Science.gov

Sample records for winter cold front

  1. Winter Storms and Extreme Cold

    MedlinePlus

    ... assistance for recovery. Minimize travel. If travel is necessary, keep a disaster supplies kit in your vehicle. Bring pets/companion animals inside during winter weather. Move other animals or ...

  2. Winter cascading of cold water in Lake Geneva

    NASA Astrophysics Data System (ADS)

    Fer, Ilker; Lemmin, Ulrich; Thorpe, S. A.

    2002-06-01

    During the winters of 1998 and 1999, observations were made of the cascading of cold water from the nearshore, shallow ``shelf'' zones and down the sloping sides of Lake Geneva. Cascading starts on the average 10 hours after the onset of surface cooling. The draining cold water descends like a gravity current, and the downslope speed of the head of these slugs of cold water, U, has a mean value of 5.2 cm s-1, with slugs persisting, on the average, for 8 hours. When the Monin-Obukov length scale at the water surface, L, is negative, implying convection occurs, and $\\bar d$/|L|> 1,where $\\bar d$ is the mean shelf depth, the nondimensionalized speed of the front of ``slugs,'' U/b1/3 is found to be 1.3 +/- 0.4, where b is the surface buoyancy flux integrated over the time period from one slug to the next. Each slug is unsteady, the head being followed by several fronts in which the temperature of the current decreases and its thickness increases. These fronts travel faster than the mean flow by a factor of r = 1.38 +/- 0.3. Dynamical similarities are found with roll waves observed in turbulent open channel flows. The circulation induced by the cascade is found to give a positive skewness to the time derivatives of near-surface temperature in shallow waters, in contrast with negative values close to the slope. The volume of cold water carried by a slug increases with downslope distance as a consequence of turbulent entrainment and the contribution of convectively unstable plumes from the surface. The average volume carried by the slug across the 21 m depth contour is about 1.9 times the volume of water in shallower water (i.e., that on the shelf between shore and a depth of 21 m), implying that cascading is an efficient means of flushing shelf water. Integrated around the lake the mean total volume flux amounts to 11.5 the average winter river inflow.

  3. Does cold winter weather produce depressive symptoms?

    NASA Astrophysics Data System (ADS)

    Garvey, Michael J.; Goodes, Mike; Furlong, Candy; Tollefson, Gary D.

    1988-06-01

    To examine whether harsh winter weather is associated with depressive symptoms, 45 healthy subjects from Minnesota were compared to 42 subjects from California near the end of the winter season. No differences in the prevalence of depressive symptoms were found between the two groups.

  4. Climatology and the time interval of cold fronts passage over South America

    NASA Astrophysics Data System (ADS)

    Pampuch, L. A.; Ambrizzi, T.

    2014-12-01

    Cold fronts affect the weather over South America throughout the year. The south-central region of South America has been identified as highly favorable to the formation and intensification of frontal systems. The fronts usually move from southwest to northeast over the continent and the Atlantic Ocean. During their passage important changes in weather conditions are observed: spinning wind, rainfall, decreasing on atmospheric pressure and temperature. After the passage of a cold front it is usually observed a sharp drop of temperature, pressure increase and wind gusts. There are several studies in the literature about South America cold fronts climatology. However, none of them were performed in pre-defined regions over South America and that have defined the pass interval in each region, which is the goal of the present research. Daily data of temperature on 925hPa, meridional wind in 925hPa and sea level pressure from the ERA Interim reanalysis from ECMWF, with spatial resolution of 1.5 ° x 1.5 ° for the period 1982-2009 were used. The criteria to identify the each cold front were: a drop in temperature, change in wind direction (north to south) and an increase in pressure from day 0 to day +1 for an average of four points for each of the 19 regions of South America. During the year, about 40 frontal systems pass in southern South America and this average is reduced to 10 to the northern regions of the continent. Winter is the season with the highest number of passage of frontal systems, summer is the season that presents lower number and spring and autumn have an intermediate number of fronts of the summer and winter. Analyzing the time interval of cold fronts passage, it was found an average of 8 days in the length of a passage between two fronts in southern Brazil. For the regions further north the interval can reach 26 days during the year. Summer is the season with the longer interval between the passage of fronts and winter and spring shows the smaller intervals.

  5. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  6. Cold Fronts Research Programme: Progress, Future Plans, and Research Directions.

    NASA Astrophysics Data System (ADS)

    Ryan, B. F.; Wilson, K. J.; Garratt, J. R.; Smith, R. K.

    1985-09-01

    Following the analysis of data collected during Phases land II of the Cold Fronts Research Programme (CFRP) a conceptual model for the Australian summertime "cool change" has been proposed. The model provides a focus and a framework for the design of Phase III.The model is based on data gathered from a mesoscale network centered on Mount Gambier, South Australia, and includes the coastal waters to the west and relatively flat terrain to the east. The first objective of Phase III is to generalize the model so that it is applicable to the ocean waters to the far west of Mount Gambier and to the more rugged terrain farther to the east in the vicinity of Melbourne, Victoria. The remaining objectives concentrate on resolving unsatisfactory aspects of the model such as the evolution of convective lines and the relationship between the surface cold front and the upper-tropospheric cold pool and its associated jet stream.The integrated nature of the Cold Fronts Research Programme has meant that it has stimulated a wide range of research activities that extend beyond the field observations. The associated investigations include climatological, theoretical, and numerical modeling studies.

  7. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2011-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artefacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artefacts.

  8. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2012-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.

  9. Winter Cold tongue in the South China Sea

    NASA Astrophysics Data System (ADS)

    Thompson, B.; Tkalich, P.; Rizzoli, P. M.

    2014-12-01

    The South China Sea (SCS) surface circulation is mainly forced by seasonally varying monsoon winds and flow through the Luzon Strait. In winter, positive wind curl (due to the northeasterly winds) in the southern half of SCS drives a cyclonic gyre. The strong western boundary current south off Vietnam on the continental slope separates the Sunda Shelf to the west and deep SCS basin to the east. The advection of cold water due to the slope current results in a unique cold tongue in Sea Surface Temperature (SST) from November to February. The inter-annual variability of this cold-tongue is investigated by analyzing the NCEP OISST version-2 dataset. Dynamics of the evolution, growth and decay of the cold tongue during the period 1982-2012 are addressed using the OISST and ERA-interim surface wind datasets. The role of water mass advection in the inter-annual variability of SCS cold-tongue is also investigated through the analysis of lateral heat fluxes estimated from NCEP-Climate Forecast System Re-analysis dataset. The vertically integrated Ekman transport (i.e., the Sverdrup transport) plays a vital role in the formation this cold tongue. The southward Sverdrup transport brings cold water from the northern parts of the SCS. Inter-annual variations in the cold tongue SST during the northeast monsoon (November to February) are strongly linked to the north-south Sverdrup and zonal Ekman transport anomalies. The positive SST anomalies over the cold-tongue region are associated with positive transport anomalies, reflecting the weakening of the southward and westward advection. The formation and termination of this cold tongue has significant correlation with the El Nino phenomenon in the Pacific Ocean.

  10. Effect of cold wave on winter visibility over eastern China

    NASA Astrophysics Data System (ADS)

    Qu, Wenjun; Wang, Jun; Zhang, Xiaoye; Yang, Zhifeng; Gao, Shanhong

    2015-03-01

    Considerable concern has been raised on the severe wintertime haze episodes over eastern China (ECN) where visibility (Vis) decline in winter is identified from 1973 to 2012 (-0.68 km per 10 years or -26% in 40 years). Based upon the analysis of daily Vis and weather records, cold wave (CW) originating from high latitudes is found to increase Vis by 2.7 km on average because of its relatively stronger wind and drier, cleaner air mass compared with the typical, stable midlatitude air over ECN in winter. However, the lessening frequency of CW occurrence and cold air activity in recent years and the accompanied decrease of surface wind speed (-0.15 m/s per 10 years or -18% in the 40 years) may have amplified the effect of increased anthropogenic emissions on Vis and consequently resulted in more substantial Vis decline. A comparison of Vis trends on the "normal wind" days and on all days in winter implies that the emission increase has contributed to about 79% of the declining Vis trend, while the meteorology change contributed 21%. Furthermore, the diurnal cycle of the boundary layer height is found to have weakened or in some cases disappeared in the winters with less CW, which probably contributed to the long-lasting characteristic of the wintertime low Vis events in this region. Hence, the effect of climate change, such as the decrease of CW occurrence, should be accounted as part of the interpretation for the steady decrease of winter Vis over ECN in the past four decades.

  11. On a theory of the evolution of surface cold fronts

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Bretherton, Christopher S.

    1987-01-01

    The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.

  12. New Perspectives on Intermountain Cyclones and Cold Fronts

    NASA Astrophysics Data System (ADS)

    Steenburgh, W. J.; West, G.; Neuman, C.; Shafer, J.; Jeglum, M.; Bosart, L. F.; Lee, T.

    2011-12-01

    The topography in and around the Intermountain West strongly affects the genesis, migration, and lysis of extratropical cyclones and cold fronts. In this presentation, we summarize new perspectives on Intermountain cyclone and cold-front evolution derived from recent climatological, observational, and modeling studies based on high-density observations and high-resolution reanalyses and numerical simulations. Recent high-resolution reanalyses show that Intermountain cyclone activity is greatest in two distinct regions. The first, which we call the Great Basin cyclone region, extends northeastward from the southern high Sierra to the Great Salt Lake Basin of northwest Utah. The second, which we call the Canyonlands cyclone region, lies over the upper Colorado River Basin of southeast Utah, a lowland region between the mountains and plateaus of central Utah and the Colorado Rockies. Composites of strong Intermountain cyclones generated in cross-Sierra (210-300°) 500-hPa flow show that cyclogenesis is preceeded by the development of the Great Basin Confluence Zone (GBCZ), a regional airstream boundary that extends downstream from the Sierra Nevada. Cyclogenesis occurs along the GBCZ as large-scale ascent develops over the Intermountain West in advance of an approaching upper-level trough. Flow splitting around the high Sierra and the presence of low-level baroclinity along the GBCZ suggest that Intermountain Cyclogenesis might be better conceptualized from a potential vorticity perspective than from traditional quasigeostrophic models of lee cyclogenesis. Surface observations indicate that the frequency of strong cold-frontal passages increases dramatically from the Cascade-Sierra Mountains to northern Utah, suggesting that the Intermountain West is a frequent cold-frontal breeding ground. Two case studies help illustrate the mechanisms contributing to these strong cold-frontal passages. During the 2002 Tax Day Cyclone, strong contraction (i.e., deformation and convergence) along the GBCZ forms an airstream boundary that is initially non-frontal, but becomes the locus for surface frontogenesis as it collects and concentrates baroclinity from the northern Great Basin. During the 25 March 2006 event, a highly mobile frontal system that moves discretely across the Sierra-Cascade Mountains and western Nevada and develops rapidly over eastern Nevada. Numerical sensitivity studies indicate that the the interaction of southwesterly pre-frontal flow with the formidable southern High Sierra produces a leeward orographic warm anomaly that enhances the cross-front temperature contrast.

  13. The influence of shelf-sea fronts on winter monsoon over East China Sea

    NASA Astrophysics Data System (ADS)

    Oey, L.-Y.; Chang, M.-C.; Huang, S.-M.; Lin, Y.-C.; Lee, M.-A.

    2015-10-01

    Strong sea surface temperature fronts in open seas are known to affect the atmosphere. Shelf-sea fronts in winter have comparable strengths, yet their impacts on winds have not been studied. In January of 2012, a persistent, narrow band of cloud stretching 600-1,000 km was observed along the front of East China Sea (ECS). Numerical and analytical models show that the cloud was formed atop a recirculating cell induced by the front and, more generally, that β-plumes of low and high pressures emanate and spread far from fronts. Consistent with the theory, observations show that in ECS at inter-annual time scales, strong fronts co-vary with on-shelf convergent wind, strong northeasterly monsoon, and alongshelf alignment of clouds with low clouds near the coast and higher clouds offshore. Our results suggest that shelf-sea fronts are potentially an important dynamic determinant of climate variability of East Asia.

  14. Winterization of peanut biodiesel to improve the cold flow properties.

    PubMed

    Pérez, Angel; Casas, Abraham; Fernández, Carmen María; Ramos, María Jesús; Rodríguez, Lourdes

    2010-10-01

    Biodiesel is susceptible to start-up and performance problems, consistent with its chemical composition, when vehicles and fuel systems are subjected to cold temperatures. In this work, a comprehensive evaluation of the crystallization behavior of different biodiesels was performed by measuring the cold filter plugging point (CFPP), cloud point (CP) and pour point (PP). Results were related to differential scanning calorimetry (DSC) thermograms. Peanut methyl esters in particular led to the most unfavorable properties due to the presence of long-chain saturated compounds (arachidic or C20:0, behenic or C22:0, and lignoceric or C24:0 acid methyl esters) approaching 6 wt.%. The cold flow properties may be improved with different winterization techniques to eliminate some of these compounds. In this work, various techniques are tested, and the best technique is found to be crystallization filtration using methanol, which reduces the CFPP from 17 degrees C to -8 degrees C with a biodiesel loss of 8.93 wt.%. Moreover, the cake from filtration, enriched with long-chain saturated methyl esters, can be used as phase change material (PCM) for thermo-regulated materials. PMID:20547059

  15. Habitat suitability index models: greater white-fronted goose (wintering). [Anser albifrons

    SciTech Connect

    Kaminski, R.M.

    1986-07-01

    A review and synthesis of available information were used to develop models for indexing the potential suitability of agricultural and natural wetland habitats for wintering white-fronted geese (Anser albifrons). The model is scaled to produce indices of habitat suitability from 0 (unsuitable habitat) to 1.0 (optimal habitat) primarily for wintering habitat in southwest Louisiana and southwest Texas. Habitat suitability indices are designed for use with Habitat Evaluations Procedures previously developed by the US Fish and Wildlife Service.

  16. Social perceptions versus meteorological observations of snow and winter along the Front Range

    NASA Astrophysics Data System (ADS)

    Milligan, William James, IV

    This research aims to increase understanding of Front Range residents' perceptions of snow, winter and hydrologic events. This study also investigates how an individual's characteristics may shape perceptions of winter weather and climate. A survey was administered to determine if perceptions of previous winters align with observed meteorological data. The survey also investigated how individual characteristics influence perceptions of snow and winter weather. The survey was conducted primarily along the Front Range area of the state of Colorado in the United States of America. This is a highly populated semi-arid region that acts as an interface between the agricultural plains to the east that extend to the Mississippi River and the Rocky Mountains to the west. The climate is continental, and while many people recreate in the snowy areas of the mountains, most live where annual snowfall amounts are low. Precipitation, temperature, and wind speed datasets from selected weather stations were analyzed to determine correct survey responses. Survey analysis revealed that perceptions of previous winters do not necessarily align with observed meteorological data. The mean percentage of correct responses to all survey questions was 36.8%. Further analysis revealed that some individual characteristics (e.g. winter recreation, source of winter weather information) did influence correct responses to survey questions.

  17. Winter habitat preferences for Florida manatees and vulnerability to cold.

    PubMed

    Laist, David W; Taylor, Cynthia; Reynolds, John E

    2013-01-01

    To survive cold winter periods most, if not all, Florida manatees rely on warm-water refuges in the southern two-thirds of the Florida peninsula. Most refuges are either warm-water discharges from power plant and natural springs, or passive thermal basins that temporarily trap relatively warm water for a week or more. Strong fidelity to one or more refuges has created four relatively discrete Florida manatee subpopulations. Using statewide winter counts of manatees from 1999 to 2011, we provide the first attempt to quantify the proportion of animals using the three principal refuge types (power plants, springs, and passive thermal basins) statewide and for each subpopulation. Statewide across all years, 48.5% of all manatees were counted at power plant outfalls, 17.5% at natural springs, and 34.9 % at passive thermal basins or sites with no known warm-water features. Atlantic Coast and Southwest Florida subpopulations comprised 82.2% of all manatees counted (45.6% and 36.6%, respectively) with each subpopulation relying principally on power plants (66.6% and 47.4%, respectively). The upper St. Johns River and Northwest Florida subpopulations comprised 17.8% of all manatees counted with almost all animals relying entirely on springs (99.2% and 88.6% of those subpopulations, respectively). A record high count of 5,076 manatees in January 2010 revealed minimum sizes for the four subpopulations of: 230 manatees in the upper St. Johns River; 2,548 on the Atlantic Coast; 645 in Northwest Florida; and 1,774 in Southwest Florida. Based on a comparison of carcass recovery locations for 713 manatees killed by cold stress between 1999 and 2011 and the distribution of known refuges, it appears that springs offer manatees the best protection against cold stress. Long-term survival of Florida manatees will require improved efforts to enhance and protect manatee access to and use of warm-water springs as power plant outfalls are shut down. PMID:23527063

  18. Winter Habitat Preferences for Florida Manatees and Vulnerability to Cold

    PubMed Central

    Laist, David W.; Taylor, Cynthia; Reynolds, John E.

    2013-01-01

    To survive cold winter periods most, if not all, Florida manatees rely on warm-water refuges in the southern two-thirds of the Florida peninsula. Most refuges are either warm-water discharges from power plant and natural springs, or passive thermal basins that temporarily trap relatively warm water for a week or more. Strong fidelity to one or more refuges has created four relatively discrete Florida manatee subpopulations. Using statewide winter counts of manatees from 1999 to 2011, we provide the first attempt to quantify the proportion of animals using the three principal refuge types (power plants, springs, and passive thermal basins) statewide and for each subpopulation. Statewide across all years, 48.5% of all manatees were counted at power plant outfalls, 17.5% at natural springs, and 34.9 % at passive thermal basins or sites with no known warm-water features. Atlantic Coast and Southwest Florida subpopulations comprised 82.2% of all manatees counted (45.6% and 36.6%, respectively) with each subpopulation relying principally on power plants (66.6% and 47.4%, respectively). The upper St. Johns River and Northwest Florida subpopulations comprised 17.8% of all manatees counted with almost all animals relying entirely on springs (99.2% and 88.6% of those subpopulations, respectively). A record high count of 5,076 manatees in January 2010 revealed minimum sizes for the four subpopulations of: 230 manatees in the upper St. Johns River; 2,548 on the Atlantic Coast; 645 in Northwest Florida; and 1,774 in Southwest Florida. Based on a comparison of carcass recovery locations for 713 manatees killed by cold stress between 1999 and 2011 and the distribution of known refuges, it appears that springs offer manatees the best protection against cold stress. Long-term survival of Florida manatees will require improved efforts to enhance and protect manatee access to and use of warm-water springs as power plant outfalls are shut down. PMID:23527063

  19. Chandra, Cold Fronts, and ICM Physics: The Importance of Magnetic Fields

    NASA Astrophysics Data System (ADS)

    ZuHone, John

    2014-11-01

    One of the most prominent features that the superb spatial resolution of Chandra has revealed in the galaxy cluster plasma is cold fronts: sharp surface brightness and temperature discontinuities formed by the motion of cold, dense gas. Cold fronts should be susceptible to disruption by fluid instabilites and smoothing out by thermal conduction, but many appear to be resilient to these effects, indicating suppression by microphysical processes. I will summarize a series of MHD simulations of sloshing cold fronts in galaxy clusters with anisotropic viscosity and thermal conduction. I will show that the power of cold front studies to provide constraints on the plasma conductivity is potentially strong, whereas the outlook for constraining the plasma viscosity is more uncertain.

  20. THE PROPERTIES OF X-RAY COLD FRONTS IN A STATISTICAL SAMPLE OF SIMULATED GALAXY CLUSTERS

    SciTech Connect

    Hallman, Eric J.; Skillman, Samuel W.; Smith, Britton D.; Burns, Jack O.; Jeltema, Tesla E.; Norman, Michael L.

    2010-12-10

    We examine the incidence of cold fronts in a large sample of galaxy clusters extracted from a (512 h {sup -1} Mpc) hydrodynamic/N-body cosmological simulation with adiabatic gas physics computed with the Enzo adaptive mesh refinement code. This simulation contains a sample of roughly 4000 galaxy clusters with M {>=}10{sup 14} M{sub sun} at z = 0. For each simulated galaxy cluster, we have created mock 0.3-8.0 keV X-ray observations and spectroscopic-like temperature maps. We have searched these maps with a new automated algorithm to identify the presence of cold fronts in projection. Using a threshold of a minimum of 10 cold front pixels in our images, corresponding to a total comoving length L{sub cf}>156 h {sup -1} kpc, we find that roughly 10%-12% of all projections in a mass-limited sample would be classified as cold front clusters. Interestingly, the fraction of clusters with extended cold front features in our synthetic maps of a mass-limited sample trends only weakly with redshift out to z = 1.0. However, when using different selection functions, including a simulated flux limit, the trending with redshift changes significantly. The likelihood of finding cold fronts in the simulated clusters in our sample is a strong function of cluster mass. In clusters with M>7.5 x 10{sup 14} M{sub sun} the cold front fraction is 40%-50%. We also show that the presence of cold fronts is strongly correlated with disturbed morphology as measured by quantitative structure measures. Finally, we find that the incidence of cold fronts in the simulated cluster images is strongly dependent on baryonic physics.

  1. The enhancement of cold-front temperature contrast by differential cloud cover

    SciTech Connect

    Segal, M.; Heim, J.E.; Arritt, R.W. ); Physick, W.L. )

    1993-03-01

    The thermal impact of differential cloud shading across a cold front is evaluated briefly through conceptual, scaling, and numerical-modeling approaches. It is suggested that in summer the shading may enhance the boundary-layer average thermal contrast across the front by as much as 5 K for prolonged shading over the cold sector and with a dry surface in the warm sector. For short shading duration or wet surfaces along the warm sector, the thermal impact of shading reduces significantly. It is concluded that the shading effect may provide a pronounced contribution to frontogenesis for weak or moderate cold fronts. 17 refs., 5 figs.

  2. [Safe wintering and economic and ecological benefit of winter rapeseed in dry and cold areas of northern China].

    PubMed

    Liu, Hai-qing; Sun, Wan-cang; Liu, Zi-gang; Wang, Zhi-jiang; Fang, Yuan; Wu, Jun-yan; Li, Xue-cai; Fang, Yan

    2015-10-01

    The purpose of this study was to realize the security of safe wintering of winter rapeseed in dry and cold regions of northern China. Experiments were conducted with 18 winter rapeseed (Brassica campestris) varieties at 57 sites from 2008 to 2013 to statistically analyze the wintering rate variation of different varieties in dry and cold regions of northern China. The results showed that, the wintering rate varied from 70% to 90% during the study period in different regions, which had no significant difference between different years and varieties, and had high stability and remarkable economic benefit. With Tianshui as a starting point of winter rapeseed planting, the wintering-safe regions included all Gansu Province , the south of Lasa and Linzhi of Xizang, the east of Minhe of Qinghai, up to Urumqi and Baicheng, and the south of Aletai, Tacheng, the east of Kashi of Xinjiang, it also included the regions along Yellow River eastward to Ningxia, the south of Linhe of Inner Mongolia, the north of Shaanxi, the vicinage of Qixian in Shanxi, Daming in Hebei, Tianjin, Beijing, the north of Weifang of Shandong, the south of Huludao of Liaoning and Yanbian of Jilin. Longyou 6, Longyou 7, Longyou 8 and Longyou 9 were the wintering-safe B. rapa varieties. PMID:26995911

  3. Winter meso-scale shear front in the Yellow Sea and its sedimentary effects

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Qiao, Lulu; Li, Guangxue

    2016-02-01

    In this paper, the authors explored the presence of shear fronts between the Yellow Sea Coastal Current (YSCC) and the monsoon-strengthened Yellow Sea Warm Current (YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model. This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea. The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time. When this warm current encounters the North Shandong-South Yellow Sea coastal current, there is a strong reverse shear action between the two current systems, forming a reverse-S-shaped shear front that begins near 34°N in the south and extends to approximately 38°N, with an overall length of over 600 km. The main driving force for the formation of this shear front derives from the circulation system with the reverse flow. In the shear zone, temperature and salinity gradients increase, flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side. The vertical circulation structure is complicated, consisting of a series of meso- and small-scale anti-clockwise eddies. Particularly, this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents, resulting in fine sediments deposition due to the weak hydrodynamic regime.

  4. COLD FRONTS AND GAS SLOSHING IN GALAXY CLUSTERS WITH ANISOTROPIC THERMAL CONDUCTION

    SciTech Connect

    ZuHone, J. A.; Markevitch, M.; Lee, D.

    2013-01-10

    Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are 'draped' parallel to the front surfaces, suppressing conduction perpendicular to the sloshing fronts. We present a series of MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature distribution of the core and the appearance of the cold fronts. Though magnetic field lines are draping parallel to the front surfaces, preventing conduction directly across them, the temperature jumps across the fronts are nevertheless reduced. The geometry of the field is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front that are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may nevertheless be preserved. By modifying the gas density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps seen in Chandra observations of cold front clusters do not form. Therefore, the presence of cold fronts in hot clusters is in contradiction with our simulations with full Spitzer conduction. This suggests that the presence of cold fronts in hot clusters could be used to place upper limits on conduction in the bulk of the intracluster medium. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central (r {approx} 5 kpc) regions of the cool core (where something else is required, such as active galactic nucleus feedback), it reduces significantly the mass of gas that experiences a cooling catastrophe outside those small radii.

  5. Magnetized thermal conduction fronts. [between hot and cold astrophysical plasma

    NASA Technical Reports Server (NTRS)

    Balbus, S. A.

    1986-01-01

    The evolution of planar thermal conduction fronts in the presence of a dynamically weak, but otherwise self-consistent, magnetic field is considered. The field is assumed to be connected and untangled. In the diffusion limit for the thermal conductivity, these fronts exhibit self-similar behavior, even in the presence of a field. The role of the field is restricted to channeling the heat flux along its lines of force, and it enters into the problem as a dimensionless angle variable. 'Combing' (or opening) of insulating field lines by the evaporative flow is explicitly demonstrated. Unless the field is nearly perpendicular to the front normal in the hot gas, insulating effects are not profound. Self-similarity breaks down if the front becomes saturated, and under certain conditions magnetized saturated conduction fronts cannot propagate: the solution characteristics of the wave equation form caustics. The physical resolution is the advent of two-fluid (nonlocal) heating. Such Coulomb-heated fronts are expected to be relatively rare in typical astrophysical systems. The large-scale effects of a magnetic field on cloud evaporation in the interstellar medium are briefly discussed, and it is suggested that these fields preclude the presence of time-independent evaporative solutions. Thermal interfaces may then continue to evolve until radiative cooling halts their development; large tracts of warm 10,000 K gas may result.

  6. Physical changes within a large tropical hydroelectric reservoir induced by wintertime cold front activity

    NASA Astrophysics Data System (ADS)

    Curtarelli, M. P.; Alcântara, E. H.; Rennó, C. D.; Stech, J. L.

    2014-08-01

    We investigated the influence of wintertime cold front activity on the physical processes within a large tropical reservoir located in Brazil. The period chosen for this study consisted of 49 days between 28 April 2010 and 15 July 2010. This period was defined based on information from the Brazilian Center for Weather Forecasting and Climate Studies (CPTEC), data collected in situ and the interpretation of remotely sensed images. To better understand the governing processes that drive changes in the heat balance, differential cooling and mixing dynamics, a simulation was performed that utilized a three-dimensional hydrodynamic model enforced with in situ and remote sensing data. The results showed that during a cold front passage over the reservoir, the sensible and latent heat fluxes were enhanced by approximately 77 and 16%, respectively. The reservoir's daily averaged heat loss was up to 167% higher on the days with cold front activity than on the days without activity. The cold front passage also intensified the differential cooling process; in some cases the difference between the water temperature of the littoral and pelagic zones reached up to 8 °C. The occurrence of cold front passages impacted the diurnal mixed layer (DML), by increasing the turbulent energy input (∼54%) and the DML depth (∼41%). Our results indicate that the cold front events are one of the main meteorological disturbances driving the physical processes within hydroelectric reservoirs located in tropical South America during the wintertime. Hence, cold front activity over these aquatic systems has several implications for water quality and reservoir management in Brazil.

  7. The impact of winter cold weather on acute myocardial infarctions in Portugal.

    PubMed

    Vasconcelos, João; Freire, Elisabete; Almendra, Ricardo; Silva, Giovani L; Santana, Paula

    2013-12-01

    Mortality due to cardiovascular diseases shows a seasonal trend that can be associated with cold weather. Portugal is the European country with the highest excess winter mortality, but nevertheless, the relationship between cold weather and health is yet to be assessed. The main aim of this study is to identify the contribution of cold weather to cardiovascular diseases within Portugal. Poisson regression analysis based on generalized additive models was applied to estimate the influence of a human-biometeorological index (PET) on daily hospitalizations for myocardial infarction. The main results revealed a negative effect of cold weather on acute myocardial infarctions in Portugal. For every degree fall in PET during winter, there was an increase of up to 2.2% (95% CI = 0.9%; 3.3%) in daily hospital admissions. This paper shows the need for public policies that will help minimize or, indeed, prevent exposure to cold. PMID:23410618

  8. Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky

    NASA Astrophysics Data System (ADS)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; Ruszkowski, M.; Sanders, J. S.

    2016-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M 87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are ˜10 per cent brighter than the surrounding gas and are separated by ˜15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches ˜5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  9. The Effect of Anisotropic Viscosity on Cold Fronts in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    ZuHone, J. A.; Kunz, M. W.; Markevitch, M.; Stone, J. M.; Biffi, V.

    2014-01-01

    Cold fronts-contact discontinuities in the intracluster medium (ICM) of galaxy clusters-should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f (is) approximately 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

  10. High mortality of Pacific oysters in a cold winter in the North-Frisian Wadden Sea

    NASA Astrophysics Data System (ADS)

    Büttger, Heike; Nehls, Georg; Witte, Sophia

    2011-12-01

    Mortality of introduced Pacific oysters ( Crassostrea gigas) was studied in the northern Wadden Sea in response to an ice winter. After a decade of mild winters, in January and February 2010, the first severe winter occurred since the Pacific oysters became dominant on former intertidal blue mussel ( Mytilus edulis) beds in the North-Frisian Wadden Sea. After the ice winter, mortality of Pacific oysters on densely populated beds in the List tidal basin reached about 90%, indicating much higher losses in comparison to former mild winters. At lower densities between the islands of Amrum and Föhr, oysters were less or even not affected. Although Pacific oysters are assumed to be very tolerant to frost, the duration of cold water- and air temperatures accompanied by mechanical stress of the ice burden might have caused the high mortality in the winter 2009/2010 in formerly dense beds.

  11. Cold War: Flora's Undercover Agents. A Campus Winter Field Trip to Illustrate That Plants Do Indeed Thermoregulate.

    ERIC Educational Resources Information Center

    DeGolier, Teresa

    2002-01-01

    Proposes using a winter field trip to explore how various plants on a campus thermoregulate. Describes techniques for determining the location of cold stresses in plants and how plants manage to deal with the cold stresses. (DDR)

  12. THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS

    SciTech Connect

    ZuHone, J. A.; Markevitch, M.; Biffi, V.

    2015-01-10

    Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

  13. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  14. Generation of seiches by cold fronts over the southern North Sea

    NASA Astrophysics Data System (ADS)

    de Jong, M. P. C.; Holthuijsen, L. H.; Battjes, J. A.

    2003-04-01

    Seiches affecting the Port of Rotterdam are generated in the Southern North Sea. Their generation is investigated with observations and numerical simulations. A wavelet analysis of the observations, both at sea and in the harbor, shows that low-frequency energy (0.1-2.0 mHz) does indeed occur at sea prior to each seiche event in Rotterdam. An analysis of 6 years of weather charts indicates that all 51 seiche events in this period (with amplitude exceeding 0.25 m) coincided with the passage of a low-pressure weather system. Some of these low-pressure systems included a sharp cold front (classical or ana), whereas others included a more diffuse cold front (split or kata). Numerical simulations with a hydrodynamic model driven by meteorological observations reproduced the seiches for situations with the sharp cold fronts correctly. The seiches that were simulated for situations with the gradual cold fronts do not agree with the observations, which is ascribed to the inadequate atmospheric forcing of the hydrodynamical model.

  15. Charge and discharge of polar cold air mass in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Kanno, Yuki; Abdillah, Muhammad Rais; Iwasaki, Toshiki

    2015-09-01

    This study shows the variability of polar cold air mass amount below potential temperature of 280 K, and north of 45°N can be understood with a concept of charge and discharge, where anomalously large daily discharge indicates an intermittent occurrence of cold air outbreak. The polar cold air mass amount north of 45°N gradually charges up due to diabatic cooling but dramatically discharges due to cold air outbreak with a pulse width of about 5 days. Cold air outbreaks tend to bring colder winter in East Asia and the east coast of North America, while warmer winter prevails on the northern side of these regions. The cold air mass amount south of 45°N increases just after a cold air outbreak but returns to the normal level soon because of its life time of about 3 days. Therefore, monthly mean of total cold air mass amount in the Northern Hemisphere is negatively correlated with the monthly mean discharge.

  16. Cold-induced accumulation of protein in the leaves of spring and winter barley cultivars.

    PubMed

    Karimzadeh, G; Darvishzadeh, R; Jalali-Javaran, M; Dehghani, H

    2005-01-01

    Electrophoretic pattern and quantitative changes in soluble proteins were determined in the leaves of spring and winter cultivars of barley (Hordeum vulgare L., cv. Makouei and cv. Reyhan, respectively) exposed to 4 degrees C for 14 d. Seedlings were grown in a controlled growth chamber for 2 weeks at a constant air temperature of 20 degrees C and then transferred to constant 4 degrees C for 14 d followed by returning to 20 degrees C (cold treatment), or they were maintained throughout at 20 degrees C during the experimental period of 40 d (control treatment). Plants were sampled every 48 h for leaf fresh weight measurements. Total leaf soluble proteins were extracted and their concentration was either determined by a colorimetric method, or size-fractionated on SDS-PAGE. Low temperature-induced increases in protein amount occurred over the second week of exposure to cold treatment irrespective of cultivar: the winter cultivar was 2 d prior in this response. The protein patterns and their density showed differences between-cultivars and between-temperature treatments. A new cold-induced polypeptide was recognized in the leaves of winter barley cultivar on day 22 (8 d at 4 degrees C) compared to the control. This polypeptide was produced earlier over the first 48 h of low temperature in the winter cultivar compared with the spring one, recognizing in the leaves of cold-treated seedling until day 26. This more rapid response to a low temperature by the winter barley cultivar indicates a more sensitive response compared with the spring barley, probably cold-shock protein is a component of this cold-induced response. PMID:15813217

  17. A CloudSat-CALIPSO View of Cloud and Precipitation Properties Across Cold Fronts over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Naud, Catherine M.; Posselt, Derek J.; van den Heever, Susan C.

    2015-01-01

    The distribution of cloud and precipitation properties across oceanic extratropical cyclone cold fronts is examined using four years of combined CloudSat radar and CALIPSO lidar retrievals. The global annual mean cloud and precipitation distributions show that low-level clouds are ubiquitous in the post frontal zone while higher-level cloud frequency and precipitation peak in the warm sector along the surface front. Increases in temperature and moisture within the cold front region are associated with larger high-level but lower mid-/low level cloud frequencies and precipitation decreases in the cold sector. This behavior seems to be related to a shift from stratiform to convective clouds and precipitation. Stronger ascent in the warm conveyor belt tends to enhance cloudiness and precipitation across the cold front. A strong temperature contrast between the warm and cold sectors also encourages greater post-cold-frontal cloud occurrence. While the seasonal contrasts in environmental temperature, moisture, and ascent strength are enough to explain most of the variations in cloud and precipitation across cold fronts in both hemispheres, they do not fully explain the differences between Northern and Southern Hemisphere cold fronts. These differences are better explained when the impact of the contrast in temperature across the cold front is also considered. In addition, these large-scale parameters do not explain the relatively large frequency in springtime post frontal precipitation.

  18. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-11-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of the Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and the Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish) during the last 16 yr. The highest number of cold fronts was observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was observed and the highest number of fronts occurred in 2010 (20 in total); moreover, an annual strong relationship between the maximum average wave values and the cold fronts in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  19. The climatology of East Asian winter monsoon and cold surges from 1979--1995 NCEP/NCAR reanalyses

    SciTech Connect

    Yi Zhang; Sperber, K.; Boyle, J.

    1996-04-01

    The East Asian winter monsoon, which is associated with the Siberian high and active cold surges, is one of the most energetic monsoon circulation systems. The dramatic shift of northeasterlies and the outbreak of cold surges dominate the winter weather and local climate in the East Asian region, and may exert a strong impact on the extratropical and tropical planetary-scale circulations and influence the SSTs in the tropical western Pacific. General characteristics of the winter monsoon and cold surges and their possible link with tropical disturbances are revealed in many observational studies. Little attention has been given to the climatological aspects of the winter monsoon and cold surges. The purpose of this study is to compile and document the East Asian mean winter circulation, and present the climatology of cold surges and the Siberian high based on the 1979--1995 NCEP/NCAR reanalyses. Of particular interest is the interannual variation of winter monsoon circulation and cold surge events. Given that the cold surge activity and the Indonesian convection are much reduced during the 1982--83 period, one of the goals is to determine whether there exists a statistically significant relationship between ENSO and the interannual variation of winter monsoon and cold surges.

  20. Cold Hardiness of Winter-Acclimated Drosophila suzukii (Diptera: Drosophilidae) Adults.

    PubMed

    Stephens, A R; Asplen, M K; Hutchison, W D; Venette, R C

    2015-12-01

    Drosophila suzukii Matsumura, often called spotted wing drosophila, is an exotic vinegar fly that is native to Southeast Asia and was first detected in the continental United States in 2008. Previous modeling studies have suggested that D. suzukii might not survive in portions of the northern United States or southern Canada due to the effects of cold. As a result, we measured two aspects of insect cold tolerance, the supercooling point and lower lethal temperature, for D. suzukii summer-morph pupae and adults and winter-morph adults. Supercooling points were compared to adults of Drosophila melanogaster Meigen. The lower lethal temperature of D. suzukii winter-morph adults was significantly colder than that for D. suzukii summer-morph adults, while supercooling points of D. suzukii winter-morph adults were actually warmer than that for D. suzukii summer-morph adults and pupae. D. suzukii summer-morph adult supercooling points were not significantly different than those for D. melanogaster adults. These measures indicate that D. suzukii is a chill intolerant insect, and winter-morph adults are the most cold-tolerant life stage. These results can be used to improve predictions of where D. suzukii might be able to establish overwintering populations and cause extensive damage to spring fruit crops. PMID:26317777

  1. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation.

    PubMed

    Koike, Michiya; Okamoto, Takashi; Tsuda, Sakae; Imai, Ryozo

    2002-10-18

    A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening. PMID:12379218

  2. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes

    PubMed Central

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.

    2015-01-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733

  3. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub.

    SciTech Connect

    Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent

    2004-01-10

    Kwit, C., D. J. Levey; C. H. Greenberg, S. F. Pearson, J.P. McCarty, and S. Sargent. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia. 139:30-34. Abstract: We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology.

  4. Did the Laki volcano eruption cause the cold winter of 1783-1784?

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-05-01

    In June 1783 the Laki volcano in Iceland began to erupt and continued erupting for months, causing a major environmental disaster. The eruption spewed out toxic sulfuric acid aerosols, which spread over northern latitudes and caused thousands of deaths. That summer, there were heat waves, widespread famines, crop failures, and livestock losses. During the following winter, temperatures in Europe were about 2°C below average for the late 1700s; the winter was also one of the most severe of the past 500 years in eastern North America. The Laki eruption has been blamed for the anomalously cold winter of 1783-1784. (Geophysical Research Letters, doi:10.1029/2011GL046696, 2011)

  5. Links between solar wind variations, the global electric circuit, and winter cyclone vorticity, and possibly to cold winters in Europe

    NASA Astrophysics Data System (ADS)

    Tinsley, B. A.

    2011-12-01

    There are a number of inputs to the atmosphere and the climate system that are modulated by solar activity that have their only common feature the modulation of the ionosphere-earth current density (Jz) in the global electric circuit, and to which it has now been shown there are small atmospheric responses in winter storm vorticity, surface pressure, and cloud cover. Similar responses are found to internal atmospheric inputs that modulate Jz. An inductive mechanism for initial storm electrification is described that responds to Jz and provides space charge for aerosol particles and droplets throughout the updraft region. The charge on droplets and aerosol particles, by the process of charge modulation of aerosol scavenging (CMAS), increases condensation nuclei concentrations and shifts their distributions to smaller average sizes. This produces smaller and more numerous droplets, and as shown by Rosenfeld et al (2008), delays initial precipitation and increases ice production and the vigor of the storm updraft. For baroclinic storms the additional latent heat release and updraft velocity increases storm vorticity. The result depends on both aerosol characteristics and the Jz variation. The cumulative effect of winter storm intensification, for example in the Icelandic Low cyclogenesis region, responding to Jz changes, is to increase blocking in the Atlantic Ocean. Such blocking reduces the flow of relatively warm moist ocean air onto Europe, while increasing the incidence of outbreaks of cold, dry, Arctic air. The possibility is examined that increases in cosmic ray flux and in Jz, at times of decadal and longer minima in solar activity, contributes to the changes in atmospheric circulation and the resulting unusually severe winters in the UK and Europe such as have occurred during extended solar minima in the late 17th century and early 21st century.

  6. Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas.

    PubMed

    Kleijn, D; Munster, V J; Ebbinge, B S; Jonkers, D A; Müskens, G J D M; Van Randen, Y; Fouchier, R A M

    2010-07-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) in poultry have raised interest in the interplay between avian influenza (AI) viruses and their wild hosts. Studies linking virus ecology to host ecology are still scarce, particularly for non-duck species. Here, we link capture-resighting data of greater white-fronted geese Anser albifrons albifrons with the AI virus infection data collected during capture in The Netherlands in four consecutive winters. We ask what factors are related to AI virus prevalence and whether there are ecological consequences associated with AI virus infection in staging white-fronted geese. Mean seasonal (low pathogenic) AI virus prevalence ranged between 2.5 and 10.7 per cent, among the highest reported values for non-duck species, and occurred in distinct peaks with near-zero prevalence before and after. Throat samples had a 2.4 times higher detection frequency than cloacal samples. AI virus infection was significantly related to age and body mass in some but not other winters. AI virus infection was not related to resighting probability, nor to maximum distance travelled, which was at least 191 km during the short infectious lifespan of an AI virus. Our results suggest that transmission via the respiratory route could be an important transmission route of AI virus in this species. Near-zero prevalence upon arrival on their wintering grounds, in combination with the epidemic nature of AI virus infections in white-fronted geese, suggests that white-fronted geese are not likely to disperse Asian AI viruses from their Siberian breeding grounds to their European wintering areas. PMID:20200028

  7. Cold-induced bradycardia in man during sleep in Arctic winter nights

    NASA Astrophysics Data System (ADS)

    Buguet, A. G. C.

    1987-03-01

    Two young male Caucasians volunteered for a study on the effects of cold exposure during night sleep in winter in the Arctic. The 14-day experiment was divided in three consecutive periods, baseline (2 nights), cold exposure (10 night) and recovery (2 nights). Both baseline and recovery data were obtained in neutral thermal conditions in a laboratory. The subjects slept in a sleeping bag under an unheated tent during the cold exposure. Apart from polysomnographic and body temperature recordings, electrocardiograms were taken through a telemetric system for safety purposes. Heart rates were noted at 5-min intervals and averaged hourly. In both environmental conditions, heart rate decreased within the first two hours of sleep. Comparison of the data obtained during cold exposure vs. thermal neutrality revealed lower values of heart rate in the cold, while body temperatures remained within normal range. This cold-induced bradycardia supervening during night sleep is discussed in terms of the occurrence of a vagal reflex preventing central blood pressure to rise.

  8. Costs of leaf reinforcement in response to winter cold in evergreen species.

    PubMed

    González-Zurdo, Patricia; Escudero, Alfonso; Babiano, Josefa; García-Ciudad, Antonia; Mediavilla, Sonia

    2016-03-01

    The competitive equilibrium between deciduous and evergreen plant species to a large extent depends on the intensity of the reduction in carbon gain undergone by evergreen leaves, associated with the leaf traits that confer resistance to stressful conditions during the unfavourable part of the year. This study explores the effects of winter harshness on the resistance traits of evergreen leaves. Leaf mass per unit area (LMA), leaf thickness and the concentrations of fibre, nitrogen (N), phosphorus (P), soluble protein, chlorophyll and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were determined in three evergreen and two deciduous species along a winter temperature gradient. In the evergreen species, LMA, thickness, and P and structural carbohydrate concentrations increased with the decrease in winter temperatures. Nitrogen and lignin concentrations did not show definite patterns in this regard. Chlorophyll, soluble proteins and Rubisco decreased with the increase in winter harshness. Our results suggest that an increase in LMA and in the concentration of structural carbohydrates would be a requirement for the leaves to cope with low winter temperatures. The evergreen habit would be associated with higher costs at cooler sites, because the cold resistance traits imply additional maintenance costs and reduced N allocation to the photosynthetic machinery, associated with structural reinforcement at colder sites. PMID:26764268

  9. Changes in winter cold surges over Southeast China: 1961 to 2012

    NASA Astrophysics Data System (ADS)

    Ou, Tinghai; Chen, Deliang; Jeong, Jee-Hoon; Linderholm, Hans W.; Zhou, Tianjun

    2015-02-01

    The present study investigates the overall changes in occurrences of winter cold surges over Southeast China for the period 1961-2012, using instrumental observations, reanalysis and model simulation datasets. Based on objectively defined criteria, cold surges were classified into 3 types according to their dynamical origin as inferred from daily evolution patterns of surface pressure systems with a focus on the Siberian High (SH): type A with an amplification of a quasi-stationary SH associated with high-pressure anomalies over the Ural mountains, type B with a developing SH associated with fast traveling upper-level waves, and type C with a high-pressure originated in the Arctic. Examination of the long-term change in cold surge occurrences shows different interdecadal variations among the 3 types. During 1961-2012, type A events (37.8%) decreased, while type B events, accounting for the majority (52.5%) of total winter cold surges, increased slightly. The contribution by type C to the total occurrence of the cold surges was small (8.8%) compared to that of A and B, but it became more frequent in the latest decade, related to the tendency of the Arctic Oscillation (AO) being more in its negative phase. Overall, we found slightly increased occurrences of cold surges over Southeast China since the early 1980s, despite the weakened SH intensity and warmer mean temperature compared to previous decades. The climate model projections of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests similar trend in the late 21st century under warmer climate.

  10. Spruce Budworm Moth Flight and Storms: Case Study of a Cold Front System.

    NASA Astrophysics Data System (ADS)

    Dickison, R. B. B.; Haggis, Margaret J.; Rainey, R. C.

    1983-02-01

    Field studies in New Brunswick on the dispersal and redistribution of night-flying spruce budworm moths have made particular use of detailed synoptic analysis, weather radar (ground and airborne), and airborne Doppler wind-finding; moth-sampling by light-traps, pheromone-traps and aircraft-trapping; insect-detecting radar; and experimental forest spraying. By these means moths have been recorded arriving in very large numbers, with mesoscale wind systems associated with rainstorms. A case study is presented of such an influx in western New Brunswick in association with wind shifts and weather at an active cold front in July 1975.

  11. MERGING COLD FRONTS IN THE GALAXY PAIR NGC 7619 AND NGC 7626

    SciTech Connect

    Randall, S. W.; Jones, C.; Kraft, R.; Forman, W. R.; O'Sullivan, E.

    2009-05-10

    We present results from Chandra observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly antiparallel, suggesting that these galaxies are falling toward one another in the plane of the sky. The detection of merger cold fronts in each of the two dominant member galaxies implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a preexisting {approx}1 keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the three-dimensional velocities from the cold fronts and, using the observed radial velocities of the galaxies, show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of {approx}1190 km s{sup -1}. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is most likely currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, consisting of a core with two symmetric jets, and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and possibly an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure encountered by the forward jet.

  12. A physical analysis of the severe 2013/2014 cold winter in North America

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Zhang, Xuebin

    2015-10-01

    The severe 2013/2014 cold winter has been examined in the context of the previous 55 winters using the National Centers for Environmental Prediction reanalysis data for the period 1960-2014. North America is dominated by pronounced cold anomalies over the Great Plains and Great Lakes in December 2013 and February 2014 but exhibits an east-west contrast pattern with warm anomalies over most of the North American West in January 2014. A relevant temperature index, defined as land surface temperature anomalies averaged over (40°-60°N, 105°-80°W), reveals a warming trend as well as interannual variability with a significant power peak of 6.0 years. While 2013/2014 was the second coldest winter during 1960-2014, it is the coldest one in the linearly detrended series, with a negative anomaly of 2.63 standard deviations. This indicates that the long-term warming has made the 2013/2014 winter less severe than it could have been. The temperature and circulation variability in association with the zonally symmetric variability of the polar vortex projects weakly on the corresponding anomalies in the 2013/2014 winter, whereas the variability associated with the principal mode of North American surface temperature projects strongly on the corresponding anomalies in the winter. This mode is associated with a sea surface temperature (SST) pattern of significant anomalies over the North Pacific and North Atlantic middle and high latitudes. The anomalous atmospheric circulation shows an anticyclonic anomaly over the Gulf of Alaska-Bering Sea and a cyclonic anomaly downstream over North America. It bears resemblance to the North Pacific Oscillation/Western Pacific pattern and drives the SST in the North Pacific. Over western-central Canada and the northern U.S., below-average heights are associated with above-normal precipitation, implying enhanced upward vertical motion and variation of local cloud forcing, leading to a variation of the surface energy budget dominated by surface longwave radiation anomalies. Over North America, there is less downwelling longwave radiation at the surface when the atmosphere is cold, which is offset by the corresponding reduction in outgoing longwave radiation.

  13. Extremely cold events and sudden air temperature drops during winter season in the Czech Republic

    NASA Astrophysics Data System (ADS)

    Crhová, Lenka; Valeriánová, Anna; Holtanová, Eva; Müller, Miloslav; Kašpar, Marek; Stříž, Martin

    2014-05-01

    Today a great attention is turned to analysis of extreme weather events and frequency of their occurrence under changing climate. In most cases, these studies are focused on extremely warm events in summer season. However, extremely low values of air temperature during winter can have serious impacts on many sectors as well (e.g. power engineering, transportation, industry, agriculture, human health). Therefore, in present contribution we focus on extremely and abnormally cold air temperature events in winter season in the Czech Republic. Besides the seasonal extremes of minimum air temperature determined from station data, the standardized data with removed annual cycle are used as well. Distribution of extremely cold events over the season and the temporal evolution of frequency of occurrence during the period 1961-2010 are analyzed. Furthermore, the connection of cold events with extreme sudden temperature drops is studied. The extreme air temperature events and events of extreme sudden temperature drop are assessed using the Weather Extremity Index, which evaluates the extremity (based on return periods) and spatial extent of the meteorological extreme event of interest. The generalized extreme value distribution parameters are used to estimate return periods of daily temperature values. The work has been supported by the grant P209/11/1990 funded by the Czech Science Foundation.

  14. Windowpane flounder (Scophthalmus aquosus) and winter flounder (Pseudopleuronectes americanus) responses to cold temperature extremes in a Northwest Atlantic estuary

    NASA Astrophysics Data System (ADS)

    Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine

    2016-01-01

    The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.

  15. The effect of moving cold fronts over Central Europe to the variability of the ionosphere

    NASA Astrophysics Data System (ADS)

    Potuznikova, Katerina; Koucka Knizova, Petra; Boska, Josef; Sindelarova, Tereza; Mosna, Zbysek

    2015-04-01

    Cold fronts represent well known source of atmospheric waves, (especially short and medium scale AGW - acoustic gravity waves), that are able to propagate up to the ionospheric heights. In our study we focus on the effects of the transitions of cold front over the region of Central Europe on the variations of the ionosphere. We concentrate on periods of low solar and geomagnetic activity. Neutral atmosphere data are compared with the wave-like oscillations in the E and F layer. Our tropospheric data comprise synoptic maps on of 500 hPa and 850 hPa geopotential heights. Within ionospheric data we search for variability that is linked to the tropospheric disturbances. The ionospheric parameters (electron concentration and corresponding height) we analyse by the wavelet transform method. The Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory (49.59 N; 14.33 E) of the Institute of Atmospheric Physics, Prague (IAP) since 2004, represents an excellent source of the ionospheric data for Central Europe. Pruhonice digisonde usually operates in standard mode - one ionogram and electron density profie N(h) each 15 minutes. Besides that, data from several european stations of the digisonde world network (data from Juliusruhe, Chilton, Brusel, Roma and Tortosa digisonde stations) are included in the study.

  16. Rapid uplift of nonmethane hydrocarbons in a cold front over central Europe

    NASA Astrophysics Data System (ADS)

    Purvis, R. M.; Lewis, A. C.; Carney, R. A.; McQuaid, J. B.; Arnold, S. R.; Methven, J.; Barjat, H.; Dewey, K.; Kent, J.; Monks, P. S.; Carpenter, L. J.; Brough, N.; Penkett, S. A.; Reeves, C. E.

    2003-04-01

    The vertical distribution of 21 C2-C7 nonmethane hydrocarbons (NMHCs) has been determined in planetary boundary layer (PBL) and free tropospheric (FT) air over central Europe under a range of meteorological conditions. High-frequency whole air sampling was conducted on board the U.K. Meteorological Office C-130 Hercules aircraft during the European Export of Precursors and Ozone by Long-Range Transport (EXPORT) experiment in August 2000. When vertical transport by large-scale flow or convection was weak, the expected large concentration gradient between the PBL and FT was observed for all short and medium lifetime hydrocarbons (e.g., average iso-butane, PBL 100 pptV, FT 6 pptV). During periods of strong convective activity associated with the passage of a cold front, a rapid uplift of reactive carbon from the boundary layer to the mid free troposphere was observed. Using changing ratios of hydrocarbons with different atmospheric lifetimes, a timescale for transport during this event was determined. Hydrocarbon lifetime measurements suggest that in certain regions of the system, it is convective transport embedded within the cold front rather than larger-scale advection along the warm conveyor belt that is dominant in transporting ozone precursors into the free troposphere.

  17. Winter variability of aeolian sediment transport threshold on a cold-climate dune

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2012-12-01

    Changes in surface conditions on cold-climate aeolian dunes are pronounced; during winter dunes are wet, snow covered, and/or frozen for extended periods of time. It is unknown how the critical wind speed for sediment transport (“threshold”) varies and how threshold may influence sediment transport predictions. Although the impact of surface conditions on threshold has been examined in synthetic experiments (wind tunnels), complicated feedbacks between threshold, sand transport, and surface conditions that occur in natural environments suggest that a ground-based empirical approach may provide enhanced insight. In this study we investigate threshold variability for 73 days during fall-winter-spring surface conditions from 18 November 2008 to 30 May 2009 in the Bigstick Sand Hills of Saskatchewan, Canada. Simultaneous measurements of threshold and atmospheric variables (air temperature, relative humidity, solar radiation, wind speed and direction) were used to examine the extent to which surface erodibility was regulated by meteorology. Time-lapse images of the surface from a co-located camera were used for quality control and interpreting changes in the surface affecting threshold. Results reveal that threshold varied throughout the deployment (25-75% quartiles: 6.92-8.28 m s- 1; mean: 7.79 m s- 1). Threshold variability was especially evident at two scales: (i) event timescale and (ii) seasonal timescale. Event-scale variability peaked during mid-winter; in one event the threshold varied by 6 m s- 1 in 2 h with freezing and re-freezing of the surface and relatively constant atmospheric conditions. The causes of event-scale variability are complex though qualitatively related to changes of wind direction, antecedent meteorological conditions, and vertical variations of grain-scale bonding agents such as pore ice and moisture. Seasonal-scale changes manifested as an increase in threshold during fall, peaking in mid-winter, and decreasing in spring. Increased threshold in mid-winter was linked to lower insolation and air temperature, suggesting low erodibility due to the presence of pore ice. Correlation coefficients of threshold versus atmospheric variables yielded relatively weak correlations (air temperature: r = - 0.322; relative humidity: r = 0.388; solar radiation: r = - 0.309) that also varied according to wind direction, suggesting that the link between atmospheric conditions and surface erodibility on cold-climate dunes is complex. This contrasts with results from field-based studies in warmer climates and controlled wind tunnel experiments, which show a more direct link between atmospheric variables (temperature and humidity) and surface erodibility. Nevertheless, our results do show a seasonal pattern of threshold that could be important for modeling cold-climate aeolian sediment transport.

  18. Dynamical and thermodynamical analysis of the South China Sea winter cold tongue

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Tkalich, Pavel; Malanotte-Rizzoli, Paola; Fricot, Bastien; Mas, Juliette

    2015-12-01

    Spatial distribution of the South China Sea (SCS) surface temperature shows strong cold anomalies over the Sunda Shelf during the boreal winter season. The band of low sea surface temperature (SST) region located south/southeast of Vietnam is called as the winter cold tongue (CT) in the SCS. Using observational and re-analysis datasets a comprehensive investigation of the dynamical and thermodynamical processes associated with the evolution of SCS CT is performed in this study. The role and relative importance of wind-driven ocean transports, air-sea heat fluxes and oceanic processes are explored. The north-south Sverdrup transport demonstrates strong southward transport during the northeast monsoon period aiding the SST cooling by bringing relatively cold water from the north. The zonal and meridional Ekman transports exhibit relatively weak westward and northward transports to the CT region during this period. The study suggests that wind-driven ocean transports have a significant role in regulating the shape and spatial extent of the CT. The heat budget analysis revealed that net surface heat flux decrease during the northeast monsoon acts as the primary cooling mechanism responsible for the development of the SCS CT, while the horizontal advection of cold water by the western boundary current along the coast of Vietnam plays a secondary role. The wintertime SST anomalies over the CT region are significantly linked to the Nino3 index. Most of the warming/cooling events in the SST anomalies coincide with the El Nino/La Nina phenomena in the Pacific Ocean.

  19. Abell 1201: The Anatomy of a Cold Front Cluster from Combined Optical and X-Ray Data

    NASA Astrophysics Data System (ADS)

    Owers, Matt S.; Nulsen, Paul E. J.; Couch, Warrick J.; Markevitch, Maxim; Poole, Gregory B.

    2009-02-01

    We present a combined X-ray and optical analysis of the cold front cluster Abell 1201 using archival Chandra data and multi-object spectroscopy taken with the 3.9 m Anglo-Australian and 6.5 m Multiple Mirror Telescopes. This paper represents the first in a series presenting a study of a sample of cold front clusters selected from the Chandra archives with the aim of relating cold fronts to merger activity, understanding the dynamics of mergers and their effect on the cluster constituents. The Chandra X-ray imagery of Abell 1201 reveals two conspicuous surface brightness discontinuities that are shown to be cold fronts, and a remnant core structure. Temperature maps reveal a complex multiphase temperature structure with regions of hot gas interspersed with fingers of cold gas. Our optical analysis is based on a sample of 321 confirmed members, whose mean redshift is z = 0.1673 ± 0.0002 and velocity dispersion is 778 ± 36 km s-1. We search for dynamical substructure and find clear evidence for multiple localized velocity substructures coincident with overdensities in the galaxy surface density. Most notably, we find the structure coincident with the remnant X-ray core. Despite the clear evidence for dynamical activity, we find the peculiar velocity distribution does not deviate significantly from Gaussian. We apply two-body dynamical analyses in order to assess which of the substructures are bound, and thus dynamically important in terms of the cluster merger history. We propose that the cold fronts in Abell 1201 are a consequence of its merger with a smaller subunit, which has induced gas motions that gave rise to "sloshing" cold fronts. Abell 1201 illustrates the value of combining multiwavelength data and multiple substructure detection techniques when attempting to ascertain the dynamical state of a cluster.

  20. Cold Tolerance and Sex-Dependent Hypothermia May Explain Winter Sexual Segregation in a Farmland Bird.

    PubMed

    Powolny, Thibaut; Bretagnolle, Vincent; Dupoué, Andréaz; Lourdais, Olivier; Eraud, Cyril

    2016-01-01

    Migration is an important event in the life cycle of many organisms, but considerable intraspecific variation may occur in its timing and/or destination, resulting in sexual segregation during wintering periods. In this study, we tested the body size hypothesis, or cold tolerance hypothesis, which predicts that body size dimorphism modulates metabolic costs associated with cold climate. Using the Eurasian skylark, we first investigated whether this species showed sexual differential migration. Then we explored the body size hypothesis by experimentally testing the effect of low ambient temperature (Ta) on both metabolic rate (MR) and body temperature (Tb). We tested for sex-related differences in metabolism and in energy-saving mechanism (hypothermia). We found clear differential migration by sex in skylark wintering populations, with a male-biased sex ratio decreasing toward southern latitudes. Measurements on captive birds at 20°, 6°, and -5°C demonstrated a significant increase in MR when Ta decreased, but there is no difference between sexes. While both males and females reduced their Tb overnight, Tb reduction was more pronounced in females exposed to the coldest temperature treatment. In addition, we found that individuals with the most reduced Tb lost less body weight during the night, suggesting that Tb reduction may help minimize energy expenditure when conditions become constraining. Our study suggests that functional mechanisms may be involved in latitudinal segregation between sexes and supports the hypothesis that sex-specific physiological strategies and thermal tolerance may explain segregation between sexes. PMID:27082725

  1. Experimental study of the cold front propagation in the plasma shut-down experiment in the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Huang, Yanhua; Tang, Yi; Luo, Yihui; Huang, Duwei; Jin, Wei; Xiao, Jinshui; Yang, Zhoujun; Chen, Zhongyong

    2014-07-01

    Mitigation of major disruptions is essential in achieving fusion energy as a commercial energy source. Many tokamaks are using massive gas injection (MGI) as the disruption mitigation method since it is the most prospective potential disruption mitigation technique at present. However, mitigation efficiency by gas jet is limited by the shallow penetration of the gas jet which results in low gas mixing efficiency. In order to improve the mixture efficiency, the propagation of the cold front induced by supersonic molecular beam injection and the interaction between the cold front and the q = 2 surface have been studied in the J-TEXT tokamak.

  2. Nitrogen oxides measurements in an Amazon site and enhancements associated with a cold front

    NASA Astrophysics Data System (ADS)

    Cordova, A. M.; Longo, K.; Freitas, S.; Gatti, L. V.; Artaxo, P.; Procópio, A.; Silva Dias, M. A. F.; Freitas, E. D.

    2004-05-01

    An intensive atmospheric chemistry study was carried out in a pristine Amazonian forest site (Balbina), Amazonas state, Brazil during the 2001 wet season, as part of the LBA/CLAIRE 2001 (The Large Scale Biosphere Atmosphere Experiment in Amazonia/Cooperative LBA Airborne Regional Experiment) field campaign. Measurements of nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were performed simultaneously with aerosol particles and black carbon concentrations and meteorological parameters observations. Very low trace gases and aerosol concentrations are typically observed at this pristine tropical site. During the measurement period, there was a three-day episode of enhancement of NO2 and black carbon concentration. NO2 concentration reached a maximum value of 4 ppbv, which corresponds to three times the background concentration observed for this site. Black carbon concentration increased from the approximated 100 ng/m3 average value to a 200 ng/m3 maximum during the same period. Biomass burning spots were detected southward, between latitudes 15 to 10° S, 5-6 days before this episode from GOES-8 WF_ABBA (Wildfire Automated Biomass Burning Algorithm). An atmospheric numerical simulation of the whole measurement period was carried out using the RAMS model coupled to a biomass burning emission and transport model. The simulation results pictured a smoke transport event from Central Brazil associated to an approach of a mid-latitude cold front, reinforcing the hypothesis of biomass burning products being long-range transported from the South by the cold front and crossing the Equator. This transport event shows how the pristine atmosphere pattern in Amazonia is impacted by biomass burning emissions from sites very far away.

  3. Geographic variation in Bar-headed geese Anser indicus: connectivity of wintering and breeding grounds across a broad front.

    USGS Publications Warehouse

    Takekawa, John Y.; Heath, Shane R.; Douglas, David C.; Perry, William M.; Javed, Salim; Newman, Scott H.; Suwal, Rajendra N.; Rahman, Asad R.; Choudhury, Binod C.; Prosser, Diann J.; Yan, Baoping; Hou, Yuansheng; Batbayar, Nyambayar; Natsagdorj, Tseveenmayadag; Bishop, Charles M.; Butler, Patrick J.; Frappell, Peter B.; Milsom, William K.; Scott, Graham R.; Hawkes, Lucy A.; Wikelski, Martin

    2009-01-01

    The connectivity and frequency of exchange between sub-populations of migratory birds is integral to understanding population dynamics over the entire species' range. True geese are highly philopatric and acquire lifetime mates during the winter, suggesting that the number of distinct sub-populations may be related to the number of distinct wintering areas. In the Bar-headed Goose Anser indicus, a species found exclusively in Central Asia, the connectivity between breeding and wintering areas is not well known. Their migration includes crossing a broad front of the Himalaya Cordillera, a significant barrier to migration for most birds. Many Bar-headed Geese fly to breeding areas on the Tibetan-Qinghai Plateau (TQP), the highest plateau in the world. From 2005-2008, 60 Bar-headed Geese were captured and marked with satellite transmitters in Nepal (n = 2), India (n = 6), China (n = 29), and Mongolia (n = 23) to examine their migration and distribution. Distinct differences were observed in their migration corridors and timing of movements, including an apparent leap-frog migration pattern for geese from Mongolia. Measurements of geese from Mongolia were larger than their counterparts from China, providing some evidence of morphological differences. Alteration of habitats in China, including the warming effects of climate change on glaciers increasing runoff to TQP wetlands, may be changing goose migration patterns and timing. With the exception of one individual, all geese from Qinghai Lake, China wintered in the southern TQP near Lhasa, and their increasing numbers in that region may be related to the effects of climate change and agricultural development. Thus, our findings document both morphological and geographical variation in sub-populations of Bar-headed Geese, but their resilience to environmental change may be lost if migratory short-stopping results in larger congregations restricted to a smaller number of wintering areas.

  4. Efficiency of Cold Hardiness Induction by Desiccation Stress in Four Winter Cereals 1

    PubMed Central

    Cloutier, Yves; Andrews, Christopher J.

    1984-01-01

    A number of defined desiccation treatments without low temperature exposure were able to induce freezing tolerance in 20 cultivars of winter cereals. A maximal degree of freezing tolerance was induced in epicotyls at 24°C in 24 hours at 40% relative humidity in rye and wheat, 7 days at 54% RH in barley, and 4 days at 70% RH in oats. Freezing tolerance was not correlated to water content of the plants after desiccation treatment but was related to the genetic capacity of the cultivars to frost harden. Levels of freezing tolerance induced by desiccation were similar to those induced by cold acclimation in rye and wheat, but considerably less in barley and oats. This is associated with a more rapid desiccation injury in barley and oats, precluding the completion of the hardening process. PMID:16663889

  5. Spatial use by wintering greater white-fronted geese relative to a decade of habitat change in California's Central Valley

    USGS Publications Warehouse

    Ackerman, J.T.; Takekawa, J.Y.; Orthmeyer, D.L.; Fleskes, J.P.; Yee, J.L.; Kruse, K.L.

    2006-01-01

    We investigated the effect of recent habitat changes in California's Central Valley on wintering Pacific greater white-fronted geese (Anser albifrons frontalis) by comparing roost-to-feed distances, distributions, population range sizes, and habitat use during 1987-1990 and 1998-2000. These habitat changes included wetland restoration and agricultural land enhancement due to the 1990 implementation of the Central Valley Joint Venture, increased land area used for rice (Oryza sativa) production, and the practice of flooding, rather than burning, rice straw residues for decomposition because of burning restrictions enacted in 1991. Using radiotelemetry, we tracked 192 female geese and recorded 4,516 locations. Geese traveled shorter distances between roosting and feeding sites during 1998-2000 (24.2 ?? 2.2 km) than during 1987-1990 (32.5 ?? 3.4 km); distance traveled tended to decline throughout winter during both decades and varied among watershed basins. Population range size was smaller during 1998-2000 (3,367 km2) than during 1987-1990 (5,145 km2), despite a 2.2-fold increase in the size of the Pacific Flyway population of white-fronted geese during the same time period. The population range size also tended to increase throughout winter during both decades. Feeding and roosting distributions of geese also differed between decades; geese shifted into basins that had the greatest increases in the amount of area in rice production (i.e., American Basin) and out of other basins (i.e., Delta Basin). The use of rice habitat for roosting (1987-1990: 40%, 1998-2000: 54%) and feeding (1987-1990: 57%, 1998-2000: 72%) increased between decades, whereas use of wetlands declined for roosting (1987-1990: 36%, 1998-2000: 31%) and feeding (1987-1990: 22%, 1998-2000: 12%). Within postharvested rice habitats, geese roosted and fed primarily in burned rice fields during 1987-1990 (roost: 43%, feed: 34%), whereas they used flooded rice fields during 1998-2000 (roost: 78%, feed: 64%). Our results suggest that white-fronted geese have altered their spatial use of California's Central Valley during the past decade in response to changing agricultural practices and the implementation of the Central Valley Joint Venture.

  6. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated. PMID:24281673

  7. Cold Hardening of Spring and Winter Wheat and Rape Results in Differential Effects on Growth, Carbon Metabolism, and Carbohydrate Content.

    PubMed

    Hurry, V. M.; Strand, A.; Tobiaeson, M.; Gardestrom, P.; Oquist, G.

    1995-10-01

    The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring. PMID:12228623

  8. Research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing is a major environmental stress during the annual cycle of temperate zone perennials. Freeze- injury can occur due to mid-winter temperatures that are colder than the tolerance threshold of a tissue / plant or due to untimely freezing temperatures before cold acclimation (development of fre...

  9. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  10. Can winter-active bumblebees survive the cold? Assessing the cold tolerance of Bombus terrestris audax and the effects of pollen feeding.

    PubMed

    Owen, Emily L; Bale, Jeffrey S; Hayward, Scott A L

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  11. Isotope meteorology of cold front passages: A case study combining observations and modeling

    NASA Astrophysics Data System (ADS)

    Aemisegger, F.; Spiegel, J. K.; Pfahl, S.; Sodemann, H.; Eugster, W.; Wernli, H.

    2015-07-01

    This study investigates the role of below-cloud evaporation and evapotranspiration for the short-term variability of stable isotopes in near-surface water vapor and precipitation associated with central European cold fronts. To this end, a combination of observations with high temporal resolution and numerical sensitivity experiments with the isotope-enabled regional weather prediction model COSMOiso is used. The representation of the interaction between rain droplets and ambient vapor below the cloud is fundamental for adequately simulating precipitation isotopes (δp) and total rainfall amount. Neglecting these effects leads to depletion biases of 20-40‰ in δp2H and 5-10‰ in δp18O and to an increase of 74% in rainfall amount. Isotope fractionation during soil evaporation is of primary importance for correctly simulating the variability of continental low-level vapor δv2H and δv18O and particularly of the secondary isotope parameter deuterium excess (dv).

  12. MAGNETOHYDRODYNAMIC SIMULATIONS OF THE FORMATION OF COLD FRONTS IN CLUSTERS OF GALAXIES: EFFECTS OF ANISOTROPIC VISCOSITY

    SciTech Connect

    Suzuki, Kentaro; Ogawa, Takayuki; Matsumoto, Yosuke; Matsumoto, Ryoji E-mail: ogawa@astro.s.chiba-u.ac.jp E-mail: matumoto@astro.s.chiba-u.ac.jp

    2013-05-10

    We carried out three-dimensional magnetohydrodynamic simulations to study the effects of plasma viscosity on the formation of sharp discontinuities of density and temperature distributions, cold fronts, in clusters of galaxies. By fixing the gravitational potential that confines the cool, dense plasma in a moving subcluster, we simulated its interaction with the hot, lower density plasma around the subcluster. At the initial state, the intracluster medium (ICM) is assumed to be threaded by uniform magnetic fields. The enhancement of plasma viscosity along the direction of magnetic fields is incorporated as anisotropic viscosity depending on the direction of magnetic fields. We found that the Kelvin-Helmholtz instability at the surface of the subcluster grows even in models with anisotropic viscosity, because its effects on the velocity shear across the magnetic field lines are suppressed. We also found that magnetic fields around the interface between the subcluster and ICM are amplified even in the presence of viscosity, while magnetic fields behind the subcluster are amplified up to {beta}{sup -1} {approx} 0.01 in models with viscosity, whereas they are amplified up to {beta}{sup -1} {approx} 0.1 in models without viscosity, where {beta} is the ratio of gas pressure to magnetic pressure.

  13. Calcium Interacts with Antifreeze Proteins and Chitinase from Cold-Acclimated Winter Rye1

    PubMed Central

    Stressmann, Maja; Kitao, Satoshi; Griffith, Marilyn; Moresoli, Christine; Bravo, León A.; Marangoni, Alejandro G.

    2004-01-01

    During cold acclimation, winter rye (Secale cereale) plants accumulate pathogenesis-related proteins that are also antifreeze proteins (AFPs) because they adsorb onto ice and inhibit its growth. Although they promote winter survival in planta, these dual-function AFPs proteins lose activity when stored at subzero temperatures in vitro, so we examined their stability in solutions containing CaCl2, MgCl2, or NaCl. Antifreeze activity was unaffected by salts before freezing, but decreased after freezing and thawing in CaCl2 and was recovered by adding a chelator. Ca2+ enhanced chitinase activity 3- to 5-fold in unfrozen samples, although hydrolytic activity also decreased after freezing and thawing in CaCl2. Native PAGE, circular dichroism, and Trp fluorescence experiments showed that the AFPs partially unfold after freezing and thawing, but they fold more compactly or aggregate in CaCl2. Ruthenium red, which binds to Ca2+-binding sites, readily stained AFPs in the absence of Ca2+, but less stain was visible after freezing and thawing AFPs in CaCl2. We conclude that the structure of AFPs changes during freezing and thawing, creating new Ca2+-binding sites. Once Ca2+ binds to those sites, antifreeze activity, chitinase activity and ruthenium red binding are all inhibited. Because free Ca2+ concentrations are typically low in the apoplast, antifreeze activity is probably stable to freezing and thawing in planta. Ca2+ may regulate chitinase activity if concentrations are increased locally by release from pectin or interaction with Ca2+-binding proteins. Furthermore, antifreeze activity can be easily maintained in vitro by including a chelator during frozen storage. PMID:15122015

  14. Storms or cold fronts? What is really responsible for the extreme waves regime in the Colombian Caribbean coast

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2015-05-01

    On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than the extreme waves associated with hurricane season. These results are of great importance when evaluating the threat of extreme waves in the coastal and port infrastructure, for purposes of the design of new constructions, and in the coastal flood processes due to run-up because, according to the site of interest in the coast, the forces that shape extreme waves are not the same.

  15. Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Yuan, Zibing; Lau, Alexis K. H.; Huang, Xiao-Feng

    2012-11-01

    In this study, we investigate the influence of long-range transport (LRT) episodes brought in by cold front on the concentration levels of PM2.5, major aerosol constituents, organic tracers, and PM2.5 source characteristics in Hong Kong, China. PM2.5 samples were collected during January-March 2004 and January-March 2005 and analyzed for major constituents and organic tracer species. Synoptic weather conditions and characteristics of common air pollutants were used to categorize the sampling days to three groups, i.e., groups mainly affected by local emissions or regional transport (RT) or cold front LRT. Concentrations of PM2.5 mass and its major constituents during cold-front days were lower than those during RT-dominated periods but higher than those during local emissions-dominated periods. Source apportionment using chemical mass balance (CMB) indicates that vehicular exhaust was a significant primary OC source of mainly local emissions, making average contributions of 1.82, 1.50, and 2.39 μg C m- 3 to OC in the local, LRT, and RT sample groups, respectively. During cold front periods, primary OC concentrations attributable to biomass burning and coal combustion were approximately triple and double, respectively, those during periods dominated by local emissions. Suspended dust, a minor primary OC source (0.24-0.40 μg C m- 3), also showed increased contribution during cold fronts. The unexplained OC by CMB (i.e., total OC minus apportioned primary OC), an approximate indicator for secondary OC, was a significant fraction of OC (> 48%) and its mass concentration was much higher in the cold front LRT and RT sample groups (6.37 and 9.48 μg C m- 3) than in the local sample group (3.8 μg C m- 3). Source analysis as well as tracer concentration variation shows that biomass burning OC and water soluble organic carbon (WSOC) were correlated, suggesting biomass burning as a significant contributor to WSOC.

  16. Lesser White-fronted (Anser erythropus) and Greater White-fronted (A. albifrons) Geese wintering in Greek wetlands are not threatened by Pb through shot ingestion.

    PubMed

    Aloupi, Maria; Kazantzidis, Savas; Akriotis, Triantaphyllos; Bantikou, Evangelia; Hatzidaki, Victoria-Ourania

    2015-09-15

    Fecal lead (Pb) levels were investigated in the threatened European population of the Lesser White-fronted Goose (LWfG, Anser erythropus) and of the non-threatened Greater White-fronted Goose (GWfG, Anser albifrons) wintering in two wetland areas in northern Greece in order to assess the potential risk from Pb exposure. Fecal, soil and food plant samples were analyzed. Levels of Pb were normalized using Al concentrations in order to separate the effect of possible ingestion of Pb shot from that of soil or sediment accidentally ingested with food. All concentrations are expressed on a dry weight basis. Geometric means of Pb content in the feces of LWfG were 6.24 mg/kg at Evros Delta and 7.34 mg/kg at Lake Kerkini (maximum values of 28.61 mg/kg and 36.68 mg/kg, respectively); for fecal samples of GWfG geometric means were 2.39 mg/kg at Evros Delta and 6.90 mg/kg at Kerkini (corresponding maximum values of 25.09 mg/kg and 42.26 mg/kg). Soil Pb was in the range of 5.2-60.2mg/kg (geometric mean = 22.6 mg/kg) for the Evros Delta and between 13.4 and 64.9 mg/kg (geometric mean=28.1mg/kg) for Kerkini. A general linear model fitted to the data showed that Pb levels were very closely dependent on Al levels in the feces from both species and at both sites indicating soil or sediment were the only significant source of Pb; species and site, as well as their interaction, were not statistically significant factors. For both species and at both sites exposure to Pb was evidently very mild and the observed levels of Pb were well below the proposed thresholds for lethal or sublethal effects of Pb poisoning. Soil ingestion appeared to gradually increase from October to December for LWfG at Kerkini, corresponding to a gradual depletion of their food source. PMID:25965041

  17. Characterization and effects of cold fronts in the Colombian Caribbean Coast and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-07-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of Instituto de Hidrología, Meteorología y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and Centro de Investigación en Oceanografía y Meteorología of Colombia (CIOH, based on its initials in Spanish). The highest occurrences were observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was not observed, although the highest number of fronts occurred in 2010 (20 in total). An annual strong relationship between the maximum average wave values and the cold fronts, in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  18. Sloshing Cold Fronts in Galaxy Groups and their Perturbing Disk Galaxies: An X-Ray, Optical, and Radio Case Study

    NASA Astrophysics Data System (ADS)

    Gastaldello, Fabio; Di Gesu, Laura; Ghizzardi, Simona; Giacintucci, Simona; Girardi, Marisa; Roediger, Elke; Rossetti, Mariachiara; Brighenti, Fabrizio; Buote, David A.; Eckert, Dominique; Ettori, Stefano; Humphrey, Philip J.; Mathews, William G.

    2013-06-01

    We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, multi-object spectroscopy data from the literature, and Giant Metrewave Radio Telescope (GMRT) data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is a strong analogy between the X-ray and optical phenomenology of the IC 1860 group and that of two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment for studying this phenomenon.

  19. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to their geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than those associated with the hurricane season.

  20. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season.

    PubMed

    Yue, Chuan; Cao, Hong-Li; Wang, Lu; Zhou, Yan-Hua; Huang, Yu-Ting; Hao, Xin-Yuan; Wang, Yu-Chun; Wang, Bo; Yang, Ya-Jun; Wang, Xin-Chao

    2015-08-01

    Sugar plays an essential role in plant cold acclimation (CA), but the interaction between CA and sugar remains unclear in tea plants. In this study, during the whole winter season, we investigated the variations of sugar contents and the expression of a large number of sugar-related genes in tea leaves. Results indicated that cold tolerance of tea plant was improved with the development of CA during early winter season. At this stage, starch was dramatically degraded, whereas the content of total sugars and several specific sugars including sucrose, glucose and fructose were constantly elevated. Beyond the CA stage, the content of starch was maintained at a low level during winter hardiness (WH) period and then was elevated during de-acclimation (DC) period. Conversely, the content of sugar reached a peak at WH stage followed by a decrease during DC stage. Moreover, gene expression results showed that, during CA period, sugar metabolism-related genes exhibited different expression pattern, in which beta-amylase gene (CsBAM), invertase gene (CsINV5) and raffinose synthase gene (CsRS2) engaged in starch, sucrose and raffinose metabolism respectively were solidly up-regulated; the expressions of sugar transporters were stimulated in general except the down-regulations of CsSWEET2, 3, 16, CsERD6.7 and CsINT2; interestingly, the sugar-signaling related CsHXK3 and CsHXK2 had opposite expression patterns at the early stage of CA. These provided comprehensive insight into the effects of CA on carbohydrates indicating that sugar accumulation contributes to tea plant cold tolerance during winter season, and a simply model of sugar regulation in response to cold stimuli is proposed. PMID:26216393

  1. Early 21st Century Anomalously Cold Central Eurasian Winters Forced By Arctic Sea Ice Retreat in an Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Semenov, V. A.; Latif, M.

    2014-12-01

    The early 21st century was marked by several severe winters over Central Eurasia linked to a blocking anti-cyclone centered south of the Barents Sea (BS). The increased occurrence of such anomalously cold winters coincided with a strong reduction of winter Arctic sea ice cover (ASIC), especially in the BS where sea ice area exhibited a step-like decline in 2005, suggesting a possible connection. To study the possible link we performed simulations with a high-resolution global atmospheric general circulation model forced by a set of multi-year sea ice anomalies observed during the last decades. The regional circulation response to reduced ASIC in 2005-2012 exhibits a statistically significant anti-cyclonic surface pressure anomaly and a surface temperature response similar to that observed. The results suggest that the recent BS sea ice reduction may have been responsible for the recent anomalously cold winters in Central Eurasia. Furthermore, a positive sea ice anomaly in the late 1960s associated with negative phase of the North Atlantic Oscillation also results in a similar anti-cyclonic anomaly and a cooling over the continent in the model. This implies that the atmospheric circulation response to sea ice anomalies during the period of modern sea ice decline can be essentially non-linear, both with respect to amplitude and pattern.

  2. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis.

    PubMed

    Mueller, Ulrich G; Mikheyev, Alexander S; Hong, Eunki; Sen, Ruchira; Warren, Dan L; Solomon, Scott E; Ishak, Heather D; Cooper, Mike; Miller, Jessica L; Shaffer, Kimberly A; Juenger, Thomas E

    2011-03-01

    The obligate mutualism between leafcutter ants and their Attamyces fungi originated 8 to 12 million years ago in the tropics, but extends today also into temperate regions in South and North America. The northernmost leafcutter ant Atta texana sustains fungiculture during winter temperatures that would harm the cold-sensitive Attamyces cultivars of tropical leafcutter ants. Cold-tolerance of Attamyces cultivars increases with winter harshness along a south-to-north temperature gradient across the range of A. texana, indicating selection for cold-tolerant Attamyces variants along the temperature cline. Ecological niche modeling corroborates winter temperature as a key range-limiting factor impeding northward expansion of A. texana. The northernmost A. texana populations are able to sustain fungiculture throughout winter because of their cold-adapted fungi and because of seasonal, vertical garden relocation (maintaining gardens deep in the ground in winter to protect them from extreme cold, then moving gardens to warmer, shallow depths in spring). Although the origin of leafcutter fungiculture was an evolutionary breakthrough that revolutionized the food niche of tropical fungus-growing ants, the original adaptations of this host-microbe symbiosis to tropical temperatures and the dependence on cold-sensitive fungal symbionts eventually constrained expansion into temperate habitats. Evolution of cold-tolerant fungi within the symbiosis relaxed constraints on winter fungiculture at the northern frontier of the leafcutter ant distribution, thereby expanding the ecological niche of an obligate host-microbe symbiosis. PMID:21368106

  3. 2009/2010 Eurasian Cold Winter and Loss of Arctic Sea-ice over Barents/Kara Sea

    NASA Astrophysics Data System (ADS)

    Shim, T.; Kim, B.; Kim, S.

    2012-12-01

    In 2009/2010 winter, a few extreme cold events and heavy snowfall occurred over central North America, north western Europe, and East Asia exerting a severe social and economic impacts. In this study, we performed modeling experiments to examine the role of substantially reduced Arctic sea-ice over Barents/Kara Sea on the 2009/2010 cold winters. Although several previous studies investigated cause of the extreme events and emphasized the large snow-covered area over Siberia in autumn 2009, we note that the area extent of Arctic sea-ice over Barents/Kara sea in autumn 2009 was anomalously low and the possible impact from Arctic for the extreme cold events has not been presented. To investigate the influence from the Arctic, we designed three model runs using Community Atmosphere Model Version 3 (CAM3). Each simulation differs by the prescribed surface boundary conditions: (a) CTRL - climatological seasonal cycle of sea surface temperature (SST) and sea-ice concentration (SIC) are prescribed everywhere, (b) EXP_65N - SST and SIC inside the Arctic circle (north of 65°N) are replaced by 2009/2010 values. Elsewhere, the climatology is used, (c) EXP_BK - Same with (b) except that SIC and SST are fixed only over Barents/Kara Sea where the sea-ice area dropped significantly in 2009/2010 winter. Model results from EXP_65N and EXP_BK commonly showed a large increase of air temperature in the lower troposphere where Arctic sea-ice showed a large reduction. Also, compared with the observation, model successfully captured thickened geopotential height in the Arctic and showed downstream wave propagation toward midlatitude. From the analysis, we reveal that this large dipolar Arctic-midlatitude teleconnection pattern in the upper troposphere easily propagate upward and played a role in the weakening of polar vortex. This is also confirmed in the observation. However, the timing of excitation of upward propagating wave in EXP_65N and EXP_BK were different and thus the timing of weakening of polar vortex also differs in each experiment. Unlike with our expectation, both EXP_65N and EXP_BK did not capture the abrupt increase of snow-cover in the observation over Siberian region in autumn 2009. Therefore, given the successful reproduction of key observed features of cold winter 2009/2010 by EXP_65N and EXP_BK, we conclude that Arctic sea-ice in autumn 2009 played a key role for the subsequent development of cold winter 2009/2010 and the role was largely independent with the autumn snow-cover.

  4. The development of tornadic storms on the cold side of a front favoured by local enhancement of moisture and CAPE

    NASA Astrophysics Data System (ADS)

    Groenemeijer, P.; Corsmeier, U.; Kottmeier, Ch.

    2011-06-01

    In the afternoon of 28 July 2005, a damaging F2 tornado in Birmingham, United Kingdom, was one of three tornadoes developing on the immediate cool side of a surface warm front. An analysis is performed to find out why the narrow zone on this side of the front was apparently so favourable for tornadoes in spite of lower surface temperatures. It is investigated how three ingredients for tornadogenesis are distributed and how these distributions evolve. These ingredients — the presence of a convective storm, low-level wind shear, and a low LCL height — and the presence of SBCAPE, which is a prerequisite for surface-based convective storms, are studied using surface, upper-air and satellite data, as well as a convection-permitting model. At some distance on the cool side of the front, strong wind shear existed across the lowest 1 km (around 15 m s -1 bulk shear), but no surface-based instability to support surface-based convection. In contrast, the air mass on the front's warm side exhibited weak SBCAPE (50-200 J kg -1) but only fairly weak low-level shear (0-1 km bulk shear ~ 6 m s -1). The analysis suggests that between these regions, within a narrow zone on the cold side of the front, surface-based instability was considerably higher (~ 450 J kg -1 of SBCAPE) and the 0- to 1-km bulk wind shear was estimated to be 10.5 m s -1. Moreover, the higher relative humidity in this zone resulted in a lower lifted condensation level (~ 200 m in this zone, compared to ~ 700 m on the warm side of the front). It is concluded that an overlap of all these four ingredients only existed within this zone that was only about 30 km wide.

  5. Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley

    2003-03-01

    A quantitative comparison of six meteorological analyses is presented for the cold 1999/2000 and 1995/1996 Arctic winters. Using different analyzed data sets to obtain temperatures and temperature histories can have significant consequences. The area with temperatures below a polar stratospheric cloud (PSC) formation threshold commonly varies by ˜25% between the analyses, with some differences over 50%. Biases between analyses vary from year to year; in January 2000, Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses were warmest, while NCEP analyses were usually coldest in 1995/1996 and NCEP/National Center for Atmospheric Research Reanalysis (REAN) were usually warmest. Freie Universität Berlin analyses are often colder than others at T ≲ 205 K. European Centre for Medium-Range Weather Forecasts (ECMWF) temperatures agreed better with other analyses in 1999/2000, after improvements in the assimilation system, than in 1995/1996. Temperature history case studies show substantial differences using Met Office, NCEP, REAN, ECMWF, and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), all analyses gave qualitatively similar results. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with the cold region near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly between the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days, while in 1996 they were at 1-3 days. Different meteorological conditions in comparably cold winters have a large impact on expectations for PSC formation and on the effects of discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used in modeling polar processes; the choice of analysis can strongly influence the results of such studies.

  6. Extreme temperature contrast of the year 2012 in Greece: An exceptionally cold winter and a record breaking summer

    NASA Astrophysics Data System (ADS)

    Tolika, Konstantia; Anagnostopoulou, Christina; Maheras, Panagiotis; Velikou, Kondylia

    2013-04-01

    During the past decade several regions all over Europe have experienced severe heat waves with serious social and environmental impacts. The year of 2003 was characterized by record breaking high temperatures for central Europe, while the year of 2007 was a remarkably warm year of the majority of the Eastern Mediterranean. During this year, three major heat waves were detected in Greece during summer and abnormally high temperatures were also observed through the cold season of 2007. It was found that the winter minimum temperatures were statistically more extreme than the summer maxima. Moreover, exceptionally high maximum and minimum temperatures occurred in November of 2010 affection the entire Greek region while September of the following year was also characterized by large departures of maximum temperatures from the long term mean values and the highest minimum temperature average in comparison to the reference period 1958-2000. The past year (2012) could also be characterized as a year of extremes. This time a temperature contrast was detected in the domain of study with a prolonged cold - season spell during winter and new record - breaking extreme maximum and minimum summer temperatures. More specifically it was found that the summer of 2012 was the warmest one since 1958. The whole season was characterized by long - lasting warm conditions with large departures from the long term (up to 4oC for Tmax) and this warming phenomenon was more intense during July and August. In contrast the winter season (December 2011 - February 2012) was found to be in the ten coldest winters of the last 55 years. The departures from the mean are lower than summer (1oC to 1.5oC negative anomalies) but most of the days were found to have lower Tmax, Tmin and Tmean values than the average daily temperatures of the period 1958-2000. Finally, it is worth mentioning that the year of 2012 was characterized by the highest annual temperature range reaching up to 26oC in several stations. Consequently, these abnormal cold (warm) conditions during the winter (summer) months motivated the present study in order to conduct a statistical analysis of these temperature extremes and their characteristics in addition to an investigation of the synoptic large scale atmospheric conditions which possibly result to this year of contrasts. Acknowledgments: This study has been supported by the Research Committee of the Aristotle University of Thessaloniki.

  7. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China. PMID:26572019

  8. Correlation between Cold- and Drought-Induced Frost Hardiness in Winter Wheat and Rye Varieties 1

    PubMed Central

    Cloutier, Yves; Siminovitch, David

    1982-01-01

    Exposure of six wheat (Triticum aestivum L.) and one rye (Secale cereale L.) cultivar to 40% relative humidity for 24 hours induced the same degree of freezing tolerance in seedling epicotyls as did cold conditioning for 4 weeks at 2°C. Frost hardiness varietal relationships were the same in desiccation-stressed and cold-hardened seedlings. Drought stress could, therefore, be used as a rapid and simple method for inducing frost hardiness in seedling shoots in replacement of cold conditioning. Images PMID:16662170

  9. Winter flounder antifreeze protein genes: demonstration of a cold-inducible promoter and gene transfer to other species

    SciTech Connect

    Huang, R.C.; Gourlie, B.; Price, J.

    1987-05-01

    During the late fall and winter, the winter flounder produces a family of unique antifreeze proteins (AFP) to prevent the lethal formation of ice crystals in its blood. They have been able to induce winter flounder AFP mRNA synthesis in vivo by lowering the ambient temperature of the fish from 18/sup 0/C in the summer months when AFP synthesis is at a minimum to 4/sup 0/C. Furthermore, they have demonstrated and thoroughly investigated this cold induction of AFP mRNA synthesis in vitro in isolated liver tissue and in nuclear preparations isolated from liver tissue. A drug selection vector (pRSV/sub gpt/) which uses RSV promoter for the expression of xanthine-guanine phosphoribosyltransferase (gpt) gene and contains an AFP gene and 1.7 kb of its 5' upstream control region has been constructed for studies of gene transfer into cells of other fish species. These studies were made using a variety of gene transfer techniques into tissue culture cell lines derived from rainbow trout, bluegill, and salmon. Drug resistant colonies from all three species have been obtained and the presence of AFP DNA has been positively identified by Southern analysis. In addition, Northern blot analysis has shown that both gpt gene and AFP gene are active in these cells since mRNA/sub gpt/ and mRNA/sub AFP/ can be detected by probing with the respective gene sequences.

  10. Use of ``Cold Spell'' indices to quantify excess chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March 2000-2007): case study in Porto

    NASA Astrophysics Data System (ADS)

    Monteiro, Ana; Carvalho, Vânia; Góis, Joaquim; Sousa, Carlos

    2013-11-01

    The aim of this study was to examine the relationship between the occurrence of cold episodes and excess hospital admissions for chronic obstructive pulmonary disease (COPD) in Porto, Portugal, in order to further understand the effects of cold weather on health in milder climates. Excess COPD winter morbidity was calculated from admissions for November to March (2000-2007) in the Greater Porto Metropolitan Area (GPMA). Cold spells were identified using several indices (Díaz, World Meteorological Organization, Cold Spell Duration Index, Australian Index and Ondas’ Project Index) for the same period. Excess admissions in the periods before and after the occurrence of cold spells were calculated and related to the cold spells identified. The COPD seasonal variation admission coefficient (CVSA) showed excess winter admissions of 59 %, relative to other months. The effect of cold spell on the aggravation of COPD occurs with a lag of at least 2 weeks and differs according to the index used. This study indicates the important role of the persistence of cold periods of at least 2 weeks duration in the increase in COPD admissions. The persistence of moderate temperatures (Tmin ≤5 °C) for a week can be more significant for increasing COPD admissions than very low temperatures (Tmin ≤ 1.6 °C) for just a few days. The Ondas projects’ index provides the most accurate detection of the negative impacts of cold persistency on health, while the Diaz index is better at evaluating the consequences of short extreme cold events.

  11. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office. NCEP, REAN, ECMWF and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.

  12. Effect of simulated fall heat waves on cold hardiness and winter survival of hemlock looper, Lambdina fiscellaria (Lepidoptera: Geometridae).

    PubMed

    Vallières, Rosemarie; Rochefort, Sophie; Berthiaume, Richard; Hébert, Christian; Bauce, Éric

    2015-02-01

    The hemlock looper (Lambdina fiscellaria) is an important pest of eastern Canadian forests. The ongoing climate warming could modify the seasonal ecology of this univoltine species that lays eggs at the end of summer and overwinters at this stage. Indeed, the increase in frequency and intensity of extreme climatic events such as fall heat waves could interfere with the winter metabolism of the hemlock looper. Moreover, the host plant quality, which influences the quantity of insect energetic reserves, the geographic origin of populations and the conditions prevailing during the cold acclimation period, could cause various responses of this pest to climate warming. The main objective of this study is to determine the impact of these factors on hemlock looper winter biology. In October 2010, hemlock looper eggs initially collected from two geographic areas in the province of Québec, and from parents reared on two host plants, were exposed to fall heat waves of different intensities during 5 consecutive days. Supercooling points and cryoprotectant levels were measured on eggs on four different dates in 2010-2011 and survival rate was measured in April 2011. Our results show that hemlock looper eggs have a very low supercooling point and high levels of trehalose, glucose and mannitol in September and November. However, there is no clear relationship between the concentration of these compounds and the decrease in supercooling points. Contents in trehalose, glucose and mannitol were significantly influenced by fall heat waves and by the origin of the population. Winter survival of eggs from the temperate population was negatively affected by strong heat waves while the boreal population was not affected. This study suggests that the metabolism and winter survival of temperate hemlock looper populations in Québec will be more affected by fall heat waves that will increase in frequency due to climate change, than boreal populations. PMID:25585353

  13. Shelf circulation prior to and post a cold front event measured from vessel-based acoustic Doppler current profiler

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Chen, Changsheng

    2014-11-01

    Shelf circulation impacted by a shift in wind regime during the passage of an atmospheric cold front system is studied with a field survey over the mid-shelf of the South Atlantic Bight between Oct 4 and 9, 2004. Weak southerly winds preceded the cold front for a few days, followed by a rapid shift in wind direction and strengthening of northeasterly winds over a few more days. More than 93 h of acoustic Doppler current profiler (ADCP) data were obtained along an equilateral triangle of 105 km in perimeter, which was continuously occupied for 11 times. A harmonic analysis was applied to extract tidal and subtidal wind-driven flow components by collapsing the 93 hour data into one M2 tidal period. It was found that the cross-shelf flow was barely affected by the wind while the along-shelf flow responded with a spatially uniform and almost steadily increasing mean flow velocity, superimposed on an oscillatory tidal current. The wind induced along-shelf transport was estimated to be ~ 0.3 Sv over the inner and middle shelf. The net cross-shelf transport was negligible. Apparently, the northeasterly wind causes an along-shelf current which was subject to Coriolis force that sets up an increasing coastal sea level pressure gradient as the water kept piling up against the coast, which was confirmed by tide gauge data. The observations found that the flow field prior to the strong winds had more complicated structures including eddy-like features, while after the strong northeasterly winds, the flow became eddy free and uniform in space. A theoretical model solved by a Laplace Transform was used to examine the wind-driven flow mechanism and the results were compared with the observations of net along-shelf flow velocity.

  14. In vitro evaluation mimics influences of winter cold water ingestion on ruminal function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  15. Effect of Phosphorus, Potassium, and Chloride Nutrition on Cold Tolerance of Winter Canola (Brassica napus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to determine whether fertility treatments improve cold hardiness of canola (Brassica napus L.). Measurements of chlorophyll fluorescence and overwinter survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P)...

  16. In Vitro Evaluation Mimics Influences of Winter Cold Water Ingestion on Ruminal Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  17. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor.

    PubMed

    Hlaváčková, Iva; Vítámvás, Pavel; Santrůček, Jiří; Kosová, Klára; Zelenková, Sylva; Prášil, Ilja Tom; Ovesná, Jaroslava; Hynek, Radovan; Kodíček, Milan

    2013-01-01

    Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley. PMID:23584021

  18. European cold winter 2009-2010: How unusual in the instrumental record and how reproducible in the ARPEGE-Climat model?

    NASA Astrophysics Data System (ADS)

    Ouzeau, G.; Cattiaux, J.; Douville, H.; Ribes, A.; Saint-Martin, D.

    2011-06-01

    Boreal winter 2009-2010 made headlines for cold anomalies in many countries of the northern mid-latitudes. Northern Europe was severely hit by this harsh winter in line with a record persistence of the negative phase of the North Atlantic Oscillation (NAO). In the present study, we first provide a wider perspective on how unusual this winter was by using the recent 20th Century Reanalysis. A weather regime analysis shows that the frequency of the negative NAO was unprecedented since winter 1939-1940, which is then used as a dynamical analog of winter 2009-2010 to demonstrate that the latter might have been much colder without the background global warming observed during the twentieth century. We then use an original nudging technique in ensembles of global atmospheric simulations driven by observed sea surface temperature (SST) and radiative forcings to highlight the relevance of the stratosphere for understanding if not predicting such anomalous winter seasons. Our results demonstrate that an improved representation of the lower stratosphere is necessary to reproduce not only the seasonal mean negative NAO signal, but also its intraseasonal distribution and the corresponding increased probability of cold waves over northern Europe.

  19. Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009-2010

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Yang, Song; Jeong, Jee-Hoon

    2010-12-01

    In the winter of 2009-2010, frequent and long-lasting cold weather affected Korea. Four major cold surges and several heavy snowfall events were observed, including a record-breaking event on 4 January 2010. These four cold surges had distinct properties with regard to their relationships to the phases of the Arctic Oscillation (AO) and the Madden-Julian Oscillation (MJO), suggesting the possible influences of the AO and MJO on the cold surges and heavy snowfalls. The four cold surges were of two distinct types: the wave train type and the blocking type, which were differentiated by their mechanisms. With regard to the relationships of the cold surges to the AO, three cold surges occurred during a strongly negative AO period, which lasted for more than 1 month. The Siberian High expanded from the Arctic high-pressure region to East Asia during the negative AO period. A cold surge occurred during a positive AO, with the expansion of the Siberian High across the Eurasian continent. An MJO-induced circulation, corresponding to strong tropical convection over the tropical Indian Ocean, seems to have reinforced the cold surges over East Asia. In addition, the active local Hadley circulation modulated by a convection center over the Indian Ocean tends to enhance midlatitude synoptic disturbances across East Asia and provides favorable conditions for upward motion over the region. In short, the effects of the AO and MJO, along with the existing low-level moisture supply, contributed to heavy snowfalls associated with strong cold surges over Korea during the winter of 2009-2010.

  20. Use of "Cold Spell" indices to quantify excess chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March 2000-2007): case study in Porto.

    PubMed

    Monteiro, Ana; Carvalho, Vânia; Góis, Joaquim; Sousa, Carlos

    2013-11-01

    The aim of this study was to examine the relationship between the occurrence of cold episodes and excess hospital admissions for chronic obstructive pulmonary disease (COPD) in Porto, Portugal, in order to further understand the effects of cold weather on health in milder climates. Excess COPD winter morbidity was calculated from admissions for November to March (2000-2007) in the Greater Porto Metropolitan Area (GPMA). Cold spells were identified using several indices (Díaz, World Meteorological Organization, Cold Spell Duration Index, Australian Index and Ondas' Project Index) for the same period. Excess admissions in the periods before and after the occurrence of cold spells were calculated and related to the cold spells identified. The COPD seasonal variation admission coefficient (CVSA) showed excess winter admissions of 59 %, relative to other months. The effect of cold spell on the aggravation of COPD occurs with a lag of at least 2 weeks and differs according to the index used. This study indicates the important role of the persistence of cold periods of at least 2 weeks duration in the increase in COPD admissions. The persistence of moderate temperatures (Tmin ≤5 °C) for a week can be more significant for increasing COPD admissions than very low temperatures (Tmin ≤ 1.6 °C) for just a few days. The Ondas projects' index provides the most accurate detection of the negative impacts of cold persistency on health, while the Diaz index is better at evaluating the consequences of short extreme cold events. PMID:23274835

  1. How does the European common lizard, Lacerta vivipara, survive the cold of winter?

    PubMed

    Grenot, C J; Garcin, L; Dao, J; Hérold, J; Fahys, B; Tséré-Pagès, H

    2000-09-01

    Although the European common lizard, Lacerta vivipara, is among the most common Eurasian reptile species, we know little about how these lizards cope with very low temperatures. In this study we examined microenvironmental conditions, body temperature, behavior, and cold strategies to see whether strategies of freezing and supercooling, while normally considered to be mutually exclusive, may in fact be adopted simultaneously by the common lizard. Following up on an earlier study of a lowland population, this time we used a mountain population (850 m) to discover differences in overwintering strategies between the two populations. Differential scanning calorimetry conducted during the hibernation period (vs. the activity period) showed that the blood of highland lizards had an increased ability to resist ice formation, confirming an ecophysiological effect most likely mediated by physical properties of the blood. Mean blood glucose level of unfrozen L. vivipara in the field increased significantly (about fourfold) from 8.5+/-0.7 mmol l(-1) in September to 33.2+/-5.6 mmol l(-1) in March. The blood glucose level then experienced a significant decline as it fell to 6. 2+/-0.8 mmol l(-1) after hibernation in April. Glucose, in conclusion, seems to play a role of cryoprotectant rather than antifreeze. PMID:10996819

  2. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept

    NASA Astrophysics Data System (ADS)

    Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki

    2014-09-01

    Cold- and warm-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between cold- and warm-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between cold Oyashio and warm Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.

  3. Coping with the cold: an ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Gill, Robert E., Jr.; Tibbitts, T. Lee

    2013-01-01

    Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.

  4. Spin-Probe Studies during Freezing of Cells Isolated from Cold-Hardened and Nonhardened Winter Rye 12

    PubMed Central

    Singh, Jas; Miller, Richard W.

    1982-01-01

    Mesophyll cells isolated from cold-hardened and nonhardened winter rye (Secale cereale L. cv. Puma) were spin-labeled with the fatty-acid spin probe N-oxyl-4,4-dimethyloxazolidine 5-ketostearic acid. The probe was intercalated within the cellular membranes and changes in probe motion were followed during extracellular freezing of the cells. A correlation was observed between the lethal freezing temperatures (LT50) of the cells and the maximum hyperfine splitting value achieved by the incorporated probe. Rigid limit spectra indicated that a more ordered average packing was attained by membranes of hardened cells which survived freezing to lower temperatures. Nonhardened cells fixed with osmic acid at lethal freezing temperatures, in the frozen state, showed both conversion of normal bilayered cellular membrane ultrastructure to an amorphous state and condensation of cellular membranes to form densely packed multibilayered vesicles. Taken together with the spin-labeling data, these results suggest that at least one molecular mechanism of extracellular freezing injury involves the irreversible conversion of planar membrane bilayers to structures having less ordered packing and increased surface curvatures. Images PMID:16662416

  5. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  6. How much can we learn from a merging cold front cluster? Insights from X-ray temperature and radio maps of A3667

    SciTech Connect

    Datta, Abhirup; Schenck, David E.; Burns, Jack O.; Skillman, Samuel W.; Hallman, Eric J.

    2014-10-01

    The galaxy cluster A3667 is an ideal laboratory to study the plasma processes in the intracluster medium. High-resolution Chandra X-ray observations show a cold front in A3667. At radio wavelengths, A3667 reveals a double radio-relic feature in the outskirts of the cluster. These suggest multiple merger events in this cluster. In this paper, we analyze the substantial archival X-ray observations of A3667 from the Chandra X-ray Observatory and compare these with existing radio observations as well as state-of-the-art adaptive mesh refinement MHD cosmological simulations using Enzo. We have used two temperature map making techniques, weighted Voronoi tessellation and adaptive circular binning, to produce the high-resolution and largest field-of-view temperature maps of A3667. These high-fidelity temperature maps allow us to study the X-ray shocks in the cluster using a new two-dimensional shock-finding algorithm. We have also estimated the Mach numbers from the shocks inferred from previous ATCA radio observations. The combined shock statistics from the X-ray and radio data are in agreement with the shock statistics in a simulated MHD cluster. We have also studied the profiles of the thermodynamic properties across the cold front using ∼447 ks from the combined Chandra observations on A3667. Our results show that the stability of the cold front in A3667 can be attributed to the suppression of the thermal conduction across the cold front by a factor of ∼100-700 compared to the classical Spitzer value.

  7. A Investigation of Colorado Front Range Winter Storms Using a Nonhydrostatic Mesoscale Numerical Model Designed for Operational Use

    NASA Astrophysics Data System (ADS)

    Snook, John Stover

    State-of-the-art data sources such as Doppler radar, automated surface observations, wind profiler, digital satellite, and aircraft reports are for the first time providing the capability to generate real-time, operational three-dimensional gridded data sets with sufficient spatial and temporal resolutions to diagnose the structure and evolution of mesoscale systems. A prototype data assimilation system of this type, called the Local Analysis and Prediction System (LAPS), is being developed at the National Oceanic and Atmospheric System's Forecast Systems Laboratory (FSL). The investigation utilizes the three-dimensional LAPS analyses for initialization of the full physics, nonhydrostatic Regional Atmospheric Modeling System (RAMS) model developed at the Colorado State University to create a system capable of generating operational mesoscale predictions. The LAPS/RAMS system structured for operational use can add significant value to existing operational model output and can provide an improved scientific understanding of mesoscale weather events. The results are presented through two case study analyses, the 7 January 1992 Colorado Front Range blizzard and the 8-9 March 1992 eastern Colorado snow storm. Both cases are ideal for this investigation due to the significant mesoscale variation observed in the precipitation and flow structure. The case study results demonstrate the ability to successfully detect and predict mesoscale features using a mesoscale numerical model initialized with high resolution (10 km horizontal grid interval), non-homogeneous data. The strong influence of the Colorado topography on the resultant flow is suggested by the generation of a lee vortex that frequently develops east of the Front Range and south of the Cheyenne Ridge in stable, northwest synoptic flow. The lee vortex exhibits surface flow characteristics that are similar to results from low Froude number flow around an isolated obstacle. A series of numerical experiments using RAMS with idealized topography and horizontally homogeneous initial conditions are presented to investigate typical low Froude number flow characteristics in the vicinity of barriers representative of the Colorado topography. The results are compared to the findings of previous investigations and to the case study observations and numerical predictions.

  8. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat.

    PubMed

    Li, Xiangnan; Cai, Jian; Liu, Fulai; Dai, Tingbo; Cao, Weixing; Jiang, Dong

    2014-09-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2 °C lower temperature than the ambient temperature, viz., 10.0 °C) at the Zadoks growth stage 28 (i.e. re-greening stage, starting on 20th of March) for 7 d, and after 14 d of recovery the plants were subsequently subjected to a 5 d low temperature stress (8.4 °C lower than the ambient temperature, viz., 14.1 °C) at the Zadoks growth stage 31 (i.e. jointing stage, starting on 8th April). Compared to the non-primed plants, the cold-primed plants possessed more effective oxygen scavenging systems in chloroplasts and mitochondria as exemplified by the increased activities of SOD, APX and CAT, resulting in a better maintenance in homeostasis of ROS production. The trapped energy flux (TRO/CSO) and electron transport (ETO/CSO) in the photosynthetic apparatus were found functioning well in the cold-primed plants leading to higher photosynthetic rate during the subsequent low temperature stress. Collectively, the results indicate that cold priming activated the sub-cellular antioxidant systems, depressing the oxidative burst in photosynthetic apparatus, hereby enhanced the tolerance to subsequent low temperature stress in winter wheat plants. PMID:24887010

  9. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  10. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  11. Cold-front driven storm erosion and overwash in the central part of the Isles Dernieres, a Louisiana barrier-island arc

    USGS Publications Warehouse

    Dingler, J.R.; Reiss, T.E.

    1990-01-01

    Tropical and extratropical storms produce significant erosion on the barrier islands of Louisiana. Over the past 100 years, such storms have produced at least 2 km of northward beach-face retreat and the loss of 63% of the surface area of the Isles Dernieres, a low-lying barrier-island arc along the central Louisiana coast. Elevations on the islands within the arc are typically less than 2 m above mean sea level. The islands typically have a washover-flat topography with occasional, poorly developed, dune-terrace topography consisting of low-lying and broken dunes. The central part of the arc consists of salt-marsh deposits overlain by washover sands along the Gulf of Mexico shoreline. Sand thicknesses range from zero behind the beach, to less than 2 m under the berm crest, and back to zero in the first nearshore trough. The sand veneer is sufficiently thin that storms can strip all the sand from the beach face, exposing the underlying marsh deposits. The geomorphic changes produced by cold fronts, a type of extratropical storm that commonly affect the Isles Dernieres between late fall and early spring are described. Between August 1986 and September 1987, repeated surveys along eleven shore-normal transects that covered 400 m of shoreline revealed the timing and extent of cold-front-produced beach change along a typical section of the central Isles Dernieres. During the study period, the beach face retreated approximately 20 m during the cold-front season but did not rebuild during the subsequent summer. Because the volume of sand deposited on the backshore (5600 m3) was less than the volume of material lost from the beach face (19,200 m3), approximately 13,600 m3 of material disappeared. Assuming that underlying marsh deposits decrease in volume in direct proportion to the amount of beach-face retreat, an estimate of the mud loss during the study period is 14,000 m3. Thus, the decrease in volume along the profiles can be accounted for without removing any sand from the area, suggesting that a major effect of cold fronts is first to strip the sand from the beach face and then to erode the underlying marsh deposits. After being eroded, the mud is lost from the islands because currents transport it away from the islands. ?? 1990.

  12. Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes.

    PubMed

    Urban, Milan Oldřich; Klíma, Miroslav; Vítámvás, Pavel; Vašek, Jakub; Hilgert-Delgado, Alois Albert; Kučera, Vratislav

    2013-12-15

    Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 °C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r=-0.815), intrinsic water use efficiency (WUEi; r=-0.643), net photosynthetic rate (r=-0.628), stomatal conductance (r=0.511), and intracellular/intercellular CO2 concentration (r=0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape. PMID:24054752

  13. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma)

    SciTech Connect

    Lynch, D.V.; Steponkus, P.L. )

    1987-01-01

    Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted > 50 mole % of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole % of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole %, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole % and 4 to 1 mole %, respectively. Sterol analyses of these lipid classes demonstrated that free {beta}-sitosterol increased from 21 to 32 mole % (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing {beta}-sitosterol. Glucocerebrosides decreased from 16 to 7 mole % of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h) were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole % of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.

  14. Thermal sensation and comfort in women exposed repeatedly to whole-body cryotherapy and winter swimming in ice-cold water.

    PubMed

    Smolander, Juhani; Mikkelsson, Marja; Oksa, Juha; Westerlund, Tarja; Leppäluoto, Juhani; Huttunen, Pirkko

    2004-09-30

    Whole-body cryotherapy (WBC; -110 degrees C) and winter swimming (WS) in ice-cold water are severe ambient cold exposures, which are voluntarily practiced by humans in minimal clothing. The purpose was to examine thermal sensation and thermal comfort associated with WBC and WS. Twenty women similar in body mass index, age, physical activity, and use of hormonal contraception were pairwise randomized either to the WBC group or the WS group. The duration of each WBC exposure was 2 min, which was repeated three times per week for 3 months (13 weeks). Similar exposure frequency was used for the WS group, but each exposure lasted 20 s in outdoor conditions. Thermal sensation and comfort were asked with standard scales. After WBC, 65% of the thermal sensation votes were 'neutral' or 'slightly cool.' After WS, 81% of the thermal sensation votes were 'warm,' 'neutral,' or 'slightly cool.' Majority of comfort votes immediately after exposures in WBC group (98%) and in the WS group (93%) were 'comfortable' or 'slightly uncomfortable.' Thermal sensation and comfort became habituated in both groups at an early stage of trials, but the changes were less conclusive in WS group due to variable conditions outdoors. In the WBC group, cold sensation was less intense already after the second exposure. In conclusion, repeated exposures to WBC and WS in healthy women were mostly well tolerated and comfortable. The results indicate that during repeated severe whole-body cold stress of short duration, thermal sensation and comfort become habituated during the first exposures. PMID:15327918

  15. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Orsolini, Y. J.; Senan, R.; Vitart, F.; Balsamo, G.; Weisheimer, A.; Doblas-Reyes, F. J.

    2015-11-01

    The winter 2009/2010 was remarkably cold and snowy over North America and across Eurasia, from Europe to the Far East, coinciding with a pronounced negative phase of the North Atlantic Oscillation (NAO). While previous studies have investigated the origin and persistence of this anomalously negative NAO phase, we have re-assessed the role that the Eurasian snowpack could have played in contributing to its maintenance. Many observational and model studies have indicated that the autumn Eurasian snow cover influences circulation patterns over high northern latitudes. To investigate that role, we have performed a suite of forecasts with the coupled ocean-atmosphere ensemble prediction system from the European Centre for Medium-Range Weather Forecasts. Pairs of 2-month ensemble forecasts with either realistic or else randomized snow initial conditions are used to demonstrate how an anomalously thick snowpack leads to an initial cooling over the continental land masses of Eurasia and, within 2 weeks, to the anomalies that are characteristic of a negative NAO. It is also associated with enhanced vertical wave propagation into the stratosphere and deceleration of the polar night jet. The latter then exerts a downward influence into the troposphere maximizing in the North Atlantic region, which establishes itself within 2 weeks. We compare the forecasted NAO index in our simulations with those from several operational forecasts of the winter 2009/2010 made at the ECWMF, and highlight the importance of relatively high horizontal resolution.

  16. The impact of winter 2012 cold outbreak over the Northern Adriatic Sea dynamics: preliminary comparison among data and high resolution operational atmospheric models

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Miglietta, Mario M.; Carniel, Sandro; Benetazzo, Alvise; Buzzi, Andrea; Drofa, Oxana; Falco, Pierpaolo; Fantini, Maurizio; Malguzzi, Piero; Ricchi, Antonio; Russo, Aniello; Paccagnella, Tiziana; Sclavo, Mauro

    2013-04-01

    Shelf dense water formation (DWF) events may be taking place during winter time on the broad, shallow shelf in the northern region of the Adriatic basin exposed to the Bora winds, bringing cold, dry air from the north-east down the Dinaric Alps. Indeed, the resulting intense evaporation and cooling of the shelf waters may produce North Adriatic Dense Water (NAdDW), which then tends to sink and ''cascade'' all the way to the southern basin. During these rather episodic formation processes, more frequent during winter time, the main controlling factors are intense cold wind out- breaks, the ambient water density, preconditioned during late autumn, and also other factors, e.g. river discharges. When such processes of buoyancy extraction happen, several isopycnic surfaces outcrop and very often the whole water column (20-25 m deep) may be ventilated. However, the general process of northern water masses flowing to the southern part of the Adriatic basin is complex and far from being completely understood. In order to understand and model these processes, it is mandatory to utilize high resolution meteorological forcing fields and circulation models, at least to model particular events in Adriatic marine circulation, if not its longer term (e.g., seasonal) characteristics. The use of low resolution winds in fact necessarily implies a calibration factor to better match surface fluxes and to reproduce wind-driven circulation. This is particularly evident in the case of the cross-basin Bora pattern, because the complexity and small scale of Adriatic orography is often poorly reproduced in atmospheric models, while Bora flow is composed of an alternation of high and low wind speed 'strips' crossing the Adriatic in correspondence of the fine scale (10-100 km) Balkanic orographic gaps. Within the framework of activities of the Italian flagship Project "RITMARE" and of the FIRB "DECALOGO", we focused on the current meteorological modeling capabilities to describe an event of exceptionally dense water formation, registered during the 2012 winter in the northern Adriatic region. During late January and early February, indeed, the basin was characterized by a persistent and exceptional cold anomaly responsible for large energy losses due to cold and extremely strong winds. Sea waters temperatures dropped to about 6°C and the Venice lagoon got partially covered by ice. In the period of interest, available measurements in the northern Adriatic Sea (temperature, salinity, density, wind speed, direction and inferred heat fluxes) were used, together with satellite measurements, to carry out a first semi-quantitative comparison among existing meteorological models implemented over the region. Namely, the work presents an intercomparison among three state-of-the-art, non-hydrostatic NWP models: COSMO-I7, WRF and MOLOCH. All models are run in operational mode, and their results are used by several Regional authorities and institutions for weather forecasting and support to civil protection decision. Therefore, this evaluation is a useful assessment preliminary to a full coupling of the above mentioned atmospheric models with existing ocean models already implemented in the region (e.g. ROMS in the COAWST system). Preliminary results show also some uncommon mesoscale structures reproduced by the models in the proximity of the central-south Italian coast, and highlight their possible influence on the local surface sea circulation. These effects will be soon explored by means of fully-coupled ocean-atmosphere models within on-going projects.

  17. Cytoskeleton-induced alterations of the lectin activity in winter wheat under cold hardening and abscisic acid (ABA).

    PubMed

    Timofeeva, O; Khokhlova, L; Belyaeva, N; Chulkova, Y; Garaeva, L

    2000-01-01

    The roots and leaves of 7-day seedlings of three winter wheat cultivars differing in frost resistant were used to study changes in lectin activity under cytoskeleton modifiers (DMSO-7%; colchicine-1 m m; oryzalin-15 microm; cytochalasin B-15 microm) of non-hardened (23 degrees C) and hardened (2-3 degrees C, 3-7 day) plants. Plants were grown with ABA (30 microm) or without ABA. Pretreatment with colchicine, oryzalin [inhibitors of microtubules (MT) polymerization], cytochalasin B [inhibitor of microfilament (MF) polymerization] increased the activity of cell wall lectins, although pretreatment with DMSO (stabilizer of microtubules) decreased the activity. Both hardening and ABA decreased the effect of the cytoskeletal modifiers. These results could be explained by the appearance of tolerant MTs with less affinity. It is probable that increase in the activity of cell wall lectins may be the compensatory mechanism which stabilizes the cytoskeleton structure in conditions tending to disrupt it. The genotype with low resistance had higher sensitivity of lectin activity to cytoskeleton modifiers than the frost resistant genotype. The results suggest that leaves have more stable MTs and MFs and stronger MT-MF binding than roots. PMID:10860573

  18. Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.

    2015-06-01

    Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.

  19. Validation and analysis of high-resolution atmospheric model simulations of the cold Bora outbreak over the Northern Adriatic Sea in winter 2012

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Davolio, Silvio; Marcello Miglietta, Mario; Carniel, Sandro; Benetazzo, Alvise; Li, Xiao-Ming; Bohm, Emanuele

    2014-05-01

    The Adriatic Sea is regularly affected by cold and strong Bora winds blowing from the north-east, especially during the winter season. These events are characterized by intense surface heat loss and air-sea exchange, thus producing strong effects on the circulation of the Adriatic, triggering dense water formation and driving basin-scale gyres. Turbulent surface (latent and sensible) heat fluxes and Sea Surface Temperature (SST) are the two most important parameters that characterize intense air-sea interactions typical of Bora events, and their accurate simulation is required in order to properly describe and understand atmospheric and ocean circulation processes. This study deals mainly with the atmospheric component of the modelling system available in the framework of the flagship Project "RITMARE", and presents the results of an application focused on the exceptional Bora episode occurred in winter 2012 (25 January-15 February). A number of short-range high-resolution atmospheric simulations have been performed to cover the entire period. Model performances have been evaluated in terms of variables of interest for oceanographic applications. As far as meteorological variables, surface fluxes and SST are concerned, the validation has been undertaken trough a comparison with available surface data (buoys) and satellite-derived SST, while Synthetic Aperture Radar (SAR) products have been used to assess modelled wind fields. Two mesoscale operational-like modelling chains have been implemented, one based on BOLAM-MOLOCH models, the other on WRF. The use of different initial and boundary conditions provided by two global NWP systems, namely GFS (NCEP) and IFS (ECWMF), driving the high-resolution simulations turned out to have a remarkable impact on the results, mainly as a consequence of a different initialization of the SST field. Results suggest the importance of adopting full bi-directional coupling between atmospheric and ocean circulation models at least in this semi-enclosed basin during extreme events.

  20. Frontal passage and cold pool detection using Oklahoma Mesonet observations

    NASA Astrophysics Data System (ADS)

    Lesage, Andrew T.

    For over a dozen years the Oklahoma Mesonet network has provided surface observations at over 100 stations. These observations are used to analyze mass flux estimates from surface divergence, frontal passages, and cold pools, the latter defined herein as active regions where precipitation processes are creating near-surface cold air masses. Case studies are detailed and a 15-yr climatology of frontal passages and cold pools was computed in this research. Convergence, divergence, and precipitation are most strongly correlated in the summer months and least correlated in the winter months. Wet spring and summer days had the highest average convergence and divergence values while dry summer and fall days had the lowest average convergence and divergence. Frontal passages and cold pools are tracked throughout the Mesonet in various case studies, four of which are covered herein. The methodology is able to represent front location and cold pool areas quite well despite the low resolution of the Mesonet grid. The climatology of front and cold pool data yielded many similarities. Winter has the largest magnitude changes in DeltaT, DeltaP, and Deltah/cp while spring and fall had the largest magnitude change in Deltaqv. Summer has the lowest with the exception of spring DeltaT. Correlations between these variables are lowest in the more convectively active summer season. Convergence is roughly equal ahead of fronts from spring through fall; however, divergence is present in summer frontal passages earlier and stronger compared to the other seasons. Fronts and cold pools are most likely to occur in summer and spring with summer having the highest percentage of fronts which lead to cold pools. Fronts and cold pools are substantially more likely to occur during the late afternoon and early evening in the summer; other seasons had a slighter nocturnal increase in frequency. Western Oklahoma had higher frequencies of frontal passages and cold pools than Eastern Oklahoma with frontal passages having the stronger signal. These findings help identify seasonal, diurnal, and geographic distributions of fronts and cold pools and can be used in modeling studies to better the understanding of cold pool processes and parameterizations.

  1. Bio-Optical Properties and Ocean Color Algorithms for Coastal Waters Influenced by the Mississippi River During a Cold Front Passage

    NASA Technical Reports Server (NTRS)

    D'Sa Eurico J.; Miller, Richard L.; DelCastillo, Carlos

    2006-01-01

    During the passage of a cold front in March 2002, bio-optical properties examined in coastal waters impacted by the Mississippi River indicated westward advective flows and increasing river discharge containing a larger nonalgal particle content contributed significantly to surface optical variability. A comparison of seasonal data from three cruises indicated spectral models of absorption and scattering to be generally consistent with other coastal environments, while their parameterization in terms of chlorophyll a concentration (Chl) showed seasonal variability. The exponential slope of the colored dissolved organic matter (CDOM) averaged 0.0161 plus or minus 0.00054 per nanometer, and for nonalgal absorption it averaged 0.011 per nanometer with deviations from general trends observed due to anomalous water properties. Although the phytoplankton specific absorption coefficients varied over a wide range (0.02 to 0.1 square meters (mg Chl) sup -1)) being higher in offshore surface waters, values of phytoplankton absorption spectra at the SeaWiFS wavebands were highly correlated to modeled values. The normalized scattering spectral shapes and the mean spectrum were in agreement to observations in other coastal waters, while the backscattering ratios were on average lower in phytoplankton dominated surface waters (0.0101 plus or minus 0.002) and higher in near-bottom waters (0.0191 plus or minus 0.0045) with low Chl. Average percent differences in remote sensing reflectance R (sub rs) derived form modeled and in-eater radiometric measurements were highest in the blue wavebands (52%) and at sampling stations with a ore stratified water column. Estimates of Chl and CDOM absorption derived from SeaWiFS images generated using regional empirical algorithms were highly correlated to in situ data.

  2. Kelvin-Helmholtz Instabilities at the Sloshing Cold Fronts in the Virgo Cluster as a Measure for the Effective Intracluster Medium Viscosity

    NASA Astrophysics Data System (ADS)

    Roediger, E.; Kraft, R. P.; Forman, W. R.; Nulsen, P. E. J.; Churazov, E.

    2013-02-01

    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities >~ 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.

  3. The transformation of frequency distributions of winter precipitation to spring streamflow probabilities in cold regions; case studies from the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Shook, Kevin; Pomeroy, John; van der Kamp, Garth

    2015-02-01

    Hydrological processes alter the states and/or locations of water, and so they can be regarded as being transformations of the properties of the time series of input variables to those of output variables, such as the transformation of precipitation to streamflow. Semi-arid cold regions such as the Canadian Prairies have extremely low annual streamflow efficiencies because of high infiltration rates, large surface water storage capacities, high evaporation rates and strong climate seasonality. As a result snowfall produces the majority of streamflow. It is demonstrated that the probability distributions of Prairie spring streamflows are controlled by three frequency transformations. The first is the transformation of snowfall by wind redistribution and ablation over the winter to form the spring snowpack. The second transformation is the melt of the spring snowpack to produce runoff over frozen agricultural soils. The third is the transformation of runoff to streamflow by the filling and spilling of depressional storage by connecting fields, ponds, wetlands and lakes. Each transformation of the PDF of the input variable to that of the output variable is demonstrated at a number of locations in the Canadian Prairies and is explained in terms of the hydrological processes causing the transformation. The resulting distributions are highly modified from that of precipitation, and the modification depends on which processes dominate streamflow formation in each basin. The results demonstrate the need to consider the effect of the interplay among hydrological processes, climate and basin characteristics in transforming precipitation frequency distributions into those of streamflow for the design of infrastructure and for water management.

  4. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within minutes. Superimposed to these variations are local diurnal processes like dewfall, which cause a diurnal pattern captured by the deuterium excess.

  5. Implementation of Cold-Cloud Processes in a Source-Oriented WRF/Chem Model to Study a Winter Storm in California

    NASA Astrophysics Data System (ADS)

    Lee, H.; Chen, S.; Kleeman, M.

    2013-12-01

    Mineral dust particles commonly have a favorable arrangement of surface sites that allows them to serve as ice nuclei (IN). Secondary coatings that condense on mineral dust particles may reduce their ability to serve as IN. Both of these effects point to the importance of the particle mixing state when predicting cloud condensation nuclei (CCN) / IN concentrations. The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include cold cloud processes and applied to investigate how source-oriented aerosols influence cloud and ice formation and optical properties in the atmosphere. SOWC tracks 6-dimensional chemical variables (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. Particle radius and number concentration are conserved for each source type and size bin. Simulations in this study use 38 chemical species from 6 emission sources (wood smokes, gasoline, diesel, meat cooking, dust, and other aerosol types) and 8 size bins, spanning the particle diameter range from 0.01 to 10 microns. A new source-oriented hydrometeors module was implemented into the SOWC model to simulate microphysics processes with all source-oriented hydrometeors (cloud, ice, rain, snow and graupel) using the Morrison two-moment microphysics scheme. In our study, all aerosol source types can activate to form cloud droplets based on the Köhler theory, and dust is the only source of IN. We considered the impact of Asian dust on the ice formation in clouds over the Sierra Nevada mountain range during the CalWater field campaign (2011) and estimated dust contributions to total IN concentrations. Aerosols within hydrometeors alter the radiative properties of the cloud droplets. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and hydrometeors so that aerosol direct and indirect effects could be studied. Geometric-optics approach in the radiation schemes considered the chemistry components and the physical shape of ice crystal to more accurately calculate the atmospheric optical thickness, signal scattering albedo, and asymmetry factor. The enhanced SOWC model was implemented to study a winter storm event that occurred on February 16th, 2011, in California, and the results are compared to the measurements obtained during the CalWater field campaign.

  6. Ocean backscatter across the Gulf Stream sea surface temperature front

    SciTech Connect

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. The sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.

  7. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  8. Mammals in Winter.

    ERIC Educational Resources Information Center

    Wapner, Suzanne

    1985-01-01

    Mammals that tolerate the winter cold and stay active all year exploit the harsh northern climate to their advantage. By simple experiments and observation you can better understand their adaptations which include furry bodies, snowshoe feet, extra blubber, light coloration, and strategically distributed food caches. (JHZ)

  9. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition.

    PubMed

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0 cm (non-snowpack), 10 cm, 20 cm, 30 cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5 g N m(-2) yr(-1); medium-N, 10 g N m(-2) yr(-1); and high-N, 15 g N m(-2) yr(-1)) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013-2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8. ± 0.3% (control), 3.6 ± 0.6% (low-N), 4.3 ± 0.4% (medium-N) and 6.4 ± 0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget. PMID:26732991

  10. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0 cm (non-snowpack), 10 cm, 20 cm, 30 cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5 g N m-2 yr-1 medium-N, 10 g N m-2 yr-1 and high-N, 15 g N m-2 yr-1) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013-2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8. ± 0.3% (control), 3.6 ± 0.6% (low-N), 4.3 ± 0.4% (medium-N) and 6.4 ± 0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget.

  11. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition

    PubMed Central

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0 cm (non-snowpack), 10 cm, 20 cm, 30 cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5 g N m−2 yr−1; medium-N, 10 g N m−2 yr−1; and high-N, 15 g N m−2 yr−1) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013–2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8. ± 0.3% (control), 3.6 ± 0.6% (low-N), 4.3 ± 0.4% (medium-N) and 6.4 ± 0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget. PMID:26732991

  12. Fronts and frontogenesis as revealed by high time resolution data

    NASA Technical Reports Server (NTRS)

    Frank, A. E.; Barber, D. A.

    1977-01-01

    Upper air sounding are used to examine a cold front of average intensity. Vertical cross sections of potential temperature and wind, and horizontal analyses were compared and adjusted for consistency. These analyses were then used to study the evolution of the front, found to consist of a complex system of fronts occurring at all levels of the troposphere. Low level fronts were strongest at the surface and rapidly weakened with height. Fronts in the midddle troposphere were much more intense. The warm air ahead of the fronts was nearly barotropic, while the cold air behind was baroclinic through deep layers. A deep mixed layer was observed to grow in this cold air.

  13. PM10 modeling of Beijing in the winter

    NASA Astrophysics Data System (ADS)

    Song, Yu; Zhang, Minsi; Cai, Xuhui

    The megacity of Beijing, China, has had an air pollution problem since the 1990s. The concentrations of particulate matter with an aerodynamic diameter less than 10 μm (PM10) in Beijing in the winter of 2000 were high; the average value of 188 μg m -3 was nearly four times the first grade national standard of 50 μg m -3. The CALPUFF modeling system was used to simulate PM10 dispersion from 1 January 2000 to 29 February 2000. We used near real-time landcover data from the moderate resolution imaging spectroradiometer (MODIS). Statistical evaluation indicated that the model agreed well with the observations. The fluctuations of 24-h PM10 concentrations followed the winter synoptic winds. Cold air from the northwest or north intruded over Beijing for average periods of 4 days in winter, accompanied by high wind speeds. PM10 was swept out of Beijing after the cold fronts and accumulated again once the winds stopped, until the next cold air intrusion. Capital Steel Corporation Limited contributed 46% of the PM10 mass concentrations observed in the Shijingshan industrial area, and had little effect on the eastern part or the center of Beijing. The other industrial regions distributed in southeastern Beijing accounted for an average of 18% of the PM10 in Beijing. Boilers associated with coal consumption mostly for winter heating contributed 31%. Motor vehicles and road dust contributed 5% and 13%, respectively. The total of residential heating in old houses and restaurants contributed approximately 7%. The primary PM10 emissions from electrical generating units were relatively low. Some suggestions are proposed for reducing PM10 pollution in Beijing.

  14. Weather fronts and acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Kveton, Vit

    1991-03-01

    Some methodological aspects are discussed of the investigation of acute infarct myocarditis (AIM) in relation to weather fronts. Results of a new method of analysis are given. Data were analysed from about the hour of the onset of symptoms, and led to the diagnosis of AIM either immediately or within a few hours or days (3019 cases observed over 4.5 years during 1982 1986 in Plzen, Czechoslovakia). Weather classification was based on three factors (the type of the foregoing front, the type of the subsequent front, the time section of the time interval demarcated by the passage of the surfaces of the fronts). AIM occurrence increased in particular types of weather fronts: (i) by 30% during 7 12 h after a warm front, if the time span between fronts exceeded 24 h; (ii) by 10% in time at least 36 h distant from the foregoing cold or occlusion front and from the succeeding warm or occlusion front; (iii) by 20% during 0 2 h before the passage of the front, provided the foregoing front was not warm and the interval between fronts exceeded 5 h. AIM occurrence decreased by 15% 20% for time span between fronts > 24 h at times 6 11, 6 23 and 6 35 h before a coming warm or occlusion front (for interfrontal intervals 25 48, 49 72 and possibly > 72 h), and also at 12 23 and possibly 12 35 h before a cold front (for intervals 49 72 and possibly > 72 h), if the foregoing front was cold or an occlusion front.

  15. Winter Festival.

    ERIC Educational Resources Information Center

    Lew, Gordon

    This is one of a series of elementary readers written in Cantonese and English and designed to familiarize children with the traditional major Chinese festivals celebrated by the Chinese in America. This booklet describes the occasion for the Winter Festival (the beginning of winter) and follows a Chinese-American family in its preparation for and…

  16. Winter Wonderlands

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter

  17. Winter Weeds.

    ERIC Educational Resources Information Center

    Lindberg, Lois

    1981-01-01

    Try to learn all you can about a plant in the winter. As the season changes, you can see what the dried seed pod is like in bloom. You are a convert if you notice a spectacular show of summer wildflowers and wonder what sort of winter weed will result. (Author/CM)

  18. The Barents Sea polar front and water masses variability (1980-2011)

    NASA Astrophysics Data System (ADS)

    Oziel, L.; Sirven, J.; Gascard, J.-C.

    2015-03-01

    The polar front separates the warm and saline Atlantic Waters encountered in the western part of the Barents Sea from the cold and fresh Arctic Waters situated in the northern part. These water masses can mix together, mainly in the eastern part of the Barents Sea, generating dense waters in winter which can cascade into the Arctic Ocean to form the Artic Intermediate Waters. To study the interannual variability and evolution of these water masses and the fronts, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database which covers the period 1980-2011. The summer data is interpolated on a regular grid and a "Probability Density Function" method is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be defined: the "Northern Polar Front" is associated with strong salinity gradients and the "Southern Polar Front" with temperature gradients. They enclose the dense Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. In contrast, the link with the Arctic Oscillation is not clear. However, results from a general circulation model suggest that such a link could be found if winter data were taken into account. A strong trend, which amplifies during the last decade, is also found: the Atlantic Water occupies a larger volume of the Barents Sea. This "Atlantification" could be accompanied by a northwards displacement of the southern polar front in the eastern part of the Barents Sea (which is suggested by a model based study) and a decrease of the volume occupied by the Arctic Waters.

  19. Winter mortality and its causes.

    PubMed

    Keatinge, W R

    2002-11-01

    In the 1970s scientific research focussed for the first time on dramatic rises in mortality every winter, and on smaller rises in unusually hot weather. Following the recent decline in influenza epidemics, approximately half of excess winter deaths are due to coronary thrombosis. These peak about two days after the peak of a cold spell. Approximately half the remaining winter deaths are caused by respiratory disease, and these peak about 12 days after peak cold. The rapid coronary deaths are due mainly to haemoconcentration resulting from fluid shifts during cold exposure; some later coronary deaths are secondary to respiratory disease. Heat related deaths often result from haemoconcentration resulting from loss of salt and water in sweat. With the possible exception of some tropical countries, global warming can be expected to reduce cold related deaths more than it increases the rarer heat related deaths, but statistics on populations in different climates suggest that, given time, people will adjust to global warming with little change in either mortality. Some measures may be needed to control insect borne diseases during global warming, but current indications are that cold will remain the main environmental cause of illness and death. Air pollution in cities may also still be causing some deaths, but these are hard to differentiate from the more numerous deaths due to associated cold weather, and clear identification of pollution deaths may need more extensive data than is currently available. PMID:12546188

  20. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  1. Physical characteristics of Eurasian winter temperature variability

    NASA Astrophysics Data System (ADS)

    Kim, Kwang-Yul; Son, Seok-Woo

    2016-04-01

    Despite the on-going global warming, recent winters in Eurasian mid-latitudes were much colder than average. In an attempt to better understand the physical characteristics for cold Eurasian winters, major sources of variability in surface air temperature (SAT) are investigated based on cyclostationary EOF analysis. The two leading modes of SAT variability represent the effect of Arctic amplification (AA) and the Arctic oscillation (AO), respectively. These two modes are distinct in terms of the physical characteristics, including surface energy fluxes and tropospheric circulations, and result in significantly different winter SAT patterns over the Eurasian continent. The AA-related SAT anomalies are dipolar with warm Arctic, centered at the Barents–Kara Seas, and cold East Asia. In contrast, the negative AO-related SAT anomalies are characterized by widespread cold anomalies in Northern Eurasia. Relative importance of the AA and the negative AO contributions to cold Eurasian winters is sensitive to the region of interest.

  2. Cold, Ice, and Snow Safety (For Parents)

    MedlinePlus

    ... All About Food Allergies Cold, Ice, and Snow Safety KidsHealth > For Parents > Cold, Ice, and Snow Safety ... outdoors for a while. previous continue Winter Sports Safety If your kids decide to go sledding on ...

  3. Game Plan: Save Lives, Winterize!

    ERIC Educational Resources Information Center

    Children & Animals, 1988

    1988-01-01

    Describes a learning center game which deals with the needs of dogs and cats in the winter months. Provides background information on the potential risks to pets during cold weather. Contains the game cards, along with assembly instructions and the rules of the games. (TW)

  4. WINTER TRITICALE: A FORAGE FOR ALL SEASONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter Triticale (X Triticosecale Wittmack) is usually planted in late summer or early fall, grows vegetatively prior to vernalization by cold winter temperatures and develops reproductively the following spring. Earlier establishment could increase production of high quality forage by extending the...

  5. Lateral mixing across ice meltwater fronts of the Chukchi Sea shelf

    NASA Astrophysics Data System (ADS)

    Lu, K.; Weingartner, T.; Danielson, S.; Winsor, P.; Dobbins, E.; Martini, K.; Statscewich, H.

    2015-08-01

    Summer and fall hydrographic sections in the northeastern Chukchi Sea frequently capture 5-20 m thick intrapycnocline lenses or horizontal plumes of warm, moderately salty summer Bering Sea Water flowing northward from Bering Strait. These features occur within the shallow (~20 m depth) pycnocline separating cold, dilute, surface meltwater from near-freezing, salty, winter-formed waters beneath the pycnocline. An idealized numerical model suggests that the features arise from eddies and meanders generated by instability of the surface front separating meltwater from Bering Sea Water. Warm Bering Sea Water is transported across the front and into the pycnocline by the cross-frontal velocities associated with the instabilities. The accompanying lateral eddy heat fluxes may be important both in summer for promoting ice melt and in fall by delaying the onset of ice formation over portions of this shelf. Lateral heat flux magnitudes depend upon the stratification of the Bering Sea Water.

  6. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,…

  7. Winter Hydrographer

    Robert Bradley, a hydrologic technician with the Massachusetts USGS Office, headed to Maine to experience a winter ice measurement trip with Laura Flight, a hydrologic technician from the Maine USGS Office. Robert, originally from Florida, went to Aroostook County with Laura and got smacked in the f...

  8. Winter Wonderlands

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  9. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,

  10. Atmospheric density remote sensing of mesosphere and thermosphere to be used for spacecraft design by adopting VHF radar and HF Doppler sounder at low latitude west Pacific site during winter time

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Tsao, Y. D.; Johnson, D. L.; Chen, A. J.; Lee, C. C.

    1989-01-01

    Simultaneous observations of VHF radar and HF Doppler array systems located at Chung Li (Taiwan) are used to observe three-dimensional wind speeds and gravity waves. The density perturbations are determined at different altitudes of the mesosphere and thermosphere during weak convective motions of the cold front in the winter. The present observations are believed to be valuable for space projects dealing with the low-latitude atmosphere.

  11. On a front line.

    PubMed Central

    Jones, L.

    1995-01-01

    Like the patients, doctors in Sarajevo depend largely on humanitarian aid; everyone in the public sector has worked without pay for almost three years. The hospital is on a front line; yet the psychiatric department continues to function, even conducting large scale studies of psychosocial aspects of war in Bosnia-Hercegovina. The type of inpatient morbidity and treatment patterns have changed. A plethora of psychosocial rehabilitation programmes has emerged, including counselling, drop in centres, and attending to special needs of elderly people, schoolchildren, and women. The most prominent psychological symptoms were exhaustion at the prospect of a third winter of war and bewilderment at the Western stereotype of Bosnians as Muslim fundamentalists. Images p1052-a p1053-a PMID:7728062

  12. QTL MAPPING OF WINTER HARDINESS GENES IN LENTIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lentil (Lens culinaris L.) germplasm with sufficient winter hardiness to survive most winters in cold northern areas is available; however, the use of that germplasm in breeding programs is hampered by variable winter conditions that make field evaluations needed for effective breeding and selection...

  13. Radiative magnetized thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  14. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not been identified in Titan's atmosphere, so the decay of its polar vortex may be more gradual than on Earth. Observations from an extended Cassini mission into late northern spring should provide critical data indicating whether the vortex goes away with a bang or just fades away.

  15. 3. Front of Mansion, facing east, shows portico, raised section ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Front of Mansion, facing east, shows portico, raised section of second story, and section (south of extreme left chimney) added c. 1914. Winter view. - Sotterly, State Route 245 & Vista Road Vicinity, Hollywood, St. Mary's County, MD

  16. Phospholipase A2 activity during cold acclimation of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (EC 3.1.1.4; PLA2) activity in wheat (Triticum aestivum L.) crown tissue from plants undergoing cold acclimation and/or chilling stress was investigated in a moderately cold tolerant winter wheat, a spring wheat, and a poorly cold tolerant winter wheat. Activity levels were inv...

  17. First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ferry, Alexander J.; Crosta, Xavier; Quilty, Patrick G.; Fink, David; Howard, William; Armand, Leanne K.

    2015-11-01

    We use a Generalized Additive Model (GAM) to provide the first winter sea ice concentration record from two cores located within the southwest Pacific sector of the Southern Ocean. To compliment the application of GAM, a time series analysis on satellite records of sea ice concentration data was used to extend the standard 13.25 year time series used for paleoceanography. After comparing GAM sea ice estimates with previously published paleo sea ice data we then focus on a new paleo winter sea ice record for marine sediment core E27-23 (59°37.1'S, 155°14.3'E), allowing us to provide a more comprehensive view of winter sea ice dynamics for the southwest Pacific Ocean. The paleo winter sea ice concentration estimates provide the first suggestion that winter sea ice within the southwestern Pacific might have expanded during the Antarctic Cold Reversal. Throughout the Holocene, core E27-23 documents millennial scale variability in paleo winter sea ice coverage within the southwest Pacific. Holocene winter sea ice expansion may have resulted from the Laurentide Ice Sheet deglaciation, increased intensity of the westerly winds, as well as a northern migration of the Subtropical and/or Sub-Antarctic Fronts. Brief consideration is given to the development of a paleo summer sea ice proxy. We conclude that there is no evidence that summer sea ice ever existed at core sites SO136-111 and E27-23 over the last 220 and 52,000 years, respectively.

  18. Climate warming will not decrease winter mortality

    NASA Astrophysics Data System (ADS)

    Staddon, Philip L.; Montgomery, Hugh E.; Depledge, Michael H.

    2014-03-01

    It is widely assumed by policymakers and health professionals that the harmful health impacts of anthropogenic climate change will be partially offset by a decline in excess winter deaths (EWDs) in temperate countries, as winters warm. Recent UK government reports state that winter warming will decrease EWDs. Over the past few decades, however, the UK and other temperate countries have simultaneously experienced better housing, improved health care, higher incomes and greater awareness of the risks of cold. The link between winter temperatures and EWDs may therefore no longer be as strong as before. Here we report on the key drivers that underlie year-to-year variations in EWDs. We found that the association of year-to-year variation in EWDs with the number of cold days in winter ( <5 °C), evident until the mid 1970s, has disappeared, leaving only the incidence of influenza-like illnesses to explain any of the year-to-year variation in EWDs in the past decade. Although EWDs evidently do exist, winter cold severity no longer predicts the numbers affected. We conclude that no evidence exists that EWDs in England and Wales will fall if winters warm with climate change. These findings have important implications for climate change health adaptation policies.

  19. Ocean fronts trigger high latitude phytoplankton blooms

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Ferrari, R.

    2011-12-01

    Density fronts are ubiquitous features of the upper ocean. Here, numerical simulations show that restratification at fronts inhibits vertical mixing, triggering phytoplankton blooms in low-light conditions. The stability of the water column at fronts is set by a competition between frontal instabilities, which restratify the upper ocean, and turbulent mixing, which acts to destroy this stratification. Recent studies have found that frontal instabilities can restratify the upper ocean, even in the presence of strong surface cooling and destabilizing winds. During winter at high latitudes, primary production by phytoplankton is generally limited by low ambient light levels and deep turbulent mixing. When the turbulent mixing, inhibited by frontal restratification, becomes smaller than a critical turbulence threshold, a phytoplankton bloom can develop. The finding that fronts can trigger phytoplankton blooms by reducing mixing, provides an explanation for satellite observations of high chlorophyll concentrations at high latitude fronts.

  20. Annual and interannual variability of the Barents Sea water masses and polar front: 1980-2011

    NASA Astrophysics Data System (ADS)

    Oziel, Laurent; Sirven, Jerome; Gascard, Jean-Claude

    2015-04-01

    The Barents Sea (BS) is a transition area between the warm and saline Atlantic Waters (AW) and the cold and fresh Arctic Waters (ArW). The BS is characterized by a polar front structure separating AW from ArW. The mixing and cooling of these two water mass generates dense waters in winter. Dense waters are of prior importance because they cascade into the Arctic Ocean to form the Artic Intermediate Waters. This study will use a new hydrographic data set fulfilled by recent stations in the Russian area and a 3D model coupled with atmosphere and ice as a back up to investigate the link between fronts and water masses, as well as their variability over the last 30 years. This study suggests that the polar front structure is composed of two branches and that the dense waters are found in between. The BS, especially in the East, is experiencing an "Atlantification" accompanied with a drastic sea ice decline. These changes, amplified during the last decade, shift the southern branch of the polar front structure in the Norh-East direction and affect negatively the dense water formation. This could have major impacts on the Arctic Ocean ventilation and primary production.

  1. `Thermohaline front' off the east coast of India and its generating mechanism

    NASA Astrophysics Data System (ADS)

    Hareesh Kumar, Panangattu Viswanathan; Mathew, Basil; Ramesh Kumar, Madathiparambil Ranganatha; Raghunadha Rao, Akula; Jagadeesh, Puvvala Surya Venkata; Radhakrishnan, Kalarickal Gopalan; Shyni, Thiyyadi Nandakumar

    2013-12-01

    Physical oceanography measurements reveal a strong salinity (0.18 psu km-1) and temperature (0.07 °C km-1) front off the east coast of India in December 1997. T-S diagrams suggest lateral mixing between the fresh water at the coast and the ambient warmer, saltier water. This front seems to be the result of southward advection of fresh and cool water, formed in the northern Bay of Bengal during the monsoon, by the East Indian Coastal Current, as suggested by the large-scale salinity structure in the SODA re-analysis and the anti-cyclonic gyre in the northwestern Bay of Bengal during winter. The data further reveals an offshore front in January, which appears to be the result of a meso-scale re-circulation around an eddy, bringing cold and freshwater from the northern Bay of Bengal further away from the shore. Our cruise data hence illustrates that very strong salinity fronts can appear in the Bay of Bengal after the monsoon, as a result of intense coastal circulation and stirring by eddies.

  2. Variability in winter climate and winter extremes reduces population growth of an alpine butterfly.

    PubMed

    Roland, Jens; Matter, Stephen F

    2013-01-01

    We examined the long-term, 15-year pattern of population change in a network of 21 Rocky Mountain populations of Parnassius smintheus butterflies in response to climatic variation. We found that winter values of the broadscale climate variable, the Pacific Decadal Oscillation (PDO) index, were a strong predictor of annual population growth, much more so than were endogenous biotic factors related to population density. The relationship between PDO and population growth was nonlinear. Populations declined in years with extreme winter PDO values, when there were either extremely warm or extremely cold sea surface temperatures in the eastern Pacific relative to that in the western Pacific. Results suggest that more variable winters, and more frequent extremely cold or warm winters, will result in more frequent decline of these populations, a pattern exacerbated by the trend for increasingly variable winters seen over the past century. PMID:23600253

  3. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  4. Endothermic heat production in honeybee winter clusters.

    PubMed

    Stabentheiner, Anton; Pressl, Helga; Papst, Thomas; Hrassnigg, Norbert; Crailsheim, Karl

    2003-01-01

    In order to survive cold northern winters, honeybees crowd tightly together in a winter cluster. Present models of winter cluster thermoregulation consider the insulation by the tightly packed mantle bees as the decisive factor for survival at low temperatures, mostly ignoring the possibility of endothermic heat production. We provide here direct evidence of endothermic heat production by 'shivering' thermogenesis. The abundance of endothermic bees is highest in the core and decreases towards the surface. This shows that core bees play an active role in thermal control of winter clusters. We conclude that regulation of both the insulation by the mantle bees and endothermic heat production by the inner bees is necessary to achieve thermal stability in a winter cluster. PMID:12477904

  5. Leap Day 2012 Severe Storm Front - Duration: 26 seconds.

    NASA Video Gallery

    This movie was created using GOES-13 visible and infrared satellite imagery from Feb. 28 at 1245 UTC (7:45 a.m. EST) through March 1, and shows the progression of the cold front and associated low ...

  6. Gene expression analysis to understand cold tolerance in citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...

  7. Common Cold

    MedlinePlus

    ... coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... people in the United States suffer 1 billion colds. You can get a cold by touching your ...

  8. Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833-1900

    NASA Astrophysics Data System (ADS)

    Grab, S. W.; Nash, D. J.

    2009-04-01

    This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as ‘very severe', ‘severe' or ‘normal/mild', with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century. Keywords: Cold season chronology, 19th century, Lesotho, volcanic forcing

  9. Snowplow Injection Front Effects

    NASA Technical Reports Server (NTRS)

    Moore, T. E.; Chandler, M. O.; Buzulukova, N.; Collinson, G. A.; Kepko, E. L.; Garcia-Sage, K. S.; Henderson, M. G.; Sitnov, M. I.

    2013-01-01

    As the Polar spacecraft apogee precessed through the magnetic equator in 2001, Polar encountered numerous substorm events in the region between geosynchronous orbit and 10 RE geocentric distance; most of them in the plasma sheet boundary layers. Of these, a small number was recorded near the neutral sheet in the evening sector. Polar/Thermal Ion Dynamics Experiment provides a unique perspective on the lowest-energy ion plasma, showing that these events exhibited a damped wavelike character, initiated by a burst of radially outward flow transverse to the local magnetic field at approximately 80 km/s. They then exhibit strongly damped cycles of inward/outward flow with a period of several minutes. After one or two cycles, they culminated in a hot plasma electron and ion injection, quite similar to those observed at geosynchronous orbit. Cold plasmaspheric plasmas comprise the outward flow cycles, while the inward flow cycles contain counterstreaming field-parallel polar wind-like flows. The observed wavelike structure, preceding the arrival of an earthward moving substorm injection front, suggests an outward displacement driven by the inward motion at local times closer to midnight, that is, a "snowplow" effect. The damped in/out flows are consistent with interchange oscillations driven by the arrival at the observed local time by an injection originating at greater radius and local time.

  10. Greater understanding is need of whether warmer and shorter winters associated with climate change could reduce winter mortality

    NASA Astrophysics Data System (ADS)

    Ebi, Kristie L.

    2015-11-01

    In temperate regions, mortality is higher during winter than summer seasons. Assuming this seasonality is associated with ambient temperature, assessments often conclude that climate change will likely reduce winter mortality. However, there has been limited evaluation of the extent to which cold temperatures are actually the proximal cause of winter mortality in temperate regions. Kinney et al (2015 Environ Res. Lett. 10 064016) analyzed multi-decadal data from 39 cities in the US and France and concluded that cold temperatures are not a primary driver of most winter excess mortality. These analyses suggest that increases in heat-related mortality with climate change will unlikely be balanced by reductions in winter mortality, reinforcing the importance of health systems continuing to ensure adequate health protection against cold temperatures even as temperatures warm.

  11. Halting Hypothermia: Cold Can Be Dangerous

    MedlinePlus

    ... who spends much time outdoors in very cold weather can get hypothermia. But hypothermia can happen anywhere— ... just outside and not just in bitter winter weather. It can strike when temperatures are cool—for ...

  12. A late winter hydrographic section from Tasmania to Antarctica

    NASA Astrophysics Data System (ADS)

    Rintoul, Stephen R.; Bullister, John L.

    1999-08-01

    A hydrographic section between Tasmania and Antarctica was occupied in late winter 1991 as part of the World Ocean Circulation Experiment (WOCE). The primary purpose of the WOCE repeat section SR3 is to measure the exchange between the Indian and Pacific Oceans south of Australia. This paper describes the fronts, water masses and transport observed on the first occupation of the repeat section. The Subantarctic Front (SAF) is located between 50°S and 51°S and is the most striking feature of the vertical sections. Two additional fronts at 53°S and 59°S are associated with the Polar Front (PF), part of which turns northward to flow along the section before turning back to the east near 53°S. Very deep (>500 m) mixed layers are found north of the SAF, confirming that Subantarctic Mode Water (SAMW) is formed in this region by deep convection in winter. Chlorofluorocarbons (CFCs) are significantly undersaturated (≈90-92% of equilibrium values) in these deep mixed layers, indicating that gas exchange rates are not rapid enough to bring these deep mixed layers to equilibrium by the end of the winter period of deep convective mixing. Northward Ekman drift of cold, fresh water across the SAF is likely to be responsible for the cooler, fresher mixed layers observed immediately north of the SAF. The Antarctic Intermediate Water (AAIW) on the SR3 section is relatively low in oxygen and CFCs (≈60-70% and 10-20% of saturation values, respectively), high in potential vorticity, and high in nutrients. These characteristics suggest that the AAIW on this section is not renewed by direct and rapid ventilation near this location. Water mass properties suggest that water from the Tasman Sea spreads south and west across the northern portion of the SR3 section between 800 and 3000 m depth. A cold, fresh, CFC-rich variety of Antarctic Bottom Water is formed along the Wilkes-Adelie coast of Antarctica. The net transport across the section relative to the deepest common depth is 160 Sv. The band of eastward flow between 50°S and 53°S including the SAF carries 137 Sv to the east and dominates the net transport. Weaker flow south of 58°S contributes an additional 70 Sv. The eastward flow is compensated in part by 37 Sv of westward flow between Tasmania and 48.5°S and 8 Sv of flow to the west over the southern flank of the mid-ocean ridge. The trajectories of six ALACE floats deployed at about 950 m confirm the sense of flow inferred from the choice of a deep reference level.

  13. Cold adaptations.

    PubMed

    Launay, Jean-Claude; Savourey, Gustave

    2009-07-01

    Nowdays, occupational and recreational activities in cold environments are common. Exposure to cold induces thermoregulatory responses like changes of behaviour and physiological adjustments to maintain thermal balance either by increasing metabolic heat production by shivering and/or by decreasing heat losses consecutive to peripheral cutaneous vasoconstriction. Those physiological responses present a great variability among individuals and depend mainly on biometrical characteristics, age, and general cold adaptation. During severe cold exposure, medical disorders may occur such as accidental hypothermia and/or freezing or non-freezing cold injuries. General cold adaptations have been qualitatively classified by Hammel and quantitatively by Savourey. This last classification takes into account the quantitative changes of the main cold reactions: higher or lower metabolic heat production, higher or lesser heat losses and finally the level of the core temperature observed at the end of a standardized exposure to cold. General cold adaptations observed previously in natives could also be developed in laboratory conditions by continuous or intermittent cold exposures. Beside general cold adaptation, local cold adaptation exists and is characterized by a lesser decrease of skin temperature, a more pronounced cold induced vasodilation, less pain and a higher manual dexterity. Adaptations to cold may reduce the occurrence of accidents and improve human performance as surviving in the cold. The present review describes both general and local cold adaptations in humans and how they are of interest for cold workers. PMID:19531907

  14. Novel psychrotolerant picocyanobacteria isolated from Chesapeake Bay in the winter.

    PubMed

    Xu, Yongle; Jiao, Nianzhi; Chen, Feng

    2015-08-01

    Picocyanobacteria are major primary producers in the ocean, especially in the tropical or subtropical oceans or during warm seasons. Many "warm" picocyanobacterial species have been isolated and characterized. However, picocyanobacteria in cold environments or cold seasons are much less studied. In general, little is known about the taxonomy and ecophysiology of picocyanobacteria living in the winter. In this study, 17 strains of picocyanobacteria were isolated from Chesapeake Bay, a temperate estuarine ecosystem, during the winter months. These winter isolates belong to five distinct phylogenetic lineages, and are distinct from the picocyanobacteria previously isolated from the warm seasons. The vast majority of the winter isolates were closely related to picocyanobacteria isolated from other cold environments like Arctic or subalpine waters. The winter picocyanobacterial isolates were able to maintain slow growth or prolonged dormancy at 4°C. Interestingly, the phycoerythrin-rich strains outperformed the phycocyanin-rich strains at cold temperature. In addition, winter picocyanobacteria changed their morphology when cultivated at 4°C. The close phylogenetic relationship between the winter picocyanobacteria and the picocyanobacteria living in high latitude cold regions indicates that low temperature locations select specific ecotypes of picocyanobacteria. PMID:26986796

  15. Cardiovascular responses to cold exposure

    PubMed Central

    Sun, Zhongjie

    2010-01-01

    The prevalence of hypertension is increased in winter and in cold regions of the world. Cold temperatures make hypertension worse and trigger cardiovascular complications (stroke, myocardial infarction, heart failure, etc.). Chronic or intermittent exposure to cold causes hypertension and cardiac hypertrophy in animals. The purpose of this review is to provide the recent advances in the mechanistic investigation of cold-induced hypertension (CIH). Cold temperatures increase the activities of the sympathetic nervous system (SNS) and the renin-angiotensin system (RAS). The SNS initiates CIH via the RAS. Cold exposure suppresses the expression of eNOS and formation of NO, increases the production of endothelin-1 (ET-1), up-regulates ETA receptors, but down-regulates ETB receptors. The roles of these factors and their relations in CIH will be reviewed. PMID:20036896

  16. Measurements of Chlorine Partitioning in the Winter Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Stachnik, R.; Salawitch, R.; Engel, A.; Schmidt, U.

    1999-01-01

    Under the extremely cold conditions in the polar winter stratosphere, heterogeneous reactions involving HCl and CIONO(sub 2) on the surfaces of polar stratospheric cloud particles can release large amounts of reactive chlorine from these reservoirs leading to rapid chemical loss of ozone in the Arctic lower stratosphere during late winter and early spring.

  17. Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833-1900

    NASA Astrophysics Data System (ADS)

    Grab, Stefan W.; Nash, David J.

    2010-03-01

    This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as “very severe”, “severe” or “normal/mild”, with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century.

  18. Cold Tolerance of Blueberry Genotypes throughout the Dormant Period from Acclimation to Deacclimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cold hardiness in woody perennials is determined by complex interacting factors: the timing and rate of cold acclimation; the degree of cold tolerance attained; the maintenance of cold tolerance during the winter; and the rate of loss of cold tolerance or deacclimation upon resumption of spring grow...

  19. Common Cold

    MedlinePlus

    ... News & Events Volunteer NIAID > Health & Research Topics > Common Cold Skip Website Tools Website Tools Print this page ... Help people who are suffering from the common cold by volunteering for NIAID clinical studies on ClinicalTrials. ...

  20. The Gulf Stream - Troposphere connection: warm and cold paths

    NASA Astrophysics Data System (ADS)

    Czaja, Arnaud; Sheldon, Luke; Vanniere, Benoit; Parfitt, Rhys

    2015-04-01

    In this talk, the role of moist processes in ocean-atmosphere coupling over the Gulf Stream will be discussed, using ERA interim reanalysis data (1979-2012) and nested simulations with the UK Met Office Unified Model. The focus is on the cold season (December through February). Two types of moist processes will be highlighted. First, shallow convection driven by surface fluxes of heat and moisture, usually found behind the cold front of extra-tropical cyclones. It will be shown that the warm flank of the Gulf Stream is instrumental in amplifying these convective events. In addition, it will be suggested that they are also responsible for simulated changes in precipitation found in numerical experiments with Atmospheric General Circulation Models forced with smoothed and realistic sea surface temperature (SST) distributions. The impact of this type of air-sea interaction on the larger scale is however unclear as it mostly affects low levels (below 700hPa). The second type of moist processes of relevance is that of moist inertial ascent along the cold front of extra-tropical cyclones. It will be shown that such ascent typically occurs 10% of the time in winter and that it is preferentially rooted over the warm flank of the Gulf Stream. The moist inertial ascent is intense and narrow, and not compensated within a given synoptic system. As a result, and despite being infrequent, it will be shown to contribute crucially to the time mean upward motion over the Gulf Stream at middle (500hPa) and upper tropospheric levels (300 hPa). This result suggests that warm advection by the Gulf Stream acts in effect as a horizontally broad, downward push, on air masses above the boundary layer, a push required to compensate for the upward mass flux in the moist inertial ascent.

  1. Common cold

    MedlinePlus

    The common cold most often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, ... It is called the common cold for good reason. There are over one billion colds in the United States each year. You and your children will ...

  2. Cold intolerance

    MedlinePlus

    ... abnormal sensitivity to a cold environment or cold temperatures. ... can be a symptom of a problem with metabolism. Some people (often very thin women) do not tolerate cold environments because they have very little body fat and are unable to keep warm.

  3. Effects of the Cold Tongue in the South China Sea on the Monsoon, Diurnal Cycle and Rainfall in the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Koh, Tieh-Yong; Kiat Teo, Chee

    2013-04-01

    We investigate the effects of the Cold Tongue in the South China Sea (SCS) on the winter monsoon, rainfall and diurnal cycle in the Maritime Continent using a numerical model verified with satellite rainfall and reanalysis data. Composite analysis of the observation and reanalysis data based on Cold Tongue Index indicates that the penetration of the monsoon to Java Sea is enhanced when the cold tongue is strong. A sensitivity experiment without the cold tongue shows that the winter monsoon is diminished over SCS and around coastal regions because of anomalous low-level cyclonic circulation associated with enhanced convection over SCS due to the warmer SST. The diurnal cycle, in particular, the night-morning rainfall over the ocean in coastal regions is modified. The effect on daytime rainfall over the land is weaker. Along the northern coast of Java far from SCS, the night-morning rainfall is much reduced over Java Sea when the cold tongue is suppressed because of the weakened land breeze front due to the weakened northerly monsoon. In contrast, the afternoon-evening rainfall on Java Island is enhanced showing that the local impacts are not simply the result of large-scale subsidence from the convective anomaly in SCS. Along the northwestern coast of Borneo adjacent to SCS, the weakened winter monsoon tends to reduce the rainfall at the land breeze front near the coastline. On the other hand, the warmer SST forces a stronger land breeze and the weakened monsoon encourages further and faster offshore propagation of the land breeze front. Consequently, the rainfall peak shifts further offshore in the sensitivity experiment. We conclude that the cold tongue has two effects, the sustenance of a strong monsoon (indirect effect) and the cooling of local SST (direct effect), which have opposite influences on the diurnal cycle in the Maritime Continent. Reference: Koseki, S., T. Y. Koh and C. K. Teo (2012), "Effects of the Cold Tongue in the South China Sea on the Monsoon, Diurnal Cycle and Rainfall in the Maritime Continent", Quarterly Journal of the Royal Meteorological Society, DOI: 10.1002/qj.2052, accepted (early online release).

  4. Physiological processes during winter dormancy and their ecological significance

    SciTech Connect

    Havranek, W.M.; Tranquillini, W.

    1995-07-01

    Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectively when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.

  5. Fronts, fish, and predators

    NASA Astrophysics Data System (ADS)

    Belkin, Igor M.; Hunt, George L.; Hazen, Elliott L.; Zamon, Jeannette E.; Schick, Robert S.; Prieto, Rui; Brodziak, Jon; Teo, Steven L. H.; Thorne, Lesley; Bailey, Helen; Itoh, Sachihiko; Munk, Peter; Musyl, Michael K.; Willis, Jay K.; Zhang, Wuchang

    2014-09-01

    Ocean fronts play a key role in marine ecosystems. Fronts shape oceanic landscapes and affect every trophic level across a wide range of spatio-temporal scales, from meters to thousands of kilometers, and from days to millions of years. At some fronts, there is an elevated rate of primary production, whereas at others, plankton is aggregated by advection and by the behavior of organisms moving against gradients in temperature, salinity, light irradiance, hydrostatic pressure and other physico-chemical and biological factors. Lower trophic level organisms - phytoplankton and zooplankton - that are aggregated in sufficient densities, attract organisms from higher trophic levels, from planktivorous schooling fish to squid, large piscivorous fish, seabirds and marine mammals. Many species have critical portions of their life stages or behaviors closely associated with fronts, including spawning, feeding, ontogenetic development, migrations, and other activities cued to frontal dynamics. At different life stages, an individual species or population might be linked to different fronts. The nature and strength of associations between fronts and biota depend on numerous factors such as the physical nature and spatio-temporal scales of the front and the species and their life stages in question. In other words, fronts support many different niches and micro/macro-habitats over a wide range of spatial and temporal scales.

  6. Pulsating detonation front

    SciTech Connect

    Dremin, A.N.

    1984-01-01

    The hydrodynamic theory of detonation phenomena proposed elsewhere could not explain new experimental facts, including the phenomenon of the collapse of chemical reactions. This paper considers in detail how the collapse phenomenon governs the fundamental features of the detonation front structure. The phenomenon of chemical reaction collapse is defined, the parameters which lead to the origination of instability and structure of the inhomogenities are determined, what occurs after the collapse in a diverging overcompressed detonation is examined, the structure of a strongly unstable detonation front, passage from the unstable to the stable detonation front, unstable detonation front in a mixture of nitromethane and acetone, and gas detonation are all also described in detail. The reasoning developed in this paper about the structure of a pulsating detonation front is valid not only for Arrhenius kinetics of HE decomposition, but is applicable to any decomposition mechanism, such as chain reactions.

  7. Atypical occlusion process caused by the merger of a sea-breeze front and gust front

    NASA Astrophysics Data System (ADS)

    Abulikemu, Abuduwaili; Xu, Xin; Wang, Yuan; Ding, Jinfeng; Wang, Yan

    2015-10-01

    An atypical occlusion process that occurred in North China on 14 July 2011 is studied based on both observations and a real-data Weather Research and Forecasting (WRF) model simulation. The results show that this atypical occlusion process was significantly different from the traditional, synoptic-scale occlusion process that occurs within extratropical cyclones. It was caused by the merger of two cold-type mesoscale fronts. One of the fronts developed from the gust front of convective storms, while the other was a sea-breeze front. As the two fronts moved towards each other, the warm air between them was squeezed and separated from the surface. An atypical occluded front was formed when the two fronts merged, with the warm air forced aloft. This kind of occlusion is termed a "merger" process, different from the well-known "catch-up" and "wrap-up" processes. Moreover, local convection was found to be enhanced during the merger process, with severe convective weather produced in the merger area.

  8. [Treatment of winter diseases in summer].

    PubMed

    Gao, Zhi-Ping

    2014-04-01

    To explore the connotation and essence of treatment of winter diseases in summer with analysis and deduction. Treating winter diseases in summer is the concrete embodiment and application of taking advantage of "recuperating yang in spring and summer". Winter diseases are formed by compound factors with deficiency of yangqi as the prerequisite and yin as well as cold as the predominant pathogens. Its pathological characteristic rests with stagnation in meri-dians and collaterals. Aiming at curing chronic diseases, reinforcing yangqi and removing stagnation in meridians and collaterals, treatment in summer is a treating strategy focused on proper opportunity of treatment, which is expected to yield twice the result with half the effort. To select the suitable indications is taken as the core of this treating strategy. And at the same time, blind expansion without careful consideration is not suggested. PMID:24946652

  9. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  10. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  11. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  12. Radar Backscatter Across the Gulf Stream Sea Surface Temperature Front

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Li, F. K.; Walsh, E. J.; Lou, S. H.

    1998-01-01

    Ocean backscatter signatures were measured by the Jet Propulsion Laboratory airborne NUSCAT K(sub u)-band scatterometer across the Gulf Stream sea surface temperature front. The measurements were made during the Surface Wave Dynamics Experiment (SWADE) off the coast of Virginia and Maryland in the winter of 1991.

  13. Tidal fronts in estuaries

    NASA Astrophysics Data System (ADS)

    Pelegrí, J. L.

    1988-07-01

    Three estuaries in Wales were carefully surveyed during flood conditions. They are characterized by the intrusion of a tidal front. In one estuary the front retreats after maximum flood velocities and stratification persists during the whole tidal cycle. In the other estuaries the flood erases the initial stratification causing partially or totally mixed situations. A tidal Froude number is employed to characterize the evolution of stratification during the flood. It is shown that gravity current theory approximately holds under well-stratified conditions in a region near to, but not too close to, the head of the front.

  14. Cold Fusion.

    ERIC Educational Resources Information Center

    Dutton, Eileen; Salazar, Chris

    1998-01-01

    Discusses ways of preparing school-building roofs for the winter season by paying attention to common problem areas. Also highlights the use of white elastomeric roof coatings, their benefits, and considerations when applying them. (GR)

  15. East Asian winter monsoon: results from eight AMIP models

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Sperber, K. R.; Boyle, J. S.; Dix, M.; Ferranti, L.; Kitoh, A.; Lau, K. M.; Miyakoda, K.; Randall, D.; Takacs, L.; Wetherald, R.

    This study evaluates simulations of the East Asian winter monsoon in eight GCMs that participated in the Atmospheric Model Intercomparison Project (AMIP). In addition to validating the mean state of the winter monsoon, the cold surge and its transient properties, which includes the frequency, intensity, preferred propagation tracks, and the evolution patterns of the surges, are examined. GCM simulated temporal distribution of the Siberian high and cold surges is also discussed. Finally, the forcing of the cold surges on the tropical surface wind and convection, along with their interannual variation is analyzed. The mean state of the winter monsoon is generally portrayed well in most of the models. These include the climatological position of the Siberian high, the 200 hPa divergent center, and the large-scale wind patterns at the surface and the 200 hPa. Models display a wide range of skill in simulating the cold surge and its transient properties. In some of the models, the simulated cold surge trajectory, intensity, frequency, propagation patterns and source regions are in general agreement with those from the observed. While in others, the models cannot adequately capture these observed characteristics. The temporal distribution of the Siberian high and cold surges were realistically reproduced in most GCMs. Most models were able to simulate the effect of the cold surges on the tropical surface wind, although a few models unrealistically generated subtropical southerly wind in the mid-winter. The relationship between cold surges and the tropical convection was not satisfactorily simulated in most models. The common discrepancies in the winter monsoon simulation can be attributed to many factors. In some models, the reason is directly related to the improper location of the large-scale convective center near the western Pacific. The satisfactory simulations of the monsoon circulation and the cold surges are partly due to the topographical characteristics of the East Asian continent, i.e., the Tibetan Plateau to the west and the oceans to the east. The correct simulation of the interannual variation of the surface wind near the South China Sea (SCS) and the maritime continent is a demanding task for most of the models. This will require adequate simulations of many aspects, including tropical convection, the Siberian cold dome, the extratropical-tropical linkage, and the air-sea interaction. The discrepancies noted here furnish a guide for the continuing improvement of the winter monsoon simulations. Improved simulations will lead to an adequate delineation of the surface wind and convection near the maritime continent, which is essential for portraying the winter monsoon forcing in a coupled model.

  16. The Store Front School.

    ERIC Educational Resources Information Center

    Forrest, Barbara

    1986-01-01

    Describes the Store Front School project, a program of cooperative education aimed at rekindling students' interest in school and helping them earn their diplomas. The school conducts classes in an office in a shopping mall where the students work. (ABB)

  17. Relativistic Runaway Ionization Fronts

    NASA Astrophysics Data System (ADS)

    Luque, A.

    2014-01-01

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.

  18. Relativistic runaway ionization fronts.

    PubMed

    Luque, A

    2014-01-31

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum. PMID:24580462

  19. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.

    PubMed

    Dahal, Keshav; Kane, Khalil; Gadapati, Winona; Webb, Elizabeth; Savitch, Leonid V; Singh, Jasbir; Sharma, Pooja; Sarhan, Fathey; Longstaffe, Fred J; Grodzinski, Bernard; Hüner, Norman P A

    2012-02-01

    The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non-acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22-40% increase in light-saturated rates of CO₂ assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO₂ assimilation and photosynthetic electron transport, (2) the increased efficiency and light-saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non-photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q₁₀) of CO₂ assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17-overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness. PMID:21883254

  20. Winter Art Education Project

    ERIC Educational Resources Information Center

    Jokela, Timo

    2007-01-01

    The purpose of this article is to describe how the Department of Art Education at the University of Lapland in Finland has developed winter art as a method of environmental and community-based art education. I will focus on the Snow Show Winter Art Education Project, a training project funded by the European Union and the State Provincial Office…

  1. Winter and Specialty Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two main commercial types of wheat are durum (Triticum durum L., 2n=4x= 28) and common (T. aestivum L, 2n=6x=42.) wheat, the latter being the more widely grown. Wheat has three growth habits, namely winter (wheats grown over the winter months that require vernalization and can withstand prolong...

  2. Bison in Winter

    A plains bison in winter at Yellowstone National Park. A bison's hump is useful as a snowplow in winter when the animal swings its head from side to side to brush aside the snow to reach food underneath. The hump is composed of muscles supported by long vertebrae....

  3. Midlatitude tropical interactions during winter

    NASA Technical Reports Server (NTRS)

    Chang, C. P.

    1985-01-01

    Pre-FGGE and FGGE/MONEX data are used to identify short term midlatitude tropical and longitudinal interactions during the winter monsoon. These interactions occur as cold surges, which develop over the East Asian continent and penetrate deep into the tropics with fast gravity wave speed. The observed interactions that occur after a surge include cyclogenesis and enhanced convection in the equatorial region, feedback from equatorial convection to midlatitude circulation systems, tropical east-west (Walker) circulations, and cross-equatorial influence. These interactions are also studied theoretically by analytical solutions of linearized shallow water equations. Response to transient forcing (monsoon surges) are mainly in Rossby and Kelvin modes. When the forcing time scale is short, significant gravity modes are also excited. The responses closely resemble observed winter monsoon flow. Responses to stationary forcing show that deep (barotropic) motions propagate energy away into high latitudes and that shallow (baroclinic) motions are trapped around the equator. It is shown that the barotropic teleconnection-type response to tropical sources found in previous numerical studies was due to the specified vertical wind shear and surface friction.

  4. A front propagation formulation for under-resolved reaction fronts

    NASA Astrophysics Data System (ADS)

    Kim, Seung Hyun

    2015-03-01

    A method to simulate propagating reaction fronts on under-resolved grids is presented. The proposed method prevents the spurious propagation of under-resolved reaction fronts by introducing a front propagation form of the chemical reaction term. The front propagation formulation adopts a regularized Delta function to discretely preserve the total reaction rates on computational grids. By introducing the regularized Delta function that reproduces the physical mechanism of front propagation, the present method allows for the simulation of reaction fronts with variable thicknesses on under-resolved grids. Applications to isothermal reaction fronts, laminar premixed flames, and large eddy simulation of turbulent premixed flames are presented.

  5. Winter marine atmospheric conditions over the Japan Sea

    NASA Astrophysics Data System (ADS)

    Dorman, C. E.; Beardsley, R. C.; Dashko, N. A.; Friehe, C. A.; Kheilf, D.; Cho, K.; Limeburner, R.; Varlamov, S. M.

    2004-12-01

    Four basic types of synoptic-scale conditions describe the atmospheric structure and variability observed over the Japan Sea during the 1999/2000 winter season: (1) flow of cold Asian air from the northwest, (2) an outbreak of very cold Siberian air from the north and northeast, (3) passage of a weak cyclone over the southern Japan Sea with a cold air outbreak on the backside of the low, and (4) passage of a moderate cyclone along the northwestern side of the Japan Sea. In winter, the Russian coastal mountains and a surface-air temperature inversion typically block cold surface continental air from the Japan Sea. Instead, the adiabatic warming of coastal mountain lee-side air results in small air-sea temperature differences. Occasional outbreaks of very cold Siberian air eliminate the continental surface-based inversion and stability, allowing very cold air to push out over the Japan Sea for 1-3 days. During these outbreaks, the 0°C surface air isotherm extends well southward of 40°N, the surface heat losses in the center of the Japan Sea can exceed 600 W m-2, and sheet clouds cover most of the Japan Sea, with individual roll clouds extending from near the Russian coast to Honshu. During December through February, 1991-2002, these strong cold-air outbreak conditions occur 39% of the time and contribute 43% of the net heat loss from the Japan Sea. The average number of strong cold-air events per winter (November-March) season is 13 (ranging from 5 to 19); the 1999/2000 winter season covered in our measurements was normal.

  6. Cold Sores

    MedlinePlus

    ... and Overal Health Oral Warning Signs Can Indicate Serious Medical Conditions Serious diseases, including diabetes, cancer, and ... Cold Sore? Mouth Sores: Caused By Student Stress? games Home | InfoBites | Find a Dentist | Your Family's Oral ...

  7. Anti-correlation of summer/winter monsoons?

    PubMed

    Zhang, De'er; Lu, Longhua

    2007-11-15

    On the basis of the anti-correlation of their palaeoclimatic proxy for the strength of the East Asian winter monsoon from Lake Huguang Maar, China, with stalagmite records of the strength of the summer monsoon, Yancheva et al. claim that the strengths of the summer and winter monsoons are anti-correlated on a decadal timescale. They argue that the summer rainfall deficit during ad 700-900 that they infer from their evidence of a stronger winter monsoon, in conjunction with a Tanros battle, led to the collapse of the Tang dynasty (ad 618-907). Using historical climate records, we show here that most cold winters during ad 700-900 were associated with relatively wet summers, indicating that the strengths of the winter and summer monsoons were not negatively correlated during this period. PMID:18004320

  8. Impact of declining Arctic sea ice on winter snowfall.

    PubMed

    Liu, Jiping; Curry, Judith A; Wang, Huijun; Song, Mirong; Horton, Radley M

    2012-03-13

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters. PMID:22371563

  9. Impact of declining Arctic sea ice on winter snowfall

    PubMed Central

    Liu, Jiping; Curry, Judith A.; Wang, Huijun; Song, Mirong; Horton, Radley M.

    2012-01-01

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters. PMID:22371563

  10. Interannual salinity variability of the Northern Yellow Sea Cold Water Mass

    NASA Astrophysics Data System (ADS)

    Li, Ang; Yu, Fei; Diao, Xinyuan

    2015-05-01

    This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass (NYSCWM) and the factors that influence it, based on survey data from the 1976-2006 national standard section and the Korea Oceanographic Data Center, monthly E-P flux data from the European Centre for Medium-Range Weather Forecasts, and meridional wind speed data from the International Comprehensive Ocean-Atmosphere Data Set. The results show that: 1) the mean salinity of the NYSCWM center has a slightly decreasing trend, which is not consistent with the high salinity center; 2) both the southern salinity front and the halocline of the NYSCWM display a weakening trend, which indicates that the difference between the NYSCWM and coastal water decreases; 3) the Yellow Sea Warm Current intrusion, the E-P flux of the northern Yellow Sea, and the strength of the winter monsoon will affect the NYSCWM salinity during the following summer.

  11. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  12. Genes critical for the induction of cold acclimation in wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phenotypic studies have shown that cold acclimation in wheat and its relatives start at different temperatures. To gain insight into the underlying mechanisms that regulate the induction of cold-acclimation process in cereals we compared the expression of genes in winter-habit (winter Norstar and w...

  13. Light-front vacuum

    NASA Astrophysics Data System (ADS)

    Herrmann, Marc; Polyzou, W. N.

    2015-04-01

    The purpose of this work is to understand the relation between the trivial vacuum in light-front field theory and the nontrivial vacuum in canonical representations of quantum field theory and the role of zero-modes in this relation. The role of the underlying field algebra in the definition of the vacuum is exploited to understand these relations. The trivial vacuum defined by an annihilation operator defines a linear functional on the algebra of fields restricted to a light front. This is extended to a linear functional on the algebra of local fields. The extension defines a unitary mapping between the physical representation of the local algebra and a sub-algebra of the light-front Fock algebra. The dynamics appears in the mapping and the structure of the sub-algebra. This correspondence provides a formulation of locality and Poincaré invariance on the light-front Fock space. Zero modes do not appear in the final mapping, but may be needed in the construction of the mapping using a local Lagrangian.

  14. Nanoparticle Oscillations and Fronts

    SciTech Connect

    Lagzi, Istvan; Kowalczyk, Bartlomiej; Wang, Dawei; Grzybowski, Bartosz A.

    2010-09-30

    Chemical oscillations can be coupled to the dynamic self-assembly of nanoparticles. Periodic pH changes translate into protonation and deprotonation of the ligands that stabilize the nanoparticles, thus altering repulsive and attractive interparticle forces. In a continuous stirred-tank reactor, rhythmic aggregation and dispersion is observed; in spatially distributed media, propagation of particle aggregation fronts is seen.

  15. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  16. When hot water freezes before cold

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2009-01-01

    I suggest that the origin of the Mpemba effect (the freezing of hot water before cold) is due to freezing-point depression by solutes, either gaseous or solid, whose solubility decreases with increasing temperature so that they are removed when water is heated. The solutes are concentrated ahead of the freezing front by zone refining in water that has not been heated, reducing the temperature of the freezing front, and thereby reducing the temperature gradient and heat flux, slowing the progress of the freezing front. I present a simple calculation of this effect, and suggest experiments to test this hypothesis.

  17. American woodcock winter distribution and fidelity to wintering areas

    USGS Publications Warehouse

    Diefenbach, D.R.; Derleth, E.L.; Vander Haegen, W.M.; Nichols, J.D.; Hines, J.E.

    1990-01-01

    We examined winter distribution and fidelity to wintering areas for the American Woodcock (Scolopax minor), which exhibits reversed, sexual size dimorphism. Band-recovery data revealed no difference in winter distributions of different age/sex classes for woodcock from the same breeding areas. Similarly, band recoveries from woodcock banded on wintering grounds revealed no difference in fidelity to wintering sites. Males may winter north of a latitude that is optimal for survival based on physiological considerations, but they gain a reproductive advantage if they are among the first to arrive on the breeding grounds. This may explain our results, which indicate males and females have similar distribution patterns during winter.

  18. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood vessels in the feet, is observed in shipwreck survivors or in soldiers whose feet have been wet, but not freezing, for long periods. Patients with frostbite frequently present with multisystem injuries (e.g., systemic hypothermia, blunt trauma, substance abuse). The freezing of the corneas has been reported to occur in individuals who keep their eyes open in high wind-chill situations without protective goggles (e.g., snowmobilers, cross-country skiers). PMID:15715518

  19. Cold neutron interferometry

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki

    2009-10-01

    Neutron interferometry is a powerful technique for studying fundamental physics. A large dimensional interferometer for long wavelength neutrons is extremely important in order to investigate problems of fundamental physics, including tests of quantum measurement theories and searches for non-Newtonian effects of gravitation, since the sensitivity of interferometer depends on the wavelength and the interaction length. Neutron multilayer mirrors enable us to develop the large scale interferometer for long wavelength neutrons. The multilayer mirror is one of the most useful devices in cold neutron optics. A multilayer of two materials with different potentials is understood as a one-dimensional crystal, which is suitable for Bragg reflection of long wavelength neutrons. Cold and very cold neutrons can be utilized for the interferometer by using the multilayer mirrors with the proper lattice constants. Jamin-type interferometer by using beam splitting etalons (BSEs) has shown the feasibility of the development of large scale interferometer, which enables us to align the four independent mirrors within required precision. The BSE contains two parallel multilayer mirrors. A couple of the BSEs in the Jamin-type interferometer separates and recombines the two paths spatially. Although the path separation was small at the first test, now we have already demonstrated the interferometer with perfectly separated paths. This has confirmed that the multilayer mirrors cause no serious distortion of wave front to compose a interferometer. Arranging such mirrors, we are capable of establishing even a Mach-Zehnder type with much larger size. The interferometer using supermirrors, which reflects the wide range of the wavelength of neutrons, can increase the neutron counts for high precision measurements. We are planning the experiments using the interferometer both for the very cold neutrons and for the pulsed neutrons including J-PARC.

  20. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Huang, Daji; Zeng, Dingyong

    2016-02-01

    We report a double coastal front system off the Zhejiang (Zhe) and Fujian (Min) Provinces in the East China Sea in winter. In addition to the well-known Zhe-Min offshore coastal front along 50 m isobath, a secondary near-shore coastal thermal front along 20 m isobath is also apparent in December and January. The fronts were observed by Moderate Resolution Imaging Spectroradiometer (MODIS) at monthly mean nighttime sea surface temperature (SST) during 2000-2013 in terms of SST gradients. Our results showed temporal and spatial variations of the two fronts as follows: (1) both offshore front and near-shore front often co-exist between 26.5°N and 29.5°N in December and between 28.0°N and 29.5°N in January. However, only the offshore front is apparent in November and February. (2) The near-shore front is narrow (4-16 km), while the offshore front is three to four times wider (16-48 km). (3) In contrast to the well-known offshore front which exists throughout the winter with a strong intensity, the near-shore front has a shorter lifetime with a weak intensity, and has been overlooked by previous studies. Finally, we proposed that the bottom bathymetric gradients may play an important role in the frontogenesis of the double fronts.

  1. Logistic Regression Analysis of Freezing Tolerance in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four winter wheat cultivars, Eltan, Froid, Kestrel, and Tiber, were cold-acclimated for five weeks and then tested for freezing tolerance in a programmable freezer. The temperature of the soil was recorded every two minutes and the freezing episode was described as five parameters: the minimum temp...

  2. Factors affecting the distribution of mallards wintering in the Mississippi alluvial valley

    USGS Publications Warehouse

    Nichols, J.D.; Reinecke, K.J.; Hines, J.E.

    1983-01-01

    The Mississippi Alluvial Valley (MAV) is the principal wintering area for mallards (Anas platyrhynchos ) in the Mississippi Flyway. Here the authors consider it a distinct habitat, i.e., fitness is relatively homogeneous among ducks within the MAV but different from that of ducks in other such habitats. They analyzed recovery distributions of mallards banded preseason (July-September 1950-1980) to test hypotheses concerning the effects of winter temperatures, precipitation, and population levels on mallard winter distribution. When two groups of years that comprised extremes of warm and cold winter weather were compared, recovery distributions of all four age and sex classes (adult males and females, young males and females) differed significantly; recoveries were located farther south in cold years. The authors concluded that temperature, water conditions, and population size affect the habitat suitability of mallard wintering areas and that mallards exhibit considerable flexibility in winter distribution associated with these factors.

  3. COLD TRAP

    DOEpatents

    Milleron, N.

    1963-03-12

    An improved linear-flow cold trap is designed for highvacuum applications such as mitigating back migration of diffusion pump oil moiecules. A central pot of liquid nitrogen is nested within and supported by a surrounding, vertical, helical coil of metai sheet, all enveloped by a larger, upright, cylindrical, vacuum vessel. The vertical interstices between successive turns of the coil afford lineal, axial, high-vacuum passages between open mouths at top and bottom of said vessel, while the coil, being cold by virtue of thermal contact of its innermost turn with the nitrogen pot, affords expansive proximate condensation surfaces. (AEC)

  4. Tropical-midlatitude exchange of air masses during summer and winter in South America: climatic aspects and examples of intense events

    NASA Astrophysics Data System (ADS)

    Seluchi, Marcelo E.; Marengo, José A.

    2000-08-01

    Meridional transport of air masses between the tropics and midlatitudes in South America are the most intense in the entire Southern Hemisphere, mainly due to the presence of the Andes. The incursions of tropical air into midlatitudes occur on the eastern side of the Andes in two preferred regions. The first is located in the tropical latitudes, close to the mountains between 20° and 30°S, and the second is a function of the position of the South Atlantic Convergence Zone (SACZ). All year long, the two preferred regions maintain their behaviour, with only small variations of their position or relative importance in different seasons of the year. The variability of the meridional transport is larger on the eastern side of the Andes, due to the presence of the mountain barrier, which favours baroclinic activity and allows an active exchange of air masses in both senses, especially during winter.The importance of the air mass transport is evident in the precipitation and surface temperature fields. During summertime, the Chaco Low (25°S and 65°W) intensifies due to the positive net radiation, favouring the transport of tropical air masses towards the south and the presence of strong convective activity, which is fed by moisture from tropical regions. During winter, the penetration of tropical air towards higher latitudes is more sporadic. The displacement of midlatitude air towards tropical latitudes occurs on both sides of the Andes. On the western side, the air associated with the subtropical Pacific anticyclone flows northward channelled by the Andes. On the eastern side, incursions of polar air towards lower latitudes are linked to cold fronts whose trajectory and movement is also favoured by the presence of the Andes. In particular, during wintertime the cold fronts are more intense and faster, and sometimes even reach tropical and equatorial latitudes which produces freezes in subtropical regions, such as the coffee growing areas in southeastern Brazil. In contrast, the incursions of cold air are notably weaker and less frequent in summer, and during these events the active cold fronts move northwards merging with the SACZ, which becomes more intense.

  5. FRONT LANAI OF THE HONOLUA STORE. SHOWING THE DOUBLE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT LANAI OF THE HONOLUA STORE. SHOWING THE DOUBLE FRONT ENTRY DOORS, PROJECTING STOREFRONT WINDOWS, AND TYPICAL TWO-LIGHT AWNING WINDOWS, OBLIQUE, LOOKING NORTHEAST. - Honolua Store & Warehouse, 502 Office Street, Kapalua, Maui County, HI

  6. 9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY (LEFT) AND BLANK WALL (CENTER) CORRESPONDING TO LOCATION OF INTERIOR VAULTS. VIEW TO SOUTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  7. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  8. Membrane stability of winter wheat plants exposed to subzero temperatures for variable lengths of time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to survive episodes of subfreezing temperature is essential to winter wheat. Fully cold-acclimated plants of six lines of winter wheat were exposed to -12, -14, -16 or -18° C, four 1-5 hours. Electrolyte leakage and plant survival were used to assess damage to the plants. Plants exposed ...

  9. GENETICS OF WINTER HARDINESS IN 10 LENTIL RECOMBINANT INBRED LINE POPULATIONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available winter hardy lentil germplasm has prompted interest in the development and use of cultivars that can be fall planted in cold highland areas. This change in production of lentil from normally spring sown to fall sown increases yield potential. Understanding the mode of inheritance of winter...

  10. Discovering Traits Controlling Winter-hardiness and Spring Regrowth in Diverse Switchgrass Germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.) is a perennial bioenergy plant that needs to survive both repeated harvests and harsh winters experienced in the Central and Northern USA. The plant traits that control winter-hardiness are not known, but will be critical to the future development of cold-tolerant,...

  11. A computer model for predicting grapevine cold hardiness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...

  12. Nitrification treatment of swine wastewater under cold temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to N load, cold weather nitrification is an important consideration for stabilized performance of biological processes applied to continuous animal production systems. We conducted a winter simulation experiment in the laboratory to evaluate performance of immobilized bacteria under cold...

  13. [Research fronts in medicine].

    PubMed

    Vlach, J

    1989-02-10

    Citation mapping of communicating structures of science and derived indices of the most active research fronts make it possible to adopt and create factographic bases for operative management and prognosis of fundamental medical research. Information data bases and printed registers for systematic use of these materials can be processed according to published analyses of priority trends of science, using methods of aggregated quotations or using networks of descriptors. The referred investigations pertain to the problem of allergy, AIDS, biomedical engineering, hyperthermia, hypnosis, risk pregnancy, epidemiology, modelling, bacterial bioluminescence, prostaglandins, aberrant genes, theory of immune systems, monoclonal antibodies, cholesterol metabolism, immunogenetics and neurobiology, incl. association to the work of Nobel prize winners. The science atlases for biochemistry, molecular biology, biotechnology and molecular genetics, and in new series for pharmacology, biochemistry, immunology, clinical and neurological and psychological disciplines provides a new type of standardized prognostic surveys with identification of the foremost world science fronts. PMID:2720752

  14. Cold Sores

    MedlinePlus

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area ... Protecting your lips from the sun with sunblock lip balm can also help.

  15. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  16. Winter precipitation change in South China in recent decades

    NASA Astrophysics Data System (ADS)

    Cai, Jingning

    2013-04-01

    Precipitation change is one of important climate researches in China, but winter precipitation variation in South China has not been studied so frequently. In China, it is rainy when hot; so summer precipitation is usually one focus in research, esp. in South China. However, winter precipitation and its change influence people profoundly in South China, also. The most recent example is what happened over South China in winter 2008. In this winter, millions of people suffered from the unusual cold and snowy winter. It led to huge loss in economy and traffic as well. Roads closed and railway stations were jammed and crowded with people; many planes were grounded for heavy snow and bad weather. Transmission lines faulted in the mountains. The ommunication signals were affected. Everyday food supply including vegetables and meats had to be delayed or interrupted. In some city even water supply was interrupted. And garbage in the city was piled up. Just in this winter the snow depth and coverage area in many places in South China broke or equaled the historical records. In fact, it isn't the only one unusual winter precipitation event in South China. Since 1950s, several freezing and snowy winters struck the South in China. In this research, winter precipitation change in recent years in South China has been discussed based on the precipitation observations. The associated large scale atmospheric circulation change is also analyzed. It is found that snowy winter in South China hardly comes in most periods of 2000s, but in recent decades this heavy snow in winter has appeared several times as observations shows. This phenomenon could be related to the large scale atmospheric circulation change.

  17. Theory of pinned fronts

    NASA Astrophysics Data System (ADS)

    Weissmann, Haim; Shnerb, Nadav M.; Kessler, David A.

    2016-01-01

    The properties of a front between two different phases in the presence of a smoothly inhomogeneous external field that takes its critical value at the crossing point is analyzed. Two generic scenarios are studied. In the first, the system admits a bistable solution and the external field governs the rate in which one phase invades the other. The second mechanism corresponds to a continuous transition that, in the case of reactive systems, takes the form of a transcritical bifurcation at the crossing point. We solve for the front shape and for the response of competitive fronts to external noise, showing that static properties and also some of the dynamical features cannot discriminate between the two scenarios. A reliable indicator turns out to be the fluctuation statistics. These take a Gaussian form in the bifurcation case and a double-peaked shape in a bistable system. Our results are discussed in the context of biological processes, such as species and communities dynamics in the presence of a resource gradient.

  18. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  19. Theory of pinned fronts.

    PubMed

    Weissmann, Haim; Shnerb, Nadav M; Kessler, David A

    2016-01-01

    The properties of a front between two different phases in the presence of a smoothly inhomogeneous external field that takes its critical value at the crossing point is analyzed. Two generic scenarios are studied. In the first, the system admits a bistable solution and the external field governs the rate in which one phase invades the other. The second mechanism corresponds to a continuous transition that, in the case of reactive systems, takes the form of a transcritical bifurcation at the crossing point. We solve for the front shape and for the response of competitive fronts to external noise, showing that static properties and also some of the dynamical features cannot discriminate between the two scenarios. A reliable indicator turns out to be the fluctuation statistics. These take a Gaussian form in the bifurcation case and a double-peaked shape in a bistable system. Our results are discussed in the context of biological processes, such as species and communities dynamics in the presence of a resource gradient. PMID:26871099

  20. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster

    PubMed Central

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607

  1. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  2. COLPEX - Cold Pool Experiment

    NASA Astrophysics Data System (ADS)

    Wells, H.; Price, J.; Horlacher, V.; Sheridan, P. F.; Vosper, S. B.; Brown, A. R.; Mobbs, S. D.; Ross, A. N.

    2009-04-01

    Planning has started towards designing a new field campaign aimed at studying the behaviour of the boundary layer over complex terrain. Of specific interest is the formation of cold-pools in valleys during stable night-time conditions. The field campaign will run continuously until the end of the winter in 2009/10. The experiment will make use of a wide variety of ground-based sensors including turbulence towers, automatic weather stations, Doppler lidar, radiation sensors and soil temperature probes. We also hope to deploy an instrumented car and a tethered balloon facility for limited periods. Data from the field campaign will be used for a number of purposes. Firstly, to increase our understanding of how the valley cold pools form and why, for instance, some valleys offer a more favourable environment for their formation than others. Secondly, to investigate the formation and dissipation of fog in complex terrain. Thirdly, the data set will also be used to help validate and develop the Met Office Unified Model at high resolution. An area for the experiment has been identified in the Shropshire/Powis area of the UK where a network of valleys and low hills exist with a typical valley width of ~1.5km and hill top to valley floor heights of 75-200m. 0m.

  3. Taxonomy of Greater White-fronted Geese (Aves: Anatidae)

    USGS Publications Warehouse

    Banks, Richard C.

    2011-01-01

    Five subspecies of the Greater White-fronted Goose, Anser albifrons (Scopoli, 1769), have been named, all on the basis of wintering birds, and up to six subspecies have been recognized. There has been confusion over the application of some names, particularly in North America, because of lack of knowledge of the breeding ranges and type localities, and incorrect taxonomic decisions. There is one clinally varying subspecies in Eurasia, one that breeds in Greenland, and three in North America, one newly named herein.

  4. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive…

  5. Winter Playscape Dreaming

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2006-01-01

    Winter, like all seasons, adds a new sense of mystery and discovery to the world of young children. It is the time when they can study snowflakes, find icicles, or observe the birds that share their yards. This article presents ideas and suggestions on how to plan a playscape. A playscape is a man-made seasonal playground for young children. It…

  6. The News. Winter 2007

    ERIC Educational Resources Information Center

    Giles, Ray, Ed.

    2007-01-01

    This Winter 2007 quarterly newsletter from the Community College League of California includes: (1) Incumbents: Some Win, Some Lose in November Trustee Elections; (2) Voters Approve $2 Billion in Bonds; (3) Photos from the "Together We Can" conference; (4) Report, Media Criticize Transfer, Completion Rates and Colleges; (5) District Leader…

  7. Titan's Emergence from Winter

    NASA Technical Reports Server (NTRS)

    Flasar, F. Michael; Achterberg, Richard; Jennings, Donald; Schinder, Paul

    2011-01-01

    We summarize the changes in Titans thermal structure derived from Cassini CIRS and radio-occultation data during the transition from winter to early spring. Titan's surface, and middle atmosphere show noticeable seasonal change, whereas that in most of the troposphere is mated. This can be understood in terms of the relatively small radiative relaxation time in the middle atmosphere and much larger time scale in the troposphere. The surface exhibits seasonal change because the heat capacity in an annual skin depth is much smaller than that in the lowest scale height of the troposphere. Surface temperatures rise 1 K at raid and high latitudes in the winter northern hemisphere and cool in the southern hemisphere. Changes in in the middle atmosphere are more complicated. Temperatures in the middle stratosphere (approximately 1 mbar) increase by a few kelvin at mid northern latitudes, but those at high latitudes first increase as that region moves out of winter shadow, and then decrease. This probably results from the combined effect of increased solar heating as the suit moves higher in the sky and the decreased adiabatic warming as the sinking motions associated with the cross-equatorial meridional cell weaken. Consistent with this interpretation, the warm temperatures observed higher up at the winter polar stratopause cool significantly.

  8. Improving WEPP Winter Hydrology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Palouse area of the Northwestern Wheat and Range Region in southeastern Washington, northern Idaho, and north-eastern Oregon has serious winter erosion problems due to recurring rainfall and snowmelt runoff on freezing and thawing soil. The Water Erosion Prediction Project (WEPP) model has prove...

  9. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is

  10. Winter Here and Now.

    ERIC Educational Resources Information Center

    Finlay, Joy

    This book contains a wide variety of winter-oriented ideas and activities that can be adapted to all elementary grade levels and can also be integrated into existing mathematics, science, social studies, and/or art programs. The activities aim to help students develop the skills of observation, appreciation, and problem solving as well as

  11. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is…

  12. Winter Playscape Dreaming

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2006-01-01

    Winter, like all seasons, adds a new sense of mystery and discovery to the world of young children. It is the time when they can study snowflakes, find icicles, or observe the birds that share their yards. This article presents ideas and suggestions on how to plan a playscape. A playscape is a man-made seasonal playground for young children. It

  13. Coastal circulation off southern Tamaulipas and northern Veracruz, western Gulf of Mexico, during winter 2012-2013

    NASA Astrophysics Data System (ADS)

    Rivas, David

    2015-04-01

    Four months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during winter 2012-2013 provides velocity, temperature, and salinity series in a region where apparently no in-situ measurements have been formally reported. The measurements show numerous events of intense alongshore velocities with magnitudes typically exceeding 80 cm/s, associated with intensified winds associated with the cold fronts invading the western Gulf during fall-winter, via coastal-trapped motions coming from northern locations. These motions must induce a coastal jet that modulates the regional along-shelf transports. This notion is corroborated by an analytical coastal-trapped wave (CTW) model which explains most of the variability of the sea level and the alongshore barotropic velocity observed in the mooring. Several near-inertial signals exceeding 50 cm/s are also observed at the surface levels. These high-frequency (HF) signals occur several hours before the intensified currents induced by the winds. Comparison between HF series of water velocity and wind suggests a direct influence of the winds affecting the NW Gulf (northern Tamaulipas/southern Texas) about 6-9 hours before the occurrence of the HF currents at the mooring. These near-inertial events induce a vigorous mixing of the local riverine discharge.

  14. The relationship between body mass and survival of wintering canvasbacks

    USGS Publications Warehouse

    Haramis, G.M.; Nichols, J.D.; Pollock, K.H.; Hines, J.E.

    1986-01-01

    Mass and recapture histories of 6,000 Canvasbacks (Aythya valisineria ) banded in upper Chesapeake Bay were used to test two hypotheses: (1) early-winter body mass is associated with the probability of surviving the winter, and (2) early-winter body mass is associated with annual survival probability. Results for adult males, which provided the largest data sets, presented strong evidence that birds with high relative early-winter masses had both greater overwinter and annual survival probabilities. Results of overwinter analyses necessarily are qualified by the alternative explanation of mass-dependent emigration, i.e. the possibility that lighter birds move south in response to cold weather and leave only heavy birds for recapture. Such a phenomenon remains to be documented.

  15. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  16. Logistic regression analysis of the response of winter wheat to components of artificial freezing episodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  17. Nuclear Winter: Implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1988-05-01

    ''Nuclear Winter'' is the term given to the cooling hypothesized to occur in the Northern Hemisphere following a nuclear war as the result of the injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the paper was published in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. Three-dimensional global circulation models have resulted in reduced estimates of cooling---15 to 25/degree/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought is likely to be a direct threat to human survival for populations with the wherewithal to survive normal January temperatures. The principal threat from nuclear winter is to food production, and this could present problems to third parties who are without food reserves. Loss of a crop year is neither a new nor an unexpected threat from nuclear war to the United States and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the United States due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year.

  18. Nuclear Winter: The implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1987-01-01

    ''Nuclear Winter'' is the term given to hypothesized cooling in the northern hemisphere following a nuclear war due to injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the original paper in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. The widespread use of 3-dimensional global circulation models have resulted in reduced estimates of cooling; 15 to 25/sup 0/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought are likely to be direct threats to human survival for populations with the wherewithal to survive normal January temperatures; The principal threat from nuclear winter is to food production, and could present problems to third parties without food reserves; and Loss of a crop year is neither a new nor unexpected threat from nuclear war to the US and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the US due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year. 6 refs.

  19. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; Púčik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  20. Hierarchical wave-front sensing.

    PubMed

    Le Roux, Brice; Coyne, Julien; Ragazzoni, Roberto

    2005-01-10

    We present a new wave-front sensing technique for adaptive optics based on use of several wave-front sensors dedicated to the sensing of a different range of spatial frequencies. We call it a hierarchical wave-front sensor. We present the concept of a hierarchical wave-front sensor and apply it to the Shack-Hartmann sensor. We show the gain that is expected with two Shack-Hartmann sensors. We obtain a gain that increases with the size of the largest sensor, and we detail the application of hierarchical wave-front sensing to extreme adaptive optics and extremely large telescopes. PMID:15678767

  1. Link between warm conveyor belts and fronts and the impact on extreme rainfall

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer; Madonna, Erica; Joos, Hanna; Wernli, Heini; Rudeva, Irina; Simmonds, Ian

    2015-04-01

    The various dynamical features within extratropical cyclones have been shown to be very important for the precipitation produced by these systems. Warm conveyor belts (WCBs) and fronts are both strongly associated with total and extreme precipitation in the midlatitudes. Here we have brought together two automated feature detection methods to answer questions on the frequency of matching of fronts and WCBs, whether this depends on frontal type or height of WCB, and the impact this matching has on extreme precipitation events. We find that WCBs and fronts are strongly related in the midlatitudes - annually 60% of WCBs are associated with cold fronts and around 50% associated with warm fronts, and a fairly large proportion associated with both together. The frequency of linked WCBs and fronts shows a strong seasonal cycle. In some regions warm fronts are more strongly linked to WCBs than cold fronts. To the east of Australia in particular, there are often WCBs not associated with fronts at all. Fronts that co-occur with a WCB are much more likely to produce an extreme precipitation event.

  2. Simple front tracking

    SciTech Connect

    Glimm, J.; Grove, J.W.; Li, X.; Zhao, N.

    1999-04-01

    A new and simplified front tracking algorithm has been developed as an aspect of the extension of this algorithm to three dimensions. Here the authors emphasize two main results: (1) a simplified description of the microtopology of the interface, based on interface crossings with cell block edges, and (2) an improved algorithm for the interaction of a tracked contact discontinuity with an untracked shock wave. For the latter question, they focus on the post interaction jump at the contact, which is a purely 1D issue. Comparisons to other methods, including the level set method, are included.

  3. Coping with Cold Sores

    MedlinePlus

    ... Snowboarding, Skating Crushes What's a Booger? Coping With Cold Sores KidsHealth > For Kids > Coping With Cold Sores ... sore." What's that? Adam wondered. What Is a Cold Sore? Cold sores are small blisters that is ...

  4. DEACCLIMATION AND REACCLIMATION OF COLD-HARDY PLANTS: CURRENT UNDERSTANDING AND EMERGING CONCEPTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of cold-hardy plants to resist deacclimation during transient warm spells and to reacclimate when cold temperatures return are significant for winter survival. Yet compared to the volume of research on the biology of cold acclimation, relatively little is known about how plants maintain...

  5. Factors affecting outdoor exposure in winter: population-based study

    NASA Astrophysics Data System (ADS)

    Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani

    2006-09-01

    The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.

  6. Deciduous Plant Twigs in Winter

    ERIC Educational Resources Information Center

    Clark, Eloise

    1977-01-01

    Describing, via illustration and narrative, the winter twigs found in the U.S., this article presents a sophisticated discussion of: beech, white ash, aspen, sycamore, red oak, butternut, and other winter twigs. (JC)

  7. From the front

    SciTech Connect

    Price, Stephen

    2009-01-01

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glacier sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with that perturbation after a finite amount of thinning and retreat. Therefore, the first hypothesis implies continued retreat of outlet glaciers into the foreseeable future, while the second does not -- provided the bedrock topography prohibits a connection between the retreating glacier and the ocean. Nick and coauthors test the physical mechanisms implied in each hypotbesis in an innovative ice-flow model, and use that model to try to match a time series of observations from Helheim glacier, one of Greenland's three largest outlet glaciers. Along with many observations, the simulations strongly support the contention that the recent retreat of Greenland's outlet glaciers is the result of changes at their marine fronts.Further, the simulations confirm the earlier hypotheses that bedrock topography largely controlled Helheim glacier's rapid acceleration and retreat in 2004 and 2005, and its deceleration and stabilization in 2006. Finally, the current work implies that if requirements of observational data (high-resolution bed topography) and computational resources (fine computational grid resolution) can be met, improved predictive capability for ice-sheet models is attainable. With respect to the concerns raised by the IPCC, this study signals progress.

  8. Canoeists' disorientation following cold immersion

    PubMed Central

    Baker, S.; Atha, J.

    1981-01-01

    As an initial step to a broader study of the disorientating effects of cold water immersions on top class competitive canoeists a survey was made of the incidence of hazardous immersions amongst a majority sample of the better canoeists in the country. Virtually the entire entry to one of the most important national competitive meets was canvassed. A total of 288 canoeists in the 1st and 2nd divisions were identified and asked to participate. Replies were received from 247 (86%). All those responding had had extensive experience of canoeing in winter spate and were capable of fast and efficient first-time canoe rolls in cases of capsize. Particular interest was focussed on the 85 (34%) who had experienced at least one capsize in cold water during training or competition in mid-winter. Respondents viewed the winter capsize seriously. Despite their familiarity with the conditions in which they trained all 85, recalling their capsize experiences, reported being concerned, most (79%) only modestly so, but a significant proportion (21%) confessed to feelings of extreme alarm. A number of marked physical symptoms that regularly attend on a capsize were widely reported, the most usual of which was severe pain in the forehead (89%) and breathing and speaking difficulties when afloat (64%). Additionally 62% reported sensory problems including visual difficulties, dizziness and disorientation. Five canoeists admitted fainting. Despite these hazards few preventive measures were taken and clothing with negligible thermal insulation properties was commonly worn. It is concluded that transient cold immersions can be disturbing, and can disorientate the canoeist, but that although conscious of this and to his own potentially high cost, he takes little notice of it in his desire to compete successfully. Imagesp111-ap111-bp112-ap113-ap114-a PMID:7272652

  9. Winter Cardiovascular Diseases Phenomenon

    PubMed Central

    Fares, Auda

    2013-01-01

    This paper review seasonal patterns across twelve cardiovascular diseases: Deep venous thrombosis, pulmonary embolism, aortic dissection and rupture, stroke, intracerebral hemorrhage, hypertension, heart failure, angina pectoris, myocardial infarction, sudden cardiac death, venricular arrythmia and atrial fibrillation, and discuss a possible cause of the occurrence of these diseases. There is a clear seasonal trend of cardiovascular diseases, with the highest incidence occurring during the colder winter months, which have been described in many countries. This phenomenon likely contributes to the numbers of deaths occurring in winter. The implications of this finding are important for testing the relative importance of the proposed mechanisms. Understanding the influence of season and other factors is essential when seeking to implement effective public health measures. PMID:23724401

  10. Geometry of Winter model

    NASA Astrophysics Data System (ADS)

    Aglietti, U. G.; Santini, P. M.

    2015-06-01

    By constructing the Riemann surface controlling the resonance structure of Winter model, we determine the limitations of perturbation theory. We then derive explicit non-perturbative results for various observables in the weak-coupling regime, in which the model has an infinite tower of long-lived resonant states. The problem of constructing proper initial wavefunctions coupled to single excitations of the model is also treated within perturbative and non-perturbative methods.

  11. Winter Wilderness Travel and Camping.

    ERIC Educational Resources Information Center

    Gilchrest, Norman

    Knowledge and skill are needed for safe and enjoyable travel and camping in the wilderness in winter. The beauty of snow and ice, reduced human use, and higher tolerance of animals toward humans make the wilderness attractive during winter. The uniqueness of winter travel presents several challenges that are not present in other seasons. Safety is…

  12. Air pollution episodes associated with East Asian winter monsoons.

    PubMed

    Hien, P D; Loc, P D; Dao, N V

    2011-11-01

    A dozen multi-day pollution episodes occur from October to February in Hanoi, Vietnam due to prolonged anticyclonic conditions established after the northeast monsoon surges (cold surges). These winter pollution episodes (WPEs) account for most of the 24-h PM(10) exceedances and the highest concentrations of gaseous pollutants in Hanoi. In this study, WPEs were investigated using continuous air quality monitoring data and information on upper-air soundings and air mass trajectories. The 24-h pollutant concentrations are lowest during cold surges; concurrently rise thereafter reaching the highest levels toward the middle of a monsoon cycle, then decline ahead of the next cold surge. Each monsoon cycle usually proceeds through a dry phase and a humid phase as Asiatic continental cold air arrives in Hanoi through inland China then via the East China Sea. WPEs are associated with nighttime radiation temperature inversions (NRTIs) in the dry phase and subsidence temperature inversions (STIs) in the humid phase. In NRTI periods, the rush hour pollution peak is more pronounced in the evening than in the morning and the pollution level is about two times higher at night than in daytime. In STI periods, broad morning and evening traffic peaks are observed and pollution is as high at night as in daytime. The close association between pollution and winter monsoon meteorology found in this study for the winter 2003-04 may serve as a basis for advance warning of WPEs and for forecasting the 24-h pollutant concentrations. PMID:21925714

  13. Farmers’ Market Expands to Offer Products in Winter | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer The 2013 National Cancer Institute (NCI) at Frederick Farmers’ Market regular season may have closed, but that doesn’t mean customers who want fresh produce, handmade crafts, and other homemade goodies from local vendors are out of luck. Winter Markets, which began Jan. 7, will be held every other Tuesday, from 11 a.m. to 1 p.m., in front of Building 549 or in the Café Room, depending on the weather.

  14. COLD TRAPS

    DOEpatents

    Thompson, W.I.

    1958-09-30

    A cold trap is presented for removing a condensable component from a gas mixture by cooling. It consists of a shell, the exterior surface of which is chilled by a refrigerant, and conductive fins welded inside the shell to condense the gas, and distribute the condensate evenly throughout the length of the trap, so that the trap may function until it becomes completely filled with the condensed solid. The contents may then be removed as either a gas or as a liquid by heating the trap. This device has particuinr use as a means for removing uranium hexafluoride from the gaseous diffusion separation process during equipment breakdown and repair periods.

  15. Some Chinese folk prescriptions for wind-cold type common cold

    PubMed Central

    Hai-long, Zhai; Shimin, Chen; Yalan, Lu

    2015-01-01

    Although self-limiting, the common cold (感冒gǎn mào) is highly prevalent. There are no effective antivirals to cure the common cold and few effective measures to prevent it, However, for thousands years, Chinese people have treated the common cold with natural herbs, According to the traditional Chinese medicine (TCM) theory (中醫理論 zhōng yī lǐ lùn), the common cold is considered as an exterior syndrome, which can be further divided into the wind-cold type (風寒型 fēng hán xíng), the wind-heat type (風熱型 fēng rè xíng), and the summer heat dampness type (暑熱型 shǔ rè xíng). Since the most common type of common cold caught in winter and spring is the wind-cold type, the article introduced some Chinese folk prescriptions for the wind-cold type common cold with normal and weak physique, respectively. For thousands of years, Chinese folk prescriptions for the common cold, as complementary and alternative medicine (CAM; 補充與替代醫學 bǔ chōng yǔ tì dài yī xué), have been proven to be effective, convenient, cheap, and most importantly, safe. The Chinese folk prescriptions (中國民間處方 zhōng guó mín jiān chǔ fāng) for the wind-cold type common cold are quite suitable for general practitioners or patients with the wind-cold type common cold, to treat the disease. Of course, their pharmacological features and mechanisms of action need to be further studied. PMID:26151024

  16. A numerical investigation of severe thunderstorm gust fronts

    NASA Technical Reports Server (NTRS)

    Mitchell, K. E.

    1975-01-01

    A numerical model was developed to simulate the evolution and structure of severe thunderstorm gust fronts. The model is a non-hydrostatic, fine resolution, cross-sectional primitive equation model. Two-dimensional horizontal and vertical equations of motion, the continuity equation, and the thermodynamic energy equation were utilized. It was shown that two dominant factors influencing gust front configuration are surface friction and the solenoidal field coincident with the front. It is suggested that solenoidal accelerations oppose the deceleration of surface friction. After a downdraft is initiated in the model, these opposing tendencies soon reach a balance and the gust front achieves a quasi-steady configuration. Thus, the experiments indicate that surface friction does not induce a cycle of front formation and collapse. In addition, the effect of evaporative cooling in producing a vigorous downdraft was parameterized by a local cooling function. Greater cooling in the downdraft results in a more intense gust front that exhibits stronger wind maximums and greater shears. The ambient air stability was shown to be an important factor influencing the depth of the cold outflow.

  17. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness.

    PubMed

    Pagter, Majken; Jensen, Christian R; Petersen, Karen K; Liu, Fulai; Arora, Rajeev

    2008-11-01

    Cold injury is frequently seen in the commercially important shrub Hydrangea macrophylla but not in Hydrangea paniculata. Cold acclimation and deacclimation and associated physiological adaptations were investigated from late September 2006 to early May 2007 in stems of field-grown H. macrophylla ssp. macrophylla (Thunb.) Ser. cv. Blaumeise and H. paniculata Sieb. cv. Kyushu. Acclimation and deacclimation appeared approximately synchronized in the two species, but they differed significantly in levels of mid-winter cold hardiness, rates of acclimation and deacclimation and physiological traits conferring tolerance to freezing conditions. Accumulation patterns of sucrose and raffinose in stems paralleled fluctuations in cold hardiness in both species, but H. macrophylla additionally accumulated glucose and fructose during winter, indicating species-specific differences in carbohydrate metabolism. Protein profiles differed between H. macrophylla and H. paniculata, but distinct seasonal patterns associated with winter acclimation were observed in both species. In H. paniculata concurrent increases in xylem sap abscisic acid (ABA) concentrations ([ABA](xylem)) and freezing tolerance suggests an involvement of ABA in cold acclimation. In contrast, ABA from the root system was seemingly not involved in cold acclimation in H. macrophylla, suggesting that species-specific differences in cold hardiness may be related to differences in [ABA](xylem). In both species a significant increase in stem freezing tolerance appeared long after growth ceased, suggesting that cold acclimation is more regulated by temperature than by photoperiod. PMID:18636985

  18. Role of surface heat fluxes underneath cold pools

    NASA Astrophysics Data System (ADS)

    Gentine, Pierre; Garelli, Alix; Park, Seung-Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    The role of surface heat fluxes underneath cold pools is investigated using cloud-resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.

  19. Role of surface heat fluxes underneath cold pools

    PubMed Central

    Garelli, Alix; Park, Seung‐Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    Abstract The role of surface heat fluxes underneath cold pools is investigated using cloud‐resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection. PMID:27134320

  20. FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hale Alii, Junior Officers' Quarters Type, 9-10 Hale Alii Avenue, 1-2 Eighth Street, Pearl City, Honolulu County, HI

  1. FACILITY 209, SINGLESTORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM CENTER DRIVE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  2. VIEW OF FRONT, RECESSED ENTRY SHOWING FRONT WALK. VIEW FACING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF FRONT, RECESSED ENTRY SHOWING FRONT WALK. VIEW FACING SOUTHWEST - Camp H.M. Smith and Navy Public Works Center Manana Title VII (Capehart) Housing, Three-Bedroom Single-Family Type 9, Birch Circle, Elm Drive, Elm Circle, and Date Drive, Pearl City, Honolulu County, HI

  3. Winter Frost and Fog

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog.

    Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  4. Zooplankton data report: Winter MIZEX, 1987

    SciTech Connect

    Smith, S.L.; Lane, P.V.Z.; Schwartling, E.M.; Beck, B.

    1988-12-01

    The Marginal Ice Zone Experiment (MIZEX) was an interdisciplinary, international Arctic research program designed to study the atmospheric, oceanic, and ice interactions in the Fram Strait region of the Greenland Sea. This report focuses on zooplankton data collected during the winter MIZEX program of 1987. The primary objectives of our group during MIZEX 87 were to study the distribution of zooplankton species in relation to the ice-edge, the Polar Front, and the mesoscale eddy field, and to study zooplanktonic physiology just prior to the spring phytoplankton bloom. The data in this report are quantitative analyses of zooplankton samples collected while aboard the research vessel HAKON MOSBY during MIZEX 87. This is the third in a series of data reports on zooplankton collected in the Fram Strait region during the MIZEX project. A complete catalog of the reports generated from the MIZEX program is archived at the National Snow and Ice Data Center in Boulder, Colorado, USA. 1 ref., 3 tabs.

  5. AMBIPOLAR DIFFUSION-MEDIATED THERMAL FRONTS IN THE NEUTRAL INTERSTELLAR MEDIUM

    SciTech Connect

    Stone, Jennifer M.; Zweibel, Ellen G.

    2010-11-20

    In a thermally bistable medium, cold, dense gas is separated from warm, rarefied gas by thin phase transition layers, or fronts, in which heating, radiative cooling, thermal conduction, and convection of material are balanced. We calculate the steady-state structure of such fronts in the presence of magnetic fields, including the processes of ion-neutral drift and ion-neutral frictional heating. We find that ambipolar diffusion efficiently transports the magnetic field across the fronts, leading to a flat magnetic field strength profile. The thermal profiles of such fronts are not significantly different from those of unmagnetized fronts. The near uniformity of the magnetic field strength across a front is consistent with the flat field strength-gas density relation that is observed in diffuse interstellar gas.

  6. Study of a Wind Front over the Northern South China Sea Generated by the Freshening of the North-East Monsoon

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai

    2015-10-01

    Wind fronts associated with cold-air outbreaks from the Chinese continent in the winter are often observed over the northern South China Sea and are well studied. However, wind fronts caused by another type of synoptic setting, the sudden increase or freshening of the north-east monsoon, which is caused by the merging of two anticyclonic regions over the Chinese continent, are also frequently encountered over the northern South China Sea. For the first time, such an event is investigated using multi-sensor satellite data, weather radar images, and a high-resolution atmospheric numerical model. It is shown that the wind front generated by the freshening of the north-east monsoon is quite similar to wind fronts generated by cold-air outbreaks. Furthermore, we investigate fine-scale features of the wind front that are visible on synthetic aperture radar (SAR) images through variations of the small-scale sea-surface roughness. The SAR image was acquired by the Advanced SAR of the European Envisat satellite over the South China Sea off the coast of Hong Kong and has a resolution of 150 m. It shows notches (dents) in the frontal line and also radar signatures of embedded rain cells. This (rare) SAR image, together with a quasi-simultaneously acquired weather radar image, provide excellent data with which to test the performance of the pre-operational version of the Atmospheric Integrated Rapid-cycle (AIR) forecast model system of the Hong Kong Observatory with respect to modelling rain cells at frontal boundaries. The calculations using a horizontal resolution with 3-km resolution show that the model reproduces quite well the position of the notches where rain cells are generated. The model shows further that at the position of the notches the vorticity of the airflow is increased leading to the uplift of warmer, moister air from the sea-surface to higher levels. With respect to the 10-km resolution model, the comparison of model data with the near-surface wind field derived from the SAR image shows that the AIR model overestimates the wind speed in the lee of the coastal mountains east of Hong Kong, probably due to the incorrect inclusion of the coastal topography.

  7. Spirit's Winter Work Site

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  8. Assessment of cold stress in outdoor work.

    PubMed

    Anttonen, H; Virokannas, H

    1994-01-01

    The evaluation of cold stress in working life was done in 13, mainly outdoor, occupations and 143 workers using local temperatures, body cooling and thermal sensations. The subjects in the study were young, healthy men and they wore the type of winter clothing generally used in those ambient temperatures (+6...-29 degrees C), for in a work load of from 112 to 480 W. Local temperatures on finger skin indicated that manual dexterity was often reduced in outdoor work. A risk of frostbite was frequently found on the cheek and the wind chill index predicted the risk quite well. Body cooling was often temporarily too high when measured by heat debt and mean skin temperature. Thermal sensations were cool or cold occasionally in 28% of the workers interviewed. The insulation of clothing worn was often lower than the IREQmin-value recommends. The results showed that in outdoor work in winter time cold stress frequently reduced (70%) working ability at least for a short period. Mean skin temperature seems to be, in practice, a useful indicator for body cooling and the IREQmin-value was suitable, especially in light work, to indicate body cooling. A very sensitive factor for the expression of cold stress was finger temperature, at least as an indicator of finger dexterity. Due to the adverse health effects found the cold stress should also be evaluated more systematically in occupational health and safety with health examinations, with protective clothing and technical preventive means. PMID:8049001

  9. Surface properties of ocean fronts

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.; Hubert, W. E.

    1976-01-01

    Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models.

  10. Field efficacy of wintertime insecticide applications against greenbugs, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), on winter wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat producers in Oklahoma often combine an insecticide with a top-dress application of nitrogen during late fall or winter to control existing greenbug populations. We evaluated the efficacy of three classes of insecticides applied in cold weather conditions ranging from -13.3 degrees to 2...

  11. Cover Crop Biomass and Corn Yield Following 13 Rye, Wheat, and Triticale Cultivars Used as Winter Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce nitrate leaching and erosion in corn-soybean rotations in the upper Midwest. The cover crop growing season between harvest and planting of corn and soybean, however, is short and cold. Additionally, previous studies in Iowa have indicated that winter r...

  12. Colds and flus - antibiotics

    MedlinePlus

    Antibiotics - colds and flu ... treat infections that are caused by a virus. Colds and flu are caused by viruses. If you ... Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ...

  13. Vitamin C and colds

    MedlinePlus

    Colds and vitamin C ... belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... vitamin C may help reduce how long a cold lasts, but they do not appear to protect ...

  14. Cold symptoms (image)

    MedlinePlus

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  15. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2015-12-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  16. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2016-05-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  17. Cold fusion

    SciTech Connect

    Bush, R.T. )

    1991-03-01

    The transmission resonance model (TRM) is combined with some electrochemistry of the cathode surface and found to provide a good fit to new data on excess heat. For the first time, a model for cold fusion not only fits calorimetric data but also predicts optimal trigger points. This suggests that the model is meaningful and that the excess heat phenomenon claimed by Fleischmann and Pons is genuine. A crucial role is suggested for the overpotential and, in particular, for the concentration overpotential, i.e., the hydrogen overvoltage. Self-similar geometry, or scale invariance, i.e., a fractal nature, is revealed by the relative excess power function. Heat bursts are predicted with a scale invariance in time, suggesting a possible link between the TRM and chaos theory. The model describes a near-surface phenomenon with an estimated excess power yield of {approximately}1 kW/cm{sup 3} Pd, as compared to 50 W/cm{sup 3} of reactor core for a good fission reactor. Transmission resonance-induced nuclear transmutation, a new type of nuclear reaction, is strongly suggested with two types emphasized: transmission resonance-induced neutron transfer reactions yielding essentially the same end result as Teller's hypothesized catalytic neutron transfer and a three-body reaction promoted by standing de Broglie waves. In this paper suggestions for the anomalous production of heat, particles, and radiation are given.

  18. Cold confusion

    SciTech Connect

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  19. Climatological characteristics of fronts in the western North Pacific based on surface weather charts

    NASA Astrophysics Data System (ADS)

    Utsumi, Nobuyuki; Kim, Hyungjun; Seto, Shinta; Kanae, Shinjiro; Oki, Taikan

    2014-08-01

    Composite front climatology in the western North Pacific is determined using a newly developed 1.0° gridded data set. Here we propose a research strategy for determining the spatiotemporal distribution of fronts using weather chart images published by the Japan Meteorological Agency, one of the major data providers in the region. A preliminarily investigation of the internal data characteristics for the period of 2000-2010 is undertaken, and the final 4 years of data are used for an analysis of front climatology to avoid the effect of any spurious trends. This enables in-depth analyses to be conducted, which have not previously been possible in the region, including the composites of cross-sectional patterns for the thermal fields and precipitation near fronts, front length seasonality, and the significance of the thermal gradient near the fronts, in addition to determining the frontal frequency and spatial distribution of frontal precipitation. Pixel-wise analysis reveals that 56% of the local precipitation maximum is located on the warm side of a cold front caused by less tilted upward motion on the warm side, with the intrusion of the upper level cold dry air into the warm side. This new data set also enables a further analysis of the occluded fronts, which are not correctly distinguished in the existing objective detection method.

  20. a Climatology of Extreme Minimum Winter Temperatures in Ohio

    NASA Astrophysics Data System (ADS)

    Edgell, Dennis Joe

    The Extreme Minimum Winter Temperature (EMWT) is the coldest temperature recorded each winter at a given weather station. This variable is a measure of winter temperature stress. Extreme cold influences the geographic distribution of plants, and is a prime control for the production of some valuable fruit crops grown in Ohio. EMWT values are often used to map plant hardiness zones, however the magnitude of EMWT and the date that it occurs has varied widely from year to year. Climatic variables rarely remain constant over time, and the plant hardiness zones could shift significantly if the climate changes and there is a trend towards warmer EMWTs. Plants that have their present geographic ranges limited by cold winter temperatures could increase their spatial extent. Furthermore, EMWT has impacts on human health and has applications for architecture. EMWTs at eighty-nine weather stations in Ohio were analyzed. Summary statistics and return period intervals for critical EMWTs are tabulated and mapped. Return period maps may be more useful for environmental planning than plant hardiness zone maps based on average EMWT, especially in a variable climate. Graphical methods, curve fitting and a probability model for the mean were utilized to examine the long term trend. The EMWT has not warmed during the known climatic record of this variable in Ohio. This study demonstrates the need for more applied climatological studies based on the observed climate record, not obscured by the assumptions of the global warming paradigm.

  1. Winter weather scorecard

    NASA Astrophysics Data System (ADS)

    Last fall's 3-month winter weather prediction by National Weather Service (NWS) forecasters was not terrific, but it was not too far off the mark, either. A comparison of the predicted temperatures and precipitation (Eos, December 25, 1984, p. 1241) to the observed conditions (see Figures 1 and 2) during the months of December, January, and February shows that the forecasters were generally correct where they were most confident in their predictions.According to Donald Gilman, chief of the Predictions Branch at NWS's National Climate Analysis Center, the overall temperature forecast was probably better than that for precipitation. “The temperature forecast was pretty good in the West,” said Gilman. “East of the Mississippi, however, was a mixed picture.”

  2. Winter fuels report

    SciTech Connect

    Not Available

    1990-11-29

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition and underground storage for the United States and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the United States and selected cities; and US total heating degree-days by city. 27 figs, 12 tabs.

  3. Winter Hypertension: Potential mechanisms

    PubMed Central

    Fares, Auda

    2013-01-01

    Hypertension exhibits a winter peak and summer trough in countries both north and south of the equator. A variety of explanations have been proposed to account for the seasonal nature of hypertension. It is likely that this reflects seasonal variations in risk factors. Seasonal variations have been demonstrated in a number of risk factors may play essential roles for seasonality of hypertension such as noradrenalin, catecholamine and vasopressin, vitamin D, and serum cholesterol. However, a number of studies have also suggested a direct effect of environmental temperature and physical activity on blood pressure. This paper was design to review the available evidence on seasonal variations in hypertension and possible explanations for them. PMID:24421749

  4. Spirit Scans Winter Haven

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand.

    This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  5. Winter fuels report

    SciTech Connect

    Not Available

    1995-02-17

    The Winter Fuels Report is intended to provide consise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; Natural gas supply and disposition and underground storage for the US and consumption for all PADD`s as well as selected National average prices; Residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; Crude oil and petroleum price comparisons for the US and selected cities; and A 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree days by city.

  6. Winter fuels report

    SciTech Connect

    Not Available

    1995-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  7. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839

  8. Winter Survival: A Consumer's Guide to Winter Preparedness.

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This booklet discusses a variety of topics to help consumers prepare for winter. Tips for the home include: winterizing the home, dealing with a loss of heat or power failure, and what you need to have on hand. Another section gives driving tips and what to do in a storm. Health factors include suggestions for keeping warm, signs and treatment for…

  9. Predictability of winter temperature in China from previous autumn Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Zuo, Jinqing; Ren, Hong-Li; Wu, Bingyi; Li, Weijing

    2016-01-01

    The potential predictability of winter temperature in China from autumn Arctic sea ice anomalies is studied by examining and statistically modeling the large-scale interannual covariability between them on the basis of singular value decomposition analysis. It is demonstrated that an intimate relationship exists between September and October sea ice anomalies in the Eurasian Arctic and following winter temperature anomalies in China, except in the Tibetan Plateau. When the autumn sea ice anomalies decline in the Eurasian Arctic, above-normal pressure anomalies appear to prevail over the region from the Eurasian Arctic to Eastern Europe and Mongolia, and below-normal anomalies prevail over the mid-latitudes of Asia and Northwestern Pacific in the following winter. Consequently, the winter Siberian High and East Asian trough are both strengthened, favoring the southward invasion of high-latitude cold air masses and thus cold temperature anomalies in China. It is found that the Siberian High plays a crucial role in delivering effects of the autumn Arctic sea ice anomalies on winter temperature variability in China. Based on this evidence, a statistical model is established to examine the potential predictability of winter temperature anomalies in China by taking the autumn Arctic sea ice signals as a predictor. Validation shows considerable skill in predicting winter temperature anomalies over a large part of China, indicating a significant potential for improving winter climate prediction in China.

  10. Asymmetric counterpropagating fronts without flow.

    PubMed

    Andrade-Silva, I; Clerc, M G; Odent, V

    2015-06-01

    Out-of-equilibrium systems exhibit domain walls between different states. These walls, depending on the type of connected states, can display rich spatiotemporal dynamics. In this Rapid Communication, we investigate the asymmetrical counterpropagation of fronts in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the different front shapes and propagation speeds. These fronts present dissimilar elastic deformations that are responsible for their asymmetric speeds. Theoretically, using a phenomenological model, we describe the observed dynamics with fair agreement. PMID:26172647

  11. Asymmetric counterpropagating fronts without flow

    NASA Astrophysics Data System (ADS)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2015-06-01

    Out-of-equilibrium systems exhibit domain walls between different states. These walls, depending on the type of connected states, can display rich spatiotemporal dynamics. In this Rapid Communication, we investigate the asymmetrical counterpropagation of fronts in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the different front shapes and propagation speeds. These fronts present dissimilar elastic deformations that are responsible for their asymmetric speeds. Theoretically, using a phenomenological model, we describe the observed dynamics with fair agreement.

  12. Flame front as hydrodynamic discontinuity

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide; Abarzhi, Snezhana

    2012-11-01

    We applied generalized Rankine-Hugoniot conditions to study the dynamics of unsteady and curved fronts as a hydrodynamic discontinuity. It is shown that the front is unstable and Landau-Darrieus instability develops only if three conditions are satisfied (1) large-scale vorticity is generated in the fluid bulk; (2) energy flux across the front is imbalanced; (3) the energy imbalance is large. The structure of the solution is studied in details. Flows with and without gravity and thermal diffusion are analyzed. Stabilization mechanisms are identified. NSF 1004330.

  13. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  14. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects.

    PubMed

    Vanin, Stefano; Bubacco, Luigi; Beltramini, Mariano

    2008-01-01

    Different kinds of molecules were identified as antifreezing agents in the body fluids of cold tolerant invertebrates: sugars, polyols and proteins. While none of the active arthropods were so far reported to accumulate polyols, these compounds are present in the haemolymph of species that hibernate in a passive stage such as diapause. In this work we investigated insect species that are active during winter and we demonstrated the ability of the mecopteran Boreus hiemalis (Mecoptera, Boreidae), the wingless fly Chionea sp. (Diptera, Limoniidae) and cantharid larvae (Coleoptera, Cantharidae) to accumulate sugars in their haemolymph to survive during winter. We report, for the first time, that for snow-active insects, trehalose comprises an important haemolymph component, its concentration changing as a function of the season, suggesting that the same adaptive strategies against cold conditions have evolved both in winter active and winter diapausing insects. PMID:19280052

  15. Holocene winter climate variability in mid-latitude western North America.

    PubMed

    Ersek, Vasile; Clark, Peter U; Mix, Alan C; Cheng, Hai; Edwards, R Lawrence

    2012-01-01

    Water resources in western North America depend on winter precipitation, yet our knowledge of its sensitivity to climate change remains limited. Similarly, understanding the potential for future loss of winter snow pack requires a longer perspective on natural climate variability. Here we use stable isotopes from a speleothem in southwestern Oregon to reconstruct winter climate change for much of the past 13,000 years. We find that on millennial time scales there were abrupt transitions between warm-dry and cold-wet regimes. Temperature and precipitation changes on multi-decadal to century timescales are consistent with ocean-atmosphere interactions that arise from mechanisms similar to the Pacific Decadal Oscillation. Extreme cold-wet and warm-dry events that punctuated the Holocene appear to be sensitive to solar forcing, possibly through the influence of the equatorial Pacific on the winter storm tracks reaching the US Pacific Northwest region. PMID:23187619

  16. INSTABILITY OF MAGNETIZED IONIZATION FRONTS SURROUNDING H II REGIONS

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-12-20

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes the transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number M{sub M2}≤1. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor α by a factor of 1 + 1/(2β{sub 1}) compared to the unmagnetized case, with β{sub 1} denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations owing to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber, as well as the upstream flow speed, and approximately to α{sup 1/2}. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when M{sub M2}{sup 2}<2/(2β{sub 1}−1). When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.

  17. Expansion of a cold non-neutral plasma slab

    SciTech Connect

    Karimov, A. R.; Yu, M. Y.; Stenflo, L.

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  18. The ABCs of Front Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frost protection or protecting plants from cold temperatures where they could be damaged must be a major consideration in orchard planning. Cold temperature protection events commonly occur during "radiation" frost conditions when the sky is clear, there is little wind and temperature inversions ca...

  19. Coastal dynamics off Northwest Iberia during a stormy winter period

    NASA Astrophysics Data System (ADS)

    Otero, Pablo; Ruiz-Villarreal, Manuel; García-García, Luz; González-Nuevo, Gonzalo; Cabanas, Jose Manuel

    2013-01-01

    The consequences of a stormy winter period (2009/2010) on the shelf and coastal dynamics off Northwest Iberia are analysed by using model results in combination with the set of available observations in the frame of the Iberian Margin Ocean Observatory (RAIA), a cross-border infrastructure among North Portugal and Galicia (Spain). During the study winter, the frequent arrival of weather fronts forced river plumes to flow along the inner shelf in a fast (>1 m s-1) jet-like structure. The buoyant current strongly influenced the outer rías, the name of the estuaries in the region, where a strong decay of surface salinity (<10.5) has been observed. Once the weather front has passed, the wind reversal forced the offshore expansion of river plumes and also the development of a winter upwelling event. Thermohaline patterns in both model and observations revealed an intrusion of warm (>15 °C) and salty (>35.9) waters into the rías associated with the Iberian Poleward Current. Finally, some Lagrangian modelling experiments were performed to analyse the transport ability of the plume and the effect that could have had in the biological material trapped on it. The experiments reveal that an overall northward displacement of surface particles will be expected after several alternate wind events.

  20. Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis.

    PubMed

    Boychuk, Evelyn C; Smiley, John T; Dahlhoff, Elizabeth P; Bernards, Mark A; Rank, Nathan E; Sinclair, Brent J

    2015-10-01

    Small ectothermic animals living at high altitude in temperate latitudes are vulnerable to lethal cold throughout the year. Here we investigated the cold tolerance of the leaf beetle Chrysomela aeneicollis living at high elevation in California's Sierra Nevada mountains. These insects spend over half their life cycle overwintering, and may therefore be vulnerable to winter cold, and prior studies have demonstrated that survival is reduced by exposure to summertime cold. We identify overwintering microhabitat of this insect, describe cold tolerance strategies in all life stages, and use microclimate data to determine the importance of snow cover and microhabitat buffering for overwinter survival. Cold tolerance varies among life history stages and is typically correlated with microhabitat temperature: cold hardiness is lowest in chill-susceptible larvae, and highest in freeze-tolerant adults. Hemolymph osmolality is higher in quiescent (overwintering) than summer adults, primarily, but not exclusively, due to elevated hemolymph glycerol. In nature, adult beetles overwinter primarily in leaf litter and suffer high mortality if early, unseasonable cold prevents them from entering this refuge. These data suggest that cold tolerance is tightly linked to life stage. Thus, population persistence of montane insects may become problematic as climate becomes more unpredictable and climate change uncouples the phenology of cold tolerance and development from the timing of extreme cold events. PMID:26231921

  1. Winter fuels report

    SciTech Connect

    Not Available

    1994-10-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report

    SciTech Connect

    Not Available

    1995-01-27

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysis, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Winter fuels report

    SciTech Connect

    Not Available

    1995-01-13

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  4. Winter fuels report

    SciTech Connect

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  5. The Anomalous Winter of 1783-1784: Was the Laki Eruption or an Analog of the 2009-2010 Winter to Blame?

    NASA Technical Reports Server (NTRS)

    D'Arrigo, Rosanne; Seager, Richard; Smerdon, Jason E.; LeGrande, Allegra N.; Cook, Edward R.

    2011-01-01

    The multi ]stage eruption of the Icelandic volcano Laki beginning in June, 1783 is speculated to have caused unusual dry fog and heat in western Europe and cold in North America during the 1783 summer, and record cold and snow the subsequent winter across the circum-North Atlantic. Despite the many indisputable impacts of the Laki eruption, however, its effect on climate, particularly during the 1783.1784 winter, may be the most poorly constrained. Here we test an alternative explanation for the unusual conditions during this time: that they were caused primarily by a combined negative phase of the North Atlantic Oscillation (NAO) and an El Nino ]Southern Oscillation (ENSO) warm event. A similar combination of NAO ]ENSO phases was identified as the cause of record cold and snowy conditions during the 2009.2010 winter in Europe and eastern North America. 600-year tree-ring reconstructions of NAO and ENSO indices reveal values in the 1783.1784 winter second only to their combined severity in 2009.2010. Data sources and model simulations support our hypothesis that a combined, negative NAO ]ENSO warm phase was the dominant cause of the anomalous winter of 1783.1784, and that these events likely resulted from natural variability unconnected to Laki.

  6. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame?

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne; Seager, Richard; Smerdon, Jason E.; LeGrande, Allegra N.; Cook, Edward R.

    2011-03-01

    The multi-stage eruption of the Icelandic volcano Laki beginning in June, 1783 is speculated to have caused unusual dry fog and heat in western Europe and cold in North America during the 1783 summer, and record cold and snow the subsequent winter across the circum-North Atlantic. Despite the many indisputable impacts of the Laki eruption, however, its effect on climate, particularly during the 1783-1784 winter, may be the most poorly constrained. Here we test an alternative explanation for the unusual conditions during this time: that they were caused primarily by a combined negative phase of the North Atlantic Oscillation (NAO) and an El Niño-Southern Oscillation (ENSO) warm event. A similar combination of NAO-ENSO phases was identified as the cause of record cold and snowy conditions during the 2009-2010 winter in Europe and eastern North America. 600-year tree-ring reconstructions of NAO and ENSO indices reveal values in the 1783-1784 winter second only to their combined severity in 2009-2010. Data sources and model simulations support our hypothesis that a combined, negative NAO-ENSO warm phase was the dominant cause of the anomalous winter of 1783-1784, and that these events likely resulted from natural variability unconnected to Laki.

  7. Evolution of a physical and biological front from upwelling to relaxation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwu; Bellingham, James G.; Ryan, John P.; Godin, Michael A.

    2015-10-01

    Fronts influence the structure and function of coastal marine ecosystems. Due to the complexity and dynamic nature of coastal environments and the small scales of frontal gradient zones, frontal research is difficult. To advance this challenging research we developed a method enabling an autonomous underwater vehicle (AUV) to detect and track fronts, thereby providing high-resolution observations in the moving reference frame of the front itself. This novel method was applied to studying the evolution of a frontal zone in the coastal upwelling environment of Monterey Bay, California, through a period of variability in upwelling intensity. Through 23 frontal crossings in four days, the AUV detected the front using real-time analysis of vertical thermal stratification to identify water types and the front between them, and the vehicle tracked the front as it moved more than 10 km offshore. The physical front coincided with a biological front between strongly stratified phytoplankton-enriched water inshore of the front, and weakly stratified phytoplankton-poor water offshore of the front. While stratification remained a consistent identifier, conditions on both sides of the front changed rapidly as regional circulation responded to relaxation of upwelling winds. The offshore water type transitioned from relatively cold and saline upwelled water to relatively warm and fresh coastal transition zone water. The inshore water type exhibited an order of magnitude increase in chlorophyll concentrations and an associated increase in oxygen and decrease in nitrate. It also warmed and freshened near the front, consistent with the cross-frontal exchange that was detected in the high-resolution AUV data. AUV-observed cross-frontal exchanges beneath the surface manifestation of the front emphasize the importance of AUV synoptic water column surveys in the frontal zone.

  8. Front structure of vehicle body

    SciTech Connect

    Yamada, K.

    1987-03-03

    In a front structure of a vehicle body comprising a soft fascia covering the front of the vehicle body; the improvement is described which comprises a transversely extending fascia set plate, on which the upper end portion of soft fascia is to be mounted, positioned in front of a transversely extending radiator shroud member; right and left wing-guide side panels, for guiding air introduced at the front of the vehicle in motion to a radiator, mounted in front of the radiator shroud member and forming right and left guide faces; the right and left wind-guide side panels supporting the fascia set plate, and the panels and set plate forming a U-shaped soft fascia support structure; means respectively connecting lower end portions of the wind guide side panels to right and left side frames, the side frames having extended portions in front of portions of the side frames supporting the radiator shroud member and the lower end portions of the wind-guide side panels being connected to the extended portions; a cross member connecting the lower end portions of the right and left wind-guide panels, the panels, fascia set plate, and cross member forming a soft fascia support structure having a substantially rectangular closed cross section, and the fascia set plate being supported at an intermediate portion by a stay extending upwardly from the cross member, a front stay portion connecting the fascia set plate to the cross member, and a rear stay portion connecting the cross member to the upper portions of the radiator shroud member.

  9. MHD STABILITY OF INTERSTELLAR MEDIUM PHASE TRANSITION LAYERS. I. MAGNETIC FIELD ORTHOGONAL TO FRONT

    SciTech Connect

    Stone, Jennifer M.; Zweibel, Ellen G.

    2009-05-01

    We consider the scenario of a magnetic field orthogonal to a front separating two media of different temperatures and densities, such as cold and warm neutral interstellar gas, in a two-dimensional plane-parallel geometry. A linear stability analysis is performed to assess the behavior of both evaporation and condensation fronts when subject to incompressible, corrugational perturbations with wavelengths larger than the thickness of the front. We discuss the behavior of fronts in both super-Alfvenic and sub-Alfvenic flows. Since the propagation speed of fronts is slow in the interstellar medium (ISM), it is the sub-Alfvenic regime that is relevant, and magnetic fields are a significant influence on front dynamics. In this case, we find that evaporation fronts, which are unstable in the hydrodynamic regime, are stabilized. Condensation fronts are unstable, but for parameters typical of the neutral ISM the growth rates are so slow that steady-state fronts are effectively stable. However, the instability may become important if condensation proceeds at a sufficiently fast rate. This paper is the first in a series exploring the linear and nonlinear effects of magnetic field strength and orientation on the corrugational instability, with the ultimate goal of addressing outstanding questions about small-scale ISM structure.

  10. Winter Anomaly 1982/83 in Comparison with Earlier Winters (1960-82)

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    The winter anomaly in the winter of 1982/83 is compared with the winter anomalies of earlier winters (1960-82) from the point of view of amplitude and timing of the winter anomaly, and geomagnetic and dynamic activity influences. Some evidence of a negative influence of sudden stratospheric warnings on the winter anomaly is given.

  11. Record-breaking Ozone Loss during Arctic Winter 2010/2011: Comparison with Arctic Winter 1996/1997

    NASA Astrophysics Data System (ADS)

    Godin Beekmann, S.; Kuttipurath, J.; Lefèvre, F.; Santee, M. L.; Froidevaux, L.

    2011-12-01

    Polar processing and chemical ozone loss is analysed during the Arctic winter/spring 2010/2011. The analyses with temperatures and potential vorticity (PV) data show a prolonged vortex from early December through mid-April. The PV maps illustrate strong vortex persistence in the lower stratosphere between 450 and 675 K, showing similar evolution with time. The minimum temperatures extracted from ECMWF data at 40-90°N show values below 195 K for a record period of first week of December through second week of April, indicating the longest period of colder temperatures for 17 years. At 10 hPa, there was a warming of about 10 K at 60°N and 40 K at 90°N around mid-January. The heat flux also showed high values in line with the increase in temperatures, of about 425 m K/s at 60°N at the same pressure level. However, the westerlies were strong (e.g. 35-45 m/s at 60°N) enough to keep the vortex intact until mid-April. Because of the cold temperatures in late winter and early spring, large areas of Polar Stratospheric Clouds (PSC) were found in the 400-600 K isentropic level range. Though the maximum values of PSCs area are smaller compared to other cold winters such as 2005, the extended period of presence of PSCs during this winter was exceptional, especially in late February-mid-March, in agreement with the cold temperatures during the period. Ozone loss analyses with high resolution Mimosa-Chim chemical transport model simulations show that the loss started by early January, and was about 0.5 ppmv in late January. The loss progressed slowly to 1 ppmv by the end of February, and then intensified by early March. The ozone depletion estimated by the passive method finds a maximum value of about 2-2.3 ppmv by the end of March-early April in the 450-550K range inside the vortex, which coincides with the areas of PSCs and high chlorine activation. This is the largest loss ever estimated with this model for any Arctic winter. It is consistent with the unprecedented chlorine activation that occurred in the winter, as the modeled ClO values show about 1.7 ppbv in early January and about 1 ppbv in March at 450-550K. This is longest period of chlorine activation noted among the Arctic winters. The ozone partial column loss reaches about 115-150 DU in the range 350 - 550 K. These model results for ozone, ozone loss and ClO are in good agreement with those found from Aura Microwave Limb Sounder observations. Since the winter 1996/1997 was also very cold in March - April, a comparison between both winters 2011 and 1997 will be presented, based on temperature, PV, Heat flux data and ozone loss estimations. Similarities and differences in the polar processing and ozone loss during both winters will be discussed using various measurements and model simulations. Copyright 2011. All rights reserved.

  12. Air-sea interaction over a thermal marine front in the Denmark Strait

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Uotila, Juha; Launiainen, Jouko

    1998-11-01

    An investigation was conducted into air-sea interaction in the Denmark Strait, where a distinct thermal front separates warm North Atlantic water from the cold East Greenland Current. The field data consisted of ship weather station data and rawinsonde soundings from R/V Aranda's expedition in August-September 1993. The surface energy balance differed drastically between the warm and cold side of the front (net fluxes of 95 W m-2 upward and 82 W m-2 downward, respectively). The difference resulted mostly from the contradictory turbulent fluxes. The air temperature, humidity and wind speed showed more variation on the warm side of the front. Lower wind speeds were observed on the cold side. The cross-frontal differences in the air temperature and wind speed were largest during front-parallel flow, but those in the sensible and latent heat flux were largest during cross-frontal flow. During cases of air advection across the front, the modification in the air temperature was strongest with a low wind speed. Downwind of the front, the sensible heat flux strongly depended on the south-north wind component. The rawinsonde data revealed temperature inversions and low-level jets. The wind profile was affected by the combined effects of baroclinity, surface layer stability, and stratification through the atmospheric boundary layer. The surface heterogeneity caused by the sea surface temperature front resulted in the Schmidt paradox: the area-averaged sensible heat flux was upward, while the area-averaged air temperature exceeded the area-averaged surface temperature. A mosaic method, extended by estimates of the local wind speed over the warm and cold water side, was applicable to parameterizing the area-averaged sensible heat flux.

  13. Occurrence of large temperature inversion in the thermohaline frontal zone at the Yellow Sea entrance in winter and its relation to advection

    NASA Astrophysics Data System (ADS)

    Lie, Heung-Jae; Cho, Cheol-Ho; Jung, Kyung Tae

    2015-01-01

    inversion (higher temperature at a deeper depth) in winter and its relation to advection were investigated by analyzing both conductivity-temperature-depth data in the southern Yellow Sea (YS) and northwestern East China Sea during the winter of 2002-2003 and time series data of temperature, salinity, and currents at a buoy station at the YS entrance. Significant temperature inversions occur predominantly along the thermohaline front at the YS entrance where the Cheju Warm Current Water (CWCW) and the cold coastal waters meet. In February 2003, on the northern frontal zone along 34°N where isotherms and isohalines declined downward to the north, particularly large inversions with temperature differences of larger than 2.0°C were observed to occur more in troughs than in the crests of the wave-like frontal meander where the cold Korean coastal water (KCW) advances farther southward. The inversion persisted until mid-April at the buoy station in the frontal zone, and both temperature and salinity showed simultaneous variations in the same manner. During episodic occurrences of large inversions, temperature and salinity decreased sharply in the upper layer, but increased concurrently in the lower layer. These episodic inversions were found to be closely related to the westward advection of the KCW in the upper layer and the northward advection of the CWCW in the lower layer. It is considered that these advections may play an important role in maintaining baroclinicity in the northern frontal zone, which is responsible for driving the westward transversal flow across the YS entrance.

  14. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  15. Glycogen, not dehydration or lipids, limits winter survival of side-blotched lizards (Uta stansburiana).

    PubMed

    Zani, Peter A; Irwin, Jason T; Rollyson, Mary E; Counihan, Jessica L; Healas, Sara D; Lloyd, Emily K; Kojanis, Lee C; Fried, Bernard; Sherma, Joseph

    2012-09-01

    Climate change is causing winters to become milder (less cold and shorter). Recent studies of overwintering ectotherms have suggested that warmer winters increase metabolism and decrease winter survival and subsequent fecundity. Energetic constraints (insufficient energy stores) have been hypothesized as the cause of winter mortality but have not been tested explicitly. Thus, alternative sources of mortality, such as winter dehydration, cannot be ruled out. By employing an experimental design that compared the energetics and water content of lizards that died naturally during laboratory winter with those that survived up to the same point but were then sacrificed, we attempt to distinguish among multiple possible causes of mortality. We test the hypothesis that mortality is caused by insufficient energy stores in the liver, abdominal fat bodies, tail or carcass or through excessive water loss. We found that lizards that died naturally had marginally greater mass loss, lower water content, and less liver glycogen remaining than living animals sampled at the same time. Periodically moistening air during winter reduced water loss, but this did not affect survival, calling into question dehydration as a cause of death. Rather, our results implicate energy limitations in the form of liver glycogen, but not lipids, as the primary cause of mortality in overwintering lizards. When viewed through a lens of changing climates, our results suggest that if milder winters increase the metabolic rate of overwintering ectotherms, individuals may experience greater energetic demands. Increased energy use during winter may subsequently limit individual survival and possibly even impact population persistence. PMID:22875774

  16. Projected changes to winter temperature characteristics over Canada based on an RCM ensemble

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi; Diro, Gulilat Tefera; Khaliq, M. Naveed

    2015-11-01

    Cold temperature and associated extremes often impact adversely human health and environment and bring disruptions in economic activities during winter over Canada. This study investigates projected changes in winter (December to March) period cold extreme days (i.e., cold nights, cold days, frost days, and ice days) and cold spells over Canada based on 11 regional climate model (RCM) simulations for the future 2040-2069 period with respect to the current 1970-1999 period. These simulations, available from the North American Regional Climate Change Assessment Program, were obtained with six different RCMs, when driven by four different Atmosphere-Ocean General Circulation Models, under the Special Report on Emissions Scenarios A2 scenario. Based on the reanalysis boundary conditions, the RCM simulations reproduce spatial patterns of observed mean values of the daily minimum and maximum temperatures and inter-annual variability of the number of cold nights over different Canadian climatic regions considered in the study. A comparison of current and future period simulations suggests decreases in the frequency of cold extreme events (i.e., cold nights, cold days and cold spells) and in selected return levels of maximum duration of cold spells over the entire study domain. Important regional differences are noticed as the simulations generally indicate smaller decreases in the characteristics of extreme cold events over western Canada compared to the other regions. The analysis also suggests an increase in the frequency of midwinter freeze-thaw events, due mainly to a decrease in the number of frost days and ice days for all Canadian regions. Especially, densely populated southern and coastal Canadian regions will require in depth studies to facilitate appropriate adaptation strategies as these regions are clearly expected to experience large increases in the frequency of freeze-thaw events.

  17. The Challenge of Winter Backpacking.

    ERIC Educational Resources Information Center

    Cavanaugh, Michael; Mapes, Alan

    1981-01-01

    Tips and techniques for safe and enjoyable winter backpacking are offered. Topics covered include cross county skis, snowshoes, clothing, footwear, shelter, sleeping bags, food, hypothermia prevention, as well as general rules and requirements. (CO)

  18. Analytical models of dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Vasko, Ivan; Artemyev, Anton

    Dipolarization fronts (DFs) are mesoscale structures generated during the transient magnetic reconnection in the Earth's magnetotail. Spacecraft often observe these structures propagating toward the Earth with velocities 300-100 km/s. Modern multispacecraft observations allow reconstruction of 3D configuration of electromagnetic fields of DF: front is strongly curved in the XY plane and spatially localized along the Z axis (in GSM coordinate system). DFs play important role in plasma heating and charged particle acceleration. Thus, the simplified analytical models of 2D and 3D configuration of DF are necessary to model charge particle interaction with fronts. In the present report we propose 3D analytical model of DF. For several given distributions of B _{z} magnetic field component we have found analytical expressions for magnetic fields B _{x}, B _{y} and electric fields E _{x}, E _{y}. We also discuss distribution of electric field, which is due to the polarization of plasma in the vicinity of DF.

  19. Identification of cold-responsive genes in blueberry (Vaccinium corymbosum L.) using a hybridization approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced cold tolerance, including tolerance to winter freezing and spring frosts, is needed for genetic improvement of current highbush blueberry (Vaccinium corymbosum L.) cultivars. To gain a better understanding of changes in gene expression associated with development of cold tolerance in bluebe...

  20. A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs

    NASA Astrophysics Data System (ADS)

    Tonini, Mariano H.; Palma, Elbio D.; Piola, Alberto R.

    2013-08-01

    This article analyses the results from a high resolution numerical model of the North Patagonian Gulfs (San Matías Gulf, SMG; Nuevo Gulf, NG; and San José Gulf, SJG), a region of the South Western Atlantic Shelf that has long been recognized for its high productivity and biodiversity. The aim of the study is to explore the physical processes that control the mean circulation and its seasonal variability with focus on the generation of recirculation features (gyres) and frontal structures. The numerical results showed that both tidal and wind forcing significantly contribute to delineate the frontal structures and the seasonal circulation in the North Patagonian Gulfs. The overall summer circulation pattern in SMG is dominated by two strong cyclonic subgyres in the northern and southern sectors while NG showed only one gulf-wide cyclonic gyre. The northern subgyre in SMG and the NG gyre are caused by the interaction of the tides and the evolving stratification driven by surface heat and freshwater fluxes. A series of sensitivity experiments showed that the formation and intensity of a summer zonal front in SMG is controlled by the wind-driven advection of cold waters from a homogenized pool generated by intense tidal mixing in the inner continental shelf (east of Valdés Península). From April to August, when winter erodes the stratification, the northern SMG subgyre and the NG gyre spin down and gradually shrink in size. At this time of the year, the western SMG and NG are occupied by an anticyclonic gyre driven by intense westerlies. In contrast, the mean circulation in SJG is dominated year-round by a pair of strong counter-rotating eddies produced by tidal rectification.

  1. Eddy overturning of the Antarctic Slope Front controls glacial melting in the Eastern Weddell Sea

    NASA Astrophysics Data System (ADS)

    NøSt, O. A.; Biuw, M.; Tverberg, V.; Lydersen, C.; Hattermann, T.; Zhou, Q.; Smedsrud, L. H.; Kovacs, K. M.

    2011-11-01

    The Eastern Weddell Sea is characterized by narrow continental shelves and Warm Deep Water (WDW) is located in close proximity to the ice shelves in this region. The exchange of WDW across the Antarctic Slope Front (ASF) determines the rate of basal ice shelf melting. Here, we present a unique data set consisting of 2351 vertical profiles of temperature and salinity collected by southern elephant seals (Mirounga leonina) and a profile beneath the Fimbul Ice Shelf (FIS), obtained via drilling through 395 m of ice. This data set reveals variations in salinity and temperature through winter, and using a conceptual model of the coastal salt budget we quantify the main exchange processes. Our data show that modified WDW, with temperatures below -1.5°C, is advected onto the shelf and into the ice shelf cavities by an eddy overturning of the ASF. The onshore Ekman flux of surface waters during summer is the main source of freshwater that leads to the formation of low salinity shelf waters in the region. The modified WDW that reaches beneath the ice shelves is too cold for basal ice shelf melting to create such low salinity water. A high-resolution model of an idealized ASF-continental shelf-ice shelf system supports the conclusions from the data analysis. The inflow of WDW onto the continental shelf and into the ice shelf cavity occurs within a bottom boundary layer where the eddy advection in the model is particularly strong, in close agreement with the observed vertical profile of temperature beneath the FIS.

  2. COLD TEMPERATURE MOTOR VEHICLE EMISSIONS TESTING IN ALASKA

    EPA Science Inventory

    A motor vehicle emissions testing study was conducted in Anchorage and Fairbanks during the winter of 1998-99 to collect actual measurements of initial idle emission rates. The study was performed for a sample of 111 automobiles and light-duty trucks under cold wintertime ambient...

  3. IMPROVEMENT OF VARIETAL GARLIC VIABILITY BY COLD STORAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic is a specialty horticultural crop that is usually planted in the fall and harvested in late summer. By delaying the planting until spring, high winter winds that blow away much needed mulch and irrigation operational challenges could be avoided. Cold storage trials were performed to determi...

  4. Winter performance of an urban stormwater pond in southern Sweden

    NASA Astrophysics Data System (ADS)

    Semadeni-Davies, Annette

    2006-01-01

    Evidence from cold regions in North America has shown that the performance of stormwater ponds differs between winter and summer. The pond hydraulics change seasonally, and winters have lowered removal efficiency due to a combination of an ice cover, cold water and de-icing salts. This study examines the function of the Bäckaslov stormwater pond under the more mild conditions of southern Sweden, where there are several snow and melt cycles per year.Event sampling in the summer of 1997 showed good removal efficiencies for nutrients, total suspended solids (TSS) and a selection of metals (Cd, Cu, Pb, Zn), but winter grab-tests taken in 1995-96 and 1997-98 suggest that the pond acts as a pollutant source under cold conditions. To better assess winter and spring pond performance, water at the inflow and outflow was sampled from January to April 2003. The low intensity of runoff delivery and slow inflow velocities meant that time- rather than flow-weighted sampling was used. Five consecutive events were sampled and analysed for TSS, chloride and the metals As, Cd, Cr, Cu, Hg, Ni, Pb and Zn. YSI probes were in place at both the inlet (pH, temperature) and outlet (pH, temperature, conductivity, dissolved oxygen) to determine the timing of pollution flows. In addition, profiles of the same quality indicators allowed snapshots of pond processes.De-icing salt has a major effect on pond hydraulics. Strong stratification occurred after each snowmelt-generated flow event and up to 80% of chloride could be retained by the pond. However, continuous conductivity measurements show that chloride is flushed between events. Ice changes retention times and causes oxygen depletion, but bed scour was not observed. Pond performance decreased during the winter and spring, albeit not as badly as the grab tests suggest. A seasonal comparison of the removal efficiencies showed that removal of Cd (75%) and Cu (49%) was about the same for summer and winter-spring, but removal of Pb, Zn and TSS dropped from 79%, 81% and 80% to 42%, 48% and 49% respectively. The removal efficiencies for the other metals sampled in 2003 were: As, 50%; Cr, 39%; Hg, 56%; Ni, 41%.

  5. Red spruce decline---Winter injury and air pollutants

    SciTech Connect

    Roberts, T.M. )

    1989-10-01

    There has been a widespread decline in growth of red spruce (Picea rubens Sarg.) since 1960 in the eastern United States. There is evidence that this decline is at least partly attributable to age- and density-related growth patterns, particularly at lower elevations. Mortality has been severe at high elevation sites where similar episodes have occasionally occurred in the last 100 years. At these sites, periods of low growth preceding 1960 were related to periods with warm late summers and cold early winters. Since 1960, this relationship no longer holds, although there is an association with unusual deviations from mean temperatures. There are field reports that one of the main causes of reduced growth and mortality is apical dieback induced by severe winter conditions. Preliminary observations suggest that high elevation red spruce may not be sufficiently hardened to tolerate low autumn temperatures. However, appearance of injury in the spring, association of injury with wind exposure and correlation of provenance susceptibility with cuticular transpiration rates, including the importance of desiccation injury. Sensitivity to both types of winter injury may be increased by air pollutants (particularly ozone and less probably, acid mist or excess nitrogen deposition). Nutrient deficiency (particularly magnesium and to a lesser extent potassium) may also increase cold sensitivity. The nature and extent of these interactions are being actively researched for red spruce. 48 refs.

  6. Lagrangian fronts in the ocean

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-05-01

    We introduce the concept of Lagrangian fronts (LFs) in the ocean and describe their importance for analyzing water mixing and transport and the specific features and differences from hydrological fronts. A method of calculating LFs in a given velocity field is proposed. Based on altimeter velocity fields from AVISO data in the northwestern Pacific, we calculate the Lagrangian synoptic maps and identify LFs of different spatial and temporal scales. Using statistical analysis of saury catches in different years according to the Goskomrybolovstvo (State Fisheries Committee of the Russian Federation), we show that LFs can serve as good indicators of places that are favorable for fishing.

  7. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  8. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This

  9. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  10. Staying cold through dinner: cold-climate bats rewarm with conspecifics but not sunset during hibernation.

    PubMed

    Czenze, Zenon J; Park, Andrew D; Willis, Craig K R

    2013-08-01

    For temperate endotherms (i.e., mammals and birds) energy costs are highest during winter but food availability is lowest and many mammals depend on hibernation as a result. Hibernation is made up of energy-saving torpor bouts [periods of controlled reduction in body temperature (T b)], which are interrupted by brief periodic arousals to normothermic T b. What triggers these arousals in free-ranging hibernators is not well understood. Some temperate bats with intermittent access to flying insects during winter synchronize arousals with sunset, which suggests that, in some species, feeding opportunities influence arousal timing. We tested whether hibernating bats from a cold climate without access to food during winter also maintain a circadian rhythm for arousals or whether cues from conspecifics in the same cluster are more important. We used temperature telemetry to monitor skin temperature (T sk) of free-ranging little brown bats (Myotis lucifugus) hibernating in central Manitoba, Canada, where temperatures from 22 October to 22 March were too cold for flying insects. We found no evidence bats synchronized arousals with photoperiod but they did arouse synchronously with other bats in the same cluster. Thus, in the northern part of their range where flying insects are almost never available during winter, little brown bats exhibit no circadian pattern to arousals. Warming synchronously with others could reduce the energetic costs of arousal for individuals or could reflect disturbance of torpid bats by cluster-mates. PMID:23539327

  11. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, D.H.; Dau, C.P.; Lee, T.; Sedinger, J.S.; Anderson, B.A.; Hines, J.E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  12. [Fitness by cold stimulation of various intensity: effects on metabolism of purines and free radicals].

    PubMed

    Brenke, R; Siems, W; Maass, R

    1994-01-01

    Whole-body cold stimuli lead to a dosage-depended decrease of uric acid level in blood plasma. This could be observed in own studies on winter-swimming and cold shower application and in studies on patients treated by cold-chamber-therapy. This uric acid decrease is due to an accelerated oxygen radical formation during cold exposition rather than to an inhibition of purine metabolism. The acute oxidative loading due to cold exposure and the long-term antioxidative adaptation may be interpreted as a new molecular mechanism resulting in body hardening. PMID:8017070

  13. Different characteristics of cold day and cold surge frequency over East Asia in a global warming situation

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Jeong, Su-Jong; Choi, Yong-Sang; Park, Seon Ki; Song, Chang-Keun

    2011-06-01

    This study investigates the changes in winter cold extreme events over East Asia in the present and future climates. Two distinct terms to indicate cold extreme events are analyzed: "cold day," which describes a temperature below a certain threshold value (e.g., simply cold weather), and "cold surge," which describes an abrupt temperature drop (e.g., relatively colder weather than a previous day). We analyze both observations and long-term climate simulations from 13 atmospheric and oceanic coupled global climate models (CGCMs). The geographical distribution of sea level pressure corresponding to a cold day (cold surge) is represented by a dipole (wave train) feature. Although cold day and cold surge show similar patterns of surface air temperature, they are induced by the out-of-phase sea level pressures. From the results of our analysis of a series of future projections for the mid and late twenty-first century using the 13 CGCMs, cold day occurrences clearly decrease with an increasing mean temperature (a correlation coefficient of -0.49), but the correlation between cold surge occurrences and the mean temperature is insignificant (a correlation coefficient of 0.08), which is supported by the same results in recent observation periods (1980-2006). Thus, it is anticipated that cold surge occurrences will remain frequent even in future warmer climate. This deduction is based on the future projections in which the change in the day-to-day temperature variability is insignificant, although the mean temperature shows significant increase. The present results suggest that living things in the future, having acclimatized to a warmer climate, would suffer the strong impact of cold surges, and hence the issue of vulnerability to cold surges should be treated seriously in the future.

  14. Cold knife cone biopsy

    MedlinePlus

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  15. Cold and Cough Medicines

    MedlinePlus

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  16. Cold Weather Pet Safety

    MedlinePlus

    ... accordingly. You will probably need to shorten your dog’s walks in very cold weather to protect you ... slipping and falling. Long-haired or thick-coated dogs tend to be more cold-tolerant, but are ...

  17. Coping with Colds

    MedlinePlus

    ... cold feel better. previous continue When Should I Go to the Doctor? Teens who catch colds usually ... you start feeling better — the infection may not go away and you can develop other problems. Can ...

  18. Align the Front End First.

    ERIC Educational Resources Information Center

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  19. Teaching the French Popular Front.

    ERIC Educational Resources Information Center

    Wall, Irwin M.

    1987-01-01

    Examines the French Popular Front of 1936 as a vehicle to investigate the turbulent decade of the 1930s. Reviews current historiography and discusses various facets of Leon Blum's government, examining the interrelationship of major economic and political forces. Concludes that the French Left still faces Blum's dilemma of implementing socialism…

  20. Advanced RF Front End Technology

    NASA Technical Reports Server (NTRS)

    Herman, M. I.; Valas, S.; Katehi, L. P. B.

    2001-01-01

    The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

  1. Ocean properties, ice-ocean interactions, and calving front morphology at two major west Greenland glaciers

    NASA Astrophysics Data System (ADS)

    Chauché, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Patton, H.

    2013-11-01

    Warm sub-polar mode water (SPMW) has been identified as a primary driver of mass loss of marine terminating glaciers draining the Greenland Ice Sheet (GrIS) yet, the specific mechanisms by which SPMW interacts with these tidewater termini remain uncertain. We present oceanographic data from Rink Glacier (RG) and Store Glacier (SG) fjords, two major marine outlets draining the western sector of the GrIS into Baffin Bay over the contrasting melt-seasons of 2009 and 2010. Submarine melting occurs wherever ice is in direct contact with warmer water and the consistent presence of 2.8 °C SPMW adjacent to both ice fronts below 400 m throughout all surveys indicates that melting is maintained by a combination of molecular diffusion and large scale, weak convection, diffusional (hereafter called ubiquitous) melting. At shallower depths (50-200 m), cold, brine-enriched water (BEW) formed over winter appears to persist into the summer thereby buffering this melt by thermal insulation. Our surveys reveal four main modes of glacier-ocean interaction, governed by water depth and the rate of glacier runoff water (GRW) injected into the fjord. Deeper than 200 m, submarine melt is the only process observed, regardless of the intensity of GRW or the depth of injection. However, between the surface and 200 m depth, three further distinct modes are observed governed by the GRW discharge. When GRW is weak (≲1000 m3 s-1), upward motion of the water adjacent to the glacier front is subdued, weak forced or free convection plus diffusional submarine melting dominates at depth, and seaward outflow of melt water occurs from the glacier toe to the base of the insulating BEW. During medium intensity GRW (∼1500 m3 s-1), mixing with SPMW yields deep mixed runoff water (DMRW), which rises as a buoyant plume and intensifies local submarine melting (enhanced buoyancy-driven melting). In this case, DMRW typically attains hydrostatic equilibrium and flows seaward at an intermediate depth of ∼50-150 m, taking the BEW with it. Strong GRW (≳ 2000 m3 s-1) yields vigorous, buoyant DMRW, which has sufficient vertical momentum to break the sea surface before sinking and flowing seaward, thereby leaving much of the BEW largely intact. Whilst these modes of glacier-ocean interaction significantly affect the ice-ocean interaction in the upper water column (0-200 m), below 200 m both RG and SG are dominated by the weak forced convection/diffusional (herein termed ubiquitous) melting due to the presence of SPMW.

  2. Heading for Next Winter Haven

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Approaching its 47th month of a Mars surface mission originally planned to last three months, NASA's Spirit rover was also approaching the northern edge of a low plateau called 'Home Plate.' The rover's operators selected an area with north-facing slope there as a destination where Spirit would have its best chance of surviving low-solar-energy conditions of oncoming Martian winter.

    The yellow line on this map of the Home Plate area indicates Spirit's route from early February 2006, entering the mapped area from the north (top), to late November 2007, on the western edge of the bright-toned Home Plate plateau. The map covers an area about 160 meters (525 feet) across from west to east. Labels indicate the area intended for Spirit to spend many months spanning the rover's third Martian winter, the site where it spent about seven months (April to November 2006) spanning its second winter, and the site where it lost use of the drive motor for one of its six wheels.

    A north-facing slope helps Spirit maximizes electric output from its solar panels during winter months because Spirit is in the southern hemisphere of Mars, so the sun appears only in the northern sky during winter. For the third winter, which will reach its minimum solar-energy days in early June 2008, Spirit faces the challenge of having more dust on its solar panels than it had during its second winter.

    The base image for this map is a portion of a color image taken on Jan. 9, 2007, by the High Resolution Imaging Science Experiment camera on NASA's Mars Reconnaissance Orbiter.

  3. Front instability in stratified media

    NASA Astrophysics Data System (ADS)

    Beltrame, Philippe

    2013-04-01

    Preferential flow in unsaturated soil may due to local heterogeneities like worm burrows but also to front instability leading to unstable finger flow (fingered pattern) in sandy textured soils. This last spontaneous preferential flow cannot be described by the standard Richards equation. Cueto-Felgueroso and Juanes proposed recently a phase field model in order to take into account a macroscopic surface tension effect at the front [1]. Their model simulates successfully the interface instability of an advancing front. We aim at simulating and understanding front instability passing a textural soil discontinuity for which the finger flow is particularly visible. We consider sand layers with different characteristics such as granulometry. Moreover, the wettability is taken into account by adding a hydrophobic term in the free energy of the phase field model. The hydrophobicity part is not only relevant for repellent soil but also to model the ultra-thin films [2]. Therefore, in our framework, this may have an influence at the front because the water saturation is nearly zero. Such a wettability influence on infiltration in porous media has recently been measured in [3]. The governing equation is analogous to the lubrication equation for which we pointed out the specific numerical difficulties [4]. A numerical code to perform time integration and bifurcation analysis was developed in [4] allowing to determine the onset of instability and its resulting dynamics in the parameter space [5]. We compute the parameter range for which the front stops when reaching the layers interface. As in [4], there is two main mechanisms that allow water to cross over the discontinuity. A first mechanism, called «depinning», leads to an intermittent flow and the second one, to a front instability and then to a finger flow. There is a parameter domain where both instabilities are present leading to a complex spatio-temporal dynamics. Finally, it is noteworthy that the wettability property has a crucial impact on the fingering emergence. References [1] Cueto-Felgueroso and Juanes, Water Res. Res., 45, W10409 (2009). [2] De Gennes, Rev. Mod. Phys. 57, 827-863 (1985). [3] Goebel, Woche and Bachmann, vol. 442-443(6), (2012). [4] Beltrame and Thiele, SIADS, 9, No. 2, pp. 484-518 (2010). [5] Beltrame and Knobloch et al. Phys. Rev. E, 83, 016305 (2011).

  4. HVAC design considerations for cold climates

    SciTech Connect

    Armstrong, R.S. )

    1993-09-01

    The design of heating, ventilating and air-conditioning (HVAC) systems in cold climate areas requires modifications to the standard designs used in more temperate climates. While most of the US experiences freezing temperatures at least once during the winter months, certain areas experience several months of extended cold. No single location in the US experiences these extended cold conditions more than Alaska. While most areas in the continental US will not require modifications to standard design guidelines, many design modifications commonly used in the Arctic regions of Alaska and Canada can also be applied to any cold climate area in the continental US. The geographic area of Alaska is about one-third the size of the continental US. Climatic extremes range from Ketchikan with 6.697 heating degree days (at 55[degree]21 minutes N latitude) to Barrow with 20,341 heating degree days (at 71[degree]18 minutes N latitude), according to the Arctic Environmental Information and Data Center. The suggestions in this article are a compilation of general approaches the authors used to address the challenge of cold climate design. Of course, each detail design must be adapted to the specific climate and application at hand.

  5. Seasonal changes in the cold hardiness of the two-spotted spider mite females (Acari: Tetranychidae).

    PubMed

    Khodayari, S; Colinet, H; Moharramipour, S; Renault, D

    2013-12-01

    The twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) is an important agricultural pest. Population dynamics and pest outbreaks highly depend on the overwintering success of the mite specimens; therefore, it is necessary to assess winter survival dynamics of this pest. Seasonal changes in supercooling point (SCP) and acute cold tolerance (2-h exposure at -5, -10, -15, -20, -23, or -25C) were assessed in field-collected females during the winter in 2010-2011 in Iran. The SCP values varied from a minimum of -30.5C (January 2011) to a maximum of -12.6C (April 2011). Significant differences were recorded in the SCP distribution patterns between autumn- and winter-sampled females, depicting the acquisition of cold hardiness over the winter. The mean ambient air temperature was the lowest in January (4C), when the females showed the highest supercooling ability. Correlated patterns between monthly temperatures and acute cold tolerance also were found. At -20C, the survival of the mites was very low (10%) when they were sampled in October 2010; whereas it was high (97.5%) in January 2011, before decreasing to 5% in April 2011. The present data show that T. urticae females are chill tolerant and capable of adjusting their cold tolerance over the winter season. Acute cold tolerance (-15 and -20C) and SCP represent valuable metrics that can be used for predicting the seasonal changes of the cold hardiness of T. urticae females. PMID:24252290

  6. Winter Hydrological and Erosion Processes in the U. S. Palouse Region: Field Experimentation and WEPP Simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by water is detrimental to soil fertility and crop yield as well as the environment. For cold areas, knowledge of winter hydrological processes is critical to determining alternative land-use and management practices for reducing soil loss and protecting land and water resources. Adequa...

  7. Simultaneous Genetic Analysis of Winterhardiness Traits and Development of Winter Malting Barley Varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practical goal of this project is to develop winter malting barley varieties with superior cold tolerance. The basic goal is to advance our understanding of the genetics of low temperature tolerance and vernalization sensitivity. By addressing the question, “Is vernalization sensitivity required...

  8. OVER WINTER STABILITY AND HYDROLOGY OF MACROPORES IN THE NORTHERN US CORN BELT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macropores created by biological or physical processes can profoundly influence water movement through the soil. In cold regions, macropore stability can be influenced by natural processes such as wetting/drying and freezing/thawing. Little is known, however, concerning the over winter stability of ...

  9. UARS Microwave Limb Sounder observations of dentrification and ozone loss in the 2000 Arctic late winter

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Manney, G. L.; Livesey, N. J.; Waters, J. W.

    2000-01-01

    The UARS Microwave Limb Sounder obtained measurements of CIO, HNO3, and O-3 inside the Arctic lower stratospheric vortex during two intervals in February and March 2000. The data show evidence of significant chemical processing in February, consistent with the exceptionally cold conditions that prevailed earlier in the winter.

  10. A NEW MODEL TO ESTIMATE DAILY ENERGY EXPENDITURE FOR WINTERING WATERFOWL

    EPA Science Inventory

    Activity budgets of wintering waterfowl have been widely used to assess habitat quality. However, when factors such as prey abundance or protection from exposure to cold or wind determine quality, measures of daily energy expenditure (DEE) may be more appropriate for this purpos...

  11. EVIDENCE OF A MAJOR GENETIC FACTOR CONDITIONING FREEZING SENSITIVITY IN WINTER WHEAT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing tolerance was measured in cold-acclimated F2 – derived F4 lines of winter wheat (Triticum aestivum L.) crosses 'Eltan' X Oregon Feed Wheat #5' (ORFW) and 'Tiber' X ORFW. ORFW had essentially no freezing tolerance, while 'Eltan' and 'Tiber' had about 50% survival, as measured in this study....

  12. An optimal index for measuring the effect of East Asian winter monsoon on China winter temperature

    NASA Astrophysics Data System (ADS)

    Hu, Chundi; Yang, Song; Wu, Qigang

    2015-11-01

    Extreme cold events occur frequently in China. The authors define a representative yet simple index to reveal the monthly changes in China winter temperature associated with the East Asian winter monsoon (EAWM), which is represented by both the leading empirical orthogonal function (EOF) mode and the country-mean temperature index of Chinese 160 gauge stations. A combined technique of correlation and multivariate EOF (Corr-MVEOF) analyses is applied to capture the dominant coupled patterns of EAWM circulation system. Based on the atmospheric circulation features captured by the leading Corr-MVEOF mode, a new EAWM index referred to as CNWMI is derived by using a stepwise regression analysis. The CNWMI highlights the importance of (1) the Mongolia-Siberian High (MSH) and its southward expansion and (2) the Asia-wide meridional dipole anomaly of 500 hPa geopotential height. Compared with the 27 existing EAWM indices, the CNWMI not only best represents the leading modes of both EAWM circulation system and China winter temperature, but also reasonably tracks the intraseasonal-to-interdecadal variations of EAWM so that the monthly intensity of EAWM can be monitored conveniently. In particular, the Aleutian low (AL) is not strongly related to the MSH and may not be responsible for the variability of EAWM/MSH. Moreover, the indices that are highly correlated with the temperature over southern East Asia do not show significant relationships with the AL, which is different from the conventional concept that a strong EAWM/MSH is linked to a deepened AL. In contrast, the anomalous Australia-Maritime Continent low is in good agreement with the variation of EAWM/MSH.

  13. Plasticity in body temperature and metabolic capacity sustains winter activity in a small endotherm (Rattus fuscipes).

    PubMed

    Glanville, Elsa J; Seebacher, Frank

    2010-03-01

    Small mammals that remain active throughout the year at a constant body temperature have a much greater energy and food requirement in winter. Lower body temperatures in winter may offset the increased energetic cost of remaining active in the cold, if cellular metabolism is not constrained by a negative thermodynamic effect. We aimed to determine whether variable body temperatures can be advantageous for small endotherms by testing the hypothesis that body temperature fluctuates seasonally in a wild rat (Rattus fuscipes); conferring an energy saving and reducing food requirements during resource restricted winter. Additionally we tested whether changes in body temperature affected tissue specific metabolic capacity. Winter acclimatized rats had significantly lower body temperatures and thicker fur than summer acclimatized rats. Mitochondrial oxygen consumption and the activity of enzymes that control oxidative (citrate synthase, cytochrome c-oxidase) and anaerobic (lactate dehydrogenase) metabolism were elevated in winter and were not negatively affected by the lower body temperature. Energy transfer modeling showed that lower body temperatures in winter combined with increased fur thickness to confer a 25 kJ day(-1) energy saving, with up to 50% owing to reduced body temperature alone. We show that phenotypic plasticity at multiple levels of organization is an important component of the response of a small endotherm to winter. Mitochondrial function compensates for lower winter body temperatures, buffering metabolic heat production capacity. PMID:20026416

  14. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning

    PubMed Central

    Duijns, Sjoerd; van Gils, Jan A; Spaans, Bernard; ten Horn, Job; Brugge, Maarten; Piersma, Theunis

    2014-01-01

    Sexual size dimorphism (SSD) implies correlated differences in energetic requirements and feeding opportunities, such that sexes will face different trade-offs in habitat selection. In seasonal migrants, this could result in a differential spatial distribution across the wintering range. To identify the ecological causes of sexual spatial segregation, we studied a sexually dimorphic shorebird, the bar-tailed godwit Limosa lapponica, in which females have a larger body and a longer bill than males. With respect to the trade-offs that these migratory shorebirds experience in their choice of wintering area, northern and colder wintering sites have the benefit of being closer to the Arctic breeding grounds. According to Bergmann's rule, the larger females should incur lower energetic costs per unit of body mass over males, helping them to winter in the cold. However, as the sexes have rather different bill lengths, differences in sex-specific wintering sites could also be due to the vertical distribution of their buried prey, that is, resource partitioning. Here, in a comparison between six main intertidal wintering areas across the entire winter range of the lapponica subspecies in northwest Europe, we show that the percentage of females between sites was not correlated with the cost of wintering, but was positively correlated with the biomass in the bottom layer and negatively with the biomass in the top layer. We conclude that resource partitioning, rather than relative expenditure advantages, best explains the differential spatial distribution of male and female bar-tailed godwits across northwest Europe. PMID:25505527

  15. Effects of photoperiodically induced reproductive diapause and cold hardening on the cold tolerance of Drosophila montana.

    PubMed

    Vesala, Laura; Hoikkala, Anneli

    2011-01-01

    Coping with seasonal and daily variation in environmental conditions requires that organisms are able to adjust their reproduction and stress tolerance according to environmental conditions. Females of Drosophila montana populations have adapted to survive over the dark and cold winters at high latitudes and altitudes by spending this season in photoperiodically controlled reproductive diapause and reproducing only in spring/summer. The present study showed that flies of a northern population of this species are quite tolerant of low temperatures and show high seasonal and short-term plasticity in this trait. Culturing the flies in short day length (nearly all females in reproductive diapause), as well as allowing the flies to get cold hardened before the cold treatment, increased the cold tolerance of both sexes both in chill coma recovery time test and in mortality assay. Chill coma recovery time test performed for the females of two additional D. montana populations cultured in a day length where about half of the females enter diapause, also showed that diapause can increase female cold tolerance even without a change in day length. Direct linkage between diapause and cold tolerance was found in only two strains representing a high-altitude population of the species, but the phenomenon will certainly be worth of studying in northern and southern populations of the species with larger data sets. PMID:20932841

  16. Facts about the Common Cold

    MedlinePlus

    ... Lung Disease Lookup > Influenza Facts About The Common Cold What Is a Cold? Colds are minor infections of the nose and ... by touch. These droplets may also be inhaled. Cold Symptoms Between one and three days after a ...

  17. Cough and Cold Medicine Abuse

    MedlinePlus

    ... Publications » DrugFacts » Cough and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised ... syrup is sometimes diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines ...

  18. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-02-01

    Fronts represent sharp boundaries between water masses, but seasonal and interannual variation in their occurrence and effects on the distributions of pelagic organisms are poorly understood. This study reports results from six years of ocean front observations (2006-2011) along two transect lines across the Southern California Current System (SCCS) using autonomous Spray ocean gliders. During this time, 154 positive near-surface density fronts were identified within 124 completed transects consisting of nearly 23,000 vertical profiles. The incidence of surface density fronts showed distinct seasonality along line 80 off Pt. Conception, with fewer fronts occurring during winter months and more numerous fronts in the nearshore and during spring, summer and fall. On line 90, fronts were the least common nearshore and most frequent in a transitional region offshore. Horizontal density gradients in the surface layer (0-50 m) were significantly correlated with horizontal gradients in surface layer Chlorophyll-a (Chl-a) fluorescence, as well as with mean volume backscatter (MVBS) recorded by a 750 kHz acoustic Doppler profiler. Density fronts were not only zones of rapidly changing phytoplankton and zooplankton biomass concentrations, but also more likely to be zones of enhanced acoustic backscatter and Chl-a fluorescence than regions flanking the fronts. MVBS and Chl-a gradients were significantly correlated with gradients in other hydrographic variables such as temperature, salinity, and spiciness, and weakly with cross-track current velocity, though density gradients remained the single best predictor of strong MVBS and fluorescence gradients. Large mobile predators foraging in the vicinity of such features could locate habitat with higher zooplankton biomass concentrations up to 85% of the time by traveling up local density gradients (i.e., toward rather than away from denser surface waters). We discuss implications of these results in the context of long-term trends in ocean fronts in the SCCS.

  19. Reaction front formation in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura B.; Winstanley, Henry F.; Mitchell, Sarah L.; Fowler, Andrew C.; Sander, Graham C.

    2014-12-01

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.

  20. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned veterans in the field, is a unique experience for many of the teachers. Here we present lessons learned throughout the lifetime of the program, including successes and improvements made, and present our vision for the future of HOW.

  1. Deuterium content of snow as an index to winter climate in the Sierra Nevada area

    USGS Publications Warehouse

    Friedman, I.; Smith, G.I.

    1972-01-01

    The winter of 1968-69 produced two to three times the amount of precipitation in the Sierra Nevada area, California and Nevada, as the winter of 1969-70. The deuterium content in snow cores collected at the end of each winter at the same sites, which represents the total snowfall of each interval, shows a depletion in 1968-69 of approximately 20 per mil. The higher snowfall in 1968-69 and the depletion of deuterium can be explained by an uncommonly strong westward flow of cold air over and down the western slopes of the Sierras, which interacted with an eastward flow of moist Pacific air that overrode and mixed with the cold air; this resulted in precipitation that occurred in greater than normal amounts and at a lower than normal temperature. Pluvial periods of the Pleistocene may have had the same shift in air-mass trajectory as the wet 1968-69 year. Snow cores collected in the normal 1970-71 winter have deuterium concentrations that resemble those of the normal 1969-70 winter. Small and nonsystematic differences in samples from these two normal winters are due to variations in climatic character as well as to factors inherent in the sampling sites.

  2. Reproductive arrest and stress resistance in winter-acclimated Drosophila suzukii.

    PubMed

    Toxopeus, Jantina; Jakobs, Ruth; Ferguson, Laura V; Gariepy, Tara D; Sinclair, Brent J

    2016-06-01

    Overwintering insects must survive the multiple-stress environment of winter, which includes low temperatures, reduced food and water availability, and cold-active pathogens. Many insects overwinter in diapause, a developmental arrest associated with high stress tolerance. Drosophila suzukii (Diptera: Drosophilidae), spotted wing drosophila, is an invasive agricultural pest worldwide. Its ability to overwinter and therefore establish in temperate regions could have severe implications for fruit crop industries. We demonstrate here that laboratory populations of Canadian D. suzukii larvae reared under short-day, low temperature, conditions develop into dark 'winter morph' adults similar to those reported globally from field captures, and observed by us in southern Ontario, Canada. These winter-acclimated adults have delayed reproductive maturity, enhanced cold tolerance, and can remain active at low temperatures, although they do not have the increased desiccation tolerance or survival of fungal pathogen challenges that might be expected from a more heavily melanised cuticle. Winter-acclimated female D. suzukii have underdeveloped ovaries and altered transcript levels of several genes associated with reproduction and stress. While superficially indicative of reproductive diapause, the delayed reproductive maturity of winter-acclimated D. suzukii appears to be temperature-dependent, not regulated by photoperiod, and is thus unlikely to be 'true' diapause. The traits of this 'winter morph', however, likely facilitate overwintering in southern Canada, and have probably contributed to the global success of this fly as an invasive species. PMID:27039032

  3. Deuterium content of snow as an index to winter climate in the sierra nevada area.

    PubMed

    Friedman, I; Smith, G I

    1972-05-19

    The winter of 1968-69 produced two to three times the amount of precipitation in the Sierra Nevada area, California and Nevada, as the winter of 1969-70. The deuterium content in snow cores collected at the end of each winter at the same sites, which represents the total snowfall of each interval, shows a depletion in 1968-69 of approximately 20 per mil. The higher snowfall in 1968-69 and the depletion of deuterium can be explained by an uncommonly strong westward flow of cold air over and down the western slopes of the Sierras, which interacted with an eastward flow of moist Pacific air that overrode and mixed with the cold air; this resulted in precipitation that occurred in greater than normal amounts and at a lower than normal temperature. Pluvial periods of the Pleistocene may have had the same shift in air-mass trajectory as the wet 1968-69 year. Snow cores collected in the norrmal 1970-71 winter have deuterium concentrations that resemble those of the normal 1969-70 winter. Small and nonsystematic differences in samples from these two normal winters are due to variations in climatic character as well as to factors inherent in the sampling sites. PMID:17795407

  4. Winter Storm Zones on Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, J. L.; Haberle, R. M.; Barnes, J. R.; Bridger, A. F. C.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Preferred regions of weather activity in Mars' winter middle latitudes-so called 'storm zones' are found in a general circulation model of Mars' atmospheric circulation. During northern winter, these storm zones occur in middle latitudes in the major planitia (low-relief regions) of the western and eastern hemisphere. In contrast, the highlands of the eastern hemisphere are mostly quiescent. Compared to Earth's storm zones where diabatic heating associated with land-sea thermal contrasts is crucial, orography on Mars is fundamental to the regionalization of weather activity. Future spacecraft missions aimed at assessing Mars' climate and its variability need to include such regions in observation strategies.

  5. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  6. Firing up the front line.

    PubMed

    Katzenbach, J R; Santamaria, J A

    1999-01-01

    For many organizations, achieving competitive advantage means eliciting superior performance from employees on the front line--the burger flippers, hotel room cleaners, and baggage handlers whose work has an enormous effect on customers. That's no easy task. Front line workers are paid low wages, have scant hope of advancement, and--not surprisingly--often care little about the company's performance. But then how do some companies succeed in engaging the emotional energy of rank-and-file workers? A team of researchers at McKinsey & Company and the Conference Board recently explored that question and discovered that one highly effective route is demonstrated by the U.S. Marine Corps. The Marines' approach to motivation follows the "mission, values, and pride" path, which researchers say is practical and relevant for the business world. More specifically, the authors say the Marines follow five practices: they over-invest in cultivating core value; prepare every person to lead, including front line supervisors; learn when to create teams and when to create single-leader work groups; attend to all employees, not just the top half; and encourage self-discipline as a way of building pride. The authors admit there are critical differences between the Marines and most businesses. But using vivid examples from companies such as KFC and Marriott International, the authors illustrate how the Marines' approach can be translated for corporate use. Sometimes, the authors maintain, minor changes in a company's standard operating procedure can have a powerful effect on front line pride and can result in substantial payoffs in company performance. PMID:10387573

  7. Winter storm-induced hydrodynamics and morphological response of a shallow transgressive shoal complex: Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Siadatmousavi, S. Mostafa; Jose, Felix

    2015-03-01

    Using extended deployments during seasons of low and high discharge from the Atchafalaya River, meteorological, hydrodynamic and bottom boundary layer parameters were monitored from Tiger and Trinity Shoal complex, off Louisiana coast, USA. During winter storms, the surface current speed measured at both shoals exceeded 0.5 m/s and the entire water column followed the prevailing wind direction. The current speed close to the bottom exceeded 0.3 m/s during high energy northerly winds. The mean water level in the shoal complex increased during southerly winds and decreased during northerly winds, such that the difference between wind set-up and set-down exceeded 0.7 m in Tiger Shoal and 0.6 m in Trinity Shoal during high energy frontal passages. The swell height was inversely correlated with mean water level, and increased during pre-frontal phase and decreased during post-frontal phase of winter storms. The sea (short waves) height responded quickly to wind direction and speed; and within a few hours after the wind shifted and blowing from the north, the sea height increased during both deployments. Bimodal wave frequency spectrum was observed during wind veering from southerly to northerly, when both sea and swell intensities were significant. The Tiger Shoal bed sediment texture transformed drastically, from mud to shell and shell hash assemblage, within a period of two weeks during the December 2008 deployment. Backscatter signal intensity from a Pulse Coherent Acoustic Doppler Profiler (PCADP) and its velocity estimates were used to determine the vertical extend and timing of mud resuspension and their eventual flushing out from the shoal environment, when exposed to high energy winter storm passages. The computed time frame for a total transformation of bottom sediment texture (from muddy bottom to shell and shell hash assemblage) was supported by the combined wave and bottom current induced shear stress at shoal bed. The bed samples collected from Tiger Shoal before and after the deployment in spring 2009 consisted of more than 80% shell and shell hash, which again confirmed a stable bottom as predicted from the PCADP data. However, the fine sand and mud dominated bed at Trinity Shoal was highly dynamic and experienced a few cm of ephemeral sediment deposition during the passage of each cold front, as revealed from the analysis of acoustic backscatter data from the PCADP. Suspended sediment concentration estimated from Optical Backscatterance Sensors (OBS) and PCADP were in good agreement during low river discharge events in December 2008; but significantly diverged during the spring 2009 deployment, when a high suspended sediment load was discharged into the shelf from the Atchafalaya River, and subsequently pushed farther offshore into the deployment sites by wind-induced strong currents during the passage of cold fronts.

  8. Multi Front-End Engineering

    NASA Astrophysics Data System (ADS)

    Botterweck, Goetz

    Multi Front-End Engineering (MFE) deals with the design of multiple consistent user interfaces (UI) for one application. One of the main challenges is the conflict between commonality (all front-ends access the same application core) and variability (multiple front-ends on different platforms). This can be overcome by extending techniques from model-driven user interface engineering.We present the MANTRA approach, where the common structure of all interfaces of an application is modelled in an abstract UI model (AUI) annotated with temporal constraints on interaction tasks. Based on these constraints we adapt the AUI, e.g., to tailor presentation units and dialogue structures for a particular platform. We use model transformations to derive concrete, platform-specific UI models (CUI) and implementation code. The presented approach generates working prototypes for three platforms (GUI, web, mobile) integrated with an application core via web service protocols. In addition to static evaluation, such prototypes facilitate early functional evaluations by practical use cases.

  9. 1992 AGU Front Range Meeting

    NASA Astrophysics Data System (ADS)

    Rush, Sandra

    The AGU Front Range Branch held its annual meeting on February 10, 1992, at the National Center for Atmospheric Research in Boulder, Colo. The theme of the meeting was “Our Changing Environment,” with specific emphasis on the Rocky Mountains, the Front Range, the High Plains, and the Great Basin environments.The all-day meeting featured twenty oral presentations and five poster presentations. Most of the topics presented were related to environmental issues such as ozone depletion, emergency response applications at the Rocky Flats Plant, climatic forcing, and hydrogeology. Other papers of interest included a geophysical study of the Sand Dunes National Monument in Colorado, a paper on the impact of the 1988 forest fires on the chemistry of nonthermal groundwater at Yellowstone National Park, and a poster on the soil-gas flux of carbon dioxide from nonventing areas of the Kilauea Summit in Hawaii. A poster and an oral presentation centered on the vulnerability of transportation and energy supply networks in the central United States to earthquakes in the New Madrid seismic zone. The field of space science was represented by two posters on recent geomagnetic behaviors and magnetospheric convection and an oral presentation on plasma density in the Earth's magnetosphere. Three Front Range Branch awards were given to students to recognize excellent presentations.

  10. Distribution patterns during winter and fidelity to wintering areas of American black ducks

    USGS Publications Warehouse

    Diefenbach, D.R.; Nichols, J.D.; Hines, J.E.

    1988-01-01

    The distribution patterns during winter of American black ducks were compared among age-sex classes using band recivery data. In addition, fidelity to wintering areas was compared between sexes and between coastal and inland wintering sites.

  11. Reducing winter injury in blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the combination of primocane training and cane positioning techniques using a rotatable cross-arm (RCA) trellis system and covering plants in winter to protect buds and canes from freezing temperatures in ‘Apache’, ‘Boysenberry’, ‘Siskiyou’, and ‘Triple Crown’ blackberry. After tying p...

  12. Learning through a Winter's Tale

    ERIC Educational Resources Information Center

    Vidotto, Kristie

    2010-01-01

    In this article, the author shares her experience during the final semester of Year 11 Theatre Studies when she performed a monologue about Hermione from "The Winter's Tale". This experience was extremely significant to her because it nearly made her lose faith in one of the most important parts of her life, drama. She believes this experience,…

  13. Winter Snowfall Turns an Emerald White

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ireland's climate is normally mild due to the nearby Gulf Stream, but the waning days of 2000 saw the Emerald Isle's green fields swathed in an uncommon blanket of white. The contrast between summer and winter is apparent in this pair of images of southwestern Ireland acquired by MISR's vertical-viewing (nadir) camera on August 23, 2000 (left) and December 29, 2000 (right). The corresponding Terra orbit numbers are 3628 and 5492, respectively.

    The year 2000 brought record-breaking weather to the British Isles. England and Wales experienced the wettest spring and autumn months since 1766. Despite being one of the warmest years in recent history, a cold snap arrived between Christmas and New Year's Day. According to the UK Meteorological Office, the 18 centimeters (7 inches) of snow recorded at Aldergrove, Northern Ireland, on December 27-28 was the deepest daily fall since 1930.

    Prominent geographical features visible in the MISR images include Galway Bay near the top left. Further south, the mouth of the River Shannon, the largest river in the British Isles, meets the Atlantic Ocean. In the lower portions of the images are the counties of Limerick, Kerry and Cork.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology

  14. Enzymatic activity of rodents acclimated to cold and long scotophase

    NASA Astrophysics Data System (ADS)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  15. Instability of evaporation fronts in the interstellar medium

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-12-10

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The length and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is larger than the initial plane-parallel value by a factor of ∼2.4 when the equilibrium thermal pressure is 1800 k {sub B} cm{sup –3} K. The degrees of front deformation and evaporation-rate enhancement at nonlinear saturation are determined primarily by the density ratio between the CNM and WNM. We demonstrate that the Field length in the thermally unstable medium should be resolved by at least four grid points to obtain reliable numerical outcomes involving thermal instability.

  16. Atmospheric front over the East China Sea studied by multisensor satellite and in situ data

    NASA Astrophysics Data System (ADS)

    Ivanov, Andrei Y.; Alpers, Werner; Litovchenko, Konstantin T.; He, Ming-Xia; Feng, Qian; Fang, Mingqiang; Yan, Xiao-Hai

    2004-12-01

    A frontal feature visible on a synthetic aperture radar (SAR) image acquired by the Radarsat satellite over the East China Sea on 19 November 2000 is analyzed in conjunction with data acquired by Quikscat, TOPEX/Poseidon, Tropical Rain Measurement Mission (TRMM), Defense Meteorological Satellite Program (DMSP), and National Oceanic and Atmospheric Administration (NOAA) satellites, and with data obtained from ship measurements. Although this frontal feature is located close to the Kuroshio front, it is demonstrated that it is not a sea surface manifestation of an oceanic front, but rather of an atmospheric front extending over 800 km from an area of the Pacific Ocean northeast of Taiwan to the southern coast of Korea. It is a cold front moving in the southeast direction with a speed of approximately 45-50 km/hour and associated with a 40-km-wide rainband trailing the front. The Radarsat image, which has a resolution of 50 m, reveals fine-scale structures of the atmospheric front, in particular small-scale convective rain cells embedded in the front. Conclusion is drawn that accurate interpretation of frontal features in SAR images requires use of additional meteorological and remote sensing data and information.

  17. Cold pool dissipation

    NASA Astrophysics Data System (ADS)

    Grant, Leah D.; Heever, Susan C.

    2016-02-01

    The mechanisms by which sensible heat fluxes (SHFs) alter cold pool characteristics and dissipation rates are investigated in this study using idealized two-dimensional numerical simulations and an environment representative of daytime, dry, continental conditions. Simulations are performed with no SHFs, SHFs calculated using a bulk formula, and constant SHFs for model resolutions with horizontal (vertical) grid spacings ranging from 50 m (25 m) to 400 m (200 m). In the highest resolution simulations, turbulent entrainment of environmental air into the cold pool is an important mechanism for dissipation in the absence of SHFs. Including SHFs enhances cold pool dissipation rates, but the processes responsible for the enhanced dissipation differ depending on the SHF formulation. The bulk SHFs increase the near-surface cold pool temperatures, but their effects on the overall cold pool characteristics are small, while the constant SHFs influence the near-surface environmental stability and the turbulent entrainment rates into the cold pool. The changes to the entrainment rates are found to be the most significant of the SHF effects on cold pool dissipation. SHFs may also influence the timing of cold pool-induced convective initiation by altering the environmental stability and the cold pool intensity. As the model resolution is coarsened, cold pool dissipation is found to be less sensitive to SHFs. Furthermore, the coarser resolution simulations not only poorly but sometimes wrongly represent the SHF impacts on the cold pools. Recommendations are made regarding simulating the interaction of cold pools with convection and the land surface in cloud-resolving models.

  18. [Cold-induced urticaria].

    PubMed

    Delorme, N; Drouet, M; Thibaudeau, A; Verret, J L

    2002-09-01

    Cold urticaria is characterized by the development of urticaria, usually superficial and/or angioedematous reaction after cold contact. It was found predominantly in young women. The diagnosis is based on the history and ice cube test. Patients with a negative ice cube test may have represented systemic cold urticaria (atypical acquired cold urticaria) induced by general body cooling. The pathogenesis is poorly understood. Cold urticaria can be classified into acquired and familial disorders, with an autosomal dominant inheritance. Idiopathic cold urticaria is most common type but the research of a cryopathy is necessary. Therapy is often difficult. It is essential that the patient be warned of the dangers of swimming in cold water because systemic hypotension can occur. H1 antihistamines can be used for treatment of cold urticaria but the clinical responses are highly variable. The combination with an H2 antagonists is more effective. Doxepin may be useful in the treatment. Leukotriene receptor antagonists may be a novel, promising drug entity. In patients who do not respond to previous treatments, induction of cold tolerance may be tried. PMID:12389450

  19. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  20. Cold end additive compositions

    SciTech Connect

    Sujdak, R.J.

    1980-09-23

    The present invention is drawn to ethylene polyamines in combination with certain alkanolamines as cold-end additives. More specifically, it has been discovered that if these additives are fed to the moving combustion gases of a combustion system which uses sulfur containing fuel and upstream of cold-end surfaces to be treated, the additive will travel along with the gases as vapor and/or liquid droplets and deposit on the cold-end surfaces. As a result, the amount of sulfuric acid corrosion of metallic cold-end surfaces is reduced.

  1. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.

    PubMed

    Hughes, Nicole M; Burkey, Kent O; Cavender-Bares, Jeannine; Smith, William K

    2012-03-01

    Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacity for energy dissipation. Seasonal xanthophyll pigment content, chlorophyll fluorescence, leaf nitrogen, and low molecular weight antioxidants (LMWA) of five winter-red and five winter-green angiosperm evergreen species were compared. Our results showed no difference in seasonal xanthophyll pigment content (V+A+Z g(-1) leaf dry mass) or LMWA between winter-red and winter-green species, indicating red-leafed species are not deficient in their capacity for non-photochemical energy dissipation via these mechanisms. Winter-red and winter-green species also did not differ in percentage leaf nitrogen, corroborating previous studies showing no difference in seasonal photosynthesis under saturating irradiance. Consistent with a photoprotective function of anthocyanin, winter-red species had significantly lower xanthophyll content per unit chlorophyll and less sustained photoinhibition than winter-green species (i.e. higher pre-dawn F(v)/F(m) and a lower proportion of de-epoxidized xanthophylls retained overnight). Red-leafed species also maintained a higher maximum quantum yield efficiency of PSII at midday (F'(v)/F'(m)) during winter, and showed characteristics of shade acclimation (positive correlation between anthocyanin and chlorophyll content, and negative correlation with chlorophyll a/b). These results suggest that the capacity for photon energy dissipation (photochemical and non-photochemical) is not limited in red-leafed species, and that anthocyanins more likely function as an alternative photoprotective strategy to increased VAZ/Chl during winter. PMID:22162871

  2. Wintering ecology of adult North American ospreys

    USGS Publications Warehouse

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O., Jr.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  3. Winter Ecology of Buggy Creek Virus (Togaviridae, Alphavirus) in the Central Great Plains

    PubMed Central

    Strickler, Stephanie A.; Moore, Amy T.; Knutie, Sarah A.; Padhi, Abinash; Brown, Mary Bomberger; Young, Ginger R.; O'Brien, Valerie A.; Foster, Jerome E.; Komar, Nicholas

    2010-01-01

    Abstract A largely unanswered question in the study of arboviruses is the extent to which virus can overwinter in adult vectors during the cold winter months and resume the transmission cycle in summer. Buggy Creek virus (BCRV; Togaviridae, Alphavirus) is an unusual arbovirus that is vectored primarily by the swallow bug (Hemiptera: Cimicidae: Oeciacus vicarius) and amplified by the ectoparasitic bug's main avian hosts, the migratory cliff swallow (Petrochelidon pyrrhonota) and resident house sparrow (Passer domesticus). Bugs are sedentary and overwinter in the swallows' mud nests. We evaluated the prevalence of BCRV and extent of infection in swallow bugs collected at different times in winter (October–early April) in Nebraska and explored other ecological aspects of this virus's overwintering. BCRV was detected in 17% of bug pools sampled in winter. Virus prevalence in bugs in winter at a site was significantly correlated with virus prevalence at that site the previous summer, but winter prevalence did not predict BCRV prevalence there the following summer. Prevalence was higher in bugs taken from house sparrow nests in winter and (in April) at colony sites where sparrows had been present all winter. Virus detected by reverse transcription (RT)-polymerase chain reaction in winter was less cytopathic than in summer, but viral RNA concentrations of samples in winter were not significantly different from those in summer. Both of the BCRV lineages (A, B) overwintered successfully, with lineage A more common at sites with house sparrows and (in contrast to summer) generally more prevalent in winter than lineage B. BCRV's ability to overwinter in its adult vector probably reflects its adaptation to the sedentary, long-lived bug and the ecology of the cliff swallow and swallow bug host–parasite system. Its overwintering mechanisms may provide insight into those of other alphaviruses of public health significance for which such mechanisms are poorly known. PMID:19725760

  4. Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1980-01-01

    The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.

  5. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009-2010

    USGS Publications Warehouse

    Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.

    2012-01-01

    Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 2009–2010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 2009–2010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 2009–2010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 2008–2009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.

  6. Fluctuating pulled fronts and Pomerons

    SciTech Connect

    Iancu, Edmond

    2005-06-14

    I present a pedagogical discussion of the influence of particle number fluctuations on the high energy evolution in QCD. I emphasize the event-by-event description, and the correspondence with the problem of 'fluctuating pulled fronts' in statistical physics. I explain that the correlations generated by fluctuations reduce the phase-space for BFKL evolution up to saturation. Because of that, the evolution 'slows down', and the rate for the energy increase of the saturation momentum is considerably decreased. I also discuss the diagrammatic interpretation of the particle number fluctuations in terms of Pomeron loops.

  7. Deadly Cold: Health Hazards Due to Cold Weather. An Information Paper by the Subcommittee on Health and Long-Term Care of the Select Committee on Aging. House of Representatives, Ninety-Eighth Congress, Second Session (February 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Aging.

    This paper, on the health hazards of cold weather for elderly persons, presents information from various sources on the death rates in winter throughout the United States. After reviewing the scope of the problem, specific health hazards associated with cold weather are discussed, i.e., hypothermia, fires, carbon monoxide poisoning, and influenza…

  8. Crack Front Dynamics across a Single Heterogeneity

    NASA Astrophysics Data System (ADS)

    Chopin, J.; Prevost, A.; Boudaoud, A.; Adda-Bedia, M.

    2011-09-01

    We study the spatiotemporal dynamics of a crack front propagating at the interface between a rigid substrate and an elastomer. We first characterize the kinematics of the front when the substrate is homogeneous and find that the equation of motion is intrinsically nonlinear. We then pattern the substrate with a single defect. Steady profiles of the front are well described by a standard linear theory with nonlocal elasticity, except for large slopes of the front. In contrast, this theory seems to fail in dynamical situations, i.e., when the front relaxes to its steady shape, or when the front pinches off after detachment from a defect. More generally, these results may impact the current understanding of crack fronts in heterogeneous media.

  9. Cold stress and the cold pressor test.

    PubMed

    Silverthorn, Dee U; Michael, Joel

    2013-03-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This activity is easily adapted to an inquiry format that asks students to go to the scientific literature to learn about the test and then design a protocol for carrying out the test in classmates. The data collected are ideal for teaching graphical presentation of data and statistical analysis. PMID:23471256

  10. Nesting habitat of the Tule Greater White-fronted Goose Anser albifrons elgasi

    USGS Publications Warehouse

    Densmore, R.V.; Ely, C.R.; Bollinger, K.S.; Kratzer, S.; Udevitz, M.S.; Fehringer, D.J.; Rothe, T.C.

    2006-01-01

    This paper presents the first information on the availability and use of nesting habitat by the rare Tule Greater White-fronted Goose Anser albifrons elgasi. The breeding range was sampled by marking geese with radio transmitters on wintering and moulting areas, and tracking them to nest sites in Alaska. Nesting habitat was described at the scales of ecoregion, wetland ecosystem (National Wetlands Inventory (NWI) maps), vegetation type within wetland (Alaska Vegetation Classification (AVC) maps based on satellite imagery), and nest site. Tule Greater White-fronted Goose nests were located in boreal forest wetlands in the upper Cook Inlet Basin ecoregion. Nesting Tule Greater White-fronted Geese selected NWT Palustrine Seasonally Flooded wetlands and used NWI Palustrine Saturated wetlands in proportion to availability. Within these wetlands, Tule Greater White-fronted Geese used Needleleaf Forest, Low Shrub and Herbaceous (mostly graminoid) AVC classes for nest sites in proportion to availability Most (93%) Tule Greater White-fronted Geese nested > 75 m from open water ponds or lakes, and many nested in wetlands with little or no open water. Tule Greater White-fronted Geese nest only in a small breeding area near the most human-impacted area of the state, and continued development may limit the use of suitable nesting habitat.

  11. Impact of the winter North Atlantic Oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO

    NASA Astrophysics Data System (ADS)

    Tachibana, Yoshihiro; Oshika, Miki; Nakamura, Tetsu

    2015-04-01

    This study tested the hypothesis that Asian weather and climate in a given winter can be predicted 1 year in advance. On the basis of a 51-year statistical analysis of reanalysis data, we propose for the first time that the positive phase of the Western Pacific (WP) pattern in the winter is linked to the negative phase of the North Atlantic Oscillation (NAO) in the previous winter, and vice versa. We show that there are two possible mechanisms responsible for this interannual remote linkage. One is an Arctic mechanism. Extensive Arctic sea ice in the summer after a negative NAO acts as a bridge to the positive phase of the WP in the next winter. The negative (positive) phase of the winter NAO changes oceanic currents in the North Atlantic and weakens (strengthens) oceanic heat transport into the Arctic. This weakened (strengthened) heat transport also slows down (speeds up) the reduction of sea ice in the spring. A condition of more (less) ice than normal then persists until the season of ice freezing in autumn. In winter, all of the Arctic Ocean is covered by sea ice, regardless of the autumn ice area. Less (more) ice production during the freezing season reduces (increases) the heat released from the ocean to the atmosphere in the Arctic. An anomalously small (large) heat flux excites stationary Rossby wave propagation, which induces warm (cold) advection to Japan. The other mechanism involves the tropics. An El Niño occurrence after a negative winter NAO acts as another bridge to the positive phase of the WP in the following winter. The timescale of the Arctic route is nearly decadal, whereas that of the tropical route is about 3-5 years. The tropical mechanism indicates that the NAO remotely excites an El Niño in the second half of the following year. A process perhaps responsible for the El Niño occurrence was investigated statistically. A negative NAO in the winter increases Eurasian snow cover. This anomalous snow cover then intensifies the cold air outbreak from Asia to the western tropical Pacific. This outbreak can intensify the westerly wind burst and excite El Niño in the following year. We suggest that the phase of the NAO in the winter could be a predictor of the WP in the following year. Detailed is in Oshika, Tachibana and Nakamura in Climate Dynamics (2014), DOI: 10.1007/s00382-014-2384-1.

  12. Microphysical simulations of polar stratospheric clouds during the 2010-2011 Arctic Winter

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Toon, O. B.; Kinnison, D. E.; Lambert, A.; Brakebusch, M.

    2013-12-01

    Polar stratospheric clouds (PSCs) form in the lower stratosphere during the polar night due to the cold temperature inside the polar vortex. PSCs are important to understand because they are one of the important factors for the formation of the Antarctic ozone hole and the "mini" ozone hole over the Arctic during the winter of 2010-2011. In this work, We explore the formation and evolution of STS particles (Super-cooled Ternary Solution) and NAT (Nitric-acid Trihydrate ) particles using the SD-WACCM/CARMA model for 2010-2011 Arctic winter. SD-WACCM/CARMA is the Whole Atmosphere Community Climate Model coupled with the microphysics model (CARMA) using Specific Dynamics. The 2010-2011 Arctic winter is special because a cold Arctic vortex lasted from December until the end of March [Manney et al., 2011]. The long length of this cold period resulted in a prolonged presence of PSCs and consequently strong ozone depletion. This work includes comparison of the simulated microphysical features of PSCs with historical observations. Also, simulations and observations from MLS and Calipso showing the evolution of temperature, PSCs and related chemical species (HNO3, H2O) in 2010-2011 Arctic winter are presented.

  13. Cold Weather Entomology.

    ERIC Educational Resources Information Center

    McLure, John W.

    1983-01-01

    Suggests instructional strategies and student activities related to the study of insects during the winter. Includes possible collecting sites and classroom activities once the insects have been collected. (JN)

  14. Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Kwon, B. H.; BNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1 to 2C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1 to 2C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.

  15. Double-Front Detonation Waves

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  16. Thermohaline fine structure in an oceanographic front from seismic reflection profiling.

    PubMed

    Holbrook, W Steven; Páramo, Pedro; Pearse, Scott; Schmitt, Raymond W

    2003-08-01

    We present acoustic images of oceanic thermohaline structure created from marine seismic reflection profiles across the major oceanographic front between the Labrador Current and the North Atlantic Current. The images show that distinct water masses can be mapped, and their internal structure imaged, using low-frequency acoustic reflections from sound speed contrasts at interfaces across which temperature changes. The warm/cold front is characterized by east-dipping reflections generated by thermohaline intrusions in the uppermost 1000 meters of the ocean. Our results imply that marine seismic reflection techniques can provide excellent spatial resolution of important oceanic phenomena, including thermohaline intrusions, internal waves, and eddies. PMID:12907798

  17. Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields?

    PubMed

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios. PMID:25490555

  18. Could Behaviour and Not Physiological Thermal Tolerance Determine Winter Survival of Aphids in Cereal Fields?

    PubMed Central

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios. PMID:25490555

  19. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  20. Winter cover crops influence Amaranthus palmeri establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  1. WINTER FORAGE STRATEGIES TO REDUCE FEED COSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major input in a cow/calf operation is cost associated with feeding harvested forages during the winter months. Producers can extend the grazing season into the fall and winter months with decreased dependence on stored or purchased feeds by overseeding winter annuals and (or) stockpiling forage...

  2. Effects of weather on habitat selection and behavior of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, D.G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.

    1984-01-01

    Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.

  3. Attribution of UK Winter Floods to Anthropogenic Forcing

    NASA Astrophysics Data System (ADS)

    Schaller, N.; Alison, K.; Sparrow, S. N.; Otto, F. E. L.; Massey, N.; Vautard, R.; Yiou, P.; van Oldenborgh, G. J.; van Haren, R.; Lamb, R.; Huntingford, C.; Crooks, S.; Legg, T.; Weisheimer, A.; Bowery, A.; Miller, J.; Jones, R.; Stott, P.; Allen, M. R.

    2014-12-01

    Many regions of southern UK experienced severe flooding during the 2013/2014 winter. Simultaneously, large areas in the USA and Canada were struck by prolonged cold weather. At the time, the media and public asked whether the general rainy conditions over northern Europe and the cold weather over North America were caused by climate change. Providing an answer to this question is not trivial, but recent studies show that probabilistic event attribution is feasible. Using the citizen science project weather@home, we ran over 40'000 perturbed initial condition simulations of the 2013/2014 winter. These simulations fall into two categories: one set aims at simulating the world with climate change using observed sea surface temperatures while the second set is run with sea surface temperatures corresponding to a world that might have been without climate change. The relevant modelled variables are then downscaled by a hydrological model to obtain river flows. First results show that anthropogenic climate change led to a small but significant increase in the fractional attributable risk for 30-days peak flows for the river Thames. A single number can summarize the final result from probabilistic attribution studies indicating, for example, an increase, decrease or no change to the risk of the event occurring. However, communicating this to the public, media and other scientists remains challenging. The assumptions made in the chain of models used need to be explained. In addition, extreme events, like the UK floods of the 2013/2014 winter, are usually caused by a range of factors. While heavy precipitation events can be caused by dynamic and/or thermodynamic processes, floods occur only partly as a response to heavy precipitation. Depending on the catchment, they can be largely due to soil properties and conditions of the previous months. Probabilistic attribution studies are multidisciplinary and therefore all aspects need to be communicated properly.

  4. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.

  5. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  6. Asymmetry in the response of central Eurasian winter temperature to AMO

    NASA Astrophysics Data System (ADS)

    Hao, Xin; He, Shengping; Wang, Huijun

    2015-12-01

    The asymmetry in the teleconnection of the central Eurasian winter surface air temperature (SAT) with the Atlantic multidecadal oscillation (AMO) is discussed using observations and model simulations. Observations indicate that the winter SAT over central Eurasia (30°-70°E, 30°-50°N) shows significant positive anomalies during the warm AMO period but weak and insignificant anomalies in the cold AMO period. In general, the warm winters in central Eurasia are associated with large-scale negative sea level pressure anomalies in Europe, anomalous southwesterly winds at 850 hPa over Europe, the "+ - +" geopotential height anomalies at 500 hPa in the south of Greenland, northern Europe, western Asia, and the slant north-south "+ -" pattern jet stream anomalies at 200 hPa in the north and south of the Caspian Sea. Reverse patterns occur during cold winters. These statistically significant features are observed in the warm phase of AMO. Reversed circulation anomalies are observed during the cold phase of AMO; however, these anomalies are weak and not statistically significant. Furthermore, the asymmetry in the atmospheric response to AMO is well supported by simulations with a suite of GFDL atmospheric model idealized experiments and four CMIP5 models historical experiments. Both observations and simulations indicate that Rossby waves propagating from the North Atlantic eastward to Eurasia emerge in the warm AMO and disappear in the cold AMO. Thus, the different propagations of Rossby waves, induced by the different surface thermal conditions of the warm and cold AMO, are the potential connection between the North Atlantic Ocean and central Eurasian climate, and may explain the asymmetry.

  7. 1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS (2. N. Front Street starts at left) - North Front Street Area Study, 2-66 North Front Street (Commercial Buildings), Philadelphia, Philadelphia County, PA

  8. Water masses, ocean fronts, and the structure of Antarctic seabird communities: Putting the eastern Bellingshausen Sea in perspective

    NASA Astrophysics Data System (ADS)

    Ribic, Christine A.; Ainley, David G.; Glenn Ford, R.; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-07-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April-September) and summer (October-March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins ( Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adélie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

  9. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    USGS Publications Warehouse

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adélie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

  10. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    USGS Publications Warehouse

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2015-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April–September) and summer (October–March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adélie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adélie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

  11. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian 'Light-Front Holography'. Light-Front Holography is in fact one of the most remarkable features of the AdS/CFT correspondence. The Hamiltonian equation of motion in the light-front (LF) is frame independent and has a structure similar to eigenmode equations in AdS space. This makes a direct connection of QCD with AdS/CFT methods possible. Remarkably, the AdS equations correspond to the kinetic energy terms of the partons inside a hadron, whereas the interaction terms build confinement and correspond to the truncation of AdS space in an effective dual gravity approximation. One can also study the gauge/gravity duality starting from the bound-state structure of hadrons in QCD quantized in the light-front. The LF Lorentz-invariant Hamiltonian equation for the relativistic bound-state system is P{sub {mu}}P{sup {mu}}|{psi}(P)> = (P{sup +}P{sup -} - P{sub {perpendicular}}{sup 2})|{psi}(P)> = M{sup 2}|{psi}(P)>, P{sup {+-}} = P{sup 0} {+-} P{sup 3}, where the LF time evolution operator P{sup -} is determined canonically from the QCD Lagrangian. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a LF Hamiltonian equation which describes the bound-state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time {tau} = x{sup 0} + x{sup 3}. This allows us to identify the holographic variable z in AdS space with an impact variable {zeta}. The resulting Lorentz-invariant Schroedinger equation for general spin incorporates color confinement and is systematically improvable. Light-front holographic methods were originally introduced by matching the electromagnetic current matrix elements in AdS space with the corresponding expression using LF theory in physical space time. It was also shown that one obtains identical holographic mapping using the matrix elements of the energy-momentum tensor by perturbing the AdS metric around its static solution. A gravity dual to QCD is not known, but the mechanisms of confinement can be incorporated in the gauge/gravity correspondence by modifying the AdS geometry in the large infrared (IR) domain z {approx} 1 = {Lambda}{sub QCD}, which also sets the scale of the strong interactions. In this simplified approach we consider the propagation of hadronic modes in a fixed effective gravitational background asymptotic to AdS space, which encodes salient properties of the QCD dual theory, such as the ultraviolet (UV) conformal limit at the AdS boundary, as well as modifications of the background geometry in the large z IR region to describe confinement. The modified theory generates the point-like hard behavior expected from QCD, instead of the soft behavior characteristic of extended objects.

  12. Antidipolarization fronts observed by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Li, S.-S.; Liu, Jiang; Angelopoulos, V.; Runov, A.; Zhou, X.-Z.; Kiehas, S. A.

    2014-09-01

    Near-Earth reconnection on closed plasma sheet field lines is thought to generate plasmoids. A plasmoid is usually described as a plasma sheet expansion into the lobe, encompassed by closed magnetic loops or the helical fields of a flux rope (in this paper we do not distinguish plasmoids from flux ropes; rather we use the term plasmoid generically). Recently, sharp, highly asymmetric north-then-south bipolar variations (with a larger southward portion) in the magnetic field BZ component have been noted in midtail (XGSM ~ -60 RE) plasmoids. These variations do not fit the classical plasmoid model but are mirror images of earthward moving dipolarization fronts (DFs), which show asymmetric south-then-north BZ bipolar variations with a larger northward portion. Using case and statistical studies from 3 years of Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) data (at XGSM ~ -60 RE), we show that magnetic and particle properties of these typically tailward moving fronts, which we refer to as "antidipolarization fronts" (ADFs), are very similar to those of classical, typically earthward moving DFs, except for their BZ polarity and flow direction. First, like DFs and plasmoids, ADFs are associated with auroral electrojet enhancements. Second, like DFs, ADFs exhibit a sharp density decrease, plasma pressure increase, magnetic pressure increase, and particle heating immediately following the sharp BZ change. Third, particle spectra indicate that, as with DFs, there are two distinctly different magnetically separated populations ahead of and behind ADFs. The energy spectrograms of plasmoids, however, indicate a single hot population at the plasmoid center. We conclude that midtail ADFs are likely products of fast reconnection, observed on the tailward side of the reconnection site, just as DFs are products of fast reconnection seen on the earthward side. ADFs are observed at ARTEMIS much less frequently (~10%) than typical plasmoids but twice as frequently as DFs at the same distance. We suggest that ADFs are protoplasmoids that emerge from near-Earth reconnection and evolve quickly into plasmoids as they propagate down the tail.

  13. Preventing cold-related morbidity and mortality in a changing climate

    PubMed Central

    Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O

    2011-01-01

    Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a persons vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693

  14. Mercury in wintering seabirds, an aggravating factor to winter wrecks?

    PubMed

    Fort, Jérôme; Lacoue-Labarthe, Thomas; Nguyen, Hanh Linh; Boué, Amélie; Spitz, Jérôme; Bustamante, Paco

    2015-09-15

    Every year, thousands of seabirds are cast ashore and are found dead along the coasts of North America and Western Europe. These massive mortality events called 'winter wrecks' have generally been attributed to harsh climatic conditions and prolonged storms which affect bird energy balance and impact their body condition. Nevertheless, additional stress factors, such as contaminant body burden, could potentially cumulate to energy constraints and actively contribute to winter wrecks. However, the role played by these additional factors in seabird massive winter mortality has received little attention to date. In February/March 2014, an unprecedented seabird wreck occurred along the Atlantic French coasts during which > 43,000 seabirds were found dead. By analyzing mercury (Hg) concentrations in various tissues collected on stranded birds, we tested the hypothesis that Hg played a significant role in this mortality. More specifically, we aimed to (1) describe Hg contamination in wintering seabirds found along the French coasts in 2014, and (2) determine if Hg concentrations measured in some vital organs such as kidney and brain reached toxicity thresholds that could have led to deleterious effects and to an enhanced mortality. We found some of the highest Hg levels ever reported in Atlantic puffins, common guillemots, razorbills and kittiwakes. Measured concentrations ranged from 0.8 to 3.6 μg · g(-1) of dry weight in brain, 1.3 to 7.2 μg · g(-1) in muscle, 2.5 to 13.5 μg · g(-1) in kidney, 2.9 to 18.6 μg · g(-1) in blood and from 3.1 to 19.5 μg · g(-1) in liver. Hg concentrations in liver and brain were generally below the estimated acute toxicity levels. However, kidney concentrations were not different than those measured in the liver, and above levels associated to renal sub-lethal effects, suggesting a potential Hg poisoning. We concluded that although Hg was not directly responsible for the high observed mortality, it has been a major aggravating stress factor for emaciated birds already on the edge. Importantly, this study also demonstrated that total blood, which can be non-lethally collected in seabirds, can be used as a predictor of Hg contamination in other tissues. PMID:25984703

  15. Overwintering Strategy and Mechanisms of Cold Tolerance in the Codling Moth (Cydia pomonella)

    PubMed Central

    Rozsypal, Jan; Koštál, Vladimír; Zahradníčková, Helena; Šimek, Petr

    2013-01-01

    Background The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. Principal Findings We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately −15.3°C during summer to −26.3°C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to −15°C, even in partially frozen state. Conclusion Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer). PMID:23613923

  16. Antihistamines, Decongestants, and Cold Remedies

    MedlinePlus

    ... an ENT Doctor Near You Antihistamines, Decongestants, and Cold Remedies Antihistamines, Decongestants, and Cold Remedies Patient Health ... Trinalin®. What should I look for in a “cold” remedy? Decongestants and/or antihistamines are the principal ...

  17. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  18. Plant responses to cold: Transcriptome analysis of wheat.

    PubMed

    Winfield, Mark O; Lu, Chungui; Wilson, Ian D; Coghill, Jane A; Edwards, Keith J

    2010-09-01

    Temperature and light are important environmental stimuli that have a profound influence on the growth and development of plants. Wheat varieties can be divided on the basis of whether they require an extended period of cold to flower (vernalization). Varieties that have a requirement for vernalization also tend to be winter hardy and are able to withstand quite extreme subzero temperatures. This capacity, however, is not constitutive and plants require a period of exposure to low, non-freezing temperatures to acquire freezing tolerance: this process is referred to as cold acclimation. Cold acclimation and the acquisition of freezing tolerance require the orchestration of many different, seemingly disparate physiological and biochemical changes. These changes are, at least in part, mediated through the differential expression of many genes. Some of these genes code for effector molecules that participate directly to alleviate stress. Others code for proteins involved in signal transduction or transcription factors that control the expression of further banks of genes. In this review, we provide an overview of some of the main features of cold acclimation with particular focus on transcriptome reprogramming. In doing so, we highlight some of the important differences between cold-hardy and cold-sensitive varieties. An understanding of these processes is of great potential importance because cold and freezing stress are major limiting factors for growing crop plants and periodically account for significant losses in plant productivity. PMID:20561247

  19. Northern Front Range air quality study: Apportionment of carbonaceous particles

    SciTech Connect

    Fujita, E.M.; McDonald, J.D.; Hayes, T.L.; Zielinska, B.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G.; Lawson, D.R.

    1998-12-31

    The Chemical Mass Balance (CMB) receptor model was applied to source profiles and ambient measurements taken during Winter 1997 at locations near Denver, CO. Chemical speciation included particulate and gaseous polycyclic aromatic hydrocarbons and other organic compounds (e.g., methoxylated phenols, hopanes, steranes, sterols, and lactones) in combination with inorganic particulate species and total elemental and organic carbon. Emissions were tested for more than 200 in-use vehicles, including heavy-duty trucks and buses, light-duty diesel vehicles and, smoking and high emitting gasoline vehicles. Separate profiles were obtained for light-duty vehicle for cold-start and hot stabilized modes. Wood burning and meat cooking emissions were also characterized. Motor vehicles account for about 85 percent of the ambient PM2.5 carbon in Denver and about 75 percent in areas north of Denver. Light-duty gasoline vehicles are the major sources of PM2.5 carbon in Denver, with cold starts (or high emitters) and smokers contributing about 30 percent each to PM2.5 carbon. Normal hot stabilized emissions and diesel exhaust contribute about 5 and 17 percent, respectively, and paved road dust contributes less than 5 percent. Smokers, and cold starts (or high emitters) are the largest contributors to PM2.5 organic carbon, and diesel exhaust, and cold starts (or high emitters) are the largest contributors to PM2.5 elemental carbon. PM2.5 emissions from the exhaust of light-duty gasoline vehicles are seriously underestimated in current inventories relative to diesel exhaust. Diesel exhaust, which is about two-thirds of the on-road vehicle PM2.5 emissions in the current inventory, account for only 18 percent according to the ambient source apportionment.

  20. Reaction front formation in contaminant plumes.

    PubMed

    Cribbin, Laura B; Winstanley, Henry F; Mitchell, Sarah L; Fowler, Andrew C; Sander, Graham C

    2014-12-15

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front. PMID:25461883

  1. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  2. Front pinning in single vortex flows

    NASA Astrophysics Data System (ADS)

    Mahoney, John; Mitchell, Kevin

    2014-11-01

    We study fronts propagating in 2D fluid flows and show that there exist stable invariant front configurations for fairly generic flows. Here we examine the simple flow which combines a single vortex with an overall ``wind.'' We discuss how the invariant front can be derived from a simple 3D ODE. Existence of this front can then be understood in terms of bifurcations of fixed points, and the behavior of the invariant ``sliding front'' submanifold. Interestingly, the front bifurcation precedes the saddle-node bifurcation which gives rise to the vortex. This elementary structure has application in chemical reactor beds and laminar combustion in well-mixed fluids. We request that this talk follow the related talks by our collaborators Tom Solomon, Savannah Gowen, and Sarah Holler.

  3. Ice-dependent winter survival of juvenile Atlantic salmon.

    PubMed

    Hedger, R D; Næsje, T F; Fiske, P; Ugedal, O; Finstad, A G; Thorstad, E B

    2013-03-01

    Changes in snow and ice conditions are some of the most distinctive impacts of global warming in cold temperate and Arctic regions, altering the environment during a critical period for survival for most animals. Laboratories studies have suggested that reduced ice cover may reduce the survival of stream dwelling fishes in Northern environments. This, however, has not been empirically investigated in natural populations in large rivers. Here, we examine how the winter survival of juvenile Atlantic salmon in a large natural river, the River Alta (Norway, 70°N), is affected by the presence or absence of surface ice. Apparent survival rates for size classes corresponding to parr and presmolts were estimated using capture-mark-recapture and Cormack-Jolly-Seber models for an ice-covered and an ice-free site. Apparent survival (Φ) in the ice-covered site was greater than in the ice-free site, but did not depend on size class (0.64 for both parr and presmolt). In contrast, apparent survival in the ice-free site was lower for larger individuals (0.33) than smaller individuals (0.45). The over-winter decline in storage energy was greater for the ice-free site than the ice-covered site, suggesting that environmental conditions in the ice-free site caused a strong depletion in energy reserves likely affecting survival. Our findings highlight the importance of surface ice for the winter survival of juvenile fish, thus, underpinning that climate change, by reducing ice cover, may have a negative effect on the survival of fish adapted to ice-covered habitats during winter. PMID:23532172

  4. Ice-dependent winter survival of juvenile Atlantic salmon

    PubMed Central

    Hedger, R D; Næsje, T F; Fiske, P; Ugedal, O; Finstad, A G; Thorstad, E B

    2013-01-01

    Changes in snow and ice conditions are some of the most distinctive impacts of global warming in cold temperate and Arctic regions, altering the environment during a critical period for survival for most animals. Laboratories studies have suggested that reduced ice cover may reduce the survival of stream dwelling fishes in Northern environments. This, however, has not been empirically investigated in natural populations in large rivers. Here, we examine how the winter survival of juvenile Atlantic salmon in a large natural river, the River Alta (Norway, 70°N), is affected by the presence or absence of surface ice. Apparent survival rates for size classes corresponding to parr and presmolts were estimated using capture-mark-recapture and Cormack-Jolly-Seber models for an ice-covered and an ice-free site. Apparent survival (Φ) in the ice-covered site was greater than in the ice-free site, but did not depend on size class (0.64 for both parr and presmolt). In contrast, apparent survival in the ice-free site was lower for larger individuals (0.33) than smaller individuals (0.45). The over-winter decline in storage energy was greater for the ice-free site than the ice-covered site, suggesting that environmental conditions in the ice-free site caused a strong depletion in energy reserves likely affecting survival. Our findings highlight the importance of surface ice for the winter survival of juvenile fish, thus, underpinning that climate change, by reducing ice cover, may have a negative effect on the survival of fish adapted to ice-covered habitats during winter. PMID:23532172

  5. Interannual variation of East Asian Winter Monsoon and ENSO

    SciTech Connect

    Zhang, Yi; Sperber, Kenneth R.; Boyle, James S.

    1996-12-01

    This paper examines the interannual variation of the East Asian winter monsoon and its relationship with EJSO based on the 1979-1995 NCEP/NCAR reanalysis. Two stratifications of cold surges are used. The first one, described as the conventional cold surges, indicates that the surge frequency reaches a urn one year after El Nino events. The second one, originated from the same region as the first, is defined as the maximum wind events near the South China Sea. The variation of this stratification of surges is found to be in good agreement with the South Oscillation Index (SOI). Low SOI (high SOI) events coincide with years of low (high) surge frequency. The interannual variation of averaged meridional wind near the South China Sea and western Pacific is dominated by the South China Sea cold surges, and is also well correlated (R--O.82) with the SOI. Strong wind seasons are associated with La Nina and high SOI events; likewise, weak wind years are linked with El Nino and low SOI cases. This pattern is restricted north of the equator within the region of (OON-20 N, 11OOE-1300E), and is confined to the near surface layer. The surface Siberian high, 500 hPa trough and 200 hPa jetstream, all representing the large-scale monsoon flow, are found to be weaker than normal during El Nino years. In particular, the interannual variation of the Siberian high is in general agreement with the SOL.

  6. Communicating Certainty About Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), I inserted a paragraph pointing out that volcanic eruptions serve as an analog that supports new work on nuclear winter. This is the first time that nuclear winter has been in the IPCC report. I will tell the story of the discussions within our chapter, with review editors, and with the IPCC leadership that resulted in a box in Chapter 8 that discusses nuclear winter. We gave a briefing to John Holdren, the President's Science Advisor, about the work. Daniel Ellsberg, Fidel Castro, and Mikhail Gorbachev found out about our work, and used the results to appeal for nuclear abolition. In 2013 the work was featured at the Conference on the Humanitarian Impact of Nuclear Weapons in Oslo, Norway attended by 132 nations, and I gave a TEDx talk, I published an opinion piece on the CNN website, and I gave an invited public lecture in Nagasaki, Japan, all about the climatic consequences of nuclear war. I am now using Twitter and Facebook to communicate about nuclear winter. The threat that nuclear weapons pose to the planet is a much easier problem to solve than global warming. We need to eliminate nuclear weapons so we have the luxury of working on the global warming problem without the possibility of the existential global threat still posed by the global nuclear arsenal.

  7. Reaction front propagation in a turbulent flow

    NASA Astrophysics Data System (ADS)

    Koudella, Christophe R.; Neufeld, Zoltán

    2004-08-01

    The propagation of reaction fronts in a turbulent fluid flow is studied by direct numerical simulations in two space dimensions. The velocity field is obtained from integrating the Navier-Stokes equation in two dimensions. We investigate the structure of the reaction front and the enhancement of the front propagation speed due to turbulent mixing. Consistently with earlier theoretical, predictions and experiments we find two qualitatively different regimes as the Damköhler number—the ratio of eddy turnover times and of the characteristic chemical time scale—is varied, corresponding to a distributed reaction zone and thin wrinkled fronts.

  8. Changes in the frequencies of record-breaking temperature events in China and its association with East Asian Winter Monsoon variability

    NASA Astrophysics Data System (ADS)

    Kuang, Xueyuan; Zhang, Yaocun; Huang, Ying; Huang, Danqing

    2014-02-01

    The daily maximum and minimum temperatures observed at the 1897 meteorological stations of China over the past 60 years (1951-2010) are analyzed in this study to examine the interdecadal variation of frequency for record-breaking event (RBE) of temperature in the context of global warming. The results indicate that the frequency of record-breaking high temperature in the first decade of the 21st century is the highest in the three decades from the 1980s to the 2000s, implying a distinct warming trend. Meanwhile, frequencies of record-breaking low temperature in the 1990s and the beginning of the 21st century are also significant. In particular, the RBEs of low temperature occurred over most of China in the 1990s but concentrated in northern China during the 2000s. To understand why the record low temperatures in northern China are repeatedly broken in the 2000s, the related East Asian Winter Monsoon (EAWM) variability is investigated. The empirical orthogonal function analysis of surface air temperature reveals that the northern mode of the EAWM variability, which is highly associated with the Arctic Oscillation (AO) activities at both interdecadal and interannual timescales, has been intensifying since late 1990s. Corresponding to the intensification of the northern mode of the EAWM variability and the negative phase of AO in the 2000s, the Siberian High and East Asian trough intensify while the polar-front jet stream strengthens and the subtropical westerly jet stream abnormally shifts northward. As a result, anomalously strong cold air masses, originated from Siberia, intrude into East Asia but are blocked by the enhanced northward subtropical westerly jet and cannot reach low-latitude area. Therefore, the extremely strong cold air masses are amassed in mid-high latitudes of East Asia, resulting in RBEs of low temperature in this area.

  9. The Remarkable 2003-2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Krueger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2004-01-01

    The 2003-2004 Arctic winter was remarkable in the 40-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly two months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with two previous years, 1984-1985 and 1986-1987, with prolonged mid-winter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over two standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (seven in the past six years) is unprecedented. Lower stratospheric temperatures were unusually high during six of the past seven years, with five having much lower than usual potential for PSC formation and ozone loss (nearly none in 1998-1999, 2001-2002 and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of five of the last seven years with very low PSC potential would be expected to occur randomly once every approximately 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  10. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  11. Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold

    PubMed Central

    2014-01-01

    Background Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure. Methods Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments. Results Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group. Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although T¯dist was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of T¯dist were observed during periods of cold exposure. Conclusions Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism. PMID:25183371

  12. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  13. Cold Sores (Orofacial Herpes)

    MedlinePlus

    ... pregnancy Stress Trauma, such as that caused by dental work or cuts from shaving Surgery Self-Care Guidelines Acetaminophen or ibuprofen may help reduce fever, muscle aches, and pain caused by cold sores. Try to drink as ...

  14. Colds and the Flu

    MedlinePlus

    ... with green- or yellow-colored discharge) Sore throat Cough Sneezing Fatigue Muscle aches Headache Watery eyes Cold ... aches, especially in your back, arms and legs Cough Headache Loss of appetite What is H1N1 flu? ...

  15. Study of formation process of cold intermediate layer based on reanalysis of Black Sea hydrophysical fields for 1971-1993

    NASA Astrophysics Data System (ADS)

    Korotaev, G. K.; Knysh, V. V.; Kubryakov, A. I.

    2014-01-01

    A reanalysis of hydrophysical fields for 1971-1993 is used to study the formation mechanisms of the cold intermediate layer (CIL): the advective mechanism (associated with the advection of cold waters formed in the northwestern shelf (NWS)) and the convective mechanism (caused by wintertime convection inside cyclonic gyres in the central part of the sea). We consider the periods of alternating atmospheric conditions: the mild winter of 1980-1981, normal winter of 1987-1988, and cold winter of 1992-1993. Interannual features of replenishment and renewal of "old" CIL waters caused by these mechanisms are identified. In particular, cooled shelf waters sink along the continental slope and merge with "old" CIL waters during the mild winter of 1980-1981 more than 1 month later than during the cold winter 1992-1993 and more than 3 weeks later than during the normal winter of 1987-1988. The Sevastopol anticyclonic gyre and the northwest branch of the Black Sea Rim Current markedly influence the transformation of entrained cold NWS waters transported to the southwest and the central part of the water area. The local formation process of cold intermediate waters is found to be caused by the wintertime penetrating convection over domelike isosurfaces of temperature and salinity arising due to rising constant halocline (pycnocline) at the centers of cyclonic gyres because of the intensification of the wintertime circulation. Anomalously cold surface water, characterized by increased density, gradually sinks. An analysis of TS indices indicates that the transformed cold water spreads out over isopycnic surfaces with time, being entrained in cyclonic circulation and spreading throughout the sea, thus renewing "old" CIL waters.

  16. The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree.

    PubMed

    Brightwell, Robert J; Silverman, Jules

    2011-10-01

    Mutualisms and facilitations can fundamentally change the relationship between an organism's realized and fundamental niche. Invasive species may prove particularly suitable models for investigating this relationship as many are dependent on finding new partners for successful establishment. We conducted field-based experiments testing whether a native tree facilitates the successful survival of the invasive Argentine ant, Linepithema humile (Mayr), through unfavorable winter conditions in the southeastern United States. We found Argentine ant nests aggregated around the native loblolly pine, Pinus taeda L., during the winter months. The bark of this tree absorbed enough radiant solar energy to reach temperatures suitable for Argentine ant foraging even when ambient temperatures should have curtailed all foraging. Conversely, foraging ceased when the trunk was shaded. The sun-warmed bark of this tree gave the Argentine ant access to a stable honeydew resource. Argentine ants were not found on or near deciduous trees even though bark temperatures were warm enough to permit Argentine ant foraging on cold winter days. Augmenting deciduous trees with sucrose water through the winter months lead to Argentine ant nests remaining at their base and Argentine ants foraging on the tree. The Argentine ant requires both foraging opportunity and a reliable winter food source to survive through unfavorable winter conditions in the southeastern United States. The loblolly pine provided both of these requirements extending the realized niche of Argentine ants beyond its fundamental niche. PMID:22251714

  17. Deep Thermal Front (southeastern Brazilian coast) see through acoustics: a preliminary study from an operational oceanography perspective

    NASA Astrophysics Data System (ADS)

    Ponsoni, L.; Hermand, J.-P.; da Silveira, I. C. A.

    2012-04-01

    The continental shelf region off the southeastern Brazilian coast (between 20°S and 28°S) is characterized by intrusions of the relatively cold and fertile South Atlantic Central Water (SACW) from the open ocean. Prediction and monitoring of this water mass are topics of great interest given its importance, for example, on climate, carbon cycle, fishing, mariculture, nutrients and pollutants dispersion, and for the oil industry. The intersection of the 18°C isotherm with the seafloor is appointed in the literature as a good tracer for SACW presence on the continental shelf and also to characterize the Deep Thermal Front (DTF) [Castro, 1996]. Among different factors that drive the SACW penetration on the continental shelf, one prominent mechanism is the water transport driven by the conditions of NE-E wind forcing. These winds varies seasonally, and they are prevalent during the spring and summer months. During these months, the water column is generally stratified due the combined effects of solar heating and DTF presence. In contrast, the reverse effect is characteristic in winter, when the water column is nearly homogeneous, relatively colder on the surface and relatively warm close to the bottom. Consequently, the sound speed field changes and thus the acoustic rays are propagated with different characteristics depending on presence, absence or DTF position. Considering this information, acoustics may provide an additional source of data that supplements the other conventional methods (e.g., hydrographic moorings and cruises, buoys, gliders, and others) for tracking and monitoring the front movement. In addition, it is worth emphasizing that acoustic methods present one interesting advantage in that they are able to sample the water column over large three-dimensional distances on an effectively synoptic scale. In this paper, a preliminary study of acoustic propagation modelling through one vertical section off the Brazilian southeastern coast at Cananéia region (state of São Paulo) is presented. Theorical temperature and salinity fields with differents conditions of DTF position are used for the calculations. Notable variations in the transmission loss field, rays propagations and time arrivals are found when the DTF is moving. These results support the idea that acoustics can be an interesting tool in monitoring and tracking of DTF movement, especially in the context of an intregrated program of observational oceanography and numerical ocean modeling.

  18. Differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum (Mo) is an essential micronutrient for plants. To obtain a better understanding of the molecular mechanisms of cold resistance enhanced by molybdenum application in winter wheat, we applied a proteomic approach to investigate the differential expression of proteins in response to molybden...

  19. Differences in vernalization duration requirement in soft winter wheat associated with variation at the vrn-B1 locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In winter wheat (Triticum aestivum L.), the timing of flowering initiation is governed by the action two main environmentally controlled group of genes; vernalization that defines a plant’s requirement for a prolonged exposure to cold temperatures and photoperiod sensitivity defining the need for a ...

  20. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  1. Comparison of the impact of the Arctic Oscillation and Eurasian teleconnection on interannual variation in East Asian winter temperatures and monsoon

    NASA Astrophysics Data System (ADS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2016-04-01

    The large-scale impacts of the Arctic Oscillation (AO) and the Eurasian teleconnection (EU) on the East Asian winter climate are compared for the past 34 winters, focusing on (1) interannual monthly to seasonal temperature variability, (2) East Asian winter monsoon (EAWM), and (3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and cooling by EU over mid-latitude East Asia during their positive phase and vice versa (i.e., warm phase: +AO, -EU; cold phase: -AO, +EU). The EU impact was found to be comparable to the AO impact. For example, warm (cold) months during the warm (cold) AO phase are found clearly when the AO is in the same warm (cold) EU phase. No significant correlation was found between East Asian temperature and the AO when the warm (cold) AO coincided with the cold (warm) EU. The well-known relationship of strong (weak) SH during the cold (warm) AO phase was observed significantly more often when the AO was in the same cold (warm) EU phase. Also, the indices of EAWM, cold surge, and SH were more highly correlated with the EU than with the AO. The advective temperature change and associated circulation demonstrate that the large-scale field including the SH over the mid-latitude Asian inland is better represented by the EU, influencing the East Asian climate. These results suggest that the impact of EU should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  2. Structure and Stability of Ionization Fronts

    NASA Astrophysics Data System (ADS)

    Williams, R. J. R.; Dyson, J. E.; Pavlakis, K.

    The study of the dynamics of ionization fronts has moved far since Franz Kahn helped define the field in the 1950s. Nevertheless, the stability of the fronts and the nature of elephant trunks and bright rims in HII regions remain contentious issues.

  3. Effects of fluctuations on propagating fronts

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata

    Propagating fronts are seen in varieties of nonequilibrium pattern forming systems in Physics, Chemistry and Biology. In the last two decades, many researchers have contributed to the understanding of the underlying dynamics of the propagating fronts. Of these, the deterministic and mean-field dynamics of the fronts were mostly understood in late 1980s and 1990s. On the other hand, although the earliest work on the effect of fluctuations on propagating fronts dates back to early 1980s, the subject of fluctuating fronts did not reach its adolescence until the mid 1990s. From there onwards the last few years witnessed a surge in activities in the effect of fluctuations on propagating fronts. Scores of papers have been written on this subject since then, contributing to a significant maturity of our understanding, and only recently a full picture of fluctuating fronts has started to emerge. This review is an attempt to collect all the works on fluctuating (propagating) fronts in a coherent and cogent manner in proper perspective. It is based on the idea of making our knowledge in this field available to a broader audience, and it is also expected to help to collect bits and pieces of loose thread-ends together for possible further investigation.

  4. End-Users, Front Ends and Librarians.

    ERIC Educational Resources Information Center

    Bourne, Donna E.

    1989-01-01

    The increase in end-user searching, the advantages and limitations of front ends, and the role of the librarian in end-user searching are discussed. It is argued that librarians need to recognize that front ends can be of benefit to themselves and patrons, and to assume the role of advisors and educators for end-users. (37 references) (CLB)

  5. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  6. [Investigation of the essence of chilliness and cold limbs of yang deficiency syndrome in Chinese medicine based on the adaptability of body to cold stimulation].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-05-01

    Chinese medicine (CM) theories attach great importance to the interaction between the human body and the environment. From this entry point, based on a great number of related CM literatures and knowledge of modern medicine, this paper investigated the essence of chilliness and cold limbs of yang deficiency syndrome. The differences on cognition and solution to this problem between CM theory and modern medicine theory were also analyzed. Firstly, the close relationship between the CM concepts of yang deficiency, "external cold", and winter was put forward after a review of yang deficiency in CM scripture Huangdi Neijing. Chilliness and cold limbs of yang deficiency patients was believed to be highly similar to the body state of "external cold" of healthy people in winter. Secondly, the state of "external cold" was described as a reduction of body surface blood flow (heat) with references to the adaptability to cold stimulation. Then according to a collection of physiological and pathological factors which may cause such reduction, we proposed that the essence of chilliness and cold limbs of yang deficiency patients may probably be the state of reduction of body surface blood flow (heat) due to some pathological factors already known as heart failure, poor circulation, and thyroid dysfunction. Thirdly, by using the method of "syndrome differentiation through formula effects assessment", this recognition was confirmed because the pharmacological activities of cardiotonic or peripheral vasodilating, or surface temperature increasing were found in a great number of single medicines and prescriptions applied to yang deficiency syndrome in CM. PMID:22679738

  7. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  8. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  9. Effects of winter feeding on growth body composition and processing traits of co-cultured blue catfish Ictalurus furcatus channel catfish I. punctatus and channel catfish x blue catfish hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many catfish farmers do not feed or feed fish very infrequently during the winter months because feeding activity is reduced at cold water temperatures. However, studies have demonstrated that winter feeding can improve catfish weight gain and processing yield relative to not feeding. We compared ...

  10. Quantifying the chemical ozone loss in the polar vortex during the fifteen winters from 1988-89 to 2002-2003

    NASA Astrophysics Data System (ADS)

    Braathen, G.; Mueller, M.; Sinnhuber, B.-M.; Chipperfield, M.; von der Gathen, P.; Kyro, E.; Mikkelsen, I. S.; Dorokhov, V.; Fast, H.; Parrondo, C.

    2003-04-01

    Several of the winters during the 1990s are characterised by substantial ozone loss in the north polar vortex. The Arctic sonde network built during the last decade makes it possible to quantify this loss throughout the winter. The ozone mixing ratio based on ozonesonde data from a number of stations is studied as function of time at several isentropic levels (400, 435, 475 and 525 K). Data from 16 stations between 60 and 83°N have been used in the study. The ozone data are corrected for the diabatic descent that takes place during the winter. Diabatic descent has been calculated with the Cambridge SLIMCAT model. The model calculated descent has been checked against high-precision tracer measurements. This comparison shows good agreement between modelled and measured descent around 475K. A tracer-tracer correlation (N2O vs CFC-11) also shows that the amount of mixing across the vortex edge at 475K was negligible during mid-winter (late Jan. to early March) of 2000. This means that the observed ozone loss, after the effect of diabatic descent has been accounted for, represents the chemical ozone loss. Results for the 475 K level show that the degree of chemically-induced ozone loss varies a lot from year to year. It is clear from the comparison between the ozone loss and the PSC area that the winters with the biggest ozone loss are the winters that have been cold most of the time from early January and into March. A cold spell, where T drops below TNAT at the end of the winter will of course cause substantial ozone loss, but it will not be enough to cause the same accumulated loss as the most severe winters. The three winters with the most severe loss are 1994-95, 1995-96 and 1999-00. All these winters had PSC temperatures from early December and through most of the winter. Two winters with late cold spells were 1993-94 and 1996-97, but these winters had much less PSCs during the early winter. Whereas the accumulated loss for the three severe winters was around 70% at 475 K, the 1993-94 and 1996-97 winters experienced a loss of 38 and 47%, respectively.

  11. Seasonal and decadal variations of ice-shelf front positions in Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Deschamps-Berger, César; Matsuoka, Kenichi; Moholdt, Geir; König, Max

    2015-04-01

    Most of recent rapid changes of the Antarctic ice sheet have been triggered from the ice shelves through enhanced basal melting and/or iceberg calving. The Dronning Maud Land (DML) coastal region is encompassed by many semi-continuous ice shelves, and its mass balance is thus particularly sensitive to changes in the coastal environment. Better knowledge on the region's ice shelves is necessary to predict future behavior of the ice sheet. Here, we present temporal changes of the ice-shelf front positions in DML over the past decade. RADARSAT-2 imagery was used to delineate the front positions at six times between August 2012 and December 2013. Displacements of the ice-shelf edges over this period are mostly in good agreement with displacements derived from satellite interferometery observations. Yet we observe in several sub-regions that displacement during the austral summer is larger than that during the winter. We also observe winter-growth of sea ice from the ice-shelf fronts and outwards to icebergs that are grounded on the continental shelf. Fast sea ice growth and break-up is seasonal and could influence ice-shelf flow close to the fronts. On a longer term, comparison between 2004 and 2009 MOA coast line datasets and our 2012-13 dataset highlights the general stability of the area in the past decade. Between 2004 and 2013, only six ice shelves experienced considerable retreat due to calving of tabular icebergs, leaving the remaining 90 % of the region's ice-shelf fronts advancing in accordance with their local flow.

  12. The impact of the 2008 cold spell on mortality in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Ma, Wenjuan; Yang, Chunxue; Chu, Chen; Li, Tiantian; Tan, Jianguo; Kan, Haidong

    2013-01-01

    No prior studies in China have investigated the health impact of cold spell. In Shanghai, we defined the cold spell as a period of at least seven consecutive days with daily temperature below the third percentile during the study period (2001-2009). Between January 2001 and December 2009, we identified a cold spell between January 27 and February 3, 2008 in Shanghai. We investigated the impact of cold spell on mortality of the residents living in the nine urban districts of Shanghai. We calculated the excess deaths and rate ratios (RRs) during the cold spell and compared these data with a winter reference period (January 6-9, and February 28 to March 2). The number of excess deaths during the cold spell period was 153 in our study population. The cold spell caused a short-term increase in total mortality of 13 % (95 % CI: 7-19 %). The impact was statistically significant for cardiovascular mortality (RR = 1.21, 95 % CI: 1.12-1.31), but not for respiratory mortality (RR = 1.14, 95 % CI: 0.98-1.32). For total mortality, gender did not make a statistically significant difference for the cold spell impact. Cold spell had a significant impact on mortality in elderly people (over 65 years), but not in other age groups. Conclusively, our analysis showed that the 2008 cold spell had a substantial effect on mortality in Shanghai. Public health programs should be tailored to prevent cold-spell-related health problems in the city.

  13. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  14. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  15. Statistical physics on the light-front

    SciTech Connect

    Raufeisen, J.

    2005-06-14

    The formulation of statistical physics using light-front quantization, instead of conventional equal-time boundary conditions, has important advantages for describing relativistic statistical systems, such as heavy ion collisions. We develop light-front field theory at finite temperature and density with special attention to Quantum Chromodynamics. We construct the most general form of the statistical operator allowed by the Poincare algebra and introduce the chemical potential in a covariant way. In light-front quantization, the Green's functions of a quark in a medium can be defined in terms of just 2-component spinors and does not lead to doublers in the transverse directions. A seminal property of light-front Green's functions is that they are related to parton densities in coordinate space. Namely, the diagonal and off-diagonal parton distributions measured in hard scattering experiments can be interpreted as light-front density matrices.

  16. Immune responses to exercising in a cold environment.

    PubMed

    LaVoy, Emily C P; McFarlin, Brian K; Simpson, Richard J

    2011-12-01

    Cold temperature and exercise independently impose stress on the human body that can lead to circulatory and metabolic changes, and depress the immune system. Multiple stressors applied together may amplify this immunodepression, causing greater immune impairment and heightened infection risk than with either stressor alone. As such, winter athletes and other persons who work or physically exert themselves in cold temperatures may have greater levels of stress-induced immune impairment than would be expected under mild temperatures. This review examines the literature regarding changes to physiological and immunological parameters arising from exposure to cold temperatures and to exercise. Even brief exposure to cold leads to increased levels of norepinephrine and cortisol, lymphocytosis, decreased lymphoproliferative responses, decreased levels of TH1 cytokines and salivary IgA, and increased lactate levels during exercise. Whether these changes lead to increased susceptibility to infection, as suggested by some epidemiological reports, remains to be determined. Although there is some evidence that exercising in temperatures near 5°C leads to greater immune impairment compared to exercising in milder temperatures, there is a need to explore the effects of exercise on immunity in the subfreezing conditions typically encountered by winter athletes. This is required to fully determine the extent to which performing vigorous exercise in subfreezing temperatures amplifies exercise-induced immune impairment and infection risk. PMID:21982757

  17. Global transcriptome profiles of Camellia sinensis during cold acclimation

    PubMed Central

    2013-01-01

    Background Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants. Results Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the “carbohydrate metabolism pathway” and the “calcium signaling pathway” might play a vital role in tea plants’ responses to cold stress. Conclusions Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions. PMID:23799877

  18. Prevalence of intestinal parasites in companion animals in Ontario and Quebec, Canada, during the winter months.

    PubMed

    Blagburn, Byron L; Schenker, Rudolf; Gagne, France; Drake, Jason

    2008-01-01

    Veterinarians in Ontario and Quebec, Canada, typically prescribe monthly heartworm prophylactic and anthelmintic medications for use during the warm months of the year. In many patients, the use of dewormers is discontinued during the winter because of the perception that intestinal parasite infections and shedding of nematode eggs are unlikely when the weather is cold and the ground is frozen or covered with snow. This study examined fecal samples obtained from 96 shelter dogs and cats during the winter in Ontario and Quebec. Intestinal parasites were identified in 34% of submitted samples. These findings support the recommendation that veterinarians should advise pet owners to continue administration of broad-spectrum parasiticides to companion animals during the winter months. PMID:19003777

  19. Distribution patterns of American black duck and mallard winter band recoveries

    USGS Publications Warehouse

    Diefenbach, D.R.; Nichols, J.D.; Hines, J.E.

    1988-01-01

    We compared the distribution patterns of winter band recoveries of American black ducks (Anas rubripes) and mallards (A. platyrhynchos) banded in the same breeding areas. Young black ducks wintered northeast of young mallards but no differences in distribution patterns were detected between adult birds of the 2 species. Mallards exhibited greater temporal variation in distribution patterns and less fidelity to wintering areas. We speculate that these differences in distribution patterns are related to different behavioral responses by mallards and black ducks to variation in resource availability. Black ducks may reduce energy expenditure during periods of extreme cold and wait for conditions to improve, whereas mallards may migrate to areas that are warmer of where more food is available. The availability of quality habitat may be critical to the survival of black ducks during harsh weather conditions because of their relative lack of migrational flexibility, whereas mallards may be able to respond by migrating to favorable environments.

  20. COLD WEATHER PLUME STUDY

    EPA Science Inventory

    While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...

  1. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, up–grading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  2. Tolerance to multiple climate stressors: a case study of Douglas-fir drought and cold hardiness.

    PubMed

    Bansal, Sheel; Harrington, Constance A; St Clair, John Bradley

    2016-04-01

    Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations.We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range.Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms.Our findings highlight the necessity to look beyond bivariate trait-climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species. PMID:27099710

  3. Tolerance to multiple climate stressors: A case study of Douglas-fir drought and cold hardiness

    USGS Publications Warehouse

    Bansal, Sheel; Harrington, Constance A; St. Clair, John Bradley

    2016-01-01

    Summary: 1. Drought and freeze events are two of the most common forms of climate extremes which result in tree damage or death, and the frequency and intensity of both stressors may increase with climate change. Few studies have examined natural covariation in stress tolerance traits to cope with multiple stressors among wild plant populations. 2. We assessed the capacity of coastal Douglas-fir (Pseudotsuga menziesii var. menziesii), an ecologically and economically important species in the northwestern USA, to tolerate both drought and cold stress on 35 populations grown in common gardens. We used principal components analysis to combine drought and cold hardiness trait data into generalized stress hardiness traits to model geographic variation in hardiness as a function of climate across the Douglas-fir range. 3. Drought and cold hardiness converged among populations along winter temperature gradients and diverged along summer precipitation gradients. Populations originating in regions with cold winters had relatively high tolerance to both drought and cold stress, which is likely due to overlapping adaptations for coping with winter desiccation. Populations from regions with dry summers had increased drought hardiness but reduced cold hardiness, suggesting a trade-off in tolerance mechanisms. 4. Our findings highlight the necessity to look beyond bivariate trait–climate relationships and instead consider multiple traits and climate variables to effectively model and manage for the impacts of climate change on widespread species.

  4. Simulating the formation and fate of dense water in a midlatitude marginal sea during normal and warm winter conditions

    NASA Astrophysics Data System (ADS)

    Querin, Stefano; Cossarini, Gianpiero; Solidoro, Cosimo

    2013-02-01

    Dense shelf water production and the deep convection process in the Adriatic Sea are investigated, considering two case studies: the first is representative of the present climatic situation, whereas the second may be expected in a scenario characterized by mild winter conditions over the basin. Dense water production and spreading are studied using a high-resolution implementation of the Massachusetts Institute of Technology general circulation model that is initialized and forced with realistic conditions. This paper provides qualitative and quantitative information on mass transport, dense water pathways, thermohaline structures, and the mixing properties of the basin. In the northern Adriatic shelf, seawater temperature is the key element for winter dense water production because it contributes more relevantly than salinity in determining density. In the southern Adriatic Sea, a small amount of dense water that cascades directly into the pit can be formed on the narrow western shelf only during cold winter conditions. Moreover, open ocean deepwater formation occurs in the middle of the southern basin. In late winter and spring, although only when winter conditions have been sufficiently cold, northern Adriatic dense shelf water forms a subsurface stream of which the densest part rapidly sinks in the southern pit along the shelf break, whereas its lighter part flows southward and reaches the Otranto Strait. The frequent occurrence of mild winter conditions could lead to lower dense water production, with a reduced dense water flow from the Adriatic Sea to the Ionian Sea and a potential great impact on the eastern Mediterranean thermohaline circulation.

  5. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5 years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring together with rain, can substantially remove snow cover and thereby expose plants to cold winter air. Depending on morphology, different parts of the plant can be directly exposed. On this picture, we see Dryas octopetala seed heads from the previous growing season protrude through the remaining ice layer after a warming event in early 2010. The rest of the plant, including meristems and flower primordia, are still somewhat protected by the ice. In the background we can see a patch of Cassiope tetragona protruding through the ice; in this case, the whole plant including flower primordia is exposed, which might be one reason why this species experienced a loss of flowers the following season. Photograph by Philipp Semenchuk. PMID:24567826

  6. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  7. Winter warming from large volcanic eruptions

    NASA Technical Reports Server (NTRS)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95 percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  8. Winter leaf reddening in 'evergreen' species.

    PubMed

    Hughes, Nicole M

    2011-05-01

    Leaf reddening during autumn in senescing, deciduous tree species has received widespread attention from the public and in the scientific literature, whereas leaf reddening in evergreen species during winter remains largely ignored. Winter reddening can be observed in evergreen herbs, shrubs, vines and trees in Mediterranean, temperate, alpine, and arctic regions, and can persist for several months before dissipating with springtime warming. Yet, little is known about the functional significance of this colour change, or why it occurs in some species but not others. Here, the biochemistry, physiology and ecology associated with winter leaf reddening are reviewed, with special focus on its possible adaptive function. Photoprotection is currently the favoured hypothesis for winter reddening, but alternative explanations have scarcely been explored. Intraspecific reddening generally increases with sunlight incidence, and may also accompany photosynthetic inferiority in photosynthetically 'weak' (e.g. low-nitrogen) individuals. Red leaves tend to show symptoms of shade acclimation relative to green, consistent with a photoprotective function. However, winter-red and winter-green species often cohabitate the same high-light environments, and exhibit similar photosynthetic capacities. The factors dictating interspecific winter leaf colouration therefore remain unclear. Additional outstanding questions and future directions are also highlighted, and possible alternative functions of winter reddening discussed. PMID:21375534

  9. Distribution and diurnal behavior of Steller's Eiders wintering on the Alaska Peninsula

    USGS Publications Warehouse

    Laubhan, M.K.; Metzner, K.A.

    1999-01-01

    We studied the distribution and activities of adult Steller's Eiders (Polysticta stelleri) during winter and spring on a deep-water embayment and a shallow lagoon along the Alaska Peninsula from September 1980 to May 1981. During the remigial molt, eiders were observed on Izembek Lagoon but not on Cold Bay. Following the flightless period, Izembek Lagoon continued to support 63-100% of eiders encountered during surveys. As ice cover on Izembek Lagoon increased, the number of birds decreased on Izembek Lagoon but increased on Cold Bay, suggesting that some eiders disperse to nearshore, deep-water habitats in close proximity to Izembek Lagoon during severe weather. Diurnal activity budgets indicated that the amount of time resting or engaged in aggression and alert activities was similar among locations, seasons, tidal stages, and sexes. In contrast, time spent foraging differed among seasons and locations but did not differ among tidal stages or sexes. Although time spent foraging was similar during winter and spring on Izembek Lagoon, eiders on Cold Bay foraged more during winter compared to spring. Synchronous diving was the dominant foraging strategy.

  10. The hard winter of 1880-1881: Climatological context and communication via a Laura Ingalls Wilder narrative

    NASA Astrophysics Data System (ADS)

    Boustead, Barbara E.

    The Hard Winter of 1880-1881 was featured in the Laura Ingalls Wilder historical fiction account, The Long Winter, as well as in several town histories across the region. Both meteorological records and historical accounts indicate that the winter was particularly long, snowy, and cold. The question of how "hard" a winter is for a given location depends on the climatological context, which relies on an objective characterization of winter severity. The Accumulated Winter Season Severity Index (AWSSI) allows comparison of the winter of 1880-1881 among sites across the region, as well as in the context of the period of record, to quantify its severity. Additionally, investigating the impacts of both the El Nino/Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) in the central United States provides context for the influence of both a strongly negative NAO and an El Nino event during the winter of 1880-1881. With an understanding of the climatological factors influencing the Hard Winter, along with the context for its severity, a more thorough analysis then was conducted to quantify and describe its severity. The connection of the winter of 1880-1881 to a popular book written by an author who is a cultural icon provides a natural vehicle with which to communicate weather and climate concepts to multiple non-technical audiences. The communication of complex weather and climate concepts is a well-documented challenge. One method to bridge between science concepts and public understanding is to relate those concepts to familiar subjects and stories, including Laura Ingalls Wilder's books. A narrative constructed around the books, particularly The Long Winter, provides a means of audience engagement and interest in weather- and climate-related topics, which was at least partially quantified by surveying audiences of the narrative. Overall, the scientific background, combined with a familiar narrative voice, provides a means to transmit weather and climate.

  11. The effect of ocean fronts on acoustic wave propagation in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Shapiro, G.; Chen, F.; Thain, R.

    2014-11-01

    Underwater noise is now classed as pollution in accordance with the Marine Strategy Framework Directive. Noise from shipping is a major contributor to the ambient noise levels in ocean, particularly at low (< 300 Hz) frequencies. This paper studies patterns and seasonal variations of underwater noise in the Celtic Sea by using a coupled ocean model (POLCOMS) and an acoustic model (HARCAM) in the year 2010. Two sources of sound are considered: (i) representing a typical large cargo ship and (ii) noise from pile-driving activity. In summer, when the source of sound is on the onshore side of the front, the sound energy is mostly concentrated in the near-bottom layer. In winter, the sound from the same source is distributed more evenly in the vertical. The difference between the sound level in summer and winter at 10 m depth is as high as 20 dB at a distance of 40 km. When the source of sound is on the seaward side of the front, the sound level is nearly uniform in the vertical. The transmission loss is also greater (~ 16 dB) in the summer than in the winter for shallow source while it is up to ~ 20 dB for deep source at 30 km.

  12. Front Range of the Rockies

    NASA Technical Reports Server (NTRS)

    2001-01-01

    These MISR images from May 12, 2001 (Terra orbit 7447) include portions of southern Wyoming, central Colorado, and western Nebraska. The top view is from the instrument's vertical-viewing (nadir) camera. The bottom image is a stereo 'anaglyph' generated using data from the nadir and 46-degree-forward cameras. Viewing the anaglyph with red/blue glasses (red filter over your left eye) gives a 3-D effect. To facilitate stereo viewing, the images have been oriented with north at the left. Each image measures 422 kilometers x 213 kilometers.

    The South Platte River enters just to the right of center at the top of the images. It wends its way westward (down), then turns southward (right) where it flows through the city of Denver. Located at the western edge of the Great Plains, Denver is nicknamed the 'Mile High City', a consequence of its 1609-meter (5280-foot) elevation above sea level. It shows up in the imagery as a grayish patch surrounded by numerous agricultural fields to the north and east. Denver is situated just east of the Front Range of the Rocky Mountains, located in the lower right of the images. The Rockies owe their present forms to tectonic uplift and sculpting by millions of years of erosion. Scattered cumulus clouds floating above the mountain peaks are visible in these images, and stand out most dramatically in the 3-D stereo view.

    To the north of Denver, other urban areas included within these images are Boulder, Greeley, Longmont, and Fort Collins, Colorado; Cheyenne and Laramie, Wyoming; and Scottsbluff, Nebraska.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology.

  13. Io in Front of Jupiter

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Jupiter's four largest satellites, including Io, the golden ornament in front of Jupiter in this image from NASA's Cassini spacecraft, have fascinated Earthlings ever since Galileo Galilei discovered them in 1610 in one of his first astronomical uses of the telescope.

    Images from Cassini that will be released over the next several days capture each of the four Galilean satellites in their orbits around the giant planet.

    This true-color composite frame, made from narrow angle images taken on Dec. 12, 2000, captures Io and its shadow in transit against the disk of Jupiter. The distance of the spacecraft from Jupiter was 19.5 million kilometers (12.1 million miles). The image scale is 117 kilometers (73 miles) per pixel.

    The entire body of Io, about the size of Earth's Moon, is periodically flexed as it speeds around Jupiter and feels, as a result of its non-circular orbit, the periodically changing gravitational pull of the planet. The heat arising in Io's interior from this continual flexure makes it the most volcanically active body in the solar system, with more than 100 active volcanoes. The white and reddish colors on its surface are due to the presence of different sulfurous materials. The black areas are silicate rocks.

    Cassini is a cooperative project of NASA, the European Space Agency and the Italian Space Agency. The Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Cassini mission for NASA's Office of Space Science, Washington, D.C.

  14. Progress toward cold antihydrogen

    SciTech Connect

    Gabrielse, G.; Estrada, J.; Peil, S.; Roach, T.; Tan, J. N.; Yesley, P.

    1999-12-10

    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature.

  15. Urban drainage and highway runoff in cold climates: conference overview.

    PubMed

    Viklander, M; Marsalek, J; Malmquist, P A; Watt, W E

    2003-01-01

    This overview of research findings presented at the conference on urban drainage and highway runoff in cold climates starts with generation of urban runoff and snowmelt, followed by snowmelt and winter runoff quality, best management practices for urban snowmelt and winter runoff, and snow management in urban areas. Research on the urban hydrological cycle is lagging behind the needs in this field, particularly in terms of data availability. The current studies of winter urban runoff quality focus on road salts in the urban environment and their environmental effects. The needs for better source controls in salt applications, improved management of chloride-laden runoff, and selective adoption of environmentally safer alternative de-icers were reported. Adaptation of the conventional stormwater best management practices (BMPs) for winter operation remains a challenge. The first step in refining the existing BMPs for winter operation is to advance the understanding of their operation, as reported for some cases at the conference. Finally, snow management in urban areas may require local storage of fresh (unpolluted) snow and disposal of more polluted snow at central snow disposal sites. PMID:14703134

  16. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaves of many angiosperm evergreen species turn red during winter, corresponding with synthesis of anthocyanin pigments. The function of winter color change, and why it occurs in some species and not others, is not yet understood. We hypothesized that anthocyanins play a compensatory photoprotect...

  17. Progress Towards a Future Cold Land Processes Remote Sensing Mission

    NASA Astrophysics Data System (ADS)

    Cline, D.

    2001-12-01

    Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. Synergistic advancement on these fronts requires that four major science questions be addressed together that pertain to process understanding, spatial and temporal variability, and uncertainty. NASA's Earth Science Enterprise has identified the need for improved measurement of snow properties and frozen soils via an exploratory space-flight mission in the next decade. To prepare for such a mission and address these science questions, the Cold Land Processes Field Experiment (CLPX) has been organized through 2003, and is now underway.

  18. Anomalous Cold Water Detected along Mid-Atlantic Coast

    NASA Astrophysics Data System (ADS)

    Sun, Donglian; Liu, Zhong; Chiu, Long; Yang, Ruixin; Singh, Ramesh P.; Kafatos, Menas

    2004-04-01

    In July 2003, anomalous cold water along the mid-Atlantic coast affected local tourism and fishing. The cold water interfered with tuna fishing, and for 2 to 3 weeks, rockfish generally found during the fall were present in the area. Satellite data, buoy observations, and weather maps were analyzed to investigate the cause of this cold water event. The results show that the increasing westerly and southerly winds that resulted from approaching cold fronts may have induced upwelling away from and along the mid-Atlantic coast. This, combined with the southward advection of cold sea water from the North Atlantic Ocean, might have caused the anomalous cold water along the coast. The sea surface temperature (SST) observations made by buoy 44014 (0.6 m below sea level) (http://www.ndbc.noaa.gov/) near Virginia Beach (36.61°N, 74.84° W) for the month of July 2003 show a 4°C decrease in SST from 3 to 5 July 2003. A smaller drop of 2-3°C is also found for 24-25 July 2003 (Figure 1a). The east-west (u) and south-north (v) wind components (Figure 1a) observed by buoy 44014 shows a relationship with the observed SST. In general, wind speeds during July 2003 were found to be stronger than those of July 2002.

  19. Determination of Unfrozen Water in Winter Cereals at Subfreezing Temperatures

    PubMed Central

    Gusta, Lawrence V.; Burke, Michael J.; Kapoor, Amin C.

    1975-01-01

    The freezing of water in acclimated and nonacclimated cereals was studied using pulsed nuclear magnetic resonance spectroscopy. The quantity of unfreezable water per unit dry matter was not strongly dependent on the degree of cold acclimation. In contrast, the fraction of water frozen which was tolerated by nonacclimated winter cereals and by an acclimated spring wheat (Triticum aestivum L.) was less than in acclimated hardy cereals. The freezing curves had the following form:LT = L0?Tm/T + KLT and L0 are liquid water per unit dry matter at T and 0 C, respectively. ?Tm is the melting point depression and K is the liquid water which does not freeze. PMID:16659377

  20. Cosmic Pressure Fronts Mapped by Chandra

    NASA Astrophysics Data System (ADS)

    2000-03-01

    A colossal cosmic "weather system" produced by the collision of two giant clusters of galaxies has been imaged by NASA's Chandra X-ray Observatory. For the first time, the pressure fronts in the system can be traced in detail, and they show a bright, but relatively cool 50 million degree Celsius central region embedded in large elongated cloud of 70 million degree Celsius gas, all of which is roiling in a faint "atmosphere"of 100 million degree Celsius gas. "We can compare this to an intergalactic cold front," said Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. and leader of the international team involved in the analysis of the observations. "A major difference is that in this case, cold means 70 million degree Celsius." The gas clouds are in the core of a galaxy cluster known as Abell 2142. The cluster is six million light years across and contains hundreds of galaxies and enough gas to make a thousand more. It is one of the most massive objects in the universe. Galaxy clusters grow to vast sizes as smaller clusters are pulled inward under the influence of gravity. They collide and merge over the course of billions of years, releasing tremendous amounts of energy that heats the cluster gas to 100 million degrees Celsius. The Chandra data provides the first detailed look at the late stages of this merger process. Previously, scientists had used the German-US Roentgensatellite to produce a broad brush picture of the cluster. The elongated shape of the bright cloud suggested that two clouds were in the process of coalescing into one, but the details remained unclear. Chandra is able to measure variations of temperature, density, and pressure with unprecedented resolution. "Now we can begin to understand the physics of these mergers, which are among the most energetic events in the universe," said Markevitch. "The pressure and density maps of the cluster show a sharp boundary that can only exist in the moving environment of a merger." With this information scientists can make a comparison with computer simulations of cosmic mergers. This comparison, which is in the early stages, shows that this merger has progressed to an advanced stage. Strong shock waves predicted by the theory for the initial collision of clusters are not observed. It appears likely that these sub-clusters have collided two or three times in a billion years or more, and have nearly completed their merger. The observations were made on August 20, 1999 using the Advanced CCD Imaging Spectrometer (ACIS). The team involved scientists from Harvard-Smithsonian; the Massachusetts Institute of Technology, Cambridge; NASA's Marshall Space Flight Center, Huntsville, Ala.; the University of Hawaii, Honolulu; the University of Birmingham, U.K.; the University of Wollongong, Australia; the Space Research Organization Netherlands; the University of Rome, Italy; and the Russian Academy of Sciences. The results will be published in an upcoming issue of the Astrophysical Journal. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/a2142/index.html AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz.