Extracts on Mycelial Growth of the Tomato-Wilt Pathogen, Fusarium oxysporum f. sp. lycopersici

    PubMed Central

    Kim, Jiyoung

    2008-01-01

    The present study was undertaken to explore the inhibitory effect of cyanobacterial extracts of Nostoc commune FA-103 against the tomato-wilt pathogen, Fusarium oxysporum f. sp. lycopersici. In an optimal medium, cell growth, antifungal activity, and antifungal compound production could be increased 2.7-fold, 4.1-fold, and 13.4-fold, respectively. A crude algal extract had a similar effect as mancozeb at the recommended dose, both in laboratory and pot tests. In vitro and in vivo fungal growth, spore sporulation and fungal infection of wilt pathogen in tomato seeds were significantly inhibited by cyanobacterial extracts. Nostoc commune FA-103 extracts have potential for the suppression of Fusarium oxysporum f. sp. lycopersici. PMID:23997634

  8. Discovery of a new source of resistance to Fusarium oxysporum, cause of Fusarium wilt in Allium fistulosum, located on chromosome 2 of Allium cepa Aggregatum group.

    PubMed

    Vu, Hoa Q; El-Sayed, Magdi A; Ito, Shin-Ichi; Yamauchi, Naoki; Shigyo, Masayoshi

    2012-11-01

    This study was carried out to evaluate the antifungal effect of Allium cepa Aggregatum group (shallot) metabolites on Fusarium oxysporum and to determine the shallot chromosome(s) related to Fusarium wilt resistance using a complete set of eight Allium fistulosum - shallot monosomic addition lines. The antifungal effects of hexane, butanol, and water extraction fractions from bulbs of shallot on 35 isolates of F. oxysporum were examined using the disc diffusion method. Only hexane and butanol fractions showed high antifungal activity. Shallot showed no symptom of disease after inoculation with F. oxysporum f. sp. cepae. The phenolic content of the roots and the saponin content of root exudates of inoculated shallot increased to much higher levels than those of the control at 3 days after inoculation. Application of freeze-dried shallot root exudates to seeds of A. fistulosum soaked in a spore suspension of F. oxysporum resulted in protection of seedlings against infection. Among eight monosomic addition lines and A. fistulosum, FF+2A showed the highest resistance to Fusarium wilt. This monosomic addition line also showed a specific saponin band derived from shallot on the thin layer chromatography profile of saponins in the eight monosomic addition lines. The chromosome 2A of shallot might possess some of the genes related to Fusarium wilt resistance. PMID:23199574

  9. RFLP analysis of rDNA-ITS regions of native non-pathogenic Fusarium oxysporum isolates and their field evaluation for the suppression of Fusarium wilt disease of banana

    Microsoft Academic Search

    R. Thangavelu; A. Jayanthi

    2009-01-01

    Fusarium wilt caused by Fusarium oxysporum f. sp. cubense is the most devastating disease of banana affecting commercial cultivars grown worldwide. An attempt has been made to identify\\u000a antagonistic, non-pathogenic Fusarium oxysporum (npFo) isolates from banana soil. A total of 200 rhizosphere soil samples were collected from different commercial cultivars, as\\u000a well as wild bananas. Forty Fusarium isolates were recovered,

  10. Proteomics of Fusarium oxysporum race 1 and race 4 reveals enzymes involved in carbohydrate metabolism and ion transport that might play important roles in banana Fusarium wilt.

    PubMed

    Sun, Yong; Yi, Xiaoping; Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil-spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt. PMID:25460190

  11. Proteomics of Fusarium oxysporum Race 1 and Race 4 Reveals Enzymes Involved in Carbohydrate Metabolism and Ion Transport That Might Play Important Roles in Banana Fusarium Wilt

    PubMed Central

    Peng, Ming; Zeng, Huicai; Wang, Dan; Li, Bo; Tong, Zheng; Chang, Lili; Jin, Xiang; Wang, Xuchu

    2014-01-01

    Banana Fusarium wilt is a soil–spread fungal disease caused by Fusarium oxysporum. In China, the main virulence fungi in banana are F. oxysporum race 1 (F1, weak virulence) and race 4 (F4, strong virulence). To date, no proteomic analyses have compared the two races, but the difference in virulence between F1 and F4 might result from their differentially expressed proteins. Here we report the first comparative proteomics of F1 and F4 cultured under various conditions, and finally identify 99 protein species, which represent 59 unique proteins. These proteins are mainly involved in carbohydrate metabolism, post-translational modification, energy production, and inorganic ion transport. Bioinformatics analysis indicated that among the 46 proteins identified from F4 were several enzymes that might be important for virulence. Reverse transcription PCR analysis of the genes for 15 of the 56 proteins revealed that their transcriptional patterns were similar to their protein expression patterns. Taken together, these data suggest that proteins involved in carbohydrate metabolism and ion transport may be important in the pathogenesis of banana Fusarium wilt. Some enzymes such as catalase-peroxidase, galactosidase and chitinase might contribute to the strong virulence of F4. Overexpression or knockout of the genes for the F4-specific proteins will help us to further understand the molecular mechanism of Fusarium-induced banana wilt. PMID:25460190

  12. Class V chitin synthase determines pathogenesis in the vascular wilt fungus Fusarium oxysporum and mediates resistance to plant defence compounds.

    PubMed

    Madrid, Martan P; Di Pietro, Antonio; Roncero, M Isabel G

    2003-01-01

    Chitin, a beta-1,4-linked polysaccharide of N-acetylglucosamine, is a major structural component of fungal cell walls. Fungi have multiple classes of chitin synthases that catalyse N-acetylglucosamine polymerization. Here, we demonstrate the requirement for a class V chitin synthase during host infection by the vascular wilt pathogen Fusarium oxysporum. The chsV gene was identified in an insertional mutagenesis screen for pathogenicity mutants. ChsV has a putative myosin motor and a chitin synthase domain characteristic of class V chitin synthases. The chsV insertional mutant and a gene replacement mutant of F. oxysporum display morphological abnormalities such as hyphal swellings that are indicative of alterations in cell wall structure and can be partially restored by osmotic stabilizer. The mutants are unable to infect and colonize tomato plants or to grow invasively on tomato fruit tissue. They are also hypersensitive to plant antimicrobial defence compounds such as the tomato phytoanticipin alpha-tomatine or H2O2. Reintroduction of a functional chsV copy into the mutant restored the growth phenotype of the wild-type strain. These data suggest that F. oxysporum requires a specific class V chitin synthase for pathogenesis, most probably to protect itself against plant defence mechanisms. PMID:12492869

  13. Wilting of date palm branches by Fusarium oxysporum in south of Iran and its control managements with soil solarization method.

    PubMed

    Saremi, H; Okhovvat, S M; Ashrafi, S J

    2007-01-01

    Wilting of some branches in nurseries and orchards of date palm were studied in south of Iran including Ahvaz and Abadan cities in 2005-2006 years. Different infected plants were visited and samples showing symptoms including wilting or death of branches collected from various areas and transferred to laboratory. Samples were cultured in common media (PDA) and different fungi were studied and identified. The most frequently isolated pathogen was Fusarium oxysporum which caused wilting of some branches of date palm seedling or trees in studied areas. Results showed that the disease caused main losses where date palm cuttings were cultured in infected soils, previously cropped to susceptible plants. Since chemical control was not managed the disease, soil disinfestations by soil solarization method was carried in Ahvaz as the warmer climate in studied areas to control the pathogen. Application of this method reduced population density of the pathogen from 1800 CFU -g/soil to 600 after 5 week. This method was simple, effective, non negative side and economic which can be used in nearly warm areas. PMID:18396818

  14. Influence of plant root exudates, germ tube orientation and passive conidia transport on biological control of fusarium wilt by strains of nonpathogenic Fusarium oxysporum.

    PubMed

    Mandeel, Qaher A

    2006-03-01

    In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48-96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5. PMID:16482390

  15. Fusarium wilt (Fusarium oxysporum f. sp. vasinfectum) genes expressed during infection of cotton (Gossypium hirsutum)dagger.

    PubMed

    McFadden, Helen G; Wilson, Iain W; Chapple, Robin M; Dowd, Caitriona

    2006-03-01

    SUMMARY We sought to identify Fusarium oxysporum f. sp. vasinfectum (Fov) genes that may be associated with pathogenicity. Initially we utilized microarray and Q-PCR technology to identify Fov genes expressed in root and hypocotyl tissues during a compatible infection of cotton. We identified 218 fungal clones representing 174 Fov non-redundant genes as expressed in planta. The majority of the expressed sequences were expressed in infected roots, with only six genes detected in hypocotyl tissue. The Fov genes identified were predominately of unknown function or associated with fungal growth and energy production. We then analysed the expression of the identified fungal genes in infected roots and in saprophytically grown mycelia and identified 11 genes preferentially expressed in plant tissue. A putative oxidoreductase gene (with homology to AtsC) was found to be highly preferentially expressed in planta. In Agrobacterium tumefaciens, AtsC is associated with virulence. Inoculation of a susceptible and a partially resistant cotton cultivar with either a pathogenic or a non-pathogenic isolate of Fov revealed that the expression of the Fov AtsC homologue was associated with pathogenicity and disease symptom formation. PMID:20507430

  16. Fusarium Wilt of Orchids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt of orchids is highly destructive and economically limiting to the production of quality orchids that has steadily increased in many production facilities. Important crops such as phalaenopsis, cattleyas, and oncidiums appear to be especially susceptible to certain Fusarium species. Fu...

  17. The Tomato Wilt Fungus Fusarium oxysporum f. sp. lycopersici shares Common Ancestors with Nonpathogenic F. oxysporum isolated from Wild Tomatoes in the Peruvian Andes

    PubMed Central

    Inami, Keigo; Kashiwa, Takeshi; Kawabe, Masato; Onokubo-Okabe, Akiko; Ishikawa, Nobuko; Pérez, Enrique Rodríguez; Hozumi, Takuo; Caballero, Liliana Aragón; de Baldarrago, Fatima Cáceres; Roco, Mauricio Jiménez; Madadi, Khalid A.; Peever, Tobin L.; Teraoka, Tohru; Kodama, Motoichiro; Arie, Tsutomu

    2014-01-01

    Fusarium oxysporum is an ascomycetous fungus that is well-known as a soilborne plant pathogen. In addition, a large population of nonpathogenic F. oxysporum (NPF) inhabits various environmental niches, including the phytosphere. To obtain an insight into the origin of plant pathogenic F. oxysporum, we focused on the tomato (Solanum lycopersicum) and its pathogenic F. oxysporum f. sp. lycopersici (FOL). We collected F. oxysporum from wild and transition Solanum spp. and modern cultivars of tomato in Chile, Ecuador, Peru, Mexico, Afghanistan, Italy, and Japan, evaluated the fungal isolates for pathogenicity, VCG, mating type, and distribution of SIX genes related to the pathogenicity of FOL, and constructed phylogenies based on ribosomal DNA intergenic spacer sequences. All F. oxysporum isolates sampled were genetically more diverse than FOL. They were not pathogenic to the tomato and did not carry SIX genes. Certain NPF isolates including those from wild Solanum spp. in Peru were grouped in FOL clades, whereas most of the NPF isolates were not. Our results suggested that the population of NPF isolates in FOL clades gave rise to FOL by gaining pathogenicity. PMID:24909710

  18. Cross Pathogenicity of Fusarium oxysporum f. sp. betae on Sugar Beet and Common Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt, also known as Fusarium yellows, is caused by the fungus Fusarium oxysporum. Fusarium oxysporum is a vascular pathogen with a broad host range including common bean (Phaseolus vulgaris L.) and sugar beet (Beta vulgaris L.) with formae speciales (f. sp.) defined by the ability to cause ...

  19. Proteomic analysis of Fusarium oxysporum f. sp. cubense tropical race 4-inoculated response to Fusarium wilts in the banana root cells

    PubMed Central

    2013-01-01

    Background Fusarium wilt of banana is one of the most destructive diseases in the world. This disease has caused heavy losses in major banana production areas. Except for molecular breeding methods based on plant defense mechanisms, effective methods to control the disease are still lacking. Dynamic changes in defense mechanisms between susceptible, moderately resistant, and highly resistant banana and Fusarium oxysporum f. sp. cubense tropical race 4 (Foc4) at the protein level remain unknown. This research reports the proteomic profile of three banana cultivars in response to Foc4 and transcriptional levels correlated with their sequences for the design of disease control strategies by molecular breeding. Results Thirty-eight differentially expressed proteins were identified to function in cell metabolism. Most of these proteins were positively regulated after Foc4 inoculation. These differentially regulated proteins were found to have important functions in banana defense response. Functional categories implicated that these proteins were associated with pathogenesis-related (PR) response; isoflavonoid, flavonoid, and anthocyanin syntheses; cell wall strengthening; cell polarization; reactive oxygen species production and scavenging; jasmonic acid-, abscisic acid-, and auxin-mediated signaling conduction; molecular chaperones; energy; and primary metabolism. By comparing the protein profiles of resistant and susceptible banana cultivars, many proteins showed obvious distinction in their defense mechanism functions. PR proteins in susceptible ‘Brazil’ were mainly involved in defense. The proteins related to PR response, cell wall strengthening and antifungal compound synthesis in moderately resistant ‘Nongke No.1’ were mainly involved in defense. The proteins related to PR response, cell wall strengthening, and antifungal compound synthesis in highly resistant ‘Yueyoukang I’ were mainly involved in defense. 12 differentially regulated genes were selected to validate through quantitative real time PCR method. Quantitative RT-PCR analyses of these selected genes corroborate with their respective protein abundance after pathogen infection. Conclusions This report is the first to use proteomic profiling to study the molecular mechanism of banana roots infected with Foc4. The differentially regulated proteins involved in different defense pathways are likely associated with different resistant levels of the three banana cultivars. PMID:24070062

  20. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108

    PubMed Central

    Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kuma

    2005-01-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita–wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706

  1. Studies on the management of root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex of green gram, Vigna radiata cv ML-1108.

    PubMed

    Haseeb, Akhtar; Sharma, Anita; Shukla, Prabhat Kumar

    2005-08-01

    Studies were conducted under pot conditions to determine the comparative efficacy of carbofuran at 1 mg a.i./kg soil, bavistin at 1 mg a.i./kg soil, neem (Azadirachta indica) seed powder at 50 mg/kg soil, green mould (Trichoderma harzianum) at 50.0 ml/kg soil, rhizobacteria (Pseudomonas fluorescens) at 50.0 ml/kg soil against root-knot nematode, Meloidogyne incognita-wilt fungus, Fusarium oxysporum disease complex on green gram, Vigna radiata cv ML-1108. All the treatments significantly improved the growth of the plants as compared to untreated inoculated plants. Analysis of data showed that carbofuran and A. indica seed powder increased plant growth and yield significantly more in comparison to bavistin and P. fluorescens. Carbofuran was highly effective against nematode, bavistin against fungus, A. indica seed powder against both the pathogens and both the bioagents were moderately effective against both the pathogens. PMID:16052706

  2. Fusarium oxysporum f. sp. vasinfectum race 4 in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A brief review of research on Fusarium oxysporum Schlechtend.:Fr. f. sp. vasinfectum (Atk.) W.C. Snyder & H.N. Hans. race 4 in California is presented. Fusarium wilt has recently emerged as the dominant disease concern for cotton (Gossypium hirsutum L., G. barbadense L.) growers in California. An es...

  3. Discovery of Fusarium wilt race 4 resistance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans)] is a soil-inhabiting fungus that can survive for long periods in the absence of a host, making it impractical to eradicate from infested fields. This cotton host specific forms of the fungus is comprised of different genotyp...

  4. Combining Fluorescent Pseudomonas spp. Strains to Enhance Suppression of Fusarium Wilt of Radish

    Microsoft Academic Search

    Marjan de Boer; Ientse van der Sluis; Leendert C. van Loon; Peter A. H. M. Bakker

    1999-01-01

    Fusarium wilt diseases, caused by the fungus Fusarium oxysporum, lead to significant yield losses of crops. One strategy to control fusarium wilt is the use of antagonistic, root-colonizing Pseudomonas spp. It has been demonstrated that different strains of these bacteria suppress disease by different mechanisms. Therefore, application of a mixture of these biocontrol strains, and thus of several suppressive mechanisms,

  5. A highly efficient Agrobacterium mediated transformation system for chickpea wilt pathogen Fusarium oxysporum f. sp. ciceri using DsRed-Express to follow root colonisation.

    PubMed

    Islam, Md Nazrul; Nizam, Shadab; Verma, Praveen K

    2012-06-20

    The soil-borne fungus Fusarium oxysporum f. sp. ciceri (Foc) causes vascular wilt of chickpea (Cicer arietinum L.), resulting in substantial yield losses worldwide. Agrobacterium tumefaciens mediated transformation (ATMT) has served as a resourceful tool for plant-pathogen interaction studies and offers a number of advantages over conventional transformation systems. Here, we developed a highly efficient A. tumefaciens mediated transformation system for Foc. In addition, a binary vector for constitutive expression of red fluorescent protein (DsRed-Express) was used to study developmental stages and host-pathogen interactions. Southern hybridisation was performed to confirm the transformation event and the presence of T-DNA in selected hygromycin resistant transformants. Most of the transformants showed single copy integrations at random positions. Microscopic studies revealed significant levels of fluorescent protein, both in conidia and mycelia. Confocal microscopy of chickpea roots infected with the transformed Foc showed rapid colonisation. These studies will allow us to develop strategies to determine the mechanisms of Foc-chickpea interaction in greater detail and to apply functional genomics for the characterisation of involved genes at the molecular level either by insertional mutagenesis or gene knock-out. PMID:22397973

  6. Pathogen profile update: Fusarium oxysporum

    Microsoft Academic Search

    CAROLINE B. MICHIELSE; MARTIJN REP

    2009-01-01

    Taxonomy: Kingdom Fungi; Phylum Ascomycota; Class Sordariomycetes; Order Hypocreales; Family Nectriaceae; genus Fusarium. Host range: Very broad at the species level. More than 120 different formae speciales have been identified based on specificity to host species belonging to a wide range of plant families. Disease symptoms: Initial symptoms of vascular wilt include vein clearing and leaf epinasty, followed by stunting,

  7. Elite-upland cotton germplasm-pool assessment of Fusarium wilt resistance in California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is currently the most economic and effective strategy for managing Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] disease. Over the past nine years, a new race of Fusarium (FOV race 4) has increasingly impacted cotton (Gossypium spp.) in production fields in the Sa...

  8. A study on the susceptibility of the model legume plant Medicago truncatula to the soil-borne pathogen Fusarium oxysporum

    Microsoft Academic Search

    Montserrat Ramírez-Suero; Anas Khanshour; Yves Martinez; Martina Rickauer

    2010-01-01

    Fusarium wilt is a soil-borne disease caused by formae specialis of Fusarium oxysporum on a large number of cultivated and wild plants. The susceptibility of the model legume plant Medicago truncatula to Fusarium oxysporum was studied by root-inoculating young plants in a miniaturised hydroponic culture. Among eight tested M. truncatula lines, all were susceptible to F. oxysporum f.sp. medicaginis, the

  9. Incidence of Fusarium wilt in Cucumis sativus  L. is promoted by cinnamic acid, an autotoxin in root exudates

    Microsoft Academic Search

    S. F. Ye; J. Q. Yu; Y. H. Peng; J. H. Zheng; L. Y. Zou

    2004-01-01

    The effects of Fusarium oxysporum f. sp. cucumerinum, the pathogen causing Fusarium wilt in cucumber and cinnamic acid, a principal autotoxic component in the root exudates of cucumber (Cucumis sativus L.), on plant growth, Photosynthesis and incidence of Fusarium wilt in cucumber were studied in order to elucidate the interaction of autotoxins and soil-borne pathogens in the soil sickness. F. oxysporum. f. sp. cucumerinum

  10. Arabidopsis defense response against Fusarium oxysporum.

    PubMed

    Berrocal-Lobo, Marta; Molina, Antonio

    2008-03-01

    The plant fungal pathogen Fusarium oxysporum (Fox) is the causal agent of root rot or wilt diseases in several plant species, including crops such as tomato (Solanum lycopersicum), banana (Musa sapientum) and asparagus (Asparagus officinalis). Colonization of plants by Fox leads to the necrosis of the infected tissues, a subsequent collapse of vascular vessels and decay of the plant. Plant resistance to Fox appears to be monogenic or oligogenic depending on the host. Perception of Fox by plants follows the concept of elicitor-induced immune response, which in turn activates several plant defense signaling pathways. Here, we review the Fox-derived elicitors identified so far and the interaction among the different signaling pathways mediating plant resistance to Fox. PMID:18289920

  11. In vitro antifugal activity of medicinal plant extract against Fusarium oxysporum f. sp. lycopersici race 3 the causal agent of tomato wilt.

    PubMed

    Isaac, G S; Abu-Tahon, M A

    2014-03-01

    Medicinal plant extracts of five plants; Adhatoda vasica, Eucalyptus globulus, Lantana camara, Nerium oleander and Ocimum basilicum collected from Cairo, Egypt were evaluated against Fusarium oxysporum f. sp. lycopersici race 3 in vitro conditions using water and certain organic solvents. The results revealed that cold distilled water extracts of O. basilicum and E. globulus were the most effective ones for inhibiting the growth of F. oxysporum f. sp. lycopersici. Butanolic and ethanolic extracts of the tested plants inhibited the pathogen growth to a higher extent than water extracts. Butanolic extract of O. basilicum completely inhibited the growth of F. oxysporum f. sp. lycopersici at concentrations 1.5 and 2.0% (v/v). Butanolic extracts (2.0%) of tested plants had a strong inhibitory effect on hydrolytic enzymes; ?-glucosidase, pectin lyase and protease of F. oxysporum f. sp. lycopersici. This study has confirmed that the application of plant extracts, especially from O. basilicum for controlling F. oxysporum f. sp. lycopersici is environmentally safe, cost effective and does not disturb ecological balance. Investigations are in progress to test the efficacy of O. basilicum extract under in vivo conditions. PMID:24561899

  12. New genotypes of Fusarium oxysporum f. sp. vasinfectum from the Southeastern United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sixty-one isolates of Fusarium oxysporum f. sp. vasinfectum were collected from cotton plants (Gossypium spp.) with symptoms of Fusarium wilt to determine the composition of races present in the southeastern U.S. Analysis of partial sequences of the translation elongation factor gene revealed four n...

  13. Update of Commercial Cultivar Screening for Resistance to Race 4 Fusarium oxysporum vasinfectum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt impacts on cotton in the San Joaquin Valley of California focused mostly on race 1 Fusarium oxysporum vasinfectum (FOV), with most economic impacts occurring when the disease was present in association with nematode damage. During the past five years, field investigations have found Fu...

  14. Fusaric acid production and pathogenicity of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, Fusarium wilt of cotton has gained increased importance with the emergence of extremely virulent strains of Fusarium oxysporum f. sp. vasinfectum. The recent discovery of new pathotypes not previously found in the U.S. is of particular concern to the cotton industry. In addition, a ...

  15. Increased soil suppressiveness to Fusarium wilt of flax after addition of municipal solid waste compost

    Microsoft Academic Search

    Claire Serra-Wittling; Sabine Houot; Claude Alabouvette

    1996-01-01

    The suppressiveness of a loamy soil amended with municipal solid waste compost to Fusarium wilt of flax (caused by Fusarium oxysporum f. sp. lini) was studied. The soil was moderately conducive to the disease, with an estimated half life time (HLT) of the flax population of 41 days. Heat-treatment made the soil highly conducive (HLT of 28 days). Compost addition

  16. In Search of Markers Linked to Fusarium Wilt Race 1 Resistance in Watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt in watermelon, caused by the fungus Fusarium oxysporum f. sp. niveum (FON), is responsible for severe economic losses and is one of the most important soilborne pathogens limiting watermelon production in many areas of the world. FON, which attacks the vasculature system of watermelon...

  17. Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diseases such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans)] represent expanding threats to cotton production. Integrating disease resistance into high-yielding, high-fiber quality cotton (Gossypium spp.) cultivars is one of the most important objectives in cotton bre...

  18. A major quantitative trait locus is associated with Fusarium Wilt Race 1 resistance in watermelon

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major disease of watermelon caused by the soil-borne fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). A genetic population of 186 F3 families (24 plants in each family) exhibited continuous segregation for Fon race 1 response. Geno...

  19. Control of Fusarium wilt in banana with Chinese leek

    PubMed Central

    Huang, Y.H.; Wang, R.C.; Li, C. H.; Zuo, C.W.; Wei, Y. R.; Zhang, L.; Yi, G.J.

    2012-01-01

    The inhibitory effects of Chinese leek(Allium tuberosum) on Fusarium oxysporum f. sp. cubense (Foc) and on Fusarium wilt incidence were studied in order to identify a potential efficient way to control the disease. Adopting the rotation system of Chinese leek-banana reduced the Fusarium wilt incidence and disease severity index by 88 %-97 % and 91 %-96 %, respectively, improved the crop value by 36 %-86 %, in an area heavily infested by Foc between 2007 and 2009. As a result of inoculation in the greenhouse, Chinese leek treatment reduced disease incidence and the disease severity index by 58 % and 62 %, respectively in the variety Baxi (AAA) and by 79 % and 81 %, respectively in the variety Guangfen NO.1 (ABB). Crude extracts of Chinese leek completely inhibited the growth of Foc race 4 on Petri dishes, suppressed the proliferation of the spores by 91 % and caused 87 % spore mortality. The findings of this study suggest that Chinese leek has the potential to inhibit Foc growth and Fusarium wilt incidence. This potential may be developed into an environmentally friendly treatment to control Fusarium wilt of banana. PMID:23144534

  20. Biological control of Fusarium wilt of tomato with Fusarium equiseti GF191 in both rock wool and soil systems

    Microsoft Academic Search

    Hayato Horinouchi; Hideki Watanabe; Yoshihiro Taguchi; Ahmed Muslim; Mitsuro Hyakumachi

    The plant growth-promoting fungus (PGPF) Fusarium equiseti GF191 was tested for its ability to control Fusarium wilt of tomato (FWT) caused by Fusarium oxysporum f. sp. lycopersici (FOL) in both a hydroponic rock wool and soil system. F. equiseti effectively controlled FWT, with protective effects based on disease severity of 66.7–88.6% in four experiments. The numbers\\u000a of colony-forming units of

  1. Beltwide breeders' elite-Upland germplasm-pool assessment of Fusarium wilt (FOV) races 1 & 4 in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host-plant resistance is currently the most economic and effective strategy for managing Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] in the San Joaquin Valley (SJV) of California. Recently, a strain of Fusarium (race 4) was identified in the SJV that damages most cultivars of Pima co...

  2. A Fusarium Wilt Resistance Gene in Gossypium barbadense and Its Effect on Root-Knot Nematode-Wilt Disease Complex.

    PubMed

    Wang, C; Roberts, P A

    2006-07-01

    ABSTRACT Fusarium wilt, caused by the soilborne pathogen Fusarium oxysporum f. sp. vasinfectum race 1, is a vascular disease in cotton (Gossypium spp.), and is a component of a disease complex with root-knot nematodes (Meloidogyne incognita). Genetic analysis of two interspecific crosses (G. barbadense Pima S-7 x G. hirsutum Acala NemX and Pima S-7 x Acala SJ-2) showed that one major gene (designated Fov1) with allele dosage effect conferred resistance to F. oxysporum f. sp. vasinfectum race 1 in Pima S-7. Two amplified fragment length polymorphism (AFLP) markers were linked to Fov1 in Pima S-7, with genetic distance from the gene of 9.3 and 14.6 centimorgans. Less severe wilt symptoms in Acala NemX than Acala SJ-2 indicated that Acala NemX possesses one or more minor genes contributing to delay of wilt symptoms. Highly resistant plants in F(2) and F(3) (Pima S-7 x NemX) families indicated transgressive segregation effects of minor genes in Acala NemX combined with Fov1 from Pima S-7. The effects of wilt and nematode resistance on the nematode-wilt disease complex were assayed with two inoculation methods. In the presence of both pathogens, wilt damage measured as shoot and root weight reductions was greatest on wilt- and nematode-susceptible Acala SJ-2 and least in root-knot nematode-resistant and wilt-susceptible Acala NemX. Intermediate damage occurred in wilt-resistant and root-knot nematode-susceptible Pima S-7. The results indicated that nematode resistance was more effective than wilt resistance in suppressing wilt symptoms when either resistance was present alone. Nematode resistance combined with intermediate wilt resistance, as in the F(1) (Pima S-7 x NemX), was highly effective in protecting plants from root-knot nematodes and race 1 of Fusarium wilt as a disease complex. PMID:18943146

  3. A polyketide synthase gene and an aspartate kinase like gene are required for the biosynthesis of fusaric acid in Fusarium Oxysporum f. sp. Vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically unique strain of the Fusarium wilt pathogen was first recognized in wilted and dead Upland cotton seedlings in Australia in 1993. Since that time the disease spread rapidly despite stringent containment practices. The Australian biotype isolates of Fusarium oxysporum f. sp. vasinfec...

  4. A POLYKETIDE SYNTHASE GENE AND AN ASPARTATE KINASE LIKE GENE ARE REQUIRED FOR THE BIOSYNTHESIS OF FUSARIC ACID IN FUSARIUM OXYSPORUM F. SP. VASINFECTUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically unique strain of the Fusarium wilt pathogen was first recognized in wilted and dead Upland cotton seedlings in Australia in 1993. Since that time the disease spread rapidly despite stringent containment practices. The Australian biotype isolates of Fusarium oxysporum f. sp. vasinfec...

  5. The application of high-throughput AFLP's in assessing genetic diversity in Fusarium oxysporum f. sp. cubense

    Microsoft Academic Search

    Susan Groenewald; Noëlani Van Den Berg; Walter F. O. Marasas; Altus Viljoen

    2006-01-01

    Fusarium oxysporum f. sp. cubense (Foc) is responsible for fusarium wilt of bananas. The pathogen consists of several variants that are divided into three races and 21 vegetative compatibility groups (VCGs). Several DNA-based techniques have previously been used to analyse the worldwide population of Foc, sometimes yielding results that were not always consistent. In this study, the high-resolution genotyping method

  6. Biological Control of Fusarium Wilt on Cotton by Use of Endophytic Bacteria

    Microsoft Academic Search

    C. Chen; E. M. Bauske; G. Musson; R. Rodriguezkabana; J. W. Kloepper

    1995-01-01

    One hundred seventy bacterial strains isolated from internal tissues of cotton, 49 strains with known biological control activity against Rhizoctonia solani in cotton, and 25 strains known to induce systemic resistance to Collectotrichum orbiculare in cucumber, were screened for biological control potential against vascular wilt of cotton caused by Fusarium oxysporum f. sp. vasinfectum. The strains were introduced as endophytes

  7. Tomato Fusarium wilt and its chemical control strategies in a hydroponic system

    Microsoft Academic Search

    Weitang Song; Ligang Zhou; Chengzong Yang; Xiaodong Cao; Liqun Zhang; Xili Liu

    2004-01-01

    Tomato (Lycopersicon esculentum Mill.) was cultivated in a hydroponic system with unlimited growth cultivation mode by using a deep flow technique. The identified wilt pathogen Fusarium oxysporum Klotz. was used to infect the plants. Seven fungicides, prochloraz, carbendazim, thiram, toclofos-methyl, hymexazol, azoxystrobin and carboxin, were tested in vitro for their inhibitory activities against the pathogen by mycelial growth inhibition with

  8. Evaluations of Fusarium wilt resistance in Upland cotton from Uzbek cotton germplasm resources.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. vasinfectum Atk. Sny & Hans (FOV), in combination with Verticillium dahliae Kleb, causes a wilt disease complex in cotton that significantly reduces yield. A highly virulent strain of FOV, No. 316, was isolated that caused up to 80% plant death in commercial cotton in Uzbe...

  9. Compost and Glomus mosseae for Management of Bacterial and Fusarium Wilts of Tomato

    Microsoft Academic Search

    L. B. Taiwo; D. T. Adebayo; O. S. Adebayo; J. A. Adediran

    2007-01-01

    Bacterial and fungal wilts cause considerable yield loss in tomato (Lycopersicum esculentumMill.), and require sustainable control strategies to reduce their incidence. Tomato was inoculated with the arbuscular mycorrhizal fungus Glomus mosseae(Nicolson & Gerdemann) Gerd. et Trappe, and treated with organic and inorganic fertilizers to determine effects on severity of tomato wilt caused by Ralstonia solanacearum(Smith) and Fusarium oxysporumSchlecht. f. sp.

  10. Interaction of Population Levels of Fusarium oxysporum f. sp. vasinfectum and Meloidogyne incognita on Cotton.

    PubMed

    Garber, R H; Jorgenson, E C; Smith, S; Hyer, A H

    1979-04-01

    In autoclaved greenhouse soil without Fusarium oxysporum f. sp. vasinfectum, Meloidogyne incognita did not cause leaf or vascular discoloration of 59-day-old cotton plants. Plants had root galls with as few as 50 Meloidogyne larvae per plant. Root galling was directly proportional to the initial nematode population level. Fusarium wilt symptoms occurred without nematodes with 77,000 fungus propagules or more per gram of soil. As few as 50 Meloidogyne larvae accompanying 650 fungus propagules caused Fusarium wilt. With few exceptions, leaf symptoms appeared sooner as numbers of either or both organisms increased. In soils infested with both organisms, the extent of fungal invasion and colonization was well correlated with the extent of nematode galling and other indications of the Fusarium wilt syndrome. PMID:19305546

  11. Induction of systemic resistance by Pseudomonas fluorescens in radish cultivars differing in susceptibility to fusarium wilt, using a novel bioassay

    Microsoft Academic Search

    M. Leeman; J. A. van Pelt; F. M. den Ouden; M. Heinsbroek; P. A. H. M. Bakker; B. Schippers

    1995-01-01

    Pseudomonas fluorescens-mediated induction of systemic resistance in radish against fusarium wilt (Fusarium oxysporum f. sp.raphani) was studied in a newly developed bioassay using a rockwool system. In this bioassay the pathogen and bacterium were confirmed to be confined to spatially separate locations on the plant root, throughout the experiment. Pathogen inoculum obtained by mixing peat with microconidia and subsequent incubation

  12. Efficacy of bacterial antagonists and different commercial products against Fusarium wilt on rocket

    Microsoft Academic Search

    K. Srinivasan; G. Gilardi; A. Garibaldi; M. L. Gullino

    2009-01-01

    Seven experimental trials were carried out to evaluate the efficacy of the bacterial strains Achromobacter xylosoxydans AM1 and Serratia sp. DM1 obtained from suppressive soils and from soilless used rockwool substrates (Pseudomonas putida FC6B, Pseudomonas sp. FC7B, Pseudomonas putida FC8B, Pseudomonas sp. FC9B and Pseudomonas sp. FC24B) against Fusarium wilt on rocket caused by Fusarium oxysporum ff. spp. raphani and

  13. Morphological and molecular characterization of melon accessions resistant to Fusarium wilts

    Microsoft Academic Search

    A. Oumouloud; M. S. Arnedo-Andrés; R. González-Torres; J. M. Álvarez

    2009-01-01

    Fusarium wilt incited by Fusarium oxysporum f. sp. melonis (F.o.m) is one of the most widespread and devastating melon diseases. While resistance to physiological races 0, 1, and 2\\u000a is relatively frequent in different botanical varieties, sources of resistance to race 1,2 are restricted to a few Far-Eastern\\u000a accessions. In this work, the results of a screening for resistance to

  14. Interactions of concomitant species of nematodes and Fusarium oxysporum f. sp. vasinfectum on cotton.

    PubMed

    Yang, H; Powell, N T; Barker, K R

    1976-01-01

    Meloidogyne incognita, Hoplolaintus galeatus, and North Carolina and Georgia populations of Belonolaimus longicaudatus were introduced singly and in various combinations with Fusarium oxysporum f. sp. vasinfectum on wilt-susceptible 'Rowden' cotton. Of all the nematodes, the combination of the N. C. population of B. longicaudatus with Fusarium promoted greatest wilt development. H. galeatus had no effect on wilt. With Fusarium plus M. incognito or B. longicaudatus, high nematode levels promoted greater wilt than low levels. The combination of either population of B. longicaudatus with M. incognita and Fusarium induced greater wilt development than comparable inoculum densities of either nematode alone or where H. galeatus was substituted for either of these nematodes. Nematode reproduction was inversely related to wilt development. Without Fusarium, however, the high inoculum level resulted in greater reproduction of all nematode species on cotton. Combining M. incognita with B. longicaudatus or H. galeatus gave mutually depressive effects on final nematode populations. The interactions of H. gateatus with B. longicaudatus varied with two populations of the latter. PMID:19308201

  15. Progress in breeding for tolerance to Fusarium wilt (FOV) races 1 and 4 in the San Joaquin Valley (SJV) of California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vulnerability of cotton production in California to Fusarium wilt [Fusarium oxysporum f. sp. vasinfectum (FOV)] highlights the need for comprehensive research to protect the future of the cotton industry in the San Joaquin Valley (SJV). A recently identified problematic strain of Fusarium (race ...

  16. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum.

    PubMed

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-12-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  17. The rhizosphere microbial community in a multiple parallel mineralization system suppresses the pathogenic fungus Fusarium oxysporum

    PubMed Central

    Fujiwara, Kazuki; Iida, Yuichiro; Iwai, Takashi; Aoyama, Chihiro; Inukai, Ryuya; Ando, Akinori; Ogawa, Jun; Ohnishi, Jun; Terami, Fumihiro; Takano, Masao; Shinohara, Makoto

    2013-01-01

    The rhizosphere microbial community in a hydroponics system with multiple parallel mineralization (MPM) can potentially suppress root-borne diseases. This study focused on revealing the biological nature of the suppression against Fusarium wilt disease, which is caused by the fungus Fusarium oxysporum, and describing the factors that may influence the fungal pathogen in the MPM system. We demonstrated that the rhizosphere microbiota that developed in the MPM system could suppress Fusarium wilt disease under in vitro and greenhouse conditions. The microbiological characteristics of the MPM system were able to control the population dynamics of F. oxysporum, but did not eradicate the fungal pathogen. The roles of the microbiological agents underlying the disease suppression and the magnitude of the disease suppression in the MPM system appear to depend on the microbial density. F. oxysporum that survived in the MPM system formed chlamydospores when exposed to the rhizosphere microbiota. These results suggest that the microbiota suppresses proliferation of F. oxysporum by controlling the pathogen's morphogenesis and by developing an ecosystem that permits coexistence with F. oxysporum. PMID:24311557

  18. The effect of Gossypium C-genome chromosomes on resistance to Fusarium wilt in allotetraploid cotton.

    PubMed

    Becerra Lopez-Lavalle, L A; McFadden, H; Brubaker, C L

    2007-08-01

    Fusarium oxysporum f. sp. vasinfectum (Fov) has the potential to become the most economically significant pathogen of cotton in Australia. Although the levels of resistance present in the new commercial cultivars have improved significantly, they are still not immune and cotton breeders continue to look for additional sources of resistance. The native Australian Gossypium species represent an alternative source of resistance because they could have co-evolved with the indigenous Fov pathogens. Forty-six BC(3 ) G. hirsutum x G. sturtianum multiple alien-chromosome-addition-line (MACAL) families were challenged with a field-derived Fov isolate (VCG-01111). The G. hirsutum parent of the hexaploid MACAL is highly susceptible to fusarium wilt; the G. sturtianum parent is strongly resistant. Twenty-two of the BC(3) families showed enhanced fusarium wilt resistance relative to the susceptible G. hirsutum parent. Logistic regression identified four G. sturtianum linkage groups with a significant effect on fusarium wilt resistance: two linkage groups were associated with improved fusarium wilt resistance, while two linkage groups were associated with increased fusarium wilt susceptibility. PMID:17632700

  19. Water balance altered in cucumber plants infected with Fusarium oxysporum f. sp. cucumerinum

    PubMed Central

    Wang, Min; Sun, Yuming; Sun, Guomei; Liu, Xiaokang; Zhai, Luchong; Shen, Qirong; Guo, Shiwei

    2015-01-01

    Fusarium wilt is caused by the infection and growth of the fungus Fusarium oxysporum in the xylem of host plants. The physiological responses of cucumbers that are infected with Fusarium oxysporum f. sp. cucumerinum (FOC) was studied in pot and hydroponic experiments in a greenhouse. The results showed that although water absorption and stem hydraulic conductance decreased markedly in infected plants, large amounts of red ink accumulated in the leaves of infected cucumber plants. The transpiration rate (E) and stomatal conductance (gs) of the infected plants were significantly reduced, but the E/gs was higher than healthy plants. We further found that there was a positive correlation between leaf membrane injury and E/gs, indicating that the leaf cell membrane injury increased the non-stomatal water loss from infected plants. The fusaric acid (FA), which was detected in the infected plant, resulted in damage to the leaf cell membranes and an increase in E/gs, suggesting that FA plays an important role in non-stomatal water loss. In conclusion, leaf cell membrane injury in the soil-borne Fusarium wilt of cucumber plants induced uncontrolled water loss from damaged cells. FA plays a critical role in accelerating the development of Fusarium wilt in cucumber plants. PMID:25579504

  20. Identification par CGSM de l’acide phénylacétique produit par Fusarium oxysporum f. sp . albedinis, agent causal du bayoud

    Microsoft Academic Search

    T Ait Kettout; F. Rahmania

    2010-01-01

    These studies are concerned with the isolation and identification of secondary metabolites produced by Fusarium oxysporum f. sp. albedinis (F. o. a.), the causal agent of bayoud, the wilt disease of the date palm (Phoenix dactylifera L.). Fungal secondary metabolites are chemical compounds identified in a limited number of species. They consist of toxins, antibiotics and antifungal agents. Among the

  1. Molecular characterization of Fusarium oxysporum f. sp. Vasinfectum isolates recovered from cottonseed imported from Australia into California for cattle feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bell et al. recovered 17 Fusarium oxysporum f. sp. vasinfectum (Fov) isolates from cottonseed imported from Australia into California for cattle feed in 2003. These isolates and four isolates obtained from wilted plants in Australia by Kochman in 1994 are distinct from American Fov isolates in that...

  2. Tomatidine and lycotetraose, hydrolysis products of ?-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells

    Microsoft Academic Search

    Shin-ichi Ito; Tomomi Eto; Shuhei Tanaka; Naoki Yamauchi; Hiroyuki Takahara; Tsuyoshi Ikeda

    2004-01-01

    Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid ?-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves ?-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of ?-tomatine have been extensively studied, those of Td and Lt

  3. Molecular characterization of Fusarium oxysporum f. sp. vasinfectum isolates from cottonseed imported from Australia into California for dairy feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bell et al. recovered 17 Fusarium oxysporum f. sp. vasinfectum (Fov) isolates from cottonseed imported from Australia into California for dairy feed in 2003. These isolates and four isolates obtained from wilted plants in Australia by Kochman in 1994 are distinct from American Fov isolates in that ...

  4. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    PubMed

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death. PMID:24313955

  5. The influence of Trichoderma harzianum on the root-knot Fusarium wilt complex in cotton.

    PubMed

    Yang, H; Powell, N T; Barker, K R

    1976-01-01

    Wilt-susceptible cultivar 'Rowden' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks. PMID:19308202

  6. The Influence of Trichoderma harzianum on the Root-knot Fusarium Wilt Complex in Cotton

    PubMed Central

    Yang, Henry; Powell, N. T.; Barker, K. R.

    1976-01-01

    Wilt-susceptible cultivar 'Rowden' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks. PMID:19308202

  7. The development and application of a plant bioassay to elucidate toxic principles directed at watermelon by Fusarium Oxysporum f. sp. niveum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Formae speciales of Fusarium oxysporum cause wilt and death of numerous agronomic crops worldwide. The objective of this research was to develop a bioassay for Fusarium toxins directed toward watermelon. Watermelon seedlings were grown to the two leaf stage; the roots were washed and trimmed. Two...

  8. Differentiation of Fusarium oxysporum isolates from Phoenix canadensis (Canary Island Date Palm) by vegetative compatibility grouping and molecular analysis

    Microsoft Academic Search

    L. V. Gunn; B. A. Summerell

    2002-01-01

    Fusarium wilt of Phoenix canariensis (Canary Island Date Palm) is caused by Fusarium oxysporum f. sp. canariensis (Foc). The disease occurs worldwide, including Australia where hundreds of palms have been killed. Isolates of Foc were collected from fronds of diseased palms at sites around Sydney and different parts (non-frond) of individual palms within\\u000a a site. Three techniques were used to

  9. Farkli Fluoresant Pseudomonas (FP) ?zolatlari ve Arbusküler Mikorhizal Fungus (AMF) Glomus intraradices'in Domates'teki Bazi Morfolojik Parametrelere ve Fusarium Solgunlu?una (Fusarium oxysporum f.sp. lycopersici (Sacc) Syd. Et Hans.) Etkisi

    Microsoft Academic Search

    Ahmet AKKÖPRÜ; Hatice ÖZAKTAN

    (2) Abstract: The effects of thirteen nonpathogenic Fluorescent Pseudomonad (FP) isolates and Arbuscular Mycorrhizal Fungus (AMF), Glomus intraradices Schenck &Smith, were examined on some of the morphological parameters (plant length, fresh and dry weight) of tomato and Fusarium wilt (Fusarium oxysporum f.sp. lycopersici (Sacc) Syd. Et Hans.) (FOL) in tomato in pots tests in this research. While G. intraradices (G.i.)

  10. Studies of a New Fusarium Wilt of Spinach in Texas. 

    E-print Network

    Taubenhaus, J. J. (Jacob Joseph)

    1926-01-01

    associated with Fusarium wilt. ...................... 21 1 1 Methods of control. .......................................... 21 j Summary .................................................. 22 I Acknowledgment... spinach wilt infects any of the parts of the plant above ground, although he points out that F~csarium spinaciae is an organism which invades the ' vascular system of the spinach root. The Fusarium here described, on the other hand, is found to invade...

  11. Identification of quantitative trait loci contributing to Fusarium wilt resistance on an AFLP linkage map of flax (Linum usitatissimum)

    Microsoft Academic Search

    W. Spielmeyer; A. G. Green; D. Bittisnich; N. Mendham; E. S. Lagudah

    1998-01-01

    An AFLP genetic linkage map of flax (Linum usitatissimum) was used to identify two quantitative trait loci (QTLs) on independent linkage groups with a major effect on resistance\\u000a to Fusarium wilt, a serious disease caused by the soil pathogen Fusarium oxysporum (lini). The linkage map was constructed using a mapping population from doubled-haploid (DH) lines. The DH lines were derived

  12. Onychomycosis by Fusarium oxysporum probably acquired in utero.

    PubMed

    Carvalho, Vania O; Vicente, Vania A; Werner, Betina; Gomes, Renata R; Fornari, Gheniffer; Herkert, Patricia F; Rodrigues, Cristina O; Abagge, Kerstin T; Robl, Renata; Camiña, Ricardo H

    2014-10-01

    Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother. PMID:25383318

  13. Onychomycosis by Fusarium oxysporum probably acquired in utero

    PubMed Central

    Carvalho, Vania O.; Vicente, Vania A.; Werner, Betina; Gomes, Renata R.; Fornari, Gheniffer; Herkert, Patricia F.; Rodrigues, Cristina O.; Abagge, Kerstin T.; Robl, Renata; Camiña, Ricardo H

    2014-01-01

    Fusarium oxysporum has been described as a pathogen causing onychomycosis, its incidence has been increasing in immunocompetent and disseminated infection can occur in immunosuppressed individuals. We describe the first case of congenital onychomycosis in a child caused by Fusarium oxysporum. The infection being acquired in utero was proven by molecular methods with the identification of the fungus both in the nail and placenta, most probably as an ascending contamination/infection in a HIV-positive, immunosuppressed mother. PMID:25383318

  14. Quantitative and Microscopic Assessment of Compatible and Incompatible Interactions between Chickpea Cultivars and Fusarium oxysporum f. sp. ciceris Races

    PubMed Central

    Jiménez-Fernández, Daniel; Landa, Blanca B.; Kang, Seogchan; Jiménez-Díaz, Rafael M.; Navas-Cortés, Juan A.

    2013-01-01

    Background Fusarium wilt caused by Fusarium oxysporum f. sp. ciceris, a main threat to global chickpea production, is managed mainly by resistant cultivars whose efficiency is curtailed by Fusarium oxysporum f. sp. ciceris races. Methodology We characterized compatible and incompatible interactions by assessing the spatial-temporal pattern of infection and colonization of chickpea cvs. P-2245, JG-62 and WR-315 by Fusarium oxysporum f. sp. ciceris races 0 and 5 labeled with ZsGreen fluorescent protein using confocal laser scanning microscopy. Findings The two races colonized the host root surface in both interactions with preferential colonization of the root apex and subapical root zone. In compatible interactions, the pathogen grew intercellularly in the root cortex, reached the xylem, and progressed upwards in the stem xylem, being the rate and intensity of stem colonization directly related with the degree of compatibility among Fusarium oxysporum f. sp. ciceris races and chickpea cultivars. In incompatible interactions, race 0 invaded and colonized ‘JG-62’ xylem vessels of root and stem but in ‘WR-315’, it remained in the intercellular spaces of the root cortex failing to reach the xylem, whereas race 5 progressed up to the hypocotyl. However, all incompatible interactions were asymptomatic. Conclusions The differential patterns of colonization of chickpea cultivars by Fusarium oxysporum f. sp. ciceris races may be related to the operation of multiple resistance mechanisms. PMID:23613839

  15. Wilts of the Watermelon and Related Crops: Fusarium Wilts of Cucurbits. 

    E-print Network

    Taubenhaus, J. J. (Jacob Joseph)

    1920-01-01

    cowpeas died badly from Fusarium wilt and ~kra only slightly), was planted to cowpeas, okra, cotton, squash. gourd, cashaw, watermc tomato, and cabbage. Thc object in this plot was to determine relationship, if any, of the cowpea and okra wilts... C C a. Watermelon sick field planted in 20 varieties of watermelons, nearly all of them wiped out by Fusarium wilt. This is indicated by the hareness of the field. The rows remaining healthy are okra, cowpeas, Irish potatoeo, tomatoes...

  16. Genetic Diversity of Fusarium oxysporum Strains from Common Bean Fields in Spain

    PubMed Central

    Alves-Santos, Fernando M.; Benito, Ernesto P.; Eslava, Arturo P.; Díaz-Mínguez, José María

    1999-01-01

    Fusarium wilt is an endemic disease in El Barco de Avila (Castilla y León, west-central Spain), where high-quality common bean cultivars have been cultured for the last century. We used intergenic spacer (IGS) region polymorphism of ribosomal DNA, electrophoretic karyotype patterns, and vegetative compatibility and pathogenicity analyses to assess the genetic diversity within Fusarium oxysporum isolates recovered from common bean plants growing in fields around El Barco de Avila. Ninety-six vegetative compatibility groups (VCGs) were found among 128 isolates analyzed; most of these VCGs contained only a single isolate. The strains belonging to pathogenic VCGs and the most abundant nonpathogenic VCGs were further examined for polymorphisms in the IGS region and electrophoretic karyotype patterns. Isolates belonging to the same VCG exhibited the same IGS haplotype and very similar electrophoretic karyotype patterns. These findings are consistent with the hypothesis that VCGs represent clonal lineages that rarely, if ever, reproduce sexually. The F. oxysporum f. sp. phaseoli strains recovered had the same IGS haplotype and similar electrophoretic karyotype patterns, different from those found for F. oxysporum f. sp. phaseoli from the Americas, and were assigned to three new VCGs (VCGs 0166, 0167, and 0168). Based on our results, we do not consider the strains belonging to F. oxysporum f. sp. phaseoli to be a monophyletic group within F. oxysporum, as there is no correlation between pathogenicity and VCG, IGS restriction fragment length polymorphism, or electrophoretic karyotype. PMID:10427016

  17. Biosynthesis of fusaric acid by Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A genetically unique biotype of the Fusarium wilt pathogen was first recognized in wilted and dead Upland cotton (Gossypium hirsutum) seedlings in Australia in 1993. Since that time, the disease has spread rapidly with losses greater than 90 percent in some Australian fields where it was first disc...

  18. [Effects of nitrogen application rate on faba bean fusarium wilt and rhizospheric microbial metabolic functional diversity].

    PubMed

    Dong, Yan; Yang, Zhi-xian; Dong, Kun; Tang, Li; Zheng, Yi; Hu, Guo-bin

    2013-04-01

    A field plot experiment was conducted to study the effects of different nitrogen (N) application rates on the microbial functional diversity in faba bean rhizosphere and the relationships between the microbial functional diversity and the occurrence of faba bean fusarium wilt. Four nitrogen application rates were installed, i. e. , N0(0 kg hm-2 , N1 (56. 25 kg hm-2) , N2(112. 5 kg hm-2), and N3 (168.75 kg hm-2), and Biolog microbial analysis system was applied to study the damage of faba bean fusarium wilt and the rhizospheric microbial metabolic functional diversity. Applying N (N1 N2, and N3) decreased the disease index of faba bean fusarium wilt and the quantity of Fusarium oxysporum significantly, and increased the quantities of bacteria and actinomyces and the ratios of bacteria/fungi and actinomyces/fungi significantly, with the peak values of bacteria and actinomyces, bacteria/fungi, and actinomyces/fungi, and the lowest disease index and F. oxysporum density in N2. As compared with N0, applying N increased the AWCD value significantly, but the effects of different N application rates on the ability of rhizospheric microbes in utilizing six types of carbon sources had definite differences. Under the application of N, the utilization rates of carbohydrates, carboxylic acids, and amino acids by the rhizospheric microbes were higher. Principal component analysis demonstrated that applying N changed the rhizospheric microbial community composition obviously, and the carbohydrates, carboxylic acids, and amino acids were the sensitive carbon sources differentiating the changes of the microbial community induced by N application. Applying N inhibited the utilization of carbohydrates and carboxylic acids but improved the utilization of amino acids and phenolic acids by the rhizospheric microbes, which could be one of the main reasons of applying N being able to reduce the harm of faba bean fusarium wilt. It was suggested that rationally applying N could increase the quantities of rhizospheric bacteria and actinomyces, alter the microbial metabolic function, and decrease F. oxysporum density, being an effective measure to control the occurrence of faba bean fusarium wilt. PMID:23898671

  19. Filamentous Fungi (Magnaporthe grisea and Fusarium oxysporum).

    PubMed

    Khang, Chang Hyun; Park, Sook-Young; Rho, Hee-Sool; Lee, Yong-Hwan; Kang, Seogchan

    2006-01-01

    A better understanding of fungal biology will facilitate judicious use of beneficial fungi and will also advance our efforts to control pathogenic fungi. Molecular studies of fungal biology have been greatly aided by transformation-mediated mutagenesis techniques. Transformation via nonhomologous integration of plasmid DNA bearing a selectable marker (e.g., antibiotic resistance gene) has been widely used for the random insertional mutagenesis of fungi - as an alternative to chemical and radiation mutagens - mainly because the integration of plasmid into the genome provides a convenient tag for subsequent identification and isolation of the mutated gene. Homologous recombination between a target gene on the chromosome and the introduced DNA carrying its mutant allele results in targeted gene knock-out. An important advance in fungal transformation methodology is the development of Agrobacterium tumefaciens-mediated transformation (ATMT) protocols for fungi. ATMT has been successfully applied to a phylogenetically diverse group of fungi and offers a number of advantages over conventional transformation techniques in both the random insertional mutagenesis and targeted gene knock-out. In this chapter, we describe ATMT protocols and vectors for fungal gene manipulation using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum, as target organisms. PMID:17033082

  20. Susceptibility of chrysanthemum and Paris daisy varieties to several isolates of Fusarium oxysporum f. sp. chrysanthemi.

    PubMed

    Garibaldi, A; Bertetti, D; Gullino, M L

    2009-01-01

    Fusarium oxysporum f.sp. chrysonthemi is a pathogen recently reported in Italy on four economically important ornamental crops belonging to the Compositae family: chrysanthemum (Chrysanthemum morifolium), Paris daisy (Argyranthemum frutescens), African daisy (Osteospermum sp.) and gerbera (Gerbera jamesonii). The risk of transmission of the pathogen among these species is high because the hosts are frequently cultivated in the same nursery. The susceptibility of 24 Paris daisy and 12 chrysanthemum cultivars to 10 isolates of F. oxysporum f. sp. chrysanthemi and 3 isolates of F. oxysporum of different origin and to one isolate of F. tracheiphilum from gerbera was tested. Among the tested chrysanthemum cultivars, "Menthise bianco", "Cottonball", "Super Yellow" and "Meribel" were resistant to all the tested strains, while Pingpong gel was resistant to 10 out of 12 isolates. Among the 24 tested cultivars of Paris daisy, only "Sole mio", "Butterfly" and "Maria" were resistant to all isolates of F. oxysporum f.sp. chrysanthemi and to F. tracheiphilum. The results obtained in this work suggest the need of devoting more attention to resistance to Fusarium wilt while developing new varieties of both chrysanthemum and Paris daisy, since only few varieties are resistant to all strains tested. PMID:20222547

  1. Molecular records of micro-evolution within the Algerian population of Fusarium oxysporum f. sp. albedinis during its spread to new oases

    Microsoft Academic Search

    Diana Fernandez; Mohamed Ouinten; Abdelaziz Tantaoui; Jean-Paul Geiger

    1997-01-01

    The genetic diversity of the date palm wilt pathogen Fusarium oxysporum f. sp. albedinis in Algeria was assessed using vegetative compatibility, restriction fragment length polymorphism (RFLP) of mitochondrial DNA (mtDNA), and random amplified polymorphic DNA (RAPD). Ninety-eight isolates were collected from the main infested regions, Touat, Gourara and Mzab, and 6 isolates from Morocco were added for comparison. All isolates

  2. Fusarium oxysporum Triggers Tissue-Specific Transcriptional Reprogramming in Arabidopsis thaliana

    PubMed Central

    Lyons, Rebecca; Stiller, Jiri; Powell, Jonathan; Rusu, Anca; Manners, John M.; Kazan, Kemal

    2015-01-01

    Some of the most devastating agricultural diseases are caused by root-infecting pathogens, yet the majority of studies on these interactions to date have focused on the host responses of aerial tissues rather than those belowground. Fusarium oxysporum is a root-infecting pathogen that causes wilt disease on several plant species including Arabidopsis thaliana. To investigate and compare transcriptional changes triggered by F. oxysporum in different Arabidopsis tissues, we infected soil-grown plants with F. oxysporum and subjected root and leaf tissue harvested at early and late timepoints to RNA-seq analyses. At least half of the genes induced or repressed by F. oxysporum showed tissue-specific regulation. Regulators of auxin and ABA signalling, mannose binding lectins and peroxidases showed strong differential expression in root tissue. We demonstrate that ARF2 and PRX33, two genes regulated in the roots, promote susceptibility to F. oxysporum. In the leaves, defensins and genes associated with the response to auxin, cold and senescence were strongly regulated while jasmonate biosynthesis and signalling genes were induced throughout the plant. PMID:25849296

  3. Root defense analysis against Fusarium oxysporum reveals new regulators to confer resistance

    PubMed Central

    Chen, Yi Chung; Wong, Chin Lin; Muzzi, Frederico; Vlaardingerbroek, Ido; Kidd, Brendan N.; Schenk, Peer M.

    2014-01-01

    Fusarium oxysporum is a root-infecting fungal pathogen that causes wilt disease on a broad range of plant species, including Arabidopsis thaliana. Investigation of the defense response against this pathogen had primarily been conducted using leaf tissue and little was known about the root defense response. In this study, we profiled the expression of root genes after infection with F. oxysporum by microarray analysis. In contrast to the leaf response, root tissue did not show a strong induction of defense-associated gene expression and instead showed a greater proportion of repressed genes. Screening insertion mutants from differentially expressed genes in the microarray uncovered a role for the transcription factor ETHYLENE RESPONSE FACTOR72 (ERF72) in susceptibility to F. oxysporum. Due to the role of ERF72 in suppressing programmed cell death and detoxifying reactive oxygen species (ROS), we examined the pub22/pub23/pub24 U-box type E3 ubiquitin ligase triple mutant which is known to possess enhanced ROS production in response to pathogen challenge. We found that the pub22/23/24 mutant is more resistant to F. oxysporum infection, suggesting that a heightened innate immune response provides protection against F. oxysporum. We conclude that root-mediated defenses against soil-borne pathogens can be provided at multiple levels. PMID:24998294

  4. Evolution of Fusarium oxysporum f. sp. vasinfectum Races Inferred from Multigene Genealogies.

    PubMed

    Skovgaard, K; Nirenberg, H I; O'Donnell, K; Rosendahl, S

    2001-12-01

    ABSTRACT Fusarium wilt of cotton is a serious fungal disease responsible for significant yield losses throughout the world. Evolution of the causal organism Fusarium oxysporum f. sp. vasinfectum, including the eight races described for this specialized form, was studied using multigene genealogies. Partial sequences of translation elongation factor (EF-1alpha), nitrate reductase (NIR), phosphate permase (PHO), and the mitochondrial small subunit (mtSSU) rDNA were sequenced in 28 isolates of F. oxysporum f. sp. vasinfectum selected to represent the global genetic diversity of this forma specialis. Results of a Wilcoxon Signed-Ranks Templeton test indicated that sequences of the four genes could be combined. In addition, using combined data from EF-1alpha and mtSSU rDNA, the phylogenetic origin of F. oxysporum f. sp. vasinfectum within the F. oxysporum complex was evaluated by the Kishino-Hasegawa likelihood test. Results of this test indicated the eight races of F. oxysporum f. sp. vasinfectum appeared to be nonmonophyletic, having at least two independent, or polyphyletic, evolutionary origins. Races 3 and 5 formed a strongly supported clade separate from the other six races. The combined EF-1alpha, NIR, PHO, and mtSSU rDNA sequence data from the 28 isolates of F. oxysporum f. sp. vasinfectum recovered four lineages that correlated with differences in virulence and geographic origin: lineage I contained race 3, mostly from Egypt, and race 5 from Sudan; lineage II contained races 1, 2, and 6 from North and South America and Africa; lineage III contained race 8 from China; and lineage IV contained isolates of races 4 and 7 from India and China, respectively. PMID:18943339

  5. Three improved Citrullus lanatus var. citroides lines USVL246-FR2, USVL252-FR2, and USVL335-FR2, with resistance to Fusarium oxysporum f. sp. niveum race 2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt (FW) is a major disease of watermelon in North America and around the world. Control of this disease is difficult because the soil-borne causal agent Fusarium oxysporum f. sp. niveum (Fon) produces chlamydospores that remain infectious in the soil for many years. Although, various le...

  6. A major QTL associated with Fusarium oxysporum race 1 resistance identified in genetic populations derived from closely related watermelon lines using selective genotyping and genotyping-by-sequencing for SNP discovery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt is a major soil-borne disease of watermelon caused by the fungus Fusarium oxysporum Schlechtend.:Fr. f. sp. niveum (E.F. Sm.) W.C. Snyder & H.N. Hans (Fon). In this study, a genetic population of 186 F3 families (24 plants in each family) exhibited continuous distribution for Fon race ...

  7. Phylogenetic analysis based on the PKS gene involved in fusaric acid biosynthesis production reveals close relationship between US race 1 lineage isolates & Australian biotype isolates of Fusarium Oxysporum f. sp. Vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isolates of Fusarium oxysporum f. sp. vasinfectum, the causal agent of fusarium wilt of cotton, vary significantly in their virulence. Isolates have been further subcategorized into pathogenic races based on their differential interaction with host genotypes. Phylogenetic analysis based on three n...

  8. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis

    Microsoft Academic Search

    Sara Sestili; Annalisa Polverari; Laura Luongo; Alberto Ferrarini; Michele Scotton; Jamshaid Hussain; Massimo Delledonne; Nadia Ficcadenti; Alessandra Belisario

    2011-01-01

    Background  \\u000a Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular\\u000a tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression\\u000a are

  9. Toxin-based in-vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt

    Microsoft Academic Search

    Abdelbasset El Hadrami; Abdelmalek El Idrissi-Tourane; Majida El Hassni; Fouad Daayf; Ismaïl El Hadrami

    2005-01-01

    Date palm (Phoenix dactylifera L.) is qualified as a ‘tree’ of great ecological and socio-economical importance in desert oases. Unfortunately, it is being decimated, especially in Morocco and Algeria, by a fusariosis wilt called bayoud and caused by Fusarium oxysporum f. sp. albedinis (Fao). Controlling this disease requires the implementation of an integrated management program. Breeding for resistance is one

  10. Detection of Fusarium oxysporum f.sp. basilici in substrates and roots by PCR.

    PubMed

    Pugliese, M; Ferrocino, I; Gullino, M L; Garibaldi, A

    2013-01-01

    Fusarium oxysporum is a soil-borne fungus that causes vascular wilts in a wide variety of plant species. Basil is recognized as an ecological niche for Fusarium oxysporum f.sp. basilici (FOB) and this fungus is now present in most countries where basil is cultivated. The rapid identification of the species affecting basil plants is necessary to define a successful method for crop protection. The aim of this study was to develop a PCR method for the rapid detection of Fusarium oxysporum f. sp. basilici in substrates. The specificity of the primers used was tested using the DNA extracted directly from substrate samples. Fusarium oxysporum f.sp. basilici was artificially inoculated with decreasing amounts in a commercial substrate (sphagnum peat moss) and in a mixture with 40% of municipal compost, after steam disinfestation. Basil seeds (cv. Fine verde) were sown in pots that were laid on a bench in the greenhouse. At time 0 and after 7, 14 and 21 days from the inoculation, substrate and root samples were collected and prepared for microbial analysis and for the DNA extraction. DNA extraction was carried out using NucleoSpin Soil Kit (Macherey-Nagel, Germany). PCR amplification for the specific detection was carried out using primer sets Bik 1 (5'-ATT CAA GAG CTA AAG GTC C-3') and Bik 4 (5'-TTT GAC CAA GAT AGA TGC C-3') for the first PCR, while primers Bik 1 + Bik 2 (5'-AAA GGT AGT ATA TCG GAG G-3') for the nested PCR to increase detection sensitivity. Disease incidence was also assessed 21 days after seeding. The results showed the presence of amplified fragments of the expected size when the concentration of F. oxysporum f.sp. basilici was at least 3.5 Log CFU g(-1) by using DNA extract directly from substrate, before roots were infected by the pathogen. The detection of Fusarium oxysporum f. sp. basilici by PCR method developed in this study is certainly simple and fast and can be useful for its reliable detection in substrate samples, but not to guarantee that the substrate is totally free of pathogens. PMID:25151841

  11. Soil treatments against Fusarium oxysporum f. sp. vasinfectum race 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Few economically feasible disease management options are available for California cotton producers with fields infested with race 4 of Fusarium oxysporum f. sp. vasinfectum. For treating soil to reduce inoculum levels, past studies indicate that solarization and fumigation with metam-sodium may be a...

  12. High Genetic Diversity Among Strains of Fusarium oxysporum f. sp. vasinfectum from Cotton in Ivory Coast.

    PubMed

    Abo, Kouabenan; Klein, Keith K; Edel-Hermann, Véronique; Gautheron, Nadine; Traore, Dossahoua; Steinberg, Christian

    2005-12-01

    ABSTRACT Seventeen isolates of Fusarium oxysporum f. sp. vasinfectum from the Ivory Coast were characterized using vegetative compatibility group (VCG), restriction fragment length polymorphism of the ribosomal inter-genic spacer region (IGS), and mating type (MAT) idiomorph, and compared with a worldwide collection of the pathogen containing all available reference strains. Some of the isolates were identical to known reference strains for all three traits, whereas others had previously unknown varieties of IGS and (possibly) VCG. One or the other MAT idiomorph was present in each of the new isolates and the reference strains. The new isolates and reference strains were grouped based upon the three traits. Strains from the Ivory Coast were found in 7 of 11 groups detected, suggesting multiple sources for Fusarium wilt in the country. Despite the presence of both MAT idiomorphs among isolates, no evidence for recombination was found. PMID:18943549

  13. Multilocus analysis using putative fungal effectors to describe a population of Fusarium oxysporum from Sugar Beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugar beet (Beta vulgaris L.) Fusarium yellows is caused by Fusarium oxysporum f. sp. betae and leads to significant reductions in root yield, sucrose percentage, juice purity, and storage for sugar beet producers. F. oxysporum f. sp. betae can be highly variable and many F. oxysporum isolated from...

  14. Molecular characterization of an endopolygalacturonase from Fusarium oxysporum expressed during early stages of infection.

    PubMed

    García-Maceira, F I; Di Pietro, A; Huertas-González, M D; Ruiz-Roldán, M C; Roncero, M I

    2001-05-01

    The tomato vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici produces an array of pectinolytic enzymes that may contribute to penetration and colonization of the host plant. Here we report the isolation of pg5, encoding a novel extracellular endopolygalacturonase (endoPG) that is highly conserved among different formae speciales of F. oxysporum. The putative mature pg5 product has a calculated molecular mass of 35 kDa and a pI of 8.3 and is more closely related to endoPGs from other fungal plant pathogens than to PG1, the major endoPG of F. oxysporum. Overexpression of pg5 in a bacterial heterologous system produced a 35-kDa protein with endoPG activity. Accumulation of pg5 transcript is induced by citrus pectin and D-galacturonic acid and repressed by glucose. As shown by reverse transcription-PCR, pg5 is expressed by F. oxysporum in tomato roots during the initial stages of infection. Targeted inactivation of pg5 has no detectable effect on virulence toward tomato plants. PMID:11319099

  15. Tomatidine and lycotetraose, hydrolysis products of alpha-tomatine by Fusarium oxysporum tomatinase, suppress induced defense responses in tomato cells.

    PubMed

    Ito, Shin-ichi; Eto, Tomomi; Tanaka, Shuhei; Yamauchi, Naoki; Takahara, Hiroyuki; Ikeda, Tsuyoshi

    2004-07-30

    Many fungal pathogens of tomato produce extracellular enzymes, collectively known as tomatinases, that detoxify the preformed antifungal steroidal glycoalkaloid alpha-tomatine. Tomatinase from the vascular wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici cleaves alpha-tomatine into the aglycon tomatidine (Td) and the tetrasaccharide lycotetraose (Lt). Although modes of action of alpha-tomatine have been extensively studied, those of Td and Lt are poorly understood. Here, we show that both Td and Lt inhibit the oxidative burst and hypersensitive cell death in suspension-cultured tomato cells. A tomatinase-negative F. oxysporum strain inherently non-pathogenic on tomato was able to infect tomato cuttings when either Td or Lt was present. These results suggest that tomatinase from F. oxysporum is required not only for detoxification of alpha-tomatine but also for suppression of induced defense responses of host. PMID:15280013

  16. Mutations of Fusarium oxysporum and Rhizoctonia solani by TCMTB

    Microsoft Academic Search

    A. Vanachter; E. van Wambeke

    1977-01-01

    Upon screening several fungicides, a few Fusarium oxysporum isolates and one Rhizoctonia solani isolate showed a distinct\\u000a and sudden decrease in sensitivity to TCMTB (2-(thiocyanomethylthio)-benzothiazole). The screening was carried out in Petri\\u000a dishes using an agar medium, mixed with the test fungicides, in the center of which a mycelial piece of the test fungus was\\u000a placed. In several TCMTB-containing plates,

  17. Dyeing of wool with natural anthraquinone dyes from Fusarium oxysporum

    Microsoft Academic Search

    F. A. Nagia; R. S. R. EL-Mohamedy

    2007-01-01

    Two anthraquinone compounds are described which were produced by liquid cultures of Fusarium oxysporum (isolate no. 4), isolated from the roots of citrus trees affected with root rot disease. These anthraquinone compounds are 2-acetyl-3,8-dihydroxy-6-methoxy anthraquinone or 3-acetyl-2,8-dihydroxy-6-methoxy anthraquinone. Dyeing of wool fabrics with these new anthraquinone compounds as natural dyes has been studied. The values of dyeing rate constant, half-time

  18. In vitro study of the growth, development and pathogenicity responses of Fusarium oxysporum to phthalic acid, an autotoxin from Lanzhou lily.

    PubMed

    Wu, Zhijiang; Yang, Liu; Wang, Ruoyu; Zhang, Yubao; Shang, Qianhan; Wang, Le; Ren, Qin; Xie, Zhongkui

    2015-08-01

    Continuous monoculture of Lanzhou lily (Lilium davidii var. unicolor Cotton) results in frequent incidence of fusarium wilt caused by Fusarium oxysporum. Phthalic acid (PA), a principal autotoxin from root exudates of Lanzhou lily, is involved in soil sickness by inducing autotoxicity. The aim of this study was to evaluate the direct allelopathic effects of PA on the growth, development and pathogenicity of F. oxysporum in vitro based on an ecologically relevant soil concentration. The results showed that PA slightly but not significantly inhibited the colony growth (mycelial growth) and fungal biomass of F. oxysporum at low concentrations ranging from 0.05 to 0.5 mM, and significantly inhibited the colony growth at the highest concentration (1 mM). None of the PA concentrations tested significantly inhibited the conidial germination and sporulation of F. oxysporum in liquid medium. However, mycotoxin (fusaric acid) yield and pathogenesis-related hydrolytic enzyme (protease, pectinase, cellulase, and amylase) activities were significantly stimulated in liquid cultures of F. oxysporum containing PA at ?0.25 mM. We conclude that PA at a soil level (i.e. 0.25 mM) is involved in plant-pathogen allelopathy as a stimulator of mycotoxin production and hydrolytic enzyme activities in F. oxysporum, which is possibly one of the mechanisms responsible for promoting the wilt disease of lily. PMID:25994089

  19. Characterization of Protein Changes Associated with Sugar Beet (Beta vulgaris) Resistance and Susceptibility to Fusarium oxysporum.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum is serious threat to sugar beet production worldwide. Although certain sugar beet lines appear to have resistance against F. oxysporum, little is understood about the basis for that resistance. Examination of F. oxysporum-induced changes in the sugar beet proteome has the poten...

  20. Phylogeny and pathogenicity of Fusarium oxysporum isolates from cottonseed imported from Australia into California for dairy cattle feed.

    PubMed

    Liu, Jinggao; Bell, Alois A; Wheeler, Michael H; Stipanovic, Robert D; Puckhaber, Lorraine S

    2011-11-01

    A unique biotype of the Fusarium wilt pathogen, Fusarium oxysporum Schlecht. f.sp. vasinfectum (Atk) Sny. & Hans., found in Australia in 1993 is favored by neutral or alkaline heavy soils and does not require plant parasitic nematodes to cause disease. This makes it a threat to 4-6 million acres of USA Upland cotton ( Gossypium hirsutum L.) that is grown on heavy alkaline soil and currently is not affected by Fusarium wilt. In 2001-2002, several shiploads of live cottonseed were imported into California for dairy cattle feed. Thirteen F. oxysporum f.sp. vasinfectum isolates and four isolates of a Fusarium spp. that resembled F. oxysporum were isolated from the imported cottonseed. The isolates, designated by an AuSeed prefix, formed four vegetative compatibility groups (VCG) all of which were incompatible with tester isolates for 18 VCGs found in the USA. Isolate AuSeed14 was vegetatively compatible with the four reference isolates of Australian biotype VCG01111. Phylogenetic analyses based on EF-1?, PHO, BT, Mat1-1, and Mat1-2 gene sequences separated the 17 seed isolates into three lineages (race A, race 3, and Fusarium spp.) with AuSeed14 clustering into race 3 lineage or race A lineage depending on the genes analyzed. Indel analysis of the EF-1? gene sequences revealed a close evolutionary relationship among AuSeed14, Australian biotype reference isolates, and the four Fusarium spp. isolates. The Australian seed isolates and the four Australian biotype reference isolates caused disease with root-dip inoculation, but not with stem-puncture inoculation. Thus, they were a vascular incompetent pathotype. In contrast, USA race A lineage isolates readily colonized vascular tissue and formed a vascular competent pathotype when introduced directly into xylem vessels. The AuSeed14 isolate was as pathogenic as the Australian biotype, and it or related isolates could cause a severe Fusarium wilt problem in USA cotton fields if they become established. PMID:22004096

  1. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds

    NASA Astrophysics Data System (ADS)

    Abd-Elsalam, Kamel A.; Khokhlov, Alexei R.

    2015-02-01

    The current research deals with the formulation and characterization of bio-based oil-in-water nanoemulsion. The formulated eugenol oil nanoemulsion was characterized by dynamic light scattering, stability test, transmission electron microscopy and thin layer chromatography. The nanoemulsion droplets were found to have a Z-average diameter of 80 nm and TEM study reveals the spherical shape of eugenol oil nanoemulsion (EON). The size of the nanoemulsion was found to be physically stable up to more than 1-month when it was kept at room temperature (25 °C). The TEM micrograph showed that the EON was spherical in shape and moderately mono or di-dispersed and was in the range of 50-110 nm. Three concentrations of the nanoformulation were used to evalute the anti-fusarium activity both in vitro and in vivo experiments. SDS-PAGE results of total protein from the Fusarium oxysporum f. sp. vasinfectum (FOV) isolate before and after treatment with eugenol oil nanoemulsion indicate that the content of extra cellular soluble small molecular proteins decreased significantly in EON-treated fungus. Light micrographs of mycelia and spores treated with EON showed the disruption of the fungal structures. The analysis of variance (ANOVA) for Fusarium wilt incidence indicated highly significant ( p = 0.000) effects of concentration, genotype, and their interaction. The difference in wilt incidence between concentrations and control was not the same for each genotype, that is, the genotypes responded differently to concentrations. Effects of three EON concentration on germination percentage, and radicle length, were determined in the laboratory. One very interesting finding in the current study is that cotton genotypes was the most important factors in determining wilt incidence as it accounted for 93.18 % of the explained (model) variation. In vitro experiments were conducted to evaluate the potential phytotoxic effect of three EON concentrations. Concentration, genotype and concentration x genotype interaction were all highly significant sources of variation in seed germination; however, interaction was the first in importance as a source of variation followed by the concentration, while genotype was the least important source of variation. These results suggest the potential use of eugenol oil nanoemulsion for protecting seedcotton from Fusarium wilt infection.

  2. [Biodegradation of agricultural plant residues by Fusarium oxysporum strains].

    PubMed

    Chepchak, T P; Kurchenko, I N; Iur'eva, E M

    2014-01-01

    The cellulolytic and endoglucanase activity of Fusarium oxysporum strains isolated from soil and plants in the media with plant waste as carbon source has been studied. It was established that the majority of studied strains were able to hydrolyze the filter paper, husk of sunflower seeds, wheat straw and corn stalks. Cellulolytic activity depended on the strain of microscopic fungi, type of substrate and duration of cultivation. The maximum cellulase activity 1 U/ml and the concentration of reducing sugars -0.875 mg/ml were found in soil strain F. oxysporum 420 in the medium with corn stalks. Endoglucanase activity of plant pathogenic strains was higher than that of soil ones. PMID:25199344

  3. MicroRNAs Suppress NB Domain Genes in Tomato That Confer Resistance to Fusarium oxysporum

    PubMed Central

    Ouyang, Shouqiang; Park, Gyungsoon; Atamian, Hagop S.; Han, Cliff S.; Stajich, Jason E.; Kaloshian, Isgouhi; Borkovich, Katherine A.

    2014-01-01

    MicroRNAs (miRNAs) suppress the transcriptional and post-transcriptional expression of genes in plants. Several miRNA families target genes encoding nucleotide-binding site–leucine-rich repeat (NB-LRR) plant innate immune receptors. The fungus Fusarium oxysporum f. sp. lycopersici causes vascular wilt disease in tomato. We explored a role for miRNAs in tomato defense against F. oxysporum using comparative miRNA profiling of susceptible (Moneymaker) and resistant (Motelle) tomato cultivars. slmiR482f and slmiR5300 were repressed during infection of Motelle with F. oxysporum. Two predicted mRNA targets each of slmiR482f and slmiR5300 exhibited increased expression in Motelle and the ability of these four targets to be regulated by the miRNAs was confirmed by co-expression in Nicotiana benthamiana. Silencing of the targets in the resistant Motelle cultivar revealed a role in fungal resistance for all four genes. All four targets encode proteins with full or partial nucleotide-binding (NB) domains. One slmiR5300 target corresponds to tm-2, a susceptible allele of the Tomato Mosaic Virus resistance gene, supporting functions in immunity to a fungal pathogen. The observation that none of the targets correspond to I-2, the only known resistance (R) gene for F. oxysporum in tomato, supports roles for additional R genes in the immune response. Taken together, our findings suggest that Moneymaker is highly susceptible because its potential resistance is insufficiently expressed due to the action of miRNAs. PMID:25330340

  4. Rapid and efficient estimation of pea resistance to the soil-borne pathogen Fusarium oxysporum by infrared imaging.

    PubMed

    Rispail, Nicolas; Rubiales, Diego

    2015-01-01

    Fusarium wilts are widespread diseases affecting most agricultural crops. In absence of efficient alternatives, sowing resistant cultivars is the preferred approach to control this disease. However, actual resistance sources are often overcome by new pathogenic races, forcing breeders to continuously search for novel resistance sources. Selection of resistant accessions, mainly based on the evaluation of symptoms at timely intervals, is highly time-consuming. Thus, we tested the potential of an infra-red imaging system in plant breeding to speed up this process. For this, we monitored the changes in surface leaf temperature upon infection by F. oxysporum f. sp. pisi in several pea accessions with contrasting response to Fusarium wilt under a controlled environment. Using a portable infra-red imaging system we detected a significant temperature increase of at least 0.5 °C after 10 days post-inoculation in the susceptible accessions, while the resistant accession temperature remained at control level. The increase in leaf temperature at 10 days post-inoculation was positively correlated with the AUDPC calculated over a 30 days period. Thus, this approach allowed the early discrimination between resistant and susceptible accessions. As such, applying infra-red imaging system in breeding for Fusarium wilt resistance would contribute to considerably shorten the process of selection of novel resistant sources. PMID:25671514

  5. Regulation of Sugar Transport Systems in Fusarium oxysporum var. lini

    PubMed Central

    Brandão, Rogélio L.; Loureiro-Dias, Maria C.

    1990-01-01

    Fusarium oxysporum var. lini (ATCC 10960) formed a facilitated diffusion system for glucose (Ks, about 10 mM) when grown under repressed conditions. Under conditions of derepression, the same system was present together with a high-affinity (Ks, about 40 ?M) active system. The maximum velocity of the latter was about 5% of that of the facilitated diffusion system. The high-affinity system was under the control of glucose repression and glucose inactivation. When lactose was the only carbon source in the medium, a facilitated diffusion system for lactose was found (Ks, about 30 mM). PMID:16348256

  6. Vitamin requirements of Fusarium oxysporum f. sp. vasinfectum.

    PubMed

    El-Abyad, M S; Ramadan, Z M

    1979-01-01

    The effect of eight water-soluble vitamins on germination, germ-tube extension, growth, and sporulation of Fusarium oxysporum Schl. f.sp. vasinfectum (Atk.) Snyder and Hansen, was studied. Each vitamin was utilized in eight different concentrations. The fungus responded favourably to all of the utilized vitamins in almost all the concentrations where germination, growth, and sporulation were substantially greater than the controls. Among the vitamins used, the fungus appeared to be highly sensitive to thiamine and pyridoxine, moderately sensitive to inositol and pantothenate, and least affected by folic acid. PMID:543346

  7. Contamination of Bananas with Beauvericin and Fusaric Acid Produced by Fusarium oxysporum f. sp. cubense

    PubMed Central

    Kuang, Ruibin; Yang, Qiaosong; Hu, Chunhua; Sheng, Ou; Zhang, Sheng; Ma, Lijun; Wei, Yuerong; Yang, Jing; Liu, Siwen; Biswas, Manosh Kumar; Viljoen, Altus; Yi, Ganjun

    2013-01-01

    Background Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis. Methodology/Principal Findings Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits. Conclusions/Signficance The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants. PMID:23922960

  8. BEET ROOT-ROT INDUCING ISOLATES OF FUSARIUM OXYSPORUM FROM COLORADO AND MONTANA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot, a rot of the root top of sugar beet, caused by Fusarium oxysporum has been confirmed only in Texas, USDA, to date. Isolates of Fusarium were obtained from beets with tip rot symptoms from Montana and Colorado. Isolates were identified and tested for pathogenicity on sugar beet. ...

  9. Pathogenic and Phylogenetic analysis of Fusarium oxysporum from Sugarbeet in Michigan and Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugarbeet (Beta vulgaris L.), caused by Fusarium oxysporum Schlechtend:FR. f. sp. betae (Stewart) Snyd & Hans, can lead to significant reduction in root yield sucrose percentage, and juice purity. Fusarium yellows has become increasingly common in both Michigan and Minnesota sug...

  10. Isolation, evaluation and characterization of Bacillus subtilis from cotton rhizospheric soil with biocontrol activity against Fusarium oxysporum.

    PubMed

    Gajbhiye, Archana; Rai, Alok R; Meshram, Sudhir U; Dongre, A B

    2010-07-01

    Present investigation is based on the isolation of Bacillus subtilis from cotton rhizosphere and their evaluation as biocontrol agent against Fusarium oxysporum. The production of extracellular hydrolytic enzyme was studied for determining the antagonism. 43% of 21 isolates were identified under the B. subtilis group on the basis of biochemical characterization. 38% isolates showed competitive activity against Fusarium oxysporum and exhibit more than 50% mycelial inhibition in dual culture bioassay. The pot assay of cotton by seed treatment and soil amendment technique under green house condition showed the competent activity of the isolates in preventing the wilting of cotton seedlings due to F. oxysporum infection. SVI values of 30 day old seedlings indicated that the soil inoculation with B. subtilis BP-2 and seed treatment with B. subtilis BP-9 significantly promoted the growth of cotton seedlings. RAPD profiling revealed the diversity in the Bacillus subtilis group, ranging from 10 to 32%. The discriminative pattern among the isolates belonging to the same species was validated by 16S rDNA partial sequencing which identified them into four different strains of B. subtilis. PMID:24026922

  11. Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis

    PubMed Central

    Jia, Ke; Gao, Yu-Han; Huang, Xiao-Qin; Guo, Rong-Jun; Li, Shi-Dong

    2015-01-01

    Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of 0.96 log10 ng/g to 2.39 log10 ng/g was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of 2.91 log10 ng/g to 3.36 log10 ng/g at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field. PMID:26060433

  12. Rhizosphere Inhibition of Cucumber Fusarium Wilt by Different Surfactin- excreting Strains of Bacillus subtilis.

    PubMed

    Jia, Ke; Gao, Yu-Han; Huang, Xiao-Qin; Guo, Rong-Jun; Li, Shi-Dong

    2015-06-01

    Bacillus subtilis B006 strain effectively suppresses the cucumber fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (Foc). The population dynamics of Foc, strain B006 and its surfactin over-producing mutant B841 and surfactin-deficient mutant B1020, in the rhizosphere were determined under greenhouse conditions to elucidate the importance of the lipopeptides excreted by these strains in suppressing Foc. Results showed that B. subtilis strain B006 effectively suppressed the disease in natural soil by 42.9%, five weeks after transplanting, whereas B841 and B1020 suppressed the disease by only 22.6% and 7.1%, respectively. Quantitative PCR assays showed that effective colonization of strain B006 in the rhizosphere suppressed Foc propagation by more than 10 times both in nursery substrate and in field-infected soil. Reduction of Foc population at the cucumber stems in a range of 0.96 log10 ng/g to 2.39 log10 ng/g was attained at the third and the fifth weeks of B006 treatment in nursery substrate. In field-infected soil, all three treatments with B. subtilis suppressed Foc infection, indicated by the reduction of Foc population at a range of 2.91 log10 ng/g to 3.36 log10 ng/g at the stem base, one week after transplanting. This study reveals that the suppression of fusarium wilt disease is affected by the effective colonization of the surfactin-producing B. subtilis strain in the rhizosphere. These results improved our understanding of the biocontrol mechanism of the B. subtilis strain B006 in the natural soil and facilitate its application as biocontrol agent in the field. PMID:26060433

  13. Insight into the molecular requirements for pathogenicity of Fusarium oxysporum f. sp. lycopersici through large-scale insertional mutagenesis

    PubMed Central

    Michielse, Caroline B; van Wijk, Ringo; Reijnen, Linda; Cornelissen, Ben JC; Rep, Martijn

    2009-01-01

    Background Fusarium oxysporum f. sp. lycopersici is the causal agent of vascular wilt disease in tomato. In order to gain more insight into the molecular processes in F. oxysporum necessary for pathogenesis and to uncover the genes involved, we used Agrobacterium-mediated insertional mutagenesis to generate 10,290 transformants and screened the transformants for loss or reduction of pathogenicity. Results This led to the identification of 106 pathogenicity mutants. Southern analysis revealed that the average T-DNA insertion is 1.4 and that 66% of the mutants carry a single T-DNA. Using TAIL-PCR, chromosomal T-DNA flanking regions were isolated and 111 potential pathogenicity genes were identified. Conclusions Functional categorization of the potential pathogenicity genes indicates that certain cellular processes, such as amino acid and lipid metabolism, cell wall remodeling, protein translocation and protein degradation, seem to be important for full pathogenicity of F. oxysporum. Several known pathogenicity genes were identified, such as those encoding chitin synthase V, developmental regulator FlbA and phosphomannose isomerase. In addition, complementation and gene knock-out experiments confirmed that a glycosylphosphatidylinositol-anchored protein, thought to be involved in cell wall integrity, a transcriptional regulator, a protein with unknown function and peroxisome biogenesis are required for full pathogenicity of F. oxysporum. PMID:19134172

  14. Hyphal Growth of Phagocytosed Fusarium oxysporum Causes Cell Lysis and Death of Murine Macrophages

    PubMed Central

    Schäfer, Katja; Bain, Judith M.

    2014-01-01

    Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host. PMID:25025395

  15. Induction of Systemic Resistance of Benzothiadiazole and Humic Acid in Soybean Plants Against Fusarium Wilt Disease

    PubMed Central

    Ismail, Mamdoh Ewis; Morsy, Kadry Mohamed

    2011-01-01

    The ability of benzothiadiazole (BTH) and/or humic acid (HA) used as seed soaking to induce systemic resistance against a pathogenic strain of Fusarium oxysporum was examined in four soybean cultivars under greenhouse conditions. Alone and in combination the inducers were able to protect soybean plants against damping-off and wilt diseases compared with check treatment. These results were confirmed under field conditions in two different locations (Minia and New Valley governorates). The tested treatments significantly reduced damping-off and wilt diseases and increased growth parameters, except the number of branches per plant and also increased seed yield. Application of BTH (0.25 g/L) + HA (4 g/L) was the most potent in this respect. Soybean seed soaking in BTH + HA produced the highest activities of the testes of oxidative enzymes followed by BTH in the four soybean cultivars. HA treatment resulted in the lowest increases of these oxidative enzymes. Similar results were obtained with total phenol but HA increased total phenol more than did BTH in all tested cultivars. PMID:22783118

  16. Method for rapid production of Fusarium oxysporum f. sp. vasinfectum chlamydospores

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A soil broth made from the commercial potting mix Super Soil induced rapid production of chlamydospores in many isolates of Fusarium oxysporum. Eight of 12 isolates of F. oxysporum f. sp. vasinfectum produced chlamydospores within five days when grown in Super Soil broth. The chlamydospore-producing...

  17. THE PATHOGENICITY AND DNA POLYMORPHISM OF FUSARIUM OXYSPORUM ORIGINATING FROM DIANTHUS CARYOPHYLLUS, GYPSOPHILA SPP. AND SOIL

    Microsoft Academic Search

    M. Werner; L. Irzykowska

    A number of Fusarium oxysporum pathogenic isolates originating from Dianthus caryophyllus, Gypsophila paniculata, G. repens and non-pathogenic strains obtained from soil was screened for pathogenicity and genetic variation. RAPD analysis con- ducted with arbitrary 10-mer primers gave 23 RAPD markers resulted from the DNA polymorphism. Clustering analysis based on RAPD fingerprint data revealed several distinct groups within F. oxysporum which

  18. Sensitivity of some nitrogen fixers and the target pest Fusarium oxysporum to fungicide thiram

    PubMed Central

    Osman, Awad G.; Elhussein, Adil A.; Mohamed, Afrah T.

    2012-01-01

    This study was carried out to investigate the toxic effects of the fungicide thiram (TMTD) against five nitrogen fixers and the thiram target pest Fusarium oxysporum under laboratory conditions. Nitrogen fixing bacteria Falvobacterium showed the highest values of LD50 and proved to be the most resistant to the fungicide followed by Fusarium oxysporum, while Pseudomonas aurentiaca was the most affected microorganism. LD50 values for these microorganisms were in 2–5 orders of magnitude lower in comparison with LD50 value for Fusarium oxysporum. Thiram was most toxic to Pseudomonas aurentiaca followed by Azospirillum. The lowest toxicity index was recorded for Fusarium oxysporum and Flavobacterium. The slope of the curve for Azomonas, Fusarium oxysporum and Flavobacterium is more steep than that of the other curves, suggesting that even a slight increase of the dose of the fungicide can cause a very strong negative effect. Thiram was more selective to Pseudomonas aurentiaca followed by Azospirillum, Rhizobium meliloti and Azomonas. The lowest selectivity index of the fungicide was recorded for Falvobacterium followed by Fusarium oxysporum. The highest safety coefficient of the fungicide was assigned for Flavobacterium, while Pseudomonas aurentiaca showed the lowest value. PMID:22783146

  19. Production, thermal stability and immobilisation of inulinase from Fusarium oxysporum.

    PubMed

    Gupta, A K; Rathore, P; Kaur, N; Singh, R

    1990-01-01

    Fusarium oxysporum produced maximum extracellular inulinase after 9 days of its growth at 25 degrees C on a medium (pH 5.5) containing 3% fructan and 0.2% sodium nitrate. The level of this enzyme decreased on the addition of either glucose, fructose, galactose or sucrose to F. oxysporum already growing on a fructan-containing medium. A significant increase in invertase production which resulted in an increase of the invertase/inulinase (S/I) ratio, was observed on addition of inulin to this fungus growing on other carbon sources. Glycerol (10%) gave better protection to inulinase against thermal denaturation at 50 degrees C compared to ethylene glycol and sorbitol. Inulinase immobilised in polyacrylamide gel retained 45% of its original activity. The immobilised enzyme showed a higher optimum temperature (45 degrees C) compared to free enzyme (37 degrees C). The immobilised enzyme after storage at 25 degrees C for 96 h showed 58% activity. Thermal stability of entrapped inulinase increased in the presence of inulin. PMID:1366387

  20. Cross pathogenicity and vegetative compatibility of Fusarium oxysporum isolated from sugar beet

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. betae, which causes Fusarium yellows in sugar beet, can be highly variable in virulence and morphology, with further diversity derived due to the wide geographic distribution of sugar beet production. Little is known about factors that determine pathogenicity to sugar beet...

  1. Variability in Fusarium oxysporum from sugar beets in the United States – Final Report

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows can cause significant reduction in root yield, sucrose percentage and juice purity in affected sugar beets. Research in our laboratory and others on variability in Fusarium oxysporum associated with sugar beets demonstrated that isolates that are pathogenic on sugar beet can be hig...

  2. Genetic transformation of Fusarium oxysporum f.sp. gladioli with Agrobacterium to study pathogenesis in Gladiolus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium rot caused by Fusarium oxysporum f.sp. gladioli (Fog) is one of the most serious diseases of Gladiolus, both in the field and in stored bulbs. In order to study the pathogenesis of this fungus, we have transformed Fog with Agrobacterium tumefaciens binary vectors containing the hygromycin B...

  3. FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum.

    PubMed

    Li, Peiqian; Pu, Xiaoming; Feng, Baozhen; Yang, Qiyun; Shen, Huifang; Zhang, Jingxin; Lin, Birun

    2015-01-01

    Velvet genes play critical roles in the regulation of diverse cellular processes. In current study, we identified the gene FocVel1, a homolog of Fusarium graminearum VelA, in the plant pathogenic fungus F. oxysporum f. sp. cucumerinum. This pathogen causes the destructive disease called cucumber Fusarium wilt (CFW), which severely affects the production and marketing of this vegetable worldwide. Transcript analyses revealed high expression of FocVel1 during conidiophore development. Disruption of the FocVel1 gene led to several phenotypic defects, including reduction in aerial hyphal formation and conidial production. The deletion mutant ?FocVel1 showed increased resistance to both osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and prochloraz fungicides, which may be related to changes in cell wall components. In the process of biofilm formation in vitro, the mutant strain ?FocVel1 displayed not only a reduction in spore aggregation but also a delay in conidial germination on the polystyrene surface, which may result in defects in biofilm formation. Moreover, pathogenicity assays showed that the mutant ?FocVel1 exhibited impaired virulence in cucumber seedlings. And the genetic complementation of the mutant with the wild-type FocVel1 gene restored all the defects of the ?FocVel1. Taken together, the results of this study indicated that FocVel1 played a critical role in the regulation of various cellular processes and pathogenicity in F. oxysporum f. sp. cucumerinum. PMID:25999976

  4. FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum

    PubMed Central

    Li, Peiqian; Pu, Xiaoming; Feng, Baozhen; Yang, Qiyun; Shen, Huifang; Zhang, Jingxin; Lin, Birun

    2015-01-01

    Velvet genes play critical roles in the regulation of diverse cellular processes. In current study, we identified the gene FocVel1, a homolog of Fusarium graminearum VelA, in the plant pathogenic fungus F. oxysporum f. sp. cucumerinum. This pathogen causes the destructive disease called cucumber Fusarium wilt (CFW), which severely affects the production and marketing of this vegetable worldwide. Transcript analyses revealed high expression of FocVel1 during conidiophore development. Disruption of the FocVel1 gene led to several phenotypic defects, including reduction in aerial hyphal formation and conidial production. The deletion mutant ?FocVel1 showed increased resistance to both osmotic stress and cell wall-damaging agents, but increased sensitivity to iprodione and prochloraz fungicides, which may be related to changes in cell wall components. In the process of biofilm formation in vitro, the mutant strain ?FocVel1 displayed not only a reduction in spore aggregation but also a delay in conidial germination on the polystyrene surface, which may result in defects in biofilm formation. Moreover, pathogenicity assays showed that the mutant ?FocVel1 exhibited impaired virulence in cucumber seedlings. And the genetic complementation of the mutant with the wild-type FocVel1 gene restored all the defects of the ?FocVel1. Taken together, the results of this study indicated that FocVel1 played a critical role in the regulation of various cellular processes and pathogenicity in F. oxysporum f. sp. cucumerinum. PMID:25999976

  5. Genotypic and Phenotypic Characterization of Fungi in the Fusarium oxysporum Species Complex from Soybean Roots.

    PubMed

    Ellis, Margaret L; Jimenez, David R Cruz; Leandro, Leonor F; Munkvold, Gary P

    2014-12-01

    Isolates in the Fusarium oxysporum species complex (FOSC) from soybean range from nonpathogenic to aggressive pathogens causing seedling damping-off, wilt, and root rot. The objective of this research was to characterize the genotype and phenotype of isolates within the FOSC recovered predominantly from soybean roots and seedlings. Sequence analyses of the translation elongation factor (tef1?) gene and the mitochondrial small subunit (mtSSU), polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) analysis of the intergenic spacer (IGS) region, and identification of the mating type loci were conducted for 170 isolates. Vegetative compatibility (VC) tests were conducted for 114 isolates. Isolate aggressiveness was tested using a rolled towel assay for 159 isolates. Phylogenetic analysis of the tef1? and mtSSU and PCR-RFLP analysis of the IGS region separated the FOSC isolates into five clades, including F. commune. Both mating type loci, MAT1-1 or MAT1-2, were present in isolates from all clades. The VC tests were not informative, because most VC groups consisted of a single isolate. Isolate aggressiveness varied within and among clades; isolates in clade 2 were significantly less aggressive (P < 0.0001) when compared with isolates from the other clades and F. commune. The results from this study demonstrate the high levels of genotypic and phenotypic diversity within the FOSC from soybean but further work is needed to identify characteristics associated with pathogenic capabilities. PMID:24983844

  6. The two-component histidine kinase Fhk1 controls stress adaptation and virulence of Fusarium oxysporum.

    PubMed

    Rispail, Nicolas; Di Pietro, Antonio

    2010-05-01

    Fungal histidine kinases (HKs) have been implicated in different processes, such as the osmostress response, hyphal development, sensitivity to fungicides and virulence. Members of HK class III are known to signal through the HOG mitogen-activated protein kinase (MAPK), but possible interactions with other MAPKs have not been explored. In this study, we have characterized fhk1, encoding a putative class III HK from the soil-borne vascular wilt pathogen Fusarium oxysporum. Inactivation of fhk1 resulted in resistance to phenylpyrrole and dicarboximide fungicides, as well as increased sensitivity to hyperosmotic stress and menadione-induced oxidative stress. The osmosensitivity of Delta fhk1 mutants was associated with a striking and previously unreported change in colony morphology. The Delta fhk1 strains showed a significant decrease in virulence on tomato plants. Epistatic analysis between Fhk1 and the Fmk1 MAPK cascade indicated that Fhk1 does not function upstream of Fmk1, but that the two pathways may interact to control the response to menadione-induced oxidative stress. PMID:20447287

  7. [Identification of phenylacetic acid produced by Fusarium oxysporum f. sp. albedinis, the causal agent of bayoud, using GC-MS].

    PubMed

    Ait Kettout, T; Rahmania, F

    2010-01-01

    These studies are concerned with the isolation and identification of secondary metabolites produced by Fusarium oxysporum f. sp. albedinis (F. o. a.), the causal agent of bayoud, the wilt disease of the date palm (Phoenix dactylifera L.). Fungal secondary metabolites are chemical compounds identified in a limited number of species. They consist of toxins, antibiotics and antifungal agents. Among the metabolites we could isolate from the pathogen grown in a liquid medium, and then identify by gas chromatography coupled with mass spectrometry (GC-MS), phenylacetic acid has been distinguished. This compound is widely described in the literature as having antimicrobial, antifungal, phytotoxic properties and also endowed with hormonal activity similar to that of indole acetic acid (IAA). To date, this metabolite has never been reported in F. o. a. PMID:21146137

  8. Mapping Fusarium wilt race 1 resistance genes in cotton by inheritance, QTL and sequencing composition.

    PubMed

    Ulloa, Mauricio; Wang, Congli; Hutmacher, Robert B; Wright, Steven D; Davis, R Michael; Saski, Christopher A; Roberts, Philip A

    2011-07-01

    Knowledge of the inheritance of disease resistance and genomic regions housing resistance (R) genes is essential to prevent expanding pathogen threats such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] in cotton (Gossypium spp.). We conducted a comprehensive study combining conventional inheritance, genetic and quantitative trait loci (QTL) mapping, QTL marker-sequence composition, and genome sequencing to examine the distribution, structure and organization of disease R genes to race 1 of FOV in the cotton genome. Molecular markers were applied to F(2) and recombinant inbred line (RIL) interspecific mapping populations from the crosses Pima-S7 (G. barbadense L.) × 'Acala NemX' (G. hirsutum L.) and Upland TM-1 (G. hirsutum) × Pima 3-79 (G. barbadense), respectively. Three greenhouse tests and one field test were used to obtain sequential estimates of severity index (DSI) of leaves, and vascular stem and root staining (VRS). A single resistance gene model was observed for the F(2) population based on inheritance of phenotypes. However, additional inheritance analyses and QTL mapping indicated gene interactions and inheritance from nine cotton chromosomes, with major QTLs detected on five chromosomes [Fov1-C06, Fov1-C08, (Fov1-C11 ( 1 ) and Fov1-C11 ( 2)) , Fov1-C16 and Fov1-C19 loci], explaining 8-31% of the DSI or VRS variation. The Fov1-C16 QTL locus identified in the F(2) and in the RIL populations had a significant role in conferring FOV race 1 resistance in different cotton backgrounds. Identified molecular markers may have important potential for breeding effective FOV race 1 resistance into elite cultivars by marker-assisted selection. Reconciliation between genetic and physical mapping of gene annotations from marker-DNA and new DNA sequences of BAC clones tagged with the resistance-associated QTLs revealed defenses genes induced upon pathogen infection and gene regions rich in disease-response elements, respectively. These offer candidate gene targets for Fusarium wilt resistance response in cotton and other host plants. PMID:21533837

  9. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics

    Microsoft Academic Search

    George E. Anasontzis; Anastasia Zerva; Panagiota M. Stathopoulou; Kosmas Haralampidis; George Diallinas; Amalia D. Karagouni; Dimitris G. Hatzinikolaou

    2011-01-01

    In an effort to increase ethanol productivity during the consolidated bioprocessing (CBP) of lignocellulosics by Fusarium oxysporum, we attempted the constitutive homologous overexpression of one of the key process enzymes, namely an endo-xylanase. The endo-?-1,4-xylanase 2 gene was incorporated into the F. oxysporum genome under the regulation of the gpdA promoter of Aspergillus nidulans. The transformation was effected through Agrobacterium

  10. Heterologous Expression of Transaldolase Gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for Enhanced Bioethanol Production

    Microsoft Academic Search

    Jin-Xia Fan; Xiao-Xue Yang; Jin-Zhu Song; Xiao-Mei Huang; Zhong-Xiang Cheng; Lin Yao; Olivia S. Juba; Qing Liang; Qian Yang; Margaret Odeph; Yan Sun; Yun Wang

    2011-01-01

    The filamentous fungus Fusarium oxysporum is known for its ability to ferment xylose-producing ethanol. However, efficiency of xylose utilization and ethanol yield\\u000a was low. In this study, the transaldolase gene from Saccharomyces cerevisiae has been successfully expressed in F. oxysporum by an Agrobacterium tumefaciens-mediated transformation method. The enzymatic activity of the recombinant fungus (cs28pCAM-Sctal4) was 0.195 times higher\\u000a than that

  11. Loss of function of the Fusarium oxysporum SNF1 gene reduces virulence on cabbage and Arabidopsis

    Microsoft Academic Search

    Manuel D. Ospina-Giraldo; Ewen Mullins; Seogchan Kang

    2003-01-01

    Fusarium oxysporum pathogenicity is believed to require the activity of cell wall-degrading enzymes. Production of these enzymes in fungi is subject to carbon catabolite repression, a process that in yeast is mostly controlled by the SNF1 (sucrose non-fermenting 1) gene. To elucidate the role of cell wall-degrading enzymes in F. oxysporum pathogenicity, we cloned and disrupted its SNF1 homologue ( FoSNF1).

  12. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains

    PubMed Central

    Durán, Nelson; Marcato, Priscyla D; Alves, Oswaldo L; De Souza, Gabriel IH; Esposito, Elisa

    2005-01-01

    Extracellular production of metal nanoparticles by several strains of the fungus Fusarium oxysporum was carried out. It was found that aqueous silver ions when exposed to several Fusarium oxysporum strains are reduced in solution, thereby leading to the formation of silver hydrosol. The silver nanoparticles were in the range of 20–50 nm in dimensions. The reduction of the metal ions occurs by a nitrate-dependent reductase and a shuttle quinone extracellular process. The potentialities of this nanotechnological design based in fugal biosynthesis of nanoparticles for several technical applications are important, including their high potential as antibacterial material. PMID:16014167

  13. United States Department of Agriculture-Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control.

    PubMed

    Bell, Alois A; Wheeler, Michael H; Liu, Jinggao; Stipanovic, Robert D; Puckhaber, Lorraine S; Orta, Heather

    2003-01-01

    A group of 133 isolates of the cotton wilt pathogen Fusarium oxysporum Schlecht f sp vasinfectum (Atk) Sny & Hans, representing five races and 20 vegetative compatibility groups within race 1 were used to determine the identity, biosynthetic regulation and taxonomic distribution of polyketide toxins produced by this pathogen. All isolates of F oxysporum f sp vasinfectum produced and secreted the nonaketide naphthazarin quinones, bikaverin and norbikaverin. Most isolates of race 1 (previously denoted as races 1, 2 and 6; and also called race A) also synthesized the heptaketide naphthoquinones, nectriafurone, anhydrofusarubin lactol and 5-O-methyljavanicin. Nine avirulent isolates of F oxysporum from Upland cotton roots, three isolates of race 3 of F oxysporum f sp vasinfectum, and four isolates of F oxysporum f sp vasinfectum from Australia, all of which previously failed to cause disease of Upland cotton (Gossypium hirsutum L) in stem-puncture assays, also failed to synthesize or secrete more than trace amounts of the heptaketide compounds. These results indicate that the heptaketides may have a unique role in the virulence of race 1 to Upland cotton. The synthesis of all polyketide toxins by ATCC isolate 24908 of F oxysporum f sp vasinfectum was regulated by pH, carbon/nitrogen ratios, and availability of calcium in media. Synthesis was greatest below pH 7.0 and increased progressively as carbon/nitrogen ratios were increased by decreasing the amounts of nitrogen added to media. The nonaketides were the major polyketides accumulated in synthetic media at pH 4.5 and below, whereas the heptaketides were predominant at pH 5.0 and above. The heptaketides were the major polyketides formed when 10 F oxysporum f sp vasinfectum race 1 isolates were grown on sterilized stems of Fusarium wilt-susceptible cotton cultivars, but these compounds were not produced on sorghum grain cultures. Both groups of polyketide toxins were apparently secreted by F oxysporum f sp vasinfectum, since half of the toxin in 2-day-old shake culture was present in the supernatant. Secretion was enhanced by calcium. Glutamine and glutamic acid inhibited both nonaketide and heptaketide syntheses, even at low nitrogen PMID:12846324

  14. Isolation and Heterologous Expression of a Polygalacturonase Produced by Fusarium oxysporum f. sp. cubense Race 1 and 4

    PubMed Central

    Dong, Zhangyong; Wang, Zhenzhong

    2015-01-01

    Fusarium wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense (FOC) represents a significant threat to banana (Musa spp.) production. Musa AAB is susceptible to Race 1 (FOC1) and Race 4 (FOC4), while Cavendish Musa AAA is found to be resistant to FOC1 but still susceptible to Race 4. A polygalacturonase (PGC3) was purified from the supernatant of Fusarium oxysporum f. sp. cubense race 4 (FOC4), which is the pathogen of Fusarium wilt. PGC3 had an apparent molecular weight of 45 kDa according to SDS-PAGE. The enzyme hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. The Km and Vmax values of PGC3 from FOC4 were determined to be 0.70 mg·mL?1 and 101.01 Units·mg·protein?1·min?1, respectively. Two pgc3 genes encoding PGC3 from FOC4 and FOC1, both genes of 1368 bp in length encode 456 amino-acid residues with a predicted signal peptide sequence of 21 amino acids. There are 16 nucleotide sites difference between FOC4-pgc3 and FOC1-pgc3, only leading to four amino acid residues difference. In order to obtain adequate amounts of protein required for functional studies, two genes were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC3, r-FOC1-PGC3 and r-FOC4-PGC3, were expressed and purified as active proteins. The optimal PGC3 activity was observed at 50 °C and pH 4.5. Both recombinant PGC3 retained >40% activity at pH 3–7 and >50% activity in 10–50 °C. Both recombinant PGC3 proteins could induce a response but with different levels of tissue maceration and necrosis in banana plants. In sum, our results indicate that PGC3 is an exo-PG and can be produced with full function in P. pastoris. PMID:25854430

  15. Effects of water regime, crop residues, and application rates on control of Fusarium oxysporum f. sp. cubense.

    PubMed

    Wen, Teng; Huang, Xinqi; Zhang, Jinbo; Zhu, Tongbin; Meng, Lei; Cai, Zucong

    2015-05-01

    Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense (FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5tons/ha and 3.0tons/ha was incubated under flooded or water-saturated (100% water holding capacity) conditions at 30°C for 30days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential (down to -350mV) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3tons/ha. Therefore, incorporating soil with straw (rice or maize straw) at a rate of 3.0tons/ha under 100% water holding capacity or 1.5tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30°C. PMID:25968255

  16. Root Exudates from Grafted-Root Watermelon Showed a Certain Contribution in Inhibiting Fusarium oxysporum f. sp. niveum

    PubMed Central

    Wang, Dongsheng; Mao, Jiugeng; Huang, Qiwei; Guo, Shiwei; Shen, Qirong

    2013-01-01

    Grafting watermelon onto bottle gourd rootstock is commonly used method to generate resistance to Fusarium oxysporum f. sp. niveum (FON), but knowledge of the effect of the root exudates of grafted watermelon on this soil-borne pathogen in rhizosphere remains limited. To investigate the root exudate profiles of the own-root bottle gourd, grafted-root watermelon and own-root watermelon, recirculating hydroponic culture system was developed to continuously trap these root exudates. Both conidial germination and growth of FON were significantly decreased in the presence of root exudates from the grafted-root watermelon compared with the own-root watermelon. HPLC analysis revealed that the composition of the root exudates released by the grafted-root watermelon differed not only from the own-root watermelon but also from the bottle gourd rootstock plants. We identified salicylic acid in all 3 root exudates, chlorogenic acid and caffeic acid in root exudates from own-root bottle gourd and grafted-root watermelon but not own-root watermelon, and abundant cinnamic acid only in own-root watermelon root exudates. The chlorogenic and caffeic acid were candidates for potentiating the enhanced resistance of the grafted watermelon to FON, therefore we tested the effects of the two compounds on the conidial germination and growth of FON. Both phenolic acids inhibited FON conidial germination and growth in a dose-dependent manner, and FON was much more susceptible to chlorogenic acid than to caffeic acid. In conclusion, the key factor in attaining the resistance to Fusarium wilt is grafting on the non-host root stock, however, the root exudates profile also showed some contribution in inhibiting FON. These results will help to better clarify the disease resistance mechanisms of grafted-root watermelon based on plant-microbe communication and will guide the improvement of strategies against Fusarium-mediated wilt of watermelon plants. PMID:23700421

  17. Release of pea germplasm with Fusarium resistance combined with desirable yield and anti-lodging traits

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium root rot caused by Fusarium solani f. sp. pisi (Fsp) and Fusarium wilt caused by Fusarium oxysporum f. sp. pisi (Fop) races 1, 2 and 5, negatively impact the pea industry worldwide. Limited pea germplasm with agronomically acceptable characteristics combined with resistance to these disease...

  18. Comparative studies with regard to the influence of carbon and nitrogen ratio on sporulation in Fusarium oxysporum and Fusarium moniliforme v. subglutinans.

    PubMed

    Prasad, M

    1979-01-01

    Carbon/nitrogen ratio as a factor for sporulation, expressed in terms of magnitude of population variation of macroconidia and microconidia in the cultures of Eusarium oxysporum Schlecht ex. Fr., Fusarium moniliforme v. subglutinans Wr. and Rg., and of chlamydospores (only in Fusarium oxysporum) was investigated. It has been found that the amount of carbon source shapes the course of macro- and micro. conidial production in a linear fashion, being enhanced parallel to the increase in its amount-Nitrogen level, limiting proliferation and effectively diminishing the macro- and micro-conidial population, varies for the two species, namely Fusarium oxysporum and Fusarium moniliforme v-subglutinans. For chlamydomspore production, higher carbon and still higher nitrogen concentration favours profuse proliferation in case of Fusarium oxysporum. PMID:543920

  19. Inactivation of Snt2, a BAH/PHD-containing transcription factor, impairs pathogenicity and increases autophagosome abundance in Fusarium oxysporum.

    PubMed

    Denisov, Youlia; Freeman, Stanley; Yarden, Oded

    2011-06-01

    The soil-borne, asexual fungus Fusarium oxysporum f.sp. melonis (FOM) is a causal agent of muskmelon wilt disease. The current study focused on the most virulent race of FOM-race 1,2. The tagged mutant D122, generated by Agrobacterium tumefaciens-mediated transformation, caused the delayed appearance of initial wilt disease symptoms, as well as a 75% reduction in pathogenicity. D122 was impaired in the gene product homologous to the Snt2-like transcription factor of Schizosaccharomyces pombe. Involvement of snt2 in the early stage of FOM pathogenesis and its requirement for host colonization were confirmed by targeted disruption followed by quantitative reverse transcription-polymerase chain reaction analysis of snt2 expression in planta. ?snt2 mutants of FOM and Neurospora crassa exhibited similar morphological abnormalities, including a reduction in conidia production and biomass accumulation, slower vegetative growth and frequent hyphal septation. In N. crassa, snt-2 is required for sexual development, as ?snt-2 mutants were unable to produce mature perithecia. Suppressive subtraction hybridization analysis of the D122 mutant versus wild-type isolate detected four genes (idi4, pdc, msf1, eEF1G) that were found previously in association with the target of rapamycin (TOR) kinase pathway. Expression of the autophagy-related idi4 and pdc genes was found to be up-regulated in the ?snt2 FOM mutant. In N. crassa, disruption of snt-2 also conferred a significant over-expression of idi4. PMID:21535351

  20. On the reliability of Fusarium oxysporum f. sp. niveum research: Do we need standardized testing methods?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. nivium (Fon) is a pathogen highly variable in aggressiveness that requires a standardized testing method to more accurately define isolate aggressiveness (races) and to identify resistant watermelon lines. Isolates of Fon vary in aggressiveness from weakly to highly aggres...

  1. Dry heat and hot water treatments for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential of low- and high-temperature dry heat, and hot water treatments, for disinfesting cottonseed of Fusarium oxysporum f. sp. vasinfectum was investigated. Naturally infected seeds from Louisiana were air-heated in incubators set at temperatures of 30, 35, and 40 degrees C for up to 24 we...

  2. Survival of Fusarium oxysporum f. sp. vasinfectum chlamydospores under solarization temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Solarization is an effective soil treatment against race 4 of Fusarium oxysporum f. sp. vasinfectum. Despite the lack of effective alternatives, solarization is rarely used in cotton because of its high cost. Use of solarization might be increased if soil temperatures could be used to predict redu...

  3. Molecular characterization of Uzbekistan isolates of fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A collection of isolates of Fusarium oxysporum f.sp. vasinfectum (FOV) from cotton in Uzbekistan was characterized based on a candidate gene sequencing approach. As a first step, cotton seedlings were artificially infected with eight randomly selected unknown FOV isolates from the collection, FOV st...

  4. Fine Structure of the Early Interaction of Lily Roots with Fusarium oxysporum f.sp. lilii

    Microsoft Academic Search

    R. P. Baayen; F. H. J. Rijkenberg

    1999-01-01

    The early interaction of lily roots with the cortical rot pathogen Fusarium oxysporum f.sp. lilii was studied using roots of lily bulblets grown in Hoagland's solution, inoculated with the pathogen, and sampled up to 48?h later. Conidia produced germ tubes within 6?h, which extended towards and into the mucilage covering the root elongation zone, and along and into the anticlinal

  5. Glucosinolate degradation by Aspergillus clavatus and Fusarium oxysporum in liquid and solid-state fermentation

    Microsoft Academic Search

    J. P. Smits; W. Knol; J. Bol

    1993-01-01

    Two fungal strains, Aspergillus clavatus II-9 and Fusarium oxysporum @ 149, proved to be capable of degrading sinigrin and sinalbin. During the degradation of sinigrin by whole cells of the Aspergillus strain, allylcyanide accumulated in the liquid incubation mixture. After a maximum concentration had been reached, the concentration of allylcyanide decreased as a result of its instability in the medium

  6. Sequence characterization of race 4-like isolates of Fusarium oxysporum from Alabama and Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The presence of race 4-like isolates of Fusarium oxysporum f. sp. vasinfectum from the southeastern U.S. was recently reported. Race 4 can cause significant damage to Upland cultivars in the absence of root-knot nematodes; therefore, the discovery of this race in the Southeast could have serious im...

  7. ULTRASTRUCTURE AND TIME COURSE OF MITOSIS IN THE FUNGUS FUSARIUM OXYSPORUM

    Microsoft Academic Search

    JAMES R. AIST; H. WILLIAMS

    1972-01-01

    Mitosis in Fusarium oxysporum Schlect . was studied by light and electron microscopy . The average times required for the stages of mitosis, as determined from measurements made on living nuclei, were as follows : prophase, 70 sec ; metaphase, 120 see ; anaphase, 13 sec ; and telophase, 125 sec, for a total of 5 .5 min. New postfixation

  8. Commercial detergents effective against conidia and chlamydospores of Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current containment recommendations for limiting the spread of race 4 of Fusarium oxysporum f. sp. vasinfectum in California lack non-corrosive yet effective alternatives to bleach for sanitizing equipment used in farming operations. To find an equivalent to Farmcleanse, an Australian product recomm...

  9. EVALUATION OF PROPARGYL BROMIDE FOR CONTROL OF BARNYARDGRASS AND FUSARIUM OXYSPORUM IN THREE SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With the scheduled phase out of methyl bromide, there is an urgent need for alternatives. We evaluated the efficacy of propargyl bromide as a potential replacement for methyl bromide for the control of barnyardgrass (Echinochloa) and Fusarium oxysporum in an Arlington sandy loam, a Carsitas loamy sa...

  10. A novel case of Fusarium oxysporum infection in an Atlantic bottlenose dolphin (Tursiops truncatus).

    PubMed

    Staggs, Lydia; St Leger, Judy; Bossart, Gregory; Townsend, Forrest I; Hicks, Christie; Rinaldi, Michael

    2010-06-01

    A necropsy was performed on a captive-born, 10-yr-old male Atlantic bottlenose dolphin (Tursiops truncatus) after it died acutely. Gross necropsy findings revealed hemorrhage within the right cerebrum, right cerebellum, and right eye. Histopathologic findings revealed a moderate multifocal acute necrotizing meningoencephalitis with intralesional fungal hyphae. Several pieces of cerebrum and cerebellum and cerebrospinal fluid were sent to the Fungus Testing Laboratory in San Antonio, Texas (U.S.A.). The culture yielded Fusarium oxysporum, which was confirmed by internal transcribed spacer and D1-D2 sequencing. Fusarium oxysporum infection has been reported in marine mammals. No cases of noncutaneous F. oxysporum infection in a cetacean that was not on long-term antimicrobials have been reported in the literature. PMID:20597220

  11. [Biological characteristics of Fusarium oxysporum and inhibitory effects of five fungicides].

    PubMed

    Shao, Qing-Song; Liu, Hong-Bo; Zhao, Xiao-Fang; Hu, Run-Huai; Li, Ming-Yan

    2014-04-01

    The mycelium growth and sporulation in different temperature, pH value and light conditions were detected by using the crossing and haemocytometer method. The toxicity of five fungicides to Fusarium oxysporum was tested by mycelia growth method, so as to provide the reference for prevention and control against F. oxysporum. The optimum temperature and pH value of F. oxysporum to grow and spore were 28 degrees C and 6-7. Alternating light and darkness promoted growth and sporulation of bacterial colony. As for five fungicides, the EC50 of tebuconazole was 10.02 mg x L(-1), 92.50 times as much as carbendazim. The EC50 of myclobutanil and Fuxing was 91.23, 96.68 mg x L(-1), respectively. Tebuconazole showed the most tremendous inhibitory effect and control efficiency on F. oxysporum. PMID:25039169

  12. [Effect of aeration on composting of date palm residues contaminated with Fusarium oxysporum f.sp. albedinis].

    PubMed

    Chakroune, K; Bouakka, M; Hakkou, A

    2005-01-01

    Composting of date palm (Phoenix dactylifera L.) residues contaminated with Fusarium f.sp oxysporum albedinis, causal agent of the vascular wilt (Bayoud) of the date palm, has been achieved. The effect of the aeration of the piles by manual turning has been studied. The maintenance of an adequate humidity of 60%-70%, necessary to the good progress of the composting process, required the contribution of 11.4 L of water/kg of the dried residues. The evolution of the temperatures in the three piles presents the same phases. A latency phase, followed after 2-3 d of composting by a thermophilic phase, which lasts about 24 d, where the temperature remains elevated between 50 and 70 degrees C. Then a cooling phase that takes about 15 d, during which the temperatures fall to values between 25 and 35 degrees C, near room temperature. Fusarium f.sp oxysporum albedinis is eliminated completely during the thermophilic phase of composting, and increasing frequencies of turning accelerate its disappearance to a certain extent. On the other hand, pH remained steady and relatively basic oscillating between 8.2 and 8.7. Ninety percent (90%) of the the date palm residues are composed exclusively of organic matters. The total nitrogen represents only 0.4%. The contribution of manure decreases the ratio of carbon to nitrogen (C/N) from 115 to 48 in the initial mixture. After 80 d of composting and according to the frequency of return up, there is a reduction of the granulometry of the substratum, the C/N ratio (from 29% to 44%), the organic matter (from 15% to 23%), the total volume (from 25% to 35%), and of the dry weight of the swaths (from 16% to 24%). On the other hand there is an increase in total nitrogen rate (from 20% to 40%) and in the mineral matter (from 23% to 35%). PMID:15782236

  13. Antifungal Activity of (KW)n or (RW)n Peptide against Fusarium solani and Fusarium oxysporum

    PubMed Central

    Gopal, Ramamourthy; Na, Hyungjong; Seo, Chang Ho; Park, Yoonkyung

    2012-01-01

    The presence of lysine (Lys) or arginine (Arg) and tryptophan (Trp) are important for the antimicrobial effects of cationic peptides. Therefore, we designed and synthesized a series of antimicrobial peptides with various numbers of Lys (or Arg) and Trp repeats [(KW and RW)n-NH2, where n equals 2, 3, 4, or 5]. Antifungal activities of these peptides increased with chain length. Light microscopy demonstrated that longer peptides (n = 4, 5) strongly inhibited in vitro growth of Fusarium solani, and Fusarium oxysporum, at 4–32 ?M. Furthermore, longer peptides displayed potent fungicidal activities against a variety of agronomical important filamentous fungi, including F. solani and F. oxysporum, at their minimal inhibitory concentrations (MICs). However, RW series peptides showed slightly higher fungicidal activities than KW peptides against the two strains. Taken together, the results of this study indicate that these short peptides would be good candidates for use as synthetic or transgenic antifungal agents. PMID:23203110

  14. Nuclear Magnetic Resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum is a fungal pathogen that attacks many economically important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentratio...

  15. Progress report on a contemporary survey of the Fusarium wilt fungus in the United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The last survey of Fusarium oxysporum f. sp. vasinfectum in the U.S. was conducted in 1985. Since that time, race 4, previously thought to occur only in Asia, appeared in California in 2001, causing significant problems for the San Joaquin Valley cotton industry. Also, the presence of race 8 has bee...

  16. BREEDING FOR FUSARIUM WILT RACE 4 RESISTANCE IN COTTON UNDER FIELD AND GREENHOUSE CONDITIONS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium oxysporum f. sp. vasinfectum (FOV) Atk. Sny & Hans represents a continuing threat to cotton production in the U.S. that warrants attention in plant breeding efforts. Several troubling developments concerning this pathogen (e.g., newly-recognized Australian FOV races and race 4 FOV identific...

  17. Environmental conditions that contribute to development and severity of Sugar Beet Fusarium Yellows caused by Fusarium oxysporum f. sp. betae: temperature

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows in sugar beet, caused by Fusarium oxysporum f. sp. betae, continues to cause significant problems to sugar beet production by causing considerable reductions in root yield, sucrose percentage, and juice purity in affected sugar beets. Environment plays a critical role in pathogen i...

  18. Inheritance and QTL mapping of Fusarium wilt race 4 resistance in cotton.

    PubMed

    Ulloa, Mauricio; Hutmacher, Robert B; Roberts, Philip A; Wright, Steven D; Nichols, Robert L; Michael Davis, R

    2013-05-01

    Diseases such as Fusarium wilt [Fusarium oxysporum f.sp. vasinfectum (FOV) Atk. Sny & Hans] represent expanding threats to cotton production. Integrating disease resistance into high-yielding, high-fiber quality cotton (Gossypium spp.) cultivars is one of the most important objectives in cotton breeding programs worldwide. In this study, we conducted a comprehensive analysis of gene action in cotton governing FOV race 4 resistance by combining conventional inheritance and quantitative trait loci (QTL) mapping with molecular markers. A set of diverse cotton populations was generated from crosses encompassing multiple genetic backgrounds. FOV race 4 resistance was investigated using seven parents and their derived populations: three intraspecific (G. hirsutum × G. hirsutum L. and G. barbadense × G. barbadense L.) F1 and F2; five interspecific (G. hirsutum × G. barbadense) F1 and F2; and one RIL. Parents and populations were evaluated for disease severity index (DSI) of leaves, and vascular stem and root staining (VRS) in four greenhouse and two field experiments. Initially, a single resistance gene (Fov4) model was observed in F2 populations based on inheritance of phenotypes. This single Fov4 gene had a major dominant gene action and conferred resistance to FOV race 4 in Pima-S6. The Fov4 gene appears to be located near a genome region on chromosome 14 marked with a QTL Fov4-C14 1 , which made the biggest contribution to the FOV race 4 resistance of the generated F2 progeny. Additional genetic and QTL analyses also identified a set of 11 SSR markers that indicated the involvement of more than one gene and gene interactions across six linkage groups/chromosomes (3, 6, 8, 14, 17, and 25) in the inheritance of FOV race 4 resistance. QTLs detected with minor effects in these populations explained 5-19 % of the DSI or VRS variation. Identified SSR markers for the resistance QTLs with major and minor effects will facilitate for the first time marker-assisted selection for the introgression of FOV race 4 resistance into elite cultivars during the breeding process. PMID:23471458

  19. Fusarium verticillioides: A new cotton wilt pathogen in Uzbekistan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in wilt has been observed in cotton fields in Uzbekistan. This prompted us to conduct a survey of Uzbek cotton fields for wilt over a five year period beginning in 2007. Twenty-four regions with different soil types and ecologies were screened. In 9 regions, over 45% of the plants dem...

  20. Biofilm formation by Fusarium oxysporum f. sp. cucumerinum and susceptibility to environmental stress.

    PubMed

    Peiqian, Li; Xiaoming, Pu; Huifang, Shen; Jingxin, Zhang; Ning, Huang; Birun, Lin

    2014-01-01

    To the authors' knowledge, most studies on biofilm formation have focused on bacteria and yeasts. So far, biofilm formation by fungal plant pathogen has not been reported. In this study, the biofilm-forming capacity of Fusarium oxysporum f. sp. cucumerinum was evaluated. For biofilm quantification, a colorimetric 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium-hydroxide (XTT) reduction assay was used to observe metabolic activity. Fluorescence and confocal scanning laser microscopy revealed that the biofilms have a highly heterogeneous architecture composed of robust hyphae and extracellular polysaccharide materials. Additionally, the influence of physical factors on F. oxysporum biofilm formation and the susceptibility of biofilms to environmental stress was investigated. Biofilms were less susceptible to heat, cold, UV light and three fungicides than were their planktonic counterparts. Our findings may provide a novel perspective on the pathogenic mechanism associated with biofilms of F. oxysporum f. sp. cucumerinum. PMID:24164057

  1. Free Radicals, Salicylic Acid and Mycotoxins in Asparagus After Inoculation with Fusarium proliferatum and F. oxysporum.

    PubMed

    Dobosz, Bernadeta; Drzewiecka, Kinga; Waskiewicz, Agnieszka; Irzykowska, Lidia; Bocianowski, Jan; Karolewski, Zbigniew; Kostecki, Marian; Kruczynski, Zdzislaw; Krzyminiewski, Ryszard; Weber, Zbigniew; Golinski, Piotr

    2011-09-01

    Electron paramagnetic resonance was used to monitor free radicals and paramagnetic species like Fe, Mn, Cu generation, stability and status in Asparagus officinalis infected by common pathogens Fusarium proliferatum and F. oxysporum. Occurrence of F. proliferatum and F. oxysporum, level of free radicals and other paramagnetic species, as well as salicylic acid and mycotoxins content in roots and stems of seedlings were estimated on the second and fourth week after inoculation. In the first term free and total salicylic acid contents were related to free radicals level in stem (P = 0.010 and P = 0.033, respectively). Concentration of Fe(3+) ions in porphyrin complexes (g = 2.3, g = 2.9) was related to the species of pathogen. There was no significant difference between Mn(2+) concentrations in stem samples; however, the level of free radicals in samples inoculated with F. proliferatum was significantly higher when compared to F. oxysporum. PMID:21957331

  2. Varying Response of Sugar Beet Lines to Different Fusarium Oxysporum F. sp. Betae Isolates from the United States.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nine isolates of Fusarium oxysporum f.sp. betae, the cause of Fusarium yellows of sugar beet, were tested for their interaction with different sugar beet lines. In addition, two of these isolates were tested in the presence or absence of the sugarbeet cyst nematode, Heterodera schachtii. Differen...

  3. Research solutions in a non-model system: developing tools to understand Sugar Beet-Fusarium Oxysporum interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium yellows of sugar beet (Beta vulgaris), caused by Fusarium oxysporum f. sp. betae (Fob), is a problem for sugar beet production throughout the United States and Europe. Little is known about how Fob infects sugar beet roots to elicit disease symptoms. Additionally, a high rate of non-patho...

  4. Characterization of a population of Fusarium oxysporum, from sugar beet, using the population structure of putative pathogenicity genes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    WEBB, KIMBERLY M.*, PAUL COVEY, BRETT KUWITZKY, AND MIA HANSON, USDA-ARS, Sugar Beet Research Unit, 1701 Centre Ave., Fort Collins, CO 80526. Characterization of a population of Fusarium oxysporum, from sugar beet, using the population structure of putative pathogenicity genes. Fusarium oxysp...

  5. Cell wall synthesis in cotton roots after infection with Fusarium oxysporum

    Microsoft Academic Search

    E. Rodriguez-Gfilvez; K. Mendgen

    1995-01-01

    Fusarium oxysporum f. sp. vasinfectum penetration hyphae infect living cells in the meristematic zone of cotton (Gossypium barbadense L.) roots. We characterized wall modifications induced by the fungus during infection of the protodermis using antibodies against callose, arabinogalactan-proteins, xyloglucan, pectin, polygalacturonic acid and rhamnogalacturonan I in high-pressure frozen, freeze-substituted root tissue. Using quantitative immunogold labelling we compared the cell walls

  6. Pantothenate synthetase from Fusarium oxysporum f. sp . lycopersici is induced by a-tomatine

    Microsoft Academic Search

    A. Pérez-Espinosa; T. Roldán-Arjona; M. Ruiz-Rubio

    2001-01-01

    The steroidal glycoalkaloid !-tomatine which is present in tomato (Lycopersicum sculentum) is assumed to protect the plant against phytopathogenic fungi. We have isolated a gene from the fungal pathogen Fusarium oxysporum f. sp. lycopersici that is induced by this glycoalkaloid. This gene, designated panC, encodes a predicted protein with a molecular mass of 41 kDa that shows a high degree

  7. Evidence for an expanded host range of Fusarium oxysporum f.sp. raphani

    Microsoft Academic Search

    Angelo Garibaldi; Giovanna Gilardi; Maria Lodovica Gullino

    2006-01-01

    The pathogenicity of four isolates ofFusarium oxysporum obtained from infected cultivated rocket (Eruca vesicaria) and wild (sand) rocket (Diplotaxis tenuifolia) was tested on the following cruciferous hosts: stock, radish, wild and cultivated rockets, and various species in the cabbage\\u000a tribe: cabbage (Brassica oleracea var.sabauda), cauliflower (Brassica oleracea var.botrytis), Brussels sprouts (Brassica oleracea var.gemmifera), broccoli (Brassica oleracea var.italica), turnip (Brassica rapa

  8. Cutinase production by Fusarium oxysporum in liquid medium using central composite design

    Microsoft Academic Search

    Tatiana Fontes Pio; Gabriela Alves Macedo

    2008-01-01

    The objective of the present study was to measure the production of cutinase by Fusarium oxysporum in the presence of several carbon and nitrogen sources (glycides, fatty acids and oils, and several organic and inorganic\\u000a nitrogen sources), trying to find a cost-effective substitute for cutin in the culture medium as an inducer of cutinase production.\\u000a The results were evaluated by

  9. Interactions Between Clonostachys rosea f. catenulata , Fusarium oxysporum and Cucumber Roots Leading to Biological Control of Fusarium Root and Stem Rot

    Microsoft Academic Search

    Syama Chatterton; Zamir K. Punja

    \\u000a \\u000a Clonostachys rosea f. catenulata (Gliocladium catenulatum) strain J1446 (formulated as Prestop WP) suppressed Fusarium root and stem rot caused by Fusarium oxysporum f. sp. radicis-cucumerinum on greenhouse cucumber plants. In culture, C. rosea produced chitinase and ?-1,3-glucanase enzymes on chitin or laminarin as a sole carbon source, respectively, and caused localized\\u000a degradation of Fusarium hyphae. These enzymes were also induced

  10. Isolation and characterization of an exopolygalacturonase from Fusarium oxysporum f.sp. cubense race 1 and race 4

    PubMed Central

    2011-01-01

    Background Fusarium wilt is an economically devastating disease that affects banana production. Although Cavendish banana cultivars are resistant to Fusarium oxysporum f.sp. cubense race 1 (FOC1) and maitain banana production after Gros Michel was destructed by race 1, a new race race 4 (FOC4) was found to infect Cavendish. Results An exopolygalacturonase (PGC2) was isolated and purified from the supernatant of the plant pathogen Fusarium oxysporum f.sp. cubense race 4 (FOC4). PGC2 had an apparent Mr of 63 kDa by SDS-PAGE and 51.7 kDa by mass spectrometry. The enzyme was N-glycosylated. PGC2 hydrolyzed polygalacturonic acid in an exo-manner, as demonstrated by analysis of degradation products. To obtain adequate amounts of protein for functional studies between the PGC2 proteins of two races of the pathogen, pgc2 genes encoding PGC2 from race 4 (FOC4) and race 1 (FOC1), both 1395 bp in length and encoding 465 amino acids with a predicted amino-terminal signal sequence of 18 residues, were cloned into the expression vector pPICZaA and then expressed in Pichia pastoris strains of SMD1168. The recombinant PGC2 products, r-FOC1-PGC2 and r-FOC4-PGC2, were expressed and purified as active extracellular proteins. Optimal PGC2 activity was observed at 50°C and pH 5. The Km and Vmax values of purified r-FOC1-PGC2 were 0.43 mg.mL-1 and 94.34 units mg protein-1 min-1, respectively. The Km and Vmax values of purified r-FOC4-PGC2 were 0.48 mg.mL-1 and 95.24 units mg protein-1 min-1, respectively. Both recombinant PGC2 proteins could induce tissue maceration and necrosis in banana plants. Conclusions Collectively, these results suggest that PGC2 is the first exoPG reported from the pathogen FOC, and we have shown that fully functional PGC2 can be produced in the P. pastoris expression system. PMID:21920035

  11. Monitoring of pathogenic and non?pathogenic Fusarium oxysporum strains during tomato plant infection

    PubMed Central

    Validov, Shamil Z.; Kamilova, Faina D.; Lugtenberg, Ben J. J.

    2011-01-01

    Summary Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non?pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis?lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radicis?cucumerinum V03?2g (a cucumber root rot pathogen) and Fox Fo47 (a well?known non?pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non?compatible pathogen Forc V03?2g and 10 times higher than that of Fo47. In 3?week?old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non?pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to proliferation of pathogenic Fox. PMID:21255375

  12. Monitoring of pathogenic and non-pathogenic Fusarium oxysporum strains during tomato plant infection.

    PubMed

    Validov, Shamil Z; Kamilova, Faina D; Lugtenberg, Ben J J

    2011-01-01

    Monitoring of pathogenic strains of Fusarium oxysporum (Fox), which cause wilt and rots on agricultural and ornamental plants, is important for predicting disease outbreaks. Since both pathogenic and non-pathogenic strains of Fox are ubiquitous and are able to colonize plant roots, detection of Fox DNA in plant material is not the ultimate proof of an ongoing infection which would cause damage to the plant. We followed the colonization of tomato plants by strains Fox f. sp. radicis-lycopersici ZUM2407 (a tomato foot and root rot pathogen), Fox f. sp. radiciscucumerinum V03-2g (a cucumber root rot pathogen) and Fox Fo47 (a well-known non-pathogenic biocontrol strain). We determined fungal DNA concentrations in tomato plantlets by quantitative PCR (qPCR) with primers complementary to the intergenic spacer region (IGS) of these three Fox strains. Two weeks after inoculation of tomato seedlings with these Fox strains, the DNA concentration of Forl ZUM2407 was five times higher than that of the non-compatible pathogen Forc V03-2g and 10 times higher than that of Fo47. In 3-week-old plantlets the concentration of Forl ZUM2407 DNA was at least 10 times higher than those of the other strains. The fungal DNA concentration, as determined by qPCR, appeared to be in good agreement with data of the score of visible symptoms of tomato foot and root rot obtained 3 weeks after inoculation of tomato with Forl ZUM2407. Our results show that targeting of the multicopy ribosomal operon results in a highly sensitive qPCR reaction for the detection of Fox DNA. Since formae speciales of Fox cannot be distinguished by comparison of ribosomal operons, detection of Fox DNA is not evidence of plant infection by a compatible pathogen. Nevertheless, the observed difference in levels of plant colonization between pathogenic and non-pathogenic strains strongly suggests that a concentration of Fox DNA in plant material above the threshold level of 0.005% is due to proliferation of pathogenic Fox. PMID:21255375

  13. Systemic acquired resistance in Cavendish banana induced by infection with an incompatible strain of Fusarium oxysporum f. sp. cubense.

    PubMed

    Wu, Yuanli; Yi, Ganjun; Peng, Xinxiang; Huang, Bingzhi; Liu, Ee; Zhang, Jianjun

    2013-07-15

    Fusarium wilt of banana is caused by the soil-borne fungus Fusarium oxysporum f. sp. cubense (Foc). The fact that there are no economically viable biological, chemical, or cultural measures of controlling the disease in an infected field leads to search for alternative strategies involving activation of the plant's innate defense system. The mechanisms underlying systemic acquired resistance (SAR) are much less understood in monocots than in dicots. Since systemic protection of plants by attenuated or avirulent pathogens is a typical SAR response, the establishment of a biologically induced SAR model in banana is helpful to investigate the mechanism of SAR to Fusarium wilt. This paper described one such model using incompatible Foc race 1 to induce resistance against Foc tropical race 4 in an in vitro pathosystem. Consistent with the observation that the SAR provided the highest level of protection when the time interval between primary infection and challenge inoculation was 10d, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL, EC 4.3.1.5), peroxidase (POD, EC 1.11.1.7), polyphenol oxidase (PPO, EC 1.14.18.1), and superoxide dismutase (SOD, EC 1.15.1.1) in systemic tissues also reached the maximum level and were 2.00-2.43 times higher than that of the corresponding controls on the tenth day. The total salicylic acid (SA) content in roots of banana plantlets increased from about 1 to more than 5 ?g g?¹ FW after the second leaf being inoculated with Foc race 1. The systemic up-regulation of MaNPR1A and MaNPR1B was followed by the second up-regulation of PR-1 and PR-3. Although SA and jasmonic acid (JA)/ethylene (ET) signaling are mostly antagonistic, systemic expression of PR genes regulated by different signaling pathways were simultaneously up-regulated after primary infection, indicating that both pathways are involved in the activation of the SAR. PMID:23702248

  14. Tomatinase from Fusarium oxysporum f. sp. lycopersici is required for full virulence on tomato plants.

    PubMed

    Pareja-Jaime, Yolanda; Roncero, M Isabel G; Ruiz-Roldán, M Carmen

    2008-06-01

    Saponin detoxification enzymes from pathogenic fungi are involved in the infection process of their host plants. Fusarium oxysporum f. sp lycopersici, a tomato pathogen, produces the tomatinase enzyme Tom1, which degrades alpha-tomatine to less toxic derivates. To study the role of the tom1 gene in the virulence of F. oxysporum, we performed targeted disruption and overexpression of the gene. The infection process of tomato plants inoculated with transformants constitutively producing Tom1 resulted in an increase of symptom development. By contrast, tomato plants infected with the knockout mutants showed a delay in the disease process, indicating that Tom1, although not essential for pathogenicity, is required for the full virulence of F. oxysporum. Total tomatinase activity in the disrupted strains was reduced only 25%, leading to beta(2)-tomatine as the main hydrolysis product of the saponin in vitro. In silico analysis of the F. oxysporum genome revealed the existence of four additional putative tomatinase genes with identities to tomatinases from family 3 of glycosyl hydrolases. These might be responsible for the remaining tomatinase activity in the Deltatom1 mutants. Our results indicate that detoxification of alpha-tomatine in F. oxysporum is carried out by several tomatinase activities, suggesting the importance of these enzymes during the infection process. PMID:18624637

  15. Investigating the Association between Flowering Time and Defense in the Arabidopsis thaliana-Fusarium oxysporum Interaction

    PubMed Central

    Lyons, Rebecca; Rusu, Anca; Stiller, Jiri; Powell, Jonathan; Manners, John M.; Kazan, Kemal

    2015-01-01

    Plants respond to pathogens either by investing more resources into immunity which is costly to development, or by accelerating reproductive processes such as flowering time to ensure reproduction occurs before the plant succumbs to disease. In this study we explored the link between flowering time and pathogen defense using the interaction between Arabidopsis thaliana and the root infecting fungal pathogen Fusarium oxysporum. We report that F. oxysporum infection accelerates flowering time and regulates transcription of a number of floral integrator genes, including FLOWERING LOCUS C (FLC), FLOWERING LOCUS T (FT) and GIGANTEA (GI). Furthermore, we observed a positive correlation between late flowering and resistance to F. oxysporum in A. thaliana natural ecotypes. Late-flowering gi and autonomous pathway mutants also exhibited enhanced resistance to F. oxysporum, supporting the association between flowering time and defense. However, epistasis analysis showed that accelerating flowering time by deletion of FLC in fve-3 or fpa-7 mutants did not alter disease resistance, suggesting that the effect of autonomous pathway on disease resistance occurs independently from flowering time. Indeed, RNA-seq analyses suggest that fve-3 mediated resistance to F. oxysporum is most likely a result of altered defense-associated gene transcription. Together, our results indicate that the association between flowering time and pathogen defense is complex and can involve both pleiotropic and direct effects. PMID:26034991

  16. HapX-Mediated Iron Homeostasis Is Essential for Rhizosphere Competence and Virulence of the Soilborne Pathogen Fusarium oxysporum[C][W][OA

    PubMed Central

    López-Berges, Manuel S.; Capilla, Javier; Turrà, David; Schafferer, Lukas; Matthijs, Sandra; Jöchl, Christoph; Cornelis, Pierre; Guarro, Josep; Haas, Hubertus; Di Pietro, Antonio

    2012-01-01

    Soilborne fungal pathogens cause devastating yield losses and are highly persistent and difficult to control. During the infection process, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato (Solanum lycopersicum) plants and immunodepressed mice. The virulence defect of ?hapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals. PMID:22968717

  17. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1.

    PubMed

    Gaspar, Yolanda M; McKenna, James A; McGinness, Bruce S; Hinch, Jillian; Poon, Simon; Connelly, Angela A; Anderson, Marilyn A; Heath, Robyn L

    2014-04-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2-3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2-4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens. PMID:24502957

  18. Field resistance to Fusarium oxysporum and Verticillium dahliae in transgenic cotton expressing the plant defensin NaD1

    PubMed Central

    Anderson, Marilyn A.

    2014-01-01

    The plant defensin NaD1, from Nicotiana alata, has potent antifungal activity against a range of filamentous fungi including the two important cotton pathogens, Fusarium oxysporum f. sp. vasinfectum (Fov) and Verticillium dahliae. Transgenic cotton plants expressing NaD1 were produced and plants from three events were selected for further characterization. Homozygous plants were assessed in greenhouse bioassays for resistance to Fov. One line (D1) was selected for field trial testing over three growing seasons in soils naturally infested with Fov and over two seasons in soils naturally infested with V. dahliae. In the field trials with Fov-infested soil, line D1 had 2–3-times the survival rate, a higher tolerance to Fov (higher disease rank), and a 2–4-fold increase in lint yield compared to the non-transgenic Coker control. When transgenic line D1 was planted in V. dahliae-infested soil, plants had a higher tolerance to Verticillium wilt and up to a 2-fold increase in lint yield compared to the non-transgenic Coker control. Line D1 did not exhibit any detrimental agronomic features compared to the parent Coker control when plants were grown in non-diseased soil. This study demonstrated that the expression of NaD1 in transgenic cotton plants can provide substantial resistance to two economically important fungal pathogens. PMID:24502957

  19. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum.

    PubMed

    Dowd, Caitriona; Wilson, Iain W; McFadden, Helen

    2004-06-01

    Microarray analysis of large-scale temporal and tissue-specific plant gene expression changes occurring during a susceptible plant-pathogen interaction revealed different gene expression profile changes in cotton root and hypocotyl tissues. In hypocotyl tissues infected with Fusarium oxysporum f. sp. vasinfectum, increased expression of defense-related genes was observed, whereas few changes in the expression levels of defense-related genes were found in infected root tissues. In infected roots, more plant genes were repressed than were induced, especially at the earlier stages of infection. Although many known cotton defense responses were identified, including induction of pathogenesis-related genes and gossypol biosynthesis genes, potential new defense responses also were identified, such as the biosynthesis of lignans. Many of the stress-related gene responses were common to both tissues. The repression of drought-responsive proteins such as aquaporins in both roots and hypocotyls represents a previously unreported response of a host to pathogen attack that may be specific to vascular wilt diseases. Gene expression results implicated the phytohormones ethylene and auxin in the disease process. Biochemical analysis of hormone level changes supported this observation. PMID:15195948

  20. Mitogen-Activated Protein Kinases Are Associated with the Regulation of Physiological Traits and Virulence in Fusarium oxysporum f. sp. cubense

    PubMed Central

    Ding, Zhaojian; Li, Minhui; Sun, Fei; Xi, Pinggen; Sun, Longhua; Zhang, Lianhui; Jiang, Zide

    2015-01-01

    Fusarium oxysporum f. sp. cubense (FOC) is an important soil-borne fungal pathogen causing devastating vascular wilt disease of banana plants and has become a great concern threatening banana production worldwide. However, little information is known about the molecular mechanisms that govern the expression of virulence determinants of this important fungal pathogen. In this study, we showed that null mutation of three mitogen-activated protein (MAP) kinase genes, designated as FoSlt2, FoMkk2 and FoBck1, respectively, led to substantial attenuation in fungal virulence on banana plants. Transcriptional analysis revealed that the MAP kinase signaling pathway plays a key role in regulation of the genes encoding production of chitin, peroxidase, beauvericin and fusaric acid. Biochemical analysis further confirmed the essential role of MAP kinases in modulating the production of fusaric acid, which was a crucial phytotoxin in accelerating development of Fusarium wilt symptoms in banana plants. Additionally, we found that the MAP kinase FoSlt2 was required for siderophore biosynthesis under iron-depletion conditions. Moreover, disruption of the MAP kinase genes resulted in abnormal hypha and increased sensitivity to Congo Red, Calcofluor White and H2O2. Taken together, these results depict the critical roles of MAP kinases in regulation of FOC physiology and virulence. PMID:25849862

  1. Effect of root exudates of different resistant varieties of cucumber on fusarium wilt and preliminary studies on their resistance mechanism

    Microsoft Academic Search

    Benli Huang; Yundong Xu; Ye Wu; Shunqi Zhang; Xuehao Chen

    2008-01-01

    This study investigated the effect of root exudates of cucumber varieties, Jinyan 4 (susceptible variety), Jinchun 4 (resistant\\u000a variety) and Yinnan Black seed squash on fusarium wilt. The results showed that fusarium wilt occurrence of plants treated\\u000a with the root exudate of Jinyan 4 was earlier. The infection rate was significantly higher 15 days after inoculation, but\\u000a similar to the

  2. Characterization of the Fusarium wilt resistance Fom - 2 gene in melon

    Microsoft Academic Search

    A. Oumouloud; M. Mokhtari; H. Chikh-Rouhou; M. S. Arnedo-Andrés; R. González-Torres; J. M. Álvarez

    The melon gene Fom-2, which confers resistance to Fusarium oxysporum f.sp. melonis (Fom) races 0 and 1, has been previously characterized by map-based cloning, and it encodes a protein with a nucleotide binding\\u000a site (NBS) and leucine-rich repeats (LRRs). Here, we used the primer Fom2-LRR1639 to clone and sequence a partial LRR region of the Fom-2 gene in 11 melon

  3. Dry heat treatment of Fusarium-infected cotton seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 has emerged as the dominant disease concern for cotton growers in California. Originally described from Asia, race 4 has spread into multiple counties in the San Joaquin Valley (SJV) since its discovery in one California fiel...

  4. Thyme essential oil as a defense inducer of tomato against gray mold and Fusarium wilt.

    PubMed

    Ben-Jabeur, Maissa; Ghabri, Emna; Myriam, Machraoui; Hamada, Walid

    2015-09-01

    The potential of thyme essential oil in controlling gray mold and Fusarium wilt and inducing systemic acquired resistance in tomato seedlings and tomato grown in hydroponic system was evaluated. Thyme oil highly reduced 64% of Botrytis cinerea colonization on pretreated detached leaves compared to untreated control. Also, it played a significant decrease in Fusarium wilt severity especially at7 days post treatment when it was reduced to 30.76%. To explore the plant pathways triggered in response to thyme oil, phenolic compounds accumulation and peroxidase activity was investigated. Plant response was observed either after foliar spray or root feeding in hydroponics which was mostly attributed to peroxidases accumulation rather than phenolic compounds accumulation, and thyme oil seems to be more effective when applied to the roots. PMID:26002413

  5. Identification of an Endophytic Antifungal Bacterial Strain Isolated from the Rubber Tree and Its Application in the Biological Control of Banana Fusarium Wilt

    PubMed Central

    Sun, Xuepiao; Zheng, Peng; Zhang, Jiaming

    2015-01-01

    Banana Fusarium wilt (also known as Panama disease) is one of the most disastrous plant diseases. Effective control methods are still under exploring. The endophytic bacterial strain ITBB B5-1 was isolated from the rubber tree, and identified as Serratia marcescens by morphological, biochemical, and phylogenetic analyses. This strain exhibited a high potential for biological control against the banana Fusarium disease. Visual agar plate assay showed that ITBB B5-1 restricted the mycelial growth of the pathogenic fungus Fusarium oxysporum f. sp. cubense race 4 (FOC4). Microscopic observation revealed that the cell wall of the FOC4 mycelium close to the co-cultured bacterium was partially decomposed, and the conidial formation was prohibited. The inhibition ratio of the culture fluid of ITBB B5-1 against the pathogenic fungus was 95.4% as estimated by tip culture assay. Chitinase and glucanase activity was detected in the culture fluid, and the highest activity was obtained at Day 2 and Day 3 of incubation for chitinase and glucanase, respectively. The filtrated cell-free culture fluid degraded the cell wall of FOC4 mycelium. These results indicated that chitinase and glucanase were involved in the antifungal mechanism of ITBB B5-1. The potted banana plants that were inoculated with ITBB B5-1 before infection with FOC4 showed 78.7% reduction in the disease severity index in the green house experiments. In the field trials, ITBB B5-1 showed a control effect of approximately 70.0% against the disease. Therefore, the endophytic bacterial strain ITBB B5-1 could be applied in the biological control of banana Fusarium wilt. PMID:26133557

  6. Interaction between Meloidogyne incognita and Agrobacterium tumefaciens or Fusarium oxysporum f. sp. lycopersici on Tomato.

    PubMed

    El-Sherif, A G; Elwakil, M A

    1991-04-01

    Agrobacterium tumefaciens stimulated and Fusarium oxysporum f. sp. lycopersici inhibited development and reproduction of Meloidogyne incognita when applied to the opposite split root of tomato, Lycopersicon esculentum cv. Tropic, plants. The lowest rate of nematode reproduction occurred after 2,000 juveniles were applied and the fungus was present in the opposite split root. The effects of all three pathogens alone on the growth of roots and shoots of tomato plants were evident, but M. incognita had a greater effect alone than did either of the other pathogens. The length of split roots was reduced by the infection of M. incognita and A. tumefaciens or F. oxysporum f. sp. lycopersici. The number of galls induced by nematodes on roots was higher where the bacterium was applied and lower where the fungus was applied to the opposite split root. PMID:19283119

  7. Prospects for integrated control of ‘bayoud’ (Fusarium wilt of the date palm) in Algerian plantations

    Microsoft Academic Search

    R. A. Brac de la Perrière; H. Amir; N. Bounaga

    1995-01-01

    Fusarium wilt of date palm, also known as bayoud, is a major disease in North Africa. In Algeria, the wide range of agro-systems, soil types, genetic diversity of palm plantations and the extent of contamination in diseased areas suggest the need for an integrated? plantation-specific control strategy. In areas with disease-free plantations, the regulations on movement of planting material and

  8. Molecular variability among isolates of Fusarium oxysporum associated with root rot disease of Agave tequilana.

    PubMed

    Vega-Ramos, Karla L; Uvalle-Bueno, J Xavier; Gómez-Leyva, Juan F

    2013-04-01

    In this study, 115 isolates of Fusarium oxysporum from roots of Agave tequilana Weber cv azul plants and soil in commercial plantations in western Mexico were characterized using morphological and molecular methods. Genetic analyses of monosporic isolates included restriction enzyme analysis of rDNA (ARDRA) using HaeIII and HinfI, and genetic diversity was determined using Box-PCR molecular markers. Box-PCR analysis generated 14 groups. The groups correlated highly with the geographic location of the isolate and sample type. These results demonstrate the usefulness of ARDRA and Box-PCR techniques in the molecular characterization of the Fusarium genus for the discrimination of pathogenic isolates. PMID:23315087

  9. Induced suppressiveness to Fusarium oxysporum f.sp. radicis lycopersici in rockwool substrate used in closed soilless systems

    Microsoft Academic Search

    Andrea Minuto; Francesca Clematis; Maria Lodovica Gullino; Angelo Garibaldi

    2007-01-01

    Tomatoes grown in soilless systems can be seriously damaged byFusarium oxysporum Schlect f.sp.radicis lycopersici (Forl) causing Fusarium crown and root rot (FCRR). FCRR suppression can be achieved through the use of chemicals, selected substrates,\\u000a composts and artificially introduced antagonistic microorganisms. This study evaluated the natural capacity of a used rockwool\\u000a to suppress FCRR infections. New and used rockwool, sampled from

  10. The intercropping partner affects arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. lycopersici interactions in tomato.

    PubMed

    Hage-Ahmed, Karin; Krammer, Johannes; Steinkellner, Siegrid

    2013-10-01

    Arbuscular mycorrhizal fungi (AMF) and their bioprotective aspects are of great interest in the context of sustainable agriculture. Combining the benefits of AMF with the utilisation of plant species diversity shows great promise for the management of plant diseases in environmentally compatible agriculture. In the present study, AMF were tested against Fusarium oxysporum f. sp. lycopersici with tomato intercropped with either leek, cucumber, basil, fennel or tomato itself. Arbuscular mycorrhizal (AM) root colonisation of tomato was clearly affected by its intercropping partners. Tomato intercropped with leek showed even a 20 % higher AM colonisation rate than tomato intercropped with tomato. Positive effects of AMF expressed as an increase of tomato biomass compared to the untreated control treatment could be observed in root as well as in shoot weights. A compensation of negative effects of F. oxysporum f. sp. lycopersici on tomato biomass by AMF was observed in the tomato/leek combination. The intercropping partners leek, cucumber, basil and tomato had no effect on F. oxysporum f. sp. lycopersici disease incidence or disease severity indicating no allelopathic suppression; however, tomato co-cultivated with tomato clearly showed a negative effect on one plant/pot with regard to biomass and disease severity of F. oxysporum f. sp. lycopersici. Nonetheless, bioprotective effects of AMF resulting in the decrease of F. oxysporum f. sp. lycopersici disease severity were evident in treatments with AMF and F. oxysporum f. sp. lycopersici co-inoculation. However, these bioprotective effects depended on the intercropping partner since these effects were only observed in the tomato/leek and tomato/basil combination and for the better developed plant of tomato/tomato. In conclusion, the effects of the intercropping partner on AMF colonisation of tomato are of great interest for crop plant communities and for the influences on each other. The outcome of the bioprotective effects of AMF resulting in the decrease on F. oxysporum f. sp. lycopersici disease severity and/or compensation of plant biomass does not depend on the degree of AM colonisation but more on the intercropping partner. PMID:23549903

  11. The transmembrane protein Sho1 cooperates with the mucin Msb2 to regulate invasive growth and plant infection in Fusarium oxysporum.

    PubMed

    Perez-Nadales, Elena; Di Pietro, Antonio

    2015-08-01

    In the vascular wilt pathogen Fusarium oxysporum, the mitogen-activated protein kinase (MAPK) Fmk1 is essential for plant infection. The mucin-like membrane protein Msb2 regulates a subset of Fmk1-dependent functions. Here, we examined the role of the tetraspan transmembrane protein Sho1 as an additional regulator of the Fmk1 pathway and determined its genetic interaction with Msb2. Targeted ?sho1 mutants were generated in wild-type and ?msb2 backgrounds to test possible interactions between the two genes. The mutants were examined for hyphal growth under different stress conditions, phosphorylation of the MAPK Fmk1 and an array of Fmk1-dependent virulence functions. Similar to Msb2, Sho1 was required for the activation of Fmk1 phosphorylation, as well as Fmk1-dependent gene expression and invasive growth functions, including extracellular pectinolytic activity, cellophane penetration, plant tissue colonization and virulence on tomato plants. ?sho1 mutants were hypersensitive to the cell wall-perturbing compound Calcofluor White, and this phenotype was exacerbated in the ?msb2 ?sho1 double mutant. These results highlight that Sho1 and Msb2 have partially overlapping functions upstream of the Fmk1 MAPK cascade, to promote invasive growth and plant infection, as well as cell wall integrity, in F.?oxysporum. PMID:25382187

  12. First Report of Potato Stem-End Rot Caused by Fusarium oxysporum in Korea

    PubMed Central

    Aktaruzzaman, Md.; Xu, Sheng-Jun; Kim, Joon-Young; Woo, Jae-Hyoun; Hahm, Young-Il

    2014-01-01

    In this study, we identified the causative agent of stem-end rot in potatoes that were grown in Gangwon alpine areas of Korea in 2013. The disease symptoms included appearance of slightly sunken circular lesion with corky rot on the potato surface at the stem-end portion. The fungal species isolated from the infected potatoes were grown on potato dextrose agar and produced white aerial mycelia with dark violet pigments. The conidiophores were branched and monophialidic. The microconidia had ellipsoidal to cylindrical shapes and ranged from 2.6~11.4 × 1.9~3.5 µm in size. The macroconidia ranged from 12.7~24.7 × 2.7~3.6 µm in size and had slightly curved or fusiform shape with 2 to 5 septate. Chlamydospores ranged from 6.1~8.1 × 5.7~8.3 µm in size and were present singly or in pairs. The causal agent of potato stem-end rot was identified as Fusarium oxysporum by morphological characterization and by sequencing the internal transcribed spacer (ITS1 and ITS4) regions of rRNA. Artificial inoculation of the pathogen resulted in development of disease symptoms and the re-isolated pathogen showed characteristics of F. oxysporum. To the best of our knowledge, this is the first study to report that potato stem-end rot is caused by F. oxysporum in Korea. PMID:25071394

  13. First Report of Potato Stem-End Rot Caused by Fusarium oxysporum in Korea.

    PubMed

    Aktaruzzaman, Md; Xu, Sheng-Jun; Kim, Joon-Young; Woo, Jae-Hyoun; Hahm, Young-Il; Kim, Byung-Sup

    2014-06-01

    In this study, we identified the causative agent of stem-end rot in potatoes that were grown in Gangwon alpine areas of Korea in 2013. The disease symptoms included appearance of slightly sunken circular lesion with corky rot on the potato surface at the stem-end portion. The fungal species isolated from the infected potatoes were grown on potato dextrose agar and produced white aerial mycelia with dark violet pigments. The conidiophores were branched and monophialidic. The microconidia had ellipsoidal to cylindrical shapes and ranged from 2.6~11.4 × 1.9~3.5 µm in size. The macroconidia ranged from 12.7~24.7 × 2.7~3.6 µm in size and had slightly curved or fusiform shape with 2 to 5 septate. Chlamydospores ranged from 6.1~8.1 × 5.7~8.3 µm in size and were present singly or in pairs. The causal agent of potato stem-end rot was identified as Fusarium oxysporum by morphological characterization and by sequencing the internal transcribed spacer (ITS1 and ITS4) regions of rRNA. Artificial inoculation of the pathogen resulted in development of disease symptoms and the re-isolated pathogen showed characteristics of F. oxysporum. To the best of our knowledge, this is the first study to report that potato stem-end rot is caused by F. oxysporum in Korea. PMID:25071394

  14. Heterologous expression of transaldolase gene Tal from Saccharomyces cerevisiae in Fusarium oxysporum for enhanced bioethanol production.

    PubMed

    Fan, Jin-Xia; Yang, Xiao-Xue; Song, Jin-Zhu; Huang, Xiao-Mei; Cheng, Zhong-Xiang; Yao, Lin; Juba, Olivia S; Liang, Qing; Yang, Qian; Odeph, Margaret; Sun, Yan; Wang, Yun

    2011-08-01

    The filamentous fungus Fusarium oxysporum is known for its ability to ferment xylose-producing ethanol. However, efficiency of xylose utilization and ethanol yield was low. In this study, the transaldolase gene from Saccharomyces cerevisiae has been successfully expressed in F. oxysporum by an Agrobacterium tumefaciens-mediated transformation method. The enzymatic activity of the recombinant fungus (cs28pCAM-Sctal4) was 0.195 times higher than that of the wild-type strain (cs28). The recombinant strain also exhibited a 28.83% increase in ethanol yield on xylose media compared to the parental strain. Enhanced ethanol production and a reduction in the biomass were observed during xylose fermentation. Ethanol yield from rice straw by simultaneous saccharification and fermentation with cs28pCAM-Sctal4 was 0.25 g?g?¹ of rice straw. The transgenic strain of F. oxysporum cs28pCAM-Sctal4 might therefore have potential applications in industrial bioenergy production. PMID:21394668

  15. Local origin of two vegetative compatibility groups of Fusarium oxysporum f. sp. vasinfectum in Australia.

    PubMed

    Wang, Bo; Brubaker, Curt L; Summerell, Brett A; Thrall, Peter H; Burdon, Jeremy J

    2010-09-01

    Pathogenicity and genetic diversity of Fusarium oxysporum from geographically widespread native Gossypium populations, including a cotton growing area believed to be the center of origin of VCG 01111 and VCG 01112 of F. oxysporum f. sp. vasinfectum (Fov) in Australia, was determined using glasshouse bioassays and AFLPs. Five lineages (A-E) were identified among 856 isolates. Of these, 12% were strongly pathogenic on cotton, 10% were weakly pathogenic and designated wild Fov, while 78% were nonpathogenic. In contrast to the occurrence of pathogenic isolates in all five lineages in soils associated with wild Gossypium, in cotton growing areas only three lineages (A, B, E) occurred and all pathogenic isolates belonged to two subgroups in lineage A. One of these contained VCG 01111 isolates while the other contained VCG 01112 isolates. Sequence analyses of translation elongation factor-1?, mitochondrial small subunit rDNA, nitrate reductase and phosphate permease confirmed that Australian Fov isolates were more closely related to lineage A isolates of native F. oxysporum than to Fov races 1-8 found overseas. These results strongly support a local evolutionary origin for Fov in Australian cotton growing regions. PMID:25567943

  16. Exploiting the inter-strain divergence of Fusarium oxysporum for microbial bioprocessing of lignocellulose to bioethanol

    PubMed Central

    2012-01-01

    Microbial bioprocessing of lignocellulose to bioethanol still poses challenges in terms of substrate catabolism. A targeted evolution-based study was undertaken to determine if inter-strain microbial variability could be exploited for bioprocessing of lignocellulose to bioethanol. The microorganism studied was Fusarium oxysporum because of its capacity to both saccharify and ferment lignocellulose. Strains of F. oxysporum were isolated and assessed for their genetic variability. Using optimised solid-state straw culture conditions, experiments were conducted that compared fungal strains in terms of their growth, enzyme activities (cellulases, xylanase and alcohol dehydrogenase) and yield of bioethanol and the undesirable by-products acetic acid and xylitol. Significant inter-strain divergence was recorded in regards to the capacity of studied F. oxysporum strains to produce alcohol from untreated straw. No correlation was observed between bioethanol synthesis and either the biomass production or microbial enzyme activity. A strong correlation was observed between both acetic acid and xylitol production and bioethanol yield. The level of diversity recorded in the alcohol production capacity among closely-related microorganism means that a targeted screening of populations of selected microbial species could greatly improve bioprocessing yields, in terms of providing both new host strains and candidate genes for the bioethanol industry. PMID:22420408

  17. Y15_999FW, A DOMINANT SCAR MARKER LINKED TO THE FUSARIUM WILT RACE 1 (FW) RESISTANCE GENE IN PEA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt poses a significant economic problem in pea-growing regions of the Pacific Northwest and throughout the world. Fw, a pea gene conferring complete and specific resistance to the Fusarium wilt race 1 pathogen, has been characterized in previous studies. This report describes a 1082 bp SC...

  18. Relationship between Cell Wall Susceptibility to Cellulases and Pectinases of Fusarium oxysporum and Susceptibility of Date Palm Cultivars

    Microsoft Academic Search

    C. El Modafar; E. El Boustani

    2000-01-01

    Fusarium oxysporum f. sp. albedinis, the bayoud disease agent of date palm, grows on a mineral medium containing the cell walls of date palm roots as a sole carbohydrate source. The growth and development of pathogen under these conditions was related to the production of extracellular cell wall-degrading enzymes (CWDE): cellulases, polygalacturonases, polygalacturonate transeliminases, and pectinmethylesterases. The mycelial growth and

  19. Influence of Agricultural By-products in Liquid Culture on Chlamydospore Production by the Potential Mycoherbicide Fusarium oxysporum Foxy 2

    Microsoft Academic Search

    Abuelgasim Elzein; Jürgen Kroschel

    2004-01-01

    Economically feasible inoculum mass production methods are required for successful application of Fusarium oxysporum Foxy 2 as a potential mycoherbicide. Therefore, different substrates (agricultural by-products) and the factors that influence the production of spores, especially chlamydospores, of Foxy 2 were investigated in liquid cultures. The substrates tested were cotton seed cake, maize stover, wheat and triticale stillage. The presence of

  20. Ultrastructural and cell wall modifications during infection of Eucalyptus viminalis roots by a pathogenic Fusarium oxysporum strain

    Microsoft Academic Search

    Maria-Isabel Salerno; Silvio Gianinazzi; Christine Arnould; Vivienne Gianinazzi-Pearson

    2004-01-01

    Fusarium species are soil-borne fungal pathogens that produce a variety of disease symptoms when attacking crop plants. The mode of root colonization of Eucalyptus viminalis seedlings by a pathogenic F. oxyporum strain (Foeu1) at the ultrastructural level and changes in cell wall pectin during host pathogen interactions are described. Root systems of E. viminalis plants were inoculated with F. oxysporum

  1. Can an Isolate of Talaromyces Reduce the Pathogenicity of the Plant Pathogen Fusarium oxysporum f. sp. vasinfectum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Race 4 of Fusarium oxysporum f. sp. vasinfectum (Fov) is an emerging problem for cotton production in the U.S. because it is significantly more pathogenic than races 1 and 2 which are endemic to the U.S. Race 4 is a prodigious producer of the phytotoxin fusaric acid compared to races 1 and 2. When...

  2. Antagonistic actions of Pythium oligandrum and Trichoderma harzianum against phytopathogenic fungi (Fusarium oxysporum and Pythium ultimum var. ultimum)

    Microsoft Academic Search

    Momein H. El-Katatny; Hani M. A. Abdelzaher; Mahmoud A. Shoulkamy

    2006-01-01

    The possible biological control of damping-off fungi, Fusarium oxysporum and Pythium ultimum by Pythium oligandrum or Trichoderma harzianum was in vitro investigated. Results of comparing the antagonistic activity of P. oligandrum and T. harzianum in dual plates against the tested phytopathogens indicated different degrees of antagonism. After 12 days of incubation colony of the phytopathogenic fungus was completely overgrown by

  3. Stable integration and expression of wasabi defensin gene in "Egusi" melon (Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot.

    PubMed

    Ntui, Valentine Otang; Thirukkumaran, Gunaratnam; Azadi, Pejman; Khan, Raham Sher; Nakamura, Ikuo; Mii, Masahiro

    2010-09-01

    Production of "Egusi" melon (Colocynthis citrullus L.) in West Africa is limited by fungal diseases, such as Alternaria leaf spot and Fusarium wilt. In order to engineer "Egusi" resistant to these diseases, cotyledonary explants of two "Egusi" genotypes, 'Ejagham' and NHC1-130, were transformed with Agrobacterium tumefaciens strain EHA101 harbouring wasabi defensin gene (isolated from Wasabia japonica L.) in a binary vector pEKH1. After co-cultivation for 3 days, infected explants were transferred to MS medium containing 100 mg l(-l) kanamycin to select transformed tissues. After 3 weeks of culture, adventitious shoots appeared directly along the edges of the explants. As much as 19 out of 52 (36.5%) and 25 out of 71 (35.2%) of the explants in genotype NHC1-130 and 'Ejagham', respectively, formed shoots after 6 weeks of culture. As much as 74% (14 out of 19) of the shoots regenerated in genotype NHC1-130 and 72% (18 out of 25) of those produced in genotype 'Ejagham' were transgenic. A DNA fragment corresponding to the wasabi defensin gene or the selection marker nptII was amplified by PCR from the genomic DNA of all regenerated plant clones rooted on hormone-free MS medium under the same selection pressure, suggesting their transgenic nature. Southern blot analysis confirmed successful integration of 1-5 copies of the transgene. RT-PCR, northern and western blot analyses revealed that wasabi defensin gene was expressed in transgenic lines. Transgenic lines showed increased levels of resistance to Alternaria solani, which causes Alternaria leaf spot and Fusarium oxysporum, which causes Fusarium wilt, as compared to that of untransformed plants. PMID:20552202

  4. Constitutive homologous expression of phosphoglucomutase and transaldolase increases the metabolic flux of Fusarium oxysporum

    PubMed Central

    2014-01-01

    Background Fusarium oxysporum is among the few filamentous fungi that have been reported of being able to directly ferment biomass to ethanol in a consolidated bioprocess. Understanding its metabolic pathways and their limitations can provide some insights on the genetic modifications required to enhance its growth and subsequent fermentation capability. In this study, we investigated the hypothesis reported previously that phosphoglucomutase and transaldolase are metabolic bottlenecks in the glycolysis and pentose phosphate pathway of the F. oxysporum metabolism. Results Both enzymes were homologously overexpressed in F. oxysporum F3 using the gpdA promoter of Aspergillus nidulans for constitutive expression. Transformants were screened for their phosphoglucomutase and transaldolase genes expression levels with northern blot. The selected transformant exhibited high mRNA levels for both genes, as well as higher specific activities of the corresponding enzymes, compared to the wild type. It also displayed more than 20 and 15% higher specific growth rate upon aerobic growth on glucose and xylose, respectively, as carbon sources and 30% higher biomass to xylose yield. The determination of the relative intracellular amino and non-amino organic acid concentrations at the end of growth on glucose revealed higher abundance of most determined metabolites between 1.5- and 3-times in the recombinant strain compared to the wild type. Lower abundance of the determined metabolites of the Krebs cycle and an 68-fold more glutamate were observed at the end of the cultivation, when xylose was used as carbon source. Conclusions Homologous overexpression of phosphoglucomutase and transaldolase in F. oxysporum was shown to enhance the growth characteristics of the strain in both xylose and glucose in aerobic conditions. The intracellular metabolites profile indicated how the changes in the metabolome could have resulted in the observed growth characteristics. PMID:24649884

  5. Effect of fusaric acid and phytoanticipins on growth of rhizobacteria and Fusarium oxysporum.

    PubMed

    Landa, Blanca B; Cachinero-Díaz, Juana M; Lemanceau, Philippe; Jiménez-Díaz, Rafael M; Alabouvette, Claude

    2002-11-01

    Suppression of soilborne diseases by biocontrol agents involves complex interactions among biocontrol agents and the pathogen and between these microorganisms and the plant. In general, these interactions are not well characterized. In this work, we studied (i) the diversity among strains of fluorescent Pseudomonas spp., Bacillus spp., and Paenibacillus sp. for their sensitivity to fusaric acid (FAc) and phytoanticipins from different host plants, (ii) the diversity of pathogenic and nonpathogenic Fusarium oxysporum isolates for their sensitivity to phytoanticipins, and (iii) the influence of FAc on the production of pyoverdine by fluorescent Pseudomonas spp. tolerant to this compound. There was a great diversity in the response of the bacterial strains to FAc; however, as a group, Bacillus spp. and Paenibacillus macerans were much more sensitive to FAc than Pseudomonas spp. FAc also affected production of pyoverdine by FAc-tolerant Pseudomonas spp. strains. Phytoanticipins differed in their effects on microbial growth, and sensitivity to a phytoanticipin varied among bacterial and fungal strains. Biochanin A did not affect growth of bacteria, but coumarin inhibited growth of Pseudomonas spp. strains and had no effect on Bacillus circulans and P. macerans. Conversely, tomatine inhibited growth of B. circulans and P. macerans. Biochanin A and tomatine inhibited growth of three pathogenic isolates of F. oxysporum but increased growth of three nonpathogenic F. oxysporum isolates. Coumarin inhibited growth of all pathogenic and nonpathogenic F. oxysporum isolates. These results are indicative of the complex interactions that can occur among plants, pathogens, and biological control agents in the rhizosphere and on the root surface. Also, these results may help to explain the low efficacy of some combinations of biocontrol agents, as well as the inconsistency in achieving disease suppression under field conditions. PMID:12556125

  6. Observations on the effect of lower-temperature dry heat treatments on Fusarium in cotton seed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt caused by Fusarium oxysporum f. sp. vasinfectum (FOV) race 4 has emerged as the dominant disease concern for cotton growers in California. Originally described from Asia, race 4 has spread into multiple counties in the San Joaquin Valley (SJV) since its discovery in one California fiel...

  7. Ultrastructural Changes Caused by Fusarium oxysporum f. sp. lycopersici in Meloidogyne javanica Induced Giant Cells in Fusarium Resistant and Susceptible Tomato Cultivars

    PubMed Central

    Fattah, F.; Webster, J. M.

    1983-01-01

    Tomato (Lycopersicon esculentum Mill.) seedlings, susceptible (cv. Pearson A-I Improved) and resistant (cv. Pearson Improved) to race 1 Fusarium oxysporum f. sp. lycopersici (Sacc.) Snyd &Hans., were inoculated with Meloidogyne javanica (Trueb) Chitwood second-stage juveniles and 3 weeks later with race 1 F. oxysporum f. sp. lycopersici spores. One week after fungal inoculation, no fungus was visible in root tissue of the tomato cultivars and the giant cells were normal. Two weeks after fungal inoculation, abundant hyphae were visible in xylem tissues of Fusarium-susceptible but not of Fusarium-resistant plants. In susceptible plants, giant cell degeneration occurred, characterized by membrane and organelle disruption. In addition, where hyphae were in direct contact with the giant cell, dissolution of the giant cell wall occurred. Three weeks after fungal inoculation, fungal hyphae and spores were visible inside xylem tissues and giant cells in Fusarium-susceptible plants and in xylem tissue of the resistant plants. In susceptible and resistant plants, giant cell degeneration was apparent. Giant cell walls were completely broken down in Fusarium-susceptible tomato plants. In both cultivars infected by Fusarium, giant cell nuclei became spherical and dark inclusions occurred within the chromatin material which condensed adjacent to the fragmented nuclear membrane. No such ultrastructural changes were seen in the giant cells of control plants inoculated with nematode alone. Giant cell deterioration in both cultivars is probably caused by toxic fungal metabolites. PMID:19295778

  8. Relation of Cotton Root Rot and Fusarium Wilt to the Acidity and Alkalinity of the Soil. 

    E-print Network

    Taubenhaus, J. J. (Jacob Joseph); Ezekiel, Walter N. (Walter Naphtali); Killough, D. T. (David Thornton)

    1928-01-01

    HOME RESEARCH: JESSIE WHITACRE Ph. D Chief MAMIE GRIMES, M. S., ~eztile and Clothing S~ecralrst 5. SUMNER. M. S., Nutrition Specialist - - - - - - - - . - - - **W T. CARTER B. S. Chief E. 'H. TEMPLI~; B S' Soil Sutvegor T. C. REITCH. B. s.. $oil... examined, and the acidity or alkalinity of the soil studied in relation to the pres- ence of cotton root rot and also of Fusarium wilt. Root rot was found in acid soils (pH 5.5-6.4) as well as in neutral (pH 6.5-7.4) and alkaline soils (pH 7.5...

  9. High-resolution melting analysis allowed fast and accurate closed-tube genotyping of Fusarium oxysporum formae speciales complex.

    PubMed

    Ganopoulos, Ioannis; Madesis, Panagiotis; Zambounis, Antonios; Tsaftaris, Athanasios

    2012-09-01

    The fungus Fusarium oxysporum is a highly complex species composed by many strains put together into groups called formae speciales. As it is difficult and laborious to discriminate Fusarium formae specials via biochemical or phenotypic methods, it is very important to develop novel, rapid, and simple to perform identification methods. Herein, real-time PCR assay [using universal internal transcribed spacer (ITS) primers] coupled with high-resolution melting (HRM) analysis was developed for identifying and distinguishing F. oxysporum formae speciales complex. The melting curve analysis of these amplicons specifically classified all isolates into seven F. oxysporum formae speciales and generated seven HRM curve profiles. The smallest DNA sequence difference recognized in this study was one nucleotide. The results presented show that HRM curve analysis of Fusarium ITS sequences is a simple, quick, and reproducible method that allows both the identification of seven F. oxysporum formae speciales and at the same time their screening for variants. Our genotyping assay uses the combined information of simultaneously acquired HRM data from an unlabeled probe and the full-length amplicon. Finally, the completion of both reaction and analysis in a closed tube saves time by eliminating the separate steps and reduces the risk of contamination. PMID:22670678

  10. The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and ?-tomatine from tomato plant

    Microsoft Academic Search

    Encarna Alejandre-Durán; Teresa Roldán-Arjona; Rafael R Ariza; Manuel Ruiz-Rubio

    2003-01-01

    Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The

  11. Rapid Synthesis of Silver Nanoparticles from Fusarium oxysporum by Optimizing Physicocultural Conditions

    PubMed Central

    Birla, Sonal S.; Gaikwad, Swapnil C.; Gade, Aniket K.; Rai, Mahendra K.

    2013-01-01

    Synthesis of silver nanoparticles (SNPs) by fungi is emerging as an important branch of nanotechnology due to its ecofriendly, safe, and cost-effective nature. In order to increase the yield of biosynthesized SNPs of desired shape and size, it is necessary to control the cultural and physical parameters during the synthesis. We report optimum synthesis of SNPs on malt extract glucose yeast extract peptone (MGYP) medium at pH 9–11, 40–60°C, and 190.7 Lux and in sun light. The salt concentrations, volume of filtrate and biomass quantity were found to be directly proportional to the yield. The optimized conditions for the stable and rapid synthesis will help in large scale synthesis of monodispersed SNPs. The main aim of the present study was to optimize different media, temperature, pH, light intensity, salt concentration, volume of filtrate, and biomass quantity for the synthesis of SNPs by Fusarium oxysporum. PMID:24222751

  12. The plant defensin, NaD1, enters the cytoplasm of Fusarium oxysporum hyphae.

    PubMed

    van der Weerden, Nicole L; Lay, Fung T; Anderson, Marilyn A

    2008-05-23

    The plant defensin, NaD1, from the flowers of Nicotiana alata displays potent antifungal activity against a variety of agronomically important filamentous fungi including Fusarium oxysporum f. sp. vasinfectum (Fov). To understand the mechanism of this antifungal activity, the effect of NaD1 on Fov fungal membranes and the location of NaD1 in treated hyphae was examined using various fluorescence techniques. NaD1 permeabilized fungal plasma membranes via the formation of an aperture with an internal diameter of between 14 and 22A. NaD1 bound to the cell walls of all treated hyphae and entered several hyphae, resulting in granulation of the cytoplasm and cell death. These results suggest that the activity of antifungal plant defensins may not be restricted to the hyphal membrane and that they enter cells and affect intracellular targets. PMID:18339623

  13. Identification of immunity related genes to study the Physalis peruviana--Fusarium oxysporum pathosystem.

    PubMed

    Enciso-Rodríguez, Felix E; González, Carolina; Rodríguez, Edwin A; López, Camilo E; Landsman, David; Barrero, Luz Stella; Mariño-Ramírez, Leonardo

    2013-01-01

    The Cape gooseberry (Physalisperuviana L) is an Andean exotic fruit with high nutritional value and appealing medicinal properties. However, its cultivation faces important phytosanitary problems mainly due to pathogens like Fusarium oxysporum, Cercosporaphysalidis and Alternaria spp. Here we used the Cape gooseberry foliar transcriptome to search for proteins that encode conserved domains related to plant immunity including: NBS (Nucleotide Binding Site), CC (Coiled-Coil), TIR (Toll/Interleukin-1 Receptor). We identified 74 immunity related gene candidates in P. peruviana which have the typical resistance gene (R-gene) architecture, 17 Receptor like kinase (RLKs) candidates related to PAMP-Triggered Immunity (PTI), eight (TIR-NBS-LRR, or TNL) and nine (CC-NBS-LRR, or CNL) candidates related to Effector-Triggered Immunity (ETI) genes among others. These candidate genes were categorized by molecular function (98%), biological process (85%) and cellular component (79%) using gene ontology. Some of the most interesting predicted roles were those associated with binding and transferase activity. We designed 94 primers pairs from the 74 immunity-related genes (IRGs) to amplify the corresponding genomic regions on six genotypes that included resistant and susceptible materials. From these, we selected 17 single band amplicons and sequenced them in 14 F. oxysporum resistant and susceptible genotypes. Sequence polymorphisms were analyzed through preliminary candidate gene association, which allowed the detection of one SNP at the PpIRG-63 marker revealing a nonsynonymous mutation in the predicted LRR domain suggesting functional roles for resistance. PMID:23844210

  14. Homologous overexpression of xylanase in Fusarium oxysporum increases ethanol productivity during consolidated bioprocessing (CBP) of lignocellulosics.

    PubMed

    Anasontzis, George E; Zerva, Anastasia; Stathopoulou, Panagiota M; Haralampidis, Kosmas; Diallinas, George; Karagouni, Amalia D; Hatzinikolaou, Dimitris G

    2011-03-10

    In an effort to increase ethanol productivity during the consolidated bioprocessing (CBP) of lignocellulosics by Fusarium oxysporum, we attempted the constitutive homologous overexpression of one of the key process enzymes, namely an endo-xylanase. The endo-?-1,4-xylanase 2 gene was incorporated into the F. oxysporum genome under the regulation of the gpdA promoter of Aspergillus nidulans. The transformation was effected through Agrobacterium tumefaciens and resulted in 12 transformants, two of which were selected for further study due to their high extracellular xylanase activities under normally repressing conditions (glucose as sole carbon source). During natural induction conditions (growth on xylan) though, the extracellular enzyme levels of the transformants were only marginally higher (5-10%) compared to the wild type despite the significantly stronger xylanase 2 mRNA signals. SDS-PAGE verified enzyme assay results that there was no intracellular xylanase 2 accumulation in the transformants, suggesting the potential regulation in a post transcriptional or translational level. The fermentative performance of the transformants was evaluated and compared to that of the wild type in simple CBP systems using either corn cob or wheat bran as sole carbon sources. Both transformants produced approximately 60% more ethanol compared to the wild type on corn cob, while for wheat bran this picture was repeated for only one of them. This result is attributed to the high extracellular xylanase activities in the transformants' fermentation broths that were maintained 2-2.5-fold higher compared to the wild type. PMID:21237221

  15. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.

    PubMed

    Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan

    2005-06-01

    Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology. PMID:15893252

  16. Evolution of virulence in Fusarium oxysporum f. sp. vasinfectum using serial passage assays through susceptible cotton.

    PubMed

    Wang, B; Brubaker, C L; Tate, W; Woods, M J; Burdon, J J

    2008-03-01

    Fifty strains of Fusarium oxysporum, recovered from rhizosphere soil around native Gossypium species and found to be mildly virulent on cotton (Gossypium hirsutum), were used to assay the propensity for evolution of virulence using serial passage assays through cotton. Only one lineage A strain, 2613, successfully completed 10 successive passages, while all others lost the ability to cause foliar disease symptoms at various stages during this process. Based on 46 amplified fragment length polymorphism (AFLP) markers generated with four EcoRI x MseI primer combinations, mutants were identified in offspring isolates from strain 2613 regardless of whether serial passages occurred in cotton or on water agar, suggesting the occurrence of spontaneous mutations. Significantly increased virulence was observed in the offspring isolates generated on cotton, while no increasing virulence was found in those obtained on water agar, suggesting that the evolution of virulence in F. oxysporum f. sp. vasinfectum is associated with the presence of cotton. No clear correlation was observed between the AFLP mutations and increased virulence in this study. PMID:18944080

  17. Commercial and improved germplasm evaluations for Fusarium wilt, FOV race 1 with root-knot nematodes and race 4

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Host plant resistance is the most economic and effective strategy for Fusarium wilt control. To implement steps to develop resistant germplasm to this pathogen, existing commercial Acala, non-Acala Upland (Gossypium hirsutum L.) and Pima (G. barbadense) cultivars, as well as improved germplasm were ...

  18. Isolation and purification of a hemorrhagic factor (wortmannin) from Fusarium oxysporum (N17B).

    PubMed Central

    Abbas, H K; Mirocha, C J

    1988-01-01

    An isolate of Fusarium oxysporum Schlecht, emend. Synd. et Hans. N17B isolated from a grassy area in Lakselv, Norway (Arctic region) produced a toxin in culture when grown on rice in the laboratory. This new toxin, which was given the trivial name of H-1 (indicating hemorrhagic factor), caused toxic effects in rats, including food refusal, weight loss, hemorrhage in the stomach, intestines, heart, and thymus, and finally death. The UV spectrum of H-1 showed 210, 254, and 292 nm as absorption maxima. The infrared spectrum showed carbonyl groups at 1,675 and 1,750 cm-1 and an ether group at 1,215 cm-1. H-1 does not fluoresce under short- or long-wavelength UV light and exists as fluffy, white crystals that turn yellow when subjected to basic reagents such as ammonium hydroxide or tetraethylenepentamine. Elemental and accurate mass determinations in both electron impact and positive chemical ionization indicate an empirical formula of C23H24O8. Its mass spectra (electron impact, chemical ionization, and fast atom bombardment [FAB]) show a molecular ion of 428 and major fragments at m/z+ 386, 368, 355, and 295. H-1 was found to be identical to the antibiotic called wortmannin which is produced by Penicillium wortmannii and Myrothecium roridum. This is the first report of the synthesis of wortmannin by species of the genus Fusarium. PMID:3389818

  19. Skin and subcutaneous mycoses in tilapia (Oreochromis niloticus) caused by Fusarium oxysporum in coinfection with Aeromonas hydrophila

    PubMed Central

    Cutuli, M. Teresa; Gibello, Alicia; Rodriguez-Bertos, Antonio; Blanco, M. Mar; Villarroel, Morris; Giraldo, Alejandra; Guarro, Josep

    2015-01-01

    Subcutaneous mycoses in freshwater fish are rare infections usually caused by oomycetes of the genus Saprolegnia and some filamentous fungi. To date, Fusarium infections in farmed fish have only been described in marine fish. Here, we report the presence of Fusarium oxysporum in subcutaneous lesions of Nile tilapia (Oreochromis niloticus). Histopathologic evaluation revealed granuloma formation with fungal structures, and the identity of the etiological agent was demonstrated by morphological and molecular analyses. Some of the animals died as a result of systemic coinfection with Aeromonashydrophila

  20. Skin and subcutaneous mycoses in tilapia (Oreochromis niloticus) caused by Fusarium oxysporum in coinfection with Aeromonas hydrophila.

    PubMed

    Cutuli, M Teresa; Gibello, Alicia; Rodriguez-Bertos, Antonio; Blanco, M Mar; Villarroel, Morris; Giraldo, Alejandra; Guarro, Josep

    2015-09-01

    Subcutaneous mycoses in freshwater fish are rare infections usually caused by oomycetes of the genus Saprolegnia and some filamentous fungi. To date, Fusarium infections in farmed fish have only been described in marine fish. Here, we report the presence of Fusarium oxysporum in subcutaneous lesions of Nile tilapia (Oreochromis niloticus). Histopathologic evaluation revealed granuloma formation with fungal structures, and the identity of the etiological agent was demonstrated by morphological and molecular analyses. Some of the animals died as a result of systemic coinfection with Aeromonas hydrophila. PMID:26155462

  1. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. II. Effect of the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis

    Microsoft Academic Search

    E. Storti; P. Bogani; P. Bettini; P. Bittini; M. L. Guardiola; M. G. Pellegrini; D. Inzé; M. Buiatti

    1994-01-01

    We have studied the effect of a change in the endogenous hormone equilibria on the competence of tomato (Lycopersicon esculentum) cells to defend themselves against the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Calluses from cvs ‘Davis’ and ‘Red River’, respectively resistant and susceptible to Fusarium and transgenic for an auxin- or cytokinin-synthesizing gene from Agrobacterium tumefaciens, were used. The

  2. Fusarium oxysporum f. sp. albedinis Toxin Characterization and Use for Selection of Resistant Date Palm to Bayoud Disease

    Microsoft Academic Search

    My H. Sedra; B. H. Lazrek

    \\u000a Date palm (Phoenix dactylifera L.) is the most economically important food crop in Moroccan oasean agricultural areas, contributing to preserving an arid\\u000a ecosystem threatened by desertification. The bayoud disease, caused by the fungus Fusarium oxysporum f. sp. albedinis (Foa), is incontestably the most serious disease affecting date palm in North Africa. The selection for resistance among\\u000a date palm cultivars was

  3. Isolation and characterization of bacteria responsible for the suppression of Fusarium oxysporum f. sp. raphani on the host rhizoplane

    Microsoft Academic Search

    Koki Toyota; Koko Yamamoto; Makoto Kimura

    1994-01-01

    Bacteria responsible for the suppression of Fusarium oxysporum f. sp. raphani on radish roots grown in so-called disease-suppressive (S) soils were isolated and characterized. About six hundred strains of bacteria, actinomycetes, Gram-negative bacteria, fluorescent pseudomonads, and antagonistic microorganisms were isolated from the roots grown in S-soils and so-called conducive (C) soils. Isolates were selected on the basis of in vitro

  4. A model for signal transduction in suspension cultures of Taxus chinensis var. mairei induced by an oligosaccharide from Fusarium oxysporum

    Microsoft Academic Search

    Ying-Jin Yuan; Chun Li; Jin-Chuan Wu; Zong-Ding Hu

    2002-01-01

    A non-linear cascade model is proposed to describe the signal transduction pathway in suspension cultures of Taxuschinensis var. mairei induced by an oligosaccharide from Fusarium oxysporum. The oxidative burst intensity, which was defined as the amount of the free radicals including superoxide anion (O2 ·), H2O2 and OH- and measured by ESR spectrometry, was used as the signal characteristic and

  5. Inheritance of resistance to Fusarium oxysporum f. sp. melonis races 0 and 2 in melon accession Tortuga

    Microsoft Academic Search

    A. Oumouloud; M. S. Arnedo-Andrés; R. González-Torres; J. M. Álvarez

    2010-01-01

    The inheritance of the resistance to Fusarium oxysporum f. sp. melonis (F.o.m.) races 0 and 2 in ‘Tortuga’, a Spanish cantalupensis accession, was studied from crosses of ‘Tortuga’ by the susceptible line ‘Piel de Sapo’ and the resistant one ‘Charentais-Fom1’\\u000a that carries the resistance gene Fom-1. The segregation patterns observed in the F2 (‘Tortuga’ × ‘Piel de Sapo’) and the backcross (‘Piel

  6. Distinct colonization patterns and cDNA-AFLP transcriptome profiles in compatible and incompatible interactions between melon and different races of Fusarium oxysporum f. sp. melonis

    PubMed Central

    2011-01-01

    Background Fusarium oxysporum f. sp. melonis Snyd. & Hans. (FOM) causes Fusarium wilt, the most important infectious disease of melon (Cucumis melo L.). The four known races of this pathogen can be distinguished only by infection on appropriate cultivars. No molecular tools are available that can discriminate among the races, and the molecular basis of compatibility and disease progression are poorly understood. Resistance to races 1 and 2 is controlled by a single dominant gene, whereas only partial polygenic resistance to race 1,2 has been described. We carried out a large-scale cDNA-AFLP analysis to identify host genes potentially related to resistance and susceptibility as well as fungal genes associated with the infection process. At the same time, a systematic reisolation procedure on infected stems allowed us to monitor fungal colonization in compatible and incompatible host-pathogen combinations. Results Melon plants (cv. Charentais Fom-2), which are susceptible to race 1,2 and resistant to race 1, were artificially infected with a race 1 strain of FOM or one of two race 1,2 w strains. Host colonization of stems was assessed at 1, 2, 4, 8, 14, 16, 18 and 21 days post inoculation (dpi), and the fungus was reisolated from infected plants. Markedly different colonization patterns were observed in compatible and incompatible host-pathogen combinations. Five time points from the symptomless early stage (2 dpi) to obvious wilting symptoms (21 dpi) were considered for cDNA-AFLP analysis. After successful sequencing of 627 transcript-derived fragments (TDFs) differentially expressed in infected plants, homology searching retrieved 305 melon transcripts, 195 FOM transcripts expressed in planta and 127 orphan TDFs. RNA samples from FOM colonies of the three strains grown in vitro were also included in the analysis to facilitate the detection of in planta-specific transcripts and to identify TDFs differentially expressed among races/strains. Conclusion Our data suggest that resistance against FOM in melon involves only limited transcriptional changes, and that wilting symptoms could derive, at least partially, from an active plant response. We discuss the pathogen-derived transcripts expressed in planta during the infection process and potentially related to virulence functions, as well as transcripts that are differentially expressed between the two FOM races grown in vitro. These transcripts provide candidate sequences that can be further tested for their ability to distinguish between races. Sequence data from this article have been deposited in GenBank, Accession Numbers: HO867279-HO867981. PMID:21338485

  7. Molecular characterization of races and vegetative compatibility groups in Fusarium oxysporum f. sp. vasinfectum.

    PubMed

    Fernandez, D; Assigbese, K; Dubois, M P; Geiger, J P

    1994-11-01

    Restriction fragment length polymorphism (RFLP) and vegetative compatibility analyses were undertaken to assess genetic relationships among 52 isolates of Fusarium oxysporum f. sp. vasinfectum of worldwide origin and representing race A, 3, or 4 on cotton plants. Ten distinct vegetative compatibility groups (VCGs) were obtained, and isolates belonging to distinct races were never in the same VCG. Race A isolates were separated into eight VCGs, whereas isolates of race 3 were classified into a single VCG (0113), as were those of race 4 (0114). Ribosomal and mitochondrial DNA (rDNA and mtDNA) RFLPs separated four rDNA haplotypes and seven mtDNA haplotypes. Race A isolates displayed the most polymorphism, with three rDNA haplotypes and four mtDNA haplotypes; race 4 isolates formed a single rDNA group but exhibited three mtDNA haplotypes, while race 3 isolates had unique rDNA and mtDNA haplotypes. Two mtDNA molecules with distinct sizes were identified; the first (45-kb mtDNA) was found in all race A isolates and seven race 4 isolates, and the second (55-kb mtDNA) was found in all race 3 isolates and in two isolates of race 4. These two mtDNA molecules were closely related to mtDNAs of F. oxysporum isolates belonging to other formae speciales (conglutinans, lycopersici, matthioli, and raphani). Isolates within a VCG shared the same rDNA and mtDNA haplotypes, with the exception of VCG0114, in which three distinct mtDNA haplotypes were observed. Genetic relationships among isolates inferred from rDNA or mtDNA site restriction data were different, and there was not a strict correlation between race and RFLPs.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7993090

  8. Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis.

    PubMed

    Castillejo, María Ángeles; Bani, Moustafa; Rubiales, Diego

    2015-07-01

    Fusarium oxysporum f. sp. pisi (Fop) is an important and destructive pathogen affecting pea crop (Pisum sativum) throughout the world. Control of this disease is achieved mainly by integration of different disease management procedures. However, the constant evolution of the pathogen drives the necessity to broaden the molecular basis of resistance to Fop. Our proteomic study was performed on pea with the aim of identifying proteins involved in different resistance mechanisms operating during F. oxysporum infection. For such purpose, we used a two-dimensional electrophoresis (2-DE) coupled to mass spectrometry (MALDI-TOF/TOF) analysis to study the root proteome of three pea genotypes showing different resistance response to Fop race 2. Multivariate statistical analysis identified 132 differential protein spots under the experimental conditions (genotypes/treatments). All of these protein spots were subjected to mass spectrometry analysis to deduce their possible functions. A total of 53 proteins were identified using a combination of peptide mass fingerprinting (PMF) and MSMS fragmentation. The following main functional categories were assigned to the identified proteins: carbohydrate and energy metabolism, nucleotides and aminoacid metabolism, signal transduction and cellular process, folding and degradation, redox and homeostasis, defense, biosynthetic process and transcription/translation. Results obtained in this work suggest that the most susceptible genotypes have increased levels of enzymes involved in the production of reducing power which could then be used as cofactor for enzymes of the redox reactions. This is in concordance with the fact that a ROS burst occurred in the same genotypes, as well as an increase of PR proteins. Conversely, in the resistant genotype proteins responsible to induce changes in the membrane and cell wall composition related to reinforcement were identified. Results are discussed in terms of the differential response to Fop. PMID:25672548

  9. Fusarium oxysporum f.sp. ciceri race 1 induced redox state alterations are coupled to downstream defense signaling in root tissues of chickpea (Cicer arietinum L.).

    PubMed

    Gupta, Sumanti; Bhar, Anirban; Chatterjee, Moniya; Das, Sampa

    2013-01-01

    Reactive oxygen species are known to play pivotal roles in pathogen perception, recognition and downstream defense signaling. But, how these redox alarms coordinate in planta into a defensive network is still intangible. Present study illustrates the role of Fusarium oxysporum f.sp ciceri Race1 (Foc1) induced redox responsive transcripts in regulating downstream defense signaling in chickpea. Confocal microscopic studies highlighted pathogen invasion and colonization accompanied by tissue damage and deposition of callose degraded products at the xylem vessels of infected roots of chickpea plants. Such depositions led to the clogging of xylem vessels in compatible hosts while the resistant plants were devoid of such obstructions. Lipid peroxidation assays also indicated fungal induced membrane injury. Cell shrinkage and gradual nuclear adpression appeared as interesting features marking fungal ingress. Quantitative real time polymerase chain reaction exhibited differential expression patterns of redox regulators, cellular transporters and transcription factors during Foc1 progression. Network analysis showed redox regulators, cellular transporters and transcription factors to coordinate into a well orchestrated defensive network with sugars acting as internal signal modulators. Respiratory burst oxidase homologue, cationic peroxidase, vacuolar sorting receptor, polyol transporter, sucrose synthase, and zinc finger domain containing transcription factor appeared as key molecular candidates controlling important hubs of the defense network. Functional characterization of these hub controllers may prove to be promising in understanding chickpea-Foc1 interaction and developing the case study as a model for looking into the complexities of wilt diseases of other important crop legumes. PMID:24058463

  10. Effects of Fusarium solani and F. oxysporum Infection on the Metabolism of Ginsenosides in American Ginseng Roots.

    PubMed

    Jiao, Xiaolin; Lu, Xiaohong; Chen, Amanda Juan; Luo, Yi; Hao, Jianjun J; Gao, Weiwei

    2015-01-01

    American ginseng (Panax quinquefolius L.) is a highly valuable herb widely used for medicinal treatments. Its pharmacologically important compounds are the ginsenosides, which are secondary metabolites in American ginseng root. The concentrations of ginsenoside in roots can be changed by fungal infection, but it is unclear what specific root tissues are impacted and whether the change is systemic. In this study, American ginseng roots were inoculated with two fungal pathogens (Fusarium solani or F. oxysporum) and the levels of six ginsenosides (Rb1, Rb2, Rc, Rd, Re, and Rg1) were then measured in the phloem and xylem around the discolored lesions and adjacent healthy areas of the root. Results indicated that the growth of Fusarium spp. was strictly limited to phloem, and correspondingly the ginsenoside concentration was only altered in this infected phloem. The concentration of Rg1, Rd, and Rc significantly changed in phloem tissues where F. solani was inoculated, while only Rg1 and Rd changed significantly after F. oxysporum inoculation. However, no changes of any ginsenoside occurred in either xylem or phloem tissue adjacent to the inoculation point. In addition, when two Fusarium spp. were grown on ginsenoside-amended Czapek medium, the majority of ginsenosides were depleted. Therefore, pathogenic Fusarium spp. may reduce ginsenoside levels by consuming them. PMID:26060917

  11. Agrobacterium-Mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer.

    PubMed

    Mullins, E D; Chen, X; Romaine, P; Raina, R; Geiser, D M; Kang, S

    2001-02-01

    ABSTRACT Agrobacterium tumefaciens-mediated transformation (ATMT) has long been used to transfer genes to a wide variety of plants and has also served as an efficient tool for insertional mutagenesis. In this paper, we report the construction of four novel binary vectors for fungal transformation and the optimization of an ATMT protocol for insertional mutagenesis, which permits an efficient genetic manipulation of Fusarium oxysporum and other phytopathogenic fungi to be achieved. Employing the binary vectors, carrying the bacterial hygromycin B phosphotrans-ferase gene (hph) under the control of the Aspergillus nidulans trpC promoter as a selectable marker, led to the production of 300 to 500 hygromycin B resistant transformants per 1 x 10(6) conidia of F. oxysporum, which is at least an order of magnitude higher than that previously accomplished. Transformation efficiency correlated strongly with the duration of cocultivation of fungal spores with Agrobacterium tumefaciens cells and significantly with the number of Agrobacteruium tumefaciens cells present during the cocultivation period (r = 0.996; n = 3; P < 0.01). All transformants tested remained mitotically stable, maintaining their hygromycin B resistance. Growing Agrobacterium tumefaciens cells in the presence of acetosyringone (AS) prior to cocultivation shortened the time required for the formation of transformants but decreased to 53% the percentage of transformants containing a single T-DNA insert per genome. This increased to over 80% when Agrobacterium tumefaciens cells grown in the absence of AS were used. There was no correlation between the average copy number of T-DNA per genome and the colony diameter of the transformants, the period of cocultivation or the quantity of Agrobacterium tumefaciens cells present during cocultivation. To isolate the host sequences flanking the inserted T-DNA, we employed a modified thermal asymmetric interlaced PCR (TAIL-PCR) technique. Utilizing just one arbitrary primer resulted in the successful amplification of desired products in 90% of those transformants analyzed. The insertion event appeared to be a random process with truncation of the inserted T-DNA, ranging from 1 to 14 bp in size, occurring on both the right and left border sequences. Considering the size and design of the vectors described here, coupled with the efficiency and flexibility of this ATMT protocol, it is suggested that ATMT should be regarded as a highly efficient alternative to other DNA transfer procedures in characterizing those genes important for the pathogenicity of F. oxysporum and potentially those of other fungal pathogens. PMID:18944391

  12. Fot 1 insertions in the Fusarium oxysporum f. sp. albedinis genome provide diagnostic PCR targets for detection of the date palm pathogen.

    PubMed

    Fernandez, D; Ouinten, M; Tantaoui, A; Geiger, J P; Daboussi, M J; Langin, T

    1998-02-01

    Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library of the date palm pathogen. Regions flanking the insertion sites were sequenced, and these sequences were used to design PCR primers that amplify the DNA regions at several Fot 1 insertion sites. When tested on a large sample of Fusarium isolates, including 286 F. oxysporum f. sp. albedinis isolates, 17 other special forms, nonpathogenic F. oxysporum isolates from palm grove soils, and 8 other Fusarium species, the primer pair TL3-FOA28 allowed amplification of a 400-bp fragment found only in F. oxysporum f. sp. albedinis. Sequence analysis showed that one of the Fot 1 copies was truncated, lacking 182 bp at its 3' terminus. The primer pair BI03-FOA1 amplified a 204-bp fragment which overlapped the Fot 1 truncated copy and its 3' site of insertion in the F. oxysporum f. sp. albedinis genome and identified 95% of the isolates. The primer pairs BIO3-FOA1 and TL3-FOA28 used in PCR assays thus provide a useful diagnostic tool for F. oxysporum f. sp. albedinis isolates. PMID:9464402

  13. Fot 1 Insertions in the Fusarium oxysporum f. sp. albedinis Genome Provide Diagnostic PCR Targets for Detection of the Date Palm Pathogen

    PubMed Central

    Fernandez, Diana; Ouinten, Mohamed; Tantaoui, Abdelaziz; Geiger, Jean-Paul; Daboussi, Marie-Josée; Langin, Thierry

    1998-01-01

    Populations of Fusarium oxysporum f. sp. albedinis, the causal agent of Bayoud disease of date palm, are derivatives of a single clonal lineage and exhibit very similar Fot 1 hybridization patterns. In order to develop a sensitive diagnostic tool for F. oxysporum f. sp. albedinis detection, we isolated several DNA clones containing a copy of the transposable element Fot 1 from a genomic library of the date palm pathogen. Regions flanking the insertion sites were sequenced, and these sequences were used to design PCR primers that amplify the DNA regions at several Fot 1 insertion sites. When tested on a large sample of Fusarium isolates, including 286 F. oxysporum f. sp. albedinis isolates, 17 other special forms, nonpathogenic F. oxysporum isolates from palm grove soils, and 8 other Fusarium species, the primer pair TL3-FOA28 allowed amplification of a 400-bp fragment found only in F. oxysporum f. sp. albedinis. Sequence analysis showed that one of the Fot 1 copies was truncated, lacking 182 bp at its 3? terminus. The primer pair BI03-FOA1 amplified a 204-bp fragment which overlapped the Fot 1 truncated copy and its 3? site of insertion in the F. oxysporum f. sp. albedinis genome and identified 95% of the isolates. The primer pairs BIO3-FOA1 and TL3-FOA28 used in PCR assays thus provide a useful diagnostic tool for F. oxysporum f. sp. albedinis isolates. PMID:9464402

  14. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli.

    PubMed

    Xue, Renfeng; Wu, Jing; Zhu, Zhendong; Wang, Lanfen; Wang, Xiaoming; Wang, Shumin; Blair, Matthew W

    2015-01-01

    Fusarium wilt of common bean (Phaseolus vulgaris L.), caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop), is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. We generated a total of 8,730 transcript-derived fragments (TDFs) with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9%) displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22), signal transduction (21), protein synthesis and processing (20), development and cytoskeletal organization (12), transport of proteins (7), gene expression and RNA metabolism (4), redox reactions (4), defense and stress responses (3), energy metabolism (3), and hormone responses (2). Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as molecular markers in association mapping or QTL analysis. PMID:26030070

  15. Differentially Expressed Genes in Resistant and Susceptible Common Bean (Phaseolus vulgaris L.) Genotypes in Response to Fusarium oxysporum f. sp. phaseoli

    PubMed Central

    Xue, Renfeng; Wu, Jing; Zhu, Zhendong; Wang, Lanfen; Wang, Xiaoming; Wang, Shumin; Blair, Matthew W.

    2015-01-01

    Fusarium wilt of common bean (Phaseolus vulgaris L.), caused by Fusarium oxysporum Schlechtend.:Fr. f.sp. phaseoli (Fop), is one of the most important diseases of common beans worldwide. Few natural sources of resistance to Fop exist and provide only moderate or partial levels of protection. Despite the economic importance of the disease across multiple crops, only a few of Fop induced genes have been analyzed in legumes. Therefore, our goal was to identify transcriptionally regulated genes during an incompatible interaction between common bean and the Fop pathogen using the cDNA amplified fragment length polymorphism (cDNA-AFLP) technique. We generated a total of 8,730 transcript-derived fragments (TDFs) with 768 primer pairs based on the comparison of a moderately resistant and a susceptible genotype. In total, 423 TDFs (4.9%) displayed altered expression patterns after inoculation with Fop inoculum. We obtained full amplicon sequences for 122 selected TDFs, of which 98 were identified as annotated known genes in different functional categories based on their putative functions, 10 were predicted but non-annotated genes and 14 were not homologous to any known genes. The 98 TDFs encoding genes of known putative function were classified as related to metabolism (22), signal transduction (21), protein synthesis and processing (20), development and cytoskeletal organization (12), transport of proteins (7), gene expression and RNA metabolism (4), redox reactions (4), defense and stress responses (3), energy metabolism (3), and hormone responses (2). Based on the analyses of homology, 19 TDFs from different functional categories were chosen for expression analysis using quantitative RT-PCR. The genes found to be important here were implicated at various steps of pathogen infection and will allow a better understanding of the mechanisms of defense and resistance to Fop and similar pathogens. The differential response genes discovered here could also be used as molecular markers in association mapping or QTL analysis. PMID:26030070

  16. Galactose Oxidase from Fusarium oxysporum - Expression in E. coli and P. pastoris and Biochemical Characterization

    PubMed Central

    Paukner, Regina; Staudigl, Petra; Choosri, Withu; Sygmund, Christoph; Halada, Petr; Haltrich, Dietmar; Leitner, Christian

    2014-01-01

    A gene coding for galactose 6-oxidase from Fusarium oxysporum G12 was cloned together with its native preprosequence and a C-terminal His-tag, and successfully expressed both in Escherichia coli and Pichia pastoris. The enzyme was subsequently purified and characterized. Among all tested substrates, the highest catalytic efficiency (kcat/Km) was found with 1-methyl-?-D-galactopyranoside (2.2 mM?1 s?1). The Michaelis constant (Km) for D-galactose was determined to be 47 mM. Optimal pH and temperature for the enzyme activity were 7.0 and 40°C, respectively, and the enzyme was thermoinactivated at temperatures above 50°C. GalOx contains a unique metalloradical complex consisting of a copper atom and a tyrosine residue covalently attached to the sulphur of a cysteine. The correct formation of this thioether bond during the heterologous expression in E. coli and P. pastoris could be unequivocally confirmed by MALDI mass spectrometry, which offers a convenient alternative to prove this Tyr-Cys crosslink, which is essential for the catalytic activity of GalOx. PMID:24967652

  17. Utilization of Lactic Acid by Fusarium oxysporum var. lini: Regulation of Transport and Metabolism

    PubMed Central

    Castro, Ieso M.; Loureiro-Dias, Maria C.

    1994-01-01

    Lactic acid was transported in Fusarium oxysporum var. lini ATCC 10960 by a saturable transport system that had a half-saturation constant of 56.6 ± 7.5 ?M and a maximum velocity of 0.61 ± 0.10 mmol h-1 g-1 (dry weight) at 26°C and pH 5.0. This transport system was inducible and was not expressed in the presence of a repressing substrate. Evidence is presented that the anionic form lactate- was taken up by the cells. Propionic, acetic, pyruvic, and bromoacetic acids but not succinic acid competitively inhibited the transport of lactic acid. Bromoacetic acid, which was not metabolized, was taken up to a steady-state level when intracellular and extracellular concentrations were identical, indicating that the transport system was not accumulative. The enzymatic activity that was physiologically more relevant in the metabolism of lactic acid was lactate: ferricytochrome c oxidase. This enzyme did not exhibit stereospecifity and was induced by lactic acid. PMID:16349143

  18. Nep1 Protein from Fusarium oxysporum Enhances Biological Control of Opium Poppy by Pleospora papaveracea.

    PubMed

    Bailey, B A; Apel-Birkhold, P C; Akingbe, O O; Ryan, J L; O'Neill, N R; Anderson, J D

    2000-08-01

    ABSTRACT The fungus Pleospora papaveracea and Nep1, a phytotoxic protein from Fusarium oxysporum, were evaluated for their biocontrol potential on opium poppy (Papaver somniferum). Four treatments consisting of a control, P. papaveracea conidia, Nep1 (5 mug/ml), and P. papaveracea conidia plus Nep1 (5 mug/ml) were used in detached-leaf and whole-plant studies. Conidia of P. papaveracea remained viable for 38 days when stored at 20 or 4 degrees C. Nep1 was stable in the presence of conidia for 38 days when stored at 4 degrees C or for 28 days at 20 degrees C. The presence of Nep1 did not affect conidia germination or appressoria formation. Nep1 was recovered from drops applied to opium poppy leaves in greenhouse and field studies 24 h after treatment. Opium poppy treated with the combination of Nep1 and P. papaveracea had higher necrosis ratings than the other treatments. There were changes in the intercellular protein profiles, determined by sodium dodecyl sulfate gel electrophoresis and silver staining, due to application of treatments; the most intense occurred in response to the combination of Nep1 and P. papaveracea. The combination of Nep1 and P. papaveracea enhanced the damage caused to opium poppy more than either component alone. PMID:18944501

  19. Purification and characterization of an alkaliphilic choline oxidase of Fusarium oxysporum.

    PubMed

    Enokibara, Shogo

    2012-01-01

    A novel choline oxidase found in a fungus, Fusarium oxysporum strain V2, was purified to homogeneity as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The enzyme has a molecular mass of 128 kDa and consists of two identical subunits. The purified enzyme showed adsorption peaks at 340 nm and 450 nm. It showed alkaliphilic pH characteristics: its optimum pH was 9.0-10.0, and it was stable at pH 8.0-10.2. The Michaelis constant (Km) values for choline and betaine aldehyde were 0.28 mM and 0.39 mM respectively. Trimethylamino-alcohols, dimethylamino-alcohols, and diethylaminoethanol were substrates for the enzyme, but the Km values for them increased with decreasing numbers of methyl groups on the ammonium headgroup. A marked decrease in the maximum velocity (Vmax) and Vmax/Km values was observed when N-replaced choline analogs were used as substrate instead of choline. The enzyme had a remarkably higher affinity for choline and betaine aldehyde than do previously reported enzymes. The enzyme oxidized these two substrates more quickly than a choline oxidase from Arthrobacter globiformis, and oxidation by the V2 enzyme was accompanied by an increase in the stoichometric amount of hydrogen peroxide. PMID:23221722

  20. Down-regulation of Fusarium oxysporum endogenous genes by Host-Delivered RNA interference enhances disease resistance

    PubMed Central

    Hu, Zongli; Parekh, Urvi; Maruta, Natsumi; Trusov, Yuri; Botella, Jose R.

    2015-01-01

    Fusarium oxysporum is a devastating pathogen causing extensive yield losses in a variety of crops and development of sustainable, environmentally friendly methods to improve crop resistance is crucial. We have used Host-Delivered RNA interference (HD-RNAi) technology to partially silence three different genes (FOW2, FRP1, and OPR) in the hemi-biotrophic fungus F. oxysporum f. sp. conglutinans. Expression of double stranded RNA (dsRNA) molecules targeting fungal pathogen genes was achieved in a number of transgenic Arabidopsis lines. F. oxysporum infecting the transgenic lines displayed substantially reduced mRNA levels on all three targeted genes, with an average of 75, 83, and 72% reduction for FOW2, FRP1, and OPR, respectively. The silencing of pathogen genes had a clear positive effect on the ability of the transgenic lines to fight infection. All transgenic lines displayed enhanced resistance to F. oxysporum with delayed disease symptom development, especially FRP1 and OPR lines. Survival rates after fungal infection were higher in the transgenic lines compared to control wild type plants which consistently showed survival rates of 10%, with FOW2 lines showing 25% survival; FRP1 lines 30–50% survival and OPR between 45 and 70% survival. The down-regulation effect was specific for the targeted genes without unintended effects in related genes. In addition to producing resistant crops, HD-RNAi can provide a useful tool to rapidly screen candidate fungal pathogenicity genes without the need to produce fungal knockout mutants. PMID:25654075

  1. Endophytic fungi from Vitis labrusca L. ('Niagara Rosada') and its potential for the biological control of Fusarium oxysporum.

    PubMed

    Brum, M C P; Araújo, W L; Maki, C S; Azevedo, J L

    2012-01-01

    We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesópolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi. PMID:23315803

  2. FUBT, a putative MFS transporter, promotes secretion of fusaric acid in the cotton pathogen Fusarium oxysporum f. sp. vasinfectum.

    PubMed

    Crutcher, Frankie K; Liu, Jinggao; Puckhaber, Lorraine S; Stipanovic, Robert D; Bell, Alois A; Nichols, Robert L

    2015-04-01

    Fusaric acid (FA) is a key component in virulence and symptom development in cotton during infection by Fusarium oxysporum. A putative major facilitator superfamily (MFS) transporter gene was identified downstream of the polyketide synthase gene responsible for the biosynthesis of FA in a region previously believed to be unrelated to the known FA gene cluster. Disruption of the transporter gene, designated FUBT, resulted in loss of FA secretion, decrease in FA production and a decrease in resistance to high concentrations of FA. Uptake of exogenous FA was unaffected in the disruption transformants, suggesting that FA enters the cell in Fusarium by an independent mechanism. Thus, FUBT is involved both in the extracellular transport of FA and in resistance of F. oxysporum to this non-specific toxin. A potential secondary resistance mechanism, the production of FA derivatives, was observed in FUBT deletion mutants. Molecular analysis of key biochemical processes in the production of FA could lead to future host plant resistance to Fusarium pathogens. PMID:25627440

  3. Detection of Fusarium wilt pathogens of Psidium guajava L. in soil using culture independent PCR (ciPCR)

    PubMed Central

    Mishra, Rupesh K.; Pandey, Brajesh K.; Muthukumar, M.; Pathak, Neelam; Zeeshan, Mohammad

    2012-01-01

    Traditional culturing methods take a long time for identification of pathogenic isolates. A protocol has been developed for the detection of Fusarium from soil samples in the early stage of infection. Seventeen soil samples from different locations were collected before the onset of rains to find out the presence of Fusarium spp. population present in the soil of guava orchards and to correlate its presence with incidence of wilt. A PCR based method was developed for the molecular characterization of Fusarium using Fusarium spp. specific primer. DNA extracted by this method was free from protein and other contaminations and the yield was sufficient for PCR amplification. The primer developed in this study was amplifying ?230 bp in all infected samples while not in healthy soil. The specificity and sensitivity of primer were tested on several Fusarium spp. and found that this primer was amplifying 10?6 dilution of the fungal DNA. The present study facilitates the rapid detection of Fusarium spp. from infected soil samples of guava collected from different agroclimatic regions in India. A rapid detection method for pathogens and a diagnostic assay for disease would facilitate an early detection of pathogen and lead to more effective control strategies. PMID:23961219

  4. The tomato I-3 gene: a novel gene for resistance to Fusarium wilt disease.

    PubMed

    Catanzariti, Ann-Maree; Lim, Ginny T T; Jones, David A

    2015-07-01

    Plant resistance proteins provide race-specific immunity through the recognition of pathogen effectors. The resistance genes I, I-2 and I-3 have been incorporated into cultivated tomato (Solanum lycopersicum) from wild tomato species to confer resistance against Fusarium oxysporum f. sp. lycopersici (Fol) races 1, 2 and 3, respectively. Although the Fol effectors corresponding to these resistance genes have all been identified, only the I-2 resistance gene has been isolated from tomato. To isolate the I-3 resistance gene, we employed a map-based cloning approach and used transgenic complementation to test candidate genes for resistance to Fol race 3. Here, we describe the fine mapping and sequencing of genes at the I-3 locus, which revealed a family of S-receptor-like kinase (SRLK) genes. Transgenic tomato lines were generated with three of these SRLK genes and one was found to confer Avr3-dependent resistance to Fol race 3, confirming it to be I-3. The finding that I-3 encodes an SRLK reveals a new pathway for Fol resistance and a new class of resistance genes, of which Pi-d2 from rice is also a member. The identification of I-3 also allows the investigation of the complex effector-resistance protein interaction involving Avr1-mediated suppression of I-2- and I-3-dependent resistance in tomato. PMID:25740416

  5. Biochemical markers as a useful tool for the early identification of Fusarium oxysporum f.sp. cubense, race 1 resistance banana clones

    Microsoft Academic Search

    M. Kavino; N. Kumar; T. Damodaran; S. Harish; D. Saravanakumar

    2009-01-01

    Panama disease of banana (Musa spp) caused by the fungus Fusarium oxysporum f. sp. Cubense (FOC), is a serious constraint both to the commercial production of banana and cultivation for subsistence agriculture. Chemical control is not economically effective and is also hazardous to the environment and human health. Breeding for disease resistance is an alternative strategy, which leads to the

  6. Effect of jasmonic acid on the induction of polyphenoloxidase and peroxidase activities in relation to date palm resistance against Fusarium oxysporum f. sp. albedinis

    Microsoft Academic Search

    Fatima Jaiti; Jean Luc Verdeil; Ismail El Hadrami

    2009-01-01

    Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most damaging disease of date palm in Morocco. In the present study we have investigated the effect of jasmonic acid (JA) on two defence-related enzymes, namely peroxidases (POX) and polyphenoloxidases (PPO) in date palm seedlings root. Our data show that exogenous application of JA at a concentration of 50 ?M

  7. ?-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum

    Microsoft Academic Search

    Shin-ichi Ito; Takashi Ihara; Hideyuki Tamura; Shuhei Tanaka; Tsuyoshi Ikeda; Hiroshi Kajihara; Chandrika Dissanayake; Fatma F. Abdel-Motaal; Magdi A. El-Sayed

    2007-01-01

    The tomato saponin ?-tomatine has been proposed to kill sensitive cells by binding to cell membranes followed by leakage of cell components. However, details of the modes of action of the compound on fungal cells are poorly understood. In the present study, mechanisms involved in ?-tomatine-induced cell death of fungi were examined using a filamentous pathogenic fungus Fusarium oxysporum. ?-Tomatine-induced

  8. A Genetic Mechanism for Emergence of Races in Fusarium oxysporum f. sp. lycopersici: Inactivation of Avirulence Gene AVR1 by Transposon Insertion

    PubMed Central

    Inami, Keigo; Yoshioka-Akiyama, Chizu; Morita, Yasuaki; Yamasaki, Mutsuko; Teraoka, Tohru; Arie, Tsutomu

    2012-01-01

    Compatible/incompatible interactions between the tomato wilt fungus Fusarium oxysporum f. sp. lycopersici (FOL) and tomato Solanum lycopersicum are controlled by three avirulence genes (AVR1–3) in FOL and the corresponding resistance genes (I–I3) in tomato. The three known races (1, 2 and 3) of FOL carry AVR genes in different combinations. The current model to explain the proposed order of mutations in AVR genes is: i) FOL race 2 emerged from race 1 by losing the AVR1 and thus avoiding host resistance mediated by I (the resistance gene corresponding to AVR1), and ii) race 3 emerged when race 2 sustained a point mutation in AVR2, allowing it to evade I2-mediated resistance of the host. Here, an alternative mechanism of mutation of AVR genes was determined by analyses of a race 3 isolate, KoChi-1, that we recovered from a Japanese tomato field in 2008. Although KoChi-1 is race 3, it has an AVR1 gene that is truncated by the transposon Hormin, which belongs to the hAT family. This provides evidence that mobile genetic elements may be one of the driving forces underlying race evolution. KoChi-1 transformants carrying a wild type AVR1 gene from race 1 lost pathogenicity to cultivars carrying I, showing that the truncated KoChi-1 avr1 is not functional. These results imply that KoChi-1 is a new race 3 biotype and propose an additional path for emergence of FOL races: Race 2 emerged from race 1 by transposon-insertion into AVR1, not by deletion of the AVR1 locus; then a point mutation in race 2 AVR2 resulted in emergence of race 3. PMID:22952887

  9. Detoxification of the fusarium toxin fusaric acid by the soil fungus aspergillus tubingensis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium oxysporum f. sp. vasinfectum (F.o.v.) causes cotton wilt and produces the toxin fusaric acid (FA). Previous research indicates that in the high producing strains of F.o.v., FA plays an important role in virulence. To address the problems of emerging virulent isolates su...

  10. Influence of Soil Fumigation on the Fusarium-Root-knot Nematode Disease Complex of Cotton in California.

    PubMed

    Jorgenson, E C; Hyer, A H; Garber, R H; Smith, S N

    1978-07-01

    For control of the root-knot nematode, Meloidogyne incognita, and the pathogenic wilt fungus, Fusarium oxysporum, on cotton, soil fumigants were applied in the field at conventional and higher rates. Conventional rates suppressed Fusarium wilt but higher rates gave quicker early growth, better stands, less stand loss over the season, a lower percentage of plants infected with wilt, fewer plants with vascular discoloration, and fewer nematodes. The best treatment about doubled the yields of untreated controls in one experiment and quadrupled them in another. PMID:19305846

  11. Influence of Soil Fumigation on the Fusarium-Root-knot Nematode Disease Complex of Cotton in California

    PubMed Central

    Jorgenson, E. C.; Hyer, A. H.; Garber, R. H.; Smith, Shirley N.

    1978-01-01

    For control of the root-knot nematode, Meloidogyne incognita, and the pathogenic wilt fungus, Fusarium oxysporum, on cotton, soil fumigants were applied in the field at conventional and higher rates. Conventional rates suppressed Fusarium wilt but higher rates gave quicker early growth, better stands, less stand loss over the season, a lower percentage of plants infected with wilt, fewer plants with vascular discoloration, and fewer nematodes. The best treatment about doubled the yields of untreated controls in one experiment and quadrupled them in another. PMID:19305846

  12. Discovery of a linoleate 9S-dioxygenase and an allene oxide synthase in a fusion protein of Fusarium oxysporum[S

    PubMed Central

    Hoffmann, Inga; Oliw, Ernst H.

    2013-01-01

    Fusarium oxysporum is a devastating plant pathogen that oxidizes C18 fatty acids sequentially to jasmonates. The genome codes for putative dioxygenase (DOX)-cytochrome P450 (CYP) fusion proteins homologous to linoleate diol synthases (LDSs) and the allene oxide synthase (AOS) of Aspergillus terreus, e.g., FOXB_01332. Recombinant FOXB_01332 oxidized 18:2n-6 to 9S-hydroperoxy-10(E),12(Z)-octadecadienoic acid by hydrogen abstraction and antarafacial insertion of molecular oxygen and sequentially to an allene oxide, 9S(10)-epoxy-10,12(Z)-octadecadienoic acid, as judged from nonenzymatic hydrolysis products (?- and ?-ketols). The enzyme was therefore designated 9S-DOX-AOS. The 9S-DOX activity oxidized C18 and C20 fatty acids of the n-6 and n-3 series to hydroperoxides at the n-9 and n-7 positions, and the n-9 hydroperoxides could be sequentially transformed to allene oxides with only a few exceptions. The AOS activity was stereospecific for 9- and 11-hydroperoxides with S configurations. FOXB_01332 has acidic and alcoholic residues, Glu946-Val-Leu-Ser949, at positions of crucial Asn and Gln residues (Asn-Xaa-Xaa-Gln) of the AOS and LDS. Site-directed mutagenesis studies revealed that FOXB_01332 and AOS of A. terreus differ in catalytically important residues suggesting that AOS of A. terreus and F. oxysporum belong to different subfamilies. FOXB_01332 is the first linoleate 9-DOX with homology to animal heme peroxidases and the first 9-DOX-AOS fusion protein. PMID:24082064

  13. Petunia Floral Defensins with Unique Prodomains as Novel Candidates for Development of Fusarium Wilt Resistance in Transgenic Banana Plants

    PubMed Central

    Ghag, Siddhesh B.; Shekhawat, Upendra K. Singh; Ganapathi, Thumballi R.

    2012-01-01

    Antimicrobial peptides are a potent group of defense active molecules that have been utilized in developing resistance against a multitude of plant pathogens. Floral defensins constitute a group of cysteine-rich peptides showing potent growth inhibition of pathogenic filamentous fungi especially Fusarium oxysporum in vitro. Full length genes coding for two Petunia floral defensins, PhDef1 and PhDef2 having unique C- terminal 31 and 27 amino acid long predicted prodomains, were overexpressed in transgenic banana plants using embryogenic cells as explants for Agrobacterium–mediated genetic transformation. High level constitutive expression of these defensins in elite banana cv. Rasthali led to significant resistance against infection of Fusarium oxysporum f. sp. cubense as shown by in vitro and ex vivo bioassay studies. Transgenic banana lines expressing either of the two defensins were clearly less chlorotic and had significantly less infestation and discoloration in the vital corm region of the plant as compared to untransformed controls. Transgenic banana plants expressing high level of full-length PhDef1 and PhDef2 were phenotypically normal and no stunting was observed. In conclusion, our results suggest that high-level constitutive expression of floral defensins having distinctive prodomains is an efficient strategy for development of fungal resistance in economically important fruit crops like banana. PMID:22745785

  14. Toxin-based in-vitro selection and its potential application to date palm for resistance to the bayoud Fusarium wilt.

    PubMed

    El Hadrami, Abdelbasset; El Idrissi-Tourane, Abdelmalek; El Hassni, Majida; Daayf, Fouad; El Hadrami, Ismaïl

    2005-08-01

    Date palm (Phoenix dactylifera L.) is qualified as a 'tree' of great ecological and socio-economical importance in desert oases. Unfortunately, it is being decimated, especially in Morocco and Algeria, by a fusariosis wilt called bayoud and caused by Fusarium oxysporum f. sp. albedinis (Fao). Controlling this disease requires the implementation of an integrated management program. Breeding for resistance is one of the most promising component strategies of this program. Few naturally resistant cultivars with a mediocre fruit quality (dates) are known. Conventional and non-conventional methods are under development and have to use the simplest and easiest methods to screen for resistant individuals. The use of pathogen toxins as selective agents at the tissue culture step might be a source of variability that can lead to the selection of individuals with suitable levels of resistance to the toxin and/or to the pathogen among the genetic material available. Foa produces toxins such as fusaric, succinic, 3-phenyl lactic acids and their derivatives, marasmins and peptidic toxins. These toxins can be used bulked or separately as selective agents. The aim of this contribution was to give a brief overview on toxins and their use as a mean to select resistant lines and to initiate a discussion about the potential use of this approach for the date palm-Foa pathosystem. This review does not pretend to be comprehensive or exhaustive and was prepared mainly to highlight the potential use of Foa toxins for selecting date palm individuals with a suitable resistance level to bayoud using toxin-based selective media. PMID:16125651

  15. Structural and Biochemical Changes in Salicylic-Acid-Treated Date Palm Roots Challenged with Fusarium oxysporum f. sp. albedinis

    PubMed Central

    Dihazi, Abdelhi; Serghini, Mohammed Amine; Jaiti, Fatima; Daayf, Fouad; Driouich, Azeddine; Dihazi, Hassan; El Hadrami, Ismail

    2011-01-01

    Histochemical and ultrastructural analyses were carried out to assess structural and biochemical changes in date palm roots pretreated with salicylic acid (SA) then inoculated with Fusarium oxysporum f. sp. albedinis (Foa). Flavonoids, induced proteins, and peroxidase activity were revealed in root tissues of SA-treated plants after challenge by Foa. These reactions were closely associated with plant resistance to Foa. Host reactions induced after inoculation of SA-treated plants with Foa included the plugging of intercellular spaces, the deposition of electron-dense materials at the sites of pathogen penetration, and several damages to fungal cells. On the other hand, untreated inoculated plants showed marked cell wall degradation and total cytoplasm disorganization, indicating the protective effects provided by salicylic acid in treated plants. PMID:22567327

  16. The Fusarium oxysporum gnt2, Encoding a Putative N-Acetylglucosamine Transferase, Is Involved in Cell Wall Architecture and Virulence

    PubMed Central

    López-Fernández, Loida; Ruiz-Roldán, Carmen; Pareja-Jaime, Yolanda; Prieto, Alicia; Khraiwesh, Husam; Roncero, M. Isabel G.

    2013-01-01

    With the aim to decipher the molecular dialogue and cross talk between Fusarium oxysporum f.sp. lycopersci and its host during infection and to understand the molecular bases that govern fungal pathogenicity, we analysed genes presumably encoding N-acetylglucosaminyl transferases, involved in glycosylation of glycoproteins, glycolipids, proteoglycans or small molecule acceptors in other microorganisms. In silico analysis revealed the existence of seven putative N-glycosyl transferase encoding genes (named gnt) in F. oxysporum f.sp. lycopersici genome. gnt2 deletion mutants showed a dramatic reduction in virulence on both plant and animal hosts. ?gnt2 mutants had ?alterations in cell wall properties related to terminal ?or ?-linked N-acetyl glucosamine. Mutant conidia and germlings also showed differences in structure and physicochemical surface properties. Conidial and hyphal aggregation differed between the mutant and wild type strains, in a pH independent manner. Transmission electron micrographs of germlings showed strong cell-to-cell adherence and the presence of an extracellular chemical matrix. ?gnt2 cell walls presented a significant reduction in N-linked oligosaccharides, suggesting the involvement of Gnt2 in N-glycosylation of cell wall proteins. Gnt2 was localized in Golgi-like sub-cellular compartments as determined by fluorescence microscopy of GFP::Gnt2 fusion protein after treatment with the antibiotic brefeldin A or by staining with fluorescent sphingolipid BODIPY-TR ceramide. Furthermore, density gradient ultracentrifugation allowed co-localization of GFP::Gnt2 fusion protein and Vps10p in subcellular fractions enriched in Golgi specific enzymatic activities. Our results suggest that N-acetylglucosaminyl transferases are key components for cell wall structure and influence interactions of F. oxysporum with both plant and animal hosts during pathogenicity. PMID:24416097

  17. Nuclear magnetic resonance (NMR) studies on the biosynthesis of fusaric acid from Fusarium oxysporum f. sp. vasinfectum.

    PubMed

    Stipanovic, Robert D; Wheeler, Michael H; Puckhaber, Lorraine S; Liu, Jinggao; Bell, Alois A; Williams, Howard J

    2011-05-25

    Fusarium oxysporum is a fungal pathogen that attacks many important plants. Uniquely pathogenic strains of F. oxysporum f. sp. vasinfectum were inadvertently imported into the United States on live cottonseed for dairy cattle feed. These strains produce exceptionally high concentrations of the phytotoxin fusaric acid. Thus, fusaric acid may be a critical component in the pathogenicity of these biotypes. This study investigated the biosynthesis of fusaric acid using (13)C-labeled substrates including [1,2-(13)C(2)]acetate as well as (13)C- and (15)N-labeled aspartate and [(15)N]glutamine. The incorporation of labeled substrates is consistent with the biosynthesis of fusaric acid from three acetate units at C5-C6, C7-C8, and C9-C10, with the remaining carbons being derived from aspartate via oxaloacetate and the TCA cycle; the oxaloacetate originates in part by transamination of aspartate, but most of the oxaloacetate is derived by deamination of aspartate to fumarate by aspartase. The nitrogen from glutamine is more readily incorporated into fusaric acid than that from aspartate. PMID:21495723

  18. Interaction of Pseudostellaria heterophylla with Fusarium oxysporum f.sp. heterophylla mediated by its root exudates in a consecutive monoculture system.

    PubMed

    Zhao, Yongpo; Wu, Linkun; Chu, Leixia; Yang, Yanqiu; Li, Zhenfang; Azeem, Saadia; Zhang, Zhixing; Fang, Changxun; Lin, Wenxiong

    2015-01-01

    In this study, quantitative real-time PCR (qPCR) was used to determine the amount of Fusarium oxysporum, an important replant disease pathogen in Pseudostellaria heterophylla rhizospheric soil. Moreover, HPLC was used to identify phenolic acids in root exudates then it was further to explore the effects of the phenolic acid allelochemicals on the growth of F. oxysporum f.sp. heterophylla. The amount of F. oxysporum increased significantly in P. heterophylla rhizosphere soil under a consecutive replant system as monitored through qPCR analysis. Furthermore, the growth of F. oxysporum f.sp. heterophylla mycelium was enhanced by root exudates with a maximum increase of 23.8%. In addition, the number of spores increased to a maximum of 12.5-fold. Some phenolic acids promoted the growth of F. oxysporum f.sp. heterophylla mycelium and spore production. Our study revealed that phenolic acids in the root secretion of P. heterophylla increased long with its development, which was closely related to changes in rhizospheric microorganisms. The population of pathogenic microorganisms such as F. oxysporum in the rhizosphere soil of P. heterophylla also sharply increased. Our results on plant-microbe communication will help to better clarify the cause of problems associated with P. heterophylla under consecutive monoculture treatment. PMID:25645742

  19. The photolyase gene from the plant pathogen Fusarium oxysporum f. sp. lycopersici is induced by visible light and alpha-tomatine from tomato plant.

    PubMed

    Alejandre-Durán, Encarna; Roldán-Arjona, Teresa; Ariza, Rafael R; Ruiz-Rubio, Manuel

    2003-11-01

    Survival of irradiated spores from Fusarium oxysporum with ultraviolet radiation (UV) was increased following exposition to visible light, indicating that this phytopathogenic fungus has a mechanism of photoreactivation able to counteract the lethal effects of UV. A genomic sequence containing the complete photolyase gene (phr1) from F. oxysporum was isolated by heterologous hybridisation with the Neurospora crassa photolyase gene. The F. oxysporum phr1 cDNA was isolated and expressed in a photolyase deficient Escherichia coli strain. The complementation of the photoreactivation deficiency of this E. coli mutant by phr1 cDNA demonstrated that the photolyase gene from F. oxysporum encodes a functional protein. The F. oxysporum PHR1 protein has a domain characteristic of photolyases from fungi (Trichoderma harziaium, N. crassa, Magnaporthe grisea, Saccharomyces cerevisiae) to bacteria (E. coli), and clusters in the photolyases phylogenetic tree with fungal photolyases. The F. oxysporum phr1 gene was inducible by visible light. The phr1 expression was also detected in presence of alpha-tomatine, a glycoalkaloid from tomato damaging cell membranes, suggesting that phr1 is induced by this cellular stress. PMID:14516768

  20. Cell wall synthesis in cotton roots after infection with Fusarium oxysporum. The deposition of callose, arabinogalactans, xyloglucans, and pectic components into walls, wall appositions, cell plates and plasmodesmata.

    PubMed

    Rodríguez-Gálvez, E; Mendgen, K

    1995-01-01

    Fusarium oxysporum f. sp. vasinfectum penetration hyphae infect living cells in the meristematic zone of cotton (Gossypium barbadense L.) roots. We characterized wall modifications induced by the fungus during infection of the protodermis using antibodies against callose, arabinogalactan-proteins, xyloglucan, pectin, polygalacturonic acid and rhamnogalacturonan I in high-pressure frozen, freeze-substituted root tissue. Using quantitative immunogold labelling we compared the cell walls before and after hyphal contact, cell plates with plasmodesmata during cytokinesis, and wall appositions induced by fungal contact. In the already-existing wall, fungal contact induced only minor modifications such as an increase of xyloglucan epitopes. Wall appositions mostly exhibited epitopes similar to the cell plate except that wall appositions had a much higher callose content. This study shows that wall appositions induced by Fusarium oxysporum hyphae are the result of normal cell wall synthesis and the addition of large amounts of callose. The appositions do not stop fungal growth. PMID:8580765

  1. Development of molecular markers linked to the Fom-1 locus for resistance to Fusarium race 2 in melon

    Microsoft Academic Search

    Ali Oumouloud; Maria Soledad Arnedo-Andres; Rafael Gonzalez-Torres; Jose María Alvarez

    2008-01-01

    Fusarium wilt, caused by Fusarium oxysporum f. sp. melonis (F.o.m), is a worldwide soil-borne disease of melon (Cucumis melo L.). The most effective control measure available is the use of resistant varieties. Resistance to races 0 and 2 of this\\u000a fungal pathogen is conditioned by the dominant gene Fom-1. An F2 population derived from the ‘Charentais-Fom1’ × ‘TRG-1551’ cross was used in

  2. Reliable detection of the fungal pathogen fusarium oxysporum f.sp. albedinis , causal agent of bayoud disease of date palm, using molecular techniques

    Microsoft Academic Search

    Stanley Freeman; Marcel Maymon

    2000-01-01

    Bayoud, caused by the soilborne fungusFusarium oxysporum f.sp.albedinis (FOA), is the most serious disease of date palm. Since the disease is located in the North African countries of Morocco and\\u000a Algeria, and advancing steadily eastwards, the ultimate goal is to prevent spread of the pathogen to other date-growing areas\\u000a in the region and farther afield. Molecular diagnostic techniques have been

  3. Salicylic Acid Induced Insensitivity to Culture Filtrate of Fusarium oxysporum f.sp. zingiberi in the Calli of Zingiber officinale Roscoe

    Microsoft Academic Search

    Prachi; Tilak R. Sharma; Brij M. Singh

    2002-01-01

    Salicylic acid (SA) was used to induce insensitivity in the callus cultures of Zingiber officinale against culture filtrate (CF) of Fusarium oxysporum f.sp. zingiberi. The treatment of callus cultures with SA (104µM) prior to selection with CF of the pathogen-increased callus survival. Exogenous application of SA resulted in increased activity of peroxidase and ß-1,3-glucanase enzymes in the callus cultures. No

  4. Production of 3-acetoxyscirpene-4,15-diol from anguidine (4,15-diacetoxyscirpene-3-ol) by Fusarium oxysporum f.sp. vasinfectum.

    PubMed

    Claridge, C A; Schmitz, H

    1979-04-01

    Growing cells of Fusarium oxysporum f.sp. vasinfectum (ATCC 7808) formed 3-acetoxyscirpene-4,15-diol from anguidine (4,15-diacetoxyscirpene-3-ol) by way of the intermediates triacetoxyscirpene, 3,4-diacetoxyscirpene-15-ol and 3,15-diacetoxyscirpene-4-ol. The new 3-acetoxy analog was found to be less active than anguidine and the other monoacetoxy derivatives when tested against a series of fungal strains and against HeLa cells in vitro. PMID:453837

  5. Risk levels of invasive Fusarium oxysporum f. sp. in areas suitable for date palm (Phoenix dactylifera) cultivation under various climate change projections.

    PubMed

    Shabani, Farzin; Kumar, Lalit

    2013-01-01

    Global climate model outputs involve uncertainties in prediction, which could be reduced by identifying agreements between the output results of different models, covering all assumptions included in each. Fusarium oxysporum f.sp. is an invasive pathogen that poses risk to date palm cultivation, among other crops. Therefore, in this study, the future distribution of invasive Fusarium oxysporum f.sp., confirmed by CSIRO-Mk3.0 (CS) and MIROC-H (MR) GCMs, was modeled and combined with the future distribution of date palm predicted by the same GCMs, to identify areas suitable for date palm cultivation with different risk levels of invasive Fusarium oxysporum f.sp., for 2030, 2050, 2070 and 2100. Results showed that 40%, 37%, 33% and 28% areas projected to become highly conducive to date palm are under high risk of its lethal fungus, compared with 37%, 39%, 43% and 42% under low risk, for the chosen years respectively. Our study also indicates that areas with marginal risk will be limited to 231, 212, 186 and 172 million hectares by 2030, 2050, 2070 and 2100. The study further demonstrates that CLIMEX outputs refined by a combination of different GCMs results of different species that have symbiosis or parasite relationship, ensure that the predictions become robust, rather than producing hypothetical findings, limited purely to publication. PMID:24340100

  6. Primary Metabolism of Chickpea Is the Initial Target of Wound Inducing Early Sensed Fusarium oxysporum f. sp. ciceri Race I

    PubMed Central

    Gupta, Sumanti; Chakraborti, Dipankar; Sengupta, Anindita; Basu, Debabrata; Das, Sampa

    2010-01-01

    Background Biotrophic interaction between host and pathogen induces generation of reactive oxygen species that leads to programmed cell death of the host tissue specifically encompassing the site of infection conferring resistance to the host. However, in the present study, biotrophic relationship between Fusarium oxysporum and chickpea provided some novel insights into the classical concepts of defense signaling and disease perception where ROS (reactive oxygen species) generation followed by hypersensitive responses determined the magnitude of susceptibility or resistant potentiality of the host. Methodology/Principal Findings Microscopic observations detected wound mediated in planta pathogenic establishment and its gradual progression within the host vascular tissue. cDNA-AFLP showed differential expression of many defense responsive elements. Real time expression profiling also validated the early recognition of the wound inducing pathogen by the host. The interplay between fungus and host activated changes in primary metabolism, which generated defense signals in the form of sugar molecules for combating pathogenic encounter. Conclusions/Significance The present study showed the limitations of hypersensitive response mediated resistance, especially when foreign encounters involved the food production as well as the translocation machinery of the host. It was also predicted from the obtained results that hypersensitivity and active species generation failed to impart host defense in compatible interaction between chickpea and Fusarium. On the contrary, the defense related gene(s) played a critical role in conferring natural resistance to the resistant host. Thus, this study suggests that natural selection is the decisive factor for selecting and segregating out the suitable type of defense mechanism to be undertaken by the host without disturbing its normal metabolism, which could deviate from the known classical defense mechanisms. PMID:20140256

  7. Exploring MicroRNA-Like Small RNAs in the Filamentous Fungus Fusarium oxysporum

    PubMed Central

    Jiang, Qiyan; Sun, Xianjun; Wang, Yong; Zhang, Hui; Hu, Zheng

    2014-01-01

    RNA silencing such as quelling and meiotic silencing by unpaired DNA (MSUD) and several other classes of special small RNAs have been discovered in filamentous fungi recently. More than four different mechanisms of microRNA-like RNAs (milRNAs) production have been illustrated in the model fungus Neurospora crassa including a dicer-independent pathway. To date, very little work focusing on small RNAs in fungi has been reported and no universal or particular characteristic of milRNAs were defined clearly. In this study, small RNA and degradome libraries were constructed and subsequently deep sequenced for investigating milRNAs and their potential cleavage targets on the genome level in the filamentous fungus F. oxysporum f. sp. lycopersici. As a result, there is no intersection of conserved miRNAs found by BLASTing against the miRBase. Further analysis showed that the small RNA population of F. oxysporum shared many common features with the small RNAs from N. crassa and other fungi. According to the known standards of miRNA prediction in plants and animals, milRNA candidates from 8 families (comprising 19 members) were screened out and identified. However, none of them could trigger target cleavage based on the degradome data. Moreover, most major signals of cleavage in transcripts could not match appropriate complementary small RNAs, suggesting that other predominant modes for milRNA-mediated gene regulation could exist in F. oxysporum. In addition, the PAREsnip program was utilized for comprehensive analysis and 3 families of small RNAs leading to transcript cleavage were experimentally validated. Altogether, our findings provided valuable information and important hints for better understanding the functions of the small RNAs and milRNAs in the fungal kingdom. PMID:25141304

  8. Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of Fusarium oxysporum f. sp. cubense tropical race 4 in soil.

    PubMed

    Zhang, Xin; Zhang, He; Pu, Jinji; Qi, Yanxiang; Yu, Qunfang; Xie, Yixian; Peng, Jun

    2013-01-01

    Fusarium oxysporum f. sp. cubense (Foc), the causal agent of Fusarium wilt (Panama disease), is one of the most devastating diseases of banana (Musa spp.). The Foc tropical race 4 (TR4) is currently known as a major concern in global banana production. No effective resistance is known in Musa to Foc, and no effective measures for controlling Foc once banana plants have been infected in place. Early and accurate detection of Foc TR4 is essential to protect banana industry and guide banana planting. A real-time fluorescence loop-mediated isothermal amplification assay (RealAmp) was developed for the rapid and quantitative detection of Foc TR4 in soil. The detection limit of the RealAmp assay was approximately 0.4 pg/µl plasmid DNA when mixed with extracted soil DNA or 10(3) spores/g of artificial infested soil, and no cross-reaction with other relative pathogens were observed. The RealAmp assay for quantifying genomic DNA of TR4 was confirmed by testing both artificially and naturally infested samples. Quantification of the soil-borne pathogen DNA of Foc TR4 in naturally infested samples was no significant difference compared to classic real-time PCR (P>0.05). Additionally, RealAmp assay was visual with an improved closed-tube visual detection system by adding SYBR Green I fluorescent dye to the inside of the lid prior to amplification, which avoided the inhibitory effects of the stain on DNA amplification and makes the assay more convenient in the field and could thus become a simple, rapid and effective technique that has potential as an alternative tool for the detection and monitoring of Foc TR4 in field, which would be a routine DNA-based testing service for the soil-borne pathogen in South China. PMID:24376590

  9. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum.

    PubMed

    Gopinath, V; Velusamy, P

    2013-04-01

    In last few decades nanoparticles have attracted and emerged as a field in biomedical research due to their incredible applications. The current research was focused on extracellular synthesis of silver nanoparticles (AgNPs) using cell free culture supernatant of strain GP-23. It was found that the strain GP-23 belonged to Bacillus species by 16S rRNA sequence analysis. Biosynthesis of AgNPs was achieved by addition of culture supernatant with aqueous silver nitrate solution, after 24 h it turned to brown color solution with a peak at 420 nm corresponding to the Plasmon absorbance of AgNPs by UV-Vis Spectroscopy. The nanoparticles were characterized by FTIR, XRD, HRTEM, EDX and AFM. The synthesized nanoparticles were found to be spherical in shape with size in the range of 7-21 nm. It was stable in aqueous solution for five months period of storage at room temperature under dark condition. The biosynthesized AgNPs exhibited strong antifungal activity against plant pathogenic fungus, Fusarium oxysporum at the concentration of 8 ?g ml(-1). The results suggest that the synthesized AgNPs act as an effective antifungal agent/fungicide. PMID:23376272

  10. Colonization of Tomato Root by Pathogenic and Nonpathogenic Fusarium oxysporum Strains Inoculated Together and Separately into the Soil

    PubMed Central

    Olivain, Chantal; Humbert, Claude; Nahalkova, Jarmila; Fatehi, Jamshid; L'Haridon, Floriane; Alabouvette, Claude

    2006-01-01

    In soil, fungal colonization of plant roots has been traditionally studied by indirect methods such as microbial isolation that do not enable direct observation of infection sites or of interactions between fungal pathogens and their antagonists. Confocal laser scanning microscopy was used to visualize the colonization of tomato roots in heat-treated soil and to observe the interactions between a nonpathogenic strain, Fo47, and a pathogenic strain, Fol8, inoculated onto tomato roots in soil. When inoculated separately, both fungi colonized the entire root surface, with the exception of the apical zone. When both strains were introduced together, they both colonized the root surface and were observed at the same locations. When Fo47 was introduced at a higher concentration than Fol8, it colonized much of the root surface, but hyphae of Fol8 could still be observed at the same location on the root. There was no exclusion of the pathogenic strain by the presence of the nonpathogenic strain. These results are not consistent with the hypothesis that specific infection sites exist on the root for Fusarium oxysporum and instead support the hypothesis that competition occurs for nutrients rather than for infection sites. PMID:16461707

  11. Selection and differentiation of Bacillus spp. Antagonistic to Fusarium oxysporum f.sp. lycopersici and Alternaria solani infecting Tomato.

    PubMed

    Shanmugam, Veerubommu; Atri, Kamini; Gupta, Samriti; Kanoujia, Nandina; Naruka, Digvijay Singh

    2011-03-01

    Antagonistic Bacillus spp. displaying in vitro production of siderophore, chitinase, and ?-1,3-glucanase were identified from dual culture assays. In independent greenhouse studies, seed bacterization and soil application of Bacillus atrophaeus S2BC-2 challenge inoculated with Fusarium oxysporum f.sp. lycopersici (FOL) and Alternaria solani (AS) recorded low percent disease index of 25.3 and 28.7, respectively, over nonbacterised pathogen control (44.3 and 56.4). The low disease incidence corroborated with tomato growth promotion with high vigor index (8,041.2) and fresh plant weight (82.5 g) on challenge inoculation with FOL. Analysis of root and leaf samples in rhizobacterial treatment challenged with FOL and AS revealed maximum induction of chitinase (1.9 and 1.7 U/mg of protein, respectively) and ?-1,3-glucanase (23.5 and 19.2 U/mg of protein, respectively). In native gel activity assays, the rhizobacterial treatment on challenge inoculation strongly expressed three high intensity PO isoforms along with one low intensity isoform. In studies on genetic diversity of the Bacillus strains by repetitive extragenomic palindromic-polymerase chain reaction (REP-PCR) and amplified rDNA restriction analysis (ARDRA) patterns, ARDRA was more highly discriminant than REP-PCR and allowed grouping of the strains and differentiation of the antagonistic strains from other isolates. PMID:21503737

  12. Fusarium oxysporum induces the production of proteins and volatile organic compounds by Trichoderma harzianum T-E5.

    PubMed

    Zhang, Fengge; Yang, Xingming; Ran, Wei; Shen, Qirong

    2014-10-01

    Trichoderma species have been used widely as biocontrol agents for the suppression of soil-borne pathogens. However, some antagonistic mechanisms of Trichoderma are not well characterized. In this study, a series of laboratory experiments were designed to characterize the importance of mycoparasitism, exoenzymes, and volatile organic compounds (VOCs) by Trichoderma harzianum T-E5 for the control of Fusarium oxysporum f. sp. cucumerinum (FOC). We further tested whether these mechanisms were inducible and upregulated in presence of FOC. The results were as follows: T-E5 heavily parasitized FOC by coiling and twisting the entire mycelium of the pathogen in dual cultures. T-E5 growing medium conditioned with deactivated FOC (T2) showed more proteins and higher cell wall-degrading enzyme activities than T1, suggesting that FOC could induce the upregulation of exoenzymes. The presence of deactivated FOC (T2') also resulted in the upregulation of VOCs that five and eight different types T-E5-derived VOCs were identified from T1' and T2', respectively. Further, the excreted VOCs in T2' showed significantly higher antifungal activities against FOC than T1'. In conclusion, mycoparasitism of T-E5 against FOC involved mycelium contact and the production of complex extracellular substances. Together, these data provide clues to help further clarify the interactions between these fungi. PMID:25135494

  13. A nuclear localization for Avr2 from Fusarium oxysporum is required to activate the tomato resistance protein I-2

    PubMed Central

    Ma, Lisong; Cornelissen, Ben J. C.; Takken, Frank L. W.

    2013-01-01

    Plant pathogens secrete effector proteins to promote host colonization. During infection of tomato xylem vessels, Fusarium oxysporum f. sp. lycopersici (Fol) secretes the Avr2 effector protein. Besides being a virulence factor, Avr2 is recognized intracellularly by the tomato I-2 resistance protein, resulting in the induction of host defenses. Here, we show that AVR2 is highly expressed in root- and xylem-colonizing hyphae three days post inoculation of roots. Co-expression of I-2 with AVR2 deletion constructs using agroinfiltration in Nicotiana benthamiana leaves revealed that, except for the N-terminal 17 amino acids, the entire AVR2 protein is required to trigger I-2-mediated cell death. The truncated Avr2 variants are still able to form homo-dimers, showing that the central region of Avr2 is required for dimerization. Simultaneous production of I-2 and Avr2 chimeras carrying various subcellular localization signals in N. benthamiana leaves revealed that a nuclear localization of Avr2 is required to trigger I-2-dependent cell death. Nuclear exclusion of Avr2 prevented its activation of I-2, suggesting that Avr2 is recognized by I-2 in the nucleus. PMID:23596453

  14. Stable integration and expression of wasabi defensin gene in “Egusi” melon ( Colocynthis citrullus L.) confers resistance to Fusarium wilt and Alternaria leaf spot

    Microsoft Academic Search

    Valentine Otang Ntui; Gunaratnam Thirukkumaran; Pejman Azadi; Raham Sher Khan; Ikuo Nakamura; Masahiro Mii

    2010-01-01

    Production of “Egusi” melon (Colocynthis citrullus L.) in West Africa is limited by fungal diseases, such as Alternaria leaf spot and Fusarium wilt. In order to engineer “Egusi”\\u000a resistant to these diseases, cotyledonary explants of two “Egusi” genotypes, ‘Ejagham’ and NHC1-130, were transformed with\\u000a Agrobacterium tumefaciens strain EHA101 harbouring wasabi defensin gene (isolated from Wasabia japonica L.) in a binary

  15. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt.

    PubMed

    Hassan, Naglaa; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-03-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  16. Occurrence of Root Rot and Vascular Wilt Diseases in Roselle (Hibiscus sabdariffa L.) in Upper Egypt

    PubMed Central

    Hassan, Naglaa; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) family Malvaceae is an important crop used in food, cosmetics and pharmaceutics industries. Roselle is cultivated mainly in Upper Egypt (Qena and Aswan governorates) producing 94% of total production. Root rot disease of roselle is one of the most important diseases that attack both seedlings and adult plants causing serious losses in crop productivity and quality. The main objective of the present study is to identify and characterize pathogens associated with root rot and wilt symptoms of roselle in Qena, Upper Egypt and evaluate their pathogenicity under greenhouse and field condition. Fusarium oxysporum, Macrophomina phaseolina, Fusarium solani, Fusarium equiseti and Fusarium semitectum were isolated from the natural root rot diseases in roselle. All isolated fungi were morphologically characterized and varied in their pathogenic potentialities. They could attack roselle plants causing damping-off and root rot/wilt diseases in different pathogenicity tests. The highest pathogenicity was caused by F. oxysporum and M. phaseolina followed by F. solani. The least pathogenic fungi were F. equiseti followed by F. semitectum. It obviously noted that Baladi roselle cultivar was more susceptible to infection with all tested fungi than Sobhia 17 under greenhouse and field conditions. This is the first report of fungal pathogens causing root rot and vascular wilt in roselle in Upper Egypt. PMID:24808737

  17. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06.

    PubMed

    Musavi, Sogra Fathima; Dhavale, Abhinandan; Balakrishnan, Raj Mohan

    2015-01-01

    The production of cell-associated camptothecin (CPT) from an endophytic fungus Fusarium oxysporum NFX06 isolated from Nothapodytes foetida and its kinetics studies were proposed. Response surface methodology (RSM) based on central composite design (CCD) was used to construct a model to describe the effects of substrate concentration. Three independent variables (dextrose, peptone, and MgSO4) were successfully employed to study the yield of CPT under submerged fermentation. The maximum yield of CPT obtained from CCD was about 598.0 ng/g biomass. The model-validated optimum predicted CPT yield and experimental CPT yield from the biomass were found to be 628.08 ng/g and 610.09 ng/g at the concentrations of dextrose 42.64 (g/L), peptone 9.23 (g/L), and MgSO4 0.26 (g/L) respectively. The predicted yield of CPT was 4.90% higher than the value obtained from CCD and 2.85% higher than the value obtained from experiment conducted at optimum conditions. The kinetic parameters, maximum specific growth rate ?max=1.212 day(-1), growth-associated CPT production coefficient (?=29.35 ng/g biomass), and non-growth-associated CPT production coefficient (?=0.03 ng CPT/g biomass-day) were obtained. The logistic model was found suitable to predict mycelial growth with a high determination coefficient (R2). Luedeking-Piret and modified Luedeking-Piret models were employed to represent the product kinetics and substrate consumption kinetics. A good concurrence was found between the experimental and predicted values, representing that the unstructured models were able to illustrate the fermentation profile effectively. PMID:24840354

  18. Statistical optimization of growth medium for the production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin from Fusarium oxysporum KFCC 11363P.

    PubMed

    Lee, Hee-Seok; Song, Hyuk-Hwan; An, Joong-Hoon; Shin, Cha-Gyun; Lee, Gung Pyo; Lee, Chan

    2008-01-01

    The production of the entomopathogenic and phytotoxic cyclic depsipeptide beauvericin (BEA) was studied in submerged cultures of Fusarium oxysporum KFCC 11363P isolated in Korea. The influences of various factors on mycelia growth and BEA production were examined in both complete and chemically defined culture media. The mycelia growth and BEA production were highest in Fusarium defined medium. The optimal carbon and nitrogen sources for maximizing BEA production were glucose and NaNO3, respectively. The carbon/ nitrogen ratio for maximal production of BEA was investigated using response surface methodology (RSM). Equations derived by differentiation of the RSM model revealed that the production of BEA was maximal when using 108 mM glucose and 25 mM NaNO3. PMID:18239431

  19. Deep 16S rRNA pyrosequencing reveals a bacterial community associated with Banana Fusarium Wilt disease suppression induced by bio-organic fertilizer application.

    PubMed

    Shen, Zongzhuan; Wang, Dongsheng; Ruan, Yunze; Xue, Chao; Zhang, Jian; Li, Rong; Shen, Qirong

    2014-01-01

    Our previous work demonstrated that application of a bio-organic fertilizer (BIO) to a banana mono-culture orchard with serious Fusarium wilt disease effectively decreased the number of soil Fusarium sp. and controlled the soil-borne disease. Because bacteria are an abundant and diverse group of soil organisms that responds to soil health, deep 16 S rRNA pyrosequencing was employed to characterize the composition of the bacterial community to investigate how it responded to BIO or the application of other common composts and to explore the potential correlation between bacterial community, BIO application and Fusarium wilt disease suppression. After basal quality control, 137,646 sequences and 9,388 operational taxonomic units (OTUs) were obtained from the 15 soil samples. Proteobacteria, Acidobacteria, Bacteroidetes, Gemmatimonadetes and Actinobacteria were the most frequent phyla and comprised up to 75.3% of the total sequences. Compared to the other soil samples, BIO-treated soil revealed higher abundances of Gemmatimonadetes and Acidobacteria, while Bacteroidetes were found in lower abundance. Meanwhile, on genus level, higher abundances compared to other treatments were observed for Gemmatimonas and Gp4. Correlation and redundancy analysis showed that the abundance of Gemmatimonas and Sphingomonas and the soil total nitrogen and ammonium nitrogen content were higher after BIO application, and they were all positively correlated with disease suppression. Cumulatively, the reduced Fusarium wilt disease incidence that was seen after BIO was applied for 1-year might be attributed to the general suppression based on a shift within the bacteria soil community, including specific enrichment of Gemmatimonas and Sphingomonas. PMID:24871319

  20. p-Coumaric Acid Influenced Cucumber Rhizosphere Soil Microbial Communities and the Growth of Fusarium oxysporum f.sp. cucumerinum Owen

    PubMed Central

    Zhou, Xingang; Wu, Fengzhi

    2012-01-01

    Background Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood. Methodology/Principal Findings The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil. Conclusions/Significance These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities. PMID:23118972

  1. alpha-Tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum.

    PubMed

    Ito, Shin-Ichi; Ihara, Takashi; Tamura, Hideyuki; Tanaka, Shuhei; Ikeda, Tsuyoshi; Kajihara, Hiroshi; Dissanayake, Chandrika; Abdel-Motaal, Fatma F; El-Sayed, Magdi A

    2007-07-10

    The tomato saponin alpha-tomatine has been proposed to kill sensitive cells by binding to cell membranes followed by leakage of cell components. However, details of the modes of action of the compound on fungal cells are poorly understood. In the present study, mechanisms involved in alpha-tomatine-induced cell death of fungi were examined using a filamentous pathogenic fungus Fusarium oxysporum. alpha-Tomatine-induced cell death of F. oxysporum (TICDF) occurred only under aerobic conditions and was blocked by the mitochondrial F(0)F(1)-ATPase inhibitor oligomycin, the caspase inhibitor D-VAD-fmk, and protein synthesis inhibitor cycloheximide. Fungal cells exposed to alpha-tomatine showed TUNEL-positive nuclei, depolarization of transmembrane potential of mitochondria, and reactive oxygen species (ROS) accumulation. These results suggest that TICDF occurs through a programmed cell death process in which mitochondria play a pivotal role. Pharmacological studies using inhibitors suggest that alpha-tomatine activates phosphotyrosine kinase and monomeric G-protein signaling pathways leading to Ca(2+) elevation and ROS burst in F. oxysporum cells. PMID:17585910

  2. Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses.

    PubMed

    Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa

    2010-03-01

    Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack. PMID:20377692

  3. Development of quantitative proteomics using iTRAQ based on the immunological response of Galleria mellonella larvae challenged with Fusarium oxysporum microconidia.

    PubMed

    Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos

    2014-01-01

    Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at 37°C over expressed many more proteins than other treatments. PMID:25379782

  4. Development of Quantitative Proteomics Using iTRAQ Based on the Immunological Response of Galleria mellonella Larvae Challenged with Fusarium oxysporum Microconidia

    PubMed Central

    Muñoz-Gómez, Amalia; Corredor, Mauricio; Benítez-Páez, Alfonso; Peláez, Carlos

    2014-01-01

    Galleria mellonella has emerged as a potential invertebrate model for scrutinizing innate immunity. Larvae are easy to handle in host-pathogen assays. We undertook proteomics research in order to understand immune response in a heterologous host when challenged with microconidia of Fusarium oxysporum. The aim of this study was to investigate hemolymph proteins that were differentially expressed between control and immunized larvae sets, tested with F. oxysporum at two temperatures. The iTRAQ approach allowed us to observe the effects of immune challenges in a lucid and robust manner, identifying more than 50 proteins, 17 of them probably involved in the immune response. Changes in protein expression were statistically significant, especially when temperature was increased because this was notoriously affected by F. oxysporum 104 or 106 microconidia/mL. Some proteins were up-regulated upon immune fungal microconidia challenge when temperature changed from 25 to 37°C. After analysis of identified proteins by bioinformatics and meta-analysis, results revealed that they were involved in transport, immune response, storage, oxide-reduction and catabolism: 20 from G. mellonella, 20 from the Lepidoptera species and 19 spread across bacteria, protista, fungi and animal species. Among these, 13 proteins and 2 peptides were examined for their immune expression, and the hypothetical 3D structures of 2 well-known proteins, unannotated for G. mellonella, i.e., actin and CREBP, were resolved using peptides matched with Bombyx mori and Danaus plexippus, respectively. The main conclusion in this study was that iTRAQ tool constitutes a consistent method to detect proteins associated with the innate immune system of G. mellonella in response to infection caused by F. oxysporum. In addition, iTRAQ was a reliable quantitative proteomic approach to detect and quantify the expression levels of immune system proteins and peptides, in particular, it was found that 104 microconidia/mL at 37°C over expressed many more proteins than other treatments. PMID:25379782

  5. Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365.

    PubMed

    de Weert, Sandra; Kuiper, Irene; Lagendijk, Ellen L; Lamers, Gerda E M; Lugtenberg, Ben J J

    2004-11-01

    Pseudomonas fluorescens WCS365 is an excellent competitive colonizer of tomato root tips after bacterization of seed or seedlings. The strain controls tomato foot and root rot (TFRR) caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Under biocontrol conditions, fungal hyphae were shown to be colonized by WCS365 bacteria. Because chemotaxis is required for root colonization by WCS365 cells, we studied whether chemotaxis also is required for hyphae colonization. To that end, an in vitro assay was developed to study hyphae colonization by bacteria. The results indicated that cells of the cheA mutant FAJ2060 colonize hyphae less efficiently than cells of wild-type strain WCS365, when single strains were analyzed as well as when both strains were applied together. Cells of WCS365 show a chemotactic response toward the spent growth medium of F. oxysporum f. sp. radicis-lycopersici, but those of its cheA mutant, FAJ2060, did not. Fusaric acid, a secondary metabolite secreted by Fusarium strains, appeared to be an excellent chemo-attractant. Supernatant fluids of a number of Fusarium strains secreting different levels of fusaric acid were tested as chemo-attractants. A positive correlation was found between chemo-attractant activity and fusaric acid level. No chemotactic response was observed toward the low fusaric acid-producer FO242. Nevertheless, the hyphae of FO242 still were colonized by WCS365, suggesting that other metabolites also play a role in this process. The possible function of hyphae colonization for the bacterium is discussed. PMID:15553244

  6. Tomato Genome-Wide Transcriptional Responses to Fusarium Wilt and Tomato Mosaic Virus

    PubMed Central

    Andolfo, Giuseppe; Ferriello, Francesca; Tardella, Luca; Ferrarini, Alberto; Sigillo, Loredana; Frusciante, Luigi; Ercolano, Maria Raffaella

    2014-01-01

    Since gene expression approaches constitute a starting point for investigating plant–pathogen systems, we performed a transcriptional analysis to identify a set of genes of interest in tomato plants infected with F. oxysporum f. sp. lycopersici (Fol) and Tomato Mosaic Virus (ToMV). Differentially expressed tomato genes upon inoculation with Fol and ToMV were identified at two days post-inoculation. A large overlap was found in differentially expressed genes throughout the two incompatible interactions. However, Gene Ontology enrichment analysis evidenced specific categories in both interactions. Response to ToMV seems more multifaceted, since more than 70 specific categories were enriched versus the 30 detected in Fol interaction. In particular, the virus stimulated the production of an invertase enzyme that is able to redirect the flux of carbohydrates, whereas Fol induced a homeostatic response to prevent the fungus from killing cells. Genomic mapping of transcripts suggested that specific genomic regions are involved in resistance response to pathogen. Coordinated machinery could play an important role in prompting the response, since 60% of pathogen receptor genes (NB-ARC-LRR, RLP, RLK) were differentially regulated during both interactions. Assessment of genomic gene expression patterns could help in building up models of mediated resistance responses. PMID:24804963

  7. Other Fusarium - Associated Problems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to Fusarium yellows and Fusarium root rot, caused by Fusarium oxysporum, other species of Fusarium can infect sugar beet and cause foliar yellowing, root rot, or other symptoms. The importance of many of these problems is not well understood. This chapter discusses some of what is know...

  8. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. II. Effect of the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis.

    PubMed

    Storti, E; Bogani, P; Bettini, P; Bittini, P; Guardiola, M L; Pellegrini, M G; Inzé, D; Buiatti, M

    1994-04-01

    We have studied the effect of a change in the endogenous hormone equilibria on the competence of tomato (Lycopersicon esculentum) cells to defend themselves against the fungal pathogen Fusarium oxysporum f. sp. lycopersici. Calluses from cvs 'Davis' and 'Red River', respectively resistant and susceptible to Fusarium and transgenic for an auxin- or cytokinin-synthesizing gene from Agrobacterium tumefaciens, were used. The integration of Agrobacterium hormone-related genes into susceptible cv 'Red River' can bring the activation of defense processes to a stable competence as assessed by the inhibition of mycelial growth in dual culture and gem-tube elongation of Fusarium conidia, the determination of callose contents, peroxidase induction and ion leakage in the presence of fusaric acid. This is particularly true when the transformation results in a change of phytohormone equilibria towards an higher cytokin in concentration. On the contrary, in resistant cv 'Davis' the inhibition of both fungal growth in dual culture and conidia germination is higher when the hormone balance is modified in favour of the auxins. No significant effect was observed for ion leakage and peroxidase induction, probably because of a constitutive overproduction of cytokinins in 'Davis' cells. PMID:24185887

  9. Presence of a substance in the white skin of young tulip bulbs which inhibits growth of Fusarium oxysporum

    Microsoft Academic Search

    B. H. H. Bergman

    1966-01-01

    In field infections of tulip bulbs caused byF. oxysporum, soil temperature, although important, has been proved to be not the decisive factor influencing the moment of infection.\\u000a The presence in the white skin tissue of young bulbs of a water soluble substance which has a growth inhibiting effect onF. oxysporum in vitro has been demonstrated. Inoculations with the fungus on

  10. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    PubMed

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants. PMID:23541032

  11. Effect of Nanoencapsulated Vitamin B1 Derivative on Inhibition of Both Mycelial Growth and Spore Germination of Fusarium oxysporum f. sp. raphani

    PubMed Central

    Cho, Jeong Sub; Seo, Yong Chang; Yim, Tae Bin; Lee, Hyeon Yong

    2013-01-01

    Nanoencapsulation of thiamine dilauryl sulfate (TDS), a vitamin B1 derivative, was proved to effectively inhibit the spore germination of Fusarium oxysporum f. sp. raphani (F. oxysporum), as well as mycelial growth. The average diameter of nanoparticles was measured as 136 nm by being encapsulated with an edible encapsulant, lecithin, whose encapsulation efficiency was about 55% in containing 200 ppm of TDS concentration: the 100 ppm TDS nanoparticle solution showed a mycelial growth inhibition rate of 59%. These results were about similar or even better than the cases of treating 100 ppm of dazomet, a positive antifungal control (64%). Moreover, kinetic analysis of inhibiting spore germination were estimated as 6.6% reduction of spore germination rates after 24 h treatment, which were 3.3% similar to the case of treating 100 ppm of a positive control (dazomet) for the same treatment time. It was also found that TDS itself could work as an antifungal agent by inhibiting both mycelial growth and spore germination, even though its efficacy was lower than those of nanoparticles. Nanoparticles especially played a more efficient role in limiting the spore germination, due to their easy penetration into hard cell membranes and long resident time on the surface of the spore shell walls. In this work, it was first demonstrated that the nanoparticle of TDS not a harmful chemical can control the growth of F. oxysporum by using a lower dosage than commercial herbicides, as well as the inhibiting mechanism of the TDS. However, field trials of the TDS nanoparticles encapsulated with lecithin should be further studied to be effectively used for field applications. PMID:23429270

  12. Search for cell motility and angiogenesis inhibitors with potential anticancer activity: beauvericin and other constituents of two endophytic strains of Fusarium oxysporum.

    PubMed

    Zhan, Jixun; Burns, Anna M; Liu, Manping X; Faeth, Stanley H; Gunatilaka, A A Leslie

    2007-02-01

    Wound-healing assay-guided fractionation of an EtOAc extract of the fungal strain Fusarium oxysporum EPH2RAA endophytic in Ephedra fasciculata afforded beauvericin (1), (-)-oxysporidinone (2), and two new N-methyl-2-pyridones, (-)-4,6'-anhydrooxysporidinone (3) and (-)-6-deoxyoxysporidinone (4). Beauvericin (1) inhibited migration of the metastatic prostate cancer (PC-3M) and breast cancer (MDA-MB-231) cells and showed antiangiogenic activity in HUVEC-2 cells at sublethal concentrations. Cytotoxicity-guided fractionation of an EtOAc extract of F. oxysporum strain CECIS occurring in Cylindropuntia echinocarpus afforded rhodolamprometrin (5), bikaverin (6), and the new natural product 6-deoxybikaverin (7). All compounds were evaluated for cytotoxicity in a panel of four sentinel cancer cell lines, NCI-H460 (non-small-cell lung), MIA Pa Ca-2 (pancreatic), MCF-7 (breast), and SF-268 (CNS glioma), and only beauvericin (1) and bikaverin (6) were active, with 1 and 6 showing selective toxicity toward NCI-H460 and MIA Pa Ca-2, respectively. Interestingly, 6-deoxybikaverin (7) was completely devoid of activity, suggesting the requirement of the C-6 hydroxy group of bikaverin for its cytotoxic activity. PMID:17286429

  13. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici.

    PubMed

    Bolwerk, Annouschka; Lagopodi, Anastasia L; Wijfjes, André H M; Lamers, Gerda E M; Chin-A-Woeng, Thomas F C; Lugtenberg, Ben J J; Bloemberg, Guido V

    2003-11-01

    The fungus Fusarium oxysporum f. sp. radicis-lycopersici causes foot and root rot of tomato plants, which can be controlled by the bacteria Pseudomonas fluorescens WCS365 and P. chlororaphis PCL1391. Induced systemic resistance is thought to be involved in biocontrol by P. fluorescens WCS365. The antifungal metabolite phenazine-1-carboxamide (PCN), as well as efficient root colonization, are essential in the mechanism of biocontrol by P. chlororaphis PCL1391. To understand the effects of bacterial strains WCS365 and PCL1391 on the fungus in the tomato rhizosphere, microscopic analyses were performed using different autofluorescent proteins as markers. Tomato seedlings were inoculated with biocontrol bacteria and planted in an F. oxysporum f. sp. radicis-lycopersici-infested gnotobiotic sand system. Confocal laser scanning microscope analyses of the interactions in the tomato rhizosphere revealed that i) the microbes effectively compete for the same niche, and presumably also for root exudate nutrients; ii) the presence of either of the two bacteria negatively affects infection of the tomato root by the fungus; iii) both biocontrol bacteria colonize the hyphae extensively, which may represent a new mechanism in biocontrol by these pseudomonads; and iv) the production of PCN by P. chlororaphis PCL1391 negatively affects hyphal growth and branching, which presumably affects the colonization and infecting ability of the fungus. PMID:14601666

  14. A novel tissue-specific plantain beta-1,3-glucanase gene that is regulated in response to infection by Fusarium oxysporum fsp. cubense.

    PubMed

    Jin, Xiaoli; Feng, Dongru; Wang, Hongbin; Wang, Jinfa

    2007-09-01

    A new full-length beta-1,3-glucanase cDNA, MpGlu, was isolated from a plantain (Musa paradisica) by the rapid amplification of cDNA ends (RACE) technique. Recombinant GST-MpGlu protein, expressed in E. coli, hydrolyzed (1-->3),(1-->6)-beta-glucan of Laminaria digitata and inhibited the growth of Fusarium oxysporum fsp. cubense (race 4) suggesting that it is a beta-1,3-glucanase. Southern blot analysis indicated that there is one copy of MpGlu in the plantain genome. MpGlu gene expression was detected in plantain leaves, peel, and pulp by RT-PCR. Northern blot analysis revealed that the expression of MpGlu was up-regulated by Fusarium infection. Subcellular localization analysis indicated that 28 residues at the N-terminal end are necessary for extracellular secretion, while 32 residues at the C-terminal end are necessary to target the protein into vacuoles. PMID:17530180

  15. Modification of competence for in vitro response to Fusarium oxysporum in tomato cells. III. PR-protein gene expression and ethylene evolution in tomato cell lines transgenic for phytohormone-related bacterial genes

    Microsoft Academic Search

    P. Bettini; E. Cosi; M. G. Pellegrini; L. Turbanti; G. G. Vendramin; M. Buiatti

    1998-01-01

    Previous work carried out in our laboratory has shown that, in tomato, the alteration of endogenous phytohormone equilibria\\u000a through the integration of Agrobacterium tumefaciens genes for auxin and cytokinin synthesis can modify the active defense response to Fusarium oxysporum f. sp. lycopersici. The susceptible cv ‘Red River’ acquires a stable competence for active defense, particularly when the phytohormone equilibrium\\u000a is

  16. Subcellular Localization of Chitinase and of Its Potential Substrate in Tomato Root Tissues Infected by Fusarium oxysporum f. sp. radicis-lycopersici1

    PubMed Central

    Benhamou, Nicole; Joosten, Matthieu H. A. J.; De Wit, Pierre J. G. M.

    1990-01-01

    Antiserum raised against a tomato (Lycopersicon esculentum Mill.) chitinase (molecular mass of 26 kilodaltons) was used as a probe to study the subcellular localization of this enzyme in tomato root tissues infected with Fusarium oxysporum f. sp. radicis-lycopersici. A time-course experiment revealed that chitinase accumulated earlier in the incompatible interaction than in the compatible one. However, in both systems, chitinase deposition was largely correlated with pathogen distribution. The enzyme was found to accumulate in areas where host walls were in close contact with fungal cells. In contrast, the enzyme could not be detected in vacuoles and intracellular spaces. The substantial amount of chitinase found at the fungus cell surface supports the view of an antifungal activity. However, the preferential association of the enzyme with altered fungal wall areas indicates that chitinase activity is either preceded by the hydrolytic action of other enzymes such as ?-1,3-glucanases or coincides with these enzymes. The possibility that fungal glucans released through the action of ?-1,3-glucanases may act as elicitors of chitinase production is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 PMID:16667378

  17. Use of two bacteria for biological control of bayoud disease caused by Fusarium oxysporum in date palm (Phoenix dactylifera L) seedlings.

    PubMed

    Dihazi, Abdelhi; Jaiti, Fatima; Wafataktak; Kilani-Feki, Olfa; Jaoua, Samir; Driouich, Azeddine; Baaziz, Mohamed; Daayf, Fouad; Serghini, Mohammed Amine

    2012-06-01

    The Bayoud, caused by Fusarium oxysporum f. sp. albedinis (Foa), is the most destructive disease of date palm (Phoenix dactylifera L) in Morocco and Algeria, with no effective control strategy yet available. In this work, two bacteria, Bacillus amyloliquefaciens strain Ag1 (Ag) and Burkholderia cepacia strain Cs5 (Cs), were examined for their potential to control this disease. Both bacterial strains inhibited both growth and sporulation of Foa. They released compounds into the culture medium, which resulted into cytological changes in Foa's mycelial structure. When Jihel-date palm plantlets, a susceptible cultivar, were induced with these bacteria, the size of the necrosis zone, which reflected the spreading of the pathogen, was reduced by more than 70%, as compared with uninduced controls. To further investigate the mechanisms of such disease reduction, phenolic compounds and peroxidase activity were assessed. One month after inoculation, date palm defense reactions against Foa were different depending on the bacterium used, B. cepacia led to higher accumulation of constitutive caffeoylshikimic acid isomers while B. amyloliquefaciens triggered the induction of new phenolic compounds identified as hydroxycinnamic acid derivatives. Peroxidase activity has also been stimulated significantly and varied with the bacterial strain used and with Foa inoculation. These results add to the promising field of investigation in controlling Bayoud disease. PMID:22480991

  18. Gene expression patterns and dynamics of the colonization of common bean (Phaseolus vulgaris L.) by highly virulent and weakly virulent strains of Fusarium oxysporum.

    PubMed

    Niño-Sánchez, Jonathan; Tello, Vega; Casado-Del Castillo, Virginia; Thon, Michael R; Benito, Ernesto P; Díaz-Mínguez, José María

    2015-01-01

    The dynamics of root and hypocotyl colonization, and the gene expression patterns of several fungal virulence factors and plant defense factors have been analyzed and compared in the interaction of two Fusarium oxysporum f. sp. phaseoli strains displaying clear differences in virulence, with a susceptible common bean cultivar. The growth of the two strains on the root surface and the colonization of the root was quantitatively similar although the highly virulent (HV) strain was more efficient reaching the central root cylinder. The main differences between both strains were found in the temporal and spatial dynamics of crown root and hypocotyl colonization. The increase of fungal biomass in the crown root was considerably larger for the HV strain, which, after an initial stage of global colonization of both the vascular cylinder and the parenchymal cells, restricted its growth to the newly differentiated xylem vessels. The weakly virulent (WV) strain was a much slower and less efficient colonizer of the xylem vessels, showing also growth in the intercellular spaces of the parenchyma. Most of the virulence genes analyzed showed similar expression patterns in both strains, except SIX1, SIX6 and the gene encoding the transcription factor FTF1, which were highly upregulated in root crown and hypocotyl. The response induced in the infected plant showed interesting differences for both strains. The WV strain induced an early and strong transcription of the PR1 gene, involved in SAR response, while the HV strain preferentially induced the early expression of the ethylene responsive factor ERF2. PMID:25883592

  19. Biocontrol strain Pseudomonas fluorescens WCS365 inhibits germination of Fusarium oxysporum spores in tomato root exudate as well as subsequent formation of new spores.

    PubMed

    Kamilova, Faina; Lamers, Gerda; Lugtenberg, Ben

    2008-09-01

    Fusarium oxysporum f.sp.radicis-licopersici (Forl) is a soilborne pathogenic fungus which can cause tomato foot and root rot (TFRR). Tomato root exudate is a good source of nutrients for both Forl and the TFRR-suppressing biocontrol bacterium Pseudomonas fluorescens strain WCS365. Incubation of Forl microconidia in tomato root exudate stimulates their germination. This phenomenon is observed, to a lesser extent, upon incubation in plant nutrient solution supplemented with citrate or glucose, the major organic acid and sugar components, respectively, of tomato root exudate. Here we show that induction of germination of microconidia is significantly reduced in the presence of P. fluorescens WCS365 in all tested media. Scanning electron microscopy revealed that P. fluorescens WCS365 colonizes developing hyphae. Efficient colonization correlates with low nutrient availability. Eventually, new microconidia are formed. The presence of P. fluorescens WCS365 reduces the number of newly formed microconidia. This reduction does not depend on physical contact between bacteria and hyphae. We discuss that the ability of P. fluorescens WCS365 to slow down the processes of microconidia germination and development of new microconidia of the phytopathogen, and therefore the ability to reduce fungal dissemination, is likely to contribute to the biocontrol efficacy of this strain. PMID:18430156

  20. The potential efficiency of irrigation management and propargyl bromide in controlling three soil pests: Tylenchulus semipenetrans, Fusarium oxysporum and Echinochloa crus-galli.

    PubMed

    Allaire, Suzanne E; Yates, Scott R; Zhang, Ping; Ernst, Fred F

    2005-08-01

    Propargyl bromide (3-bromopropyne, 3BP) is a potential alternative for methyl bromide. Little information is available about its efficiency in controlling pests. The purpose of this paper is to estimate the 3BP dose required for killing three pests and to compare the efficiency of water management approaches to that of fumigation. The pests, Fusarium oxysporum Schlecht (fungus), Echinochloa crus-galli (L) Beauv (grass) and Tylenchulus semipenetrans Cobb (nematode) were exposed to different 3BP concentrations in a sandy loam at 30 degrees C in a closed system. The lethal dose for killing 90% of the population (LD90) was calculated from the total applied mass, and varied from 0.3 microg g(-1) soil for the nematode, 3 microg g(-1) for the grass, and 9 microg g(-1) for the fungus. The concentration-time index for killing 90% of the population (CT90) was 11 microg g(-1) h for the nematode, 112 microg g(-1) h for the grass and 345 microg g(-1) h for the fungus. 3BP seems as efficient as other fumigant alternatives in controlling these pests. Using an open system, it was shown that the volume of soil in which the pests were controlled varied for different irrigation managements. Even 96 h after fumigation (with a concentration 10 times higher than would potentially be applied in the field), more than 20% of the soil volume had not reached the fungus and grass CT90 of the non-irrigated soil. The soil underneath the furrow and the bed reached CT90 only slowly in all irrigated treatments even though techniques for increasing efficiency were used (tarping, surface sealing with water and high application rate). PMID:15912563

  1. Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens

    PubMed Central

    Klosterman, Steven J.; Subbarao, Krishna V.; Kang, Seogchan; Veronese, Paola; Gold, Scott E.; Thomma, Bart P. H. J.; Chen, Zehua; Henrissat, Bernard; Lee, Yong-Hwan; Park, Jongsun; Garcia-Pedrajas, Maria D.; Barbara, Dez J.; Anchieta, Amy; de Jonge, Ronnie; Santhanam, Parthasarathy; Maruthachalam, Karunakaran; Atallah, Zahi; Amyotte, Stefan G.; Paz, Zahi; Inderbitzin, Patrik; Hayes, Ryan J.; Heiman, David I.; Young, Sarah; Zeng, Qiandong; Engels, Reinhard; Galagan, James; Cuomo, Christina A.; Dobinson, Katherine F.; Ma, Li-Jun

    2011-01-01

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmolarity. To gain insights into the mechanisms that confer the organisms' pathogenicity and enable them to proliferate in the unique ecological niche of the plant vascular system, we sequenced the genomes of V. dahliae and V. albo-atrum and compared them to each other, and to the genome of Fusarium oxysporum, another fungal wilt pathogen. Our analyses identified a set of proteins that are shared among all three wilt pathogens, and present in few other fungal species. One of these is a homolog of a bacterial glucosyltransferase that synthesizes virulence-related osmoregulated periplasmic glucans in bacteria. Pathogenicity tests of the corresponding V. dahliae glucosyltransferase gene deletion mutants indicate that the gene is required for full virulence in the Australian tobacco species Nicotiana benthamiana. Compared to other fungi, the two sequenced Verticillium genomes encode more pectin-degrading enzymes and other carbohydrate-active enzymes, suggesting an extraordinary capacity to degrade plant pectin barricades. The high level of synteny between the two Verticillium assemblies highlighted four flexible genomic islands in V. dahliae that are enriched for transposable elements, and contain duplicated genes and genes that are important in signaling/transcriptional regulation and iron/lipid metabolism. Coupled with an enhanced capacity to degrade plant materials, these genomic islands may contribute to the expanded genetic diversity and virulence of V. dahliae, the primary causal agent of Verticillium wilts. Significantly, our study reveals insights into the genetic mechanisms of niche adaptation of fungal wilt pathogens, advances our understanding of the evolution and development of their pathogenesis, and sheds light on potential avenues for the development of novel disease management strategies to combat destructive wilt diseases. PMID:21829347

  2. The effect of growth-regulators and nutrition on the development of Verticillium wilt of cotton 

    E-print Network

    Ranney, Carleton David

    1959-01-01

    . Encouraging results have been obtained in the control of Dutch elm disease (13, 53, 54), Fusarium wilt of carnations (42), and Fusarium wilt of tomatoes (10, 41), and the X virus disease of peach (39, 40) by using chemo- therapeutants. An excellent... are not uncommon. Verticillium wilt is potentially the most destructive disease throughout these areas. 2 The present possibilities of controlling Verticillium wilt are limited. The causal organism incites a vascular wilt; it enters through the root system...

  3. Comparison of RAPD, AFLP, and EF-1? Sequences for the Phylogenetic Analysis of Fusarium oxysporum and Its formae speciales in Korea

    PubMed Central

    Park, Jae-Min; Kim, Gi-Young; Lee, Song-Jin; Kim, Mun-Ok; Huh, Man-Kyu; Lee, Tae-Ho

    2006-01-01

    Although Fursarium oxysporum causes diseases in economically important plant hosts, identification of F. oxysporum formae speciales has been difficult due to confusing phenotypic classification systems. To resolve these complexity, we evaluated genetic relationship of nine formae speciales of F. oxysporum with random amplified polymorphic DNA (RAPD), amplified fragment length polymorphism (AFLP), and translation elongation factor-1 alpha (EF-1?) gene. In addition, the correlation between mycotoxin content of fusaric acid and isolates based on molecular marker data was evaluated using the modified Mantel's test. According to these result, these fusaric acid-producing strains could not identify clearly, and independent of geographic locations and host specificities. However, in the identification of F. oxysporum formae speciales, especially, AFLP analysis showed a higher discriminatory power than that of a the RAPD and EF-1? analyses, all three techniques were able to detect genetic variability among F. oxysporum formae speciales in this study. PMID:24039470

  4. Effects of the tomato pathogen Fusarium oxysporum f. sp. radicis-lycopersici and of the biocontrol bacterium Pseudomonas fluorescens WCS365 on the composition of organic acids and sugars in tomato root exudate.

    PubMed

    Kamilova, Faina; Kravchenko, Lev V; Shaposhnikov, Alexander I; Makarova, Nataliya; Lugtenberg, Ben

    2006-10-01

    The effects of the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici and of the bacterial biocontrol strain Pseudomonas fluorescens WCS365, and of both microbes, on the amounts and composition of root exudate components of tomato plants grown in a gnotobiotic stonewool substrate system were studied. Conditions were selected under which introduction of F. oxysporum f. sp. radicis-lycopersici caused severe foot and root rot, whereas inoculation of the seed with P. fluorescens WCS365 decreased the percentage of diseased plants from 96 to 7%. This is a much better disease control level than was observed in potting soil. Analysis of root exudate revealed that the presence of F. oxysporum f. sp. radicis-lycopersici did not alter the total amount of organic acids, but that the amount of citric acid decreased and that of succinic acid increased compared with the nontreated control. In contrast, in the presence of the P. fluorescens biocontrol strain WCS365, the total amount of organic acid increased, mainly due to a strong increase of the amount of citric acid, whereas the amount of succinic acid decreased dramatically. Under biocontrol conditions, when both microbes are present, the content of succinic acid decreased and the level of citric acid was similar to that in the nontreated control. The amount of sugar was approximately half that of the control sample when either one of the microbes was present alone or when both were present. Analysis of the interactions between the two microbes grown together in sterile tomato root exudate showed that WCS365 inhibited multiplication of F. oxysporum f. sp. radicis-lycopersici, whereas the fungus did not affect the number of CFU of the bacterium. PMID:17022176

  5. Novel aspects of tomato root colonization and infection by Fusarium oxysporum f. sp. radicis-lycopersici revealed by confocal laser scanning microscopic analysis using the green fluorescent protein as a marker.

    PubMed

    Lagopodi, Anastasia L; Ram, Arthur F J; Lamers, Gerda E M; Punt, Peter J; Van den Hondel, Cees A M J J; Lugtenberg, Ben J J; Bloemberg, Guido V

    2002-02-01

    The fungus Fusarium oxysporum f. sp. radicis-lycopersici is the causal agent of tomato foot and root rot disease. The green fluorescent protein (GFP) was used to mark this fungus in order to visualize and analyze the colonization and infection processes in vivo. Transformation of F oxysporum f. sp. radicis-lycopersici was very efficient and gfp expression was stable for at least nine subcultures. Microscopic analysis of the transformants revealed homogeneity of the fluorescent signal, which was clearly visible in the hyphae as well as in the chlamydospores and conidia. To our knowledge, this is the first report in which this is shown. The transformation did not affect the pathogenicity. Using confocal laser scanning microscopy, colonization, infection, and disease development on tomato roots were visualized in detail and several new aspects of these processes were observed, such as (i) the complete colonization pattern of the tomato root system; (ii) the very first steps of contact between the fungus and the host, which takes place at the root hair zone by mingling and by the attachment of hyphae to the root hairs; (iii) the preferential colonization sites on the root surface, which are the grooves along the junctions of the epidermal cells; and (iv) the absence of specific infection sites, such as sites of emergence of secondary roots, root tips, or wounded tissue, and the absence of specific infection structures, such as appressoria. The results of this work prove that the use of GFP as a marker for F. oxysporum f. sp. radicis-lycopersici is a convenient, fast, and effective approach for studying plant-fungus interactions. PMID:11878320

  6. Control of Root Rot and Wilt Diseases of Roselle under Field Conditions

    PubMed Central

    Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi

    2014-01-01

    Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010

  7. Control of Root Rot and Wilt Diseases of Roselle under Field Conditions.

    PubMed

    Hassan, Naglaa; Elsharkawy, Mohsen Mohamed; Shimizu, Masafumi; Hyakumachi, Mitsuro

    2014-12-01

    Roselle (Hibiscus sabdariffa L.) is one of the most important medicinal crops in many parts of the world. In this study, the effects of microelements, antioxidants, and bioagents on Fusarium oxysporum, F. solani, and Macrophomina phaseolina, the causal pathogens of root rot and wilt diseases in roselle, were examined under field conditions. Preliminary studies were carried out in vitro in order to select the most effective members to be used in field control trials. Our results showed that microelements (copper and manganese), antioxidants (salicylic acid, ascorbic acid, and EDTA), a fungicide (Dithane M45) and biological control agents (Trichoderma harzianum and Bacillus subtilis) were significantly reduced the linear growth of the causal pathogens. Additionally, application of the previous microelements, antioxidants, a fungicide and biological control agents significantly reduced disease incidence of root rot and wilt diseases under field conditions. Copper, salicylic acid, and T. harzianum showed the best results in this respect. In conclusion, microelements, antioxidants, and biocontrol agents could be used as alternative strategies to fungicides for controlling root rot and wilt diseases in roselle. PMID:25606010

  8. Fusarium subglutinans: A new eumycetoma agent?

    PubMed Central

    Campos-Macías, Pablo; Arenas-Guzmán, Roberto; Hernández-Hernández, Francisca

    2013-01-01

    Eumycetoma is a chronic subcutaneous mycosis mainly caused by Madurella spp. Fusarium opportunistic infections in humans are often caused by Fusarium solani and Fusarium oxysporum. We report a case of eumycetoma by F. subglutinans, diagnosed by clinical aspect and culture, and confirmed by PCR sequencing. The patient was successfully treated with oral itraconazole. To our knowledge, this is the second report of human infection and the first case of mycetoma by Fusarium subglutinans. PMID:24432236

  9. Enhanced Control of Cucumber Wilt Disease by Bacillus amyloliquefaciens SQR9 by Altering the Regulation of Its DegU Phosphorylation

    PubMed Central

    Xu, Zhihui; Zhang, Ruifu; Wang, Dandan; Qiu, Meihua; Feng, Haichao; Zhang, Nan

    2014-01-01

    Bacillus amyloliquefaciens strain SQR9, isolated from the cucumber rhizosphere, suppresses the growth of Fusarium oxysporum in the cucumber rhizosphere and protects the host plant from pathogen invasion through efficient root colonization. In the Gram-positive bacterium Bacillus, the response regulator DegU regulates genetic competence, swarming motility, biofilm formation, complex colony architecture, and protease production. In this study, we report that stepwise phosphorylation of DegU in B. amyloliquefaciens SQR9 can influence biocontrol activity by coordinating multicellular behavior and regulating the synthesis of antibiotics. Results from in vitro and in situ experiments and quantitative PCR (qPCR) studies demonstrate the following: (i) that the lowest level of phosphorylated DegU (DegU?P) (the degQ mutation) impairs complex colony architecture, biofilm formation, colonization activities, and biocontrol efficiency of Fusarium wilt disease but increases the production of macrolactin and bacillaene, and (ii) that increasing the level of DegU?P by degQ and degSU overexpression significantly improves complex colony architecture, biofilm formation, colonization activities, production of the antibiotics bacillomycin D and difficidin, and efficiency of biocontrol of Fusarium wilt disease. The results offer a new strategy to enhance the biocontrol efficacy of Bacillus amyloliquefaciens SQR9. PMID:24584252

  10. Heterologous expression of Fusarium oxysporum tomatinase in Saccharomyces cerevisiae increases its resistance to saponins and improves ethanol production during the fermentation of Agave tequilana Weber var. azul and Agave salmiana must.

    PubMed

    Cira, Luis Alberto; González, Gloria Angélica; Torres, Juan Carlos; Pelayo, Carlos; Gutiérrez, Melesio; Ramírez, Jesús

    2008-03-01

    This paper describes the effect of the heterologous expression of tomatinase from Fusarium oxysporum f. sp lycopersici in Saccharomyces cerevisiae. The gene FoTom1 under the control of the S. cerevisiae phosphoglycerate kinase (PGK1) promoter was cloned into pYES2. S. cerevisiae strain Y45 was transformed with this vector and URA3 transformant strains were selected for resistance to alpha-tomatine. Two transformants were randomly selected for further study (designated Y45-1 and Y45-2). Control strain Y45 was inhibited at 50 muM alpha-tomatine, in contrast, transformants Y45-1 and Y45-2 did not show inhibition at 200 muM. Tomatinase activity was detected by HPLC monitoring tomatine disappearance and tomatidine appearance in the supernatants of culture medium. Maximum tomatinase activity was observed in the transformants after 6 h, remaining constant during the following 24 h. No tomatinase activity was detected in the parental strain. Moreover, the transformants were able to grow and produce ethanol in a mix of Agave tequilana Weber var. azul and Agave salmiana must, contrary to the Y45 strain which was unable to grow and ferment under these conditions. PMID:17896184

  11. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants.

    PubMed

    Dong, Xian; Ling, Ning; Wang, Min; Shen, Qirong; Guo, Shiwei

    2012-11-01

    Fusarium wilt of banana is caused by Fusarium oxysporum f. sp. cubense infection. The initial chlorosis symptoms occur progressively from lower to upper leaves, with wilt symptoms subsequently occurring in the whole plant. To determine the effect of the pathogen infection on the gas exchange characteristics and water content in banana leaves, hydroponic experiments with pathogen inoculation were conducted in a greenhouse. Compared with control plants, infected banana seedlings showed a higher leaf temperature as determined by thermal imaging. Reduced stomatal conductance (g(s)) and transpiration rate (E) in infected plants resulted in lower levels of water loss than in control plants. Water potential in heavily diseased plants (II) was significantly reduced and the E/g(s) ratio was higher than in noninfected plants, indicating the occurrence of uncontrolled water loss not regulated by stomata in diseased plants. As no pathogen colonies were detected from the infected plant leaves, the crude toxin was extracted from the pathogen culture and evaluated about the effect on banana plant to further investigate the probable reason of these physiological changes in Fusarium-infected banana leaf. The phytotoxin fusaric acid (FA) was found in the crude toxin, and both crude toxin and pure FA had similar effects as the pathogen infection on the physiological changes in banana leaf. Additionally, FA was present at all positions in diseased plants and its concentration was positively correlated with the incidence of disease symptoms. Taken together, these observations indicated that FA secreted by the pathogen is an important factor involved in the disturbance of leaf temperature, resulting in uncontrolled leaf water loss and electrolyte leakage due to damaging the cell membrane. In conclusion, FA plays a critical role in accelerating the development of Fusarium wilt in banana plants by acting as a phytotoxin. PMID:22964424

  12. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    PubMed Central

    Ma, Li-Jun; van der Does, H. Charlotte; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Josée; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Woloshuk, Charles; Xie, Xiaohui; Xu, Jin-Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A. E.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G. J.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald M.; Goff, Stephen; Hammond-Kosack, Kim E.; Hilburn, Karen; Hua-Van, Aurélie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong-Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook-Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. Carmen; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, B. Gillian; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2011-01-01

    Fusarium species are among the most important phytopathogenic and toxigenic fungi. To understand the molecular underpinnings of pathogenicity in the genus Fusarium, we compared the genomes of three phenotypically diverse species: Fusarium graminearum, Fusarium verticillioides and Fusarium oxysporum f. sp. lycopersici. Our analysis revealed lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes and account for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity, indicative of horizontal acquisition. Experimentally, we demonstrate the transfer of two LS chromosomes between strains of F. oxysporum, converting a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in F. oxysporum. These findings put the evolution of fungal pathogenicity into a new perspective. PMID:20237561

  13. Metabolic profiling of chickpea-Fusarium interaction identifies differential modulation of disease resistance pathways.

    PubMed

    Kumar, Yashwant; Dholakia, Bhushan B; Panigrahi, Priyabrata; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2015-08-01

    Chickpea is the third most widely grown legume in the world and mainly used as a vegetarian source of human dietary protein. Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceri (Foc), is one of the major threats to global chickpea production. Host resistance is the best way to protect crops from diseases; however, in spite of using various approaches, the mechanism of Foc resistance in chickpea remains largely obscure. In the present study, non-targeted metabolic profiling at several time points of resistant and susceptible chickpea cultivars using high-resolution liquid chromatography-mass spectrometry was applied to better understand the mechanistic basis of wilt resistance or susceptibility. Multivariate analysis of the data (OPLS-DA) revealed discriminating metabolites in chickpea root tissue after Foc inoculation such as flavonoids, isoflavonoids, alkaloids, amino acids and sugars. Foc inoculated resistant plants had more flavonoids and isoflavonoids along with their malonyl conjugates. Many antifungal metabolites that were induced after Foc infection viz., aurantion-obstine ?-glucosides and querecitin were elevated in resistant cultivar. Overall, diverse genetic and biochemical mechanisms were operational in the resistant cultivar for Foc defense as compared to the susceptible plant. The resistant chickpea plants employed the above-mentioned metabolic pathways as potential defense strategy against Foc. PMID:25935544

  14. The sss colonization gene of the tomato-Fusarium oxysporum f. sp. radicis-lycopersici biocontrol strain Pseudomonas fluorescens WCS365 can improve root colonization of other wild-type pseudomonas spp.bacteria.

    PubMed

    Dekkers, L C; Mulders, I H; Phoelich, C C; Chin-A-Woeng, T F; Wijfjes, A H; Lugtenberg, B J

    2000-11-01

    We show that the disease tomato foot and root rot caused by the pathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici can be controlled by inoculation of seeds with cells of the efficient root colonizer Pseudomonas fluorescens WCS365, indicating that strain WCS365 is a biocontrol strain. The mechanism for disease suppression most likely is induced systemic resistance. P. fluorescens strain WCS365 and P. chlororaphis strain PCL1391, which acts through the production of the antibiotic phenazine-1-carboxamide, were differentially labeled using genes encoding autofluorescent proteins. Inoculation of seeds with a 1:1 mixture of these strains showed that, at the upper part of the root, the two cell types were present as microcolonies of either one or both cell types. Microcolonies at the lower root part were predominantly of one cell type. Mixed inoculation tended to improve biocontrol in comparison with single inoculations. In contrast to what was observed previously for strain PCL1391, mutations in various colonization genes, including sss, did not consistently decrease the biocontrol ability of strain WCS365. Multiple copies of the sss colonization gene in WCS365 improved neither colonization nor biocontrol by this strain. However, introduction of the sss-containing DNA fragment into the poor colonizer P. fluorescens WCS307 and into the good colonizer P. fluorescens F113 increased the competitive tomato root tip colonization ability of the latter strains 16- to 40-fold and 8- to 16-fold, respectively. These results show that improvement of the colonization ability of wild-type Pseudomonas strains by genetic engineering is a realistic goal. PMID:11059484

  15. Isolation of Bacillus amyloliquefaciens S20 and its application in control of eggplant bacterial wilt.

    PubMed

    Chen, Da; Liu, Xin; Li, Chunyu; Tian, Wei; Shen, Qirong; Shen, Biao

    2014-05-01

    Bacterial strain S20 was isolated and identified as Bacillus amyloliquefaciens based on physiological and biochemical characteristics and a 16S rRNA gene sequence analysis. Strain S20 inhibits the growth of Fusarium oxysporum and Ralstonia solanacearum. Some genes associated with the synthesis of some lipopeptides were detected in strain S20 by PCR. Iturins A were identified as the main antagonistic substrates by analysis with electrospray ionization mass spectrometry/collision-induced dissociation (ESI-MS/CID). Four homologues of iturin A (C13-C16) were identified. Pot experiments showed that the application of strain S20 alone could control eggplant wilt with an efficacy of 25.3% during a 40 day experiment. If strain S20 was used with organic fertilizer, the control efficacy against eggplant wilt reached as high as 70.7%. The application of organic fertilizer alone promotes the growth of R. solanacearum, resulting in a higher wilt incidence than that observed in control plants. The application of strain S20 effectively inhibits R. solanacearum in the rhizosphere soil of eggplant. The combined use of strain S20 and organic fertilizer more effectively controlled R. solanacearum in soil than the use of strain S20 alone. The soil count of strain S20 decreased gradually during the course of the experiment after inoculation. Organic fertilizer was beneficial for the survival of the antagonistic bacterial strain S20; a higher level of these bacteria could be maintained. The application of organic fertilizer with strain S20 increased bacterial diversity in rhizosphere soil. PMID:24632400

  16. Endophytic Fusarium spp. from Roots of Lawn Grass (Axonopus compressus)

    PubMed Central

    Zakaria, Latiffah; Ning, Chua Harn

    2013-01-01

    Fungal endophytes are found inside host plants but do not produce any noticeable disease symptoms in their host. In the present study, endophytic Fusarium species were isolated from roots of lawn grass (Axonopus compressus). A total of 51 isolates were recovered from 100 root segments. Two Fusarium species, F. oxysporum (53%) and F. solani (47%), were identified based on macroconidia and conidiogenous cell morphology. The detection of endophytic F. oxysporum and F. solani in the roots of lawn grass contributes to the knowledge of both the distribution of the two Fusarium species and the importance of roots as endophytic niches for Fusarium species. PMID:24575251

  17. Identification and characterization of a highly variable region in mitochondrial genomes of fusarium species and analysis of power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Hamzah, Haider Mousa

    In the microbial fuel cell (MFC) project, power generation from Shewanella oneidensis MR-1 was analyzed looking for a novel system for both energy generation and sustainability. The results suggest the possibility of generating electricity from different organic substances, which include agricultural and industrial by-products. Shewanella oneidensis MR-1 generates usable electrons at 30°C using both submerged and solid state cultures. In the MFC biocathode experiment, most of the CO2 generated at the anodic chamber was converted into bicarbonate due the activity of carbonic anhydrase (CA) of the Gluconobacter sp.33 strain. These findings demonstrate the possibility of generation of electricity while at the same time allowing the biomimetic sequestration of CO2 using bacterial CA. In the mitochondrial genomes project, the filamentous fungal species Fusarium oxysporum was used as a model. This species causes wilt of several important agricultural crops. A previous study revealed that a highly variable region (HVR) in the mitochondrial DNA (mtDNA) of three species of Fusarium contained a large, variable unidentified open reading frame (LV-uORF). Using specific primers for two regions of the LV-uORF, six strains were found to contain the ORF by PCR and database searches identified 18 other strains outside of the Fusarium oxysporum species complex. The LV-uORF was also identified in three isolates of the F. oxysporum species complex. Interestingly, several F. oxysporum isolates lack the LV-uORF and instead contain 13 ORFs in the HVR, nine of which are unidentified. The high GC content and codon usage of the LV-uORF indicate that it did not co-evolve with other mt genes and was horizontally acquired and was introduced to the Fusarium lineage prior to speciation. The nonsynonymous/synonymous (dN/dS) ratio of the LV-uORFs (0.43) suggests it is under purifying selection and the putative polypeptide is predicted to be located in the mitochondrial membrane. Growth assays indicate that F. oxysporum strains containing the LV-uORF are able to tolerate high concentrations of zinc chloride, whereas those having the alternative HVR configuration are inhibited. This work suggests that fungal mitochondria can acquire additional genes and possibly novel functions and will guide studies that aim to assess the functional roles of hypothetical mitochondrial ORFs in filamentous fungi.

  18. Bronze Wilt of Cotton

    E-print Network

    Bell, Alois A.; Nichols, Robert L.; Lemon, Robert G.

    2002-02-12

    Bronze wilt is a disease of cotton characterized by bronze or red discoloration and wilting of leaves. This publication describes bronze wilt symptoms, the cause and epidemiology of the disease, the varieties in which it has been observed, and ways...

  19. Field infection of tulip bulbs by Fusatrium oxysporum

    Microsoft Academic Search

    B. H. H. Bergman

    1965-01-01

    Fusarium oxysporum in tulips is able to penetrate through the roots into the tissue of the planted bulb and from there it can grow into the basal plate of the young bulb. However, evidence is given that under natural conditions infection more often takes place directly into the fleshy outer scale of the new bulb, often during the last weeks

  20. Phylogeny and pathogenicity of Fusarium spp. isolated from greenhouse melon soil in Liaoning Province.

    PubMed

    Zhao, Baixia; Yan, Jianfang; Zhang, Shuo; Liu, Xian; Gao, Zenggui

    2014-09-01

    Fungi of the Fusarium oxysporum are widely distributed around the world in all types of soils, and they are all anamorphic species. In order to investigate the relationships and differences among Fusarium spp., 25 Fusarium spp. were isolated from greenhouse melon soils in Liaoning Province, China. With these 25 strains, three positive control Fusarium strains were analyzed using universally primed PCR (UP-PCR). Seventy-three bands appeared after amplification using 6 primers, and 66 of these bands (90.4%) were polymorphic. All strains were clustered into eight groups, though 14 strains of F. oxysporum were clustered into a single group. We concluded that UP-PCR could reveal the genetic relationships and differences among Fusarium strains. Moreover, the UP-PCR results suggested that F. oxysporum is distinguishable from other Fusarium spp. Thus, UP-PCR is a useful method for Fusarium classification. The pathogenicity of 13 strains of F. oxysporum to muskmelon, cucumber and watermelon seedlings was studied by infecting the seedlings with a spore suspension after cutting the root. The results showed that the F. oxysporum strains were pathogenic to all three melon types, although the pathogenicity differed significantly among the 13 strains. In addition, all strains had the greatest pathogenicity toward watermelon. Since the factors affecting pathogenicity vary widely, they should be considered in future studies on Fusarium spp. The results of such studies may then yield an accurate description of the pathogenicity of Fusarium spp. PMID:25183948

  1. Phylogeny and pathogenicity of Fusarium spp. isolated from greenhouse melon soil in Liaoning Province

    PubMed Central

    Zhao, Baixia; Yan, Jianfang; Zhang, Shuo; Liu, Xian; Gao, Zenggui

    2013-01-01

    Fungi of the Fusarium oxysporum are widely distributed around the world in all types of soils, and they are all anamorphic species. In order to investigate the relationships and differences among Fusarium spp., 25 Fusarium spp. were isolated from greenhouse melon soils in Liaoning Province, China. With these 25 strains, three positive control Fusarium strains were analyzed using universally primed PCR (UP-PCR). Seventy-three bands appeared after amplification using 6 primers, and 66 of these bands (90.4%) were polymorphic. All strains were clustered into eight groups, though 14 strains of F. oxysporum were clustered into a single group. We concluded that UP-PCR could reveal the genetic relationships and differences among Fusarium strains. Moreover, the UP-PCR results suggested that F. oxysporum is distinguishable from other Fusarium spp. Thus, UP-PCR is a useful method for Fusarium classification. The pathogenicity of 13 strains of F. oxysporum to muskmelon, cucumber and watermelon seedlings was studied by infecting the seedlings with a spore suspension after cutting the root. The results showed that the F. oxysporum strains were pathogenic to all three melon types, although the pathogenicity differed significantly among the 13 strains. In addition, all strains had the greatest pathogenicity toward watermelon. Since the factors affecting pathogenicity vary widely, they should be considered in future studies on Fusarium spp. The results of such studies may then yield an accurate description of the pathogenicity of Fusarium spp. PMID:25183948

  2. Fusarium Race 4: Commercial cultivar screening for resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium wilt (FOV) of cotton in California has been considered a potentially serious fungal disease for many decades in areas of the San Joaquin Valley (SJV). In the past, damage from Fusarium has been notable only in areas with the combination of: (a) moderate to high populations of one or more sp...

  3. Native cell-death genes as candidates for developing wilt resistance in transgenic banana plants

    PubMed Central

    Ghag, Siddhesh B.; Shekhawat, Upendra K. Singh; Ganapathi, Thumballi R.

    2014-01-01

    In order to feed an ever-increasing world population, there is an urgent need to improve the production of staple food and fruit crops. The productivity of important food and fruit crops is constrained by numerous biotic and abiotic factors. The cultivation of banana, which is an important fruit crop, is severely threatened by Fusarium wilt disease caused by infestation by an ascomycetes fungus Fusarium oxysporum f. sp. cubense (Foc). Since there are no established edible cultivars of banana resistant to all the pathogenic races of Foc, genetic engineering is the only option for the generation of resistant cultivars. Since Foc is a hemibiotrophic fungus, investigations into the roles played by different cell-death-related genes in the progression of Foc infection on host banana plants are important. Towards this goal, three such genes namely MusaDAD1, MusaBAG1 and MusaBI1 were identified in banana. The study of their expression pattern in banana cells in response to Foc inoculation (using Foc cultures or fungal toxins like fusaric acid and beauvericin) indicated that they were indeed differentially regulated by fungal inoculation. Among the three genes studied, MusaBAG1 showed the highest up-regulation upon Foc inoculation. Further, in order to characterize these genes in the context of Foc infection in banana, we generated transgenic banana plants constitutively overexpressing the three genes that were later subjected to Foc bioassays in a contained greenhouse. Among the three groups of transgenics tested, transformed banana plants overexpressing MusaBAG1 demonstrated the best resistance towards Foc infection. Further, these plants also showed the highest relative overexpression of the transgene (MusaBAG1) among the three groups of transformed plants generated. Our study showed for the first time that native genes like MusaBAG1 can be used to develop transgenic banana plants with efficient resistance towards pathogens like Foc. PMID:24996429

  4. A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11

    Microsoft Academic Search

    Nan Zhang; Kai Wu; Xin He; Shu-qing Li; Zhen-hua Zhang; Biao Shen; Xing-ming Yang; Rui-fu Zhang; Qi-wei Huang; Qi-rong Shen

    2011-01-01

    Fusarium wilt is one of the most serious diseases caused by a soil-borne pathogen affecting banana production. The goal of\\u000a this study was to evaluate the capability of a novel bio-organic fertilizer (BIO2) that integrated the biocontrol agent Bacillus subtilis N11, and mature composts to control Fusarium wilt of banana in pot experiments. The results showed that the application of

  5. Dissection of the fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy.

    PubMed

    Simons, G; Groenendijk, J; Wijbrandi, J; Reijans, M; Groenen, J; Diergaarde, P; Van der Lee, T; Bleeker, M; Onstenk, J; de Both, M; Haring, M; Mes, J; Cornelissen, B; Zabeau, M; Vos, P

    1998-06-01

    The I2 locus in tomato confers resistance to race 2 of the soil-borne fungus Fusarium oxysporum f sp lycopersici. The selective restriction fragment amplification (AFLP) positional cloning strategy was used to identify I2 in the tomato genome. A yeast artificial chromosome (YAC) clone covering approximately 750 kb encompassing the I2 locus was isolated, and the AFLP technique was used to derive tightly linked AFLP markers from this YAC clone. Genetic complementation analysis in transgenic R1 plants using a set of overlapping cosmids covering the I2 locus revealed three cosmids giving full resistance to F. o. lycopersici race 2. These cosmids shared a 7-kb DNA fragment containing an open reading frame encoding a protein with similarity to the nucleotide binding site leucine-rich repeat family of resistance genes. At the I2 locus, we identified six additional homologs that included the recently identified I2C-1 and I2C-2 genes. However, cosmids containing the I2C-1 or I2C-2 gene could not confer resistance to plants, indicating that these members are not the functional resistance genes. Alignments between the various members of the I2 gene family revealed two significant variable regions within the leucine-rich repeat region. They consisted of deletions or duplications of one or more leucine-rich repeats. We propose that one or both of these leucine-rich repeats are involved in Fusarium wilt resistance with I2 specificity. PMID:9634592

  6. Species-specic primersfor Fusarium redolens and a PCR-RFLP technique to distinguish among three clades of

    E-print Network

    . oxysporum. Introduction The species composition of section Elegans in the genus Fusarium has been. Wollenweber (1913) recognized F. redolens as a distinct species. Booth (1971) treated this fungus as a variety

  7. Secondary Metabolites and Toxins of Fusarium - What is Causing Disease Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species produce a plethora of phytotoxic secondary metabolites. In the case of various races of Fusarium oxysporum f. sp. vasinfectum (F.o.v.) that attacks cotton, alfalfa, okra and other crops, many of these metabolites are derived from the polyketide biosynthetic pathway. The recent dis...

  8. Update on Fusarium Race 4 Varietal Evaluations in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, differences have been noted in field situations with the fungal pathogen, Fusarium oxysporum f. sp. vas infectum (FOV), in Acala and Pima cotton in the San Joaquin Valley of California. Typically, earlier-recognized races of FOV only caused significant crop damage and yield impacts ...

  9. The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes.

    PubMed

    Ori, N; Eshed, Y; Paran, I; Presting, G; Aviv, D; Tanksley, S; Zamir, D; Fluhr, R

    1997-04-01

    Characterization of plant resistance genes is an important step in understanding plant defense mechanisms. Fusarium oxysporum f sp lycopersici is the causal agent of a vascular wilt disease in tomato. Genes conferring resistance to plant vascular diseases have yet to be described molecularly. Members of a new multigene family, complex I2C, were isolated by map-based cloning from the I2 F. o. lycopersici race 2 resistance locus. The genes show structural similarity to the group of recently isolated resistance genes that contain a nucleotide binding motif and leucine-rich repeats. Importantly, the presence of I2C antisense transgenes abrogated race 2 but not race 1 resistance in otherwise normal plants. Expression of the complete sense I2C-1 transgene conferred significant but partial resistance to F. o. lycopersici race 2. All members of the I2C gene family have been mapped genetically and are dispersed on three different chromosomes. Some of the I2C members cosegregate with other tomato resistance loci. Comparison within the leucine-rich repeat region of I2C gene family members shows that they differ from each other mainly by insertions or deletions. PMID:9144960

  10. Inoculation of tomato seedlings with Trichoderma Harzianum and Arbuscular Mycorrhizal Fungi and their effect on growth and control of wilt in tomato seedlings.

    PubMed

    Mwangi, Margaret W; Monda, Ethel O; Okoth, Sheila A; Jefwa, Joyce M

    2011-04-01

    A green house study was conducted to investigate the ability of an isolate of Trichoderma harzianum (P52) and arbuscular mycorrhizal fungi (AMF) in enhancing growth and control of a wilt pathogen caused by Fusarium oxysporum f. sp. lycopersici in tomato seedlings. The plants were grown in plastic pots filled with sterilized soils. There were four treatments applied as follows; P52, AMF, AMF + P52 and a control. A completely randomized design was used and growth measurements and disease assessment taken after 3, 6 and 9 weeks. Treatments that significantly (P < 0.05) enhanced heights and root dry weights were P52, AMF and a treatment with a combination of both P52 and AMF when compared the control. The treatment with both P52 and AMF significantly (P < 0.05) enhanced all growth parameters (heights; shoot and root dry weight) investigated compared to the control. Disease severity was generally lower in tomato plants grown with isolate P52 and AMF fungi either individually or when combined together, though the effect was not statistically significant (P? 0.05). A treatment combination of P52 + AMF had less trend of severity as compared to each individual fungus. T. harzianum and AMF can be used to enhance growth in tomato seedlings. PMID:24031662

  11. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  12. Cytotoxicity and Phytotoxicity of Trichothecene Mycotoxins Produced by Fusarium spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecenes, a major class of mycotoxins produced by Fusarium, Myrothecium, and Stachybotrys species, are toxic to plants, causing blights, wilts and other economically-important plant diseases, and to mammals, for example feed-refusal caused by deoxynivalenol (vomitoxin). Macrocyclic trichothec...

  13. Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium

    SciTech Connect

    Ma, Li Jun; van der Does, H. C.; Borkovich, Katherine A.; Coleman, Jeffrey J.; Daboussi, Marie-Jose; Di Pietro, Antonio; Dufresne, Marie; Freitag, Michael; Grabherr, Manfred; Henrissat, Bernard; Houterman, Petra M.; Kang, Seogchan; Shim, Won-Bo; Wolochuk, Charles; Xie, Xiaohui; Xu, Jin Rong; Antoniw, John; Baker, Scott E.; Bluhm, Burton H.; Breakspear, Andrew; Brown, Daren W.; Butchko, Robert A.; Chapman, Sinead; Coulson, Richard; Coutinho, Pedro M.; Danchin, Etienne G.; Diener, Andrew; Gale, Liane R.; Gardiner, Donald; Goff, Steven; Hammond-Kossack, Kim; Hilburn, Karen; Hua-Van, Aurelie; Jonkers, Wilfried; Kazan, Kemal; Kodira, Chinnappa D.; Koehrsen, Michael; Kumar, Lokesh; Lee, Yong Hwan; Li, Liande; Manners, John M.; Miranda-Saavedra, Diego; Mukherjee, Mala; Park, Gyungsoon; Park, Jongsun; Park, Sook Young; Proctor, Robert H.; Regev, Aviv; Ruiz-Roldan, M. C.; Sain, Divya; Sakthikumar, Sharadha; Sykes, Sean; Schwartz, David C.; Turgeon, Barbara G.; Wapinski, Ilan; Yoder, Olen; Young, Sarah; Zeng, Qiandong; Zhou, Shiguo; Galagan, James; Cuomo, Christina A.; Kistler, H. Corby; Rep, Martijn

    2010-03-18

    Fusarium species are among the most important phytopathogenic and toxigenic fungi, having significant impact on crop production and animal health. Distinctively, members of the F. oxysporum species complex exhibit wide host range but discontinuously distributed host specificity, reflecting remarkable genetic adaptability. To understand the molecular underpinnings of diverse phenotypic traits and their evolution in Fusarium, we compared the genomes of three economically important and phylogenetically related, yet phenotypically diverse plant-pathogenic species, F. graminearum, F. verticillioides and F. oxysporum f. sp. lycopersici. Our analysis revealed greatly expanded lineage-specific (LS) genomic regions in F. oxysporum that include four entire chromosomes, accounting for more than one-quarter of the genome. LS regions are rich in transposons and genes with distinct evolutionary profiles but related to pathogenicity. Experimentally, we demonstrate for the first time the transfer of two LS chromosomes between strains of F. oxysporum, resulting in the conversion of a non-pathogenic strain into a pathogen. Transfer of LS chromosomes between otherwise genetically isolated strains explains the polyphyletic origin of host specificity and the emergence of new pathogenic lineages in the F. oxysporum species complex, putting the evolution of fungal pathogenicity into a new perspective.

  14. Identification and Characterization of Wilt and Salt Stress-Responsive MicroRNAs in Chickpea through High-Throughput Sequencing

    PubMed Central

    Deokar, Amit Atmaram; Bhardwaj, Ankur R.; Agarwal, Manu; Katiyar-Agarwal, Surekha; Srinivasan, Ramamurthy; Jain, Pradeep Kumar

    2014-01-01

    Chickpea (Cicer arietinum) is the second most widely grown legume worldwide and is the most important pulse crop in the Indian subcontinent. Chickpea productivity is adversely affected by a large number of biotic and abiotic stresses. MicroRNAs (miRNAs) have been implicated in the regulation of plant responses to several biotic and abiotic stresses. This study is the first attempt to identify chickpea miRNAs that are associated with biotic and abiotic stresses. The wilt infection that is caused by the fungus Fusarium oxysporum f.sp. ciceris is one of the major diseases severely affecting chickpea yields. Of late, increasing soil salinization has become a major problem in realizing these potential yields. Three chickpea libraries using fungal-infected, salt-treated and untreated seedlings were constructed and sequenced using next-generation sequencing technology. A total of 12,135,571 unique reads were obtained. In addition to 122 conserved miRNAs belonging to 25 different families, 59 novel miRNAs along with their star sequences were identified. Four legume-specific miRNAs, including miR5213, miR5232, miR2111 and miR2118, were found in all of the libraries. Poly(A)-based qRT-PCR (Quantitative real-time PCR) was used to validate eleven conserved and five novel miRNAs. miR530 was highly up regulated in response to fungal infection, which targets genes encoding zinc knuckle- and microtubule-associated proteins. Many miRNAs responded in a similar fashion under both biotic and abiotic stresses, indicating the existence of cross talk between the pathways that are involved in regulating these stresses. The potential target genes for the conserved and novel miRNAs were predicted based on sequence homologies. miR166 targets a HD-ZIPIII transcription factor and was validated by 5? RLM-RACE. This study has identified several conserved and novel miRNAs in the chickpea that are associated with gene regulation following exposure to wilt and salt stress. PMID:25295754

  15. [A cutaneous ulcer induced by fungi of the genus Fusarium].

    PubMed

    Negroni, R; Martino, O; Robles, A M; Orduna, T; Arechavala, A; Brusca, S; Helou, S

    1997-01-01

    A case of cutaneous hyalohyphomycosis, due to Fusarium oxysporum, in a 40 years old man is presented. The patient came from Paraguay where he worked in a tropical rural area. His disease had begun 2 months before his admission as a skin ulcer located in the left leg. Clinical characteristics, diagnosis methods, differential diagnosis with other ulcers of the legs in tropical areas as well as therapeutic measures are discussed in this presentation. PMID:9265228

  16. Mechanistic and structural studies of nitroalkane oxidase from Fusarium oxysporum 

    E-print Network

    Heasley, Carl J

    1995-01-01

    /K data are consistent with the enzyme having an ionizable group which must be deprotonated for activity with a pKa of 6.8 and a requirement for the substrate to be protonated in the a carbon position. The enzyme activity is dependent on added oxidized...

  17. Mechanistic and structural studies of nitroalkane oxidase from Fusarium oxysporum

    E-print Network

    Heasley, Carl J

    1995-01-01

    /K data are consistent with the enzyme having an ionizable group which must be deprotonated for activity with a pKa of 6.8 and a requirement for the substrate to be protonated in the a carbon position. The enzyme activity is dependent on added oxidized...

  18. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum

    Microsoft Academic Search

    Absar Ahmad; Priyabrata Mukherjee; Satyajyoti Senapati; Deendayal Mandal; M. Islam Khan; Rajiv Kumar; Murali Sastry

    2003-01-01

    The development of reliable, eco-friendly processes for the synthesis of nanomaterials is an important aspect of nanotechnology today. One approach that shows immense potential is based on the biosynthesis of nanoparticles using biological micro-organisms such as bacteria. In this laboratory, we have concentrated on the use of fungi in the intracellular production of metal nanoparticles. As part of our investigation,

  19. A PCR-denaturing gradient gel electrophoresis approach to assess Fusarium diversity in asparagus.

    PubMed

    Yergeau, E; Filion, M; Vujanovic, V; St-Arnaud, M

    2005-02-01

    In North America, asparagus (Asparagus officinalis) production suffers from a crown and root rot disease mainly caused by Fusarium oxysporum f. sp. asparagi and F. proliferatum. Many other Fusarium species are also found in asparagus fields, whereas accurate detection and identification of these organisms, especially when processing numerous samples, is usually difficult and time consuming. In this study, a PCR-denaturing gradient gel electrophoresis (DGGE) method was developed to assess Fusarium species diversity in asparagus plant samples. Fusarium-specific PCR primers targeting a partial region of the translation elongation factor-1 alpha (EF-1 alpha) gene were designed, and their specificity was tested against genomic DNA extracted from a large collection of closely and distantly related organisms isolated from multiple environments. Amplicons of 450 bp were obtained from all Fusarium isolates, while no PCR product was obtained from non-Fusarium organisms. The ability of DGGE to discriminate between Fusarium taxa was tested over 19 different Fusarium species represented by 39 isolates, including most species previously reported from asparagus fields worldwide. The technique was effective to visually discriminate between the majority of Fusarium species and/or isolates tested in pure culture, while a further sequencing step permitted to distinguish between the few species showing similar migration patterns. Total genomic DNA was extracted from field-grown asparagus plants naturally infested with different Fusarium species, submitted to PCR amplification, DGGE analysis and sequencing. The two to four bands observed for each plant sample were all affiliated with F. oxysporum, F. proliferatum or F. solani, clearly supporting the reliability, sensitivity and specificity of this approach for the study of Fusarium diversity from asparagus plants samples. PMID:15590089

  20. Natural occurrence of Fusarium species and fumonisin-production by toxigenic strains isolated from poultry feeds in Argentina

    Microsoft Academic Search

    C. E. Magnoli; M. A. Saenz; S. M. Chiacchiera; A. M. Dalcero

    1999-01-01

    Fusarium species and fumonisin production by toxigenic strains were investigated. During 1996–1998, 158 samples of poultry feeds were\\u000a collected from a factory located in the department of Río Cuarto Córdoba province, Argentina. The most common species of Fusarium were F. moniliforme (60.7%) and F. nygamai (35.4%) followed by F. semitectum, F. subglutinans, F. proliferatum, F. dlamini, F. solani, F. oxysporum

  1. Occurrence and toxicity of Fusarium subglutinans from Peruvian maize.

    PubMed

    Logrieco, A; Moretti, A; Altomare, C; Bottalico, A; Carbonell Torres, E

    1993-06-01

    Twenty-five samples of maize kernels collected at harvest time from geographically different corn fields in Peru, were examined for the occurrence of toxigenic Fusarium species. The most frequently recovered species were F. subglutinans (48%), F. moniliforme (46%), and F. equiseti (5%). Other Fusarium species isolated (up to 1%) included F. graminearum, F. acuminatum, F. solani, F. oxysporum, and F. culmorum. Assays of Fusarium culture extracts using Artemia salina larvae, showed F. subglutinans as one of the most toxigenic species, and its toxicity was mostly correlated to the capability to produce beauvericin (BEA). All eight tested isolates of F. subglutinans grown on autoclaved corn kernels produced BEA (from 50 to 250 mg/kg) as well as moniliformin (M) (from 70 to 270 mg/Kg). This is the first report on BEA and M production by maize isolates of F. subglutinans from South America. PMID:8413501

  2. Fusarium Wilt and Yellows of Sugar Beet and Dry Bean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Central High Plains (Colorado, Nebraska and Wyoming) is among the largest producer of dry edible beans and sugar beets in the United States. Sugar beet is an important cash crop in northeastern Colorado with approximately 30,000 acres planted and 944,000 tons harvested in 2012. Approximately 250...

  3. Fusarium diversity in soil using a specific molecular approach and a cultural approach.

    PubMed

    Edel-Hermann, Véronique; Gautheron, Nadine; Mounier, Arnaud; Steinberg, Christian

    2015-04-01

    Fusarium species are ubiquitous in soil. They cause plant and human diseases and can produce mycotoxins. Surveys of Fusarium species diversity in environmental samples usually rely on laborious culture-based methods. In the present study, we have developed a molecular method to analyze Fusarium diversity directly from soil DNA. We designed primers targeting the translation elongation factor 1-alpha (EF-1?) gene and demonstrated their specificity toward Fusarium using a large collection of fungi. We used the specific primers to construct a clone library from three contrasting soils. Sequence analysis confirmed the specificity of the assay, with 750 clones identified as Fusarium and distributed among eight species or species complexes. The Fusarium oxysporum species complex (FOSC) was the most abundant one in the three soils, followed by the Fusarium solani species complex (FSSC). We then compared our molecular approach results with those obtained by isolating Fusarium colonies on two culture media and identifying species by sequencing part of the EF-1? gene. The 750 isolates were distributed into eight species or species complexes, with the same dominant species as with the cloning method. Sequence diversity was much higher in the clone library than in the isolate collection. The molecular approach proved to be a valuable tool to assess Fusarium diversity in environmental samples. Combined with high throughput sequencing, it will allow for in-depth analysis of large numbers of samples. PMID:25655778

  4. Antifungal activity of a synthetic cationic peptide against the plant pathogens Colletotrichum graminicola and three Fusarium species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A small cationic peptide (JH8944) was tested for activity against a number of pathogens of agricultural crops. JH8944 inhibited conidium growth in most of the tested plant pathogens with a dose of 50 µg ml 1, although one isolate of Fusarium oxysporum was inhibited at 5 µg ml 1. Most conidia of Fusa...

  5. Sambutoxin-Producing Isolates ofFusariumSpecies and Occurrence of Sambutoxin in Rotten Potato Tubers

    Microsoft Academic Search

    JIN-CHEOL KIM; YIN-WON LEE; ANDSEUNG-HUN YU

    1995-01-01

    Atotalof50Fusariumisolatesrepresenting13speciesfromvarioussourcesweresurveyedtodeterminetheir potential to produce sambutoxin. Sambutoxin production was restricted to Fusarium sambucinum and F. oxysporum, with the exception of one isolate ofF. semitectum. Sambutoxin was produced by high percentages of F. sambucinum(80.0%) andF. oxysporum(84.6%) isolates at levels of 1.1 to 101.0 mg\\/g. In addition, 9 (42.9%) of 21 rotten potato samples were contaminated with sambutoxin at levels of 15.8 to

  6. Wilts of the Watermelon and Related Crops: Fusarium Wilts of Cucurbits.

    E-print Network

    Taubenhaus, J. J. (Jacob Joseph)

    1920-01-01

    these experiments it was con- clusivcly provecl that both squach npd watermelon milts are distinct and that it is possiblr: to grow healthy watermelons in a squash sick land provided the watermelon F'nearium is kept out. Likewise, it is possible to grow healthy...

  7. Integrated Management of Verticillium Wilt in Cotton

    E-print Network

    Behmer, Spencer T.

    Integrated Management of Verticillium Wilt in Cotton Jason E. Woodward, Extension, is an increasingly important disease of cotton on the Southern High Plains. The pathogen has a broad host range of a 2 infected with Verticillium wilt Verticillium wilt is not new to cotton producing areas

  8. EFFECT OF TRANSPLANT TRAY TYPE AND TOMATO CULTIVAR ON THE INCIDENCE OF FUSARIUM CROWN AND ROOT ROT IN TOMATO TRANSPLANTS1

    Microsoft Academic Search

    C. S. VAVRINA

    The effect of transplant tray type and tomato (Lycopersicon esculentum Miller) cultivar on the incidence of Fusarium crown and root rot caused by the fungus Fusarium oxysporum f.sp. radicis-lycopersici (FORL) was examined in a commercial transplant house. Four common south Florida tomato cultivars, Agriset-761, PAP-34283, Sunbeam, and Sunny, were seeded in a peat-based medium in five different types of transplant

  9. Development of a selective myclobutanil agar (MBA) medium for the isolation of Fusarium species from asparagus fields.

    PubMed

    Vujanovic, Vladimir; Hamel, Chantal; Jabaji-Hare, Suha; St-Arnaud, Marc

    2002-09-01

    A new selective myclobutanil agar medium for the detection of Fusarium, species is proposed. Ten media formulations based on various selective agents (pentachloronitrobenzene (PCNB), Rose Bengal, malachite green, sodium hypochlorite, captan, benomyl, chlorotalonil, myclobutanil, thiram, and cupric sulfate) were compared. First, mycelium growth and colony appearance of Alternaria alternata, Aspergillus flavus, Cladosporium cladosporioides, Epicoccum nigrum, Fusarium sp., Fuisarium solani, Fusarium moniliforme, Fusarium oxysporum f.sp. dianthi, Penicillium sp., and Trichoderma viride isolates were compared. Second, the ability of the different media to isolate and enumerate fusaria from asparagus fields was evaluated. The myclobutanil-based medium showed the highest selectivity to Fusarium spp. growth but required a slightly longer incubation time (>5 d) than peptone-pentachloronitrobenzene-based agar (PPA) (< 5 d). PPA allowed a faster fusaria growth but also permited the growth of other moulds. The other media were less selective and did not allow to isolate fusaria or to differenciate them from other growing fungi. PMID:12455616

  10. Early Events in the Fusarium verticillioides-Maize Interaction Characterized by Using a Green Fluorescent Protein-Expressing Transgenic Isolate

    Microsoft Academic Search

    Liat Oren; Smadar Ezrati; David Cohen; Amir Sharon

    2003-01-01

    The infection of maize by Fusarium verticillioides can result in highly variable disease symptoms ranging from asymptomatic plants to severe rotting and wilting. We produced F. verticillioides green fluorescent protein- expressing transgenic isolates and used them to characterize early events in the F. verticillioides-maize inter- action that may affect later symptom appearance. Plants grown in F. verticillioides-infested soil were smaller

  11. Plant Disease Lesson: Verticillium wilt

    NSDL National Science Digital Library

    Ingrid Berlanger (Oregon State University; )

    2000-08-01

    This plant disease lesson on Verticillium wilt (caused by Verticillium dahliae) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

  12. Verticillium Wilt of Shade Trees

    E-print Network

    , resulting in blockage of water movement from the roots to the foliage. The tree responds to infection recurrence of the trouble. NOTE: Yews and conifers are resistant to Verticillium wilt. Redbud and smoke tree Sassafras Boxwood Horse chestnut Serviceberry Brambles Japanese pagoda tree Smoke tree Buckeye Lilac Sumac

  13. Control of wilt disease of lentil through bio control agents and organic amendments in Tarai region of Uttarakhand, India.

    PubMed

    Garkoti, Ankita; Kumar, Vijay; Tripathi, H S

    2014-11-01

    The present work aimed at evaluating the efficacy of bioagents and organic amendments against lentil wilt pathogen. Field trials were carried out consecutively during Rabi 2010-11 and 2011-12 crop seasons in Randomized Block Design (RBD) with three replications, using 'Pant L-639' a popular cultivar. The plot size was 3.0 x 1.5 m2 with row spacing of 30 cm. Effect of selected bioagents and organic amendments on disease incidence, 1000 grain weight and yield kg ha' of lentil was recorded. It was observed that seed treatment with Trichoderma harizanum + Pseudomonas fluorescens significant by reduced 1.73% (2010-11) and 1.93% (2011-12) in Fusarium wilt disease incidence and increase in grain yield 507.6 kg ha(-1) and 496.0 kg ha(-1) respectively during both crop seasons. Among organic amendments, minimum wilt disease incidence of 1.69% (2010-11) and 1.81% (2011-12) and maximum grain yield 496.3 kg ha(-1) (2010-11) and 484.0 kg ha(-1) (2011-12) were observed in farm yard manure + spent compost treated plots. This indicates that these treatments have important roles in biologically based management strategies for controling Fusarium wilt disease under organic mode of lentil cultivation in Uttarakhand State. PMID:25522507

  14. Molecular Organization of Mating Type Loci in Heterothallic, Homothallic, and Asexual Gibberella\\/ Fusarium Species

    Microsoft Academic Search

    Sung-Hwan Yun; Tsutomu Arie; Isao Kaneko; O. C. Yoder; B. Gillian Turgeon

    2000-01-01

    Mating type (MAT) genes were cloned from three members of the Gibberella\\/Fusarium complex that differ in reproductive mode: heterothallic G. fujikuroi, homothallic G. zeae, and asexual F. oxysporum. The G. fujikuroi MAT locus organization is typical of other heterothallic pyrenomycetes characterized to date; i.e., there are three genes at MAT1-1 and one at MAT1-2. G. zeae has homologues of all

  15. Phylogenomic and functional domain analysis of polyketide synthases in Fusarium

    SciTech Connect

    Brown, Daren W.; Butchko, Robert A.; Baker, Scott E.; Proctor, Robert H.

    2012-02-01

    Fusarium species are ubiquitous in nature, cause a range of plant diseases, and produce a variety of chemicals often referred to as secondary metabolites. Although some fungal secondary metabolites affect plant growth or protect plants from other fungi and bacteria, their presence in grain based food and feed is more often associated with a variety of diseases in plants and in animals. Many of these structurally diverse metabolites are derived from a family of related enzymes called polyketide synthases (PKSs). A search of genomic sequence of Fusarium verticillioides, F. graminearum, F. oxysporum and Nectria haematococca (anamorph F. solani) identified a total of 58 PKS genes. To gain insight into how this gene family evolved and to guide future studies, we conducted a phylogenomic and functional domain analysis. The resulting genealogy suggested that Fusarium PKSs represent 34 different groups responsible for synthesis of different core metabolites. The analyses indicate that variation in the Fusarium PKS gene family is due to gene duplication and loss events as well as enzyme gain-of-function due to the acquisition of new domains or of loss-of-function due to nucleotide mutations. Transcriptional analysis indicate that the 16 F. verticillioides PKS genes are expressed under a range of conditions, further evidence that they are functional genes that confer the ability to produce secondary metabolites.

  16. Pathogenicity and mycotoxin production by Fusarium proliferatum isolated from onion and garlic in Serbia

    Microsoft Academic Search

    S. Stankovic; J. Levic; T. Petrovic; A. Logrieco; A. Moretti

    2007-01-01

    Fusarium proliferatum can occur on a wide range of economically important vegetable plants but its role in disease is not always well established.\\u000a In 2000 and 2001, from forty-one field samples of wilting onion and garlic plants in Serbia, F. proliferatum as the predominant fungal species was isolated from root and bulbs. Seventy isolates were firstly characterized for their\\u000a sexual

  17. Progress toward breeding for Verticillium wilt resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt is a persistent and serious problem in potato production. Host plant resistance offers an attractive long-term control method. Breeding progress depends on access to germplasm carrying resistance genes. This study was carried out to identify sources of Verticillium wilt resistan...

  18. Progress Toward Breeding for Verticillium Wilt Resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt is a persistent and serious problem in potato production. Host plant resistance offers an attractive long-term control method. Breeding progress depends on access to germplasm carrying resistance genes. This study was carried out to identify sources of Verticillium wilt resistan...

  19. A hemorrhagic factor (Apicidin) produced by toxic Fusarium isolates from soybean seeds.

    PubMed

    Park, J S; Lee, K R; Kim, J C; Lim, S H; Seo, J A; Lee, Y W

    1999-01-01

    Fifty-two isolates of Fusarium species were obtained from soybean seeds from various parts of Korea and identified as Fusarium oxysporum, F. moniliforme, F. semitectum, F. solani, F. graminearum, or F. lateritium. These isolates were grown on autoclaved wheat grains and examined for toxicity in a rat-feeding test. Nine cultures were toxic to rats. One of these, a culture of Fusarium sp. strain KCTC 16677, produced apicidin, an antiprotozoal agent that caused toxic effects in rats (including body weight loss; hemorrhage in the stomach, intestines, and bladder; and finally death) when rats were fed diets supplemented with 0.05 and 0.1% apicidin. The toxin was toxic to brine shrimp (the 50% lethal concentration was 40 microg/ml) and was weakly cytotoxic to human and mouse tumor cell lines. PMID:9872769

  20. Original article Wilting effect on fermentation characteristics and

    E-print Network

    Paris-Sud XI, Université de

    Original article Wilting effect on fermentation characteristics and nutritive value of mountain the chemical characteristics and the evolution of fermentation processes in pre-wilted silages: 500 L capacity-wilting. Fermentation characteris- tics were significantly modified by wilting with an increase in pH (from 3.82 to 4

  1. Fusarium species from the cassava root rot complex in west Africa.

    PubMed

    Bandyopadhyay, Ranajit; Mwangi, Maina; Aigbe, Sylvester O; Leslie, John F

    2006-06-01

    ABSTRACT Fusarium species are a significant component of the set of fungi associated with cassava root rot. Yield losses due to root rot average 0.5 to 1 ton/ha but losses >3 ton/ha, an equivalent of 15 to 20% yield, often occur. This paper reviews previous work on cassava root rot and summarizes a few recent studies on Fusarium species associated with the disease. Our studies in Cameroon showed that 30% of rotted tubers were infected by Fusarium spp. 12 months after planting and represented 25% of all the fungal isolates recovered. Other commonly recovered fungi were Botryodiplodia theobromae and Armillaria spp. Numerous and diverse species of Fusarium were associated with rotted cassava roots in Nigeria and Cameroon. At least 13 distinct amplified fragment length polymorphism (AFLP) groups of Fusarium were distinguishable, each group probably a distinct species, and many of them might represent previously undescribed Fusarium species. The two largest of the AFLP groups correspond to F. oxysporum and F. solani species complex. The distribution of Fusarium spp. varied among countries and among locations within a country, suggesting that germ plasm resistant at one location may not be resistant at another. Fusarium spp. also cause seedling blight of cassava and can be recovered from the stems of infected plants up to 1 m above the ground. Therefore, the pathogen can spread with stems cut as planting material. Fusarium spp. also can colonize Chromolaena odorata, the dominant weed in short fallows, which could further complicate management efforts by serving as an alternative host for strains that colonize cassava. PMID:18943189

  2. Dissection of the Fusarium I2 gene cluster in tomato reveals six homologs and one active gene copy

    Microsoft Academic Search

    Guus Simons; John Groenendijk; Jelle Wijbrandi; Martin Reijans; José Groenen; Paul Diergaarde; Theo Van der Lee; Marjo Bleeker; Joke Onstenk

    1998-01-01

    The I-2 locus in tomato confers resistance to race 2 of the soil-borne fungus Fusarium oxysporum f sp lycopersici. The selective restriction fragment amplification (AFLP) positional cloning strategy was used to identify I-2 in the tomato genome. A yeast artificial chromosome (YAC) clone covering ~750 kb encompassing the I-2 locus was isolated, and the AFLP technique was used to derive

  3. Visualization of interactions between a pathogenic and a beneficial Fusarium strain during biocontrol of tomato foot and root rot.

    PubMed

    Bolwerk, Annouschka; Lagopodi, Anastasia L; Lugtenberg, Ben J J; Bloemberg, Guido V

    2005-07-01

    The soilborne fungus Fusarium oxysporum f. sp. radicis-lycopersici causes tomato foot and root rot (TFRR), which can be controlled by the addition of the nonpathogenic fungus F. oxysporum Fo47 to the soil. To improve our understanding of the interactions between the two Fusarium strains on tomato roots during biocontrol, the fungi were labeled using different autofluorescent proteins as markers and subsequently visualized using confocal laser scanning microscopy. The results were as follows. i) An at least 50-fold excess of Fo47over F. oxysporum f. sp. radicis-lycopersici was required to obtain control of TFRR. ii) When seedlings were planted in sand infested with spores of a single fungus, Fo47 hyphae attached to the root earlier than those of F. oxysporum f. sp. radicis-lycopersici. iii) Subsequent root colonization by F. oxysporum f. sp. radicis-lycopersici was faster and to a larger extent than that by Fo47. iv) Under disease-controlling conditions, colonization of tomato roots by the pathogenic fungus was significantly reduced. v) When the inoculum concentration of Fo47 was increased, root colonization by the pathogen was arrested at the stage of initial attachment to the root. vi) The percentage of spores of Fo47 that germinates in tomato root exudate in vitro is higher than that of the pathogen F. oxysporum f. sp. radicis-lycopersici. Based on these results, the mechanisms by which Fo47 controls TFRR are discussed in terms of i) rate of spore germination and competition for nutrients before the two fungi reach the rhizoplane; ii) competition for initial sites of attachment, intercellular junctions, and nutrients on the tomato root surface; and iii) inducing systemic resistance. PMID:16042017

  4. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides

    Microsoft Academic Search

    Miguel Jurado; Covadonga Vázquez; Belén Patiño; M. Teresa González-Jaén

    2005-01-01

    Contamination of small-grain cereals with the fungal species Fusarium graminearum, F. culmorum, F. poae, F. sporotrichioides and F. equiseti is an important source of trichothecenes, Zearalenone and other mycotoxins which cause serious diseases in human and animals. Additionally, these species contribute to Fusarium Head Blight, a disease which produces important losses in cereal yield. Early detection and control of these

  5. Field response of some asparagus varieties to rust, Fusarium crown root rot, and violet root rot.

    PubMed

    Fiume, F; Fiume, G

    2003-01-01

    Research was carried out to evaluate the behaviour of some asparagus genotypes against three most important fungal diseases: 1) asparagus rust caused by Puccinia asparagi D.C.; 2) Fusarium crown and root rot caused by Fusarium oxysporum (Schlecht.) f.sp. asparagi (Cohen & Heald) and Fusarium proliferatum (Matstush.) Nirenberg; 3) violet root rot caused by Rhizoctonia violacea Tul. The object of this research was also to found an eventual correlation between the plant susceptibility to asparagus rust and the sensibility to Fusarium crown root rot and violet root rot attacks. Resistant genotypes to rust should be less susceptible to attacks from F. oxysporum f.sp. asparagi, F. proliferatum and R. violacea, a fungal complex causing the plant decline. Asparagus genotypes were compared in a randomized complete block experiment design, replicated four times, in order to search that ones showing the best behaviour to escape the diseases. Phytopathological observations were carried out on November when the control plots showed 100% infected plants. The pathogens were isolated and identified. The diseased plants were registered. According to symptom evaluation scales, all the plants were grouped into infection classes, calculating frequency and McKinney index. Wishing to learn something about the infection trend of F. oxysporum f.sp. asparagi or R. violacea in relation to P. asparagi attack, the relative curvilinear regressions were calculated. The Italian cultivars "Marte" and "Grande" showed significantly the best behaviour in terms of resistance to asparagus rust, exhibiting 37% and 42% of diseased plants. The McKinney index was 9.1% and 15.6%, respectively. The susceptible plots showed 100% of infected plants and different McKinney index: 46% for "Eros", about 60% for "H 519", "Atlas" and "Golia", over 70% for the remainder. "Marte" and "Grande" showed good tolerance to F. oxysporum f.sp. asparagi and to R. violacea exhibiting up to 100% of healthy plants. The regression between plants affected by asparagus rust and those diseased by Fusarium crown root rot showed a linear equation with a regression coefficient b = 1.186 and a correlation coefficient R2 = 0.98. The regression between infection caused by rust and that caused by violet root rot exhibited a regression coefficient b = 1.03 and a coefficient of correlation R2 = 0.9. "Marte" and "Grande" exhibited the best behaviour against the rust attacks. Plants without rust were tolerant to pathogens causing plant decline. PMID:15151301

  6. Molecular biology of Fusarium mycotoxins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As the 20th century ended, Fusarium mycotoxicology entered the age of genomics. With complete genomes of Fusarium graminearum and F. verticillioides, and several Fusarium gene expression sequence databases on hand, researchers worldwide are working at a rapid pace to identify mycotoxin biosynthetic...

  7. Molecular Relationships of Fungi Within the Fusarium redolens-F. hostae Clade.

    PubMed

    Baayen, R P; O'Donnell, K; Breeuwsma, S; Geiser, D M; Waalwijk, C

    2001-11-01

    ABSTRACT The evolutionary relationships of fungi in the Fusarium redolens-F. hostae clade were investigated by constructing nuclear and mitochondrial gene genealogies for 37 isolates representing the known genetic and pathogenic diversity of this lineage, together with 15 isolates from putative sister groups that include the Gibberella fujikuroi and F. oxysporum species complexes and related species. Included in the analyses were 29 isolates of F. redolens from Asparagus, Convallaria, Dianthus, Fritillaria, Hebe, Helleborus, Hordeum, Linum, Pisum, Pseudotsuga, and Zea spp., and from soil. Isolates of F. hostae analyzed included two reference isolates from Hosta spp. and six isolates from Hyacinthus spp. that originally were classified as F. oxysporum f. sp. hyacinthi. DNA sequences from a portion of the nuclear translation elongation factor 1alpha (EF-1alpha) gene and the mitochondrial small subunit (mtSSU) ribosomal RNA (rRNA) were analyzed individually and as a combined data set based on results of the nonparametric Wilcoxon signed ranks Templeton combinability test. Maximum parsimony analysis of the combined data set identified the F. redolens-F. hostae clade as a sister group to a phylogenetically diverse clade in which the G. fujikuroi species complex formed the most basal lineage. Also included in this latter clade were two unnamed Fusarium spp. that are morphologically similar to F. oxysporum and putative sister taxa comprising the F. oxysporum complex and a F. nisikadoi-F. miscanthi clade. Phylogenetic diversity in F. redolens was small; all isolates were represented by only three EF-1alpha and two mtSSU rDNA haplotypes. Both the isolates of F. redolens f. sp. asparagi and those of F. redolens f. sp. dianthi were nearly evenly distributed in the combined molecular phylogeny between the two major subclades within F. redolens. PMID:18943438

  8. Fusion proteins comprising a Fusarium-specific antibody linked to antifungal peptides protect plants against a fungal pathogen.

    PubMed

    Peschen, Dieter; Li, He-Ping; Fischer, Rainer; Kreuzaler, Fritz; Liao, Yu-Cai

    2004-06-01

    In planta expression of recombinant antibodies recognizing pathogen-specific antigens has been proposed as a strategy for crop protection. We report the expression of fusion proteins comprising a Fusarium-specific recombinant antibody linked to one of three antifungal peptides (AFPs) as a method for protecting plants against fungal diseases. A chicken-derived single-chain antibody specific to antigens displayed on the Fusarium cell surface was isolated from a pooled immunocompetent phage display library. This recombinant antibody inhibited fungal growth in vitro when fused to any of the three AFPs. Expression of the fusion proteins in transgenic Arabidopsis thaliana plants conferred high levels of protection against Fusarium oxysporum f.sp. matthiolae, whereas plants expressing either the fungus-specific antibody or AFPs alone exhibited only moderate resistance. Our results demonstrate that antibody fusion proteins may be used as effective and versatile tools for the protection of crop plants against fungal infection. PMID:15146196

  9. Release of SJ-07P-FR01, SJ-07P-FR02, SJ-07P-FR03, and SJ-07P-FR04 'Cotton'.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Given the seriousness of the Fusarium wilt [(Fusarium oxysporum f. sp. vasinfectum (FOV)] race 4 problem in California, cotton breeders need alternative sources of germplasm for improving resistance in pima cottons. For this purpose the Agricultural Research Service, United States Department of Agri...

  10. Phytotoxicity of fusaric acid and analogues to cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusaric acid has been isolated from 11 Fusarium species including the cotton pathogen, Fusarium oxysporum f. sp. vasinfectum. Although fusaric acid shows low toxicity to animals, it is classified as a wilt-inducing toxin in many plants including cotton. The latter is particularly sensitive to this...

  11. Mycotoxin Production by Fusarium Species Isolated from Bananas

    PubMed Central

    Jimenez, M.; Huerta, T.; Mateo, R.

    1997-01-01

    The ability of Fusarium species isolated from bananas to produce mycotoxins was studied with 66 isolates of the following species: F. semitectum var. majus (8 isolates), F. camptoceras (3 isolates), a Fusarium sp. (3 isolates), F. moniliforme (16 isolates), F. proliferatum (9 isolates), F. subglutinans (3 isolates), F. solani (3 isolates), F. oxysporum (5 isolates), F. graminearum (7 isolates), F. dimerum (3 isolates), F. acuminatum (3 isolates), and F. equiseti (3 isolates). All isolates were cultured on autoclaved corn grains. Their toxicity to Artemia salina L. larvae was examined. Some of the toxic effects observed arose from the production of known mycotoxins that were determined by thin-layer chromatography, gas chromatography, or high-performance liquid chromatography. All F. camptoceras and Fusarium sp. isolates proved toxic to A. salina larvae; however, no specific toxic metabolites could be identified. This was also the case with eight isolates of F. moniliforme and three of F. proliferatum. The following mycotoxins were encountered in the corn culture extracts: fumonisin B(inf1) (40 to 2,900 (mu)g/g), fumonisin B(inf2) (150 to 320 (mu)g/g), moniliformin (10 to 1,670 (mu)g/g), zearalenone (5 to 470 (mu)g/g), (alpha)-zearalenol (5 to 10 (mu)g/g), deoxynivalenol (8 to 35 (mu)g/g), 3-acetyldeoxynivalenol (5 to 10 (mu)g/g), neosolaniol (50 to 180 (mu)g/g), and T-2 tetraol (5 to 15 (mu)g/g). Based on the results, additional compounds produced by the fungal isolates may play prominent roles in the toxic effects on larvae observed. This is the first reported study on the mycotoxin-producing abilities of Fusarium species that contaminate bananas. PMID:16535503

  12. Two rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon pea.

    PubMed

    Dutta, Swarnalee; Morang, Pranjal; Kumar S, Nishanth; Dileep Kumar, B S

    2014-09-01

    A Pseudomonas aeruginosa strain, RRLJ 04, and a Bacillus cereus strain, BS 03, were tested both individually and in combination with a Rhizobium strain, RH 2, for their ability to enhance plant growth and nodulation in pigeon pea (Cajanus cajan L.) under gnotobiotic, greenhouse and field conditions. Both of the rhizobacterial strains exhibited a positive effect on growth in terms of shoot height, root length, fresh and dry weight, nodulation and yield over the non-treated control. Co-inoculation of seeds with these strains and Rhizobium RH 2 also reduced the number of wilted plants, when grown in soil infested with Fusarium udum. Gnotobiotic studies confirmed that the suppression of wilt disease was due to the presence of the respective PGPR strains. Seed bacterization with drug-marked mutants of RRLJ 04 and BS 03 confirmed their ability to colonize and multiply along the roots. The results suggest that co-inoculation of these strains with Rhizobium strain RH 2 can be further exploited for enhanced growth, nodulation and yield in addition to control of fusarial wilt in pigeon pea. PMID:25224506

  13. Aggressiveness of Fusarium species and impact of root infection on growth and yield of soybeans.

    PubMed

    Arias, María M Díaz; Leandro, Leonor F; Munkvold, Gary P

    2013-08-01

    Fusarium spp. are commonly isolated from soybean roots but the pathogenic activity of most species is poorly documented. Aggressiveness and yield impact of nine species of Fusarium were determined on soybean in greenhouse (50 isolates) and field microplot (19 isolates) experiments. Root rot severity and shoot and root dry weights were compared at growth stages V3 or R1. Root systems were scanned and digital image analysis was conducted; yield was measured in microplots. Disease severity and root morphology impacts varied among and within species. Fusarium graminearum was highly aggressive (root rot severity >90%), followed by F. proliferatum and F. virguliforme. Significant variation in damping-off (20 to 75%) and root rot severity (<20 to >60%) was observed among F. oxysporum isolates. In artificially-infested microplots, root rot severity was low (<25%) and mean yield was not significantly reduced. However, there were significant linear relationships between yield and root symptoms for some isolates. Root morphological characteristics were more consistent indicators of yield loss than root rot severity. This study provides the first characterization of aggressiveness and yield impact of Fusarium root rot species on soybean at different plant stages and introduces root image analysis to assess the impact of root pathogens on soybean. PMID:23514263

  14. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    PubMed Central

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  15. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity.

    PubMed

    Sperschneider, Jana; Gardiner, Donald M; Thatcher, Louise F; Lyons, Rebecca; Singh, Karam B; Manners, John M; Taylor, Jennifer M

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host-pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host-pathogen interactions for experimental verification. PMID:25994930

  16. Sambutoxin, a new mycotoxin produced by toxic Fusarium isolates obtained from rotted potato tubers.

    PubMed Central

    Kim, J C; Lee, Y W

    1994-01-01

    Ninety-nine isolates of Fusarium species were obtained from rotted potato tubers from various parts of Korea. Of these isolates, 80 were identified as Fusarium oxysporum, F. solani, or F. sambucinum. The isolates of these species were grown on autoclaved wheat grains and examined for toxicity in a rat-feeding test. A total of 8 of 57 F. oxysporum isolates, 3 of 14 F. solani isolates, and 5 of 9 F. sambucinum isolates caused the death of the rats. Of the 16 toxic isolates, 1 isolate of F. oxysporum produced a substantial amount of moniliformin, which could account for its toxicity. None of the other 15 isolates produced trichothecenes, moniliformin, fusarochromanone, fumonisin B1, or wortmannin. F. sambucinum PZF-4 produced an unknown toxin in wheat culture. This new toxin, given the trivial name sambutoxin, caused toxic effects in rats, including body weight loss, feed refusal, hemorrhage in the stomach and intestines, and, finally, death when rats were fed diets supplemented with 0.05 and 0.1% sambutoxin. The toxin was also toxic to chicken embryos, and the 50% lethal concentration was 29.6 micrograms per egg. Sambutoxin formed as white crystals that turned purple when combined with reagents such as sulfuric acid and p-anisaldehyde. It exhibited a green color immediately after treatment with potassium ferricyanide-ferric chloride. Its UV spectrum had absorption maxima at 213, 233, and 254 nm, and its infrared spectrum showed an amide group at 1,650 and 1,560 cm-1 and a hydroxy group at 3,185 cm-1. Mass spectrometry showed that the molecular weight of the toxin was 453 and the molecular formula was C28H39NO4.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7811078

  17. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum

    Microsoft Academic Search

    Chang Hyun Khang; Sook-Young Park; Yong-Hwan Lee; Seogchan Kang

    2005-01-01

    Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the

  18. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides.

    PubMed

    Jurado, Miguel; Vázquez, Covadonga; Patiño, Belén; González-Jaén, M Teresa

    2005-08-01

    Contamination of small-grain cereals with the fungal species Fusarium graminearum, F. culmorum, F. poae, F. sporotrichioides and F. equiseti is an important source of trichothecenes, Zearalenone and other mycotoxins which cause serious diseases in human and animals. Additionally, these species contribute to Fusarium Head Blight, a disease which produces important losses in cereal yield. Early detection and control of these Fusarium species is crucial to prevent toxins entering the food chain and a useful tool in disease management practices. We describe the development of specific PCR assays to F. graminearum, F. culmorum, F. poae, F. sporotrichioides and F. equiseti using DNA from pure fungal cultures as well as from naturally infected wheat seeds, using in this case a rapid and easy protocol for DNA isolation. The specific primers were designed on the basis of IGS sequences (Intergenic Spacer of rDNA), a multicopy region in the genome that permits to enhance the sensitivity of the assay in comparison with PCR assays based on single-copy sequences. PMID:16104354

  19. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by paenibacillus strains isolated from soil.

    PubMed

    Xu, Sheng Jun; Kim, Byung Sup

    2014-06-01

    In this study, bacterial strains were isolated from soils from 30 locations of Samcheok, Gangwon province. Of the isolated strains, seven showed potential plant growth promoting and antagonistic activities. Based on cultural and morphological characterization, and 16S rRNA gene sequencing, these strains were identified as Paenibacillus species. All seven strains produced ammonia, cellulase, hydrocyanic acid, indole-3-acetic acid, protease, phosphatase, and siderophores. They also inhibited the mycelial growth of Fusarium oxysporum f. sp. radicis-lycopersici in vitro. The seven Paenibacillus strains enhanced a range of growth parameters in tomato plants under greenhouse conditions, in comparison with non-inoculated control plants. Notably, treatment of tomato plants with one identified strain, P. polymyxa SC09-21, resulted in 80.0% suppression of fusarium crown and root rot under greenhouse conditions. The plant growth promoting and antifungal activity of P. polymyxa SC09-21 identified in this study highlight its potential suitability as a bioinoculant. PMID:25071385

  20. A Conserved Homeobox Transcription Factor Htf1 Is Required for Phialide Development and Conidiogenesis in Fusarium Species

    PubMed Central

    Zheng, Wenhui; Zhao, Xu; Xie, Qiurong; Huang, Qingping; Zhang, Chengkang; Zhai, Huanchen; Xu, Liping; Lu, Guodong; Shim, Won-Bo; Wang, Zonghua

    2012-01-01

    Conidia are primary means of asexual reproduction and dispersal in a variety of pathogenic fungi, and it is widely recognized that they play a critical role in animal and plant disease epidemics. However, genetic mechanisms associated with conidiogenesis are complex and remain largely undefined in numerous pathogenic fungi. We previously showed that Htf1, a homeobox transcription factor, is required for conidiogenesis in the rice pathogen Magnaporthe oryzae. In this study, our aim was to characterize how Htf1 homolog regulates common and also distinctive conidiogenesis in three key Fusarium pathogens: F. graminearm, F. verticillioides, and F. oxysporum. When compared to wild-type progenitors, the gene-deletion mutants in Fusarium species failed to form conventional phialides. Rather, they formed clusters of aberrant phialides that resembled elongated hyphae segments, and it is conceivable that this led to the obstruction of conidiation in phialides. We also observed that mutants, as well as wild-type Fusaria, can initiate alternative macroconidia production directly from hyphae through budding-like mechanism albeit at low frequencies. Microscopic observations led us to conclude that proper basal cell division and subsequent foot cell development of macroconidia were negatively impacted in the mutants. In F. verticillioides and F. oxysporum, mutants exhibited a 2- to 5- microconidia complex at the apex of monophialides resulting in a floral petal-like shape. Also, prototypical microconidia chains were absent in F. verticillioides mutants. F. graminearum and F. verticillioides mutants were complemented by introducing its native HTF1 gene or homologs from other Fusarium species. These results suggest that Fusarium Htf1 is functionally conserved homeobox transcription factor that regulates phialide development and conidiogenesis via distinct signaling pathways yet to be characterized in fungi. PMID:23029006

  1. Genome regions' putative association with Fusarium wilt or root-knot nematode resistance in cotton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Around 1,300 microsatellite or SSR markers [named MUSB001 – MUSB1316 (600 informative)] were developed at the USDA-ARS, WICSRU Shafter, CA with the support of cooperators and Cotton Incorporated. These MUSB markers were developed from BAC-end DNA sequence information from a previously developed BAC ...

  2. An easy and efficient protocol in the production of pflp transgenic banana against Fusarium wilt

    Microsoft Academic Search

    Mei-Kuen Yip; Sin-Wan Lee; Kuei-Ching Su; Yi-Hsien Lin; Tai-Yang Chen; Teng-Yung Feng

    2011-01-01

    This study describes an efficient protocol for Agrobacterium tumefaciens-mediated transformation of two subgroups of genotype AAA bananas (Musa acuminata cv. Pei Chiao and Musa acuminata cv. Gros Michel). Instead of using suspension cells, cauliflower-like bud clumps, also known as multiple bud clumps (MBC),\\u000a were induced from sucker buds on MS medium containing N\\u000a 6-Benzylaminopurine (BA), Thidiazuron (TDZ), and Paclobutrazol (PP333).

  3. Incidence of Fusarium wilt of cotton as affected by pathogen propagule type, age and source 

    E-print Network

    McEntee, James Philip

    1989-01-01

    zones of Australia, China, the Soviet Union, the Far East, Africa, and North and South America (96). The United States, which produced an estimated 14. 7 million bales (218 kg/bale) on 4. 7 million ha in 1988 currently ranks second in cotton... production behind China, with 21 million bales harvested on 5. 5 million ha. Texas is ranked first in cotton production in the United States with an annual production of 3. 6 million bales from 2. 2 million ha (1981-1985); however, hectares planted...

  4. Incidence of Fusarium wilt of cotton as affected by pathogen propagule type, age and source

    E-print Network

    McEntee, James Philip

    1989-01-01

    zones of Australia, China, the Soviet Union, the Far East, Africa, and North and South America (96). The United States, which produced an estimated 14. 7 million bales (218 kg/bale) on 4. 7 million ha in 1988 currently ranks second in cotton... production behind China, with 21 million bales harvested on 5. 5 million ha. Texas is ranked first in cotton production in the United States with an annual production of 3. 6 million bales from 2. 2 million ha (1981-1985); however, hectares planted...

  5. Fusarial wilt control and growth promotion of pigeon pea through bioactive metabolites produced by two plant growth promoting rhizobacteria.

    PubMed

    Dutta, S; Morang, P; Nishanth Kumar, S; Dileep Kumar, B S

    2014-03-01

    The bioactive metabolites produced by two plant growth promoting rhizobacteria strains, a Pseudomonas aeruginosa strain RRLJ 04 and a Bacillus cereus strain BS 03, which showed growth promotion and disease control in pigeon pea against Fusarium udum, were isolated and screened for their efficacy to control fusarial wilt of pigeon pea under gnotobiotic and nursery condition. Bioactive metabolites viz., BM 1 and BM 2 from RRLJ 04 and BM 3 from BS 03 also showed in vitro antibiosis against F. udum. Seeds treated with 50 ?l seed?¹ of BM 1, 30 ?l seed?¹ of BM 2 and 70 ?l seed?¹ of BM 3 and grown in pathogen infested soil showed suppression of wilt disease besides growth enhancement. Per cent disease control was 90 % with BM 2 application as compared to 87 and 83 %, respectively in BM 1 and BM 3 after 90 days of growth. BM 2 treated plants were more resistant to the pathogen as compared to the other fractions tested. Mycelial dry weight was found to be reduced on treatment with the bioactive metabolites. Formation of chlamydospore-like structures was observed in the pathogen mycelium treated with BM 3. The analytical studies confirmed that two of these metabolites are phenazine derivatives. PMID:24154979

  6. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease

    PubMed Central

    Ellendorff, Ursula; Fradin, Emilie F.; de Jonge, Ronnie; Thomma, Bart P. H. J.

    2009-01-01

    RNA silencing is a conserved mechanism in eukaryotes that plays an important role in various biological processes including regulation of gene expression. RNA silencing also plays a role in genome stability and protects plants against invading nucleic acids such as transgenes and viruses. Recently, RNA silencing has been found to play a role in defence against bacterial plant pathogens in Arabidopsis through modulating host defence responses. In this study, it is shown that gene silencing plays a role in plant defence against multicellular microbial pathogens; vascular fungi belonging to the Verticillium genus. Several components of RNA silencing pathways were tested, of which many were found to affect Verticillium defence. Remarkably, no altered defence towards other fungal pathogens that include Alternaria brassicicola, Botrytis cinerea, and Plectosphaerella cucumerina, but also the vascular pathogen Fusarium oxysporum, was recorded. Since the observed differences in Verticillium susceptibility cannot be explained by notable differences in root architecture, it is speculated that the gene silencing mechanisms affect regulation of Verticillium-specific defence responses. PMID:19098131

  7. Production of fusarielins by Fusarium.

    PubMed

    Sørensen, Jens Laurids; Akk, Elina; Thrane, Ulf; Giese, Henriette; Sondergaard, Teis Esben

    2013-01-01

    Fusarielins constitute a relative unexplored group of secondary metabolites, which have been isolated mainly from unidentified Aspergillus and Fusarium strains. In the present study we show that the ability to produce fusarielins is restricted to a few Fusarium species. Among the 15 analyzed species fusarielins were identified only in extracts from Fusarium graminearum and Fusarium tricinctum. The influence of different carbon sources on fusarielin biosynthesis was examined and the results showed that disaccharides and dextrin in combination with arginine as sole nitrogen source increased fusarielin production. When arginine was replaced with nitrate the fusarielins were produced on a wider selection of carbon sources including all monosaccharides. Production of fusarielins in F. graminearum was also influenced by pH, cultivation time, temperature and fructose concentration with the optimal conditions being: pH6, 25°C, 26days and 60mg fructose/mL. Wheat spikes were inoculated with F. graminearum to determine whether fusarielins are produced in infected cereals and fusarielin H was detected in all samples ranging from 392 to 1865ng/g (mean: 989ng/g) indicating that fusarielins are produced during infection. The study shows that even though fusarielins are produced by a narrow list of Fusarium species, they potentially can be present in infected cereals. PMID:23290226

  8. Antagonistic activity and mechanisms of Bacillus subtilis SB1 against Ralstonia solanacearum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, showed a broad-spectrum of antimicrobial activity in vitro experiments. In addition to Ralstonia solanacearum, strain SB1 inhibited the growth of many other plant pathogens, including Fusarium oxysporum, Botrytis cinerea, Phytoph...

  9. Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L. infected by fungal pathogens

    Microsoft Academic Search

    G. D. Dugassa; H. von Alten; F. Schönbeck

    1996-01-01

    Effects of arbuscular mycorrhizal (AM) symbiosis on health ofLinum usitatissimum infected by fungal pathogens were investigated exemplarily. Physiological and biochemical analyses were done to explain the mechanisms underlying the AM effects. AM plants showed increased resistance against the wilt pathogen (Fusarium oxysporum f. sp.lini), the level of this effects depended on the plant cultivars which all showed the same level

  10. Genome Sequences of Six Wheat-Infecting Fusarium Species Isolates

    PubMed Central

    Moolhuijzen, Paula M.; Manners, John M.; Wilcox, Stephen A.; Bellgard, Matthew I.

    2013-01-01

    Fusarium pathogens represent a major constraint to wheat and barley production worldwide. To facilitate future comparative studies of Fusarium species that are pathogenic to wheat, the genome sequences of four Fusarium pseudograminearum isolates, a single Fusarium acuminatum isolate, and an organism from the Fusarium incarnatum-F. equiseti species complex are reported. PMID:24009115

  11. Molecular analyses of Fusarium isolates recovered from a cluster of invasive mold infections in a Brazilian hospital

    PubMed Central

    2013-01-01

    Background Invasive fusariosis (IF) is a rare but often fatal fungal infection in immunosuppressed patients. In 2007, cases of IF above the expected epidemiologic baseline were detected in the hematology ward of a hospital in Rio de Janeiro, Brazil. Possible sources of infection were investigated by performing environmental sampling and patient isolate collection, followed by molecular typing. Isolates from dermatology patients with superficial fusariosis were included in the study for comparison to molecular types found in the community. Methods Environmental sampling focused on water-related sources in and around the hematology ward. Initially, we characterized 166 clinical and environmental isolates using the Fusarium translation elongation factor 1? (EF-1?) genetic locus. Isolates included 68 collected from water-related sources in the hospital environment, 55 from 18 hematology patients, and 43 from the skin/nails of 40 outpatients seen at the hospital dermatology clinic. Multi-locus sequence typing was performed on Fusarium solani species complex (FSSC) species 1 and 2 isolates to investigate their relatedness further. Results Most of the hematology samples were FSSC species 2, with species type FSSC 2-d the most commonly isolated from these patients. Most of the outpatient dermatology samples were also FSSC 2, with type 2-d again predominating. In contrast, environmental isolates from water sources were mostly Fusarium oxysporum species complex (FOSC) and those from air samples mostly Fusarium incarnatum-equiseti species complex (FIESC). A third of the environmental samples were FSSC, with species types FSSC 1-a and FSSC 1-b predominating. Conclusions Fusarium isolate species types from hematology patient infections were highly similar to those recovered from dermatology patients in the community. Four species types (FSSC 1-a, 1-b, 2-d and 2-f) were shared between hematology patients and the environment. Limitations in environmental sampling do not allow for nosocomial sources of infection to be ruled out. Future studies will focus on environmental factors that may have influenced the prevalence of FSSC fusariosis in this hematology ward. PMID:23363475

  12. Structural dynamics of Fusarium genomes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fungi in the genus Fusarium have a great negative impact on the world economy, yet also hold great potential for answering many fundamental biological questions. The advance of sequencing technologies has made possible the connection between phenotypes and genetic mechanisms underlying the acquisiti...

  13. GENOMIC ANALYSIS OF FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the ...

  14. Genomic analysis of Fusarium verticillioides

    Microsoft Academic Search

    D. W. Brown; R. A. E. Butchko; R. H. Proctor

    2008-01-01

    Fusarium verticillioides (teleomorph Gibberella moniliformis) can be either an endophyte of maize, causing no visible disease, or a pathogen-causing disease of ears, stalks, roots and seedlings. At any stage, this fungus can synthesize fumonisins, a family of mycotoxins structurally similar to the sphingolipid sphinganine. Ingestion of fumonisin-contaminated maize has been associated with a number of animal diseases, including cancer in

  15. Fusarium Keratitis - Multiple States, 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The United States Centers for Disease Control and Prevention investigated an outbreak of corneal infections caused by Fusarium involving at least 17 states as of April, 2006. Initial outbreak reports were from Singapore and Hong Kong. Preliminary results suggest that these outbreaks may be linked ...

  16. TPCP: Fusarium circinatum in pine nurseries FUSARIUM CIRCINATUM IN PINE NURSERIES

    E-print Network

    TPCP: Fusarium circinatum in pine nurseries FUSARIUM CIRCINATUM IN PINE NURSERIES: A GUIDE TO APPROPRIATE MANAGEMENT STRATEGIES Pine seedling infected with F. circinatum INTRODUCTION A number of Fusarium spp. have been found to cause diseases of pine seedlings and cuttings in South African nurseries. F

  17. Evaluation of the pathogenicity of Fusarium graminearum and Fusarium pseudograminearum on soybean seedlings under controlled conditions

    Microsoft Academic Search

    A. G. Xue; E. Cober; H. D. Voldeng; C. Babcock; R. M. Clear

    2007-01-01

    Fusarium graminearum, the cause of fusarium head blight of small-grain cereals and of gibberella ear rot of corn, has recently been reported to attack soybean, causing root rot and pod blight. A morphologically similar species, Fusarium pseudograminearum, is also an important pathogen of the roots and crown of cereals, but its pathogenicity against soybean has not been tested yet. Pathogenicity

  18. Genome-wide dissection of Fusarium resistance in tomato reveals multiple complex loci.

    PubMed

    Sela-Buurlage, M B; Budai-Hadrian, O; Pan, Q; Carmel-Goren, L; Vunsch, R; Zamir, D; Fluhr, R

    2001-08-01

    Resistance to different pathogenic races of Fusarium oxysporum f. sp. lycopersici (F. o. lycopersici) was explored at two genomic levels in tomato. Six independent Fusarium resistance loci were identified by comparing the responses of a complete set of 53 lines carrying different introgressed regions of the Lycopersicon pennellii genome in a L. esculentum background. The loci confer varying degrees of resistance to different races of the pathogen. Corresponding map positions from different tomato species were aligned and in some cases revealed parallel resistance to F. o. lycopersici with qualitative changes in race specificities. One of the loci identified corresponds to the previously characterized complex resistance locus I2, which is involved in resistance to F. o. lycopersici race 2. A novel member of this locus, I2C-5, which belongs to the NBS-LRR family of resistance genes, was cloned and shown to confer partial resistance in transgenic plants. Thus, at a particular complex locus gene members can confer full or partial resistance to F. o. lycopersici race 2. The results of our whole-genome mapping analysis underline the robust independent origin of resistance to a particular disease and demonstrate the conservation of resistance features at syntenic loci, together with the rapid diversification of genes for innate resistance within loci. PMID:11523783

  19. Molecular markers linked to papaya ring spot virus resistance and Fusarium race 2 resistance in melon.

    PubMed

    Brotman, Yariv; Kovalski, Irina; Dogimont, Catherine; Pitrat, Michel; Portnoy, Vitaly; Katzir, Nurit; Perl-Treves, Rafael

    2005-01-01

    In melon, the Fom-1 gene confers monogenic resistance against the soil-borne fungus Fusarium oxysporum f. sp. melonis, races 0 and 2, while the closely linked Prv gene specifies resistance against the papaya ring spot virus. Markers linked to these resistance (R) genes were identified using two recombinant inbred line populations, derived from crosses between Cucumis melo Vedrantais and C. melo PI 161375, and between C. melo Vedrantais and C. melo PI 414723, respectively. Using bulked segregant analysis, as well as systematic scoring of the mapping populations, we developed two amplified fragment length polymorphism markers, two random amplified polymorphic DNA markers and five restriction fragment length polymorphism (RFLP) markers linked to this locus. Four of the RFLP sequences bear homology to nucleotide-binding site-leucine-rich repeat R genes, indicating the presence of a significant R-gene cluster in this locus. Our study provides the most closely linked markers published so far for these important traits. It also improves the resolution of the whole linkage group IX, which was difficult to order in our previous studies. Two of the markers were converted to cleaved amplified polymorphic sequence markers to facilitate their application in marker-assisted selection. Testing these two markers in several melon lines revealed different marker haplotypes in the melon germplasm and supported multiple, independent origin of the Fusarium races 0 and 2 resistance trait. PMID:15551034

  20. In vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium spp.

    PubMed

    Lewis, Russell E; Wiederhold, Nathan P; Klepser, Michael E

    2005-03-01

    We compared the in vitro pharmacodynamics of amphotericin B, itraconazole, and voriconazole against Aspergillus, Fusarium, and Scedosporium species with a combination of two non-culture-based techniques: the tetrazolium salt 2,3-bis-(2-methoxy-4-nitro-5-[(sulfenylamino)carbonyl]-2H-tetrazolium-hydroxide) (XTT) colorimetric reduction assay, and fluorescent microscopy with the cellular morbidity dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) to directly visualize hyphal damage. Amphotericin B exhibited species-specific concentration-dependent activity, with 50% effective concentrations (EC(50)s) ranging from 0.10 to 0.12 mg/ml for A. fumigatus, 0.36 to 0.53 mg/ml for A. terreus, 0.27 to > or = 32 mg/ml for F. solani, 0.41 to 0.55 mg/ml for F. oxysporum, and 0.97 and 0.65 mg/ml for S. apiospermum and S. prolificans, respectively. Similarly, itraconazole inhibited the growth of A. fumigatus and A. terreus isolates with MICs of <1 mg/ml (EC(50) 0.03 to 0.85 mg/ml) and S. apiospermum, but was not active against Fusarium species or S. prolificans. Voriconazole effectively inhibited the growth of Aspergillus, Fusarium, and S. apiospermum (EC(50) 0.10 to 3.3 mg/ml) but had minimal activity against a multidrug-resistant isolate of F. solani or S. prolificans. Hyphal damage visualized by DiBAC staining was observed more frequently with voriconazole and amphotericin B versus itraconazole. These data highlight the species-specific differences in antifungal pharmacodynamics between mold-active agents that could be relevant for the development of in vitro susceptibility breakpoints and antifungal dosing in vivo. PMID:15728887

  1. Incidence of Fusarium spp. and levels of fumonisin B1 in maize in western Kenya.

    PubMed

    Kedera, C J; Plattner, R D; Desjardins, A E

    1999-01-01

    Maize kernel samples were collected in 1996 from smallholder farm storages in the districts of Bomet, Bungoma, Kakamega, Kericho, Kisii, Nandi, Siaya, Trans Nzoia, and Vihiga in the tropical highlands of western Kenya. Two-thirds of the samples were good-quality maize, and one-third were poor-quality maize with a high incidence of visibly diseased kernels. One hundred fifty-three maize samples were assessed for Fusarium infection by culturing kernels on a selective medium. The isolates obtained were identified to the species level based on morphology and on formation of the sexual stage in Gibberella fujikuroi mating population tests. Fusarium moniliforme (G. fujikuroi mating population A) was isolated most frequently, but F. subglutinans (G. fujikuroi mating population E), F. graminearum, F. oxysporum, F. solani, and other Fusarium species were also isolated. The high incidence of kernel infection with the fumonisin-producing species F. moniliforme indicated a potential for fumonisin contamination of Kenyan maize. However, analysis of 197 maize kernel samples by high-performance liquid chromatography found little fumonisin B1 in most of the samples. Forty-seven percent of the samples contained fumonisin B1 at levels above the detection limit (100 ng/g), but only 5% were above 1,000 ng/g, a proposed level of concern for human consumption. The four most-contaminated samples, with fumonisin B1 levels ranging from 3, 600 to 11,600 ng/g, were from poor-quality maize collected in the Kisii district. Many samples with a high incidence of visibly diseased kernels contained little or no fumonisin B1, despite the presence of F. moniliforme. This result may be attributable to the inability of F. moniliforme isolates present in Kenyan maize to produce fumonisins, to the presence of other ear rot fungi, and/or to environmental conditions unfavorable for fumonisin production. PMID:9872757

  2. A comparison of Cephalosporium isolates that cause hardwood wilts 

    E-print Network

    Bush, David Lynn

    1973-01-01

    (~bios ros vair in(ann) in Tennessee (5). Tersissoon silt was soon found in Mississippi, Alabama, North Carolina, South Carolina, Georgia, Florida, and Texas. Persimmon wilt has almost eradicated American persimmons in Central Tennessee (23... and South America, was susceptible to persimmon wilt. Dio- ~sos dis olo R'ld. , fran the phllippi e; ~Dos ro rosei. st dier, f oe Me ito; a d D~o tan R h. , ~sos 1 t L. d ~pfos ros kaki L. , i trod ted fr Japan and China, proved to be highly resistant...

  3. Developing Fusarium head blight resistant wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight, caused by Fusarium graminearum, is a major disease problem in wheat and barley around the world. During infection, F. graminearum produces trichothecene mycotoxins that act as virulence factors and cause a reduction in grain quality. Therefore, developing approaches to detoxi...

  4. Biological and Chemical Complexity of Fusarium proliferatum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The heterothallic ascomycete Fusarium proliferatum (teleomorph Gibberella intermedia) is a genetically diverse biological and phylogenetic species with a worldwide distribution and an unusually broad host range. F. proliferatum is a frequent component of the Fusarium ear rot complexes of maize and ...

  5. Epidemiology of Fusarium Diseases and their Mycotoxins in Maize Ears

    Microsoft Academic Search

    Gary P. Munkvold

    2003-01-01

    Fusarium species cause two distinct diseases on ears of maize, Fusarium ear rot (or pink ear rot) and Gibberella ear rot (or red ear rot), both of which can result in mycotoxin contamination of maize grain. The primary causal agent for Fusarium ear rot is Fusarium verticillioides, but F. subglutinans and F. proliferatum are also important. Gibberella ear rot is

  6. Verticillium Wilt in Potato: Host-Pathogen Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt (VW) is a widespread disease that causes consistent yield losses in many potato growing regions worldwide. In the U.S., it is mainly caused by the soil-borne fungal pathogen Verticillium dahliae. Microsclerotia can survive in the soil for many years. When they germinate and infec...

  7. Verticillium Wilt Resistance in U.S. Potato Breeding Programs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt (VW), caused mainly by the soil-borne fungus V. dahliae, is a persistent and serious problem in potato production. Host-plant resistance offers an attractive control strategy, but major cultivars are susceptible to VW. Resistance to VW was evaluated in 14 advanced clones from U.S...

  8. Pine Wilt Disease And The Pinewood Nematode, Bursaphelenchus Xylophilus

    Microsoft Academic Search

    Manuel M. Mota; Kazuyoshi Futai; Paulo Vieira

    Pine wilt disease (PWD) is one of the most damaging events affecting conifer forests (in particular Pinus spp.), in the Far East (Japan, China and Korea), North America (USA and Canada) and, more recently, in the European Union\\u000a (Portugal). In Japan it became catastrophic, damaging native pine species (Pinus thunbergii and P. densiflora), and becoming the main forest problem, forcing

  9. Laurel wilt: A global threat to avocado production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laurel wilt kills members of the Lauraceae plant family, including avocado. The disease has invaded much of the southeastern USA, and threatens avocado commerce and homeowner production in Florida, valuable germplasm in Miami (USDA-ARS), and major production and germplasm in California and MesoAmer...

  10. Verticillium Wilt Resistance Evaluation of Wisconsin Breeding Clones

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt is one of the most widespread and persistent problems encountered by potato producers. In Wisconsin, it is caused in large part by the fungal pathogen Verticillium dahliae. Soil fumigation is currently the only consistently effective control measure. However, host plant resistan...

  11. Verticillium wilts and management with special emphasis on lettuce.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Verticillium wilt causes billions of dollars in annual losses worldwide. The genus Verticillium contains several phytopathogenic species, the most important being V. dahliae, V. albo-atrum, and V. longisporum. The soilborne habitat of these species, and their capacity to infect a variety of crops, m...

  12. Fusarium euwallaceae sp. nov.--a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California.

    PubMed

    Freeman, S; Sharon, M; Maymon, M; Mendel, Z; Protasov, A; Aoki, T; Eskalen, A; O'Donnell, K

    2013-01-01

    The invasive Asian ambrosia beetle Euwallacea sp. (Coleoptera, Scolytinae, Xyleborini) and a novel Fusarium sp. that it farms in its galleries as a source of nutrition causes serious damage to more than 20 species of live trees and pose a serious threat to avocado production (Persea americana) in Israel and California. Adult female beetles are equipped with mandibular mycangia in which its fungal symbiont is transported within and from the natal galleries. Damage caused to the xylem is associated with disease symptoms that include sugar or gum exudates, dieback, wilt and ultimately host tree mortality. In 2012 the beetle was recorded on more than 200 and 20 different urban landscape species in southern California and Israel respectively. Euwallacea sp. and its symbiont are closely related to the tea shot-hole borer (E. fornicatus) and its obligate symbiont, F. ambrosium occurring in Sri Lanka and India. To distinguish these beetles, hereafter the unnamed xyleborine in Israel and California will be referred to as Euwallacea sp. IS/CA. Both fusaria exhibit distinctive ecologies and produce clavate macroconidia, which we think might represent an adaption to the species-specific beetle partner. Both fusaria comprise a genealogically exclusive lineage within Clade 3 of the Fusarium solani species complex (FSSC) that can be differentiated with arbitrarily primed PCR. Currently these fusaria can be distinguished only phenotypically by the abundant production of blue to brownish macroconidia in the symbiont of Euwallacea sp. IS/CA and their rarity or absence in F. ambrosium. We speculate that obligate symbiosis of Euwallacea and Fusarium, might have driven ecological speciation in these mutualists. Thus, the purpose of this paper is to describe and illustrate the novel, economically destructive avocado pathogen as Fusarium euwallaceae sp. nov. S. Freeman et al. PMID:23928415

  13. Degradation of an endocrine disrupting chemical, DEHP [di-(2-ethylhexyl)-phthalate], by Fusarium oxysporum f. sp. pisi cutinase

    Microsoft Academic Search

    Y.-H. Kim; J. Lee; S.-H. Moon

    2003-01-01

    The efficiency of two lypolytic enzymes (fungal cutinase, yeast esterase) in the degradation of di-(2-ethylhexyl)-phthalate (DEHP) was investigated. The DEHP-degradation rate of fungal cutinase was surprisingly high, i.e. almost 70% of the initial DEHP (500 mg\\/l) was decomposed within 2.5 h and nearly 50% of the degraded DEHP disappeared within the initial 15 min. With the yeast esterase, despite the same concentration, more

  14. Genes Up-Regulated in Tolerant Cavendish Banana Roots in Response to Fusarium oxysporum f. sp. cubense Infection1

    E-print Network

    Programme, Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK Keywords: catalase, defence-associated genes (catalase 2, pectin acetyl esterase (PAE), PR-1 and PR-3) were selected for expression profile, xylanase inhibitor, peroxidase, catalase 2, metallothionein, response regulator 6 and tripsin inhibitor

  15. Regeneration of flax ( Linum usitatissimum L.) plants from anther culture and somatic tissue with increased resistance to Fusarium oxysporum

    Microsoft Academic Search

    I. Rutkowska-Krause; G. Mankowska; M. Lukaszewicz; J. Szopa

    2003-01-01

    The aim of this study was to establish a protocol for the efficient production of flax plants of microspore origin. The results were compared to those obtained for plants regenerated from somatic explants from hypocotyls, cotyledons, leaves, stems and roots. All the plants obtained during the experiments were regenerated from callus that was grown for periods from a few weeks

  16. GENETIC CONTROL OF TRICHOTHECENE BIOSYNTHESIS IN FUSARIUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The biosynthesis of trichothecenes involves a complex pathway that begins with the sesquiterpene hydrocarbon trichodiene and consists of multiple oxygenation, cyclization, and esterification steps. Twelve genes required for trichothecene biosynthesis in Fusarium are clustered within a 26-kb segment...

  17. EVOLUTION OF THE FUSARIUM GRAMINEARUM SPECIES COMPLEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight or scab of cereals is one of the most devastating plant diseases worldwide. These pathogens cause significant reduction in seed quality and yields and often contaminate seeds with trichothecene and estrogenic mycotoxins. Genealogical concordance phylogenetic species recognitio...

  18. Fusarium keratitis in South India: causative agents, their antifungal susceptibilities and a rapid identification method for the Fusarium solani species complex.

    PubMed

    Homa, Mónika; Shobana, Coimbatore S; Singh, Yendrembam R B; Manikandan, Palanisamy; Selvam, Kanesan P; Kredics, László; Narendran, Venkatapathy; Vágvölgyi, Csaba; Galgóczy, László

    2013-09-01

    Seventy Fusarium isolates derived from human keratomycosis were identified based on partial sequences of the ?-tubulin (?-TUB) and translation elongation factor 1? (EF-1?) genes. Most of the isolates were confirmed as members of the F. solani species complex (75.71%), followed by the F. dimerum species complex (8.57%), the F. fujikuroi species complex (8.57%), the F. oxysporum species complex (4.29%) and the F. incarnatum-equiseti species complex (2.86%). A combined phylogenetic tree was estimated including all the 70 isolates. Isolates belonging to different species complexes formed separate clades. In this study, we also report the first isolation of F. napiforme from human keratomycosis. A new method based on a specific EcoRI restriction site in the EF-1? gene was developed for the rapid identification of F. solani. In vitro antifungal susceptibilities of the isolates to seven antifungals were determined by broth microdilution method. Terbinafine, natamycin and amphotericin B proved to be the most effective drugs, followed by voriconazole. The minimal inhibitory concentrations of clotrimazole, econazole and itraconazole were generally high (?64 ?g ml(-1) ). The interactions between the two most effective antifungals (natamycin and terbinafine) were determined by checkerboard microdilution method. Synergism (71.8%) or no interaction (28.2%) was revealed between the two compounds. PMID:23437826

  19. Brachypodium distachyon: a new pathosystem to study Fusarium head blight and other Fusarium diseases of wheat

    PubMed Central

    2011-01-01

    Background Fusarium species cause Fusarium head blight (FHB) and other important diseases of cereals. The causal agents produce trichothecene mycotoxins such as deoxynivalenol (DON). The dicotyledonous model species Arabidopsis thaliana has been used to study Fusarium-host interactions but it is not ideal for model-to-crop translation. Brachypodium distachyon (Bd) has been proposed as a new monocotyledonous model species for functional genomic studies in grass species. This study aims to assess the interaction between the most prevalent FHB-causing Fusarium species and Bd in order to develop and exploit Bd as a genetic model for FHB and other Fusarium diseases of wheat. Results The ability of Fusarium graminearum and Fusarium culmorum to infect a range of Bd tissues was examined in various bioassays which showed that both species can infect all Bd tissues examined, including intact foliar tissues. DON accumulated in infected spike tissues at levels similar to those of infected wheat spikes. Histological studies revealed details of infection, colonisation and host response and indicate that hair cells are important sites of infection. Susceptibility to Fusarium and DON was assessed in two Bd ecotypes and revealed variation in resistance between ecotypes. Conclusions Bd exhibits characteristics of susceptibility highly similar to those of wheat, including susceptibility to spread of disease in the spikelets. Bd is the first reported plant species to allow successful infection on intact foliar tissues by FHB-causing Fusarium species. DON appears to function as a virulence factor in Bd as it does in wheat. Bd is proposed as a valuable model for undertaking studies of Fusarium head blight and other Fusarium diseases of wheat. PMID:21639892

  20. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines.

    PubMed

    Babi?, Monika Novak; Zalar, Polona; Ženko, Bernard; Schroers, Hans-Josef; Džeroski, Sašo; Gunde-Cimerman, Nina

    2015-03-01

    Energy constraints have altered consumer practice regarding the use of household washing machines. Washing machines were developed that use lower washing temperatures, smaller amounts of water and biodegradable detergents. These conditions may favour the enrichment of opportunistic human pathogenic fungi. We focused on the isolation of fungi from two user-accessible parts of washing machines that often contain microbial biofilms: drawers for detergents and rubber door seals. Out of 70 residential washing machines sampled in Slovenia, 79% were positive for fungi. In total, 72 strains belonging to 12 genera and 26 species were isolated. Among these, members of the Fusarium oxysporum and Fusarium solani species complexes, Candida parapsilosis and Exophiala phaeomuriformis represented 44% of fungi detected. These species are known as opportunistic human pathogens and can cause skin, nail or eye infections also in healthy humans. A machine learning analysis revealed that presence of detergents and softeners followed by washing temperature, represent most critical factors for fungal colonization. Three washing machines with persisting malodour that resulted in bad smelling laundry were analysed for the presence of fungi and bacteria. In these cases, fungi were isolated in low numbers (7.5 %), while bacteria Micrococcus luteus, Pseudomonas aeruginosa, and Sphingomonas species prevailed. PMID:25749362

  1. FUSARIUM GRAMINEARUM - INDUCED DIFFERENTIAL GENE EXPRESSION BETWEEN FUSARIUM HEAD BLIGHT-RESISTANT AND SUSCEPTIBLE WHEAT CULTIVARS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schw., is a destructive disease of wheat (Triticum aestivum L.). Although several genes related to FHB resistance have been reported, global analysis of gene expression in response to FHB infection remains to be explored. The expre...

  2. Immunocytochemical localization of fusarium toxins in infected wheat spikes by Fusarium culmorum

    Microsoft Academic Search

    Z KANG; H BUCHENAUER

    1999-01-01

    Two antisera raised against deoxynivalenol (DON) and 3-acetyldeoxynivalenol (3-ADON) were used to investigate the subcellular localization of the fusarium toxins, DON, 3-ADON and 15-ADON, in Fusarium culmorum infected wheat spikes and kernels by means of the immunogold labelling technique. The hyphae of the pathogen produced the toxins when they grew on the surface of the lemma and the ovary as

  3. Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a devastating disease that threatens wheat (Triticum aestivum L.) production in many areas worldwide. FHB infection results in Fusarium-damaged kernels (FDK) and deoxynivalenol (DON) that dramatically reduce grain yield and quality. More effective and accurate disease e...

  4. Effect of Trichothecenes Produced by Fusarium graminearum during Fusarium Head Blight Development in Six Cereal Species

    Microsoft Academic Search

    François Langevin; François Eudes; André Comeau

    2004-01-01

    Fusarium head blight (FHB) is a complex cereal disease associated with trichothecene production; these mycotoxins are factors of aggressiveness in wheat. Six species (bread and durum wheat, triticale, rye, barley and oats) were submitted to point inoculations with two isogenic strains of Fusarium graminearum; a wild strain (Tri5 +) produced trichothecenes and the mutated strain (Tri5 -) did not. The

  5. The Genome Sequence of the Fungal Pathogen Fusarium virguliforme That Causes Sudden Death Syndrome in Soybean

    PubMed Central

    Srivastava, Subodh K.; Huang, Xiaoqiu; Brar, Hargeet K.; Fakhoury, Ahmad M.; Bluhm, Burton H.; Bhattacharyya, Madan K.

    2014-01-01

    Fusarium virguliforme causes sudden death syndrome (SDS) of soybean, a disease of serious concern throughout most of the soybean producing regions of the world. Despite the global importance, little is known about the pathogenesis mechanisms of F. virguliforme. Thus, we applied Next-Generation DNA Sequencing to reveal the draft F. virguliforme genome sequence and identified putative pathogenicity genes to facilitate discovering the mechanisms used by the pathogen to cause this disease. Methodology/Principal Findings We have generated the draft genome sequence of F. virguliforme by conducting whole-genome shotgun sequencing on a 454 GS-FLX Titanium sequencer. Initially, single-end reads of a 400-bp shotgun library were assembled using the PCAP program. Paired end sequences from 3 and 20 Kb DNA fragments and approximately 100 Kb inserts of 1,400 BAC clones were used to generate the assembled genome. The assembled genome sequence was 51 Mb. The N50 scaffold number was 11 with an N50 Scaffold length of 1,263 Kb. The AUGUSTUS gene prediction program predicted 14,845 putative genes, which were annotated with Pfam and GO databases. Gene distributions were uniform in all but one of the major scaffolds. Phylogenic analyses revealed that F. virguliforme was closely related to the pea pathogen, Nectria haematococca. Of the 14,845 F. virguliforme genes, 11,043 were conserved among five Fusarium species: F. virguliforme, F. graminearum, F. verticillioides, F. oxysporum and N. haematococca; and 1,332 F. virguliforme-specific genes, which may include pathogenicity genes. Additionally, searches for candidate F. virguliforme pathogenicity genes using gene sequences of the pathogen-host interaction database identified 358 genes. Conclusions The F. virguliforme genome sequence and putative pathogenicity genes presented here will facilitate identification of pathogenicity mechanisms involved in SDS development. Together, these resources will expedite our efforts towards discovering pathogenicity mechanisms in F. virguliforme. This will ultimately lead to improvement of SDS resistance in soybean. PMID:24454689

  6. Fusarium head blight and mycotoxin contamination of wheat, a review

    Microsoft Academic Search

    C. H. A. Snijders

    1990-01-01

    Summary An infection of bread wheat by fusarium head blight contaminates the crop with mycotoxins, particularly deoxynivalenol (DON) and nivalenol (NIV). The toxicity and natural occurrence of these mycotoxins in wheat are reviewed. Based on 8 years data of fusarium head blight epidemics of wheat in the Netherlands, DON contamination of the grain was estimated. Fusarium head blight ratings averaged

  7. Influence of Climatic Factors on Fusarium Species Pathogenic to Cereals

    Microsoft Academic Search

    F. M. Doohan; J. Brennan; B. M. Cooke

    2003-01-01

    Fusarium head blight of small-grain cereals, ear rot of maize, seedling blight and foot rot of cereals are important diseases throughout the world. Fusarium graminearum, F. culmorum, F. poae, F. avenaceum and Microdochium nivale (formerly known as F. nivale) predominantly cause Fusarium diseases of small-grain cereals. Maize is predominantly attacked by F. graminearum, F. moniliforme, F. proliferatum and F. subglutinans.

  8. TRANSFORMATION TO PRODUCE BARLEY RESISTANT TO FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The fungal pathogen Fusarium graminearum destroys barley and wheat crops by causing scab disease (Fusarium head blight, FHB). Spores infect seed spike tissues, leading to production of mycotoxins. There are no known barleys with biochemical resistance to Fusarium, although some have various levels ...

  9. Effect of chloropicrin fumigation on microbial communities evaluated by community-level physiological profile and the resistance against fusarium wilt

    Microsoft Academic Search

    Kazuhito Itoh; Daisuke Goto; Kaoru Sueyasu; Kousuke Suyama; Hiroki Yamamoto

    2002-01-01

    Different microbial communities characterized by the Biolog pattern were developed in the rhizosphere of radish grown on a rockwool hydroponic system treated with chloropicrinfumigated and non-fumigated soil suspensions although no differences were observed in their viable counts. Different microbial communities also were developed in the rhizosphere and non-rhizosphere. After the development of microbial communities in the rhizosphere, bud cells of

  10. EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY, AND FUSARIUM WILT IN

    E-print Network

    Ma, Lena

    1 EFFECTS OF COMPOST AND LIME APPLICATION ON SOIL CHEMICAL PROPERTIES, SOIL MICROBIAL COMMUNITY content and fertility, and can support the growth of soil-borne pathogens. Some growers choose to apply compost as an antagonistic suppression approach to combat soil-borne disease effects on crop yields

  11. Identification and Chacterization of new strains of Enterobacter spp. causing Mulberry (Morus alba) wilt disease in China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new mulberry wilt disease (MWD) was recently identified in Hangzhou, Zhejiang province, China. Typical symptoms of the disease are dark brown discolorations in vascular tissues, leaf wilt, defoliation, and tree decline. Unlike the bacterial wilt disease caused by Ralstonia solanacearum, the leaf w...

  12. Laurel wilt: An unusual and destructive disease of American members of the Lauraceae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Laurel wilt kills American members of the Lauraceae plant family (Laurales, Magnoliid complex). These include significant components of Coastal Plain forest communities in the SE USA, most importantly redbay (Persea borbonia), as well as the commercial crop avocado (P. americana). Laurel wilt is cau...

  13. The influence of wilting on wheat silage G. ASHBELL, H.H.THEUNE D. SKLAN

    E-print Network

    Paris-Sud XI, Université de

    The influence of wilting on wheat silage G. ASHBELL, H.H.THEUNE D. SKLAN Agricultural Research Organization, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel SUMMARY Wheat plants at shooting and flowering maturation stages were cut and wilted to 36 °7o dry matter (DM). The wheat was ensiled for 90 days

  14. Verticillium comparative genomics yields insights into niche adaptation by plant vascular wilt pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual losses. The characteristic vascular wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels. To gain insights into the mechan...

  15. Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vascular wilt fungi Verticillium dahliae and V. albo-atrum infect over 200 plant species, causing billions of dollars in annual crop losses. The characteristic wilt symptoms are a result of colonization and proliferation of the pathogens in the xylem vessels, which undergo fluctuations in osmola...

  16. Genetic variation among Fusarium isolates from onion, and resistance to Fusarium basal rot in related Allium species

    Microsoft Academic Search

    Guillermo A. Galván; Carole F. S. Koning-Boucoiran; Wim J. M. Koopman; Karin Burger-Meijer; Pablo H. González; Cees Waalwijk; Chris Kik; Olga E. Scholten

    2008-01-01

    The aim of this research was to study levels of resistance to Fusarium basal rot in onion cultivars and related Allium species, by using genetically different Fusarium isolates. In order to select genetically different isolates for disease testing, a collection of 61 Fusarium isolates, 43 of them from onion (Allium cepa), was analysed using amplified fragment length polymorphism (AFLP) markers.

  17. Intron Gains and Losses in the Evolution of Fusarium and Cryptococcus Fungi

    PubMed Central

    Croll, Daniel; McDonald, Bruce A.

    2012-01-01

    The presence of spliceosomal introns in eukaryotic genes poses a major puzzle for the study of genome evolution. Intron densities vary enormously among distant lineages. However, the mechanisms driving intron gains are poorly understood and very few intron gains and losses have been documented over short evolutionary time spans. Fungi emerged recently as excellent models to study intron evolution and “reverse splicing” was found to be a major driver of recent intron gains in a clade of ascomycete fungi. We screened a total of 38 genomes from two fungal clades important in medicine and agriculture to identify intron gains and losses both within and between species. We detected 86 and 198 variable intron positions in the Cryptococcus and Fusarium clades, respectively. Some genes underwent extensive changes in their exon–intron structure, with up to six variable intron positions per gene. We identified a very recently gained intron in a group of tomato-infecting strains belonging to the F. oxysporum species complex. In the human pathogen C. gattii, we found recent intron losses in subtypes of the species. The two studied fungal clades provided evidence for extensive changes in their exon–intron structure within and among closely related species. We show that both intronization of previously coding DNA and insertion of exogenous DNA are the major drivers of intron gains. PMID:23054310

  18. Fusarium Infections in Immunocompromised Patients

    PubMed Central

    Nucci, Marcio; Anaissie, Elias

    2007-01-01

    Fusarium species cause a broad spectrum of infections in humans, including superficial, locally invasive, and disseminated infections. The clinical form of fusariosis depends largely on the immune status of the host and the portal of entry, with superficial and localized disease occurring mostly in immunocompetent patients and invasive and disseminated disease affecting immunocompromised patients. Risk factors for severe fusariosis include prolonged neutropenia and T-cell immunodeficiency, especially in hematopoietic stem cell transplant recipients with severe graft-versus-host disease. The most frequent presentation of disseminated fusariosis is a combination of characteristic cutaneous lesions and positive blood cultures, with or without lung or sinus involvement. The prognosis is poor and is determined largely by degree of immunosuppression and extent of infection, with virtually a 100% death rate among persistently neutropenic patients with disseminated disease. These infections may be clinically suspected on the basis of a constellation of clinical and laboratory findings, which should lead to prompt therapy. Treatment options include the lipid formulations of amphotericin B, voriconazole, and posaconazole. Prevention of fusarial infection among high-risk patients should be considered. PMID:17934079

  19. Inhibitory effects of antimicrobial agents against Fusarium species.

    PubMed

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 ?g/ml of tobramycin and 25 ?g/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. PMID:25841054

  20. Occurrence of Fusarium verticillioides and Fusarium musae on banana fruits marketed in Hungary.

    PubMed

    Molnár, Orsolya; Bartók, Tibor; Szécsi, Árpád

    2015-06-01

    Fusarium strains were isolated from rotten banana fruit imported into Hungary from some African and some Neotropical countries. The strains were identified using morphological features, 2-benzoxazolinone tolerance, translation elongation factor (EF-1?) sequences and inter simple sequence repeat (ISSR) analysis. All strains from Africa proved to be F. verticillioides whereas the strains from the Neotropics are Fusarium musae. According to the PCR proof and the fumonisin toxin measurement F. musae strains cannot produce any fumonisins (FB1-4). PMID:26132832

  1. Peroxidase-induced wilting in transgenic tobacco plants

    SciTech Connect

    Lagrimini, L.M.; Bradford, S. (Ohio State Univ., Columbus (United States)); Rothstein, S. (Univ. of Guelph, Ontario (Canada))

    1990-01-01

    Peroxidases are a family of isoenzymes found in all higher plants. However, little is known concerning their role in growth, development or response to stress. Plant peroxidases are heme-containing monomeric glycoproteins that utilize either H{sub 2}O{sub 2} or O{sub 2} to oxidize a wide variety of molecules. To obtain more information on possible in planta functions of peroxidases, the authors have used a cDNA clone for the primary isoenzyme form of peroxidase to synthesize high levels of this enzyme in transgenic plants. They were able to obtain Nicotiana tabacum and N. sylvestris transformed plants with peroxidase activity that is 10-fold higher than in wild-type plants by introducing a chimeric gene composed of the cauliflower mosaic virus 35S promoter and the tobacco anionic peroxidase cDNA. The elevated peroxidase activity was a result of increased levels of two anionic peroxidases in N. tabacum, which apparently differ in post-translational modification. Transformed plants of both species have the unique phenotype of chronic severe wilting through loss of turgor in leaves, which was initiated a the time of flowering. The peroxidase-induced wilting was shown not to be an effect of diminished water uptake through the roots, decreased conductance of water through the xylem, or increased water loss through the leaf surface of stomata. Possible explanations for the loss of turgor, and the significance of these types of experiments in studying isoenzyme families, are discussed.

  2. Molecular Identification and Databases in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA sequence-based methods for identifying pathogenic and mycotoxigenic Fusarium isolates have become the gold standard worldwide. Moreover, fusarial DNA sequence data are increasing rapidly in several web-accessible databases for comparative purposes. Unfortunately, the use of Basic Alignment Sea...

  3. Mycotoxigenic Fusarium species in animal feed

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium species are among the most studied plant pathogenic fungi, with several species causing diseases on corn, wheat, barley, and other food and feed grains. Decreased yield, as well as diminished quality and value of the grain, results in significant worldwide economic losses. Additionally, ...

  4. FUMONISIN MYCOTOXIN BIOSYNTHESIS IN FUSARIUM VERTICILLIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fumonsins are mycotoxins produced by the maize pathogen Fusarium verticillioides. These toxins are of concern because of their association with cancer in experimental rodents and the epidemiological correlation between consumption of fumonisin-contaminated maize and human esophageal cancer. We hav...

  5. HISTOLOGY AND PHYSIOLOGY OF FUSARIUM HEAD BLIGHT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight re-emerged as a devastating disease of wheat and barley in the 1990s in the midwestern U.S. Research efforts to control the disease have been hampered by limited knowledge of how the fungal head blight pathogens infect and damage head tissue and what natural defenses the plant h...

  6. Fusarium avenaceum, a pathogen of stored broccoli

    Microsoft Academic Search

    Julien Mercier; Joseph Makhlouf; Richard A. Martin

    Fusarium avenaceum was identified as a new pathogen of broccoli kept in long-term storage at low temperature and controlled atmosphere. The first sign of the disease was growth of a white fluffy mycelium partly covering the inflorescence. Although disease development was very slow at 5OC, breaking the cold chain did cause outbreaks of infection in apparently healthy broccoli. Broccoli stored

  7. EXPRESSION OF TRI15 IN FUSARIUM SPOROTRICHIOIDES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the fungus Fusarium sporotrichioides, biosynthesis of trichothecene mycotoxins requires at least three genetic loci: a core 12-gene cluster, a smaller two-gene cluster, and a single-gene locus. Here we describe the Tri15 gene, which represents a fourth locus involved in trichothecene biosynthesi...

  8. Morphogenesis in germinating Fusarium graminearum macroconidia

    Microsoft Academic Search

    Steven D. Harris

    2005-01-01

    Fusarium graminearum (teleomorph Gibber- ella zeae) is a significant pathogen of wheat and corn. F. graminearum forms multicellular macroconidia that play an important role in dissemination of the disease. The spatial pattern of morphogenesis in ger- minating macroconidia is described. Germ tubes preferentially emerge from the apical cells in a bi- polar pattern that appears to be common to filamen-

  9. Update: Fusarium Keratitis - United States, 2005 - 2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This report describes the results of a Fusarium keratitis outbreak investigation being conducted by the United States Centers for Disease Control and Prevention. The epidemiological data indicate that the 2005-2006 outbreaks of corneal infections within the United States are linked to the use of on...

  10. Identification of Ina proteins from Fusarium acuminatum

    NASA Astrophysics Data System (ADS)

    Scheel, Jan Frederik; Kunert, Anna Theresa; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2015-04-01

    Freezing of water above -36° C is based on ice nucleation activity (INA) mediated by ice nucleators (IN) which can be of various origins. Beside mineral IN, biological particles are a potentially important source of atmospheric IN. The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is induced by a surface protein on the outer cell membrane, which is fully characterized. In contrast, much less is known about the nature of fungal IN. The fungal genus Fusarium is widely spread throughout the earth. It belongs to the Ascomycota and is one of the most severe fungal pathogens. It can affect a variety of organisms from plants to animals including humans. INA of Fusarium was already described about 30 years ago and INA of Fusarium as well as other fungal genera is assumed to be mediated by proteins or at least to contain a proteinaceous compound. Although many efforts were made the precise INA machinery of Fusarium and other fungal species including the proteins and their corresponding genes remain unidentified. In this study preparations from living fungal samples of F. acuminatum were fractionated by liquid chromatography and IN active fractions were identified by freezing assays. SDS-page and de novo sequencing by mass spectrometry were used to identify the primary structure of the protein. Preliminary results show that the INA protein of F. acuminatum is contained in the early size exclusion chromatography fractions indicating a high molecular size. Moreover we could identify a single protein band from IN active fractions at 130-145 kDa corresponding to sizes of IN proteins from bacterial species. To our knowledge this is for the first time an isolation of a single protein from in vivo samples, which can be assigned as IN active from Fusarium.

  11. Distribution of disease symptoms and mycotoxins in maize ears infected by Fusarium culmorum and Fusarium graminearum.

    PubMed

    Oldenburg, Elisabeth; Ellner, Frank

    2015-08-01

    Red ear rot an important disease of maize cultivated in Europe is caused by toxigenic Fusarium species like Fusarium graminearum and Fusarium culmorum. To get detailed information on the time course of the infection process leading to the accumulation of Fusarium mycotoxins in maize ears, a field study was conducted over 2 years with two maize varieties, which were inoculated with F. culmorum or F. graminearum isolates at the stage of female flowering. Every fortnight after inoculation, infection and contamination progress in the ears was followed by visually evaluating disease signs and analysing Fusarium toxin concentrations in the infected ear tissues. In principle, infection and mycotoxin distribution were similar in respect of pathogens, varieties, and years. External infection symptoms showing some small pale or brown-marbled kernels with dark brown pedicels were mainly seen at the ear tip, whereas internal infection symptoms on the rachis were much more pronounced and spread in the upper half showing greyish brownish or pink discoloration of the pith. Well correlated with disease symptoms, a top-down gradient from high to low toxin levels within the ear with considerably higher concentrations in the rachis compared with the kernels was observed. It is suggested that both Fusarium pathogens primarily infect the rachis from the tip toward the bottom, whereas the kernels are subsequently infected via the rachillae connected to the rachis. A special focus on the pronounced disease symptoms visible in the rachis may be an approach to improve the evaluation of maize-genotype susceptibility against red ear rot pathogens. It has to be underlined that the accumulation of Fusarium mycotoxins in the rachis greatly accelerated 6 weeks after inoculation; therefore, highest contamination risk is indicated for feedstuffs containing large amounts of rachis (e.g., corn cob mix), especially when cut late in growing season. PMID:25904523

  12. Structural and functional characterization of the TRI101 trichothecene 3-O-acetyltransferase from Fusarium sporotrichioides and Fusarium graminearum: kinetic insights to combating fusarium head blight

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium head blight (FHB) is a plant disease with serious economic and health impacts. It is caused by fungal species belonging to the genus Fusarium and the mycotoxins they produce. Although it has proved difficult to combat this disease, one strategy that has been examined is the introduction o...

  13. Watermelon wilt studies: seed-borne fusaria, fungicide trials, and host range of the pathogen

    E-print Network

    McLaughlin, Randy Joe

    1981-01-01

    etode ~Nloido yne . arenaria was present in the soil. Miltino and root necrosis was also was also observed to significantly increase in Charleston Gray. In- creased occurrence of wilt was observed to occur at intermediate pop- ulations of the fungus...

  14. A model for multiseasonal spread of verticillium wilt of lettuce.

    PubMed

    Wu, B M; Subbarao, K V

    2014-09-01

    Verticillium wilt, caused by Verticillium dahliae, is a destructive disease in lettuce, and the pathogen is seedborne. Even though maximum seed infestation rates of <5% have been detected in commercial lettuce seed lots, it is necessary to establish acceptable contamination thresholds to prevent introduction and establishment of the pathogen in lettuce production fields. However, introduction of inoculum into lettuce fields for experimental purposes to determine its long term effects is undesirable. Therefore, we constructed a simulation model to study the spread of Verticillium wilt following pathogen introduction from seed. The model consists of four components: the first for simulating infection of host plants, the second for simulating reproduction of microsclerotia on diseased plants, the third for simulating the survival of microsclerotia, and the fourth for simulating the dispersal of microsclerotia. The simulation results demonstrated that the inoculum density-disease incidence curve parameters and the dispersal gradients affect disease spread in the field. Although a steep dispersal gradient facilitated the establishment of the disease in a new field with a low inoculum density, a long-tail gradient allowed microsclerotia to be dispersed over greater distances, promoting the disease spread in fields with high inoculum density. The simulation results also revealed the importance of avoiding successive lettuce crops in the same field, reducing survival rate of microsclerotia between crops, and the need for breeding resistance against V. dahliae in lettuce cultivars to lower the number of microsclerotia formed on each diseased plant. The simulation results, however, suggested that, even with a low seed infestation rate, the pathogen would eventually become established if susceptible lettuce cultivars were grown consecutively in the same field for many years. A threshold for seed infestation can be established only when two of the three drivers of the disease-(i) low microsclerotia production per diseased plant, (ii) long-tail dispersal gradient, and (iii) low microsclerotia survival between lettuce crops-are present. PMID:24624952

  15. Watermelon wilt studies: seed-borne fusaria, fungicide trials, and host range of the pathogen 

    E-print Network

    McLaughlin, Randy Joe

    1981-01-01

    (44) also found that manipulation of nitrogen sources was ineffective on "old" land. Several approaches for the chemical control of watermelon wilt have been studied; seed treatment (35), soil fumigation (43, 58, 85), and soil fungicide drenches... (58). As a rule, chemical treatment has been found most effective on infrequently-cropped land. A more detailed review of chemical controls is included in Chapter I I I. Control of watermelon wilt through host resistance has been studied by many...

  16. Challenges in Controlling Verticillium Wilt by the Use of Nonchemical Methods

    Microsoft Academic Search

    George Lazarovits; Krishnamurthy Subbarao

    \\u000a Verticillium wilt is one of the most serious soilborne diseases worldwide. Three non-fumigant control methods that appear\\u000a to have great potential for reducing losses due to wilt and other soilborne pathogens are detailed here. High nitrogen organic\\u000a amendments and products containing volatile fatty acids (VFAs) can significantly reduce disease severity and inoculum density\\u000a but only under specific soil conditions. Identification

  17. The Brassicaceae-Specific EWR1 Gene Provides Resistance to Vascular Wilt Pathogens

    PubMed Central

    Yadeta, Koste A.; Valkenburg, Dirk-Jan; Hanemian, Mathieu; Marco, Yves; Thomma, Bart P. H. J.

    2014-01-01

    Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well. PMID:24505441

  18. The Brassicaceae-specific EWR1 gene provides resistance to vascular wilt pathogens.

    PubMed

    Yadeta, Koste A; Valkenburg, Dirk-Jan; Hanemian, Mathieu; Marco, Yves; Thomma, Bart P H J

    2014-01-01

    Soil-borne vascular wilt diseases caused by Verticillium spp. are among the most destructive diseases worldwide in a wide range of plant species. The most effective means of controlling Verticillium wilt diseases is the use of genetic resistance. We have previously reported the identification of four activation-tagged Arabidopsis mutants which showed enhanced resistance to Verticillium wilt. Among these, one mutant also showed enhanced resistance to Ralstonia solanacearum, a bacterial vascular wilt pathogen. Cloning of the activation tag revealed an insertion upstream of gene At3g13437, which we designated as EWR1 (for Enhancer of vascular Wilt Resistance 1) that encodes a putatively secreted protein of unknown function. The search for homologs of Arabidopsis EWR1 (AtEWR1) in public databases only identified homologs within the Brassicaceae family. We subsequently cloned the EWR1 homolog from Brassica oleracea (BoEWR1) and show that over-expression in Arabidopsis results in V. dahliae resistance. Moreover, over-expression of AtEWR1 and BoEWR1 in N. benthamiana, a member of the Solanaceae family, results in V. dahliae resistance, suggesting that EWR1 homologs can be used to engineer Verticillium wilt resistance in non-Brassicaceae crops as well. PMID:24505441

  19. Biological and Chemical Complexity of Fusarium proliferatum

    Microsoft Academic Search

    Robert H. Proctor; Anne E. Desjardins; Antonio Moretti

    \\u000a In the past, the fungus Fusarium proliferatum has been confused with morphologically similar species. Today, F. proliferatum is well defined by morphology, its teleomorphic state (Gibberella intermedia), and DNA-based analyses. F. proliferatum has a worldwide distribution and an unusually broad host range. It is a frequent component of ear rot diseases of maize and\\u000a wheat, and also causes diseases of

  20. The isolation and evaluation of endophytic bacteria from live oaks as potential biological control agents for oak wilt in Texas 

    E-print Network

    Brooks, David Stewart

    1989-01-01

    were isolated from live oaks (Quercus fusiformis) at three oak wilt centers in central Texas over a one year period. The bacterial isolates were evaluated as potential biological control agents of oak wilt. A total of 889 bacterial isolates were... that bacterial isolates tested were better able to distribute both above and below the point of inoculation than in the fall study. Challenge experiments were conducted to evaluate the ability of selected bacterial isolates to inhibit oak wilt development...

  1. Activities of E1210 and comparator agents tested by CLSI and EUCAST broth microdilution methods against Fusarium and Scedosporium species identified using molecular methods.

    PubMed

    Castanheira, Mariana; Duncanson, Frederick P; Diekema, Daniel J; Guarro, Josep; Jones, Ronald N; Pfaller, Michael A

    2012-01-01

    Fusarium (n = 67) and Scedosporium (n = 63) clinical isolates were tested by two reference broth microdilution (BMD) methods against a novel broad-spectrum (active against both yeasts and molds) antifungal, E1210, and comparator agents. E1210 inhibits the inositol acylation step in glycophosphatidylinositol (GPI) biosynthesis, resulting in defects in fungal cell wall biosynthesis. Five species complex organisms/species of Fusarium (4 isolates unspeciated) and 28 Scedosporium apiospermum, 7 Scedosporium aurantiacum, and 28 Scedosporium prolificans species were identified by molecular techniques. Comparator antifungal agents included anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B. E1210 was highly active against all of the tested isolates, with minimum effective concentration (MEC)/MIC(90) values (?g/ml) for E1210, anidulafungin, caspofungin, itraconazole, posaconazole, voriconazole, and amphotericin B, respectively, for Fusarium of 0.12, >16, >16, >8, >8, 8, and 4 ?g/ml. E1210 was very potent against the Scedosporium spp. tested. The E1210 MEC(90) was 0.12 ?g/ml for S. apiospermum, but 1 to >8 ?g/ml for other tested agents. Against S. aurantiacum, the MEC(50) for E1210 was 0.06 ?g/ml versus 0.5 to >8 ?g/ml for the comparators. Against S. prolificans, the MEC(90) for E1210 was only 0.12 ?g/ml, compared to >4 ?g/ml for amphotericin B and >8 ?g/ml for itraconazole, posaconazole, and voriconazole. Both CLSI and EUCAST methods were highly concordant for E1210 and all comparator agents. The essential agreement (EA; ±2 doubling dilutions) was >93% for all comparisons, with the exception of posaconazole and F. oxysporum species complex (SC) (60%), posaconazole and S. aurantiacum (85.7%), and voriconazole and S. aurantiacum (85.7%). In conclusion, E1210 exhibited very potent and broad-spectrum antifungal activity against azole- and amphotericin B-resistant strains of Fusarium spp. and Scedosporium spp. Furthermore, in vitro susceptibility testing of E1210 against isolates of Fusarium and Scedosporium may be accomplished using either of the CLSI or EUCAST BMD methods, each producing very similar results. PMID:22083469

  2. Detection of laurel wilt disease in avocado using low altitude aerial imaging.

    PubMed

    de Castro, Ana I; Ehsani, Reza; Ploetz, Randy C; Crane, Jonathan H; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red-Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production. PMID:25927209

  3. Detection of Laurel Wilt Disease in Avocado Using Low Altitude Aerial Imaging

    PubMed Central

    de Castro, Ana I.; Ehsani, Reza; Ploetz, Randy C.; Crane, Jonathan H.; Buchanon, Sherrie

    2015-01-01

    Laurel wilt is a lethal disease of plants in the Lauraceae plant family, including avocado (Persea americana). This devastating disease has spread rapidly along the southeastern seaboard of the United States and has begun to affect commercial avocado production in Florida. The main objective of this study was to evaluate the potential to discriminate laurel wilt-affected avocado trees using aerial images taken with a modified camera during helicopter surveys at low-altitude in the commercial avocado production area. The ability to distinguish laurel wilt-affected trees from other factors that produce similar external symptoms was also studied. RmodGB digital values of healthy trees and laurel wilt-affected trees, as well as fruit stress and vines covering trees were used to calculate several vegetation indices (VIs), band ratios, and VI combinations. These indices were subjected to analysis of variance (ANOVA) and an M-statistic was performed in order to quantify the separability of those classes. Significant differences in spectral values among laurel wilt affected and healthy trees were observed in all vegetation indices calculated, although the best results were achieved with Excess Red (ExR), (Red–Green) and Combination 1 (COMB1) in all locations. B/G showed a very good potential for separate the other factors with symptoms similar to laurel wilt-affected trees, such as fruit stress and vines covering trees, from laurel wilt-affected trees. These consistent results prove the usefulness of using a modified camera (RmodGB) to discriminate laurel wilt-affected avocado trees from healthy trees, as well as from other factors that cause the same symptoms and suggest performing the classification in further research. According to our results, ExR and B/G should be utilized to develop an algorithm or decision rules to classify aerial images, since they showed the highest capacity to discriminate laurel wilt-affected trees. This methodology may allow the rapid detection of laurel wilt-affected trees using low altitude aerial images and be a valuable tool in mitigating this important threat to Florida avocado production. PMID:25927209

  4. Taxonomy and Phylogeny of the Fusarium dimerum Species Group

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The morphospecies Fusarium dimerum, known only from its anamorph, comprises at least 12 phylogenetically distinct species. Analyses of the large subunit ribosomal DNA (LSU rDNA) show they are taxa of the Nectriaceae (Hypocreales) and form a phylogenetically distinct clade within Fusarium. Accordin...

  5. Disseminated Fusarium infection in autologous stem cell transplant recipient.

    PubMed

    Avelino-Silva, Vivian Iida; Ramos, Jessica Fernandes; Leal, Fabio Eudes; Testagrossa, Leonardo; Novis, Yana Sarkis

    2015-01-01

    Disseminated infection by Fusarium is a rare, frequently lethal condition in severely immunocompromised patients, including bone marrow transplant recipients. However, autologous bone marrow transplant recipients are not expected to be at high risk to develop fusariosis. We report a rare case of lethal disseminated Fusarium infection in an autologous bone marrow transplant recipient during pre-engraftment phase. PMID:25307678

  6. BARLEY PROMOTERS FOR ORGANS SUSCEPTIBLE TO FUSARIUM GRAMINEARUM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium Head Blight (FHB, or scab) is a fungal disease that causes significant seed yield and quality losses in barley and wheat worldwide. The fungus lowers yield and deposits toxic levels of mycotoxins. The pericarp and lemma/palea (hull) are readily infected by Fusarium graminearum. The restrict...

  7. GENOMICS OF THE MYCOTOXIN PRODUCING FUNGUS, FUSARIUM GRAMINEARUM (GIBBERELLA ZEAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum (sexual state: Gibberella zeae) causes head blight (also known as scab) of wheat, barley, and oats, as well as foot and crown rot of corn. A genomics approach to the study of F. graminearum is critical because for head blight, like many Fusarium diseases, effective fungicides an...

  8. NIRS method for precise identification of Fusarium damaged wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Development of scab resistant wheat varieties may be enhanced by non-destructive evaluation of kernels for Fusarium damaged kernels (FDKs) and deoxynivalenol (DON) levels. Fusarium infection generally affects kernel appearance, but insect damage and other fungi can cause similar symptoms. Also, some...

  9. Systemic stem infection by Fusarium species in barley and wheat

    Microsoft Academic Search

    K. Xi; T. K. Turkington; M. H. Chen

    2008-01-01

    Fusarium head blight, caused by Fusarium species, is an important disease of cereals in western Canada. There are conflicting results in the literature regarding the infection pathway leading to disease development. The present study was undertaken to evaluate the potential for systemic infection in barley (Hordeum vulgare) by artificially inoculating F. graminearum and F. pseudograminearum into the growth medium in

  10. INHERITANCE OF RESISTANCE TO FUSARIUM TUBER ROT IN POTATOES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    FUSARIUM TUBER ROT OF POTATO IS ONE OF THE MOST ECONOMICALLY IMPORTATNT DISEASES OF STORED POTATOES. THE OBJECTIVE OF THIS STUDY WAS TO DETERMINE THE INHERITANCE OF RESISTANCE TO FUSARIUM TUBER ROT. A HIGHLY RESISTANT (B0172-22) AND A HIGHLY SUSCEPTIBLE (B0178-34) POTATO CLONE WERE CROSSED AS FEMA...

  11. Plant Disease Lesson: Fusarium head blight (FHB) or scab

    NSDL National Science Digital Library

    David G. Schmale III (Cornell University; )

    2003-06-12

    This plant disease lesson on Fusarium head blight (FHB) or scab (caused by the fungus Fusarium graminearum (anamorph) Gibberella zeae (teleomorph)) includes information on symptoms and signs, pathogen biology, disease cycle and epidemiology, disease management, and the significance of the disease. Selected references are listed and a glossary is also available for use with this resource.

  12. High speed sorting of Fusarium-damaged wheat kernels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent studies have found that resistance to Fusarium fungal infection can be inherited in wheat from one generation to another. However, there is not yet available a cost effective method to separate Fusarium-damaged wheat kernels from undamaged kernels so that wheat breeders can take advantage of...

  13. INHERITANCE OF RESISTANCE TO FUSARIUM TUBER ROT IN TETRAPLOID POTATOES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium tuber rot of potato (Solanum tuberosum L.) is one of the most economically important diseases of stored potatoes. Dry rot is caused by several species of Fusaria, particularly Fusarium sambucinum in North America. The objective of this study was to determine the inheritance of resistance...

  14. Diversity of the Fusarium graminearum species complex on French cereals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fusarium graminearum is an important pathogen causing Fusarium head blight (FHB) on wheat and barley and Gibberella ear rot (GER) on maize, and harvested grains often are contaminated with trichothecenes such as deoxynivalenol (DON) and nivalenol (NIV) that are a major health and food safety concern...

  15. Variation in the Trichothecene Mycotoxin Biosynthetic Gene Cluster in Fusarium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Trichothecene mycotoxins are produced by some plant pathogenic species of the fungus Fusarium and can contribute to its virulence on some plants. In Fusarium graminearum and F. sporotrichioides trichothecene biosynthetic enzymes are encoded at three loci: the single-gene TRI101 locus; the two-gene ...

  16. ORIGINAL PAPER Isolates of Fusarium graminearum collected 40320 meters

    E-print Network

    Ross, Shane

    , and summer months caused Fusarium head blight on a susceptible cultivar of spring wheat. Trichothecene Fusarium head blight in wheat and produce trichothecene mycotoxins D. G. Schmale III · S. D. Ross · T. L from infected wheat plants in the eastern United States. Our data are considered in the context

  17. Population of Fusarium graminearum Schwabe associated with head and seedling blight in Slovakia

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth of Fusarium species associated with Fusarium Head Blight (FHB) varies depending on agronomic characters and edaphic conditions. We have identified 15 Fusarium species during the 10 years of our investigations in the Slovak Republic. The most commonly identified Fusarium species involved...

  18. A New Age Approach to the Management of Tomato Spotted Wilt? Effects of Plant Essential Oils and Particle Films on Tomato Spotted Wilt in Tomatoes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because the thrips-vectored Tomato spotted wilt virus is a limiting factor in tomato production in the southern USA, we are investigating novel control methods that would be effective and environmentally non-disruptive. In laboratory choice tests, we found that three plant essential oils, geraniol, ...

  19. The FvMK1 mitogen-activated protein kinase gene regulates conidiation, pathogenesis, and fumonisin production in Fusarium verticillioides.

    PubMed

    Zhang, Yueping; Choi, Yoon-E; Zou, Xuexiao; Xu, Jin-Rong

    2011-02-01

    Fusarium verticillioides is one of the most important fungal pathogens to cause destructive diseases of maize worldwide. Fumonisins produced by the fungus are harmful to human and animal health. To date, our understanding of the molecular mechanisms associated with pathogenicity and fumonisin biosynthesis in F. verticillioides is limited. Because MAP kinase pathways have been implicated in regulating diverse processes important for plant infection in phytopathogenic fungi, in this study we identified and functionally characterized the FvMK1 gene in F. verticillioides. FvMK1 is orthologous to FMK1 in F. oxysporum and GPMK1 in F. graminearum. The Fvmk1 deletion mutant was reduced in vegetative growth and production of microconidia. However, it was normal in sexual reproduction and increased in the production of macroconidia. In infection assays with developing corn kernels, the Fvmk1 mutant was non-pathogenic and failed to colonize through wounding sites. It also failed to cause stalk rot symptoms beyond the inoculation sites on corn stalks, indicating that FvMK1 is essential for plant infection. Furthermore, the Fvmk1 mutant was significantly reduced in fumonisin production and expression levels of FUM1 and FUM8, two genes involved in fumonisin biosynthesis. The defects of the Fvmk1 mutant were fully complemented by re-introducing the wild type FvMK1 allele. These results demonstrate that FvMK1 plays critical roles in the regulation of vegetative growth, asexual reproduction, fumonisin biosynthesis, and pathogenicity. PMID:20887797

  20. Quantitative trait loci (QTL) for Fusarium ELISA compared to QTL for Fusarium head blight resistance and deoxynivalenol content in barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Fusarium head blight (FHB) and the deoxynivalenol (DON) mycotoxin produced by the causal agent Fusarium graminearum have reduced barley yield and quality throughout the world. This study was conducted to locate quantitative trait loci (QTL) for FHB, DON, heading date, height, and spik...

  1. Fusarium graminearum -induced changes in gene expression between Fusarium head blight-resistant and susceptible wheat cultivars

    Microsoft Academic Search

    Amy Bernardo; Guihua Bai; Peiguo Guo; Kai Xiao; Arron C. Guenzi; Patricia Ayoubi

    2007-01-01

    Fusarium head blight (FHB), primarily caused by Fusarium graminearum Schw., is a destructive disease of wheat (Triticum aestivum L.). Although several genes related to FHB resistance have been reported, global analysis of gene expression in response to FHB infection remains to be explored. The expression patterns of transcriptomes from wheat spikes of FHB-resistant cultivar Ning 7840 and susceptible cultivar Clark

  2. Phylogenetic and Recombination Analysis of Tomato Spotted Wilt Virus

    PubMed Central

    Yu, Jisuk; Kim, Mi-Kyeong; Choi, Hong-Soo; Kim, Kook-Hyung

    2013-01-01

    Tomato spotted wilt virus (TSWV) severely damages and reduces the yield of many economically important plants worldwide. In this study, we determined the whole-genome sequences of 10 TSWV isolates recently identified from various regions and hosts in Korea. Phylogenetic analysis of these 10 isolates as well as the three previously sequenced isolates indicated that the 13 Korean TSWV isolates could be divided into two groups reflecting either two different origins or divergences of Korean TSWV isolates. In addition, the complete nucleotide sequences for the 13 Korean TSWV isolates along with previously sequenced TSWV RNA segments from Korea and other countries were subjected to phylogenetic and recombination analysis. The phylogenetic analysis indicated that both the RNA L and RNA M segments of most Korean isolates might have originated in Western Europe and North America but that the RNA S segments for all Korean isolates might have originated in China and Japan. Recombination analysis identified a total of 12 recombination events among all isolates and segments and five recombination events among the 13 Korea isolates; among the five recombinants from Korea, three contained the whole RNA L segment, suggesting reassortment rather than recombination. Our analyses provide evidence that both recombination and reassortment have contributed to the molecular diversity of TSWV. PMID:23696821

  3. Pathogenesis in Pine Wilt Caused by Pinewood Nematode, Bursaphelenchus xylophilus

    PubMed Central

    Myers, Ronald F.

    1988-01-01

    The progression of events in the development of pine wilt disease following the invasion by Bursaphelenchus xylophilus is reviewed from early migration through pine tissues until symptom development on foliage. Disease resistance in pines, especially the hypersensitive reaction that is successful in controlling many potential pests and pathogens, is explored. Pathologies resulting from the activities of pinewood nematode include cortical trails and cavities; formation of cambial gaps and traumatic resin cysts; browning and death of cortex, phloem, cambium, and ray tissues; granulation and shrinkage of cell cytoplasm in rays; and destruction of resin canal epithelial and ray parenchyma cells. Death of parenchyma, production of toxins, and leakage of oleoresins and other material into tracheids are typical of the hypersensitive reaction occurring in pines following migration of small numbers of pinewood nematodes. The hypothesis presented is that a spreading hypersensitive reaction results in some of the observed pathologies and symptoms and eventually causes pine death. The growth-differentiation balance hypothesis is used to help explain predisposition, oleoresin production and toxicity, susceptibility and resistance, and the effects of variation in climate on host pines as related to pinewilt disease. PMID:19290207

  4. The xylem as battleground for plant hosts and vascular wilt pathogens

    PubMed Central

    Yadeta, Koste A.; J. Thomma, Bart P. H.

    2013-01-01

    Vascular wilts are among the most destructive plant diseases that occur in annual crops as well as in woody perennials. These diseases are generally caused by soil-borne bacteria, fungi, and oomycetes that infect through the roots and enter the water-conducting xylem vessels where they proliferate and obstruct the transportation of water and minerals. As a consequence, leaves wilt and die, which may lead to impairment of the whole plant and eventually to death of the plant. Cultural, chemical, and biological measures to control this group of plant pathogens are generally ineffective, and the most effective control strategy is the use of genetic resistance. Owing to the fact that vascular wilt pathogens live deep in the interior of their host plants, studies into the biology of vascular pathogens are complicated. However, to design novel strategies to combat vascular wilt diseases, understanding the (molecular) biology of vascular pathogens and the molecular mechanisms underlying plant defense against these pathogens is crucial. In this review, we discuss the current knowledge on interactions of vascular wilt pathogens with their host plants, with emphasis on host defense responses against this group of pathogens. PMID:23630534

  5. Heterokaryosis in Fusarium tricinctum and F. sporotrichioides.

    PubMed

    Cullen, D; Smalley, E B; Dimond, R L

    1983-10-01

    Heterokaryons were formed in intra- and interspecific crosses between Fusarium sporotrichioides and F. tricinctum auxotrophs. Segregant homokaryons were evaluated for trichothecene toxin production in culture. Results were consistent with nuclear control of toxin synthesis. The sexual compatibility of auxotrophs and 30 additional F. tricinctum sensu Snyder & Hansen strains was tested. Perithecial production was restricted to crosses between Florida isolates pathogenic to English ivy (Hedera helix). The linkage of several auxotrophic markers was determined by analysis of progeny of certain crosses. No T-2 toxin was produced by sexually compatible F. tricinctum isolates. PMID:6581272

  6. A RAPD-derived STS marker is linked to a bacterial wilt ( Burkholderia caryophylli ) resistance gene in carnation

    Microsoft Academic Search

    Takashi Onozaki; Natsu Tanikawa; Mitsuyasu Taneya; Kiyofumi Kudo; Takuya Funayama; Hiroshi Ikeda; Michio Shibata

    2004-01-01

    Bacterial wilt caused by Burkholderia caryophylli is one of the most important and damaging diseases of carnations (Dianthus caryophyllus) in Japan. We aimed to identify random amplified polymorphic DNA (RAPD) markers associated with the genes controlling bacterial wilt resistance in a resistance-segregating population of 134 progeny plants derived from a cross between ‘Carnation Nou No. 1’ (a carnation breeding line

  7. Adaptive Potential of Maritime Pine (Pinus pinaster) Populations to the Emerging Pitch Canker Pathogen, Fusarium circinatum

    PubMed Central

    Elvira-Recuenco, Margarita; Iturritxa, Eugenia; Majada, Juan; Alia, Ricardo; Raposo, Rosa

    2014-01-01

    There is a concern on how emerging pests and diseases will affect the distribution range and adaptability of their host species, especially due to different conditions derived from climate change and growing globalization. Fusarium circinatum, which causes pitch canker disease in Pinus species, is an exotic pathogen of recent introduction in Spain that threatens its maritime pine (P. pinaster) stands. To predict the impact this disease will have on the species, we examine host resistance traits and their genetic architecture. Resistance phenotyping was done in a clonal provenance/progeny trial, using three-year-old cuttings artificially inoculated with the pathogen and maintained under controlled environmental conditions. A total number of 670 ramets were assessed, distributed in 10 populations, with a total of 47 families, 2 to 5 half-sibs per family, and 3–7 ramets per clone. High genetic variation was found at the three hierarchical levels studied: population, family and clone, being both additive and non-additive effects important. Narrow-sense and broad-sense heritability estimates were relatively high, with respective values of 0.43–0.58 and 0.51–0.8, depending on the resistance traits measured (lesion length, lesion length rate, time to wilting, and survival). These values suggest the species' high capacity of evolutionary response to the F. circinatum pathogen. A population originated in Northern Spain was the most resistant, while another from Morocco was the most susceptible. The total number of plants that did not show lesion development or presented a small lesion (length<30 mm) was 224 out of 670, indicating a high proportion of resistant trees in the offspring within the analyzed populations. We found large differences among populations and considerable genetic variation within populations, which should allow, through natural or artificial selection, the successful adaptation of maritime pine to pitch canker disease. PMID:25500822

  8. Fusarium pathogenesis investigated using Galleria mellonella as a heterologous host

    PubMed Central

    Coleman, Jeffrey J.; Muhammed, Maged; Kasperkovitz, Pia V.; Vyas, Jatin M.; Mylonakis, Eleftherios

    2011-01-01

    Members of the fungal genus Fusarium are capable of manifesting in a multitude of clinical infections, most commonly in immunocompromised patients. In order to better understand the interaction between the fungus and host, we have developed the larvae of the greater wax moth, Galleria mellonella, as a heterologous host for fusaria. When conidia are injected into the hemocoel of this Lepidopteran system, both clinical and environmental isolates of the fungus are able to kill the larvae at 37°C, although killing occurs more rapidly when incubated at 30°C. This killing was dependent on several other factors besides temperature, including the Fusarium strain, the number of conidia injected, and the conidia morphology, where macroconidia are more virulent than their microconidia counterpart. There was a correlation in the killing rate of Fusarium spp. when evaluated in G. mellonella and a murine model. In vivo studies indicated G. mellonella hemocytes were capable of initially phagocytosing both conidial morphologies. The G. mellonella system was also used to evaluate antifungal agents, and amphotericin B was able to confer a significant increase in survival to Fusarium infected-larvae. The G. mellonella-Fusarium pathogenicity system revealed that virulence of Fusarium spp. is similar, regardless of the origin of the isolate, and that mammalian endothermy is a major deterrent for Fusarium infection and therefore provides a suitable alternative to mammalian models to investigate the interaction between the host and this increasingly important fungal pathogen. PMID:22115447

  9. Spatial Pattern of Verticillium dahliae Microsclerotia and Cotton Plants with Wilt Symptoms in Commercial Plantations

    PubMed Central

    Yang, Jiarong; Hu, Xiaoping; Xu, Xiangming

    2015-01-01

    Spatial patterns of pathogen inoculum in field soils and the resulting patterns of disease may reflect the underlying mechanisms of pathogen dispersal. This knowledge can be used to design more efficient sampling schemes for assessing diseases. Spatial patterns of Verticillium dahliae microsclerotia were characterized in commercial cotton fields through quadrat and point sampling in 1994 and 2013, respectively. Furthermore, cotton plants with wilt symptoms, caused by V. dahliae, were assessed in six commercial cotton fields in 2013. Soil samples were assayed for the density of microsclerotia (expressed as CFU g-1 of soil) using a wet-sieving plating method and a real-time quantitative PCR method for the 1994 and 2013 study, respectively. The estimated inoculum threshold for causing wilt development on individual plants varied with the three fields: ca. 1.6 CFU g-1 of soil for one field, and 7.2 CFU g-1 of soil for the other two. Both quadrat and point sampling spatial analyses showed that aggregation of V. dahliae inoculum in soils was usually not detected beyond 1.0 m. Similarly, the spatial patterns of wilted cotton plants indicated that spatial aggregation of diseased plants were only observed below the scale of 1.0 m in six commercial cotton plantations. Therefore, spatial aggregation of both V. dahliae inoculum and cotton plants with wilt symptoms is not likely to be detected above the scale of 1.0 m for most commercial cotton plantations. When designing schemes for assessing wilt inoculum and wilt development, this scale needs to be taken into consideration. PMID:26167868

  10. Characterization of the Tri10 gene from Fusarium sporotrichioides 

    E-print Network

    Tag, Andrew George

    2004-09-30

    grain. This work details the characterization of a novel regulatory gene from Fusarium sporotrichioides, Tri10, which is located in the trichothecene gene cluster. Northern analysis of Tri10 deletion strains, Tri10 overexpressing strains, and a Tri6...

  11. Characterization of Fusarium verticillioides genes necessary for benzoxazolinone biotransformation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize produces the benzoxazinones DIMBOA and DIBOA, which naturally transform into the more stable benzoxazolinones MBOA and BOA, respectively. These weed-suppressive allelopathic compounds are also implicated in resistance to microbial diseases and insect feeding. Fusarium verticillioides, the mo...

  12. Fusarium verticillioides genes necessary for biotransformation of maize allelopathic compounds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn produces the cyclic hydroxamic acids DIMBOA and DIBOA, which naturally transform into the more stable benzoxazolinones MBOA and BOA, respectively. These compounds are implicated in allelopathic weed suppression, insect feeding deterrence, and microbial disease resistance. Fusarium verticillio...

  13. Exploring Hormone Crosstalk in Fusarium verticillioidies Infection of Maize

    E-print Network

    Drab, Dillon

    2013-02-04

    . Previously, acs2 acs6, an ethylene biosynthetic mutant of maize has been found to be more resistant to Fusarium infection, colonization, and mycotoxin production. However, the molecular mechanism behind this phenomenon is poorly understood. Hormones...

  14. Genetic characteristics of Fusarium verticillioides from corn in the Philippines

    Microsoft Academic Search

    Christian Joseph R. Cumagun; Josephine S. Ramos; Arvin O. Dimaano; Françoise Munaut; François Van Hove

    2009-01-01

    Fusarium verticillioides (teleomorph: Gibberella moniliformis = G. fujikuroi mating population A) is one of the most important fungal pathogens of corn worldwide. The pathogen produces fumonisins, mycotoxins\\u000a that are potentially harmful to humans and animals. Thirty-five Fusarium isolates from Laguna and Isabela, Philippines were identified morphologically and molecularly as F. verticillioides and characterized by PCR for mating type (MAT). Twenty-six isolates were

  15. Production of neosolaniol by Fusarium tumidum.

    PubMed

    Altomare, C; Ritieni, A; Perrone, G; Fogliano, V; Mannina, L; Logrieco, A

    1995-06-01

    Extracts from autoclaved maize culture of Fusarium tumidum strain R-5823 were toxic towards Artemia salina. Bioassay-guided fractionation of the organic extract led to the isolation of the toxic compound that was identified as the trichothecene toxin neosolaniol (NEOS) by 1H, 13C nuclear magnetic resonance spectroscopy and low-resolution electronic impact mass spectrometry. The amount of NEOS produced by the strain R-5823 was 300 mg/kg maize culture. NEOS was also detected by HPLC in cultures of four out of seven additional strains of F. tumidum and Gibberella tumida with different origin, in amounts ranging from 1 to 311 mg/kg. This is the first report on the production of a trichothecene toxin by F. tumidum. PMID:7566071

  16. Bacterial Wilt and Drought Stresses in Banana Production and Their Impact on Economic Welfare in Uganda

    Microsoft Academic Search

    S. Abele; M. Pillay

    2007-01-01

    This study investigates the economic impact of banana Xanthomonas wilt (bxw) and drought on banana production in Uganda. The objective of this research is to determine the benefits of targeted research to avoid economic losses. In the worst-case scenarios, spread of bxw at a rate of 8% per annum, or drought at 50% yield losses in a five-year interval, results

  17. Verticillium dahliae Causes Wilt on Sugar Beet Following Potato in Eastern North Dakota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wilt is a serious disease on sugar beet that decreases content and purity of sugar, but does not significantly decrease root yield. The disease is typically reported as caused by the microorganism Verticillium albo-atrum. The disease has not been previously reported on sugar beet in the Red River ...

  18. Plant Disease / March 2004 259259 Field Evaluation of Tomato spotted wilt virus Resistance

    E-print Network

    Pappu, Hanu R.

    plants (17,26). Since then, the generation of virus resistance through transgenic expression of the viral AND METHODS Plant materials. Transgenic event 62-2a was selected from several transgenic plants that had beenPlant Disease / March 2004 259259 Field Evaluation of Tomato spotted wilt virus Resistance

  19. PLANT ESSENTIAL OILS AND PARTICLE FILMS FOR THE MANAGEMENT OF TOMATO SPOTTED WILT ON TOMATOES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined the effects of three different plant essential oils and kaolin based particle films on the incidence of tomato spotted wilt and flower thrips in field grown tomatoes. The three plant essential oils tested were geraniol, lemon grass oil, and tea tree oil, and were applied at 250 ppm twic...

  20. Incidence of weed reservoirs and vectors of tomato spotted wilt tospovirus on southern Tasmanian lettuce farms

    Microsoft Academic Search

    C. R. Wilson

    1998-01-01

    Thrips species and tomato spotted wilt virus (TSWV) alternate weed hosts were surveyed on two lettuce farms in southern Tasmania during 1994 and 1995. Only one known vector species, Thrips tabaci, was found at either site, comprising on average 36·8% of the total monthly catch. A major peak of thrips activity in the summer corresponded with an increase of disease