Science.gov

Sample records for wind shear

  1. Fighting wind shear

    NASA Astrophysics Data System (ADS)

    A “coherent and sustained program” of improved radar detection of weather, pilot training, and better communication between pilots and air controllers can greatly reduce the risk of wind shear to airplanes landing or taking off, according to a National Research Council (NRC) committee.Wind shear, characterized by winds rapidly changing direction and speed, has caused several serious accidents in recent years; among the most notable is the July 8, 1982, crash of a Pan American World Airlines jetliner at the New Orleans International Airport, which killed 153 persons. Following the accident, Congress directed the Federal Aviation Administration (FAA) to contract with the NRC to study wind shear.

  2. CAT LIDAR wind shear studies

    NASA Technical Reports Server (NTRS)

    Goff, R. W.

    1978-01-01

    The studies considered the major meteorological factors producing wind shear, methods to define and classify wind shear in terms significant from an aircraft perturbation standpoint, the significance of sensor location and scan geometry on the detection and measurement of wind shear, and the tradeoffs involved in sensor performance such as range/velocity resolution, update frequency and data averaging interval.

  3. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1989-01-01

    The statistical characteristics of wind shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of turbulence scales in wind shear is addressed from the perspective of power spectral density.

  4. Structure of wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Trevino, G.; Laituri, T. R.

    1988-01-01

    The statistical characteristics of wind-shear turbulence are modelled. Isotropic turbulence serves as the basis of comparison for the anisotropic turbulence which exists in wind shear. The question of how turbulence scales in a wind shear is addressed from the perspective of power spectral density.

  5. Continuous wave laser for wind shear detection

    NASA Technical Reports Server (NTRS)

    Nelson, Loren

    1991-01-01

    Details of the design and development of a continuous-wave heterodyne carbon dioxide laser which has wind shear detection capabilities are given in viewgraph form. The goal of the development was to investigate the lower cost CW (rather than pulsed) lidar option for look-ahead wind shear detection from aircraft. The device has potential utility for ground based wind shear detection at secondary airports where the high cost of a Terminal Doppler Weather Radar system is not justifiable.

  6. Wind shear modeling for aircraft hazard definition

    NASA Technical Reports Server (NTRS)

    Frost, W.; Camp, D. W.; Wang, S. T.

    1978-01-01

    Mathematical models of wind profiles were developed for use in fast time and manned flight simulation studies aimed at defining and eliminating these wind shear hazards. A set of wind profiles and associated wind shear characteristics for stable and neutral boundary layers, thunderstorms, and frontal winds potentially encounterable by aircraft in the terminal area are given. Engineering models of wind shear for direct hazard analysis are presented in mathematical formulae, graphs, tables, and computer lookup routines. The wind profile data utilized to establish the models are described as to location, how obtained, time of observation and number of data points up to 500 m. Recommendations, engineering interpretations and guidelines for use of the data are given and the range of applicability of the wind shear models is described.

  7. The Multi-Dimensional Nature of Wind Shear Investigations

    NASA Technical Reports Server (NTRS)

    Cox, W. J.

    1977-01-01

    The impact of air carrier accidents has lead to investigations into the wind shear phenomenon. This report includes such topics as wind shear characterization, aircraft pilot performance in shear conditions, terminology and language development, wind shear forecasting, ground and flight wind shear displays, wind shear data collection and dissemination, and pilot factors associated with wind shear encounters. Some areas which show promise for short term solutions to the wind shear hazards includes: (1) improved gust front warning through ground based sensors; (2) greater pilot awareness of wind shear through improved training; and (3) airborne displays based on groundspeed/airspeed comparisons.

  8. Flight in low-level wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1983-01-01

    Results of studies of wind shear hazard to aircraft operation are summarized. Existing wind shear profiles currently used in computer and flight simulator studies are reviewed. The governing equations of motion for an aircraft are derived incorporating the variable wind effects. Quantitative discussions of the effects of wind shear on aircraft performance are presented. These are followed by a review of mathematical solutions to both the linear and nonlinear forms of the governing equations. Solutions with and without control laws are presented. The application of detailed analysis to develop warning and detection systems based on Doppler radar measuring wind speed along the flight path is given. A number of flight path deterioration parameters are defined and evaluated. Comparison of computer-predicted flight paths with those measured in a manned flight simulator is made. Some proposed airborne and ground-based wind shear hazard warning and detection systems are reviewed. The advantages and disadvantages of both types of systems are discussed.

  9. Summary Proceedings of a Wind Shear Workshop

    NASA Technical Reports Server (NTRS)

    Enders, J. H.; Melvin, W. W.; Frost, W.; Camp, D. W.

    1983-01-01

    A number of recent program results and current issues were addressed: the data collection phase of the highly successful Joint Airport Weather Study (JAWS) Project and the NASA-B5f7B Gust Gradient Program, the use of these data for flight crew training through educational programs (e.g., films) and with manned flight training simulators, methods for post-accident determination of wind conditions from flight data recorders, the microburst wind shear phenomenon which was positively measured and described the ring vortex as a possible generating mechanism, the optimum flight procedure for use during an unexpected wind shear encounter, evaluation of the low-level wind shear alert system (LLWSAS), and assessment of the demonstrated and viable application of Doppler radar as an operational wind shear warning and detection system.

  10. Problems pilots face involving wind shear

    NASA Technical Reports Server (NTRS)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  11. Wind shear measuring on board an airliner

    NASA Technical Reports Server (NTRS)

    Krauspe, P.

    1984-01-01

    A measurement technique which continuously determines the wind vector on board an airliner during takeoff and landing is introduced. Its implementation is intended to deliver sufficient statistical background concerning low frequency wind changes in the atmospheric boundary layer and extended knowledge about deterministic wind shear modeling. The wind measurement scheme is described and the adaptation of apparatus onboard an A300 airbus is shown. Preliminary measurements made during level flight demonstrate the validity of the method.

  12. Wind shear related research at Princeton University

    NASA Technical Reports Server (NTRS)

    Stengel, Robert

    1992-01-01

    The topics addressed are: (1) real-time decision aiding-aircraft guidance for wind shear avoidance; (2) reducing the thrust-manual recovery strategies; and (3) dynamic behaviour of and aircraft encountering a single axis vortex.

  13. Pulsed laser Doppler measurements of wind shear

    NASA Technical Reports Server (NTRS)

    Dimarzio, C.; Harris, C.; Bilbro, J. W.; Weaver, E. A.; Burnham, D. C.; Hallock, J. N.

    1979-01-01

    There is a need for a sensor at the airport that can remotely detect, identify, and track wind shears near the airport in order to assure aircraft safety. To determine the viability of a laser wind-shear system, the NASA pulsed coherent Doppler CO2 lidar (Jelalian et al., 1972) was installed in a semitrailer van with a rooftop-mounted hemispherical scanner and was used to monitor thunderstorm gust fronts. Wind shears associated with the gust fronts at the Kennedy Space Center (KSC) between 5 July and 4 August 1978 were measured and tracked. The most significant data collected at KSC are discussed. The wind shears were clearly visible in both real-time velocity vs. azimuth plots and in postprocessing displays of velocities vs. position. The results indicate that a lidar system cannot be used effectively when moderate precipitation exists between the sensor and the region of interest.

  14. Unresolved issues in wind shear encounters

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1987-01-01

    Much remains to be learned about the hazards of low altitude wind shear to aviation. New research should be conducted on the nature of the atmospheric environment, on aircraft performance, and on guidance and control aids. In conducting this research, it is important to distinguish between near-term and far-term objectives, between basic and applied research, and between uses of results for aircraft design or for real-time implementation. Advances in on-board electronics can be applied to assuring that aircraft of all classes have near optimal protection against wind shear hazards.

  15. Integration of the TDWR and LLWAS wind shear detection system

    NASA Technical Reports Server (NTRS)

    Cornman, Larry

    1991-01-01

    Operational demonstrations of a prototype TDWR/LLWAS (Terminal Doppler Weather Radar/Low Level Wind shear Alarm System) integrated wind shear detection system were conducted. The integration of wind shear detection systems is needed to provide end-users with a single, consensus source of information. A properly implemented integrated system provides wind shear warnings of a higher quality than stand-alone LLWAS or TDWR systems. The algorithmic concept used to generate the TDWR/LLWAS integrated products and several case studies are discussed, indicating the viability and potential of integrated wind shear detection systems. Implications for integrating ground and airborne wind shear detection systems are briefly examined.

  16. Flight penetration of wind shear: Control strategies

    NASA Technical Reports Server (NTRS)

    Joshi, Amit S.

    1988-01-01

    Wind shear is a dangerous condition where there is a sharp change in the direction and magnitude of the wind velocity over a short distance or time. This condition is especially dangerous to aircraft during landing and takeoff and can cause a sudden loss of lift and thereby height at a critical time. A numerical simulation showed the effective performance of the Linear Quadratic Regulator and the Nonlinear Inverse Dynamics controllers. The major conclusions are listed and discussed.

  17. Protecting Airplanes From Wind Shear

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1988-01-01

    Improvements in flightpath displays help pilots avoid crashes in downbursts. Report presents computer-simulated response of large transport aircraft to downbursts of wind during takeoffs and landings. Simulation clearly demonstrates benefits of increased available energy in form of initial speed, initial altitude, or higher thrust-to-weight ratio.

  18. Laboratory model of flight through wind shear

    NASA Technical Reports Server (NTRS)

    Frost, W.

    1985-01-01

    The simulation of an aircraft flying through a downdraft or microburst is presented. The simulation was performed under the conditions of constant takeoff thrust. The resulting wind shear conditions were filmed and examined for possible pilot corrective action in the future.

  19. History of wind shear turbulence models

    NASA Technical Reports Server (NTRS)

    Cusimano, Lou

    1987-01-01

    The Office of Flight Operations, Flight Technical Programs Div., at the FAA Headquarters, interfaces with industry, R&D communities and air carriers during the introduction of new types of equipment into operational services. A brief highlight of the need which FAA operations sees for new wind shear and turbulence data sets from the viewpoint of equipment certification and simulation is presented.

  20. Infrared low-level wind shear work

    NASA Technical Reports Server (NTRS)

    Adamson, Pat

    1988-01-01

    Results of field experiments for the detection of clear air disturbance and low level wind shear utilizing an infrared airborne system are given in vugraph form. The hits, misses and nuisance alarms scores are given. Information is given on the infrared spatial resolution technique. The popular index of aircraft hazard (F= WX over g - VN over AS) is developed for a remote temperature sensor.

  1. Progress on Intelligent Guidance and Control for Wind Shear Encounter

    NASA Technical Reports Server (NTRS)

    Stratton, D. Alexander

    1990-01-01

    Low altitude wind shear poses a serious threat to air safety. Avoiding severe wind shear challenges the ability of flight crews, as it involves assessing risk from uncertain evidence. A computerized intelligent cockpit aid can increase flight crew awareness of wind shear, improving avoidance decisions. The primary functions of a cockpit advisory expert system for wind shear avoidance are discussed. Also introduced are computational techniques being implemented to enable these primary functions.

  2. Wind shear training applications for 91/135

    NASA Technical Reports Server (NTRS)

    Arbon, ED

    1991-01-01

    The requirement for wind shear training of all pilots has been demonstrated too often by the accident statistics of past years. Documents were developed to train airline crews on specific aircraft and to teach recognition of the meteorological conditions that are conducive to wind shear and microburst formation. A Wind Shear Training Aid program is discussed.

  3. Wind shear predictive detector technology study status

    NASA Technical Reports Server (NTRS)

    Gandolfi, C.

    1990-01-01

    Among the different elements to be investigated when considering the Wind Shear hazard, the Aeronautical Navigation Technical Service (STNA/3E), whose task is to participate in the development of new technologies and equipments, focused its effort on airborne and ground sensors for the detection of low-level wind shear. The first task, initiated in 1986, consists in the evaluation of three candidate techniques for forward-looking sensors: lidar, sodar, and radar. No development is presently foreseen for an infrared based air turbulence advance warning system although some flight experiments took place in the 70's. A Thomson infrared radiometer was then installed on an Air France Boeing 707 to evaluate its capability of detecting clear air turbulence. The conclusion showed that this technique was apparently able to detect cloud layers but that additional experiments were needed; on the other hand, the rarity of the phenomenon and the difficulty in operating on a commercial aircraft were also mentioned.

  4. Wind Shear Characteristics at Central Plains Tall Towers (presentation)

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-06-05

    The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

  5. Case history of FAA/SRI wind shear models

    NASA Technical Reports Server (NTRS)

    Schlickenmaier, Herbert

    1987-01-01

    In order to understand the development of the FAA/SRI wind fields, it is important to understand the operating philosophy of the FAA's Wind Shear Program Office. The goal of the office was to ensure an integrated solution to the wind shear problem which addressed three area: ground based equipment and coordination; airborne systems and procedures; and weather prediction. This triply addressed goal was central to the development of the wind fields. The primary user of the wind shear modeling during the FAA's program was airborne simulation. The project requirement was to use wind shear models that resulted from accidents so that effective procedures and/or equipment could be found for hazardous wind shear encounters. The wind shear model development is discussed in detail.

  6. Microbursts as an aviation wind shear hazard

    NASA Technical Reports Server (NTRS)

    Fujita, T. T.

    1981-01-01

    The downburst-related accidents or near-misses of jet aircraft have been occurring at the rate of once or twice a year since 1975. A microburst with its field comparable to the length of runways can induce a wind shear which endangers landing or liftoff aircraft; the latest near miss landing of a 727 aircraft at Atlanta, Ga. in 1979 indicated that some microbursts are too small to trigger the warning device of the anemometer network at major U.S. airports. The nature of microbursts and their possible detection by Doppler radar are discussed, along with proposed studies of small-scale microbursts.

  7. Wind shear and vortex wake research in UK, 1982

    NASA Technical Reports Server (NTRS)

    Woodfield, A. A.

    1983-01-01

    A wind shear and vortex wake and their impact on aircraft were investigated. The systems and advice to help pilots, and rational scientific methods to assist in advising certification authorities and those interested in improving flight safety were developed. Wind Shear and Vortex Wakes are related, they are both invisible enemies of aircraft in the form of large disturbances in the atmosphere, both cause major accidents. Problems of building wakes at airports are is considered. Research on wind shear was initiated by the American FAA following the Boston, New York and Denver accidents to civil airliners. This resulted in: useful advice to pilots about wind shear; better attempts by the meteorologists at forecasting wind shear conditions; and useful ideas for wind shear measurement and warning systems. Three major research tasks are outstanding: (1) Worldwide measurements to give reliable estimates of probability and details of the forms of large wind shears; (2) Developments of real time wind shear measuring systems for ground or airborne use; and (3) Establishing relationships between measured wind shear and the potential hazard to an aircraft, or class of aircraft.

  8. Airborne infrared low level wind shear predictor

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.; Kurkowski, R. L.

    1984-01-01

    The operating principles and test performance of an airborne IR (13-16 micron) temperature-sensing detection and warning system for low-level wind shear (LLWS) are presented. The physics of LLWS phenomena and of the IR radiometer are introduced. The cold density-current outflow or gust front related to LLWS is observed in the IR spectrum of CO2 by a radiometer with + or - 0.5-C accuracy at 0.5-Hz sampling rate; LLWS alerts are given on the basis of specific criteria. Test results from the JAWS experiments conducted at Denver in July 1982, are presented graphically and discussed. The feasibility of the passive IR system is demonstrated, with an average warning time of 51 sec, corresponding to a distance from touchdown of about 2 miles.

  9. Cockpit display of hazardous wind shear information

    NASA Technical Reports Server (NTRS)

    Wanke, Craig; Hansman, R. John, Jr.

    1990-01-01

    Information on cockpit display of wind shear information is given in viewgraph form. Based on the current status of windshear sensors and candidate data dissemination systems, the near-term capabilities for windshear avoidance will most likely include: (1) Ground-based detection: TDWR (Terminal Doppler Weather Radar), LLWAS (Low-Level Windshear Alert System), Automated PIREPS; (2) Ground-Air datalinks: Air traffic control voice channels, Mode-S digital datalink, ACARS alphanumeric datalink. The possible datapaths for integration of these systems are illustrated in a diagram. In the future, airborne windshear detection systems such as lidars, passive IR detectors, or airborne Doppler radars may also become available. Possible future datalinks include satellite downlink and specialized en route weather channels.

  10. Pilot-aircraft system reponse to wind shear

    NASA Technical Reports Server (NTRS)

    Turkel, B. S.; Frost, W.

    1980-01-01

    The nonlinear aircraft motion and automatic control model is expanded to incorporate the human pilot into simulations of aircraft response to wind to wind shear. The human pilot is described by a constant gains lag filter. Two runs are carried out using pilot transfer functions. Fixed-stick, autopilot, and manned computer simulations are made with an aircraft having characteristics of a small commuter type aircraft flown through longitudinal winds measured by a Doppler radar beamed along the glide slope. Simulations are also made flying an aircraft through sinusoidal head wind and tail wind shears at the phugoid frequency to evaluate the response of manned aircraft in thunderstorm wind environments.

  11. Lidar wind shear detection for commercial aircraft

    NASA Astrophysics Data System (ADS)

    Targ, Russell; Bowles, Roland L.

    1991-08-01

    National attention has focused on the critical problem of detecting and avoiding windshear since the crash on August 2, 1985, of a Lockheed L-1011 at Dallas/Fort Worth International Airport. As part of The NASA/FAA National Integrated Windshear Program, the authors have defined a measurable windshear hazard index that can be remotely sensed from an aircraft, to give the pilot information about the wind conditions he will experience at some later time if he continues along the present flight path. The technology analysis and end- to-end performance simulation, which measures signal-to-noise ratios and resulting wind velocity errors for competing coherent lidar systems, shows that a Ho:YAG lidar at a wavelength of 2.1 micrometers and a CO2 lidar at 10.6 micrometers can give the pilot information about the line-of-sight component of a windshear threat in a region extending from his present position to 2 to 4 km in front of the aircraft. This constitutes a warning time of 20 to 40 s, even under conditions of moderately heavy precipitation. Using these results, a Coherent Lidar Airborne Shear Sensor (CLASS), using a Q-switched CO2 laser at 10.6 micrometers , is being designed and developed for flight evaluation in early 1992.

  12. Impact of Vertical Wind Shear on Tropical Cyclone Rainfall

    NASA Technical Reports Server (NTRS)

    Cecil, Dan; Marchok, Tim

    2014-01-01

    While tropical cyclone rainfall has a large axisymmetric component, previous observational and theoretical studies have shown that environmental vertical wind shear leads to an asymmetric component of the vertical motion and precipitation fields. Composites consistently depict a precipitation enhancement downshear and also cyclonically downwind from the downshear direction. For consistence with much of the literature and with Northern Hemisphere observations, this is subsequently referred to as "Downshear-Left". Stronger shear magnitudes are associated with greater amplitude precipitation asymmetries. Recent work has reinforced the prior findings, and explored details of the response of the precipitation and kinematic fields to environmental vertical wind shear. Much of this research has focused on tropical cyclones away from land, to limit the influence of other processes that might distort the signal related to vertical wind shear. Recent evidence does suggest vertical wind shear can also play a major role in precipitation asymmetries during and after landfall.

  13. Airborne in situ computation of the wind shear hazard index

    NASA Technical Reports Server (NTRS)

    Oseguera, Rosa M.; Bowles, Roland L.; Robinson, Paul A.

    1992-01-01

    An algorithm for airborne in situ computation of the wind shear hazard index (F-factor) was developed and evaluated in simulation and verified in flight. The algorithm was implemented on NASA's B-737-100 airplane, and tested under severe maneuvering, nonhazardous wind conditions, and normal takeoffs and landings. The airplane was flown through actual microburst conditions in Orlando, FL, where the algorithm produced wind shear measurements which were confirmed by an independent, ground-based radar measurement. Flight test results indicated that the in situ F-factor algorithm correctly measured the effect of the wind environment on the airplane's performance, and produced no nuisance alerts.

  14. TRMM Satellite Shows Bertha's Heavy Rain Pushed From Wind Shear

    NASA Video Gallery

    TRMM Satellite Shows Bertha's Heavy Rain Pushed From Wind Shear This 3-D flyby of Tropical Storm Bertha on Aug. 1 was created from TRMM satellite data. It shows (from the south) intense thunderstor...

  15. United Airlines wind shear incident of May 31, 1984

    NASA Technical Reports Server (NTRS)

    Mccarthy, John

    1987-01-01

    An incident involving wind shear which occured on 31 May 1984 on a United Airlines aircraft is discussed by a member of the National Center for Atmospheric Research. The meteorological parameters important to this incident are detailed.

  16. An experimental cockpit display for TDWR wind shear alerts

    NASA Technical Reports Server (NTRS)

    Campbell, Steven D.; Daly, Peter M.; Demillo, Robert J.

    1991-01-01

    The first successful ground-to-air data link and cockpit display of terminal Doppler weather radar (TDWR) wind shear warnings in real-time are reported. During the summer of 1990, wind shear warnings generated by the TDWR testbed radar at Orlando, Florida, were transmitted in real-time to a research aircraft performing microburst penetrations. Automatic delivery of TDWR wind shear warnings potentially result in decreased controller workload and improved pilot information. Pilot responses indicate that the information provided by the cockpit displays was useful in visualizing the location of wind shear hazards. The graphical display of microburst hazards provided better information than that currently provided by ATC verbal messages and pilot reports. This information was useful in assessing the microburst hazard, deciding whether to continue the approach, and planning escape maneuvers.

  17. United Airlines wind shear incident of May 31, 1984

    NASA Technical Reports Server (NTRS)

    Simmon, David A.

    1987-01-01

    An incident involving wind shear on 31 May 1984 is discussed by an airline employee. The specs of the plane are given, the weather conditions are listed, and the actions taken by the flight crew are discussed.

  18. Sporadic-E layers and unstable wind shears

    NASA Technical Reports Server (NTRS)

    Smith, L. G.; Miller, K. L.

    1980-01-01

    Electron density profiles of sporadic-E layers have been observed with good height resolution using rocket-borne probes. These generally show a simple shape consistent with the effect of a linear wind shear acting on metallic ions. Occasionally more complex shapes have been recorded, including double peaks and, on one occasion, a nearly rectangular profile. A direct method of obtaining the wind profile from the concentration profile of metallic ions has been developed. The metallic ion concentration profile itself is obtained from the electron density profile. Both procedures derive from the steady-state continuity equation. For linear wind shears it is found that the maximum value of the shear is about 50 m/s/km which corresponds to a Richardson number of 1/4. Layers of complex shape are associated with non-linear wind shears in which the maximum shear considerably exceeds this value. It is concluded that the complex profiles of sporadic-E layers can be interpreted as an effect of unstable wind shears.

  19. Velocity shear layers in solar winds affect Earth's magnetosphere

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-09-01

    Human society is increasingly reliant on technology that can be disrupted by space weather. For instance, geomagnetic storms can cause high-latitude air fights to be rerouted, costing as much as $100,000 per fight; induce errors of up to 46 meters in GPS systems; and affect satellites and the International Space Station. Space weather is determined by how the solar wind, a stream of hot plasma from the Sun, interacts with Earth's magnetic field. In studying space weather, scientists have largely neglected the fact that the solar wind contains layers of very strong velocity shear. Scientists understand very little about how these wind shears affect space weather.

  20. Intelligent guidance and control for wind shear encounter

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1988-01-01

    The principal objective is to develop methods for assessing the likelihood of wind shear encounter, for deciding what flight path to pursue, and for using the aircraft's full potential for combating wind shear. This study requires the definition of both deterministic and statistical techniques for fusing internal and external information, for making go/no-go decisions, and for generating commands to the aircraft's cockpit displays and autopilot for both manually controlled and automatic flight. The program has begun with the development of a real-time expert system for pilot aiding that is based on the results of the FAA Windshear Training Aids Program. A two-volume manual that presents an overview, pilot guide, training program, and substantiating data provides guidelines for this initial development. The Expert System to Avoid Wind Shear (ESAWS) currently contains over 140 rules and is coded in the LISP programming language for implementation on a Symbolics 3670 LISP machine.

  1. Temperature lapse rate as an adjunct to wind shear detection

    NASA Technical Reports Server (NTRS)

    Zweifil, Terry

    1991-01-01

    Several meteorological parameters were examined to determine if measurable atmospheric conditions can improve windshear detection devices. Lapse rate, the temperature change with altitude, shows promise as being an important parameter in the prediction of severe wind shears. It is easily measured from existing aircraft instrumentation, and it can be important indicator of convective activity including thunderstorms and microbursts. The meteorological theory behind lapse rate measurement is briefly reviewed, and and FAA certified system is described that is currently implemented in the Honeywell Wind Shear Detection and Guidance System.

  2. Hourly wind profiler observations of the jet stream - Wind shear and pilot reports of turbulence

    NASA Technical Reports Server (NTRS)

    Syrett, William J.

    1991-01-01

    Hourly wind profiler observations of the jet stream are reported on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages over western and central Pennsylvania during mid-November 1986 and mid-January 1987. The mean wind speed profile with error bars for the 79 hr that the Crown radar was determined to be 'under' the jet stream is shown. A mean speed of 83 m/s for the period was found. A plot of wind shear for the hours of interest is given. Typically, the shear was at a maximum from 3 to 4 km below the level of maximum wind. Thus, an aircraft would have to fly through potentially rough air to reach the fuel savings and relative smoothness of flight at the jet stream level. A good correlation between pilot reports of turbulence and wind shear was found.

  3. Status of NASA's IR wind shear detection research

    NASA Technical Reports Server (NTRS)

    Mckissick, Burnell

    1991-01-01

    The status of NASA's wind shear detection research is reported in viewgraph form. Information is given on early experience, FLIR detectors, quantities measured by Airborne Warning and Avoidance System 1 (AWAS 1), the time series model for Flight 551, conclusions from NASA 737 flights, conclusions on Orlando 7-7-90, and AWAS 3 mnemonics.

  4. Doppler weather radar with predictive wind shear detection capabilities

    NASA Technical Reports Server (NTRS)

    Kuntman, Daryal

    1991-01-01

    The status of Bendix research on Doppler weather radar with predictive wind shear detection capability is given in viewgraph form. Information is given on the RDR-4A, a fully coherent, solid state transmitter having Doppler turbulence capability. Frequency generation data, plans, modifications, system characteristics and certification requirements are covered.

  5. EFFECTS OF WIND SHEAR ON POLLUTION DISPERSION. (R827929)

    EPA Science Inventory

    Using an accurate numerical method for simulating the advection and diffusion of pollution puffs, it is demonstrated that point releases of pollution grow into a shape reflecting the vertical wind shear profile experienced by the puff within a time scale less than 4 h. Fo...

  6. The relationship of an integral wind shear hazard to aircraft performance limitations

    NASA Technical Reports Server (NTRS)

    Lewis, M. S.; Robinson, P. A.; Hinton, D. A.; Bowles, R. L.

    1994-01-01

    The development and certification of airborne forward-looking wind shear detection systems has required a hazard definition stated in terms of sensor observable wind field characteristics. This paper outlines the definition of the F-factor wind shear hazard index and an average F-factor quantity, calculated over a specified averaging interval, which may be used to judge an aircraft's potential performance loss due to a given wind shear field. A technique for estimating airplane energy changes during a wind shear encounter is presented and used to determine the wind shear intensity, as a function of the averaging interval, that presents significant hazard to transport category airplanes. The wind shear hazard levels are compared to averaged F-factor values at various averaging intervals for four actual wind shear encounters. Results indicate that averaging intervals of about one kilometer could be used in a simple method to discern hazardous shears.

  7. Wind Shear Characteristics at Central Plains Tall Towers

    SciTech Connect

    Schwartz, M.; Elliott, D.

    2006-01-01

    The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional

  8. Response of wind shear warning systems to turbulence with implication of nuisance alerts

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.

    1988-01-01

    The objective was to predict the inherent turbulence response characteristics of candidate wind shear warning system concepts and to assess the potential for nuisance alerts. Information on the detection system and associated signal processing, physical and mathematical models, wind shear factor root mean square turbulence response and the standard deviation of the wind shear factor due to turbulence is given in vugraph form.

  9. Air/ground wind shear information integration: Flight test results

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1992-01-01

    An element of the NASA/FAA wind shear program is the integration of ground-based microburst information on the flight deck, to support airborne wind shear alerting and microburst avoidance. NASA conducted a wind shear flight test program in the summer of 1991 during which airborne processing of Terminal Doppler Weather Radar (TDWR) data was used to derive microburst alerts. High level microburst products were extracted from TDWR, transmitted to a NASA Boeing 737 in flight via data link, and processed to estimate the wind shear hazard level (F-factor) that would be experienced by the aircraft in the core of each microburst. The microburst location and F-factor were used to derive a situation display and alerts. The situation display was successfully used to maneuver the aircraft for microburst penetrations, during which in situ 'truth' measurements were made. A total of 19 penetrations were made of TDWR-reported microburst locations, resulting in 18 airborne microburst alerts from the TDWR data and two microburst alerts from the airborne in situ measurements. The primary factors affecting alerting performance were spatial offset of the flight path from the region of strongest shear, differences in TDWR measurement altitude and airplane penetration altitude, and variations in microburst outflow profiles. Predicted and measured F-factors agreed well in penetrations near microburst cores. Although improvements in airborne and ground processing of the TDWR measurement would be required to support an airborne executive-level alerting protocol, the feasibility of airborne utilization of TDWR data link data has been demonstrated.

  10. Jet transport performance in thunderstorm wind shear conditions

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Blick, E. F.; Bensch, R. R.

    1979-01-01

    Several hours of three dimensional wind data were collected in the thunderstorm approach-to-landing environment, using an instrumented Queen Air airplane. These data were used as input to a numerical simulation of aircraft response, concentrating on fixed-stick assumptions, while the aircraft simulated an instrument landing systems approach. Output included airspeed, vertical displacement, pitch angle, and a special approach deterioration parameter. Theory and the results of approximately 1000 simulations indicated that about 20 percent of the cases contained serious wind shear conditions capable of causing a critical deterioration of the approach. In particular, the presence of high energy at the airplane's phugoid frequency was found to have a deleterious effect on approach quality. Oscillations of the horizontal wind at the phugoid frequency were found to have a more serious effect than vertical wind. A simulation of Eastern flight 66, which crashed at JFK in 1975, served to illustrate the points of the research. A concept of a real-time wind shear detector was outlined utilizing these results.

  11. Wind shear detection. Forward-looking sensor technology

    NASA Technical Reports Server (NTRS)

    Bracalente, E. M. (Compiler); Delnore, V. E. (Compiler)

    1987-01-01

    A meeting took place at NASA Langley Research Center in February 1987 to discuss the development and eventual use of forward-looking remote sensors for the detection and avoidance of wind shear by aircraft. The participants represented industry, academia, and government. The meeting was structured to provide first a review of the current FAA and NASA wind shear programs, then to define what really happens to the airplane, and finally to give technology updates on the various types of forward-looking sensors. This document is intended to informally record the essence of the technology updates (represented here through unedited duplication of the vugraphs used), and the floor discussion following each presentation. Also given are key issues remaining unresolved.

  12. Wind Shear/Turbulence Inputs to Flight Simulation and Systems Certification

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L. (Editor); Frost, Walter (Editor)

    1987-01-01

    The purpose of the workshop was to provide a forum for industry, universities, and government to assess current status and likely future requirements for application of flight simulators to aviation safety concerns and system certification issues associated with wind shear and atmospheric turbulence. Research findings presented included characterization of wind shear and turbulence hazards based on modeling efforts and quantitative results obtained from field measurement programs. Future research thrusts needed to maximally exploit flight simulators for aviation safety application involving wind shear and turbulence were identified. The conference contained sessions on: Existing wind shear data and simulator implementation initiatives; Invited papers regarding wind shear and turbulence simulation requirements; and Committee working session reports.

  13. Aircraft performance and control in downburst wind shear

    NASA Technical Reports Server (NTRS)

    Bray, Richard S.

    1986-01-01

    The methods developed for analyses of the winds and of aircraft performance during an investigation of a downburst wind-shear-induced accident have been utilized in a more general study of aircraft performance in such encounters. The computed responses of a generic, large transport aircraft to take-off and approach encounters with a downburst wind field were used in examining the effects of performance factors and control procedures on the ability of the aircraft to survive. Obvious benefits are seen for higher initial encounter speeds, maximum thrust-weight values typical of two-engined aircraft, and immediacy of pilot response. The results of controlling to a constant, predetermined, pitch attitude are demonstrated. Control algorithms that sacrifice altitude for speed appear to provide a higher level of survivability, but guidance displays more explicitly defining flightpath than those commonly in use might be required.

  14. Flight guidance research for recovery from microburst wind shear

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1990-01-01

    Research is in progress to develop flight strategy concepts for avoidance and recovery from microburst wind shears. The objectives of this study are to evaluate the performance of various strategies for recovery from wind shear encountered during the approach-to-landing, examine the associated piloting factors, and evaluate the payoff of forward-look sensing. Both batch and piloted simulations are utilized. The industry-recommended manual recovery technique is used as a baseline strategy. Two advanced strategies were selected for the piloted tests. The first strategy emulates the recovery characteristics shown by prior optimal trajectory analysis, by initially tracking the glideslope, then commanding a shallow climb. The second strategy generates a flight path angle schedule that is a function of airplane energy state and the instantaneous shear strength. All three strategies are tested with reactive sensing only and with forward-look sensing. Piloted simulation tests are in progress. Tentative results indicate that, using only reactive alerts, there appears to be little difference in performance between the various strategies. With forward-look alerts, the advanced guidance strategies appear to have advantages over the baseline strategy. Relatively short forward-look alert times, on the order of 10 or 15 seconds, produce a far greater recovery benefit than optimizing a recovery from a reactive alert.

  15. A problem formulation for glideslope tracking in wind shear using advanced robust control techniques

    NASA Technical Reports Server (NTRS)

    Belcastro, Christine M.; Chang, B.-C.; Fischl, Robert

    1992-01-01

    A formulation of the longitudinal glideslope tracking of a transport-class aircraft in severe wind shear and turbulence for application to robust control system design is presented. Mathematical wind shear models are incorporated into the vehicle mathematical model, and wind turbulence is modeled as an input disturbance signal. For this problem formulation, the horizontal and vertical wind shear gradients are treated as real uncertain parameters that vary over an entire wind shear profile. The primary objective is to examine the formulation of this problem into an appropriate design format for use in m-synthesis control system design.

  16. Roles of wind shear at different vertical levels: Cloud system organization and properties

    NASA Astrophysics Data System (ADS)

    Chen, Qian; Fan, Jiwen; Hagos, Samson; Gustafson, William I.; Berg, Larry K.

    2015-07-01

    Understanding critical processes that contribute to the organization of mesoscale convective systems (MCSs) is important for accurate weather forecasts and climate predictions. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of convective systems using the Weather Research and Forecasting model with spectral bin microphysics. Based on a control run for a MCS with weak wind shear (Ctrl), we find that increasing wind shear at the lower troposphere (L-shear) leads to a more organized quasi-line convective system. Strong wind shear in the middle troposphere (M-shear) tends to produce large vorticity and form a mesocyclone circulation and an isolated strong storm that leans toward supercellular structure. By increasing wind shear at the upper vertical levels only (U-shear), the organization of the convection is not changed much, but the convective intensity is weakened. Increasing wind shear in the middle troposphere for the selected case results in a significant drying, and the drying is more significant when conserving moisture advection at the lateral boundaries, contributing to the suppressed convective strength and precipitation relative to Ctrl. Precipitation in the L-shear and U-shear does not change much from Ctrl. Evident changes of cloud macrophysical and microphysical properties in the strong wind shear cases are mainly due to large changes in convective organization and water vapor. The insights obtained from this study help us better understand the major factors contributing to convective organization and precipitation.

  17. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  18. Shear and Turbulence Estimates for Calculation of Wind Turbine Loads and Responses Under Hurricane Strength Winds

    NASA Astrophysics Data System (ADS)

    Kosovic, B.; Bryan, G. H.; Haupt, S. E.

    2012-12-01

    Schwartz et al. (2010) recently reported that the total gross energy-generating offshore wind resource in the United States in waters less than 30m deep is approximately 1000 GW. Estimated offshore generating capacity is thus equivalent to the current generating capacity in the United States. Offshore wind power can therefore play important role in electricity production in the United States. However, most of this resource is located along the East Coast of the United States and in the Gulf of Mexico, areas frequently affected by tropical cyclones including hurricanes. Hurricane strength winds, associated shear and turbulence can affect performance and structural integrity of wind turbines. In a recent study Rose et al. (2012) attempted to estimate the risk to offshore wind turbines from hurricane strength winds over a lifetime of a wind farm (i.e. 20 years). According to Rose et al. turbine tower buckling has been observed in typhoons. They concluded that there is "substantial risk that Category 3 and higher hurricanes can destroy half or more of the turbines at some locations." More robust designs including appropriate controls can mitigate the risk of wind turbine damage. To develop such designs good estimates of turbine loads under hurricane strength winds are essential. We use output from a large-eddy simulation of a hurricane to estimate shear and turbulence intensity over first couple of hundred meters above sea surface. We compute power spectra of three velocity components at several distances from the eye of the hurricane. Based on these spectra analytical spectral forms are developed and included in TurbSim, a stochastic inflow turbulence code developed by the National Renewable Energy Laboratory (NREL, http://wind.nrel.gov/designcodes/preprocessors/turbsim/). TurbSim provides a numerical simulation including bursts of coherent turbulence associated with organized turbulent structures. It can generate realistic flow conditions that an operating turbine

  19. Simulation study to evaluate a constant-groundspeed approach method in moderate and severe wind shears

    NASA Technical Reports Server (NTRS)

    Kelley, W. W.

    1979-01-01

    The use of a constant-groundspeed procedure for flying final approaches in moderate and severe wind shear environments was investigated. Performance was compared to results of simulated constant-airspeed approaches in identical wind profiles. The simulation model was a medium twin-jet transport equipped with an autothrottle for maintaining constant groundspeed or constant airspeed. For both moderate and severe wind shears, the constant-groundspeed approach method was shown to provide a way to more safely negotiate the shears while also providing predictable and acceptable touchdown performance. Results showed airspeeds on final approach to be considerably higher using the constant-groundspeed method, which supplied the additional stall margin needed when tail-wind shears were encountered. Throttle movements were noticeably reduced in all wind profiles when constant-groundspeed approaches were flown. Touchdown conditions were practically identical for both approach methods in moderate wind shear.

  20. Investigations of Wind Shear Distribution on the Baltic Shore of Latvia

    NASA Astrophysics Data System (ADS)

    Bezrukovs, V.; Zacepins, A.; Bezrukovs, Vl.; Komashilovs, V.

    2016-06-01

    The paper presents a review of wind parameter measurement complexes and investigation methods used for potential wind energy evaluation. Based on results of long-term investigations of wind shear distribution regularities are shown up to 160 m height on the Baltic Sea shore. Distribution of potential wind energy in Latvia is shown as a map and table of average and average cubic wind speed values. Database of wind parameter measurements is available at a public website.

  1. Magnitude and frequency of wind speed shears from 3 to 150 meters

    NASA Technical Reports Server (NTRS)

    Alexander, M. B.; Camp, D. W.

    1981-01-01

    An analysis is presented of high resolution wind profile measurements recorded at the NASA 150-m ground winds tower facility, showing wind speed shear frequency and magnitude distributions for six vertical layers of the atmosphere and one vertical distance. Vertical wind shear is defined as the change of wind speed with height, and its magnitudes were derived by algebraically subtracting lower level wind speeds from those of higher levels and dividing the distance between levels. Horizontal wind shear is understood to be change of wind speed with horizontal distance, and its magnitudes were derived by algebraically subtracting the wind speed at a short tower from that at a tall one and dividing by the distance between towers.

  2. Algorithms for airborne Doppler radar wind shear detection

    NASA Technical Reports Server (NTRS)

    Gillberg, Jeff; Pockrandt, Mitch; Symosek, Peter; Benser, Earl T.

    1992-01-01

    Honeywell has developed algorithms for the detection of wind shear/microburst using airborne Doppler radar. The Honeywell algorithms use three dimensional pattern recognition techniques and the selection of an associated scanning pattern forward of the aircraft. This 'volumetric scan' approach acquires reflectivity, velocity, and spectral width from a three dimensional volume as opposed to the conventional use of a two dimensional azimuthal slice of data at a fixed elevation. The algorithm approach is based on detection and classification of velocity patterns which are indicative of microburst phenomenon while minimizing the false alarms due to ground clutter return. Simulation studies of microburst phenomenon and x-band radar interaction with the microburst have been performed and results of that study are presented. Algorithm performance indetection of both 'wet' and 'dry' microbursts is presented.

  3. Optimal nonlinear estimation for aircraft flight control in wind shear

    NASA Technical Reports Server (NTRS)

    Mulgund, Sandeep S.

    1994-01-01

    The most recent results in an ongoing research effort at Princeton in the area of flight dynamics in wind shear are described. The first undertaking in this project was a trajectory optimization study. The flight path of a medium-haul twin-jet transport aircraft was optimized during microburst encounters on final approach. The assumed goal was to track a reference climb rate during an aborted landing, subject to a minimum airspeed constraint. The results demonstrated that the energy loss through the microburst significantly affected the qualitative nature of the optimal flight path. In microbursts of light to moderate strength, the aircraft was able to track the reference climb rate successfully. In severe microbursts, the minimum airspeed constraint in the optimization forced the aircraft to settle on a climb rate smaller than the target. A tradeoff was forced between the objectives of flight path tracking and stall prevention.

  4. Analysis of strong nocturnal shears for wind machine design. Final report

    SciTech Connect

    Mahrt, L.; Heald, R.C.

    1980-11-01

    Wind shear data at wind turbine heights from several sites is reviewed and new data is documented in terms of total and component shear. A variety of atmospheric scenarios may combine to give large persistent shear. Among these, strong boundary layer stability is foremost. It occurs with strong nocturnal surface cooling, in low level frontal and subsidence inversions, and in thunderstorm outflows. Strong shears resulting from surface radiation inversions are particularly evident over the High Plains where dry air and high altitude combine to result in strong radiational cooling. Terrain is also an important influence on shear but it is not well understood and is very site specific.

  5. Effect of Wind Shear on the Characteristics of a Rotating Blade of a Field Horizontal Axis Wind Turbine

    NASA Astrophysics Data System (ADS)

    Maeda, Takao; Kawabuchi, Hideyuki

    This paper shows the aerodynamic characteristics at the mid-length of a rotor blade of a 10-m-diameter wind turbine exposed to wind shear. A sonic wind speed meter and six cup-anemometers were installed one diameter upwind of the turbine in order to measure wind profiles. The anemometers at the top, middle and bottom levels were installed at heights of 18.3, 13.3 and 8.3 meters, respectively, which correspond to the heights of the tip of the blade at the blade top position, the hub height, and the tip of the blade at the blade bottom position, respectively. Our measurements suggest that the normal force coefficients in strong wind shear conditions are lower than those in weak wind shear condition. Even if the local angle of attack is almost the same, the normal force coefficient shows differences due to the hysteresis effect. In particular, the influence of shear is large not only when there is strong wind shear in a vertical direction, but also when there is strong wind shear in a horizontal direction. A remarkable difference appears in the pressure distribution under these conditions.

  6. The Effects of Atmospheric Stability and Wind Shear on Wind Farm Power Production

    NASA Astrophysics Data System (ADS)

    Vanderwende, B. J.; Lundquist, J. K.

    2011-12-01

    Power production from wind turbines can vary significantly from manufacturer's ratings due to atmospheric stability and wind shear. In this study, remotely sensed and in-situ data from a wind farm in the High Plains of Central North America were examined to quantify the effects of atmospheric conditions in the boundary layer on power generation. Several approaches for segregating time periods by atmospheric conditions were applied to this dataset, including methods based on the time-of-day, the power law exponent α, the bulk Richardson number RB, and diurnal cycles in wind and temperature. These classifications were used to generate stability-dependent power curves. For this site, all classification metrics indicated underperformance during stable/night regimes and overperformance during convective/day regimes at moderate wind speeds (7-12m/s). A simple attempt at forecasting power production values proved both the feasibility and the utility of applying meteorological classifications for forecasting applications. The success in diagnosis and forecasting of power production using boundary layer data demonstrate that power output is strongly influenced by boundary layer stability, but further research is required that involves measurements taken across the rotor-disk; remote sensing of such profiles is recommended.

  7. Longitudinal stability and control in wind shear with energy height rate feedback

    NASA Technical Reports Server (NTRS)

    Gera, J.

    1980-01-01

    The longitudinal linearized equations of motion in wind shear were derived for the NASA Terminal Configured Vehicle, a modified Boeing 737 airplane. In addition to the apparent acceleration terms resulting from wind shear, the equations included altitude dependent stability derivatives. A linear analysis of these equations indicates a first order divergence type of instability due to wind shear in which head wind decreased with altitude. Furthermore, this instability cannot be stabilized by attitude control alone. However, attitude control used in combination with an addition feedback loop which consisted of the energy height rate feedback to the throttle proved to be effective in suppressing instability due to wind shear. A brief piloted, real time, nonlinear simulation indicated the desirability of using a display based on the rate of change of energy height rate and of commanded thrust.

  8. Recovery strategies for microburst encounters using reactive and forward-look wind shear detection

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1989-01-01

    The threat of convective microburst wind shear phenomena to aircraft is studied. An attempt was made to quantify the benefits of forward-look sensing and to develop and test a candidate set of strategies for recovery from inadvertent microburst encounters during the landing approach. A batch simulation of various wind shear encounters was carried out; the simulation consisted of a point-mass aircraft model, an analytical microburst, and a simple wind shear detection scheme. It was found that forward-look alerts given 10 sec prior to microburst entry permitted recoveries to be made with little altitude loss.

  9. Predicting wind shear effects: A study of Minnesota wind data collected at heights up to 70 meters

    SciTech Connect

    Artig, R.

    1997-12-31

    The Minnesota Department of Public Service (DPS) collects wind data at carefully selected sites around the state and analyzes the data to determine Minnesota`s wind power potential. DPS recently installed advanced new monitoring equipment at these sites and began to collect wind data at 30, 50, and 70 meters above ground level, with two anemometers at each level. Previously, the Department had not collected data at heights above ground level higher than 30 meters. DPS also, with the U.S. Department of Energy (DOE), installed four sophisticated monitoring sites as part of a Tall Tower Wind Shear Study that is assessing the effects of wind shear on wind power potential. At these sites, wind data are being collected at the 10, 30, 40, 50, 60, and 70 meter heights. This paper presents the preliminary results of the analysis of wind data from all sites. These preliminary results indicate that the traditional 1/7 power law does not effectively predict wind shear in Minnesota, and the result is an underestimation of Minnesota`s wind power potential at higher heights. Using a power factor of 1/5 or 1/4 may be more accurate and provide sound justification for installing wind turbines on taller towers in Minnesota.

  10. Comparison of low-altitude wind-shear statistics derived from measured and proposed standard wind profiles

    NASA Technical Reports Server (NTRS)

    Usry, J. W.

    1983-01-01

    Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.

  11. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    PubMed

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. PMID:25583871

  12. A method for three-dimensional modeling of wind-shear environments for flight simulator applications

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1984-01-01

    A computational method for modeling severe wind shears of the type that have been documented during severe convective atmospheric conditions is offered for use in research and training flight simulation. The procedure was developed with the objectives of operational flexibility and minimum computer load. From one to five, simple down burst wind models can be configured and located to produce the wind field desired for specific simulated flight scenarios. A definition of related turbulence parameters is offered as an additional product of the computations. The use of the method to model several documented examples of severe wind shear is demonstrated.

  13. Hourly observations of the jet stream - Wind shear, Richardson number and pilot reports of turbulence

    NASA Technical Reports Server (NTRS)

    Syrett, William J.

    1991-01-01

    Results are presented of observations of the jet stream made on the basis of over 400 hr of wind and temperature data taken during two prolonged jet stream passages above western and central Pennsylvania during mid-November 1986 and mid-January 1987. Wind profilers are found to be far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability forecasts of turbulence based on wind profiler-derived shear values appears possible. A good correlation between pilot reports and turbulence and wind shear is found.

  14. Roles of Wind Shear at Different Vertical Levels, Part I: Cloud System Organization and Properties

    SciTech Connect

    Chen, Qian; Fan, Jiwen; Hagos, Samson M.; Gustafson, William I.; Berg, Larry K.

    2015-07-16

    Understanding of critical processes that contribute to the organization of mesoscale convective systems is important for accurate weather forecast and climate prediction. In this study, we investigate the effects of wind shear at different vertical levels on the organization and properties of cloud systems using the Weather Research & Forecasting (WRF) model with a spectral-bin microphysical scheme. The sensitivity experiments are performed by increasing wind shear at the lower (0-5 km), middle (5-10 km), upper (> 10 km) and the entire troposphere, respectively, based on a control run for a mesoscale convective system (MCS) with weak wind shear. We find that increasing wind shear at the both lower and middle vertical levels reduces the domain-accumulated precipitation and the occurrence of heavy rain, while increasing wind shear at the upper levels changes little on precipitation. Although increasing wind shear at the lower-levels is favorable for a more organized quasi-line system which leads to enlarged updraft core area, and enhanced updraft velocities and vertical mass fluxes, the precipitation is still reduced by 18.6% compared with the control run due to stronger rain evaporation induced by the low-level wind shear. Strong wind shear in the middle levels only produces a strong super-cell over a narrow area, leading to 67.3% reduction of precipitation over the domain. By increasing wind shear at the upper levels only, the organization of the convection is not changed much, but the increased cloudiness at the upper-levels leads to stronger surface cooling and then stabilizes the atmosphere and weakens the convection. When strong wind shear exists over the entire vertical profile, a deep dry layer (2-9 km) is produced and convection is severely suppressed. There are fewer very-high (cloud top height (CTH) > 15 km) and very-deep (cloud thickness > 15 km) clouds, and the precipitation is only about 11.8% of the control run. The changes in cloud microphysical

  15. Power spectral density analysis of wind-shear turbulence for related flight simulations. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Laituri, Tony R.

    1988-01-01

    Meteorological phenomena known as microbursts can produce abrupt changes in wind direction and/or speed over a very short distance in the atmosphere. These changes in flow characteristics have been labelled wind shear. Because of its adverse effects on aerodynamic lift, wind shear poses its most immediate threat to flight operations at low altitudes. The number of recent commercial aircraft accidents attributed to wind shear has necessitated a better understanding of how energy is transferred to an aircraft from wind-shear turbulence. Isotropic turbulence here serves as the basis of comparison for the anisotropic turbulence which exists in the low-altitude wind shear. The related question of how isotropic turbulence scales in a wind shear is addressed from the perspective of power spectral density (psd). The role of the psd in related Monte Carlo simulations is also considered.

  16. Numerical study of shear stress distribution at sand ripple surface in wind tunnel flow

    NASA Astrophysics Data System (ADS)

    Bar, Nitsan; Elperin, Tov; Katra, Itzhak; Yizhaq, Hezi

    2016-06-01

    The mechanism responsible for the formation and sustainability of sand ripples sheared by a uniform air flow is not well understood, despite the significant attention that has been given to it ever since the pioneering studies of Bagnold (1941). In this study we explore ANSYS Fluent simulations of fine-scale turbulent flow structure in the vicinity of 2D sand ripples with particular emphasis on shear stress distribution at the sand bed. The flow parameters in the simulations were pertinent to the wind tunnel experiments for studying sand ripples formation. The simulations show that the shear stress at the crest is about 2.5 times larger than the shear stress at the trough and that in most of the simulations a separation bubble has been developed at the lee slope. In contrast to wind tunnel experiments the simulations show that ripples will be flattened at wind speed of 9 m/s as shear stress at the ripples surface exceeds the fluid threshold. This discrepancy between the calculations and real wind tunnel measurements are due to the important role of the saltation layer on the decrease of the shear stress at the surface. Without this effect ripples cannot grow higher and will be diminished at quite moderate winds.

  17. The detection and measurement of microburst wind shear by an airborne lidar system

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A.; Bowles, Roland L.; Targ, Russell

    1993-01-01

    The NASA Lockheed Missiles and Space Company (LMSC) Coherent Lidar Airborne Shear Sensor (CLASS) employs coherent lidar technology as a basis for a forward-looking predictive wind shear detection system. Line of sight wind velocities measured ahead of the aircraft are combined with aircraft state parameters to relate the measured wind change (or shear) ahead of an aircraft to its performance loss or gain. In this way the system can predict whether a shear detected ahead of the aircraft poses a significant threat to the aircraft and provide an advance warning to the flight crew. Installed aboard NASA's Boeing 737 research aircraft, the CLASS system is flown through convective microburst wind shears in Denver, Co., and Orlando, Fl. Some preliminary flight test results are presented. It is seen that the system was able to detect and measure wind shears ahead of the aircraft in the relatively dry Denver environment, but its performance was degraded in the high humidity and heavy rain in Orlando.

  18. Aircraft Low Altitude Wind Shear Detection and Warning System.

    NASA Astrophysics Data System (ADS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    There is now considerable evidence to substantiate the causal relationship between low altitude wind shear (LAWS) and the recent increase in low-altitude aircraft accidents. The National Research Council has found that for the period 1964 to 1982, LAWS was involved in nearly all the weather-related air carrier fatalities. However, at present, there is no acceptable method, technique, or hardware system that provides the necessary safety margins, for spatial and timely detection of LAWS from an aircraft during the critical phases of landing and takeoff. The Federal Aviation Administration (FAA) has addressed this matter and supports the development of an airborne system for detecting hazardous LAWS with at least a one minute warning of the potential hazard to the pilot. One of the purposes of this paper is to show from some of our preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts [microbursts/macrobursts (MB)] and thunderstorm gust front outflows that are responsible for most of the LAWS events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial-air speed systems that require the actual penetration of the MB before a pilot warning can be initiated. Our preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of MB threat, location, movement, and predicted MB hazards along the flight path ahead of the aircraft.In a proof-of-concept experiment, we have flight tested a prototype FLIR system (nonscanning, fixed range) near and within Colorado MBs with excellent detectability. The results show that a minimum warning time of one-four minutes (5×10 km), depending on aircraft speed, is available to the pilot prior to a MB encounter. Analysis of the flight data with respect to a modified `hazard index' indicates the severe hazard

  19. Total energy-rate feedback for automatic glide-slope tracking during wind-shear penetration

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1984-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during the take-off and landing phases of flight. A total energy-rate sensor was developed for measuring the specific total energy rate of an airplane with respect to the air mass. Control-system designs, both with and without energy-rate feedback, for the approach to landing of a transport airplane through a severe-wind-shear and gust environment are presented in order to evaluate this application of the sensor. A system model incorporates wind-shear-dynamics equations with the airplane equations of motion to permit analysis of the control systems under various wind-shear conditions. The control systems are designed using optimal-output feedback and are analyzed using frequency-domain control-theory techniques. Control-system performance is evaluated using a complete nonlinear simulation of the airplane combined with a severe-wind-shear and gust data package. This evaluation is concerned with control system stability and regulation capability only.

  20. Evaluation of total energy-rate feedback for glidescope tracking in wind shear

    NASA Technical Reports Server (NTRS)

    Belcastro, C. M.; Ostroff, A. J.

    1986-01-01

    Low-altitude wind shear is recognized as an infrequent but significant hazard to all aircraft during take-off and landing. A total energy-rate sensor, which is potentially applicable to this problem, has been developed for measuring specific total energy-rate of an airplane with respect to the air mass. This paper presents control system designs, with and without energy-rate feedback, for the approach to landing of a transport airplane through severe wind shear and gusts to evaluate application of this sensor. A system model is developed which incorporates wind shear dynamics equations with the airplance equations of motion, thus allowing the control systems to be analyzed under various wind shears. The control systems are designed using optimal output feedback and are analyzed using frequency domain control theory techniques. Control system performance is evaluated using a complete nonlinear simulation of the airplane and a severe wind shear and gust data package. The analysis and simulation results indicate very similar stability and performance characteristics for the two designs. An implementation technique for distributing the velocity gains between airspeed and ground speed in the simulation is also presented, and this technique is shown to improve the performance characteristics of both designs.

  1. Nocturnal wind direction shear and its potential impact on pollutant transport

    SciTech Connect

    Bowen, B.M.; Baars, J.A.; Stone, G.L.

    1998-12-31

    The estimation of transport and diffusion of airborne pollutants during the nighttime is challenging, especially over complex terrain where gravity driven drainage flows may be overlain with wind from a different direction. This study investigates the character of wind direction shear in the lowest 100 m using tower measurements from a complex, semi-arid site where local thermally-driven flows are common. The effects of wind direction shear on plume transport are studied by simulating a hypothetical elevated term release. This is accomplished by first simulating transport and dispersion using wind measurements from only the 12-m level from a network of towers. This case represents the approach commonly taken at many facilities where a network of short towers is available. Then the release is modeled using wind measurements made at four levels in the lowest 100 m. The differences between the two simulations are significant and would lead to very different responses in an emergency situation.

  2. Nocturnal wind direction shear and its potential impact on pollutant transport

    SciTech Connect

    Bowen, B.M.; Baars, J.A.; Stone, G.L.

    1997-09-01

    The estimation of transport and diffusion of airborne pollutants during the nighttime is challenging, especially over complex terrain where gravity driven drainage flows may be overlain with wind from a different direction. This study investigates the character of wind direction shear in the lowest 100 m using tower measurements from a complex, semi-arid site where local thermally-driven flows are common. the effects of wind direction shear on plume transport are studied by simulating a hypothetical elevated term release. This is accomplished by first simulating transport and dispersion using wind measurements from only the 12-m level from a network of towers. This case represents the approach commonly taken at many facilities where a network of short towers is available. Then the release is modeled using wind measurements made at four levels in the lowest 100 m. The differences between the two simulations are significant and would lead to very different responses in an emergency situation.

  3. Climatological characteristics of high altitude wind shear and lapse rate layers

    NASA Technical Reports Server (NTRS)

    Ehernberger, L. J.; Guttman, N. B.

    1981-01-01

    Indications of the climatological distribution of wind shear and temperature lapse and inversion rates as observed by rawinsonde measurements over the western United States are recorded. Frequencies of the strongest shear, lapse rates, and inversion layer strengths were observed for a 1 year period of record and were tabulated for the lower troposphere, the upper troposphere, and five altitude intervals in the lower stratosphere. Selected bivariate frequencies were also tabulated. Strong wind shears, lapse rates, and inversion are observed less frequently as altitude increases from 175 millibars to 20 millibars. On a seasonal basis the frequencies were higher in winter than in summer except for minor influences due to increased tropopause altitude in summer and the stratospheric wind reversal in the spring and fall.

  4. A Monte Carlo simulation technique for low-altitude, wind-shear turbulence

    NASA Technical Reports Server (NTRS)

    Bowles, Roland L.; Laituri, Tony R.; Trevino, George

    1990-01-01

    A case is made for including anisotropy in a Monte Carlo flight simulation scheme of low-altitude wind-shear turbulence by means of power spectral density. This study attempts to eliminate all flight simulation-induced deficiencies in the basic turbulence model. A full-scale low-altitude wind-shear turbulence simulation scheme is proposed with particular emphasis on low cost and practicality for near-ground flight. The power spectral density statistic is used to highlight the need for realistic estimates of energy transfer associated with low-altitude wind-shear turbulence. The simulation of a particular anisotropic turbulence model is shown to be a relatively simple extension from that of traditional isotropic (Dryden) turbulence.

  5. A candidate concept for display of forward-looking wind shear information

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1989-01-01

    A concept is proposed which integrates forward-look wind shear information with airplane performance capabilities to predict future airplane energy state as a function of range. The information could be displayed to a crew either in terms of energy height or airspeed deviations. The anticipated benefits of the proposed display information concept are: (1) a wind shear hazard product that scales directly to the performance impact on the airplane and that has intuitive meaning to flight crews; (2) a reduction in flight crew workload by automatic processing of relevant hazard parameters; and (3) a continuous display of predicted airplane energy state if the approach is continued. Such a display may be used to improve pilot situational awareness or improve pilot confidence in wind shear alerts generated by other systems. The display is described and the algorithms necessary for implementation in a simulation system are provided.

  6. Wind Shear May Produce Long-Lived Storms and Squall Lines on Titan

    NASA Astrophysics Data System (ADS)

    Rafkin, S.; Barth, E.

    2015-10-01

    The impact of CAPE and wind shear on storms in a Titan-like environment are explored through numerical simulation. Model results indicate that Titan storms should respond to changes in the Richardson Number. Very long-lived storms (>24hours) propagating for 1000 km or more might be possible. Varying amounts of shear in the Titan environment might explain the variety of convective cloud expressions identified in Cassini orbiter and ground-based observations. The resulting distribution and magnitude of precipitation as well as surface winds associated with storms have implications on the formation of fluvial and aeolian features and on the exchange of methane with the surface and lakes.

  7. Local and Remote Influences on Vertical Wind Shear over the Northern Tropical Atlantic Region

    NASA Astrophysics Data System (ADS)

    Saravanan, R.; Zhu, X.

    2009-12-01

    Vertical wind shear is one of the most important parameters controlling the frequency and intensity of Atlantic hurricanes. It has been argued that in global warming scenarios, the mechanical effect of changing vertical wind shear may even trump the thermodynamic effect of increasing Atlantic sea surface temperatures, when it comes to projected trends in Atlantic hurricane activity. Despite its importance, little is known about the connection between vertical shear in the north Atlantic region and the global atmospheric circulation, apart from the well-known positive correlation with El Nino-Southern Oscillation (ENSO). In this study, we analyze the statistical relationship between vertical shear and features of the large-scale circulation such as the distribution of sea surface temperature and vertical motion. We examine whether this relationship is different on interannual timescales associated with ENSO as compared to the decadal timescales associated with the Atlantic Multidecadal Oscillation (AMO). We also investigate how well the global general circulation models manage to simulate the observed vertical shear in this region, and its relationship to the large-scale circulation. Our analyses reveal an interesting sensitivity to air-sea coupling in model simulations of vertical shear. Another interesting property of vertical shear, as defined in the context of hurricane studies, is that it is positive definite, rather like precipitation. This means that it has a very nongaussian probability distribution on short timescales. We analyze how this nongaussianity changes when averaged over longer timescales.

  8. Factors influencing tolerance to wind shears in landing approach

    NASA Technical Reports Server (NTRS)

    Bray, R. S.

    1976-01-01

    Flight simulator studies were conducted to examine the piloting problems resulting from encounters with unusual atmospheric disturbances late in landing approach. Simulated encounters with disturbances, including examples derived from accident data, provided the opportunity to study aircraft and pilot performance. It was observed that substantial delays in pilot response to shear-induced departures from glide slope often seriously amplified the consequences of the encounter. In preliminary assessments, an integrated flight instrument display featuring flight path as the primary controlled element appeared to provide the means to minimize such delays by improving tolerance to disturbances in landing approaches.

  9. Simulator investigation of wind shear recovery techniques. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1988-01-01

    The objective was the development of practical flight procedures and guidance for near-optimal trajectories during inadvertent wind shear encounters following takeoff. The approach was to conduct preliminary development of candidate strategies using batch simulation of the point mass B737-100 performance model and to evaluate candidate guidance strategies in piloted, real time, six degrees of freedom simulation.

  10. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    Papers presented at the conference on airborne wind shear detection and warning systems are compiled. The following subject areas are covered: terms of reference; case study; flight management; sensor fusion and flight evaluation; Terminal Doppler Weather Radar data link/display; heavy rain aerodynamics; and second generation reactive systems.

  11. The effect of roughness elements on wind erosion: The importance of surface shear stress distribution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Representation of surface roughness effects on aeolian sediment transport is a key source of uncertainty in wind erosion models. Drag partitioning schemes are used to account for roughness by scaling the soil entrainment threshold by the ratio of shear stress on roughness elements to that on the veg...

  12. Turbulence generation by mountain wave breaking in flows with directional wind shear

    NASA Astrophysics Data System (ADS)

    Vittoria Guarino, Maria; Teixeira, Miguel A. C.

    2016-04-01

    In this study, wave breaking, and the potential for the generation of turbulence in the atmosphere, is investigated using high-resolution numerical simulations of idealized atmospheric flows with directional wind shear over a three-dimensional isolated mountain. These simulations, which use the WRF-ARW model, differ in degree of flow non-linearity and directional wind shear intensity, quantified through the dimensionless mountain height and the Richardson number of the incoming flow. The aim is to predict wave breaking occurrence based on large-scale variables. The simulation results have been used to produce a regime diagram representing a description of wave breaking behavior in parameter space. By selecting flow overturning occurrence as a discriminating factor, it was possible to split the regime diagram in two sub-regions representing: a non-wave breaking regime and a wave breaking regime. The regime diagram shows that in the presence of directional shear wave breaking may occur over lower mountains that in a constant-wind case. When mountain waves break, the associated convective instability can lead to turbulence generation (known as Clear Air Turbulence or CAT in a non-cloudy atmosphere), thus, regions within the simulation domain where wave breaking and potential development of CAT are expected have been identified. The extent of these regions is variable and increases with the background shear intensity. In contrast with constant-wind flows, where wave breaking occurs in the stream-wise direction aligned with the mountain, for the helical wind profiles considered in this study as prototypes of flows with directional wind shear, flow overturning regions have a more three-dimensional geometry. The analysis of the model outputs, supported by theoretical arguments, suggest the existence of a link between wave breaking and the relative orientation of the incoming wind vector and the horizontal velocity perturbation vector. In particular, in a wave breaking

  13. Application of infrared radiometers for airborne detection of clear air turbulence and low level wind shear, airborne infrared low level wind shear detection test

    NASA Technical Reports Server (NTRS)

    Kuhn, P. M.

    1985-01-01

    The feasibility of infrared optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with infrared detectors and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, infrared transmitting (KRS-5) window through which signals would reach the detector. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present infrared detectors and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the infrared detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.

  14. Organization of vertical shear of wind and daily variability of monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Gouda, K. C.; Goswami, P.

    2016-02-01

    Very little is known about the mechanisms that govern the day to day variability of the Indian summer monsoon (ISM) rainfall; in the current dominant view, the daily rainfall is essentially a result of chaotic dynamics. Most studies in the past have thus considered monsoon in terms of its seasonal (June-September) or monthly rainfall. We show here that the daily rainfall in June is associated with vertical shear of horizontal winds at specific scales. While vertical shear had been used in the past to investigate interannual variability of seasonal rainfall, rarely any effort has been made to examine daily rainfall. Our work shows that, at least during June, the daily rainfall variability of ISM rainfall is associated with a large scale dynamical coherence in the sense that the vertical shear averaged over large spatial extents are significantly correlated with area-averaged daily rainfall. An important finding from our work is the existence of a clearly delineated monsoon shear domain (MSD) with strong coherence between area-averaged shear and area-averaged daily rainfall in June; this association of daily rainfall is not significant with shear over only MSD. Another important feature is that the association between daily rainfall and vertical shear is present only during the month of June. Thus while ISM (June-September) is a single seasonal system, it is important to consider the dynamics and variation of June independently of the seasonal ISM rainfall. The association between large-scale organization of circulation and daily rainfall is suggested as a basis for attempting prediction of daily rainfall by ensuring accurate simulation of wind shear.

  15. Solid-state coherent laser radar wind shear measuring systems

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton

    1992-01-01

    Coherent Technologies, Inc. (CTI) was established in 1984 to engage in the development of coherent laser radar systems and subsystems with applications in atmospheric remote sensing, and in target tracking, ranging and imaging. CTI focuses its capabilities in three major areas: (1) theoretical performance and design of coherent laser radar system; (2) development of coherent laser radar systems for government agencies such as DoD and NASA; and (3) development of coherent laser radar systems for commercial markets. The topics addressed are: (1) 1.06 micron solid-state coherent laser radar system; (2) wind measurement using 1.06 micron system; and flashlamp-pumped 2.09 micron solid-state coherent laser radar system.

  16. Performance analysis and technical assessment of coherent lidar systems for airborne wind shear detection

    NASA Technical Reports Server (NTRS)

    Huffaker, R. Milton; Targ, Russell

    1988-01-01

    Detailed computer simulations of the lidar wind-measuring process have been conducted to evaluate the use of pulsed coherent lidar for airborne windshear monitoring. NASA data fields for an actual microburst event were used in the simulation. Both CO2 and Ho:YAG laser lidar systems performed well in the microburst test case, and were able to measure wind shear in the severe weather of this wet microburst to ranges in excess of 1.4 km. The consequent warning time gained was about 15 sec.

  17. Evolution and Growth Competition of Salt Fingers in Saline Lake with Slight Wind Shear

    NASA Astrophysics Data System (ADS)

    Yang, Ray-Yeng; Hwung, Hwung-Hweng; Shugan, Igor

    2010-05-01

    Since the discover of double-diffusive convection by Stommel, Arons & Blanchard (1956), 'evidence has accumulated for the widespread presence of double-diffusion throughout the ocean' and for its 'significant effects on global water-mass structure and the thermohaline convection' (Schmitt, 1998). The salt-fingering form of double-diffusion has particularly attracted interest because of salt-finger convection being now widely recognized as an important mechanism for mixing heat and salt both vertically and laterally in the ocean and saline lake. In oceanographic situations or saline lake where salt fingers may be an important mechanism for the transport of heat and salt in the vertical, velocity shears may also be present. Salt finger convection is analogous to Bénard convection in that the kinetic energy of the motions is obtained from the potential energy stored in the unstable distribution of a stratifying component. On the basis of the thermal analogy it is of interest to discover whether salt fingers are converted into two-dimensional sheets by the wind shear, and how the vertical fluxes of heat and salt are changed by the wind shear. Salt finger convection under the effect of steady wind shear is theoretically examined in this paper. The evolution of developing in the presence of a vertical density gradient disturbance and the horizontal Couette flow is considered near the onset of salt fingers in the saline lake under a moderate rate of wind shear. We use velocity as the basic variable and solve the pressure Poisson equation in terms of the associated Green function. Growth competition between the longitudinal rolls (LR) and the transverse rolls (TR), whose axes are respectively in the direction parallel to and perpendicular to the Couette flow, is investigated by the weakly nonlinear analysis of coupled-mode equations. The results show that the TR mode is characterized in some range of the effective Rayleigh number, and that the stability is dominated by

  18. Contributions on the Subject of Longitudinal Movements of Aircraft in Wind Shears. Ph.D. Thesis - Technischen Univ., 1983

    NASA Technical Reports Server (NTRS)

    Krauspe, P.

    1985-01-01

    The effect of downburst-type wind shears on the longitudinal dynamic behavior of an unguided aircraft is simulated numerically on the basis of published meteorological data and the flight characteristics of an A300-B passenger jet. The nonlinear differential equations of the aircraft motion are linearized by conventional methods, and the wind effects are introduced via the linear derivatives of the wind components referred to the wind gradients to obtain simplified technical models of the longitudinal response to all possible types of constant-gradient wind shears during the first 20-60 sec. Graphs, maps, and diagrams are provided, and a number of accidents presumed to have involved wind shears are analyzed in detail.

  19. WIND-SHEARING IN GASEOUS PROTOPLANETARY DISKS AND THE EVOLUTION OF BINARY PLANETESIMALS

    SciTech Connect

    Perets, Hagai B.; Murray-Clay, Ruth A.

    2011-05-20

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs much before the dispersal of most of the gas from the protoplanetary disk. Due to their different aerodynamic properties, planetesimals of different sizes and shapes experience different drag forces from the gas during this time. Such differential forces produce a wind-shearing (WISH) effect between close by, different-sized planetesimals. For any two planetesimals, a WISH radius can be considered at which the differential acceleration due to the wind becomes greater than the mutual gravitational pull between the planetesimals. We find that the WISH radius could be much smaller than the gravitational shearing radius by the star (the Hill radius). In other words, during the gas-phase of the disk, WISH could play a more important role than tidal perturbations by the star. Here, we study the WISH radii for planetesimal pairs of different sizes and compare the effects of wind and gravitational shearing (drag force versus gravitational tidal force). We then discuss the role of WISH for the stability and survival of binary planetesimals. Binaries are sheared apart by the wind if they are wider than their WISH radius. WISH-stable binaries can also inspiral, and possibly coalesce, due to gas drag. Here, we calculate the WISH radius and the gas-drag-induced merger timescale, providing stability and survival criteria for gas-embedded binary planetesimals. Our results suggest that even WISH-stable binaries may merge in times shorter than the lifetime of the gaseous disk. This may constrain currently observed binary planetesimals to have formed far from the star or at a late stage after the dispersal of most of the disk gas. We note that the WISH radius may also be important for other processes such as planetesimal erosion and planetesimal encounters and collisions in a gaseous environment.

  20. Airborne Wind Shear Detection and Warning Systems: First Combined Manufacturers' and Technologists' Conference

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1988-01-01

    The purpose of the meeting was to transfer significant, ongoing results gained during the first year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-looking technology concepts and for technologists to gain an understanding of FAA certification requirements and the problems encountered by the manufacturers during the development of airborne equipment.

  1. Wind Shear May Produce Long-Lived Storms and Squall Lines on Titan

    NASA Astrophysics Data System (ADS)

    Rafkin, Scot C. R.; Barth, Erika

    2015-11-01

    The impact of CAPE and wind shear on storms in a Titan-like environment are explored through numerical simulation. Numerical modeling indicates that both large-scale shear and CAPE environment control the dynamics of the clouds. This response to the large-scale environment is analogous to the behavior of deep convective clouds on Earth. The balance between shear and CAPE, as expressed through the bulk Richardson Number (NR), is a good indicator of the response of a storm to its environment. Large NR results in short-lived single cell storms (Figure 1). As shear increases for a given CAPE, and NR decreases, the storms transition to a multicellular regime. Multicellular storms are longer-lived and are characterized by a downdraft generated cold pool that interacts with the background shear vorticity to initiate cells along the leading edge of the storm gust front (Figure 2). Very long-lived storms (>24 hours) propagating for 1000 km or more might be possible. The most intense multicellular systems simulated in this study behave similar to terrestrial squall lines, and very long-lived storms (>24 hours) propagating for 1000 km or more might be possible. Cloud outbursts and linear cloud features observed from ground and Cassini may be the result of these organized storm systems. Varying amounts of shear in the Titan environment might explain the variety of convective cloud expressions identified in Cassini orbiter and ground-based observations. The resulting distribution and magnitude of precipitation as well as surface winds associated with storms have implications on the formation of fluvial and aeolian features, including dunes, and on the exchange of methane with the surface and lakes.

  2. Flight evaluation of a simple total energy-rate system with potential wind-shear application

    NASA Technical Reports Server (NTRS)

    Ostroff, A. J.; Hueschen, R. M.; Hellbaum, R. F.; Creedon, J. F.

    1981-01-01

    Wind shears can create havoc during aircraft terminal area operations and have been cited as the primary cause of several major aircraft accidents. A simple sensor, potentially having application to the wind-shear problem, was developed to rapidly measure aircraft total energy relative to the air mass. Combining this sensor with either a variometer or a rate-of-climb indicator provides a total energy-rate system which was successfully applied in soaring flight. The measured rate of change of aircraft energy can potentially be used on display/control systems of powered aircraft to reduce glide-slope deviations caused by wind shear. The experimental flight configuration and evaluations of the energy-rate system are described. Two mathematical models are developed: the first describes operation of the energy probe in a linear design region and the second model is for the nonlinear region. The calculated total rate is compared with measured signals for many different flight tests. Time history plots show the tow curves to be almost the same for the linear operating region and very close for the nonlinear region.

  3. An Examination of Aviation Accidents Associated with Turbulence, Wind Shear and Thunderstorm

    NASA Technical Reports Server (NTRS)

    Evans, Joni K.

    2013-01-01

    The focal point of the study reported here was the definition and examination of turbulence, wind shear and thunderstorm in relation to aviation accidents. NASA project management desired this information regarding distinct subgroups of atmospheric hazards, in order to better focus their research portfolio. A seven category expansion of Kaplan's turbulence categories was developed, which included wake turbulence, mountain wave turbulence, clear air turbulence, cloud turbulence, convective turbulence, thunderstorm without mention of turbulence, and low altitude wind shear, microburst or turbulence (with no mention of thunderstorms).More than 800 accidents from flights based in the United States during 1987-2008 were selected from a National Transportation Safety Board (NTSB) database. Accidents were selected for inclusion in this study if turbulence, thunderstorm, wind shear or microburst was considered either a cause or a factor in the accident report, and each accident was assigned to only one hazard category. This report summarizes the differences between the categories in terms of factors such as flight operations category, aircraft engine type, the accident's geographic location and time of year, degree of injury to aircraft occupants, aircraft damage, age and certification of the pilot and the phase of flight at the time of the accident.

  4. Equatorial F region neutral winds and shears near sunset measured with chemical release techniques

    NASA Astrophysics Data System (ADS)

    Kiene, A.; Larsen, M. F.; Kudeki, E.

    2015-10-01

    The period near sunset is a dynamic and critical time for the daily development of the equatorial nighttime ionosphere and the instabilities that occur there. It is during these hours that the preconditions necessary for the later development of Equatorial Spread F (ESF) plasma instabilities occur. The neutral dynamics of the sunset ionosphere are also of critical importance to the generation of currents and electric fields; however, the behavior of the neutrals is experimentally understood primarily through very limited single-altitude measurements or measurements that provide weighted altitude means of the winds as a function of time. To date, there have been very few vertically resolved neutral wind measurements in the F region at sunset. We present two sets of sounding rocket chemical release measurements, one from a launch in the Marshall Islands on Kwajalein atoll and one from Alcantara, Brazil. Analysis of the release motions has yielded vertically resolved neutral wind profiles that show both the mean horizontal winds and the vertical shears in the winds. In both experiments, we observe significant vertical gradients in the zonal wind that are unexpected by classical assumptions about the behavior of the neutral wind at these altitudes at sunset near the geomagnetic equator.

  5. Effect of wind turbulence and shear on landing performance of jet transports

    NASA Technical Reports Server (NTRS)

    Blick, E. F.; Mccarthy, J.; Bensch, R. R.; Sarabudla, N. R.

    1978-01-01

    Computer simulations of a Boeing 727 class aircraft landing in turbulence were developed by programming the longitudinal aircraft equations of motion into a digital computer with various input values of vertical and horizontal wind speeds. Turbulent wind data was fed to the computer in one-second intervals. The computer computed in one-second intervals the aircraft speed, altitude, horizontal distance traveled, rate-of-descent, pitch attitude, glide path angle (from edge of runway) and elevator angle. All computer runs were made in the 'stick-fixed' mode. The RMS values of altitude and velocity perturbations (from equilibrium) were found to be large when horizontal wind gusts had sinusoidal components at or near the phugoid (long period) frequency. Maximum RMS altitude deviations occurred when the vertical wind had sinusoidal components which were 1/10 to 1/5 of the phugoid frequency. When real wind data (obtained from NCAR Queen Air) were used as input winds good correlations were found to exist between RMS velocity perturbations and both horizontal and vertical wind shears.

  6. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-01

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  7. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    SciTech Connect

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-15

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  8. Watershed Scale Shear Stress From Tethersonde Wind Profile Measurements Under Near Neutral and Unstable Atmospheric Stability

    NASA Astrophysics Data System (ADS)

    Parlange, M. B.; Katul, G. G.

    1995-04-01

    Mean wind speed profiles were measured in the atmospheric surface layer, using a tethersonde system, above the Ojai Valley Watershed in southern California. The valley is mainly planted with mature avocado and orange trees. The surface shear stress and latent and sensible heat fluxes were measured above the trees which are up to 9 m in height. Near-neutral wind speed profile measurements allowed the determination of the watershed surface roughness (z0 = 1.4 m) and the momentum displacement height (d0 = 7.0 m). The wind speed measurements obtained under unstable atmospheric stability were analyzed using Monin-Obukhov similarity theory. New stability correction functions proposed based on theory and experiments of Kader-Yaglom as well as the now classic Businger-Dyer type functions were tested. The watershed shear stress values calculated using the surface layer wind speed profiles with the new Monin-Obukhov stability functions were found to be improved in comparison with the values obtained with the Businger-Dyer functions under strongly unstable stability conditions. The Monin-Obukhov model with the Businger-Dyer stability correction function underpredicted the momentum flux by 25% under strongly unstable stability conditions, while the new Kader-Yaglom formulation compared well on average (R2 = 0.77) with the surface eddy correlation measurements for all atmospheric stability conditions. The unstable 100-m drag coefficient was found to be u*2/V1002 = 0.0182.

  9. Simulated flight through JAWS wind shear - In-depth analysis results. [Joint Airport Weather Studies

    NASA Technical Reports Server (NTRS)

    Frost, W.; Chang, H.-P.; Elmore, K. L.; Mccarthy, J.

    1984-01-01

    The Joint Airport Weather Studies (JAWS) field experiment was carried out in 1982 near Denver. An analysis is presented of aircraft performance in the three-dimensional wind fields. The fourth dimension, time, is not considered. The analysis seeks to prepare computer models of microburst wind shear from the JAWS data sets for input to flight simulators and for research and development of aircraft control systems and operational procedures. A description is given of the data set and the method of interpolating velocities and velocity gradients for input to the six-degrees-of-freedom equations governing the motion of the aircraft. The results of the aircraft performance analysis are then presented, and the interpretation classifies the regions of shear as severe, moderate, or weak. Paths through the severe microburst of August 5, 1982, are then recommended for training and operational applications. Selected subregions of the flow field defined in terms of planar sections through the wind field are presented for application to simulators with limited computer storage capacity, that is, for computers incapable of storing the entire array of variables needed if the complete wind field is programmed.

  10. A spatial model of wind shear and turbulence for flight simulation. Ph.D. Thesis - Colorado State Univ.

    NASA Technical Reports Server (NTRS)

    Campbell, C. W.

    1984-01-01

    A three dimensional model which combines measurements of wind shear in the real atmosphere with three dimensional Monte Carlo simulated turbulence was developed. The wind field over the body of an aircraft can be simulated and all aerodynamic loads and moments calculated.

  11. First observation of mesospheric wind shear as high as 330 m s-1 km-1

    NASA Astrophysics Data System (ADS)

    Wu, Yong-Fu; Widdel, H.-U.; Offermann, D.

    1995-09-01

    Mesospheric wind profiles with an altitude resolution of 25 m have been obtained by means of radar tracking of foil chaff clouds. Such experiments were performed during winter 1990 at Biscarrosse, France (44°N, 1°W). On one flight, a wind shear as high as 330 m s-1 km-1 at 87.4 km and a region of dynamical instability between 86 and 88 km was measured. This wind shear is believed to be the largest value ever measured in the mesosphere. The region of dynamical instability results from a superposition of two wave motions, and is found to link well with enhanced turbulence and small-scale wave activity. Acknowledgements. I thank D. R. McDiarmid of the Herzberg Institute of Astrophysics, National Research Council, Canada, for important ideas and discussions during the development of this work. I thank the referees for useful comments which have improved the paper. I also thank E.M. Poulter of NIWA for helpful suggestions, and for reading the manuscript and making useful comments. The work was supported by contract CO1309 of the New Zealand Foundation for Research, Science and Technology. Topical Editor C.-G. Fälthammar thanks K. Mursula and W. J. Hughes for their help in evaluating this paper.--> Correspondence to: W. Allan-->

  12. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) was held in Williamsburg, Virginia, on October 18 to 20, 1988. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  13. Airborne Wind Shear Detection and Warning Systems: Third Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1991-01-01

    The Third Combined Manufacturers' and Technologists' Conference was held in Hampton, Va., on October 16-18, 1990. The purpose of the meeting was to transfer significant on-going results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  14. Airborne Wind Shear Detection and Warning Systems: Fourth Combined Manufacturers' and Technologists' Conference, part 1

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document was compiled to record the essence of the technology updates and discussions which follow each.

  15. Analysis of aircraft control strategies for microburst encounter. [low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Stengel, R. F.; Psiaki, M. L.

    1984-01-01

    Analyses have indicated that improved control strategies could reduce the threat posed by the presence of microburst-type wind shear during aircraft takeoffs and landings. The attenuation of flight path response to microburst inputs by feedback control to elevators and throttle was studied for the cases of a jet transport and a general aviation aircraft, using longitudinal equations of motion, root locus analysis, Bode plots of altitude response to wind inputs, and nonlinear numerical simulation. Energy management relative to the airmass, a pitch-up response to the decreasing airspeed, increased phugoid mode damping, and decreased phugoid natural frequency, are found to improve microburst penetration aircraft behavior. Aircraft stall, and throttle saturation, are limiting factors in an aircraft's ability to maintain a given flight path during a microburst encounter.

  16. Turbulent transport model of wind shear in thunderstorm gust fronts and warm fronts

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Teske, M. E.; Segur, H. C. O.

    1978-01-01

    A model of turbulent flow in the atmospheric boundary layer was used to simulate the low-level wind and turbulence profiles associated with both local thunderstorm gust fronts and synoptic-scale warm fronts. Dimensional analyses of both type fronts provided the physical scaling necessary to permit normalized simulations to represent fronts for any temperature jump. The sensitivity of the thunderstorm gust front to five different dimensionless parameters as well as a change from axisymmetric to planar geometry was examined. The sensitivity of the warm front to variations in the Rossby number was examined. Results of the simulations are discussed in terms of the conditions which lead to wind shears which are likely to be most hazardous for aircraft operations.

  17. MAGNETIC RECONNECTION IN THE SOLAR WIND AT CURRENT SHEETS ASSOCIATED WITH EXTREMELY SMALL FIELD SHEAR ANGLES

    SciTech Connect

    Gosling, J. T.; Phan, T. D.

    2013-02-01

    Using Wind 3 s plasma and magnetic field data, we have identified nine reconnection exhausts within a solar wind disturbance on 1998 October 18-20 driven by a moderately fast interplanetary coronal mass ejection (ICME). Three of the exhausts within the ICME were associated with current sheets having local field shear angles, {theta}, ranging from 4 Degree-Sign to 9 Degree-Sign , the smallest reported values of {theta} yet associated with reconnection exhausts in a space plasma. They were observed in plasma characterized by extremely low (0.02-0.04) plasma {beta}, and very high (281-383 km s{sup -1}) Alfven speed, V{sub A}. Low {beta} allows reconnection to occur at small {theta} and high V{sub A} leads to exhaust jets that are fast enough relative to the surrounding solar wind to be readily identified. Very small-{theta} current sheets are common in the solar wind at 1 AU, but typically are not associated with particularly low plasma {beta} or high V{sub A}. On the other hand, small-{theta} current sheets should be common in the lower solar corona, a plasma regime of extremely low {beta} and extremely high V{sub A}. Our observations lend credence to models that predict that reconnection at small-{theta} current sheets is primarily responsible for coronal heating.

  18. Assessment of Wind Shear and Wind Energy Potential in the Baltic Sea Region of Latvia

    NASA Astrophysics Data System (ADS)

    Bezrukovs, V.; Bezrukovs, Vl.; Zacepins, A.; Komashilovs, V.

    2015-04-01

    The paper is devoted to the investigation into the wind energy potential based on long-term observations of the wind speed and energy density fluctuations at heights from 10 to 160 m on the Baltic Sea coast of Latvia. During the observations (2004 - 2013), the wind speed and direction values were measured, and the statistical database was accumulated using a LOGGER 9200 Symphonie measuring systems mounted on 60 m masts - one on the western coast and another on the north-east of Latvia. From June 2011 to May 2012, these measurements were complemented with the data for the heights from 40 to 160 m obtained by means of a ZephIR lidar and with the metrological data provided by "Latvian Environment, Geology and Meteorology Centre" for the same period. The graphs of seasonal fluctuations in the wind speed were obtained for the heights up to 160 m by measurements over the period of 2007 - 2013. The results of the research on the wind speed distribution up to 200 m are promising for evaluation of the wind energy potential of Latvia and will be helpful in assessment of prospective sites for construction of WPPs. Zinātniskais raksts ir veltīts pētījumam par vēja enerģijas potenciālu Latvijas teritorijā, Baltijas jūras piekrastē, balstoties uz ilgtermiņa vēja ātruma un vēja enerģijas blīvuma svārstību novērojumiem no 10 līdz 160 metriem augstumā. Vēja ātruma un vēja virziena mērījumu dati tika iegūti un apkopoti statistiskajā datubāzē laika periodā no 2004 līdz 2013. gadam, izmantojot mērīšanas sistēmu LOGGER 9200 Symphonie, kas bija ierīkotā uz 60 metru augsta masta - viena rietumu piekrastē un otra Latvijas ziemeļu-austrumos. No 2011. gada jūnija līdz 2012. gada maijam mērījumu datubāze tika papildināta ar datiem, kas tika iegūti ar lidaruZephIR augstumos no 40 līdz 160 metriem, un datiem no "Latvijas Vides, ģeoloģijas un meteoroloģijas centra" tam pašam laika periodam. Analizējot mērījumus 2007. g.-2013. g., grafiki ar

  19. The Structural Changes of Tropical Cyclones Upon Interaction with Vertical Wind Shear

    NASA Technical Reports Server (NTRS)

    Ritchie, Elizabeth A.

    2003-01-01

    The Fourth Convection and Moisture Experiment (CAMEX-4) provided a unique opportunity to observe the distributions and document the roles of important atmospheric factors that impact the development of the core asymmetries and core structural changes of tropical cyclones embedded in vertical wind shear. The state-of-the-art instruments flown on the NASA DC-8 and ER-2, in addition to those on the NOAA aircraft, provided a unique set of observations that documented the core structure throughout the depth of the tropical cyclone. These data have been used to conduct a combined observational and modeling study using a state-of-the-art, high- resolution mesoscale model to examine the role of the environmental vertical wind shear in producing tropical cyclone core asymmetries, and the effects on the structure and intensity of tropical cyclones.The scientific objectives of this study were to obtain in situ measurements that would allow documentation of the physical mechanisms that influence the development of the asymmetric convection and its effect on the core structure of the tropical cyclone.

  20. The Orlando TDWR testbed and airborne wind shear date comparison results

    NASA Technical Reports Server (NTRS)

    Campbell, Steven; Berke, Anthony; Matthews, Michael

    1992-01-01

    The focus of this talk is on comparing terminal Doppler Weather Radar (TDWR) and airborne wind shear data in computing a microburst hazard index called the F factor. The TDWR is a ground-based system for detecting wind shear hazards to aviation in the terminal area. The Federal Aviation Administration will begin deploying TDWR units near 45 airports in late 1992. As part of this development effort, M.I.T. Lincoln Laboratory operates under F.A.A. support a TDWR testbed radar in Orlando, FL. During the past two years, a series of flight tests has been conducted with instrumented aircraft penetrating microburst events while under testbed radar surveillance. These tests were carried out with a Cessna Citation 2 aircraft operated by the University of North Dakota (UND) Center for Aerospace Sciences in 1990, and a Boeing 737 operated by NASA Langley Research Center in 1991. A large data base of approximately 60 instrumented microburst penetrations has been obtained from these flights.

  1. Simple kinematic models for the environmental interaction of tropical cyclones in vertical wind shear

    NASA Astrophysics Data System (ADS)

    Riemer, M.; Montgomery, M. T.

    2011-09-01

    A major impediment to the intensity forecast of tropical cyclones (TCs) is believed to be associated with the interaction of TCs with dry environmental air. However, the conditions under which pronounced TC-environment interaction takes place are not well understood. As a step towards improving our understanding of this problem, we analyze here the flow topology of a TC immersed in an environment of vertical wind shear in an idealized, three-dimensional, convection-permitting numerical experiment. A set of distinct streamlines, the so-called manifolds, can be identified under the assumptions of steady and layer-wise horizontal flow. The manifolds are shown to divide the flow around the TC into distinct regions. The manifold structure in our numerical experiment is more complex than the well-known manifold structure of a non-divergent point vortex in uniform background flow. In particular, one manifold spirals inwards and ends in a limit cycle, a meso-scale dividing streamline encompassing the eyewall above the layer of strong inflow associated with surface friction and below the outflow layer in the upper troposphere. From the perspective of a steady and layer-wise horizontal flow model, the eyewall is well protected from the intrusion of environmental air. In order for the environmental air to intrude into the inner-core convection, time-dependent and/or vertical motions, which are prevalent in the TC inner-core, are necessary. Air with the highest values of moist-entropy resides within the limit cycle. This "moist envelope" is distorted considerably by the imposed vertical wind shear, and the shape of the moist envelope is closely related to the shape of the limit cycle. In a first approximation, the distribution of high- and low-θe air around the TC at low to mid-levels is governed by the stirring of convectively modified air by the steady, horizontal flow. Motivated by the results from the idealized numerical experiment, an analogue model based on a weakly

  2. On the vertical wind shear of Saturn's Equatorial Jet at cloud level

    NASA Astrophysics Data System (ADS)

    Sánchez-Lavega, A.; Pérez-Hoyos, S.

    2005-08-01

    With the aim of retrieving the altitude of cloud features used as zonal wind tracers in Saturn's atmosphere, we have reanalyzed three different sets of photometric and calibrated data corresponding to the Voyager epoch 1979-1981 (ground-based in 1979, Voyager 2 PPS and ISS observations in 1981), and we have analyze a new set of Hubble Space Telescope images for 2004. This analysis is put in the perspective of our previous HST study for 1994-2003 (Pérez-Hoyos et al., Icarus, 176, 155. 2005). A common result is found that the individual cloud tracers are embedded within a variable tropospheric haze. According to our models, the Voyager 2 ISS images locate the cloud tracers moving with zonal velocities of 455 to 465 (± 2) m/s at a pressure level of 360 ± 140 mbar. For HST observations, the cloud tracers moving with zonal wind speeds of 280 ± 10 m/s, locate at a pressure level of about 50 ± 10 mbar. All these values are calculated in the latitude 3 deg North. The speed difference, if interpreted as a vertical wind shear (Porco et al., Science, 307, 1226. 2005), requires a change of 90 m/s per scale height, two times greater than that estimated from Cassini CIRS data (Flasar et al., Science, 307, 1247, 2005). We also perform an initial guess on Cassini ISS vertical sounding levels, retrieving values compatible with the HST ones but not with Voyager wind measurements. We conclude that the wind speed velocity differences measured between 1979-81 and 2004 in the upper troposphere cannot be solely explained as a wind shear effect and demand dynamical processes. We discuss the possible action of Rossby waves or an intrinsic circulation change in the ammonia cloud layer and above, following a large period of equatorial storm activity. Acknowledgments: This work was supported by MCYT AYA2003-03216, FEDER, and Grupos UPV 15946/2004. S.P.-H. acknowledges a PhD fellowship from the Spanish MEC and R. H. a post-doc contract from Gobierno Vasco.

  3. Microburst wind structure and evaluation of Doppler radar for airport wind shear detection

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Roberts, R. D.; Kessinger, C.; Mccarthy, J.

    1984-01-01

    The horizontal and vertical structure of airflow within microbursts has been determined using Doppler weather radar data from the Joint Airport Weather Studies (JAWS) Project. It is shown that the downdraft typically associated with microbursts is about 1 km wide and begins to spread horizontally at a height below 1 km. The median time from initial divergence at the surface to maximum differential wind velocity across the microburst is five minutes. The height of maximum differential velocity is about 75 m, and the median velocity differential is 22 m/s over an average distance of 3.1 km. The outflow of the air is asymmetric, averaging twice as strong along the maximum axis compared to the mininum axis. Some technical requirements for a radar system to detect microbursts and to provide aircraft with early warnings of the onset of windshear are identified.

  4. Spectrum characteristics of Denver and Philadelphia ground clutter and the problem of distinguishing wind shear targets from moving clutter

    NASA Technical Reports Server (NTRS)

    Mackenzie, Anne I.

    1992-01-01

    Spectral analysis of 1991 wind shear flight data has provided information about the power spectral density, spectral width, and velocity of ground clutter detected by the wind shear radar at several major airports. Ground clutter must be recognized and separated from weather targets before wind shear can be computed. Information will be presented characterizing and comparing ground clutter and weather target spectra. The information includes (1) spectral widths of stationary ground clutter seen at various scan and tilt angles, (2) power spectral density and velocity of moving ground clutter relative to the stationary ground clutter, and (3) spectral widths and velocities of weather targets. A summary of numerical results in the form of histograms and example numerical results in the form of spectral plots are presented.

  5. A shear sensitive monomer-polymer liquid crystal system for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, Jag J.; Eftekhari, Abe

    1992-01-01

    Characteristics of a liquid crystal system, comprised of a shear-sensitive cholesteric-monomer liquid crystal thin-film coated on a liquid-crystal polymer substrate, are described. The system provides stable Grandjean texture, a desirable feature for shear-stress measurements using selective reflection from the monomer liquid-crystal helix structure. Impingement of gas or air flow on the monomer liquid-crystal free surface changes the wavelength of the selective reflection for an incident white light from red toward blue with increase in the rate of gas flow. The contrast of the selectively reflected light improves considerably by providing a thin black coating of about 5 microns at the monomer-polymer interface. The coating thickness is such that the steric interactions are still sufficiently strong to maintain Grandjean texture. For a small angle of incidence of a monochromatic light, the measurement of the reflected light intensity normal to the monomer-polymer liquid-crystal interface enables the determination of the wavelength for selective reflection as a function of the gas-flow differential pressure applied in the plane of the interface. The variation of the wavelength with the pressure is linear with a slope of about 2 nm/mmHg. Furthermore, the shear-stress effects are reversible unlike for monomer liquid crystal-metal systems used for flow visualization on wind-tunnel model surfaces. The present system offers a suitable method for direct on-line measurement of shear stress field from measurements of the wavelength for selective reflection for an incident white light.

  6. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Elkington, S. R.; Wiltberger, M.

    2008-05-01

    We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailward along the magnetopause boundary. The other mode, the inner KH mode, propagates tailward along the inner edge of the boundary layer (IEBL). We find large vortical structures associated with the inner KH mode that are centered on the IEBL. The phase velocities, wavelengths, and frequencies of the two KH modes are computed. The KH waves are found to be fairly monochromatic with well-defined wavelengths. In addition, the inner and magnetopause KH modes are coupled and lead to a coupled oscillation of the low-latitude boundary layer. The boundary layer thickness, d, is computed and we find maximum wave growth for kd = 0.5-1.0, where k is the wave number, consistent with the linear theory of the KH instability. We comment briefly on the effectiveness of these KH waves in the energization and transport of radiation belt electrons.

  7. Test and evaluation of the Airport Surveillance Radar (ASR)-8 wind shear detection system (phase 2), revision

    NASA Astrophysics Data System (ADS)

    Offi, D. L.; Lewis, W.; Lee, T.; Delamarche, A.

    1980-08-01

    A wind shear detection system developed by the Wave Propagation Laboratory (WPL) to operate with the Federal Aviation Administration (FAA) Airport Surveillance Radar (ASR)-8 was installed and is being tested at the FAA technical Center. Initial efforts, previously reported in Report NA-78-59-LR, were directed toward hardware and software shakedown and feasibility determination. Second phase tests compared radar with aircraft and tower winds, evaluated the wind shear measurement capability under various weather conditions, and investigated the effectiveness of a simple two-azimuth pointing strategy and system capabilities and limitations. Results showed the system to be compatible with and to operate satisfactorily with the ASR-8. The processing and spectral display of clear air and precipitation returns is feasible. The accuracy of agreement between radar-measured winds and components of the aircraft-measured winds in both radially oriented flights and runway offset flights, using a two-azimuth pointing technique, was examined. Radar versus tower wind agreement was also examined. Potentially dangerous wind shears associated with weather during these tests were detectable. Certain system limitations also have been defined and considered. It is recommended that tests continue to complete definition of and demonstrate capabilities in all weather situations, to optimize performance, and to provide information to specify system design for possible development of a prototype model.

  8. Structural characterization of wind-sheared turbulent flow using self-organized mapping

    NASA Astrophysics Data System (ADS)

    Scott, Nicholas V.; Handler, Robert A.

    2016-05-01

    A nonlinear cluster analysis algorithm is used to characterize the spatial structure of a wind-sheared turbulent flow obtained from the direct numerical simulation (DNS) of the three-dimensional temperature and momentum fields. The application of self-organizing mapping to DNS data for data reduction is utilized because of the dimensional similitude in structure between DNS data and remotely sensed hyperspectral and multispectral data where the technique has been used extensively. For the three Reynolds numbers of 150, 180, and 220 used in the DNS, self-organized mapping is successful in the extraction of boundary layer streaky structures from the turbulent temperature and momentum fields. In addition, it preserves the cross-wind scale structure of the streaks exhibited in both fields which loosely scale with the inverse of the Reynolds number. Self-organizing mapping of the along wind component of the helicity density shows a layer of the turbulence field which is spotty suggesting significant direct coupling between the large and small-scale turbulent structures. The spatial correlation of the temperature and momentum fields allows for the possibility of the remote extrapolation of the momentum structure from thermal structure.

  9. Airborne Wind Shear Detection and Warning Systems. Second Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Spady, Amos A., Jr. (Compiler); Bowles, Roland L. (Compiler); Schlickenmaier, Herbert (Compiler)

    1990-01-01

    The Second Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on October 18 to 20, 1988. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Herbrt Schlickenmaier of the FAA. The purpose of the meeting was to transfer significant, ongoing results gained during the second year of the joint NASA/FAA Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements.

  10. 1983 lightning, turbulence, wind shear, and Doppler radar studies at the National Severe Storms Laboratory

    NASA Technical Reports Server (NTRS)

    Lee, J. T.

    1984-01-01

    As part of continuing research on aviation related weather hazards, numerous experiments were incorporated into the 1983 Spring Observation Program. This year's program was an abbreviated one because of commitments made to the development of the Next Generation Radar (NEXRAD) project. The National Oceanic and Atmospheric Administration's (NOAA) P-3 Orion and the National Aeronautics and Space Administration's (NASA) RB-57B and U-2 were the main aircraft involved in the studies of lightning, wind shear, turbulence, and storm structure. A total of 14 flights were made by these aircraft during the period of May 16 through June 5, 1983. Aircraft instrumentation experiments are described, and resultant data sets available for research are detailed. Aircraft instrumentation and Doppler radar characteristics are detailed.

  11. Airborne Wind Shear Detection and Warning Systems. Fourth Combined Manufacturers' and Technologists' Conference, part 2

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D. (Compiler); Bowles, Roland L. (Compiler); Passman, Robert H. (Compiler)

    1992-01-01

    The Fourth Combined Manufacturers' and Technologists' Conference was hosted jointly by NASA Langley Research Center (LaRC) and the Federal Aviation Administration (FAA) in Williamsburg, Virginia, on April 14-16, 1992. The meeting was co-chaired by Dr. Roland Bowles of LaRC and Bob Passman of the FAA. The purpose of the meeting was to transfer significant ongoing results of the NASA/FAA Joint Airborne Wind Shear Program to the technical industry and to pose problems of current concern to the combined group. It also provided a forum for manufacturers to review forward-look technology concepts and for technologists to gain an understanding of the problems encountered by the manufacturers during the development of airborne equipment and the FAA certification requirements. The present document has been compiled to record the essence of the technology updates and discussions which follow each.

  12. An airborne FLIR detection and warning system for low altitude wind shear

    NASA Technical Reports Server (NTRS)

    Sinclair, Peter C.; Kuhn, Peter M.

    1991-01-01

    It is shown through some preliminary flight measurement research that a forward looking infrared radiometer (FLIR) system can be used to successfully detect the cool downdraft of downbursts (microbusts/macrobursts) and thunderstorm gust front outflows that are responsible for most of the low altitude wind shear (LAWS) events. The FLIR system provides a much greater safety margin for the pilot than that provided by reactive designs such as inertial air speed systems. Preliminary results indicate that an advanced airborne FLIR system could provide the pilot with remote indication of microburst (MB) hazards along the flight path ahead of the aircraft. Results of a flight test of a prototype FLIR system show that a minimum warning time of one to four minutes (5 to 10 km), depending on aircraft speed, is available to the pilot prior to the microburst encounter.

  13. Piloted-simulation evaluation of escape guidance for microburst wind shear encounters. M.S. Thesis - George Washington Univ.

    NASA Technical Reports Server (NTRS)

    Hinton, David A.

    1989-01-01

    Numerous air carrier accidents and incidents result from encounters with the atmospheric wind shear associated with microburst phenomena, in some cases resulting in heavy loss of life. An important issue in current wind shear research is how to best manage aircraft performance during an inadvertent wind shear encounter. The goals of this study were to: (1) develop techniques and guidance for maximizing an aircraft's ability to recover from microburst encounters following takeoff, (2) develop an understanding of how theoretical predictions of wind shear recovery performance might be achieved in actual use, and (3) gain insight into the piloting factors associated with recovery from microburst encounters. Three recovery strategies were implemented and tested in piloted simulation. Results show that a recovery strategy based on flying a flight path angle schedule produces improved performance over constant pitch attitude or acceleration-based recovery techniques. The best recovery technique was initially counterintuitive to the pilots who participated in the study. Evidence was found to indicate that the techniques required for flight through the turbulent vortex of a microburst may differ from the techniques being developed using classical, nonturbulent microburst models.

  14. NASA airborne radar wind shear detection algorithm and the detection of wet microbursts in the vicinity of Orlando, Florida

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Bracalente, Emedio M.

    1992-01-01

    The algorithms used in the NASA experimental wind shear radar system for detection, characterization, and determination of windshear hazard are discussed. The performance of the algorithms in the detection of wet microbursts near Orlando is presented. Various suggested algorithms that are currently being evaluated using the flight test results from Denver and Orlando are reviewed.

  15. Dynamic impact of the vertical shear of gradient wind on the tropical cyclone boundary layer wind field

    NASA Astrophysics Data System (ADS)

    Cai, Ninghao; Xu, Xin; Song, Lili; Bai, Lina; Ming, Jie; Wang, Yuan

    2014-02-01

    This work studies the impact of the vertical shear of gradient wind (VSGW) in the free atmosphere on the tropical cyclone boundary layer (TCBL). A new TCBL model is established, which relies on fiveforce balance including the pressure gradient force, Coriolis force, centrifugal force, turbulent friction, and inertial deviation force. This model is then employed to idealize tropical cyclones (TCs) produced by DeMaria's model, under different VSGW conditions (non-VSGW, positive VSGW, negative VSGW, and VSGW increase/decrease along the radial direction). The results show that the free-atmosphere VSGW is particularly important to the intensity of TC. For negative VSGW, the total horizontal velocity in the TCBL is somewhat suppressed. However, with the maximum radial inflow displaced upward and outward, the radial velocity notably intensifies. Consequently, the convergence is enhanced throughout the TCBL, giving rise to a stronger vertical pumping at the TCBL top. In contrast, for positive VSGW, the radial inflow is significantly suppressed, even with divergent outflow in the middle-upper TCBL. For varying VSGW along the radial direction, the results indicate that the sign and value of VSGW is more important than its radial distribution, and the negative VSGW induces stronger convergence and Ekman pumping in the TCBL, which favors the formation and intensification of TC.

  16. Organization of Tropical Convection in Low Vertical Wind Shears: The Role of Cold Pools.

    NASA Astrophysics Data System (ADS)

    Tompkins, Adrian M.

    2001-07-01

    An investigation is conducted to document the role convectively generated cold pools play in determining the spatial organization of tropical deep convection. Using a high-resolution cloud-resolving model, the evolution of cold pools produced by deep convection is examined, in the situation of limited large-scale wind shear, and a homogeneous underlying sea surface temperature. Ignoring the cold pools resulting from multiple deep convective events, the mean model cold pool attained a minimum temperature and water vapor mixing ratio depression of 1 K and 1.5 g kg1, respectively; a horizontal velocity increase of 4.8 m s1; and the latent and sensible heat fluxes are increased by a factor of 1.9 and 2.6, respectively. The cold pools had a mean lifetime of approximately 2.5 h and attained maximum radii ranging from 3 to 18 km, with a mean of 8.6 km. Taking the organization of convection into account, these figures are consistent with observational studies of convective wakes.The composite cold pool showed that development occurred in three distinct stages. As seen in observations, the air in the vicinity of deep convection has a higher equivalent potential energy than average. In the first stage, before the downdraft develops and reaches the subcloud layer, the area below the convection is cooled and moistened by the evaporation of rainfall. The downdraft then injects cold and dry air into the boundary layer, and the spreading cold pool is consequentially moister than average just inside the gust front but drier in the central regions. Finally, mass conservation requires that air from above the boundary layer be entrained into the wake of the expiring downdraft-thus causing the central regions of the cold pool to recover very quickly in temperature-but increases further the moisture perturbation. These features are confirmed by a number of observational studies.The key to the triggering of new deep convective cells lies with the band of high equivalent potential

  17. Effects of vertical wind shear on convective development during a landfall of severe tropical storm Bilis (2006)

    NASA Astrophysics Data System (ADS)

    Wang, Donghai; Li, Xiaofan; Tao, Wei-Kuo; Wang, Yuan

    2009-10-01

    Effects of vertical wind shear on convective development during the landfall of tropical storm Bilis (2006) are investigated with a pair of sensitivity experiments using a two-dimensional cloud-resolving model. The validated simulation data from Wang et al. [Wang, D., Li, X., Tao, W.-K., Liu, Y., Zhou, H., 2009: Torrential rainfall processes associated with a landfall of severe tropical storm Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmos. Res., 91, 94-104.] are used as the control experiment. The difference between the control and sensitivity experiments is that vertically varying zonal winds in the control experiment are replaced by their mass-weighted means in the sensitivity experiment. The imposed vertical velocity with ascending motion in the upper troposphere and descending motion in the lower troposphere is responsible for dominant stratiform rainfall on 15 July. The vertical wind shear does not have important impacts on development of stratiform rainfall. One day later, imposed upward motion extends to the lower troposphere. The inclusion of negative vertical wind shear produces well-organized convection and strong convective rainfall because it causes kinetic energy transfer from large-scale forcing to perturbation circulations.

  18. Numerical simulation to determine the effects of incident wind shear and turbulence level on the flow around a building

    SciTech Connect

    Zhang, Y.Q.; Huber, A.H.; Arya, S.P.S.; Snyder, W.H.

    1992-01-01

    The effects of incident shear and turbulence on flow around a cubical building are being investigated by a turbulent kinetic energy/dissipation model (TEMPEST). The numerical simulations demonstrate significant effects due to the differences in the incident flow. The addition of upstream turbulence and shear results in a reduced size of the cavity directly behind the building. The accuracy of numerical simulations is verified by comparing the predicted mean flow fields with the available wind-tunnel measurements of Castro and Robins (1977). Comparing the authors' results with experimental data, the authors show that the TEMPEST model can reasonably simulate the mean flow.

  19. Eddy and deep chlorophyl maximum response to wind-shear in the lee of Gran Canaria

    NASA Astrophysics Data System (ADS)

    Basterretxea, G.; Barton, E. D.; Tett, P.; Sangrá, P.; Navarro-Perez, E.; Arístegui, J.

    2002-06-01

    The physical and biological properties of the warm wake of Gran Canaria were examined during a survey carried out in June 1998. The sampling region was dominated by the presence of a warm triangular region downwind the island and an anticyclonic eddy spun off the island. Convergent and divergent frontal regions were generated by the wind shear zones extending along either side of the sheltered region of the warm wake. With increasing distance from shore, evidence of convergent/divergent frontal regions weakened, but the influence of the eddy increased. Both structures, frontal regions and the eddy, clearly altered the vertical phytoplankton biomass distribution as indicated by chlorophyll-fluorescence. Downwelling on the convergent boundary moved the 26.2 kg m -3 isopycnal and its associated deep chlorophyll maximum (DCM) below the 1% light zone. Upwelling at the divergent boundary not only elevated the DCM with its associated isopycnal but also, because of the increased light levels, allowed a shift in the DCM to higher (deeper) density surfaces (26.4 kg m -3). However, the highest integrated chlorophyll occurred in the central wake.

  20. Time-accurate aeroelastic simulations of a wind turbine in yaw and shear using a coupled CFD-CSD method

    NASA Astrophysics Data System (ADS)

    Yu, D. O.; Kwon, O. J.

    2014-06-01

    In the present study, aeroelastic simulations of horizontal-axis wind turbine rotor blades were conducted using a coupled CFD-CSD method. The unsteady blade aerodynamic loads and the dynamic blade response due to yaw misalignment and non-uniform sheared wind were investigated. For this purpose, a CFD code solving the RANS equations on unstructured meshes and a FEM-based CSD beam solver were used. The coupling of the CFD and CSD solvers was made by exchanging the data between the two solvers in a loosely coupled manner. The present coupled CFD-CSD method was applied to the NREL 5MW reference wind turbine rotor, and the results were compared with those of CFD-alone rigid blade calculations. It was found that aeroelastic blade deformation leads to a significant reduction of blade aerodynamic loads, and alters the unsteady load behaviours, mainly due to the torsional deformation. The reduction of blade aerodynamic loads is particularly significant at the advancing rotor blade side for yawed flow conditions, and at the upper half of rotor disk where wind velocity is higher due to wind shear.

  1. The ATC evaluation of the prototype Airport Surveillance Radar Wind Shear Processor (ASR-WSP) at Orlando International Airport

    NASA Astrophysics Data System (ADS)

    Martinez, Radame

    1993-03-01

    The Airport Surveillance Radar Wind Shear Processor (ASR-WSP), also known as Airport Surveillance Radar-9 (ASR-9) modification for low altitude wind shear detection, is a production ASR-9 with an expanded weather channel for added processing capabilities. The primary mission of the ASR-WSP is to enhance the safety of air travel through the timely detection and reporting of hazardous wind shear in and near the terminal approach and departure zones of the airport. It will also improve the management of air traffic (AT) in the terminal area through the forecast of precipitation, and ultimately the detection of other hazardous weather phenomena. The ASR-WSP may be used as a stand-alone system at airports without a Terminal Doppler Weather Radar (TDWR) or Enhanced-Low Level Wind Shear Alert System (E-LLWAS), or in an integrated mode with either or both the TDWR and E-LLWAS. An operational evaluation of a prototype ASR-WSP, developed by Massachusetts Institute of Technology Lincoln Laboratories (MIT/LL), was conducted at the Orlando International Airport (MCO) in Orlando, Florida, during the period 29 Jun. to 31 Aug. 1992. The objective of the evaluation was to obtain Federal Aviation Administration (FAA) air traffic controller reaction to the prototype ASR-WSP weather data and display equipment. The following are highlights of the evaluation: (1) the ASW-WSP is very useful when making runway configuration changes; (2) the ASR-WSP is not perceived to be as accurate as the prototype TDWR; (3) the gust front prediction feature is not reliable; and (4) the information provided on both the RDT and the GSD is very useful.

  2. Automatic detection of low altitude wind shear due to gust fronts in the terminal Doppler weather radar operational demonstration

    NASA Technical Reports Server (NTRS)

    Klingle-Wilson, Diana

    1990-01-01

    A gust front is the leading edge of the cold air outflow from a thunderstorm. Wind shears and turbulence along the gust front may produce potentially hazardous conditions for an aircraft on takeoff or landing such that runway operations are significantly impacted. The Federal Aviation Administration (FAA) has therefore determined that the detection of gust fronts in the terminal environment be an integral part of the Terminal Doppler Weather Radar (TDWR) system. Detection of these shears by the Gust Front Algorithm permits the generation of warnings that can be issued to pilots on approach and departure. In addition to the detection capability, the algorithm provides an estimate of the wind speed and direction following the gust front (termed wind shift) and the forecasted location of the gust front up to 20 minutes before it impacts terminal operations. This has shown utility as a runway management tool, alerting runway supervisors to approaching wind shifts and the possible need to change runway configurations. The formation and characteristics of gust fronts and their signatures in Doppler radar data are discussed. A brief description of the algorithm and its products for use by Air Traffic Control (ATC), along with an assessment of the algorithm's performance during the 1988 Operational Test and Evaluation, is presented.

  3. Very High Resolution Numerical Weather Prediction of Wind Shear Event in the Complex Terrain Around Juneau Alaska

    NASA Astrophysics Data System (ADS)

    Morton, D.; Arnold, D.; Schicker, I.; Dierking, C.; Harrison, K.

    2011-12-01

    Juneau International Airport is surrounded by complex terrain, often presenting challenging conditions to departing aircraft. General aviation departure procedures for Runway 08 include a 180-degree right turn "as soon as practical" in order to avoid steeply rising terrain. Under strong wind conditions characterized by post-frontal topographically enhanced wind shear, aircraft following these procedures may encounter turbulence or wind shear classified as severe. In January 1993, a Boeing 727 aircraft at a 30-degree bank encountered extreme crosswinds resulting in departure from controlled flight, with successful recovery occurring within only 50 meters of the ground. In this work, we focus on a similar event at Juneau from December 2009. This case has been modeled with WRF at very high resolutions down to 111 m horizontal, with mixed results. The focus of this work is to investigate in more detail the problems, costs and benefits of using very high resolution topography and model runs in a high-wind event in complex terrain. Several model runs will be performed, and results will be compared with each other and station observations available through the Juneau Airport Wind System (JAWS). Two high resolution topographies - the USGS National Elevation Dataset (NED) and the Shuttle Radar Topography Mission (SRTM) - will be compared with the USGS 30s topography in their ability to match the real topography and their influence on forecast winds. Additionally, an attempt will be made to push the model into the realm of Large Eddy Simulation (LES) with a 50 m horizontal resolution in a limited region.

  4. CloudSat & A-Train Observations of Tropical Cyclones: Examining Effects of Wind Shear on Storm Structure

    NASA Astrophysics Data System (ADS)

    Tourville, N. D.; Knaff, J. A.; Demaria, M.; Stephens, G. L.; Vane, D.

    2014-12-01

    CloudSat (CS) heralded a new era of profiling the planet's cloud systems and storms with its launch in 2006. This satellite flies the first 94 GHz spaceborne cloud profiling radar and the data collected has provided a unique perspective on Earth's cloudiness and processes that affect clouds. While passes of the nadir-pointing CPR antenna occur infrequently over tropical cyclones (TCs), they happen enough to provide a detailed compilation of the inner structure of clouds and precipitation of these complex storm systems. Over 8,000 vertical profiles of TCs have been collected during the period June 2006 through June 2014 and observations continue as CS flies in daylight only mode. Each unique overpass profiled by CS has been compiled with corresponding A-Train sensors, model data and storm specific best track information.With the volume of data collected, it is possible to composite TC structure information with respect to various environmental parameters that are known to have a controlling influence on storms. To illustrate this characteristic of the data, we show composites of the vertical structure of TCs as a function of environmental wind shear. Observations of wind shear at varying levels (for example 200-850 mb) and TC composites relative to the direction of the larger scale shear will be examined and discussed in detail.

  5. Experimental evaluation of a wind shear alert and energy management display

    NASA Technical Reports Server (NTRS)

    Kraiss, K.-F.; Baty, D. L.

    1978-01-01

    A method is proposed for onboard measurement and display of specific windshear and energy management data derived from an air data computer. An open-loop simulation study is described which was carried out to verify the feasibility of this display concept, and whose results were used as a basis to develop the respective cockpit instrumentation. The task was to fly a three-degree landing approach under various shear conditions with and without specific information on the shear. Improved performance due to augmented cockpit information was observed. Critical shears with increasing tailwinds could be handled more consistently and with less deviation from the glide path.

  6. Role of upper-level wind shear on the structure and maintenance of derecho-producing convective systems

    NASA Astrophysics Data System (ADS)

    Coniglio, Michael Charles

    Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of

  7. Competing mechanisms of plasma transport in inhomogeneous configurations with velocity shear: the solar-wind interaction with earth's magnetosphere.

    PubMed

    Faganello, M; Califano, F; Pegoraro, F

    2008-01-11

    Two-dimensional simulations of the Kelvin-Helmholtz instability in an inhomogeneous compressible plasma with a density gradient show that, in a transverse magnetic field configuration, the vortex pairing process and the Rayleigh-Taylor secondary instability compete during the nonlinear evolution of the vortices. Two different regimes exist depending on the value of the density jump across the velocity shear layer. These regimes have different physical signatures that can be crucial for the interpretation of satellite data of the interaction of the solar wind with the magnetospheric plasma. PMID:18232777

  8. An airport wind shear detection and warning system using Doppler radar: A feasibility study

    NASA Technical Reports Server (NTRS)

    Mccarthy, J.; Blick, E. F.; Elmore, K. L.

    1981-01-01

    A feasibility study was conducted to determine whether ground based Doppler radar could measure the wind along the path of an approaching aircraft with sufficient accuracy to predict aircraft performance. Forty-three PAR approaches were conducted, with 16 examined in detail. In each, Doppler derived longitudinal winds were compared to aircraft measured winds; in approximately 75 percent of the cases, the Doppler and aircraft winds were in acceptable agreement. In the remaining cases, errors may have been due to a lack of Doppler resolution, a lack of co-location of the two sampling volumes, the presence of eddy or vortex like disturbances within the pulse volume, or the presence of point targets in antenna side lobes. It was further concluded that shrouding techniques would have reduced the side lobe problem. A ground based Doppler radar operating in the optically clear air, provides the appropriate longitudinal winds along an aircraft's intended flight path.

  9. Solar-wind turbulence and shear: a superposed-epoch analysis of corotating interaction regions at 1 AU

    SciTech Connect

    Borovsky, Joseph E; Denton, Michael H

    2009-01-01

    A superposed-epoch analysis of ACE and OMNI2 measurements is performed on 27 corotating interaction regions (CIRs) in 2003-2008, with the zero epoch taken to be the stream interface as determined by the maximum of the plasma vorticity. The structure of CIRs is investigated. When the flow measurements are rotated into the local-Parker-spiral coordinate system the shear is seen to be abrupt and intense, with vorticities on the order of 10{sup -5}-10{sup -4} sec{sup -1}. Converging flows perpendicular to the stream interface are seen in the local-Parker-spiral coordinate system and about half of the CIRs show a layer of divergent rebound flow away from the stream interface. Arguments indicate that any spreading of turbulence away from the region where it is produced is limited to about 10{sup 6} km, which is very small compared with the thickness of a CrR. Analysis of the turbulence across the CrRs is performed. When possible, the effects of discontinuities are removed from the data. Fluctuation amplitudes, the Alfvenicity, and the level of Alfvenic correlations all vary smoothly across the CrR. The Alfven ratio exhibits a decrease at the shear zone of the stream interface. Fourier analysis of 4.5-hr subintervals of ACE data is performed and the results are superposed averaged as an ensemble of realizations. The spectral slopes of the velocity, magnetic-field, and total-energy fluctuations vary smoothly across the CIR. The total-energy spectral slope is {approx} 3/2 in the slow and fast wind and in the CrRs. Analysis of the Elsasser inward-outward fluctuations shows a smooth transition across the CrR from an inward-outward balance in the slow wind to an outward dominance in the fast wind. A number of signatures of turbulence driving at the shear zone are sought (entropy change, turbulence amplitude, Alfvenicity, Alfven ratio, spectral slopes, in-out nature): none show evidence of driving of turbulence by shear.

  10. Linear coupling of planetary scale waves in ionospheric zonal shear winds: Generation of fast magnetic waves

    NASA Astrophysics Data System (ADS)

    Chanishvili, R.; Chagelishvili, G.; Uchava, E.; Kharshiladze, O.

    2016-04-01

    Our goal is to gain new insight into the physics of wave dynamics in ionospheric zonal shear flows. We study the shear flow non-normality induced linear coupling of planetary scale (slow) modified Rossby waves and westward propagating fast magnetized (Khantadze) waves using an approach different from the existing one to the linear wave dynamics. The performed analysis allows us to separate from each other different physical processes, grasp their interplay, and, by this way, construct the basic physics of the linear coupling of the slow and fast waves in an ionospheric zonal flow with linear shear of mean velocity, U0=(S y ,0 ) . It should be noted from the beginning that we consider incompressible flow and the classified "slow" and "fast" waves are not connected with the similarly labeled magnetosonic waves in compressible heliosphere. We show that: the modified Rossby waves generate fast magnetized waves due to the coupling for a quite wide range of ionospheric and shear flow parameters; the linear transient processes are highly anisotropic in wavenumber plane; the generation of the magnetized waves/oscillations is most efficient/optimal for S ≃0.1 (S is the shear rate normalized to the combination of the angular velocity and latitude, Ω0 cos θ0 ); the streamwise wave number of the optimally generated magnetized wave harmonics decreases (the length scale increases) with increasing the Hall parameter, α. At the end, we discuss nonlinear consequences of the described anisotropic linear dynamics—they should lead to an anisotropy of nonlinear cascade processes (in wavenumber plane). In turn, an interplay of the analyzed quite strong transient growth of the fast magnetic waves with anisotropic nonlinear processes should ensure self-sustenance of (stochastic or regular) magnetic perturbations.

  11. A new paradigm for intensity modification of tropical cyclones: thermodynamic impact of vertical wind shear on the inflow layer

    NASA Astrophysics Data System (ADS)

    Riemer, M.; Montgomery, M. T.; Nicholls, M. E.

    2010-04-01

    An important roadblock to improved intensity forecasts for tropical cyclones (TCs) is our incomplete understanding of the interaction of a TC with the environmental flow. In this paper we re-visit the canonical problem of a TC in vertical wind shear on an f-plane. A suite of numerical experiments is performed with intense TCs in moderate to strong vertical shear. We employ a set of simplified model physics - a simple bulk aerodynamic boundary layer scheme and "warm rain" microphysics - to foster better understanding of the dynamics and thermodynamics that govern the modification of TC intensity. In all experiments the TC is resilient to shear but significant differences in the intensity evolution occur. The ventilation of the TC core with dry environmental air at mid-levels and the dilution of the upper-level warm core are two prevailing hypotheses for the adverse effect of vertical shear on storm intensity. Here we propose an alternative and arguably more effective mechanism how cooler and drier (lower θe) air - "anti-fuel" for the TC power machine - can enter the core region of the TC. Strong and persistent, shear-induced downdrafts flux low θe air into the boundary layer from above, significantly depressing the θe values in the storm's inflow layer. Air with lower θe values enters the eyewall updrafts, considerably reducing eyewall θe values in the azimuthal mean. When viewed from the perspective of an idealised Carnot-cycle heat engine a decrease of storm intensity can thus be expected. Although the Carnot cycle model is - if at all - only valid for stationary and axisymmetric TCs, a close association of the downward transport of low θe into the boundary layer and the intensity evolution offers further evidence in support of our hypothesis. The downdrafts that flush the boundary layer with low θe air are tied to a quasi-stationary, azimuthal wave number 1 convective asymmetry outside of the eyewall. This convective asymmetry and the associated downdraft

  12. Lightning activity and its relationship with typhoon intensity and vertical wind shear for Super Typhoon Haiyan (1330)

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Qie, Xiushu; Liu, Dongxia; Shi, Haifeng; Srivastava, Abhay

    2016-02-01

    Super Typhoon Haiyan (1330), which occurred in 2013, is the most powerful typhoon during landfall in the meteorological record. In this study, the temporal and spatial distributions of lightning activity of Haiyan were analyzed by using the lightning data from the World Wide Lightning Location Network, typhoon intensity and position data from the China Meteorological Administration, and horizontal wind data from the ECMWF. Three distinct regions were identified in the spatial distribution of daily average lightning density, with the maxima in the inner core and the minima in the inner rainband. The lightning density in the intensifying stage of Haiyan was greater than that in its weakening stage. During the time when the typhoon intensity measured with maximum sustained wind speed was between 32.7 and 41.4 ms-1, the storm had the largest lightning density in the inner core, compared with other intensity stages. In contrast to earlier typhoon studies, the eyewall lightning burst out three times. The first two eyewall lightning outbreaks occurred during the period of rapid intensification and before the maximum intensity of the storm, suggesting that the eyewall lightning activity could be used to identify the change in tropical cyclone intensity. The flashes frequently occurred in the inner core, and in the outer rainbands with the black body temperature below 220 K. Combined with the ECMWF wind data, the influences of vertical wind shear (VWS) on the azimuthal distribution of flashes were also analyzed, showing that strong VWS produced downshear left asymmetry of lightning activity in the inner core and downshear right asymmetry in the rainbands.

  13. Wind shear and wet and dry thermodynamic indices as predictors of thunderstorm motion and severity and application to the AVE 4 experimental data

    NASA Technical Reports Server (NTRS)

    Connell, J. R.; Ey, L.

    1977-01-01

    Two types of parameters are computed and mapped for use in assessing their individual merits as predictors of occurrence and severity of thunderstorms. The first group is comprised of equivalent potential temperature, potential temperature, water vapor mixing ratio, and wind speed. Equivalent potential temperature maxima and strong gradients of equivalent potential temperature at the surface correlate well with regions of thunderstorm activity. The second type, comprised of the energy index, shear index, and energy shear index, incorporates some model dynamics of thunderstorms, including nonthermodynamic forcing. The energy shear index is found to improve prediction of tornadic and high-wind situations slightly better than other indices. It is concluded that further development and refinement of nonthermodynamic aspects of predictive indices are definitely warranted.

  14. Simulation comparison of a decoupled longitudinal control system and a velocity vector control wheel steering system during landings in wind shear

    NASA Technical Reports Server (NTRS)

    Kimball, G., Jr.

    1980-01-01

    A simulator comparison of the velocity vector control wheel steering (VCWS) system and a decoupled longitudinal control system is presented. The piloting task was to use the electronic attitude direction indicator (EADI) to capture and maintain a 3 degree glide slope in the presence of wind shear and to complete the landing using the perspective runway included on the EADI. The decoupled control system used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The decoupled control system improved the pilots' ability to control airspeed and flight path angle during the final stages of an approach made in severe wind shear. The system also improved their ability to complete safe landings. The pilots preferred the decoupled control system in severe winds and, on a pilot rating scale, rated the approach and landing task with the decoupled control system as much as 3 to 4 increments better than use of the VCWS system.

  15. Fixed-base simulation study of decoupled longitudinal controls during approach and landing of a medium jet transport in the presence of wind shear

    NASA Technical Reports Server (NTRS)

    Miller, G. K., Jr.

    1979-01-01

    The use of decoupled longitudinal controls during the approach and landing of a typical twin-engine jet transport in the presence of wind shear was studied. The simulation included use of a localizer and flight director to capture and maintain a 3 deg glide slope. The pilot then completed the landing by using visual cues provided below an altitude of 200 m by closed-circuit television and a terrain model. The decoupled controls used constant prefilter and feedback gains to provide steady state decoupling of flight path angle, pitch angle, and forward velocity. The use of the decoupled control system improved pilot performance during the approach and at touchdown in the presence of wind shears. The pilots preferred the decoupled controls and rated the task 1 to 3 increments better on a pilot rating scale, depending on wind conditions, than was the case when conventional controls were used.

  16. VELOCITY-SHEAR-INDUCED MODE COUPLING IN THE SOLAR ATMOSPHERE AND SOLAR WIND: IMPLICATIONS FOR PLASMA HEATING AND MHD TURBULENCE

    SciTech Connect

    Hollweg, Joseph V.; Chandran, Benjamin D. G.; Kaghashvili, Edisher Kh. E-mail: ekaghash@aer.com

    2013-06-01

    We analytically consider how velocity shear in the corona and solar wind can cause an initial Alfven wave to drive up other propagating signals. The process is similar to the familiar coupling into other modes induced by non-WKB refraction in an inhomogeneous plasma, except here the refraction is a consequence of velocity shear. We limit our discussion to a low-beta plasma, and ignore couplings into signals resembling the slow mode. If the initial Alfven wave is propagating nearly parallel to the background magnetic field, then the induced signals are mainly a forward-going (i.e., propagating in the same sense as the original Alfven wave) fast mode, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; both signals are compressive and subject to damping by the Landau resonance. For an initial Alfven wave propagating obliquely with respect to the magnetic field, the induced signals are mainly forward- and backward-going fast modes, and a driven signal propagating like a forward-going Alfven wave but polarized like the fast mode; these signals are all compressive and subject to damping by the Landau resonance. A backward-going Alfven wave, thought to be important in the development of MHD turbulence, is also produced, but it is very weak. However, we suggest that for oblique propagation of the initial Alfven wave the induced fast-polarized signal propagating like a forward-going Alfven wave may interact coherently with the initial Alfven wave and distort it at a strong-turbulence-like rate.

  17. The propagation of gravity waves through a critical layer for conditions of moderate wind shear

    NASA Astrophysics Data System (ADS)

    Bowman, M. R.; Thomas, L.; Thomas, R. H.

    1980-02-01

    Solutions of the linearised hydrodynamic equations for a viscous atmosphere using (i) a full-wave integration procedure and (ii) a simplified analytical approach are used to examine the attenuation of gravity waves passing through a critical layer, where the horizontal phase velocity is equal to that of the mean wind. Particular attenuation is paid to the variation of this attenuation with values of Richardson number, Ri, greater than unity. The two sets of results are in good agreement with the predictions of Booker and Bretherton (1967) for an inviscid fluid for values of Ri up to about 4. However, a marked discrepancy from these predicted values is found for larger values of Ri, the present results indicating substantially smaller attenuation. Further calculations suggest that the wave-amplitude attenuation factor predicted by the inviscid model is approached asymptotically in the limit of vanishingly small viscosity and thermal conductivity coefficients. The inclusion of viscosity and thermal conduction gives rise to three characteristic modes of propagation for each direction of energy flow, in place of the single mode occurring in the inviscid case. The importance of energy exchange between these modes in the propagation through the critical layer is demonstrated.

  18. Motion and interaction of decaying trailing vortices in spanwise shear wind

    NASA Technical Reports Server (NTRS)

    Liu, C. H.; Lu, T.

    1986-01-01

    A simulation is presented of the drift of trailing vortices in a cross-wind near the ground by an unsteady, two-dimensional, rotational flow field with a concentration of large vorticity in vortical spots (having a finite but small effective size and finite total strength). The problem is analyzed by a combination of the method of matched asymptotic analyses for the decay of the vortical spots and the Euler solution for the unsteady rotational flow. Using the method of averaging, a special numerical method is developed in which the grid size and time step depend only on the length and velocity scales of the background flow and are independent of the effective core size of a vortical spot. The core size can be much smaller than the grid size, whereas the peak velocity in the core is inversely propertional to the spot size. Numerical results are presented to demonstrate the strong interaction between the trajectories of the vortical spots and the change of the vorticity distribution in the background flow field.

  19. Organization of tropical deep convection in low vertical wind shears: The role of boundary conditions

    NASA Astrophysics Data System (ADS)

    Gezahegn Semie, Addisu; Tompkins, Adrian Mark

    2015-04-01

    Previous Experiments with convection-permitting models have documented the various roles of water vapor, cold pools, and radiative feedbacks in the self-organization of tropical deep convection. Most of these simulations were conducted using idealized conditions with fixed and spatially homogeneous sea surface temperatures (SST), and over large enough domains the feedback mechanisms lead to strongly organized convection. In its equilibrium state the convection occurs in a single organised cluster or band, depending on the system mean wind state, surrounded by regions that are extremely dry and free of deep convection. . We hypothesize that radiative feedbacks involving the surface may provide a strong negative feedback to counter the organisation of convection. For example, the enhanced downwelling short-wave radiation in suppressed area should lead to enhanced SST (sometime termed SST hotspots). Which will ultimately lead to convection if the atmosphere moistens sufficiently to permit it. Similar feedback may occur over land. We therefore extend the numerical idealized experiment framework by including the effect of an interactive lower boundary sea and land conditions such as ocean and land with a range of soil moisture contents. To ascertain how this affects the self-organization of convection we construct a simple set of diagnostics to classify which mechanisms are operating, their relative importance and spacial scales.

  20. The development of convective instability, wind shear, and vertical motion in relation to convection activity and synoptic systems in AVE 4

    NASA Technical Reports Server (NTRS)

    Davis, J. G.; Scoggins, J. R.

    1981-01-01

    Data from the Fourth Atmospheric Variability Experiment were used to investigate conditions/factors responsible for the development (local time rate-of-change) of convective instability, wind shear, and vertical motion in areas with varying degrees of convective activity. AVE IV sounding data were taken at 3 or 6 h intervals during a 36 h period on 24-25 April 1975 over approximately the eastern half of the United States. An error analysis was performed for each variable studied.

  1. Wind shear hazard determination

    NASA Technical Reports Server (NTRS)

    Lewis, Michael S.

    1992-01-01

    The topics are presented in viewgraph form and include the following: F-factor relationship with aircraft performance; F-factor formulations; the F-bar index; F-factor hazard limit; F-bar with Doppler sensors; and F-bar profile composite.

  2. Rossby-Khantadze Electromagnetic Planetary Waves Driven by Sheared Zonal Winds in the E-Layer Ionosphere

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T.

    2014-10-01

    Nonlinear simulations are carried out for planetary scale [ >1000 km] electromagnetic Rossby and Khantadze planetary waves in the presence of a sheared zonal flow in the weakly ionized ionospheric E-layer. A variety of sheared flow profiles are studied. We shown that the nonlinear dynamics with the sheared zonal flows provides an energy source into the vortex structures. The energy transfer through the Reynolds stress tensor produces growth of the stable vortices under a variety of conditions. The energy accumulation breaks the vortex structure into multiple species according to the non-uniformity of profile of the external zonal shear flows. S. Futatani, W. Horton, T. D. Kaladze, Phys. Plasmas 20, 102903 (2013). T. D. Kaladze, L. Z. Kahlon, W. Horton. O Pokhotelov, and O. Onishenchenko, EPL 106, A05302 (2014).

  3. Strongly-sheared wind-forced currents in the nearshore regions of the central Southern California Bight

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt; Robertson, George L.

    2016-01-01

    Contrary to many previous reports, winds do drive currents along the shelf in the central portion of the Southern California Bight (SCB). Winds off Huntington Beach CA are the dominant forcing for currents over the nearshore region of the shelf (water depths less than 20 m). Winds control about 50–70% of the energy in nearshore alongshelf surface currents. The wind-driven current amplitudes are also anomalously high. For a relatively weak 1 dyne/cm2 wind stress, the alongshelf surface current amplitudes in this region can reach 80 cm/s or more. Mid-depth current amplitudes for the same wind stress are around 30–40 cm/s. These wind-driven surface current amplitudes are much larger than previously measured over other nearshore shelf regions, perhaps because this program is one of the few that measured currents within a meter of the surface. The near-bed cross-shelf currents over the nearshore region of the Huntington Beach shelf have an Ekman response to winds in that they upwell (downwell) for down (up) coast winds. This response disappears further offshore. Hence, there is upwelling in the SCB, but it does not occur across the entire shelf. Subthermocline water in the nearshore region that may contain nutrients and plankton move onshore when winds are southeastward, but subthermocline water over the shelf break is not transported to the beach. The currents over the outer shelf are not predominately controlled by winds, consistent with previous reports. Instead, they are mainly driven by cross-shelf pressure gradients that are independent of local wind stress.

  4. Estimates of the low-level wind shear and turbulence in the vicinity of Kennedy International Airport on 24 June 1975

    NASA Technical Reports Server (NTRS)

    Lewellen, W. S.; Williamson, G. G.

    1976-01-01

    A study was conducted to estimate the type of wind and turbulence distributions which may have existed at the time of the crash of Eastern Airlines Flight 66 while attempting to land. A number of different wind and turbulence profiles are predicted for the site and date of the crash. The morning and mid-afternoon predictions are in reasonably good agreement with magnitude and direction as reported by the weather observer. Although precise predictions cannot be made during the passage of the thunderstorm which coincides with the time of the accident, a number of different profiles which might exist under or in the vicinity of a thunderstorm are presented. The profile that is most probable predicts the mean headwind shear over 100 m (300 feet) altitude change and the average fluctuations about the mean headwind distribution. This combination of means and fluctuations leads to a reasonable probability that the instantaneous headwind shear would equal the maximum value reported in the flight recorder data.

  5. NUMERICAL SIMULATION TO DETERMINE THE EFFECTS OF INCIDENT WIND SHEAR AND TURBULENCE LEVEL ON THE FLOW AROUND A BUILDING

    EPA Science Inventory

    The effects of incident shear and turbulence on flow around a cubical building are being investigated by a turbulent kinetic energy dissipation (k-e) model (TEMPEST). he numerical simulations demonstrate significant effects due to the differences in the incident flow. he addition...

  6. Use of Dual-Polarization Radar Variables to Assess Low-Level Wind Shear in Severe Thunderstorm Near-storm Environments in the Tennessee Valley

    NASA Technical Reports Server (NTRS)

    Crowe, Christina C.; Schultz, Christopher J.; Kumjian, Matthew; Carey, Lawerence D.; Petersen, Walter A.

    2011-01-01

    The upgrade of the National Weather Service (NWS) network of S ]band dual-polarization radars is currently underway, and the incorporation of polarimetric information into the real ]time forecasting process will enhance the forecaster fs ability to assess thunderstorms and their near ]storm environments. Recent research has suggested that the combination of polarimetric variables differential reflectivity (ZDR) and specific differential phase (KDP) can be useful in the assessment of low level wind shear within a thunderstorm. In an environment with strong low ]level veering of the wind, ZDR values will be largest along the right inflow edge of the thunderstorm near a large gradient in horizontal reflectivity (indicative of large raindrops falling with a relative lack of smaller drops), and take the shape of an arc. Meanwhile, KDP values, which are proportional to liquid water content and indicative of a large number of smaller drops, are maximized deeper into the forward flank precipitation shield than the ZDR arc as the smaller drops are being advected further from the updraft core by the low level winds than the larger raindrops. Using findings from previous work, three severe weather events that occurred in North Alabama were examined in order to assess the utility of these signatures in determining the potential for tornadic activity. The first case is from October 26, 2010, where a large number of storms indicated tornadic potential from a standard reflectivity and velocity analysis but very few storms actually produced tornadoes. The second event is from February 28, 2011, where tornadic storms were present early on in the event, but as the day progressed, the tornado threat transitioned to a high wind threat. The third case is from April 27, 2011, where multiple rounds of tornadic storms ransacked the Tennessee Valley. This event provides a dataset including multiple modes of tornadic development, including QLCS and supercell structures. The overarching goal

  7. Evidence for tropospheric wind shear excitation of high-phase-speed gravity waves reaching the mesosphere using the ray-tracing technique

    NASA Astrophysics Data System (ADS)

    Pramitha, M.; Venkat Ratnam, M.; Taori, A.; Krishna Murthy, B. V.; Pallamraju, D.; Vijaya Bhaskar Rao, S.

    2015-03-01

    Sources and propagation characteristics of high-frequency gravity waves observed in the mesosphere using airglow emissions from Gadanki (13.5° N, 79.2° E) and Hyderabad (17.5° N, 78.5° E) are investigated using reverse ray tracing. Wave amplitudes are also traced back, including both radiative and diffusive damping. The ray tracing is performed using background temperature and wind data obtained from the MSISE-90 and HWM-07 models, respectively. For the Gadanki region, the suitability of these models is tested. Further, a climatological model of the background atmosphere for the Gadanki region has been developed using nearly 30 years of observations available from a variety of ground-based (MST radar, radiosondes, MF radar) and rocket- and satellite-borne measurements. ERA-Interim products are utilized for constructing background parameters corresponding to the meteorological conditions of the observations. With the reverse ray-tracing method, the source locations for nine wave events could be identified to be in the upper troposphere, whereas for five other events the waves terminated in the mesosphere itself. Uncertainty in locating the terminal points of wave events in the horizontal direction is estimated to be within 50-100 km and 150-300 km for Gadanki and Hyderabad wave events, respectively. This uncertainty arises mainly due to non-consideration of the day-to-day variability in the tidal amplitudes. Prevailing conditions at the terminal points for each of the 14 events are provided. As no convection in and around the terminal points is noticed, convection is unlikely to be the source. Interestingly, large (~9 m s-1km-1) vertical shears in the horizontal wind are noticed near the ray terminal points (at 10-12 km altitude) and are thus identified to be the source for generating the observed high-phase-speed, high-frequency gravity waves.

  8. Shear-Sensitive Monomer/Polymer Liquid Crystal System

    NASA Technical Reports Server (NTRS)

    Singh, Jag J.; Eftekhari, Abe; Parmar, D. S.

    1993-01-01

    Report describes preliminary investigation of new monomer/polymer liquid crystal system, thin film of shear-sensitive cholesteric monomer liquid crystal (TI 511) on Xydar (STR800) (or equivalent) liquid crystal polymer substrate. Monomer/polymer liquid crystal films applied to surfaces provide quantitative indications of shear stresses caused by winds blowing along surfaces. Effects of shear stresses reversible in new coating system. System provides quantitative data on flows in wind tunnels.

  9. Inviscid Interactions Between Wake Vortices and Shear Layers

    NASA Technical Reports Server (NTRS)

    Zheng, Z. C.; Baek, K.

    1998-01-01

    Aircraft trailing vortices can be influenced significantly by atmospheric conditions such as crosswind, turbulence, and stratification. According to the NASA 1994 and 1995 field measurement program in Memphis, Tennessee, the descending aircraft wake vortices could stall or be deflected at the top of low-level temperature inversions that usually produce pronounced shear zones. Numerical simulations of vortex/shear interactions with ground effects have been performed by several groups. Burnham used a series of evenly spaced line vortices at a particular altitude to model the ground shear layer of the cross- wind. He found that the wind shear was swept up around the downwind vortex and caused the downwind vortex to move upward, and claimed that the effect was actually produced by the vertical gradient in the wind shear rather than by the wind shear directly, because uniformly distributed wind-shear vortices would have no effect on the trailing vortex vertical motion. Recently, Proctor et al. numerically tested the effects of narrow shear zones on the behavior of the vortex pair, motivated by the observation of the Memphis field data. The shear-layer sensitivity tests indicated that the downwind vortex was more sensitive and deflected to a higher altitude than its upwind counterpart. The downstream vortex contained vorticity of opposite sign to that of the shear. There was no detectable preference for the downwind vortex (or upwind vortex) to weaken (or strengthen) at a greater rate.

  10. Equivalent Neutral Wind

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Tang, Wenqing

    1996-01-01

    The definition of equivalent neutral wind and the rationale for using it as the geophysical product of a spaceborne scatterometer are reviewed. The differences between equivalent neutral wind and actual wind, which are caused by atmospheric density stratification, are demonstrated with measurements at selected locations. A method of computing this parameter from ship and buoy measurements is described and some common fallacies in accounting for the effects of atmospheric stratification on wind shear are discussed. The computer code for the model to derive equivalent neutral wind is provided.

  11. Wind-induced ground motion

    NASA Astrophysics Data System (ADS)

    Naderyan, Vahid; Hickey, Craig J.; Raspet, Richard

    2016-02-01

    Wind noise is a problem in seismic surveys and can mask the seismic signals at low frequency. This research investigates ground motions caused by wind pressure and shear stress perturbations on the ground surface. A prediction of the ground displacement spectra using the measured ground properties and predicted pressure and shear stress at the ground surface is developed. Field measurements are conducted at a site having a flat terrain and low ambient seismic noise. Triaxial geophones are deployed at different depths to study the wind-induced ground vibrations as a function of depth and wind velocity. Comparison of the predicted to the measured wind-induced ground displacement spectra shows good agreement for the vertical component but significant underprediction for the horizontal components. To validate the theoretical model, a test experiment is designed to exert controlled normal pressure and shear stress on the ground using a vertical and a horizontal mass-spring apparatus. This experiment verifies the linear elastic rheology and the quasi-static displacements assumptions of the model. The results indicate that the existing surface shear stress models significantly underestimate the wind shear stress at the ground surface and the amplitude of the fluctuation shear stress must be of the same order of magnitude as the normal pressure. Measurement results show that mounting the geophones flush with the ground provides a significant reduction in wind noise on all three components of the geophone. Further reduction in wind noise with depth of burial is small for depths up to 40 cm.

  12. Performance testing of a Savonius windmill rotor in shear flows

    NASA Astrophysics Data System (ADS)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteady behavior on the power generation capability of a Savonius wind turbine rotor are assessed in view of measurements conducted, both in two statistically steady shear flows and in the wind, of rotor tip speed and torque at a number of streamwise stations for each of four values of the rotor bucket overlap ratio. It is found that, even in the absence of shear, the power coefficient of a Savonius wind turbine rotor is most strongly dependent on tip speed ratio.

  13. Triad resonance between gravity and vorticity waves in vertical shear

    NASA Astrophysics Data System (ADS)

    Drivas, Theodore D.; Wunsch, Scott

    2016-07-01

    Weakly nonlinear theory is used to explore the effect of vertical shear on surface gravity waves in three dimensions. An idealized piecewise-linear shear profile motivated by wind-driven profiles and ambient currents in the ocean is used. It is shown that shear may mediate weakly nonlinear resonant triad interactions between gravity and vorticity waves. The triad results in energy exchange between gravity waves of comparable wavelengths propagating in different directions. For realistic ocean shears, shear-mediated energy exchange may occur on timescales of minutes for shorter wavelengths, but slows as the wavelength increases. Hence this triad mechanism may contribute to the larger angular spreading (relative to wind direction) for shorter wind-waves observed in the oceans.

  14. Speed and Direction Shear in the Stable Nocturnal Boundary Layer

    SciTech Connect

    Walter, K.; Weiss, C. C.; Swift, A. H. P.; Chapman, J.; Kelley, N. D.

    2009-02-01

    Numerous previous works have shown that vertical shear in wind speed and wind direction exist in the atmospheric boundary layer. In this work, meteorological forcing mechanisms, such as the Ekman spiral, thermal wind, and inertial oscillation, are discussed as likely drivers of such shears in the statically stable environment. Since the inertial oscillation, the Ekman spiral, and statically stable conditions are independent of geography, potentially significant magnitudes of speed and direction shear are hypothesized to occur to some extent at any inland site in the world. The frequency of occurrence of non-trivial magnitudes of speed and direction shear are analyzed from observation platforms in Lubbock, Texas and Goodland, Indiana. On average, the correlation between speed and direction shear magnitudes and static atmospheric stability are found to be very high. Moreover, large magnitude speed and direction shears are observed in conditions with relatively high hub-height wind speeds. The effects of speed and direction shear on wind turbine power performance are tested by incorporating a simple steady direction shear profile into the fatigue analysis structures and turbulence simulation code from the National Renewable Energy Laboratory. In general, the effect on turbine power production varies with the magnitude of speed and direction shear across the turbine rotor, with the majority of simulated conditions exhibiting power loss relative to a zero shear baseline. When coupled with observational data, the observed power gain is calculated to be as great as 0.5% and depletion as great as 3% relative to a no shear baseline. The average annual power change at Lubbock is estimated to be -0.5%

  15. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  16. Mitigating shear lag in tall buildings

    NASA Astrophysics Data System (ADS)

    Gaur, Himanshu; Goliya, Ravindra K.

    2015-09-01

    As the height of building increases, effect of shear lag also becomes considerable in the design of high-rise buildings. In this paper, shear lag effect in tall buildings of heights, i.e., 120, 96, 72, 48 and 36 stories of which aspect ratio ranges from 3 to 10 is studied. Tube-in-tube structural system with façade bracing is used for designing the building of height 120 story. It is found that bracing system considerably reduces the shear lag effect and hence increases the building stiffness to withstand lateral loads. Different geometric patterns of bracing system are considered. The best effective geometric configuration of bracing system is concluded in this study. Lateral force, as wind load is applied on the buildings as it is the most dominating lateral force for such heights. Wind load is set as per Indian standard code of practice IS 875 Part-3. For analysis purpose SAP 2000 software program is used.

  17. Advanced technology wind shear prediction system evaluation

    NASA Technical Reports Server (NTRS)

    Gering, Greg

    1992-01-01

    The program overviews: (1) American Airline (AA)/Turbulence Prediction Systems (TPS), which have installed forward looking infrared predictive windshear system on 3 MD-80 aircraft; (2) AA/TPS AWAS III evaluation, which is a joint effort and is installed in the noise landing gear (NLG) area and a data recorder installed in the E/E compartment.

  18. Wind Shear radar program future plans

    NASA Technical Reports Server (NTRS)

    Robertson, Roy E.

    1991-01-01

    The status of the Windshear Radar Program at the Collins Air Transport Division of Rockwell International is given in viewgraph form. Topics covered include goals, modifications to the WXR-700 system, flight test plans, technical approaches, design considerations, system considerations, certification, and future plans.

  19. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  20. Turbulent diffusion with memories and intrinsic shear

    NASA Technical Reports Server (NTRS)

    Tchen, C. M.

    1974-01-01

    The first part of the present theory is devoted to the derivation of a Fokker-Planck equation. The eddies smaller than the hydrodynamic scale of the diffusion cloud form a diffusivity, while the inhomogeneous, bigger eddies give rise to a nonuniform migratory drift. This introduces an eddy-induced shear which reflects on the large-scale diffusion. The eddy-induced shear does not require the presence of a permanent wind shear and is intrinsic to the diffusion. Secondly, a transport theory of diffusivity is developed by the method of repeated-cascade and is based upon a relaxation of a chain of memories with decreasing information. The full range of diffusion consists of inertia, composite, and shear subranges, for which variance and eddy diffusivities are predicted. The coefficients are evaluated. Comparison with experiments in the upper atmosphere and oceans is made.

  1. Reduced shear power spectrum

    SciTech Connect

    Dodelson, Scott; Shapiro, Charles; White, Martin J.; /UC, Berkeley, Astron. Dept. /UC, Berkeley

    2005-08-01

    Measurements of ellipticities of background galaxies are sensitive to the reduced shear, the cosmic shear divided by (1-{kappa}) where {kappa} is the projected density field. They compute the difference between shear and reduced shear both analytically and with simulations. The difference becomes more important an smaller scales, and will impact cosmological parameter estimation from upcoming experiments. A simple recipe is presented to carry out the required correction.

  2. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  3. Performance testing of a Savonius windmill rotor in shear flows

    NASA Astrophysics Data System (ADS)

    Mojola, O. O.; Onasanya, O. E.

    The effects of flow shear and/or unsteadiness on the power producing performance of a Savonius windmill rotor are studied. Measurements are made in two laboratory statistically-steady shear flows, and in the natural wind, which is both viscous and unsteady. The measurements were made of the speed, torque, and power of the rotor at a number of streamwise stations for each of four values of the bucket overlap ratio. Flow velocity profiles and graphs of wind shear variation are given. It is concluded that even in the presence of shear, the power coefficient of a Savonius windmill rotor is most strongly dependent on the tip speed ratio. As in inviscid flow, the power coefficient peaked at a tip speed ratio = 0.8. The major effect of shear was to reduce the power coefficient below the inviscid flow level, the magnitude of reduction depending on the magnitude of shear present. In field testing of the Savonius rotor, the unsteadiness of the wind proved to be a greater source of power loss than the wind shear.

  4. A model of Barchan dunes including lateral shear stress.

    PubMed

    Schwämmle, V; Herrmann, H J

    2005-01-01

    Barchan dunes are found where sand availability is low and wind direction quite constant. The two dimensional shear stress of the wind field and the sand movement by saltation and avalanches over a barchan dune are simulated. The model with one dimensional shear stress is extended including surface diffusion and lateral shear stress. The resulting final shape is compared to the results of the model with a one dimensional shear stress and confirmed by comparison to measurements. We found agreement and improvements with respect to the model with one dimensional shear stress. Additionally, a characteristic edge at the center of the windward side is discovered which is also observed for big barchans. Diffusion effects reduce this effect for small dunes. PMID:15688141

  5. Microburst vertical wind estimation from horizontal wind measurements

    NASA Technical Reports Server (NTRS)

    Vicroy, Dan D.

    1994-01-01

    The vertical wind or downdraft component of a microburst-generated wind shear can significantly degrade airplane performance. Doppler radar and lidar are two sensor technologies being tested to provide flight crews with early warning of the presence of hazardous wind shear. An inherent limitation of Doppler-based sensors is the inability to measure velocities perpendicular to the line of sight, which results in an underestimate of the total wind shear hazard. One solution to the line-of-sight limitation is to use a vertical wind model to estimate the vertical component from the horizontal wind measurement. The objective of this study was to assess the ability of simple vertical wind models to improve the hazard prediction capability of an airborne Doppler sensor in a realistic microburst environment. Both simulation and flight test measurements were used to test the vertical wind models. The results indicate that in the altitude region of interest (at or below 300 m), the simple vertical wind models improved the hazard estimate. The radar simulation study showed that the magnitude of the performance improvement was altitude dependent. The altitude of maximum performance improvement occurred at about 300 m.

  6. Shearing stability of lubricants

    NASA Technical Reports Server (NTRS)

    Shiba, Y.; Gijyutsu, G.

    1984-01-01

    Shearing stabilities of lubricating oils containing a high mol. wt. polymer as a viscosity index improver were studied by use of ultrasound. The oils were degraded by cavitation and the degradation generally followed first order kinetics with the rate of degradation increasing with the intensity of the ultrasonic irradiation and the cumulative energy applied. The shear stability was mainly affected by the mol. wt. of the polymer additive and could be determined in a short time by mechanical shearing with ultrasound.

  7. TURBULENT SHEAR ACCELERATION

    SciTech Connect

    Ohira, Yutaka

    2013-04-10

    We consider particle acceleration by large-scale incompressible turbulence with a length scale larger than the particle mean free path. We derive an ensemble-averaged transport equation of energetic charged particles from an extended transport equation that contains the shear acceleration. The ensemble-averaged transport equation describes particle acceleration by incompressible turbulence (turbulent shear acceleration). We find that for Kolmogorov turbulence, the turbulent shear acceleration becomes important on small scales. Moreover, using Monte Carlo simulations, we confirm that the ensemble-averaged transport equation describes the turbulent shear acceleration.

  8. Shear Thinning in Xenon

    NASA Technical Reports Server (NTRS)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  9. Shear Stress Sensing with Elastic Microfence Structures

    NASA Technical Reports Server (NTRS)

    Cisotto, Alexxandra; Palmieri, Frank L.; Saini, Aditya; Lin, Yi; Thurman, Christopher S; Kim, Jinwook; Kim, Taeyang; Connell, John W.; Zhu, Yong; Gopalarathnam, Ashok; Jiang, Xiaoning; Wohl, Christopher J.

    2015-01-01

    In this work, elastic microfences were generated for the purpose of measuring shear forces acting on a wind tunnel model. The microfences were fabricated in a two part process involving laser ablation patterning to generate a template in a polymer film followed by soft lithography with a two-part silicone. Incorporation of a fluorescent dye was demonstrated as a method to enhance contrast between the sensing elements and the substrate. Sensing elements consisted of multiple microfences prepared at different orientations to enable determination of both shear force and directionality. Microfence arrays were integrated into an optical microscope with sub-micrometer resolution. Initial experiments were conducted on a flat plate wind tunnel model. Both image stabilization algorithms and digital image correlation were utilized to determine the amount of fence deflection as a result of airflow. Initial free jet experiments indicated that the microfences could be readily displaced and this displacement was recorded through the microscope.

  10. The MSU free shear flow facility

    NASA Technical Reports Server (NTRS)

    Disimile, P. J.

    1986-01-01

    A free shear layer wind tunnel has been constructed in order to undertake detailed, high quality transverse vorticity measurements in an isothermal, single stream mixing layer. The large 50 x 80 cm primary flow and 3-m test section length allows the generation of large, isolated vortical motions in high Reynolds number flow. A uniformly developed, irrotational secondary flow is achieved by means of an entrainment module.

  11. Shear flexibility for structures

    NASA Technical Reports Server (NTRS)

    Stangeland, Maynard L. (Inventor)

    1976-01-01

    This device comprises a flexible sheet member having cross convolutions oriented 45.degree. to the shear vector with spherical reliefs at the convolution junctions. The spherical reliefs are essential to the shear flexibility by interrupting the principal stress lines that act along the ridges of the convolutions. The spherical reliefs provide convolutions in both directions in the plane of the cross-convolution ridges.

  12. Shear flexibility for structures

    NASA Technical Reports Server (NTRS)

    Stangeland, Maynard L. (Inventor)

    1977-01-01

    This device comprises a flexible sheet member having cross convolutions oriented 45.degree. to the shear vector with spherical reliefs at the convolution junctions. The spherical reliefs are essential to the shear flexibility by interrupting the principal stress lines that act along the ridges of the convolutions. The spherical reliefs provide convolutions in both directions in the plane of the cross-convolution ridges.

  13. Interpretation of combined wind profiler and aircraft-measured tropospheric winds and clear air turbulence

    NASA Technical Reports Server (NTRS)

    Thomson, D. W.; Syrett, William J.; Fairall, C. W.

    1991-01-01

    In the first experiment, it was found that wind profilers are far better suited for the detailed examination of jet stream structure than are weather balloons. The combination of good vertical resolution with not previously obtained temporal resolution reveals structural details not seen before. Development of probability-derived shear values appears possible. A good correlation between pilot reports of turbulence and wind shear was found. In the second experiment, hourly measurements of wind speed and direction obtained using two wind profiling Doppler radars during two prolonged jet stream occurrences over western Pennsylvania were analyzed. In particular, the time-variant characteristics of derived shear profiles were examined. Profiler data dropouts were studied in an attempt to determine possible reasons for the apparently reduced performance of profiling radar operating beneath a jet stream. Richardson number and wind shear statistics were examined along with pilot reports of turbulence in the vicinity of the profiler.

  14. VisibleWind: wind profile measurements at low altitude

    NASA Astrophysics Data System (ADS)

    Wilkerson, Tom; Bradford, Bill; Marchant, Alan; Apedaile, Tom; Wright, Cordell

    2009-09-01

    VisibleWindTM is developing an inexpensive rapid response system, for accurately characterizing wind shear and small scale wind phenomena in the boundary layer and for prospecting suitable locations for wind power turbines. The ValidWind system can also collect reliable "ground truth" for other remote wind sensors. The system employs small (0.25 m dia.) lightweight balloons and a tracker consisting of an Impulse 200 XL laser rangefinder coupled to a PC for automated data recording. Experiments on balloon trajectories demonstrate that the laser detection of range (+/- 0.5 m), together with measured azimuth and altitude, is an inexpensive, convenient, and capable alternative to other wind tracking methods. The maximum detection range has been increased to 2200 meters using micro-corner-cube retroreflector tape on balloons. Low power LEDs enable nighttime tracking. To avoid large balloon gyrations about the mean trajectory, we use balloons having low ascent rates and subcritical Reynolds numbers. Trajectory points are typically recorded every 4 - 7 seconds. Atmospheric features observed under conditions of inversions or "light and variable winds" include abrupt onsets of shear at altitudes of 100-250 m, velocity changes of order 1-3 m/s within layers of 10-20 m thickness, and veering of the wind direction by 180 degrees or more as altitude increases from 300 to 500 m. We have previously reported comparisons of balloon-based wind profiles with the output of a co-located sodar. Even with the Impulse rangefinder, our system still requires a "man in the loop" to track the balloon. A future system enhancement will automate balloon tracking, so that laser returns are obtained automatically at 1 Hz. While balloon measurements of large-scale, high altitude wind profiles are well known, this novel measurement system provides high-resolution, real-time characterization of the fluctuating local wind fields at the bottom of the boundary layer where wind power turbines and other

  15. Buried wire gage for wall shear stress measurements

    NASA Technical Reports Server (NTRS)

    Murthy, V. S.; Rose, W. C.

    1978-01-01

    A buried wire gage for measuring wall shear stress in fluid flow was studied and further developed. Several methods of making this relatively new type of gage were examined to arrive at a successful technique that is well-suited for wind-tunnel testing. A series of measurements was made to demonstrate the adequacy of a two-point calibration procedure for these gages. The buried wire gage is also demonstrated to be ideally suited for quantitative measurement of wall shear stress in wind-tunnel testing.

  16. 24 CFR 3285.403 - Sidewall, over-the-roof, mate-line, and shear wall straps.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., and shear wall straps. 3285.403 Section 3285.403 Housing and Urban Development Regulations Relating to... Anchorage Against Wind § 3285.403 Sidewall, over-the-roof, mate-line, and shear wall straps. If sidewall, over-the-roof, mate-line, or shear wall straps are installed on the home, they must be connected to...

  17. Sea surface wind stress in stratified atmospheric flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1996-12-31

    The paper presents the wind shear stress on the sea surface as well as the velocity profile in stably stratified atmospheric boundary layer flow over wind waves by using similarity theory. For a given geostrophic velocity, Coriolis parameter, spectral peak period and stratification parameter the sea surface shear stress is determined. Further, the direction of the sea surface shear stress and the velocity profile are given. Parameterizations of the results are also presented. Finally, the engineering relevance of the results is discussed.

  18. Shear Stress Partitioning in Airflow over Rough Surfaces: Roughness Form Effects and Influence on the Distribution of Shear Stress

    NASA Astrophysics Data System (ADS)

    Gillies, J. A.; Nickling, W. G.; King, J.

    2004-12-01

    Roughness elements distributed across a surface can significantly decrease the entrainment and transport of underlying fine-grained sediments by wind. The parameterization of roughness effects on wind erosion thresholds and sediment transport is critical to the development of models that can provide realistic predictions of sediment thresholds and fluxes due to wind erosion. Raupach et al. (1993) present a model for predicting the protective role of roughness elements in terms of a threshold friction velocity ratio as a function of the roughness geometry and the aerodynamic properties of the surface and roughness elements. The predictive capacity of this model remains uncertain and the work presented here represents part of an on-going effort of our group to improve the parameterization of the Raupach et al. (1993) model. To gain additional understanding of how roughness elements influence the magnitude and nature of the shear stress acting on the surface among the elements and evaluate strength and weaknesses of the roughness density parameter to characterize these effects, a wind tunnel study using model roughness arrays of similar roughness density composed of cube-shaped elements of different length dimensions was undertaken. Roughness density is defined as the total frontal area of all the elements to the total surface area that they occupy. Shear stress in the above element air flow was determined from vertical wind speed profile measurements. Point measurements of near surface shear stresses within the roughness array were made with simple omni-directional skin friction meters in order to investigate the partitioning of shear stress to the intervening surface. The results suggest that the roughness density parameter has severe limitations in describing the shear stress partitioning for these regularly arrayed rough surfaces. For surfaces with identical roughness densities, the surface composed of more and smaller elements was observed to have average and

  19. Thermocline bulk shear analysis in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Chen, Shengli; Polton, Jeff A.; Hu, Jianyu; Xing, Jiuxing

    2016-04-01

    Thermocline bulk shear is investigated in the northern North Sea using historical observations. The conventional bulk shear is modified to define a thermocline bulk shear (TBS), in order to better represent the shear across the thermocline. The TBS computed by observed currents is decomposed into components at different frequency bands. The near-inertial TBS is the largest component. Its dominance is significant during the period of high wind. It is formed by the wind-driven near-inertial current which has a distinct phase shift (˜180°) across the thermocline. A linear model is presented, which well simulates the observed near-inertial TBS, especially during the period of relatively strong wind. The semidiurnal TBS makes a secondary contribution to the total TBS. It is only slightly smaller than the near-inertial TBS when the wind is relatively weak. The large values of semidiurnal TBS are associated with semidiurnal currents which have a phase shift (˜30-40°) or a magnitude difference (˜5 cm/s) across the thermocline. The low-frequency (<0.7 cpd) TBS also makes an episodic contribution to the total. Its variation coincides with the Ekman transport during the period of relatively strong wind. The low-frequency TBS is mainly formed by an Ekman-like clockwise spiraling of velocity with depth or a distinct magnitude difference in velocities between upper and lower layers.

  20. Viscous shear dampers

    SciTech Connect

    Zilahi-Szabo, I.

    1980-10-07

    In a viscous shear damper, the seismic mass is chamfered at all its corners. Thus, the clearances between the seismic mass and its casing are gaps with oppositely widening out sections separated by middle sections of smallest widths.

  1. Internal gravity wave-atmospheric wind interaction - A cause of clear air turbulence.

    NASA Technical Reports Server (NTRS)

    Bekofske, K.; Liu, V. C.

    1972-01-01

    The interaction between an internal gravity wave (IGW) and a vertical wind shear is discussed as a possible cause in the production of clear air turbulence in the free atmosphere. It is shown that under certain typical condition the interaction of an IGW with a background wind shear near a critical level provides a mechanism for depositing sufficient momentum in certain regions of the atmosphere to significantly increase the local mean wind shear and to lead to the production of turbulence.

  2. Wind turbulence characterization for wind energy development

    NASA Astrophysics Data System (ADS)

    Wendell, L. L.; Gower, G. L.; Morris, V. R.; Tomich, S. D.

    1991-09-01

    As part of its support of the U.S. Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites.

  3. Excitation of vortex meandering in shear flow

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Dörnbrack, Andreas; Schumann, Ulrich

    2015-06-01

    This paper investigates the evolution of a streamwise aligned columnar vortex with vorticity {\\boldsymbol{ ω }} in an axial background shear of magnitude Ω by means of linear stability analysis and numerical simulations. A long wave mode of vorticity normal to the plane spanned by the background shear vector {\\boldsymbol{ Ω }} and the vorticity of the vortex are excited by an instability. The stationary wave modes of the vertical and lateral vorticity are amplified. In order to form a helical vortex, the lateral and vertical vorticity can be phase shifted by half a wavelength. The linear and nonlinear evolutions of the vortex in the shear flow are studied numerically. Linearized simulations confirm the results of the stability analysis. The nonlinear simulations reveal further evolution of the helix in the shear flow. The linearly excited mode persists in co-existence with evolving smaller scale instabilities until the flow becomes fully turbulent at the time of O(100 {{Ω }-1}). Turbulent mixing dampens the amplifying mode. The described phenomenon of vortex meandering may serve as an alternative explanation for the excitation of wind turbine wake meandering in the atmospheric boundary layer.

  4. Converging shear rheometer

    NASA Astrophysics Data System (ADS)

    Baek, Hyung M.; Mix, Adam W.; Giacomin, A. Jeffrey

    2014-05-01

    For highly viscous fluids that slip in parallel sliding plate rheometers, we want to use a slightly converging flow to suppress this wall slip. In this work, we first attack the steady shear flow of a highly viscous Newtonian fluid between two gently converging plates with no slip boundaries using the equation of motion in cylindrical coordinates, which yields no analytical solution. Then we treat the same problem using the lubrication approximation in Cartesian coordinates to yield exact, explicit solutions for dimensionless velocity, pressure and shear stress. This work deepens our understanding of a drag flow through a gently converging slit of arbitrary convergence angle. We also employ the corotational Maxwell model to explore the role of viscoelasticity in this converging shear flow. We then compare these analytical solutions to finite element calculations for both Newtonian and corotational Maxwell cases. A worked example for determining the Newtonian viscosity using a converging shear rheometer is also included. With this work, we provide the framework for exploring other constitutive equations or other boundary conditions in future work. Our results can also be used to design the linear bearings used for the parallel sliding plate rheometer (SPR). This work can also be used to evaluate the error in the shear stress that is caused by bearing misalignment and specify the parallelism tolerance for the linear bearings incorporated into a SPR.

  5. Final Report for The Creation of a Physics-based Ground-effect Model, Phase 2 - Inclusion of the Effects of Wind, Stratification, and Shear into the New Ground Effect Model

    NASA Technical Reports Server (NTRS)

    Sarpkaya, Turgut

    2006-01-01

    The reduction of the separation of the leading and following aircrafts is desirable to enhance the airport capacity provided that there is a physics-based operational model applicable to all regions of the flight domain (out of ground effect, OGE; near ground effect, NGE; and in ground effect, IGE) and that the quality of the quantitative input from the measurements of the prevailing atmospheric conditions and the quality of the total airport operations regarding the safety and the sound interpretation of the prevailing conditions match the quality of the analysis and numerical simulations. In the absence of an analytical solution, the physics of the flow is best expressed by a mathematical model based on numerical simulations, field and laboratory experiments, and heuristic reasoning. This report deals with the creation of a sound physics-based real-time IGE model of the aircraft wake vortices subjected to crosswind, stratification and shear.

  6. Free volume under shear.

    PubMed

    Maiti, Moumita; Vinutha, H A; Sastry, Srikanth; Heussinger, Claus

    2015-10-14

    Using an athermal quasistatic simulation protocol, we study the distribution of free volumes in sheared hard-particle packings close to, but below, the random-close packing threshold. We show that under shear, and independent of volume fraction, the free volumes develop features similar to close-packed systems - particles self-organize in a manner as to mimick the isotropically jammed state. We compare athermally sheared packings with thermalized packings and show that thermalization leads to an erasure of these structural features. The temporal evolution in particular the opening-up and the closing of free-volume patches is associated with the single-particle dynamics, showing a crossover from ballistic to diffusive behavior. PMID:26472384

  7. WAVE ACTION AND BOTTOM SHEAR STRESSES IN LAKE ERIE

    EPA Science Inventory

    For Lake Erie, the amplitudes and periods of wind-driven, surface gravity waves were calculated by means of the SMB hindcasting method. Bottom orbital velocities and bottom shear stresses were then calculated using linear wave theory and Kajiura's (1968) turbulent oscillating bou...

  8. Metal shearing energy absorber

    NASA Technical Reports Server (NTRS)

    Fay, R. J.; Wittrock, E. P. (Inventor)

    1973-01-01

    A metal shearing energy absorber is described. The absorber is composed of a flat thin strip of metal which is pulled through a slot in a cutter member of a metal, harder than the metal of the strip. The slot's length, in the direction perpendicular to the pull direction, is less than the strip's width so that as the strip is pulled through the slot, its edges are sheared off, thereby absorbing some of the pulling energy. In one embodiment the cutter member is a flat plate of steel, while in another embodiment the cutter member is U-shaped with the slot at its base.

  9. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, D.S.; Lanham, R.N.

    1984-04-11

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  10. Ultrasonic shear wave couplant

    DOEpatents

    Kupperman, David S.; Lanham, Ronald N.

    1985-01-01

    Ultrasonically testing of an article at high temperatures is accomplished by the use of a compact layer of a dry ceramic powder as a couplant in a method which involves providing an ultrasonic transducer as a probe capable of transmitting shear waves, coupling the probe to the article through a thin compact layer of a dry ceramic powder, propagating a shear wave from the probe through the ceramic powder and into the article to develop echo signals, and analyzing the echo signals to determine at least one physical characteristic of the article.

  11. Infrared lateral shearing interferometers

    NASA Astrophysics Data System (ADS)

    Kwon, O.

    1980-04-01

    Recently IR interferometry has received much attention for its special capabilities of testing IR materials, diamond-turned metal mirrors, deep aspherics, unpolished rough surface optics, and other unconventional optics. A CW CO2 laser is used as a coherent light source at 10.6 microns, and germanium and zinc selenide optics are used for lenses and beam splitters. A pyroelectric vidicon (PEV) detects the modulated interference pattern through a TV monitor and video recorder-player. This paper presents three methods of IR lateral shear interferometry using (1) a germanium plane-parallel plate, (2) a Ronchi ruling, and (3) a double-grating lateral shear interferometer.

  12. Shear wave transmissivity measurement by color Doppler shear wave imaging

    NASA Astrophysics Data System (ADS)

    Yamakoshi, Yoshiki; Yamazaki, Mayuko; Kasahara, Toshihiro; Sunaguchi, Naoki; Yuminaka, Yasushi

    2016-07-01

    Shear wave elastography is a useful method for evaluating tissue stiffness. We have proposed a novel shear wave imaging method (color Doppler shear wave imaging: CD SWI), which utilizes a signal processing unit in ultrasound color flow imaging in order to detect the shear wave wavefront in real time. Shear wave velocity is adopted to characterize tissue stiffness; however, it is difficult to measure tissue stiffness with high spatial resolution because of the artifact produced by shear wave diffraction. Spatial average processing in the image reconstruction method also degrades the spatial resolution. In this paper, we propose a novel measurement method for the shear wave transmissivity of a tissue boundary. Shear wave wavefront maps are acquired by changing the displacement amplitude of the shear wave and the transmissivity of the shear wave, which gives the difference in shear wave velocity between two mediums separated by the boundary, is measured from the ratio of two threshold voltages required to form the shear wave wavefronts in the two mediums. From this method, a high-resolution shear wave amplitude imaging method that reconstructs a tissue boundary is proposed.

  13. The Intensification of Sheared Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Nguyen, Leon Trungduong

    Environmental vertical wind shear has been shown to have a generally detrimental impact on tropical cyclone (TC) intensity change. However, many cases of rapidly intensifying (RI) sheared TCs have been observed, and TCs in moderate (5-10 m s-1) shear often have the largest intensity forecast errors. Thus, advancing the understanding of TC-shear interactions is vital to improving TC intensity forecasts, which have not seen much improvement over the past few decades. This dissertation employs both observational and high-resolution numerical modeling approaches to investigate how some TCs are able to resist shear and intensify. The rapid intensification of Hurricane Irene (1999) was studied using observations, while the short-term RI of Tropical Storm Gabrielle (2001) was simulated using the Weather Research and Forecast (WRF) model run at 1-km horizontal resolution. Both storms exhibited a downshear-left vortex tilt and a marked azimuthal wavenumber-1 convective asymmetry. However, the azimuthally averaged diabatic heating also increased, suggesting that TC intensity may be more sensitive to the azimuthally averaged component of diabatic heating rather than the asymmetric component. Furthermore, this increase occurred within the radius of maximum winds (RMW), a region theorized to favor rapid spinup of the vortex. A key difference between the Irene and Gabrielle cases was that the latter underwent a downshear reformation. The circulation associated with an intense mesovortex and other localized cyclonic vorticity anomalies comprised a developing "inner vortex" on the downshear-left (downtilt) periphery of the broader parent vortex. This inner vortex was nearly upright within a parent vortex that was tilted significantly with height. The inner vortex became the dominant vortex of the system, advecting and absorbing the broad, tilted parent vortex. A method was developed for diagnosing vortex tilt in the simulation. The reduction of TC vortex tilt from 65 km to 20 km

  14. Sheared Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Kwak, Rhokyun; Pham, Van Sang; Lim, Kiang Meng; Han, Jongyoon

    2012-11-01

    Recently, ion concentration polarization (ICP) and related phenomena draw attention from physicists, due to its importance in understanding electrochemical systems. Researchers have been actively studying, but the complexity of this multiscale, multiphysics phenomenon has been limitation for gaining a detailed picture. Here, we consider electroconvective(EC) instability initiated by ICP under pressure-driven flow, a scenario often found in electrochemical desalinations. Combining scaling analysis, experiment, and numerical modeling, we reveal unique behaviors of sheared EC: unidirectional vortex structures, its size selection and vortex propagation. Selected by balancing the external pressure gradient and the electric body force, which generates Hagen-Poiseuille(HP) flow and vortical EC, the dimensionless EC thickness scales as (φ2 /UHP)1/3. The pressure-driven flow(or shear) suppresses unfavorably-directed vortices, and simultaneously pushes favorably-directed vortices with constant speed, which is linearly proportional to the total shear of HP flow. This is the first systematic characterization of sheared EC, which has significant implications on the optimization of electrodialysis and other electrochemical systems.

  15. Measuring the reduced shear

    SciTech Connect

    Zhang, Jun

    2011-11-01

    Neglecting the second order corrections in weak lensing measurements can lead to a few percent uncertainties on cosmic shears, and becomes more important for cluster lensing mass reconstructions. Existing methods which claim to measure the reduced shears are not necessarily accurate to the second order when a point spread function (PSF) is present. We show that the method of Zhang (2008) exactly measures the reduced shears at the second order level in the presence of PSF. A simple theorem is provided for further confirming our calculation, and for judging the accuracy of any shear measurement method at the second order based on its properties at the first order. The method of Zhang (2008) is well defined mathematically. It does not require assumptions on the morphologies of galaxies and the PSF. To reach a sub-percent level accuracy, the CCD pixel size is required to be not larger than 1/3 of the Full Width at Half Maximum (FWHM) of the PSF, regardless of whether the PSF has a power-law or exponential profile at large distances. Using a large ensemble (∼>10{sup 7}) of mock galaxies of unrestricted morphologies, we study the shear recovery accuracy under different noise conditions. We find that contaminations to the shear signals from the noise of background photons can be removed in a well defined way because they are not correlated with the source shapes. The residual shear measurement errors due to background noise are consistent with zero at the sub-percent level even when the amplitude of such noise reaches about 1/10 of the source flux within the half-light radius of the source. This limit can in principle be extended further with a larger galaxy ensemble in our simulations. On the other hand, the source Poisson noise remains to be a cause of systematic errors. For a sub-percent level accuracy, our method requires the amplitude of the source Poisson noise to be less than 1/80 ∼ 1/100 of the source flux within the half-light radius of the source

  16. Wind Simulation

    Energy Science and Technology Software Center (ESTSC)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  17. Wind Turbines Adaptation to the Variability of the Wind Field

    NASA Astrophysics Data System (ADS)

    Ulianov, Yuriy; Martynenko, Gennadii; Misaylov, Vitaliy; Soliannikova, Iuliia

    2010-05-01

    WIND TURBINES ADAPTATION TO THE VARIABILITY OF THE WIND FIELD The subject of our scientific research is wind power turbines (WPT) with the horizontal axis which were now common in the world. Efficient wind turbines work is largely determined by non-stationarity of the wind field, expressed in its gustiness, the presence of vertical and horizontal shifts of wind speed and direction. At critical values of the wind parameters WPT has aerodynamic and mechanical overload, leading to breakdowns, premature wear and reduce the life of the wind turbine. To prevent accidents at the peak values of wind speed it is used the regulatory system of windwheels. WPT control systems provide a process orientation of the wind turbine rotor axis in the line of the mean wind. Wind turbines are also equipped with braking device used to protect against breakdowns when a significant increase in the wind. In general, all these methods of regulation are not always effective. Thus, in practice there may be situations when the wind speed is many times greater than the stated limit. For example, if there are microbursts in the atmospheric boundary layer, low-level wind shears caused by its gust front, storms, etc. It is required for a wind power turbine adaptation to intensive short-term wind impulses and considerable vertical wind shifts that the data about them shall be obtained ahead of time. To do this it is necessary to have the information on the real structure of the wind field in the area of the blade sweep for the minimum range against the wind that is determined by the mean speed and the system action time. The implementation of acoustic and laser traditional wind sounding systems is limited by ambient acoustic noise, by heavy rain, snowfall and by fog. There are free of these disadvantages the inclined radioacoustic sounding (IRASS) technique which works for a system of remote detection and control of wind gusts. IRASS technique is realized as low-potential Doppler pulse radar

  18. Flexible Micropost Arrays for Shear Stress Measurement

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J.; Palmieri, Frank L.; Hopkins, John W.; Jackson, Allen M.; Connell, John W.; Lin, Yi; Cisotto, Alexxandra A.

    2015-01-01

    Increased fuel costs, heightened environmental protection requirements, and noise abatement continue to place drag reduction at the forefront of aerospace research priorities. Unfortunately, shortfalls still exist in the fundamental understanding of boundary-layer airflow over aerodynamic surfaces, especially regarding drag arising from skin friction. For example, there is insufficient availability of instrumentation to adequately characterize complex flows with strong pressure gradients, heat transfer, wall mass flux, three-dimensionality, separation, shock waves, and transient phenomena. One example is the acoustic liner efficacy on aircraft engine nacelle walls. Active measurement of shear stress in boundary layer airflow would enable a better understanding of how aircraft structure and flight dynamics affect skin friction. Current shear stress measurement techniques suffer from reliability, complexity, and airflow disruption, thereby compromising resultant shear stress data. The state-of-the-art for shear stress sensing uses indirect or direct measurement techniques. Indirect measurements (e.g., hot-wire, heat flux gages, oil interferometry, laser Doppler anemometry, small scale pressure drag surfaces, i.e., fences) require intricate knowledge of the studied flow, restrictive instrument arrangements, large surface areas, flow disruption, or seeding material; with smaller, higher bandwidth probes under development. Direct measurements involve strain displacement of a sensor element and require no prior knowledge of the flow. Unfortunately, conventional "floating" recessed components for direct measurements are mm to cm in size. Whispering gallery mode devices and Fiber Bragg Gratings are examples of recent additions to this type of sensor with much smaller (?m) sensor components. Direct detection techniques are often single point measurements and difficult to calibrate and implement in wind tunnel experiments. In addition, the wiring, packaging, and installation

  19. LIDAR wind speed measurements at a Taiwan onshore wind park

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Ting; Lin, Ta-Hui; Hsuan, Chung-Yao; Li, Yu-Cheng; Yang, Ya-Fei; Tai, Tzy-Hwan; Huang, Chien-Cheng

    2016-04-01

    Measurements of wind speed and wind direction were carried out using a Leosphere Windcube LIDAR system at a Taiwan onshore wind park. The Lidar shot a total of five laser beams to the atmosphere to collect the light-of-sight (LOS) velocity. Four beams were sent successively in four cardinal directions along a 28° scanning cone angle, followed by a fifth, vertical beam. An unchangeable sampling rate of approximately 1.2 Hz was set in the LIDAR system to collect the LOS velocity. The supervisory control and data acquisition (SCADA) data from two GE 1.5 MW wind turbines near the LIDAR deployment site were acquired for the whole measuring period from February 4 to February 16 of 2015. The SCADA data include the blade angular velocity, the wind velocity measured at hub height from an anemometer mounted on the nacelle, the wind turbine yaw angle, and power production; each parameter was recorded as averages over 1-min periods. The data analysis involving the LIDAR measurements and the SCADA data were performed to obtain the turbulent flow statistics. The results show that the turbine power production has significant dependence to the wind speed, wind direction, turbulence intensity and wind shear.

  20. Shear-thinning Fluid

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  1. Gelation under shear

    SciTech Connect

    Butler, B.D.; Hanley, H.J.M.; Straty, G.C.; Muzny, C.D.

    1995-12-31

    An experimental small angle neutron scattering (SANS) study of dense silica gels, prepared from suspensions of 24 nm colloidal silica particles at several volume fractions {theta} is discussed. Provided that {theta}{approx_lt}0.18, the scattered intensity at small wave vectors q increases as the gelation proceeds, and the structure factor S(q, t {yields} {infinity}) of the gel exhibits apparent power law behavior. Power law behavior is also observed, even for samples with {theta}>0.18, when the gel is formed under an applied shear. Shear also enhances the diffraction maximum corresponding to the inter-particle contact distance of the gel. Difficulties encountered when trying to interpret SANS data from these dense systems are outlined. Results of computer simulations intended to mimic gel formation, including computations of S(q, t), are discussed. Comments on a method to extract a fractal dimension characterizing the gel are included.

  2. Micromechanics of shear banding

    SciTech Connect

    Gilman, J.J.

    1992-08-01

    Shear-banding is one of many instabilities observed during the plastic flow of solids. It is a consequence of the dislocation mechanism which makes plastic flow fundamentally inhomogeneous, and is exacerbated by local adiabatic heating. Dislocation lines tend to be clustered on sets of neighboring glide planes because they are heterogeneously generated; especially through the Koehler multiple-cross-glide mechanism. Factors that influence their mobilities also play a role. Strain-hardening decreases the mobilities within shear bands thereby tending to spread (delocalize) them. Strain-softening has the inverse effect. This paper reviews the micro-mechanisms of these phenomena. It will be shown that heat production is also a consequence of the heterogeneous nature of the microscopic flow, and that dislocation dipoles play an important role. They are often not directly observable, but their presence may be inferred from changes in thermal conductivity. It is argued that after deformation at low temperatures dipoles are distributed a la Pareto so there are many more small than large ones. Instability at upper yield point, the shapes of shear-band fronts, and mechanism of heat generation are also considered. It is shown that strain-rate acceleration plays a more important role than strain-rate itself in adiabatic instability.

  3. Three Dimensional Dynamic Model Based Wind Field Reconstruction from Lidar Data

    NASA Astrophysics Data System (ADS)

    Raach, Steffen; Schlipf, David; Haizmann, Florian; Cheng, Po Wen

    2014-06-01

    Using the inflowing horizontal and vertical wind shears for individual pitch controller is a promising method if blade bending measurements are not available. Due to the limited information provided by a lidar system the reconstruction of shears in real-time is a challenging task especially for the horizontal shear in the presence of changing wind direction. The internal model principle has shown to be a promising approach to estimate the shears and directions in 10 minutes averages with real measurement data. The static model based wind vector field reconstruction is extended in this work taking into account a dynamic reconstruction model based on Taylor's Frozen Turbulence Hypothesis. The presented method provides time series over several seconds of the wind speed, shears and direction, which can be directly used in advanced optimal preview control. Therefore, this work is an important step towards the application of preview individual blade pitch control under realistic wind conditions. The method is tested using a turbulent wind field and a detailed lidar simulator. For the simulation, the turbulent wind field structure is flowing towards the lidar system and is continuously misaligned with respect to the horizontal axis of the wind turbine. Taylor's Frozen Turbulence Hypothesis is taken into account to model the wind evolution. For the reconstruction, the structure is discretized into several stages where each stage is reduced to an effective wind speed, superposed with a linear horizontal and vertical wind shear. Previous lidar measurements are shifted using again Taylor's Hypothesis. The wind field reconstruction problem is then formulated as a nonlinear optimization problem, which minimizes the residual between the assumed wind model and the lidar measurements to obtain the misalignment angle and the effective wind speed and the wind shears for each stage. This method shows good results in reconstructing the wind characteristics of a three dimensional

  4. Erosion: Wind

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind erosion refers to the detachment, transport and deposition of sediment by wind. It is a dynamic, physical process where loose, dry, bare soils are transported by strong winds. Wind erosion is a soil degrading process that affects over 500 million ha of land worldwide and creates between 500 an...

  5. Meteorology (Wind)

    Atmospheric Science Data Center

    2014-09-25

    Wind speed at 50 m (m/s) The average and percent difference minimum and ... are given.   Percent of time for ranges of wind speed at 50 m (percent) Percentage [frequency] of time that wind ... be adjusted to heights from 10 to 300 meters using the Gipe power law. Wind speeds may be adjusted for different terrain by selecting from ...

  6. Observation of Shear-Induced Turbulence Using HARLIE

    NASA Technical Reports Server (NTRS)

    Miller, David O.; Schwemmer, Geary K.; Wilkerson, Thomas D.; Sanders, Jason; Guerra, David; Moody, Steven

    2000-01-01

    Ground-based measurements of atmospheric aerosol structure were made using the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) during the HOLO-1 field campaign. The scanning ability of HARLIE affords a unique opportunity to view various atmospheric phenomena. Shear-induced turbulence plays an important role in the transport of kinetic energy in the atmosphere and on March 10, 1999, several instances of shear-induced turbulence were observed via HARLIE. Using the data collected and upper-air wind profiles the nature of the instabilities is discussed.

  7. Imaging Faults and Shear Zones Using Receiver Functions

    NASA Astrophysics Data System (ADS)

    Schulte-Pelkum, Vera; Mahan, Kevin H.

    2014-11-01

    The geometry of faults at seismogenic depths and their continuation into the ductile zone is of interest for a number of applications ranging from earthquake hazard to modes of lithospheric deformation. Teleseismic passive source imaging of faults and shear zones can be useful particularly where faults are not outlined by local seismicity. Passive seismic signatures of faults may arise from abrupt changes in lithology or foliation orientation in the upper crust, and from mylonitic shear zones at greater depths. Faults and shear zones with less than near-vertical dip lend themselves to detection with teleseismic mode-converted waves (receiver functions) provided that they have either a contrast in isotropic shear velocity ( V s), or a contrast in orientation or strength of anisotropic compressional velocity ( V p). We introduce a detection method for faults and shear zones based on receiver functions. We use synthetic seismograms to demonstrate common features of dipping isotropic interfaces and contrasts in dipping foliation that allows determination of their strike and depth without making further assumptions about the model. We proceed with two applications. We first image a Laramide thrust fault in the western U.S. (the Wind River thrust fault) as a steeply dipping isotropic velocity contrast in the middle crust near the surface trace of the fault; further downdip and across the range, where basin geometry suggests the fault may sole into a subhorizontal shear zone, we identify a candidate shear zone signal from midcrustal depths. The second application is the use of microstructural data from exhumed ductile shear zones in Scotland and in the western Canadian Shield to predict the character of seismic signatures of present-day deep crustal shear zones. Realistic anisotropy in observed shear fabrics generates a signal in receiver functions that is comparable in amplitude to first-order features like the Moho. Observables that can be robustly constrained without

  8. Wind information display system user's manual

    NASA Technical Reports Server (NTRS)

    Roe, J.; Smith, G.

    1977-01-01

    The Wind Information Display System (WINDS) provides flexible control through system-user interaction for collecting wind shear data, processing this data in real time, displaying the processed data, storing raw data on magnetic tapes, and post-processing raw data. The data are received from two asynchronous laser Doppler velocimeters (LDV's) and include position, velocity and intensity information. The raw data is written onto magnetic tape for permanent storage and is also processed in real time to depict wind velocities in a given spacial region.

  9. Winds aloft statistical analysis in support of day of launch Shuttle systems evaluation

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.; Smith, O. E.; Batts, G. W.; Hill, C. K.

    1988-01-01

    In connection with the development of the Meteorological Interactive Data Display System (MIDDS) for utilization by the Launch Systems Evaluation Advisory Team (LSEAT), requirements have been established to expand the pre-launch analysis of winds aloft for the Space Shuttle. Statistical analyses developed for the system include: comparison of pre-launch wind component profiles to wind component extremes at each altitude calculated from launch site historical data; conditional probability ellipses for wind vectors at a future time given the wind vector at an initial time; comparison of observed extreme wind shear and associated wind speed with launch site historical data utilizing the bivariate extreme value (Gumbel) distribution; estimation of extremes of wind speed or wind shear at a future time given the extremes of either variable at an initial time, utilizing the conditional extreme value distribution; power spectrum analysis for tracking wind perturbation energy in sequential pre-launch Jimsphere wind profiles.

  10. Sensitivity of Southern Ocean circulation to wind stress changes: Role of relative wind stress

    NASA Astrophysics Data System (ADS)

    Munday, D. R.; Zhai, X.

    2015-11-01

    The influence of different wind stress bulk formulae on the response of the Southern Ocean circulation to wind stress changes is investigated using an idealised channel model. Surface/mixed layer properties are found to be sensitive to the use of the relative wind stress formulation, where the wind stress depends on the difference between the ocean and atmosphere velocities. Previous work has highlighted the surface eddy damping effect of this formulation, which we find leads to increased circumpolar transport. Nevertheless the transport due to thermal wind shear does lose sensitivity to wind stress changes at sufficiently high wind stress. In contrast, the sensitivity of the meridional overturning circulation is broadly the same regardless of the bulk formula used due to the adiabatic nature of the relative wind stress damping. This is a consequence of the steepening of isopycnals offsetting the reduction in eddy diffusivity in their contribution to the eddy bolus overturning, as predicted using a residual mean framework.

  11. TUBE SHEARING VALVE

    DOEpatents

    Wilner, L.B.

    1960-05-24

    Explosive operated valves can be used to join two or more containers in fluid flow relationship, one such container being a sealed reservoir. The valve is most simply disposed by mounting it on the reservoir so thst a tube extends from the interior of the reservoir through the valve body, terminating at the bottom of the bore in a closed end; other containers may be similarly connected or may be open connected, as desired. The piston of the valve has a cutting edge at its lower end which shears off the closed tube ends and a recess above the cutting edge to provide a flow channel. Intermixing of the fluid being transferred with the explosion gases is prevented by a copper ring at the top of the piston which is force fitted into the bore at the beginning of the stroke. Although designed to avoid backing up of the piston at pressures up to 10,000 psi in the transferred fluid, proper operation is independent of piston position, once the tube ends were sheared.

  12. Excited waves in shear layers

    NASA Technical Reports Server (NTRS)

    Bechert, D. W.

    1982-01-01

    The generation of instability waves in free shear layers is investigated. The model assumes an infinitesimally thin shear layer shed from a semi-infinite plate which is exposed to sound excitation. The acoustical shear layer excitation by a source further away from the plate edge in the downstream direction is very weak while upstream from the plate edge the excitation is relatively efficient. A special solution is given for the source at the plate edge. The theory is then extended to two streams on both sides of the shear layer having different velocities and densities. Furthermore, the excitation of a shear layer in a channel is calculated. A reference quantity is found for the magnitude of the excited instability waves. For a comparison with measurements, numerical computations of the velocity field outside the shear layer were carried out.

  13. Inductive shearing of drilling pipe

    DOEpatents

    Ludtka, Gerard M.; Wilgen, John; Kisner, Roger; Mcintyre, Timothy

    2016-04-19

    Induction shearing may be used to cut a drillpipe at an undersea well. Electromagnetic rings may be built into a blow-out preventer (BOP) at the seafloor. The electromagnetic rings create a magnetic field through the drillpipe and may transfer sufficient energy to change the state of the metal drillpipe to shear the drillpipe. After shearing the drillpipe, the drillpipe may be sealed to prevent further leakage of well contents.

  14. True Shear Parallel Plate Viscometer

    NASA Technical Reports Server (NTRS)

    Ethridge, Edwin; Kaukler, William

    2010-01-01

    This viscometer (which can also be used as a rheometer) is designed for use with liquids over a large temperature range. The device consists of horizontally disposed, similarly sized, parallel plates with a precisely known gap. The lower plate is driven laterally with a motor to apply shear to the liquid in the gap. The upper plate is freely suspended from a double-arm pendulum with a sufficiently long radius to reduce height variations during the swing to negligible levels. A sensitive load cell measures the shear force applied by the liquid to the upper plate. Viscosity is measured by taking the ratio of shear stress to shear rate.

  15. Winter meso-scale shear front in the Yellow Sea and its sedimentary effects

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Qiao, Lulu; Li, Guangxue

    2016-02-01

    In this paper, the authors explored the presence of shear fronts between the Yellow Sea Coastal Current (YSCC) and the monsoon-strengthened Yellow Sea Warm Current (YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model. This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea. The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time. When this warm current encounters the North Shandong-South Yellow Sea coastal current, there is a strong reverse shear action between the two current systems, forming a reverse-S-shaped shear front that begins near 34°N in the south and extends to approximately 38°N, with an overall length of over 600 km. The main driving force for the formation of this shear front derives from the circulation system with the reverse flow. In the shear zone, temperature and salinity gradients increase, flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side. The vertical circulation structure is complicated, consisting of a series of meso- and small-scale anti-clockwise eddies. Particularly, this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents, resulting in fine sediments deposition due to the weak hydrodynamic regime.

  16. Wind turbine wake detection with a single Doppler wind lidar

    NASA Astrophysics Data System (ADS)

    Wang, H.; Barthelmie, R. J.

    2015-06-01

    Using scanning lidar wind turbine wakes can be probed in three dimensions to produce a wealth of temporally and spatially irregular data that can be used to characterize the wakes. Unlike data from a meteorological mast or upward pointing lidar, the spatial coordinates of the measurements are not fixed and the location of the wake also varies in three dimensions. Therefore the challenge is to provide automated detection algorithms to identify wakes and quantify wake characteristics from this type of dataset. Here an algorithm is developed and evaluated on data from a large wind farm in the Midwest. A scanning coherent Doppler wind lidar was configured to measure wind speed in the wake of a continuously yawing wind turbine for two days during the experiment and wake profiles were retrieved with input of wind direction information from the nearby meteorological mast. Additional challenges to the analysis include incomplete coverage of the entire wake due to the limited scanning domain, and large wind shear that can contaminate the wake estimate because of the height variation along the line-of-sight. However, the algorithm developed in this paper is able to automatically capture wakes in lidar data from Plan Position Indicator (PPI) scans and the resultant wake statistics are consistent with previous experiment's results.

  17. Improving Maryland's Offshore Wind Energy Resource Estimate Using Doppler Wind Lidar Technology to Assess Microtmeteorology Controls

    NASA Astrophysics Data System (ADS)

    St. Pé, Alexandra; Wesloh, Daniel; Antoszewski, Graham; Daham, Farrah; Goudarzi, Navid; Rabenhorst, Scott; Delgado, Ruben

    2016-06-01

    There is enormous potential to harness the kinetic energy of offshore wind and produce power. However significant uncertainties are introduced in the offshore wind resource assessment process, due in part to limited observational networks and a poor understanding of the marine atmosphere's complexity. Given the cubic relationship between a turbine's power output and wind speed, a relatively small error in the wind speed estimate translates to a significant error in expected power production. The University of Maryland Baltimore County (UMBC) collected in-situ measurements offshore, within Maryland's Wind Energy Area (WEA) from July-August 2013. This research demonstrates the ability of Doppler wind lidar technology to reduce uncertainty in estimating an offshore wind resource, compared to traditional resource assessment techniques, by providing a more accurate representation of the wind profile and associated hub-height wind speed variability. The second objective of this research is to elucidate the impact of offshore micrometeorology controls (stability, wind shear, turbulence) on a turbine's ability to produce power. Compared to lidar measurements, power law extrapolation estimates and operational National Weather Service models underestimated hub-height wind speeds in the WEA. In addition, lidar observations suggest the frequent development of a low-level wind maximum (LLWM), with high turbinelayer wind shear and low turbulence intensity within a turbine's rotor layer (40m-160m). Results elucidate the advantages of using Doppler wind lidar technology to improve offshore wind resource estimates and its ability to monitor under-sampled offshore meteorological controls impact on a potential turbine's ability to produce power.

  18. Magnetic energy flow in the solar wind.

    NASA Technical Reports Server (NTRS)

    Modisette, J. L.

    1972-01-01

    Discussion of the effect of rotation (tangential flow) of the solar wind on the conclusions of Whang (1971) suggesting an increase in the solar wind velocity due to the conversion of magnetic energy to kinetic energy. It is shown that the effect of the rotation of the sun on the magnetic energy flow results in most of the magnetic energy being transported by magnetic shear stress near the sun.

  19. APPARATUS FOR SHEARING TUBULAR JACKETS

    DOEpatents

    Simon, J.P.

    1962-09-01

    A machine is designed for removing the jacket from the core of a used rod-like fuel element by shearing the jacket into a spiral ribbon. Three skewed rolls move the fuel element axially and rotatively, and a tool cooperates with one of the rolls to carry out the shearing action. (AEC)

  20. A Piezoelectric Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Kim, Taeyang; Saini, Aditya; Kim, Jinwook; Gopalarathnam, Ashok; Zhu, Yong; Palmieri, Frank L.; Wohl, Christopher J.; Jiang, Xiaoning

    2016-01-01

    In this paper, a piezoelectric sensor with a floating element was developed for shear stress measurement. The piezoelectric sensor was designed to detect the pure shear stress suppressing effects of normal stress generated from the vortex lift-up by applying opposite poling vectors to the: piezoelectric elements. The sensor was first calibrated in the lab by applying shear forces and it showed high sensitivity to shear stress (=91.3 +/- 2.1 pC/Pa) due to the high piezoelectric coefficients of PMN-33%PT (d31=-1330 pC/N). The sensor also showed almost no sensitivity to normal stress (less than 1.2 pC/Pa) because of the electromechanical symmetry of the device. The usable frequency range of the sensor is 0-800 Hz. Keywords: Piezoelectric sensor, shear stress, floating element, electromechanical symmetry

  1. A wake detector for wind farm control

    NASA Astrophysics Data System (ADS)

    Bottasso, C. L.; Cacciola, S.; Schreiber, J.

    2015-06-01

    The paper describes an observer capable of detecting the impingement on a wind turbine rotor of the wake of an upstream machine. The observer estimates the local wind speed and turbulence intensity on the left and right parts of the rotor disk. The estimation is performed based on blade loads measured by strain gages or optical fibers, sensors which are becoming standard equipment on many modern machines. A lower wind speed and higher turbulence intensity on one part of the rotor, possibly in conjunction with other information, can then be used to infer the presence of a wake impinging on the disk. The wake state information is useful for wind plant control strategies, as for example wake deflection by active yawing. In addition, the local wind speed estimates may be used for a rough evaluation of the vertical wind shear.

  2. Electrostatic Solitary Waves in the Solar Wind: Evidence for Instability at Solar Wind Current Sheets

    NASA Technical Reports Server (NTRS)

    Malaspina, David M.; Newman, David L.; Wilson, Lynn Bruce; Goetz, Keith; Kellogg, Paul J.; Kerstin, Kris

    2013-01-01

    A strong spatial association between bipolar electrostatic solitary waves (ESWs) and magnetic current sheets (CSs) in the solar wind is reported here for the first time. This association requires that the plasma instabilities (e.g., Buneman, electron two stream) which generate ESWs are preferentially localized to solar wind CSs. Distributions of CS properties (including shear angle, thickness, solar wind speed, and vector magnetic field change) are examined for differences between CSs associated with ESWs and randomly chosen CSs. Possible mechanisms for producing ESW-generating instabilities at solar wind CSs are considered, including magnetic reconnection.

  3. Passive cyclic pitch control for horizontal axis wind turbines

    NASA Technical Reports Server (NTRS)

    Bottrell, G. W.

    1981-01-01

    A flexible rotor concept, called the balanced pitch rotor, is described. The system provides passive adjustment of cyclic pitch in response to unbalanced pitching moments across the rotor disk. Various applications are described and performance predictions are made for wind shear and cross wind operating conditions. Comparisons with the teetered hub are made and significant cost savings are predicted.

  4. Instability of Stratified Shear Flow: Intermittency and Length Scales

    NASA Astrophysics Data System (ADS)

    Ecke, Robert; Odier, Philippe

    2015-11-01

    The stability of stratified shear flows which occur in oceanic overflows, wind-driven thermoclines, and atmospheric inversion layers is governed by the Richardson Number Ri , a non-dimensional balance between stabilizing stratification and destabilizing shear. For a shear flow with velocity difference U, density difference Δρ and characteristic length H, one has Ri = g (Δρ / ρ) H /U2 . A more precise definition is the gradient Richardson Number Rig =N2 /S2 where the buoyancy frequency N =√{ (g / ρ) ∂ρ / ∂z } , the mean strain S = ∂U / ∂z with z parallel to gravity and with ensemble or time averages defining the gradients. We explore the stability and mixing properties of a wall-bounded shear flow for 0 . 1 < Rig < 1 using simultaneous measurements of density and velocity fields. The flow, confined from the top by a horizontal boundary, is a lighter alcohol-water mixture injected from a nozzle into quiescent heavier salt-water fluid. The injected flow is turbulent with Taylor Reynolds number about 75. We compare a set of length scales that characterize the mixing properties of our turbulent stratified shear flow including Thorpe Length LT, Ozmidov Length LO, and Ellison Length LE.

  5. Smectic Edge Dislocations under Shear

    NASA Astrophysics Data System (ADS)

    Chen, Peilong; Lu, Chun-Yi David

    2011-09-01

    Layer structures around an edge dislocation in a smectic phase under shear are studied with both phase field and order parameter models. It is shown that, contrast to a crystal solid, the conventional picture of the Peach--Koehler force experienced by dislocations when the sample is under a shear stress cannot be readily applied to the smectic phases. Under a uniform shear flow, we obtain the phase field and order parameter solutions around an edge dislocation. The solutions elucidate properties such as the layer distortion range around the dislocation and scaling of inter-dislocation interaction on dislocation separation. Calculations on energy dissipation indicate the extreme shear-thinning behavior that an edge dislocation induces a shear stress independent of the shear rate. Finally in a bulk sample with dislocation forming loops and networks, we argue that the uniform flow component around the dislocation is important to the energy dissipation and we show that its scaling exponent with the shear rate is very close to results from many previous rheology measurements.

  6. Multidirectional direct simple shear apparatus

    SciTech Connect

    DeGroot, D.J.; Germaine, J.T.; Ladd, C.C.

    1993-09-01

    The paper describes a new simple shear testing device, the multidirectional direct simple shear (MDSS) apparatus, for testing soil specimens under conditions that simulate, at the element level, the state of stress acting within the foundation soil of an offshore Arctic gravity structure. The MDSS uses a circular specimen that is consolidated under both a vertical effective stress ({sigma}{sub vc}{prime}) and a horizontal shear stress ({tau}{sub 1}). The specimen is subsequently sheared undrained by applying a second independent horizontal shear stress ({tau}{sub 2}) at an angle {theta} relative to the horizontal consolidation shear stress {tau}{sub 1}. Evaluation of the MDSS first compares conventional K{sub D}-consolidated undrained direct simple shear (CK{sub 0}UDSS) test data ({tau}{sub 1} = 0) on normally consolidated Boston blue clay (BBC) with results obtained in the Geonor DSS device. The MDSS gives lower secant Young`s modulus values and on average 8% lower strengths, but produces remarkably less scatter in the test results than the Geonor DSS. Kinematic proof tests with an elastic material (rubber) confirm that the setup procedure, application of forces, and strain measurement systems in the MDSS work properly and produce repeatable results. Results from a MDSS test program on BBC wherein specimens were first normally consolidated with {sigma}{sub vc}{prime} and {tau}{sub 1} = 0.2{sigma}{sub vc}{prime} and then sheared undrained at {theta} varing in 30{degree} increments from zero (shear in same direction) to 150{degree} show dramatic differences in the response of the soil as a function of {theta}. The peak undrained strength varies almost twofold from 0 = 0 to 120{degree}, while the deformation behavior varies from very brittle at low {theta} angles to becoming ductile at higher angles. 11 refs., 15 figs.

  7. JAWS multiple Doppler derived winds

    NASA Technical Reports Server (NTRS)

    Elmore, Kimberly L.

    1987-01-01

    An elementary working knowledge is given of the advantages and limitations of the multiple Doppler radar analyses that have recently become available from the Joint Airport Weather Studies (JAWS) project. What Doppler radar is and what it does is addressed and the way Doppler radars were used in the JAWS project to gather wind shear data is described. The working definition of wind shear used is winds that affect aircraft flight over a span of 15 to 45 seconds and turbulence is defined as air motion that cause abrupt aircraft motions. The JAWS data current available contain no turbulence data. The concept of multiple Doppler analysis and the geometry of how it works are described, followed by an explanation of how data gathered in radar space are interpolated to a common Cartesian coordinate system and the limitations involved. A discussion is also presented of the analysis grid and how it was constructed. What the user actually gets is discussed, followed by a discussion of the expected errors in the three orthogonal wind components. Finally, a discussion is presented of why JAWS data are significant.

  8. Rotor equivalent wind speed for power curve measurement - comparative exercise for IEA Wind Annex 32

    NASA Astrophysics Data System (ADS)

    Wagner, R.; Cañadillas, B.; Clifton, A.; Feeney, S.; Nygaard, N.; Poodt, M.; St. Martin, C.; Tüxen, E.; Wagenaar, J. W.

    2014-06-01

    A comparative exercise has been organised within the International Energy Agency (IEA) Wind Annex 32 in order to test the Rotor Equivalent Wind Speed (REWS) method under various conditions of wind shear and measurement techniques. Eight organisations from five countries participated in the exercise. Each member of the group has derived both the power curve based on the wind speed at hub height and the power curve based on the REWS. This yielded results for different wind turbines, located in diverse types of terrain and where the wind speed profile was measured with different instruments (mast or various lidars). The participants carried out two preliminary steps in order to reach consensus on how to implement the REWS method. First, they all derived the REWS for one 10 minute wind speed profile. Secondly, they all derived the power curves for one dataset. The main point requiring consensus was the definition of the segment area used as weighting for the wind speeds measured at the various heights in the calculation of the REWS. This comparative exercise showed that the REWS method results in a significant difference compared to the standard method using the wind speed at hub height in conditions with large shear and low turbulence intensity.

  9. Shear Banding of Complex Fluids

    NASA Astrophysics Data System (ADS)

    Divoux, Thibaut; Fardin, Marc A.; Manneville, Sebastien; Lerouge, Sandra

    2016-01-01

    Even in simple geometries, many complex fluids display nontrivial flow fields, with regions where shear is concentrated. The possibility for such shear banding has been known for several decades, but in recent years, we have seen an upsurge in studies offering an ever-more precise understanding of the phenomenon. The development of new techniques to probe the flow on multiple scales with increasing spatial and temporal resolution has opened the possibility for a synthesis of the many phenomena that could only have been thought of separately before. In this review, we bring together recent research on shear banding in polymeric and soft glassy materials and highlight their similarities and disparities.

  10. Fluid-Assisted Shear Failure Within a Ductile Shear Zone

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, J. D.; Compton, K.; Holk, G. J.

    2015-12-01

    Exhumed shear zones often contain folded and/or dynamically recrystallized structures such as veins and pseudotachylytes that record contemporaneous brittle and ductile deformation representing mixed bulk rheology. Here, we constrain the conditions that promote the transitions between ductile and brittle deformation by investigating quartz veins with shear offsets in the Saddlebag Lake shear zone in the central Sierra Nevada, California. Mesozoic metasedimentary rocks within the shear zone contain transposed bedding, strong cleavage, dextrally rotated porphyroclasts, and a steep mineral lineation, which together suggest an overall transpressive kinematic regime for the ductile deformation. Foliation sub-parallel veins are one subset of the veins in the shear zone. They have observed horizontal trace lengths of up to around 5 meters, though most are obscured by limited exposure, and displacements range from ~3-30 mm, with 1-5 mm of opening. Foliation sub-parallel veins are folded with the foliation and quartz microstructures and fluid inclusion thermobarometry measurements from vein samples indicate temperatures during vein formation by fracture were between 300-680°C. Quartz δ18O values (+5.9 to +16.5) suggest extended fluid-rock interaction that involved magmatic (δ18O ~ +8 to +10) and meteoric (δ18O down to -1) fluids. Foliation sub-parallel veins are most abundant in relatively massive, quartz-rich rocks where they are boudinaged, indicating they were rigid inclusions after formation. Based on the orientation and spatial distribution of the veins, we infer that they formed under high differential stress with pore pressures sufficiently high for the rocks to be critically stressed for shear failure along mechanically weak foliation planes. These observations suggest high pore pressures and mechanical heterogeneity at a variety of scales are necessary conditions for nucleation of shear fractures within ductile shear zones.