Science.gov

Sample records for winter cold front

  1. Winter Storms and Extreme Cold

    MedlinePLUS

    ... Flow Pandemic Severe Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Winter Storms & Extreme Cold Space Weather Prepare ... Flow Pandemic Severe Weather Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Winter Storms & Extreme Cold Space Weather Main ...

  2. Nitrogen and phosphorus transport between Fourleague Bay, LA, and the Gulf of Mexico: the role of winter cold fronts and Atchafalaya River discharge

    NASA Astrophysics Data System (ADS)

    Perez, Brian C.; Day, John W.; Justic, Dubravko; Twilley, Robert R.

    2003-08-01

    Nutrient fluxes were measured between Fourleague Bay, a shallow Louisiana estuary, and the Gulf of Mexico every 3 h between February 1 and April 30, 1994 to determine how high velocity winds associated with cold fronts and peak Atchafalaya River discharge influenced transport. Net water fluxes were ebb-dominated throughout the study because of wind forcing and high volumes of water entering the northern Bay from the Atchafalaya River. Flushing time of the Bay averaged <8 days; however, more rapid flushing occurred in response to northerly winds with approximately 56% of the volume of the Bay exported to the Gulf in 1 day during the strongest flushing event. Higher nitrate+nitrite (NO 2+NO 3), total nitrogen (TN), and total phosphorus (TP) concentrations were indicative of Atchafalaya River input and fluxes were greater when influenced by high velocity northerly winds associated with frontal passage. Net exports of NO 2+NO 3, TN, and TP were 43.5, 98.5, and 13.6 g s -1, respectively, for the 89-day study. An average of 10.6 g s -1 of ammonium (NH 4) was exported to the Gulf over the study; however, concentrations were lower when associated with riverine influence and wind-driven exports suggesting the importance of biological processes. Phosphate (PO 4) fluxes were nearly balanced over the study with fairly stable concentrations indicating a well-buffered system. The results indicate that the high energy subsidy provided by natural pulsing events such as atmospheric cold fronts and seasonal river discharge are efficient mechanisms of nutrient delivery to adjacent wetlands and nearshore coastal ecosystems and are important in maintaining coastal sustainability.

  3. Warm Occlusions, Cold Occlusions, and Forward-Tilting Cold Fronts.

    NASA Astrophysics Data System (ADS)

    Stoelinga, Mark T.; Locatelli, John D.; Hobbs, Peter V.

    2002-05-01

    a better understanding of forwardtilting cold fronts, including cold fronts aloft in the central United States.The static stability rule, and its implications for occluded and other frontal structures, suggests that greater emphasis be placed on the effects of horizontally nonuniform static stability in theoretical and modeling studies of frontogenesis, frontal interactions, and the occlusion process-an emphasis that has been largely absent from such studies in the past.

  4. On air motion trajectories in cold fronts

    NASA Technical Reports Server (NTRS)

    Reeder, Michael J.; Smith, Roger K.

    1988-01-01

    This paper examines air parcel trajectories in the two-dimensional model for a cold front by Reeder and Smith (1987). These are found to be in close agreement with trajectories deduced from analyses of summertime 'cool changes' in southeastern Australia, adding further support to the applicability of the numerical model to this kind of cold front. The favorable comparison points also to the dynamical consistency of the conceptual model for the cool change, which has evolved from the analysis of data from observational experiments.

  5. Shocks and cold fronts in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Markevitch, Maxim; Vikhlinin, Alexey

    2007-05-01

    The currently operating X-ray imaging observatories provide us with an exquisitely detailed view of the Megaparsec-scale plasma atmospheres in nearby galaxy clusters. At z<0.05, the Chandra's 1 angular resolution corresponds to linear resolution of less than a kiloparsec, which is smaller than some interesting linear scales in the intracluster plasma. This enables us to study the previously unseen hydrodynamic phenomena in clusters: classic bow shocks driven by the infalling subclusters, and the unanticipated cold fronts, or sharp contact discontinuities between regions of gas with different entropies. The ubiquitous cold fronts are found in mergers as well as around the central density peaks in relaxed clusters. They are caused by motion of cool, dense gas clouds in the ambient higher-entropy gas. These clouds are either remnants of the infalling subclusters, or the displaced gas from the cluster's own cool cores. Both shock fronts and cold fronts provide novel tools to study the intracluster plasma on microscopic and cluster-wide scales, where the dark matter gravity, thermal pressure, magnetic fields, and ultrarelativistic particles are at play. In particular, these discontinuities provide the only way to measure the gas bulk velocities in the plane of the sky. The observed temperature jumps at cold fronts require that thermal conduction across the fronts is strongly suppressed. Furthermore, the width of the density jump in the best-studied cold front is smaller than the Coulomb mean free path for the plasma particles. These findings show that transport processes in the intracluster plasma can easily be suppressed. Cold fronts also appear less prone to hydrodynamic instabilities than expected, hinting at the formation of a parallel magnetic field layer via magnetic draping. This may make it difficult to mix different gas phases during a merger. A sharp electron temperature jump across the best-studied shock front has shown that the electron proton equilibration timescale is much shorter than the collisional timescale; a faster mechanism has to be present. To our knowledge, this test is the first of its kind for any astrophysical plasma. We attempt a systematic review of these and other results obtained so far (experimental and numerical), and mention some avenues for further studies.

  6. The Microphysics of Cold Fronts measured during DIAMET

    NASA Astrophysics Data System (ADS)

    Bower, K. N.; Choularton, T. W.; Crosier, J.; Lloyd, G.; Dorsey, J. R.; Gallagher, M. W.; Connolly, P.; Dearden, C.; Vaughan, G.

    2012-04-01

    During the autumn and early winter of 2011 a number of combined airborne, radar and radiosonde studies of frontal systems crossing the UK were undertaken as part of the DIAbatic influence on Mesoscale structures in ExTratropical storms (or DIAMET ) project. The main aim of DIAMET is to improve our ability to predict the mesoscale structure of severe storms over the UK for forecast times ranging from several hours to several days. Extratropical cyclones are the major cause of damaging weather in north-western Europe, mainly through the effects of high winds and flooding. Although many such storms are well forecasted on the synoptic scale, the precise timing, location, and evolution of mesoscale and convective-scale structures such as the strong winds and intense precipitation within these cyclones remain uncertain. This project uses the unique measurements of these smaller-scale structures to guide a programme of research into the dynamics and prediction of storms. In this paper we focus on detailed measurements of the microphysics and dynamics of cold fronts crossing the UK associated with vigorous storm systems during periods with a very strong zonal jet stream. The FAAM BAe 146 research aircraft was used to drop sondes into the systems when out to the west of the UK, and to make insitu measurements in the systems when closer to and over the UK. The aircraft made a number of horizontal passes over and through the frontal cloud at decreasing levels to make detailed measurements of the cloud physics (ice and liquid), dynamics and atmospheric aerosol. The aim was to; measure the cloud microphysics close to cloud top in order to examine the initiation of the ice phase through heterogeneous (or homogeneous if cold enough) nucleation; measure at temperature levels around -7oC to study the freezing of water due to the production of ice by a secondary Ice-particle Production (SIP) mechanism known as the Hallett-Mossop process; to investigate the properties of the solid precipitation just above the freezing level; to quantify the diabatic effects of melting and evaporation below the freezing level. When in range, simultaneous detailed measurements of the structure of the fronts were also made using the scanning radar facility at Chilbolton. The observational study was supported by detailed modelling using a variety of models including the Weather and Research Forecasting (WRF) model. This presentation focuses on the role of the microphysics and dynamics in generating zones of intense convergence, and the changes introduced (e.g. as aerosol properties changed) as the front transitioned from over the ocean to land.

  7. Climatology and the time interval of cold fronts passage over South America

    NASA Astrophysics Data System (ADS)

    Pampuch, L. A.; Ambrizzi, T.

    2014-12-01

    Cold fronts affect the weather over South America throughout the year. The south-central region of South America has been identified as highly favorable to the formation and intensification of frontal systems. The fronts usually move from southwest to northeast over the continent and the Atlantic Ocean. During their passage important changes in weather conditions are observed: spinning wind, rainfall, decreasing on atmospheric pressure and temperature. After the passage of a cold front it is usually observed a sharp drop of temperature, pressure increase and wind gusts. There are several studies in the literature about South America cold fronts climatology. However, none of them were performed in pre-defined regions over South America and that have defined the pass interval in each region, which is the goal of the present research. Daily data of temperature on 925hPa, meridional wind in 925hPa and sea level pressure from the ERA Interim reanalysis from ECMWF, with spatial resolution of 1.5 x 1.5 for the period 1982-2009 were used. The criteria to identify the each cold front were: a drop in temperature, change in wind direction (north to south) and an increase in pressure from day 0 to day +1 for an average of four points for each of the 19 regions of South America. During the year, about 40 frontal systems pass in southern South America and this average is reduced to 10 to the northern regions of the continent. Winter is the season with the highest number of passage of frontal systems, summer is the season that presents lower number and spring and autumn have an intermediate number of fronts of the summer and winter. Analyzing the time interval of cold fronts passage, it was found an average of 8 days in the length of a passage between two fronts in southern Brazil. For the regions further north the interval can reach 26 days during the year. Summer is the season with the longer interval between the passage of fronts and winter and spring shows the smaller intervals.

  8. Cold Fronts in Clusters of Galaxies: Observations and Modeling

    NASA Technical Reports Server (NTRS)

    Markevitch, Maxim

    2012-01-01

    Mergers of galaxy clusters -- some of the most energetic events in the Universe -- produce disturbances in hot intracluster medium, such as shocks and cold fronts, that can be used as tools to study the physics of galaxy clusters. Cold fronts may constrain viscosity and the structure and strength of the cluster magnetic fields. Combined with radio data, these observations also shed light on the production of ultrarelativistic particles that are known to coexist with the cluster thermal plasma. This talk will summarize the current X-ray observations of cluster mergers, as well as some recent radio data and high resolution hydrodynamic simulations.

  9. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2012-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artifacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artifacts.

  10. Fast Simulations of Gas Sloshing and Cold Front Formation

    NASA Technical Reports Server (NTRS)

    Roediger, E.; ZuHone, J. A.

    2011-01-01

    We present a simplified and fast method for simulating minor mergers between galaxy clusters. Instead of following the evolution of the dark matter halos directly by the N-body method, we employ a rigid potential approximation for both clusters. The simulations are run in the rest frame of the more massive cluster and account for the resulting inertial accelerations in an optimised way. We test the reliability of this method for studies of minor merger induced gas sloshing by performing a one-to-one comparison between our simulations and hydro+N-body ones. We find that the rigid potential approximation reproduces the sloshing-related features well except for two artefacts: the temperature just outside the cold fronts is slightly over-predicted, and the outward motion of the cold fronts is delayed by typically 200 Myr. We discuss reasons for both artefacts.

  11. Winter Cold tongue in the South China Sea

    NASA Astrophysics Data System (ADS)

    Thompson, B.; Tkalich, P.; Rizzoli, P. M.

    2014-12-01

    The South China Sea (SCS) surface circulation is mainly forced by seasonally varying monsoon winds and flow through the Luzon Strait. In winter, positive wind curl (due to the northeasterly winds) in the southern half of SCS drives a cyclonic gyre. The strong western boundary current south off Vietnam on the continental slope separates the Sunda Shelf to the west and deep SCS basin to the east. The advection of cold water due to the slope current results in a unique cold tongue in Sea Surface Temperature (SST) from November to February. The inter-annual variability of this cold-tongue is investigated by analyzing the NCEP OISST version-2 dataset. Dynamics of the evolution, growth and decay of the cold tongue during the period 1982-2012 are addressed using the OISST and ERA-interim surface wind datasets. The role of water mass advection in the inter-annual variability of SCS cold-tongue is also investigated through the analysis of lateral heat fluxes estimated from NCEP-Climate Forecast System Re-analysis dataset. The vertically integrated Ekman transport (i.e., the Sverdrup transport) plays a vital role in the formation this cold tongue. The southward Sverdrup transport brings cold water from the northern parts of the SCS. Inter-annual variations in the cold tongue SST during the northeast monsoon (November to February) are strongly linked to the north-south Sverdrup and zonal Ekman transport anomalies. The positive SST anomalies over the cold-tongue region are associated with positive transport anomalies, reflecting the weakening of the southward and westward advection. The formation and termination of this cold tongue has significant correlation with the El Nino phenomenon in the Pacific Ocean.

  12. Effect of cold wave on winter visibility over eastern China

    NASA Astrophysics Data System (ADS)

    Qu, Wenjun; Wang, Jun; Zhang, Xiaoye; Yang, Zhifeng; Gao, Shanhong

    2015-03-01

    Considerable concern has been raised on the severe wintertime haze episodes over eastern China (ECN) where visibility (Vis) decline in winter is identified from 1973 to 2012 (-0.68 km per 10 years or -26% in 40 years). Based upon the analysis of daily Vis and weather records, cold wave (CW) originating from high latitudes is found to increase Vis by 2.7 km on average because of its relatively stronger wind and drier, cleaner air mass compared with the typical, stable midlatitude air over ECN in winter. However, the lessening frequency of CW occurrence and cold air activity in recent years and the accompanied decrease of surface wind speed (-0.15 m/s per 10 years or -18% in the 40 years) may have amplified the effect of increased anthropogenic emissions on Vis and consequently resulted in more substantial Vis decline. A comparison of Vis trends on the "normal wind" days and on all days in winter implies that the emission increase has contributed to about 79% of the declining Vis trend, while the meteorology change contributed 21%. Furthermore, the diurnal cycle of the boundary layer height is found to have weakened or in some cases disappeared in the winters with less CW, which probably contributed to the long-lasting characteristic of the wintertime low Vis events in this region. Hence, the effect of climate change, such as the decrease of CW occurrence, should be accounted as part of the interpretation for the steady decrease of winter Vis over ECN in the past four decades.

  13. On a theory of the evolution of surface cold fronts

    NASA Technical Reports Server (NTRS)

    Levy, Gad; Bretherton, Christopher S.

    1987-01-01

    The governing vorticity and divergence equations in the surface layer are derived and the roles of the different terms and feedback mechanisms are investigated in semigeostrophic and nongeostrophic cold-frontal systems. A planetary boundary layer model is used to perform sensitivity tests to determine that in a cold front the ageostrophic feedback mechanism as defined by Orlanski and Ross tends to act as a positive feedback mechanism, enhancing vorticity and convergence growth. Therefore, it cannot explain the phase shift between convergence and vorticity as simulated by Orlanski and Ross. An alternative plausible, though tentative, explanation in terms of a gravity wave is offered. It is shown that when the geostrophic deformation increases, nonlinear terms in the divergence equation may become important and further destabilize the system.

  14. New Perspectives on Intermountain Cyclones and Cold Fronts

    NASA Astrophysics Data System (ADS)

    Steenburgh, W. J.; West, G.; Neuman, C.; Shafer, J.; Jeglum, M.; Bosart, L. F.; Lee, T.

    2011-12-01

    The topography in and around the Intermountain West strongly affects the genesis, migration, and lysis of extratropical cyclones and cold fronts. In this presentation, we summarize new perspectives on Intermountain cyclone and cold-front evolution derived from recent climatological, observational, and modeling studies based on high-density observations and high-resolution reanalyses and numerical simulations. Recent high-resolution reanalyses show that Intermountain cyclone activity is greatest in two distinct regions. The first, which we call the Great Basin cyclone region, extends northeastward from the southern high Sierra to the Great Salt Lake Basin of northwest Utah. The second, which we call the Canyonlands cyclone region, lies over the upper Colorado River Basin of southeast Utah, a lowland region between the mountains and plateaus of central Utah and the Colorado Rockies. Composites of strong Intermountain cyclones generated in cross-Sierra (210-300) 500-hPa flow show that cyclogenesis is preceeded by the development of the Great Basin Confluence Zone (GBCZ), a regional airstream boundary that extends downstream from the Sierra Nevada. Cyclogenesis occurs along the GBCZ as large-scale ascent develops over the Intermountain West in advance of an approaching upper-level trough. Flow splitting around the high Sierra and the presence of low-level baroclinity along the GBCZ suggest that Intermountain Cyclogenesis might be better conceptualized from a potential vorticity perspective than from traditional quasigeostrophic models of lee cyclogenesis. Surface observations indicate that the frequency of strong cold-frontal passages increases dramatically from the Cascade-Sierra Mountains to northern Utah, suggesting that the Intermountain West is a frequent cold-frontal breeding ground. Two case studies help illustrate the mechanisms contributing to these strong cold-frontal passages. During the 2002 Tax Day Cyclone, strong contraction (i.e., deformation and convergence) along the GBCZ forms an airstream boundary that is initially non-frontal, but becomes the locus for surface frontogenesis as it collects and concentrates baroclinity from the northern Great Basin. During the 25 March 2006 event, a highly mobile frontal system that moves discretely across the Sierra-Cascade Mountains and western Nevada and develops rapidly over eastern Nevada. Numerical sensitivity studies indicate that the the interaction of southwesterly pre-frontal flow with the formidable southern High Sierra produces a leeward orographic warm anomaly that enhances the cross-front temperature contrast.

  15. Exceptionally cold and mild winters in Europe (1951-2010)

    NASA Astrophysics Data System (ADS)

    Twardosz, Robert; Kossowska-Cezak, Urszula

    2015-05-01

    Extreme thermal conditions appear to occupy an important place among research subjects at a time of climate warming. This study investigates the frequency, duration and spatial extent of thermally anomalous winters in Europe during the 60 years between 1951 and 2010. Exceptionally cold winters (ECWs) and exceptionally mild winters (EMWs) were identified using the statistical criterion of plus/minus two standard deviations from the long-term winter temperature (January-December) recorded at 60 weather stations. It was demonstrated that ECWs have occurred more frequently and covered larger territories than EMWs and that they may occur anywhere in Europe, while EMWs were limited to its southern and western parts. ECWs are characterised by greater absolute temperature anomalies, as anomalies greater than |6.0 C| account for 35 % of ECWs, but only for 8 % of EMWs. The greatest anomalies are found in the east of the continent. The largest territory affected by an ECW included 24 stations in 1962/1963, while the equivalent among the EMWs included 11 stations in 2006/2007. The study also confirmed an expected trend whereby ECWs diminished in frequency in favour of EMWs in the second half of the 60-year study period.

  16. Winterization of peanut biodiesel to improve the cold flow properties.

    PubMed

    Pérez, Angel; Casas, Abraham; Fernández, Carmen María; Ramos, María Jesús; Rodríguez, Lourdes

    2010-10-01

    Biodiesel is susceptible to start-up and performance problems, consistent with its chemical composition, when vehicles and fuel systems are subjected to cold temperatures. In this work, a comprehensive evaluation of the crystallization behavior of different biodiesels was performed by measuring the cold filter plugging point (CFPP), cloud point (CP) and pour point (PP). Results were related to differential scanning calorimetry (DSC) thermograms. Peanut methyl esters in particular led to the most unfavorable properties due to the presence of long-chain saturated compounds (arachidic or C20:0, behenic or C22:0, and lignoceric or C24:0 acid methyl esters) approaching 6 wt.%. The cold flow properties may be improved with different winterization techniques to eliminate some of these compounds. In this work, various techniques are tested, and the best technique is found to be crystallization filtration using methanol, which reduces the CFPP from 17 degrees C to -8 degrees C with a biodiesel loss of 8.93 wt.%. Moreover, the cake from filtration, enriched with long-chain saturated methyl esters, can be used as phase change material (PCM) for thermo-regulated materials. PMID:20547059

  17. Bow Shocks, Cold Fronts and Substructures in Merging Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Dasadia, Sarthak; Sun, Ming; Morandi, Andrea

    2015-08-01

    We present Chandra observations of two merging galaxy clusters: RX J0334.2-0111 & Abell 665. We report the discovery of a bow shock in the galaxy group RX J0334.2-0111 (z = 0.138) that is consistent with the Mach number ~1.6 and covering a total angular distance of ~500 kpc. In addition, we also detected the cold front formed by an infalling subcluster cool core. Our new observations revealed additional merger features e.g., an interesting tail like structure associated with the bow shock and a shock heated region ~700 kpc from the cluster center. We will describe our ongoing work on the nature of this shock tail and possible merger dynamics that could have caused it. The radio observations of this cluster show the bent jets emitted by the central AGN in the radio galaxy 3C89.Abell 665 is an extremely rich, massive and hot cluster at the redshift z = 0.182 with a diffuse radio halo. Recent analysis of Chandra data shows more than one shock front and a merging cool core. The coexistence of radio and X-ray emission from the cluster proves the presence of relativistic particles (? >> 1000) along with large-scale ?G magnetic fields. We will demonstrate how particles accelerate in such environments. We will also present our findings on recently debated correlation between merging substructures and diffuse radio emission.

  18. Habitat suitability index models: greater white-fronted goose (wintering). [Anser albifrons

    SciTech Connect

    Kaminski, R.M.

    1986-07-01

    A review and synthesis of available information were used to develop models for indexing the potential suitability of agricultural and natural wetland habitats for wintering white-fronted geese (Anser albifrons). The model is scaled to produce indices of habitat suitability from 0 (unsuitable habitat) to 1.0 (optimal habitat) primarily for wintering habitat in southwest Louisiana and southwest Texas. Habitat suitability indices are designed for use with Habitat Evaluations Procedures previously developed by the US Fish and Wildlife Service.

  19. Winter Habitat Preferences for Florida Manatees and Vulnerability to Cold

    PubMed Central

    Laist, David W.; Taylor, Cynthia; Reynolds, John E.

    2013-01-01

    To survive cold winter periods most, if not all, Florida manatees rely on warm-water refuges in the southern two-thirds of the Florida peninsula. Most refuges are either warm-water discharges from power plant and natural springs, or passive thermal basins that temporarily trap relatively warm water for a week or more. Strong fidelity to one or more refuges has created four relatively discrete Florida manatee subpopulations. Using statewide winter counts of manatees from 1999 to 2011, we provide the first attempt to quantify the proportion of animals using the three principal refuge types (power plants, springs, and passive thermal basins) statewide and for each subpopulation. Statewide across all years, 48.5% of all manatees were counted at power plant outfalls, 17.5% at natural springs, and 34.9 % at passive thermal basins or sites with no known warm-water features. Atlantic Coast and Southwest Florida subpopulations comprised 82.2% of all manatees counted (45.6% and 36.6%, respectively) with each subpopulation relying principally on power plants (66.6% and 47.4%, respectively). The upper St. Johns River and Northwest Florida subpopulations comprised 17.8% of all manatees counted with almost all animals relying entirely on springs (99.2% and 88.6% of those subpopulations, respectively). A record high count of 5,076 manatees in January 2010 revealed minimum sizes for the four subpopulations of: 230 manatees in the upper St. Johns River; 2,548 on the Atlantic Coast; 645 in Northwest Florida; and 1,774 in Southwest Florida. Based on a comparison of carcass recovery locations for 713 manatees killed by cold stress between 1999 and 2011 and the distribution of known refuges, it appears that springs offer manatees the best protection against cold stress. Long-term survival of Florida manatees will require improved efforts to enhance and protect manatee access to and use of warm-water springs as power plant outfalls are shut down. PMID:23527063

  20. Winter habitat preferences for Florida manatees and vulnerability to cold.

    PubMed

    Laist, David W; Taylor, Cynthia; Reynolds, John E

    2013-01-01

    To survive cold winter periods most, if not all, Florida manatees rely on warm-water refuges in the southern two-thirds of the Florida peninsula. Most refuges are either warm-water discharges from power plant and natural springs, or passive thermal basins that temporarily trap relatively warm water for a week or more. Strong fidelity to one or more refuges has created four relatively discrete Florida manatee subpopulations. Using statewide winter counts of manatees from 1999 to 2011, we provide the first attempt to quantify the proportion of animals using the three principal refuge types (power plants, springs, and passive thermal basins) statewide and for each subpopulation. Statewide across all years, 48.5% of all manatees were counted at power plant outfalls, 17.5% at natural springs, and 34.9 % at passive thermal basins or sites with no known warm-water features. Atlantic Coast and Southwest Florida subpopulations comprised 82.2% of all manatees counted (45.6% and 36.6%, respectively) with each subpopulation relying principally on power plants (66.6% and 47.4%, respectively). The upper St. Johns River and Northwest Florida subpopulations comprised 17.8% of all manatees counted with almost all animals relying entirely on springs (99.2% and 88.6% of those subpopulations, respectively). A record high count of 5,076 manatees in January 2010 revealed minimum sizes for the four subpopulations of: 230 manatees in the upper St. Johns River; 2,548 on the Atlantic Coast; 645 in Northwest Florida; and 1,774 in Southwest Florida. Based on a comparison of carcass recovery locations for 713 manatees killed by cold stress between 1999 and 2011 and the distribution of known refuges, it appears that springs offer manatees the best protection against cold stress. Long-term survival of Florida manatees will require improved efforts to enhance and protect manatee access to and use of warm-water springs as power plant outfalls are shut down. PMID:23527063

  1. Social perceptions versus meteorological observations of snow and winter along the Front Range

    NASA Astrophysics Data System (ADS)

    Milligan, William James, IV

    This research aims to increase understanding of Front Range residents' perceptions of snow, winter and hydrologic events. This study also investigates how an individual's characteristics may shape perceptions of winter weather and climate. A survey was administered to determine if perceptions of previous winters align with observed meteorological data. The survey also investigated how individual characteristics influence perceptions of snow and winter weather. The survey was conducted primarily along the Front Range area of the state of Colorado in the United States of America. This is a highly populated semi-arid region that acts as an interface between the agricultural plains to the east that extend to the Mississippi River and the Rocky Mountains to the west. The climate is continental, and while many people recreate in the snowy areas of the mountains, most live where annual snowfall amounts are low. Precipitation, temperature, and wind speed datasets from selected weather stations were analyzed to determine correct survey responses. Survey analysis revealed that perceptions of previous winters do not necessarily align with observed meteorological data. The mean percentage of correct responses to all survey questions was 36.8%. Further analysis revealed that some individual characteristics (e.g. winter recreation, source of winter weather information) did influence correct responses to survey questions.

  2. THE PROPERTIES OF X-RAY COLD FRONTS IN A STATISTICAL SAMPLE OF SIMULATED GALAXY CLUSTERS

    SciTech Connect

    Hallman, Eric J.; Skillman, Samuel W.; Smith, Britton D.; Burns, Jack O.; Jeltema, Tesla E.; Norman, Michael L.

    2010-12-10

    We examine the incidence of cold fronts in a large sample of galaxy clusters extracted from a (512 h {sup -1} Mpc) hydrodynamic/N-body cosmological simulation with adiabatic gas physics computed with the Enzo adaptive mesh refinement code. This simulation contains a sample of roughly 4000 galaxy clusters with M {>=}10{sup 14} M{sub sun} at z = 0. For each simulated galaxy cluster, we have created mock 0.3-8.0 keV X-ray observations and spectroscopic-like temperature maps. We have searched these maps with a new automated algorithm to identify the presence of cold fronts in projection. Using a threshold of a minimum of 10 cold front pixels in our images, corresponding to a total comoving length L{sub cf}>156 h {sup -1} kpc, we find that roughly 10%-12% of all projections in a mass-limited sample would be classified as cold front clusters. Interestingly, the fraction of clusters with extended cold front features in our synthetic maps of a mass-limited sample trends only weakly with redshift out to z = 1.0. However, when using different selection functions, including a simulated flux limit, the trending with redshift changes significantly. The likelihood of finding cold fronts in the simulated clusters in our sample is a strong function of cluster mass. In clusters with M>7.5 x 10{sup 14} M{sub sun} the cold front fraction is 40%-50%. We also show that the presence of cold fronts is strongly correlated with disturbed morphology as measured by quantitative structure measures. Finally, we find that the incidence of cold fronts in the simulated cluster images is strongly dependent on baryonic physics.

  3. Winter meso-scale shear front in the Yellow Sea and its sedimentary effects

    NASA Astrophysics Data System (ADS)

    Gao, Fei; Qiao, Lulu; Li, Guangxue

    2016-02-01

    In this paper, the authors explored the presence of shear fronts between the Yellow Sea Coastal Current (YSCC) and the monsoon-strengthened Yellow Sea Warm Current (YSWC) in winter and their sedimentary effects within the shear zone based on a fully validated numerical model. This work added the wind force to a tidal model during simulating the winter baroclinic circulation in the Yellow Sea. The results indicate that the YSWC is significantly strengthened by wind-driven compensation due to a northeast monsoon during winter time. When this warm current encounters the North Shandong-South Yellow Sea coastal current, there is a strong reverse shear action between the two current systems, forming a reverse-S-shaped shear front that begins near 34°N in the south and extends to approximately 38°N, with an overall length of over 600 km. The main driving force for the formation of this shear front derives from the circulation system with the reverse flow. In the shear zone, temperature and salinity gradients increase, flow velocities are relatively small and the flow direction on one side of the shear zone is opposite to that on the other side. The vertical circulation structure is complicated, consisting of a series of meso- and small-scale anti-clockwise eddies. Particularly, this shear effect significantly hinders the horizontal exchange of coastal sediments carried by warm currents, resulting in fine sediments deposition due to the weak hydrodynamic regime.

  4. COLD FRONTS AND GAS SLOSHING IN GALAXY CLUSTERS WITH ANISOTROPIC THERMAL CONDUCTION

    SciTech Connect

    ZuHone, J. A.; Markevitch, M.; Lee, D.

    2013-01-10

    Cold fronts in cluster cool cores should be erased on short timescales by thermal conduction, unless protected by magnetic fields that are 'draped' parallel to the front surfaces, suppressing conduction perpendicular to the sloshing fronts. We present a series of MHD simulations of cold front formation in the core of a galaxy cluster with anisotropic thermal conduction, exploring a parameter space of conduction strengths parallel and perpendicular to the field lines. Including conduction has a strong effect on the temperature distribution of the core and the appearance of the cold fronts. Though magnetic field lines are draping parallel to the front surfaces, preventing conduction directly across them, the temperature jumps across the fronts are nevertheless reduced. The geometry of the field is such that the cold gas below the front surfaces can be connected to hotter regions outside via field lines along directions perpendicular to the plane of the sloshing motions and along sections of the front that are not perfectly draped. This results in the heating of this gas below the front on a timescale of a Gyr, but the sharpness of the density and temperature jumps may nevertheless be preserved. By modifying the gas density distribution below the front, conduction may indirectly aid in suppressing Kelvin-Helmholtz instabilities. If conduction along the field lines is unsuppressed, we find that the characteristic sharp jumps seen in Chandra observations of cold front clusters do not form. Therefore, the presence of cold fronts in hot clusters is in contradiction with our simulations with full Spitzer conduction. This suggests that the presence of cold fronts in hot clusters could be used to place upper limits on conduction in the bulk of the intracluster medium. Finally, the combination of sloshing and anisotropic thermal conduction can result in a larger flux of heat to the core than either process in isolation. While still not sufficient to prevent a cooling catastrophe in the very central (r {approx} 5 kpc) regions of the cool core (where something else is required, such as active galactic nucleus feedback), it reduces significantly the mass of gas that experiences a cooling catastrophe outside those small radii.

  5. Cold truths: how winter drives responses of terrestrial organisms to climate change.

    PubMed

    Williams, Caroline M; Henry, Hugh A L; Sinclair, Brent J

    2015-02-01

    Winter is a key driver of individual performance, community composition, and ecological interactions in terrestrial habitats. Although climate change research tends to focus on performance in the growing season, climate change is also modifying winter conditions rapidly. Changes to winter temperatures, the variability of winter conditions, and winter snow cover can interact to induce cold injury, alter energy and water balance, advance or retard phenology, and modify community interactions. Species vary in their susceptibility to these winter drivers, hampering efforts to predict biological responses to climate change. Existing frameworks for predicting the impacts of climate change do not incorporate the complexity of organismal responses to winter. Here, we synthesise organismal responses to winter climate change, and use this synthesis to build a framework to predict exposure and sensitivity to negative impacts. This framework can be used to estimate the vulnerability of species to winter climate change. We describe the importance of relationships between winter conditions and performance during the growing season in determining fitness, and demonstrate how summer and winter processes are linked. Incorporating winter into current models will require concerted effort from theoreticians and empiricists, and the expansion of current growing-season studies to incorporate winter. PMID:24720862

  6. Physical changes within a large tropical hydroelectric reservoir induced by wintertime cold front activity

    NASA Astrophysics Data System (ADS)

    Curtarelli, M. P.; Alcntara, E. H.; Renn, C. D.; Stech, J. L.

    2014-08-01

    We investigated the influence of wintertime cold front activity on the physical processes within a large tropical reservoir located in Brazil. The period chosen for this study consisted of 49 days between 28 April 2010 and 15 July 2010. This period was defined based on information from the Brazilian Center for Weather Forecasting and Climate Studies (CPTEC), data collected in situ and the interpretation of remotely sensed images. To better understand the governing processes that drive changes in the heat balance, differential cooling and mixing dynamics, a simulation was performed that utilized a three-dimensional hydrodynamic model enforced with in situ and remote sensing data. The results showed that during a cold front passage over the reservoir, the sensible and latent heat fluxes were enhanced by approximately 77 and 16%, respectively. The reservoir's daily averaged heat loss was up to 167% higher on the days with cold front activity than on the days without activity. The cold front passage also intensified the differential cooling process; in some cases the difference between the water temperature of the littoral and pelagic zones reached up to 8 C. The occurrence of cold front passages impacted the diurnal mixed layer (DML), by increasing the turbulent energy input (∼54%) and the DML depth (∼41%). Our results indicate that the cold front events are one of the main meteorological disturbances driving the physical processes within hydroelectric reservoirs located in tropical South America during the wintertime. Hence, cold front activity over these aquatic systems has several implications for water quality and reservoir management in Brazil.

  7. Cold front induced changes on the Florida panhandle shelf during October 2008

    NASA Astrophysics Data System (ADS)

    Kamykowski, D.; Pridgen, K. Grabowski; Morrison, J. M.; McCulloch, A. A.; Nyadjro, E. S.; Thomas, C. A.; Sinclair, G. A.

    2013-02-01

    A significant step transition between seasonally stratified and destratified hydrographic conditions occurred during an October 2008 cruise to the Florida Panhandle Shelf along a cross-shelf transect that was sampled before and after a cold front passed through the area. Meteorological measurements from nearby ocean and land-based stations characterized the event. Cross-shelf continuous Acrobat profiles and discrete CTD stations characterized water column hydrographic patterns, while mid-shelf multicorer and box corer samples characterized sediment texture and nutrients. Water samples collected from selected depths biased toward the sediment interface were analyzed for nutrient content and phytoplankton community composition. Pre-front, the cross-shelf water column exhibited vertical stratification with complex temperature and salinity patterns. A prominent near-bottom chlorophyll a maximum of 1.5 ?g L-1 between the 25-35 m isobaths occurred with the 1% light level at 18 m depth and a near-bottom nitrate+nitrite (NO3-+NO2-) maximum >3 ?M between the 30-40 m isobaths. HPLC-determined phytoplankton community composition in the near-bottom chlorophyll a maximum consisted of gyroxanthin-containing dinoflagellates (Karenia brevis) and less abundant diatoms, both verified by FlowCAM analysis, mixed with detectable cryptophytes and chlorophytes. Sediment trends based on limited core replicates suggested the sediments were a potential source of nutrients to near-bottom populations of K. brevis and that shell hash could provide abundant pore space for K. brevis incursions. Between the 40-50 m isobaths, diatoms, cryptophytes and chlorophytes dominated near-bottom, gyroxanthin-containing dinoflagellates and prasinophytes occurred throughout the water column, and cyanophytes dominated near-surface. Post-front, the cross-shelf water column exhibited destratification with temperature and salinity increasing offshore. A chlorophyll a maximum of 0.75 ?g Chl a L-1 left the sediment between 25-35 m isobaths and extended offshore especially in the lower water column with the 1% light level at 15 m depth and NO3-+NO2- concentrations 2 ?M to the 60 m isobath. HPLC-determined phytoplankton community composition of the offshore plume retained the signature of gyroxanthin-containing dinoflagellates and chlorophytes. Between the 30-50 m isobaths, prasinophytes increased in the lower water column, while cyanophytes increased at all depths across the shelf. The observed step transition from stratification to destratification on the Florida Panhandle Shelf contributed to altered phytoplankton community patterns in response to predominant downwelling favorable winds. Pre-front, K. brevis cells were broadly distributed cross-shelf, but concentrated near-bottom between the 25-35 m isobaths and staged for prolific bloom seeding in response to the upwelling favorable west winds more typical of spring-summer. Post-front, K. brevis cells were mixed throughout the mid-shelf water column and were staged for diffuse bloom seeding in response to either the downwelling or upwelling favorable winds occurring fall-winter. Cyanophytes located predominantly near-surface offshore pre-front, were ubiquitous cross-shelf and more closely associated with K. brevis post-front.

  8. The impact of winter cold weather on acute myocardial infarctions in Portugal.

    PubMed

    Vasconcelos, João; Freire, Elisabete; Almendra, Ricardo; Silva, Giovani L; Santana, Paula

    2013-12-01

    Mortality due to cardiovascular diseases shows a seasonal trend that can be associated with cold weather. Portugal is the European country with the highest excess winter mortality, but nevertheless, the relationship between cold weather and health is yet to be assessed. The main aim of this study is to identify the contribution of cold weather to cardiovascular diseases within Portugal. Poisson regression analysis based on generalized additive models was applied to estimate the influence of a human-biometeorological index (PET) on daily hospitalizations for myocardial infarction. The main results revealed a negative effect of cold weather on acute myocardial infarctions in Portugal. For every degree fall in PET during winter, there was an increase of up to 2.2% (95% CI = 0.9%; 3.3%) in daily hospital admissions. This paper shows the need for public policies that will help minimize or, indeed, prevent exposure to cold. PMID:23410618

  9. Deep Chandra observation and numerical studies of the nearest cluster cold front in the sky

    NASA Astrophysics Data System (ADS)

    Werner, N.; ZuHone, J. A.; Zhuravleva, I.; Ichinohe, Y.; Simionescu, A.; Allen, S. W.; Markevitch, M.; Fabian, A. C.; Keshet, U.; Roediger, E.; Ruszkowski, M.; Sanders, J. S.

    2016-01-01

    We present the results of a very deep (500 ks) Chandra observation, along with tailored numerical simulations, of the nearest, best resolved cluster cold front in the sky, which lies 90 kpc (19 arcmin) to the north-west of M 87. The northern part of the front appears the sharpest, with a width smaller than 2.5 kpc (1.5 Coulomb mean free paths; at 99 per cent confidence). Everywhere along the front, the temperature discontinuity is narrower than 4-8 kpc and the metallicity gradient is narrower than 6 kpc, indicating that diffusion, conduction and mixing are suppressed across the interface. Such transport processes can be naturally suppressed by magnetic fields aligned with the cold front. Interestingly, comparison to magnetohydrodynamic simulations indicates that in order to maintain the observed sharp density and temperature discontinuities, conduction must also be suppressed along the magnetic field lines. However, the northwestern part of the cold front is observed to have a non-zero width. While other explanations are possible, the broadening is consistent with the presence of Kelvin-Helmholtz instabilities (KHI) on length-scales of a few kpc. Based on comparison with simulations, the presence of KHI would imply that the effective viscosity of the intracluster medium is suppressed by more than an order of magnitude with respect to the isotropic Spitzer-like temperature dependent viscosity. Underneath the cold front, we observe quasi-linear features that are ˜10 per cent brighter than the surrounding gas and are separated by ˜15 kpc from each other in projection. Comparison to tailored numerical simulations suggests that the observed phenomena may be due to the amplification of magnetic fields by gas sloshing in wide layers below the cold front, where the magnetic pressure reaches ˜5-10 per cent of the thermal pressure, reducing the gas density between the bright features.

  10. The Effect of Anisotropic Viscosity on Cold Fronts in Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    ZuHone, J. A.; Kunz, M. W.; Markevitch, M.; Stone, J. M.; Biffi, V.

    2014-01-01

    Cold fronts-contact discontinuities in the intracluster medium (ICM) of galaxy clusters-should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f (is) approximately 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

  11. High mortality of Pacific oysters in a cold winter in the North-Frisian Wadden Sea

    NASA Astrophysics Data System (ADS)

    Büttger, Heike; Nehls, Georg; Witte, Sophia

    2011-12-01

    Mortality of introduced Pacific oysters ( Crassostrea gigas) was studied in the northern Wadden Sea in response to an ice winter. After a decade of mild winters, in January and February 2010, the first severe winter occurred since the Pacific oysters became dominant on former intertidal blue mussel ( Mytilus edulis) beds in the North-Frisian Wadden Sea. After the ice winter, mortality of Pacific oysters on densely populated beds in the List tidal basin reached about 90%, indicating much higher losses in comparison to former mild winters. At lower densities between the islands of Amrum and Föhr, oysters were less or even not affected. Although Pacific oysters are assumed to be very tolerant to frost, the duration of cold water- and air temperatures accompanied by mechanical stress of the ice burden might have caused the high mortality in the winter 2009/2010 in formerly dense beds.

  12. Cold War: Flora's Undercover Agents. A Campus Winter Field Trip to Illustrate That Plants Do Indeed Thermoregulate.

    ERIC Educational Resources Information Center

    DeGolier, Teresa

    2002-01-01

    Proposes using a winter field trip to explore how various plants on a campus thermoregulate. Describes techniques for determining the location of cold stresses in plants and how plants manage to deal with the cold stresses. (DDR)

  13. THE EFFECT OF ANISOTROPIC VISCOSITY ON COLD FRONTS IN GALAXY CLUSTERS

    SciTech Connect

    ZuHone, J. A.; Markevitch, M.; Biffi, V.

    2015-01-10

    Cold fronts—contact discontinuities in the intracluster medium (ICM) of galaxy clusters—should be disrupted by Kelvin-Helmholtz (K-H) instabilities due to the associated shear velocity. However, many observed cold fronts appear stable. This opens the possibility of placing constraints on microphysical mechanisms that stabilize them, such as the ICM viscosity and/or magnetic fields. We performed exploratory high-resolution simulations of cold fronts arising from subsonic gas sloshing in cluster cores using the grid-based Athena MHD code, comparing the effects of isotropic Spitzer and anisotropic Braginskii viscosity (expected in a magnetized plasma). Magnetized simulations with full Braginskii viscosity or isotropic Spitzer viscosity reduced by a factor f ∼ 0.1 are both in qualitative agreement with observations in terms of suppressing K-H instabilities. The rms velocity of turbulence within the sloshing region is only modestly reduced by Braginskii viscosity. We also performed unmagnetized simulations with and without viscosity and find that magnetic fields have a substantial effect on the appearance of the cold fronts, even if the initial field is weak and the viscosity is the same. This suggests that determining the dominant suppression mechanism of a given cold front from X-ray observations (e.g., viscosity or magnetic fields) by comparison with simulations is not straightforward. Finally, we performed simulations including anisotropic thermal conduction, and find that including Braginskii viscosity in these simulations does not significantly affect the evolution of cold fronts; they are rapidly smeared out by thermal conduction, as in the inviscid case.

  14. Effects of cold front passage on turbulent fluxes over a large inland water

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Liu, H.

    2011-12-01

    Turbulent fluxes of sensible and latent heat over a large inland water in southern USA were measured using the eddy covariance method through the year of 2008. In addition, net radiation, air temperatures and relative humidity, and water temperature in different depths were also measured. The specific objective of this study is to examine effects of a cold front passage on the surface energy fluxes. For the typical cold front event selected from April 11 to 14, air temperature decreased by 16°C, while surface temperature only dropped 6°C. Atmospheric vapor pressure decreased by 1.6 kPa, while that in the water-air interface dropped 0.7 kPa. The behavior difference in the water-air interface was caused by the passage of cold, dry air masses immediately behind the cold front. During the cold front event, sensible heat and latent heat flux increased by 171 W m-2 and 284 W m-2, respectively. Linear aggression analysis showed that the sensible heat flux was proportional to the product of wind speed and the temperature gradient of water-air interface, with a correlation coefficient of 0.95. Latent heat flux was proportional to the product of wind speed and vapor pressure difference between the water surface and overlaying atmosphere, with a correlation coefficient of 0.81. Also, the correlations between both fluxes and the wind speed were weak. This result indicated that the strong wind associated with the cold front event contributed to the turbulent mixing, which indirectly enhanced surface energy exchange between the water surface and the atmosphere. The relationship between the water heat storage energy and turbulent fluxes was also examined.

  15. Two distinct influences of Arctic warming on cold winters over North America and East Asia

    NASA Astrophysics Data System (ADS)

    Kug, Jong-Seong; Jeong, Jee-Hoon; Jang, Yeon-Soo; Kim, Baek-Min; Folland, Chris K.; Min, Seung-Ki; Son, Seok-Woo

    2015-10-01

    Arctic warming has sparked a growing interest because of its possible impacts on mid-latitude climate. A number of unusually harsh cold winters have occurred in many parts of East Asia and North America in the past few years, and observational and modelling studies have suggested that atmospheric variability linked to Arctic warming might have played a central role. Here we identify two distinct influences of Arctic warming which may lead to cold winters over East Asia or North America, based on observational analyses and extensive climate model results. We find that severe winters across East Asia are associated with anomalous warmth in the Barents-Kara Sea region, whereas severe winters over North America are related to anomalous warmth in the East Siberian-Chukchi Sea region. Each regional warming over the Arctic Ocean is accompanied by the local development of an anomalous anticyclone and the downstream development of a mid-latitude trough. The resulting northerly flow of cold air provides favourable conditions for severe winters in East Asia or North America. These links between Arctic and mid-latitude weather are also robustly found in idealized climate model experiments and CMIP5 multi-model simulations. We suggest that our results may help improve seasonal prediction of winter weather and extreme events in these regions.

  16. Concurrent variation between the East Asian subtropical jet and polar front jet during persistent snowstorm period in 2008 winter over southern China

    NASA Astrophysics Data System (ADS)

    Liao, Zhijie; Zhang, Yaocun

    2013-06-01

    The concurrent variation features between the East Asian subtropical jet and polar front jet were investigated during persistent snowstorm period in 2007/2008 winter over southern China. The East Asian subtropical jet was divided into two parts: (1) the plateau jet, located along the southern side of the Tibetan Plateau, and (2) the ocean jet, situated at the southeastern Japan Island. The concurrent intensity variation among the polar front jet, plateau jet, and ocean jet and the associated atmospheric anomalous signals were examined. A possible mechanism for concurrent variation among the three jets was also investigated from a perspective of synoptic-scale transient eddy activities (STEA). The enhanced plateau jet was simultaneously correlated with the weakened polar front jet, while the variation of the ocean jet lagged the variation of the plateau jet (polar front jet) about 5 days. The concurrent variation between the plateau jet and the polar front jet acted as an important bridge that linked the snowstorm to the atmospheric anomalous signals associated with the cold and warm air activities. Due to the opposite trends of STEA variation over the southern and northern sides of the Tibetan Plateau, the plateau jet and the polar front jet exhibited a significant concurrent variation feature. The STEA anomalies over the plateau jet and polar front jet regions propagated downstream to the East Asian coast as a wave train along the southern and northern sides of the Tibetan Plateau, respectively, resulting in a 5 day lag variation relationship between the ocean jet and the plateau jet (polar front jet).

  17. Charge and discharge of polar cold air mass in northern hemispheric winter

    NASA Astrophysics Data System (ADS)

    Kanno, Yuki; Abdillah, Muhammad Rais; Iwasaki, Toshiki

    2015-09-01

    This study shows the variability of polar cold air mass amount below potential temperature of 280 K, and north of 45°N can be understood with a concept of charge and discharge, where anomalously large daily discharge indicates an intermittent occurrence of cold air outbreak. The polar cold air mass amount north of 45°N gradually charges up due to diabatic cooling but dramatically discharges due to cold air outbreak with a pulse width of about 5 days. Cold air outbreaks tend to bring colder winter in East Asia and the east coast of North America, while warmer winter prevails on the northern side of these regions. The cold air mass amount south of 45°N increases just after a cold air outbreak but returns to the normal level soon because of its life time of about 3 days. Therefore, monthly mean of total cold air mass amount in the Northern Hemisphere is negatively correlated with the monthly mean discharge.

  18. Cold-active winter rye glucanases with ice-binding capacity.

    PubMed

    Yaish, Mahmoud W F; Doxey, Andrew C; McConkey, Brendan J; Moffatt, Barbara A; Griffith, Marilyn

    2006-08-01

    Extracellular pathogenesis-related proteins, including glucanases, are expressed at cold temperatures in winter rye (Secale cereale) and display antifreeze activity. We have characterized recombinant cold-induced glucanases from winter rye to further examine their roles and contributions to cold tolerance. Both basic beta-1,3-glucanases and an acidic beta-1,3;1,4-glucanase were expressed in Escherichia coli, purified, and assayed for their hydrolytic and antifreeze activities in vitro. All were found to be cold active and to retain partial hydrolytic activity at subzero temperatures (e.g. 14%-35% at -4 degrees C). The two types of glucanases had antifreeze activity as measured by their ability to modify the growth of ice crystals. Structural models for the winter rye beta-1,3-glucanases were developed on which putative ice-binding surfaces (IBSs) were identified. Residues on the putative IBSs were charge conserved for each of the expressed glucanases, with the exception of one beta-1,3-glucanase recovered from nonacclimated winter rye in which a charged amino acid was present on the putative IBS. This protein also had a reduced antifreeze activity relative to the other expressed glucanases. These results support the hypothesis that winter rye glucanases have evolved to inhibit the formation of large, potentially fatal ice crystals, in addition to having enzymatic activity with a potential role in resisting infection by psychrophilic pathogens. Glucanases of winter rye provide an interesting example of protein evolution and adaptation aimed to combat cold and freezing conditions. PMID:16815958

  19. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra.

    PubMed

    Kosov, Klra; Pril, Ilja Tom; Vtmvs, Pavel; Dobrev, Petre; Motyka, Vclav; Flokov, Kristna; Novk, Ond?ej; Ture?kov, Veronika; Rol?ik, Jakub; Peek, Bed?ich; Trvni?kov, Alena; Gaudinov, Alena; Galiba, Gabor; Janda, Tibor; Vlaskov, Eva; Prilov, Pavla; Vankov, Radomra

    2012-04-15

    Hormonal changes accompanying the cold stress (4C) response that are related to the level of frost tolerance (FT; measured as LT50) and the content of the most abundant dehydrin, WCS120, were compared in the leaves and crowns of the winter wheat (Triticum aestivum L.) cv. Samanta and the spring wheat cv. Sandra. The characteristic feature of the alarm phase (1 day) response was a rapid elevation of abscisic acid (ABA) and an increase of protective proteins (dehydrin WCS120). This response was faster and stronger in winter wheat, where it coincided with the downregulation of bioactive cytokinins and auxin as well as enhanced deactivation of gibberellins, indicating rapid suppression of growth. Next, the ethylene precursor aminocyclopropane carboxylic acid was quickly upregulated. After 3-7 days of cold exposure, plant adaptation to the low temperature was correlated with a decrease in ABA and elevation of growth-promoting hormones (cytokinins, auxin and gibberellins). The content of other stress hormones, i.e., salicylic acid and jasmonic acid, also began to increase. After prolonged cold exposure (21 days), a resistance phase occurred. The winter cultivar exhibited substantially enhanced FT, which was associated with a decline in bioactive cytokinins and auxin. The inability of the spring cultivar to further increase its FT was correlated with maintenance of a relatively higher cytokinin and auxin content, which was achieved during the acclimation period. PMID:22304971

  20. United States Historians, Cold War Rhetoric, and The Finnish Winter War.

    ERIC Educational Resources Information Center

    Olson, Keith W.

    The U.S. attitude toward Finland during the Cold War years reveals much about U.S. society and politics. In particular, the war between Finland and the Soviet Union during 1939 and 1940 (Finnish Winter War) and the way in which the United States reacted to it at the time and in the years following World War II has relevance for better

  1. Cold fronts in the Colombian Caribbean Sea and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-11-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of the Instituto de Hidrologa, Meteorologa y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and the Centro de Investigacin en Oceanografa y Meteorologa of Colombia (CIOH, based on its initials in Spanish) during the last 16 yr. The highest number of cold fronts was observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was observed and the highest number of fronts occurred in 2010 (20 in total); moreover, an annual strong relationship between the maximum average wave values and the cold fronts in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  2. Excess Winter Mortality and Cold Temperatures in a Subtropical City, Guangzhou, China

    PubMed Central

    Yang, Jun; Chau, Patsy Yuen-Kwan; Yang, Lin; Chen, Ping-Yan; Wong, Chit-Ming

    2013-01-01

    Background A significant increase in mortality was observed during cold winters in many temperate regions. However, there is a lack of evidence from tropical and subtropical regions, and the influence of ambient temperatures on seasonal variation of mortality was not well documented. Methods This study included 213,737 registered deaths from January 2003 to December 2011 in Guangzhou, a subtropical city in Southern China. Excess winter mortality was calculated by the excess percentage of monthly mortality in winters over that of non-winter months. A generalized linear model with a quasi-Poisson distribution was applied to analyze the association between monthly mean temperature and mortality, after controlling for other meteorological measures and air pollution. Results The mortality rate in the winter was 26% higher than the average rate in other seasons. On average, there were 1,848 excess winter deaths annually, with around half (52%) from cardiovascular diseases and a quarter (24%) from respiratory diseases. Excess winter mortality was higher in the elderly, females and those with low education level than the young, males and those with high education level, respectively. A much larger winter increase was observed in out-of-hospital mortality compared to in-hospital mortality (45% vs. 17%). We found a significant negative correlation of annual excess winter mortality with average winter temperature (rs=-0.738, P=0.037), but not with air pollution levels. A 1 C decrease in monthly mean temperature was associated with an increase of 1.38% (95%CI:0.34%-2.40%) and 0.88% (95%CI:0.11%-1.64%) in monthly mortality at lags of 0-1 month, respectively. Conclusion Similar to temperate regions, a subtropical city Guangzhou showed a clear seasonal pattern in mortality, with a sharper spike in winter. Our results highlight the role of cold temperature on the winter mortality even in warm climate. Precautionary measures should be strengthened to mitigate cold-related mortality for people living in warm climate. PMID:24116214

  3. Recent changes in Arctic temperature extremes: warm and cold spells during winter and summer

    NASA Astrophysics Data System (ADS)

    Matthes, Heidrun; Rinke, Annette; Dethloff, Klaus

    2015-11-01

    In the Arctic, climate change manifests with the strongest warming trends on the globe, especially in the cold season. It is under debate if climate extremes change similarly strong. Our study provides detailed regional information about two selected temperature extreme indices in the Arctic, namely warm and cold spells in winter and summer. We analyze their temporal evolution and variability from 19792013, based on daily station data and ERA-Interim reanalysis. Calculated trends from both datasets suggest a widespread decrease of cold spells in winter and summer of up to ?4 days/decade, with regional patches where trends are statistically significant throughout the Arctic. Winter trends are spatially heterogeneous, the reanalysis also shows small areas with statistically significant increases of cold spells throughout Siberia. Calculated changes in warm spells from both datasets are mostly small throughout the Arctic (less than 1 day/decade) and statistically not significant. Remarkable exceptions are the Lena river basin in winter with a statistically significant decrease of up to ?1.5 days/decade and areas in Scandinavia with statistically significant increases of up to 2.5 days/decade in winter and summer (again from both datasets). From the analysis of spell lengths, we find that there are no shifts from longer to shorter spells or vice versa with time, but long cold spells (events lasting for more than 15 days) disappear almost completely after the year 2000. There is a distinct inter-annual and decadal variability in the spells, which hinders the detection of significant trends for all spell categories in all regions.

  4. The climatology of East Asian winter monsoon and cold surges from 1979--1995 NCEP/NCAR reanalyses

    SciTech Connect

    Yi Zhang; Sperber, K.; Boyle, J.

    1996-04-01

    The East Asian winter monsoon, which is associated with the Siberian high and active cold surges, is one of the most energetic monsoon circulation systems. The dramatic shift of northeasterlies and the outbreak of cold surges dominate the winter weather and local climate in the East Asian region, and may exert a strong impact on the extratropical and tropical planetary-scale circulations and influence the SSTs in the tropical western Pacific. General characteristics of the winter monsoon and cold surges and their possible link with tropical disturbances are revealed in many observational studies. Little attention has been given to the climatological aspects of the winter monsoon and cold surges. The purpose of this study is to compile and document the East Asian mean winter circulation, and present the climatology of cold surges and the Siberian high based on the 1979--1995 NCEP/NCAR reanalyses. Of particular interest is the interannual variation of winter monsoon circulation and cold surge events. Given that the cold surge activity and the Indonesian convection are much reduced during the 1982--83 period, one of the goals is to determine whether there exists a statistically significant relationship between ENSO and the interannual variation of winter monsoon and cold surges.

  5. Cold Hardiness of Winter-Acclimated Drosophila suzukii (Diptera: Drosophilidae) Adults.

    PubMed

    Stephens, A R; Asplen, M K; Hutchison, W D; Venette, R C

    2015-12-01

    Drosophila suzukii Matsumura, often called spotted wing drosophila, is an exotic vinegar fly that is native to Southeast Asia and was first detected in the continental United States in 2008. Previous modeling studies have suggested that D. suzukii might not survive in portions of the northern United States or southern Canada due to the effects of cold. As a result, we measured two aspects of insect cold tolerance, the supercooling point and lower lethal temperature, for D. suzukii summer-morph pupae and adults and winter-morph adults. Supercooling points were compared to adults of Drosophila melanogaster Meigen. The lower lethal temperature of D. suzukii winter-morph adults was significantly colder than that for D. suzukii summer-morph adults, while supercooling points of D. suzukii winter-morph adults were actually warmer than that for D. suzukii summer-morph adults and pupae. D. suzukii summer-morph adult supercooling points were not significantly different than those for D. melanogaster adults. These measures indicate that D. suzukii is a chill intolerant insect, and winter-morph adults are the most cold-tolerant life stage. These results can be used to improve predictions of where D. suzukii might be able to establish overwintering populations and cause extensive damage to spring fruit crops. PMID:26317777

  6. A novel plant defensin-like gene of winter wheat is specifically induced during cold acclimation.

    PubMed

    Koike, Michiya; Okamoto, Takashi; Tsuda, Sakae; Imai, Ryozo

    2002-10-18

    A novel cDNA clone, Tad1, was isolated from crown tissue of winter wheat after differential screening of cold acclimation-induced genes. The Tad1 cDNA encoded a 23kDa polypeptide with a potential N-terminal signal sequence. The putative mature sequence showed striking similarity to plant defensins or gamma-thionins, representing low molecular size antipathogenic polypeptides. High levels of Tad1 mRNA accumulation occurred within one day of cold acclimation in crown tissue and the level was maintained throughout 14 days of cold acclimation. Similar rapid induction was observed in young seedlings treated with low temperature but not with exogenous abscisic acid. In contrast to defensins from other plant species, neither salicylic acid nor methyl jasmonate induced expression of Tad1. The recombinant mature form of TAD1 polypeptide inhibited the growth of the phytopathogenic bacteria, Pseudomonas cichorii; however, no antifreeze activity was detected. Collectively, these data suggested that Tad1 is induced in cold-acclimated winter wheat independent of major defense signaling(s) and is involved in low temperature-induced resistance to pathogens during winter hardening. PMID:12379218

  7. Winter cold-tolerance thresholds in field-grown Miscanthus hybrid rhizomes

    PubMed Central

    Peixoto, Murilo de Melo; Friesen, Patrick Calvin; Sage, Rowan F.

    2015-01-01

    The cold tolerance of winter-dormant rhizomes was evaluated in diploid, allotriploid, and allotetraploid hybrids of Miscanthus sinensis and Miscanthus sacchariflorus grown in a field setting. Two artificial freezing protocols were tested: one lowered the temperature continuously by 1°C h–1 to the treatment temperature and another lowered the temperature in stages of 24h each to the treatment temperature. Electrolyte leakage and rhizome sprouting assays after the cold treatment assessed plant and tissue viability. Results from the continuous-cooling trial showed that Miscanthus rhizomes from all genotypes tolerated temperatures as low as –6.5 °C; however, the slower, staged-cooling procedure enabled rhizomes from two diploid lines to survive temperatures as low as –14 °C. Allopolyploid genotypes showed no change in the lethal temperature threshold between the continuous and staged-cooling procedure, indicating that they have little ability to acclimate to subzero temperatures. The results demonstrated that rhizomes from diploid Miscanthus lines have superior cold tolerance that could be exploited to improve performance in more productive polyploid lines. With expected levels of soil insulation, low winter air temperatures should not harm rhizomes of tolerant diploid genotypes of Miscanthus in temperate to sub-boreal climates (up to 60°N); however, the observed winter cold in sub-boreal climates could harm rhizomes of existing polyploid varieties of Miscanthus and thus reduce stand performance. PMID:25788733

  8. Formation of a katabatic induced cold front at the east Andean slopes

    NASA Astrophysics Data System (ADS)

    Trachte, K.; Nauss, T.,; Rollenbeck, R.; Bendix, J.

    2009-04-01

    Within the DFG research unit 816, climate dynamics in a tropical mountain rain forest in the national reserve of the Reserva Bisfera de San Francisco in South Ecuador are investigated. Precipitation measurements in the mountain environment of the Estacin Cientfica de San Francisco (ECSF) with a vertical rain radar profiler have been made over the last seven years. They reveal unexpected constant early morning rainfall events. On the basis of cloud top temperatures from corresponding GOES satellite imageries, a Mesoscale Convective System could be derived. Its formation region is located south-east of the ECSF in the Peruvian Amazon basin. The generation of the MCS is assumed to results from an interaction of both local and mesoscale conditions. Nocturnal drainage air from the Andean slopes and valleys confluences in the Amazon basin due to the concave lined terrain. This cold air converges with the warm-moist air of the Amazon inducing a local cold front. This process yields to deep convection resulting in a MCS. With the numerical model ARPS the hypothesized formation of a cloud cluster due to a katabatic induced cold front is shown in an ideal case study. Therefor an ideal terrain model representing the features of the Andes in the target area has been used. The simplification of the oprography concerns a concave lined slope and a valley draining into the basin. It describes the confluence of the cold drainage air due to the shape of the terrain. Inside the basin the generation of a local cold front is shown, which triggers the formation of a cloud cluster.

  9. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub.

    SciTech Connect

    Charles Kwit; Douglas J. Levey; Cathryn H. Greenberg; Scott F. Pearson; John P. McCarty; Sarah Sargent

    2004-01-10

    Kwit, C., D. J. Levey; C. H. Greenberg, S. F. Pearson, J.P. McCarty, and S. Sargent. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub. Oecologia. 139:30-34. Abstract: We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology.

  10. Occurrence of shallow cold flows in the winter atmospheric boundary layer of interior of Alaska

    NASA Astrophysics Data System (ADS)

    Fochesatto, Gilberto J.; Mayfield, John A.; Starkenburg, Derek P.; Gruber, Matthew A.; Conner, James

    2015-08-01

    During winters, the absence of solar radiation combined with clear skies and weak synoptic forcing enables cold pooling in the complex topographic basins of interior Alaska. Under these conditions, shallow, small-scale cold flows originating within, or flowing from, north-facing semi-enclosed basins are able to penetrate the frigid atmospheric boundary layer (ABL) of the open south-facing basins. This paper introduces the Winter Boundary Layer Experiment carried out during three consecutive periods in Fairbanks (2009-2011) and examines observational results illustrating the changes in the mean and turbulent state of the ABL during the occurrence of shallow flows. Observations introduced here demonstrate that during flow penetration, surface layer stratification is destroyed allowing mixing and thermal stabilization of the basin cooling regime. Evidence of upper level ABL thermal turbulence related to shear driven flow is introduced and discussed. Basin-scale turbulent heat fluxes are shown to reach -20 Wm-2 during flow occurrence.

  11. Heat production in cold and long scotophase acclimated and winter acclimatized rodents

    NASA Astrophysics Data System (ADS)

    Haim, A.; Fourie, F. Le R.

    1980-09-01

    Heat production by means of oxygen consumptionVo2 (at Ta = 6 C, 25 C, 30 C, and 32 C) and non-shivering thermogenesis (NST) were studied in individuals of a diurnal rodent ( Rhabdomys pumilio) and a nocturnal rodent ( Praomys natalensis). The studied mice were acclimated to cold at Ta=8C with a photoperiod of LD 12:12. On the otherhand specimens of these two species were acclimated at Ta=25C with a long scotophase LD8:16. The results were compared with a control group (Ta=25 C, LD 12:12) and winter acclimatized individuals of both species.Vo2 in cold acclimated mice of both species was significantly increased when compared to the control group and was even higher than the winter acclimatized group when measured below the lower critical temperature. Long scotophase acclimated mice of both species also increased their oxygen consumption significantly when compared to the control group. NST was significantly increased in long scotophase acclimated mice from both species when compared to the control group. The results of this study indicate that the effects of acclimation to long scotophase are similar to those of cold acclimation. As changes in photoperiod are regular, it may be assumed that heat production mechanisms in acclimatization to winter will respond to changes in photoperiodicity.

  12. Arctic Oscillation and Cold Surge in the Northern Hemisphere at 2009/2010 Winter

    NASA Astrophysics Data System (ADS)

    Kim, S.; Kim, B.; Lee, H.; Kim, Y.

    2010-12-01

    The cause of the cold surge occurred at 2009/2010 winter over northern hemisphere was investigated. During the boreal winter (December-January-February) of 2009/2010, the surface temperature was extremely lower than normal years by more than 5C over North-east Asia, Europe, and North America. The cold air outbreak was due to the stronger northerly winds in troposphere at mid latitudes associated with the substantially weaker Arctic Oscillation (AO) polarity, which led to the weaker zonal-mean zonal winds and higher geopotential height associated with marked warming anomalies at high northern latitudes of stratosphere whose signal propagated down to troposphere. The marked stratospheric warm anomaly in autumn is produced by the stronger upward propagation of the stationary planetary waves, originated from Eurasia/Siberia associated with the anomalously larger snow cover during October and November of 2009. The autumn snow cover over these regions tends to increase with time and its increasing rate is becoming larger towards present. The results of this study indicate that the anomalously increased autumn snow cover over Siberia of autumn 2009 in part led to the weakening of the AO polarity and consequent cold air outbreak for the following winter.

  13. Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431-1649 CE

    NASA Astrophysics Data System (ADS)

    Ludlow, Francis; Stine, Alexander R.; Leahy, Paul; Murphy, Enda; Mayewski, Paul A.; Taylor, David; Killen, James; Baillie, Michael G. L.; Hennessy, Mark; Kiely, Gerard

    2013-06-01

    Explosive volcanism resulting in stratospheric injection of sulfate aerosol is a major driver of regional to global climatic variability on interannual and longer timescales. However, much of our knowledge of the climatic impact of volcanism derives from the limited number of eruptions that have occurred in the modern period during which meteorological instrumental records are available. We present a uniquely long historical record of severe short-term cold events from Irish chronicles, 431-1649 CE, and test the association between cold event occurrence and explosive volcanism. Thirty eight (79%) of 48 volcanic events identified in the sulfate deposition record of the Greenland Ice Sheet Project 2 ice-core correspond to 37 (54%) of 69 cold events in this 1219 year period. We show this association to be statistically significant at the 99.7% confidence level, revealing both the consistency of response to explosive volcanism for Irelands climatically sensitive Northeast Atlantic location and the large proportional contribution of volcanism to historic cold event frequencies here. Our results expose, moreover, the extent to which volcanism has impacted winter-season climate for the region, and can help to further resolve the complex spatial patterns of Northern Hemisphere winter-season cooling versus warming after major eruptions.

  14. Cold-induced bradycardia in man during sleep in Arctic winter nights

    NASA Astrophysics Data System (ADS)

    Buguet, A. G. C.

    1987-03-01

    Two young male Caucasians volunteered for a study on the effects of cold exposure during night sleep in winter in the Arctic. The 14-day experiment was divided in three consecutive periods, baseline (2 nights), cold exposure (10 night) and recovery (2 nights). Both baseline and recovery data were obtained in neutral thermal conditions in a laboratory. The subjects slept in a sleeping bag under an unheated tent during the cold exposure. Apart from polysomnographic and body temperature recordings, electrocardiograms were taken through a telemetric system for safety purposes. Heart rates were noted at 5-min intervals and averaged hourly. In both environmental conditions, heart rate decreased within the first two hours of sleep. Comparison of the data obtained during cold exposure vs. thermal neutrality revealed lower values of heart rate in the cold, while body temperatures remained within normal range. This cold-induced bradycardia supervening during night sleep is discussed in terms of the occurrence of a vagal reflex preventing central blood pressure to rise.

  15. Changes in winter cold surges over Southeast China: 1961 to 2012

    NASA Astrophysics Data System (ADS)

    Ou, Tinghai; Chen, Deliang; Jeong, Jee-Hoon; Linderholm, Hans W.; Zhou, Tianjun

    2015-02-01

    The present study investigates the overall changes in occurrences of winter cold surges over Southeast China for the period 1961-2012, using instrumental observations, reanalysis and model simulation datasets. Based on objectively defined criteria, cold surges were classified into 3 types according to their dynamical origin as inferred from daily evolution patterns of surface pressure systems with a focus on the Siberian High (SH): type A with an amplification of a quasi-stationary SH associated with high-pressure anomalies over the Ural mountains, type B with a developing SH associated with fast traveling upper-level waves, and type C with a high-pressure originated in the Arctic. Examination of the long-term change in cold surge occurrences shows different interdecadal variations among the 3 types. During 1961-2012, type A events (37.8%) decreased, while type B events, accounting for the majority (52.5%) of total winter cold surges, increased slightly. The contribution by type C to the total occurrence of the cold surges was small (8.8%) compared to that of A and B, but it became more frequent in the latest decade, related to the tendency of the Arctic Oscillation (AO) being more in its negative phase. Overall, we found slightly increased occurrences of cold surges over Southeast China since the early 1980s, despite the weakened SH intensity and warmer mean temperature compared to previous decades. The climate model projections of the phase 5 of the Coupled Model Intercomparison Project (CMIP5) suggests similar trend in the late 21st century under warmer climate.

  16. Dynamics and ecological consequences of avian influenza virus infection in greater white-fronted geese in their winter staging areas

    PubMed Central

    Kleijn, D.; Munster, V. J.; Ebbinge, B. S.; Jonkers, D. A.; Mskens, G. J. D. M.; Van Randen, Y.; Fouchier, R. A. M.

    2010-01-01

    Recent outbreaks of highly pathogenic avian influenza (HPAI) in poultry have raised interest in the interplay between avian influenza (AI) viruses and their wild hosts. Studies linking virus ecology to host ecology are still scarce, particularly for non-duck species. Here, we link captureresighting data of greater white-fronted geese Anser albifrons albifrons with the AI virus infection data collected during capture in The Netherlands in four consecutive winters. We ask what factors are related to AI virus prevalence and whether there are ecological consequences associated with AI virus infection in staging white-fronted geese. Mean seasonal (low pathogenic) AI virus prevalence ranged between 2.5 and 10.7 per cent, among the highest reported values for non-duck species, and occurred in distinct peaks with near-zero prevalence before and after. Throat samples had a 2.4 times higher detection frequency than cloacal samples. AI virus infection was significantly related to age and body mass in some but not other winters. AI virus infection was not related to resighting probability, nor to maximum distance travelled, which was at least 191 km during the short infectious lifespan of an AI virus. Our results suggest that transmission via the respiratory route could be an important transmission route of AI virus in this species. Near-zero prevalence upon arrival on their wintering grounds, in combination with the epidemic nature of AI virus infections in white-fronted geese, suggests that white-fronted geese are not likely to disperse Asian AI viruses from their Siberian breeding grounds to their European wintering areas. PMID:20200028

  17. Spruce Budworm Moth Flight and Storms: Case Study of a Cold Front System.

    NASA Astrophysics Data System (ADS)

    Dickison, R. B. B.; Haggis, Margaret J.; Rainey, R. C.

    1983-02-01

    Field studies in New Brunswick on the dispersal and redistribution of night-flying spruce budworm moths have made particular use of detailed synoptic analysis, weather radar (ground and airborne), and airborne Doppler wind-finding; moth-sampling by light-traps, pheromone-traps and aircraft-trapping; insect-detecting radar; and experimental forest spraying. By these means moths have been recorded arriving in very large numbers, with mesoscale wind systems associated with rainstorms. A case study is presented of such an influx in western New Brunswick in association with wind shifts and weather at an active cold front in July 1975.

  18. MERGING COLD FRONTS IN THE GALAXY PAIR NGC 7619 AND NGC 7626

    SciTech Connect

    Randall, S. W.; Jones, C.; Kraft, R.; Forman, W. R.; O'Sullivan, E.

    2009-05-10

    We present results from Chandra observations of the galaxy pair NGC 7619 and NGC 7626, the two dominant members of the Pegasus group. The X-ray images show a brightness edge associated with each galaxy, which we identify as merger cold fronts. The edges are sharp, and the axes of symmetry of the edges are roughly antiparallel, suggesting that these galaxies are falling toward one another in the plane of the sky. The detection of merger cold fronts in each of the two dominant member galaxies implies a merging subgroup scenario, since the alternative is that the galaxies are falling into a preexisting {approx}1 keV halo without a dominant galaxy of its own, and such objects are not observed. We estimate the three-dimensional velocities from the cold fronts and, using the observed radial velocities of the galaxies, show that the velocity vectors are indeed most likely close to the plane of the sky, with a relative velocity of {approx}1190 km s{sup -1}. The relative velocity is consistent with what is expected from the infall of two roughly equal mass subgroups whose total viral mass equals that of the Pegasus group. We conclude that the Pegasus cluster is most likely currently forming from a major merger of two subgroups, dominated by NGC 7619 and NGC 7626. NGC 7626 contains a strong radio source, consisting of a core with two symmetric jets, and radio lobes. Although we find no associated structure in the X-ray surface brightness map, the temperature map reveals a clump of cool gas just outside the southern lobe, presumably entrained by the lobe, and possibly an extension of cooler gas into the lobe itself. The jet axis is parallel with the projected direction of motion of NGC 7626 (inferred from the symmetry axis of the merger cold front), and the southern leading jet is foreshortened as compared to the northern trailing one, possibly due to the additional ram pressure encountered by the forward jet.

  19. A physical analysis of the severe 2013/2014 cold winter in North America

    NASA Astrophysics Data System (ADS)

    Yu, Bin; Zhang, Xuebin

    2015-10-01

    The severe 2013/2014 cold winter has been examined in the context of the previous 55 winters using the National Centers for Environmental Prediction reanalysis data for the period 1960-2014. North America is dominated by pronounced cold anomalies over the Great Plains and Great Lakes in December 2013 and February 2014 but exhibits an east-west contrast pattern with warm anomalies over most of the North American West in January 2014. A relevant temperature index, defined as land surface temperature anomalies averaged over (40-60N, 105-80W), reveals a warming trend as well as interannual variability with a significant power peak of 6.0 years. While 2013/2014 was the second coldest winter during 1960-2014, it is the coldest one in the linearly detrended series, with a negative anomaly of 2.63 standard deviations. This indicates that the long-term warming has made the 2013/2014 winter less severe than it could have been. The temperature and circulation variability in association with the zonally symmetric variability of the polar vortex projects weakly on the corresponding anomalies in the 2013/2014 winter, whereas the variability associated with the principal mode of North American surface temperature projects strongly on the corresponding anomalies in the winter. This mode is associated with a sea surface temperature (SST) pattern of significant anomalies over the North Pacific and North Atlantic middle and high latitudes. The anomalous atmospheric circulation shows an anticyclonic anomaly over the Gulf of Alaska-Bering Sea and a cyclonic anomaly downstream over North America. It bears resemblance to the North Pacific Oscillation/Western Pacific pattern and drives the SST in the North Pacific. Over western-central Canada and the northern U.S., below-average heights are associated with above-normal precipitation, implying enhanced upward vertical motion and variation of local cloud forcing, leading to a variation of the surface energy budget dominated by surface longwave radiation anomalies. Over North America, there is less downwelling longwave radiation at the surface when the atmosphere is cold, which is offset by the corresponding reduction in outgoing longwave radiation.

  20. Windowpane flounder (Scophthalmus aquosus) and winter flounder (Pseudopleuronectes americanus) responses to cold temperature extremes in a Northwest Atlantic estuary

    NASA Astrophysics Data System (ADS)

    Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine

    2016-01-01

    The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.

  1. The effect of moving cold fronts over Central Europe to the variability of the ionosphere

    NASA Astrophysics Data System (ADS)

    Potuznikova, Katerina; Koucka Knizova, Petra; Boska, Josef; Sindelarova, Tereza; Mosna, Zbysek

    2015-04-01

    Cold fronts represent well known source of atmospheric waves, (especially short and medium scale AGW - acoustic gravity waves), that are able to propagate up to the ionospheric heights. In our study we focus on the effects of the transitions of cold front over the region of Central Europe on the variations of the ionosphere. We concentrate on periods of low solar and geomagnetic activity. Neutral atmosphere data are compared with the wave-like oscillations in the E and F layer. Our tropospheric data comprise synoptic maps on of 500 hPa and 850 hPa geopotential heights. Within ionospheric data we search for variability that is linked to the tropospheric disturbances. The ionospheric parameters (electron concentration and corresponding height) we analyse by the wavelet transform method. The Modern HF digisonde DPS-4 D (Digisonde Portable Sounder), which is in operation at the Pruhonice observatory (49.59 N; 14.33 E) of the Institute of Atmospheric Physics, Prague (IAP) since 2004, represents an excellent source of the ionospheric data for Central Europe. Pruhonice digisonde usually operates in standard mode - one ionogram and electron density profie N(h) each 15 minutes. Besides that, data from several european stations of the digisonde world network (data from Juliusruhe, Chilton, Brusel, Roma and Tortosa digisonde stations) are included in the study.

  2. Winter variability of aeolian sediment transport threshold on a cold-climate dune

    NASA Astrophysics Data System (ADS)

    Barchyn, Thomas E.; Hugenholtz, Chris H.

    2012-12-01

    Changes in surface conditions on cold-climate aeolian dunes are pronounced; during winter dunes are wet, snow covered, and/or frozen for extended periods of time. It is unknown how the critical wind speed for sediment transport (threshold) varies and how threshold may influence sediment transport predictions. Although the impact of surface conditions on threshold has been examined in synthetic experiments (wind tunnels), complicated feedbacks between threshold, sand transport, and surface conditions that occur in natural environments suggest that a ground-based empirical approach may provide enhanced insight. In this study we investigate threshold variability for 73 days during fall-winter-spring surface conditions from 18 November 2008 to 30 May 2009 in the Bigstick Sand Hills of Saskatchewan, Canada. Simultaneous measurements of threshold and atmospheric variables (air temperature, relative humidity, solar radiation, wind speed and direction) were used to examine the extent to which surface erodibility was regulated by meteorology. Time-lapse images of the surface from a co-located camera were used for quality control and interpreting changes in the surface affecting threshold. Results reveal that threshold varied throughout the deployment (25-75% quartiles: 6.92-8.28 m s- 1; mean: 7.79 m s- 1). Threshold variability was especially evident at two scales: (i) event timescale and (ii) seasonal timescale. Event-scale variability peaked during mid-winter; in one event the threshold varied by 6 m s- 1 in 2 h with freezing and re-freezing of the surface and relatively constant atmospheric conditions. The causes of event-scale variability are complex though qualitatively related to changes of wind direction, antecedent meteorological conditions, and vertical variations of grain-scale bonding agents such as pore ice and moisture. Seasonal-scale changes manifested as an increase in threshold during fall, peaking in mid-winter, and decreasing in spring. Increased threshold in mid-winter was linked to lower insolation and air temperature, suggesting low erodibility due to the presence of pore ice. Correlation coefficients of threshold versus atmospheric variables yielded relatively weak correlations (air temperature: r = - 0.322; relative humidity: r = 0.388; solar radiation: r = - 0.309) that also varied according to wind direction, suggesting that the link between atmospheric conditions and surface erodibility on cold-climate dunes is complex. This contrasts with results from field-based studies in warmer climates and controlled wind tunnel experiments, which show a more direct link between atmospheric variables (temperature and humidity) and surface erodibility. Nevertheless, our results do show a seasonal pattern of threshold that could be important for modeling cold-climate aeolian sediment transport.

  3. Persistent Volcanic Forcing of Severe Cold Winters in Ireland, 430-1650 CE

    NASA Astrophysics Data System (ADS)

    Ludlow, F.; Stine, A.

    2012-12-01

    We present a new record of the occurrence of severe cold events from 430 to 1650 CE derived from writings of medieval Irish scribes. These sources, collectively known as the Irish Annals, represent annual chronicles of important events occurring in the vicinity of major monasteries throughout Ireland. The Irish Annals represent a uniquely homogenous historical record for climate reconstruction because, unlike almost any other European historical archive of this era, records were maintained with great continuity for a common purpose and in a common format at effectively annual resolution for over 1000 years, including the period of the "Dark Ages" after the fall of Rome when comparable sources elsewhere in Europe are scarce. We analyzed over 36,000 individual written entries from 22 major chronicle sources (and several minor sources) and identified all references to cold events, amounting to a total of 70 such events, after exclusion of 13 events deemed historically unreliable (e.g. exaggerated or fabricated). The majority of cold events are reported in the sources as occurring during the winter season. A characteristic example of a written record of severe winter cold occurrence that is considered to be fully historically reliable is the following: Abnormal ice and much snow from the Epiphany [January 6th, Julian Calendar] to Shrovetide. The Boyne and other rivers were crossed dry-footed; lakes likewise (Source: Annals of Ulster for 818 CE). We find a strong correspondence between cold event occurrence and the record of explosive volcanism derived from sulphate deposition in the GISP2 ice core. We find that 37 of 69 or 53.6% of cold events (excluding 1 cold event at 586 CE for which no GISP2 data is available) correspond with one or more high-SO4 events in the GISP2, a correspondence which we find to be significant at the 99.7% confidence level. Explosive volcanic eruptions are generally understood to produce cooling in the northeastern Atlantic during the summer, but the effects on wintertime temperature in modelling studies are more sensitive to details of where aerosols are first injected. Our result indicates that the dominant effect of the explosive volcanism recorded in the GISP2 ice core on wintertime Irish climate is to produce cooling.

  4. Dynamical and thermodynamical analysis of the South China Sea winter cold tongue

    NASA Astrophysics Data System (ADS)

    Thompson, Bijoy; Tkalich, Pavel; Malanotte-Rizzoli, Paola; Fricot, Bastien; Mas, Juliette

    2015-12-01

    Spatial distribution of the South China Sea (SCS) surface temperature shows strong cold anomalies over the Sunda Shelf during the boreal winter season. The band of low sea surface temperature (SST) region located south/southeast of Vietnam is called as the winter cold tongue (CT) in the SCS. Using observational and re-analysis datasets a comprehensive investigation of the dynamical and thermodynamical processes associated with the evolution of SCS CT is performed in this study. The role and relative importance of wind-driven ocean transports, air-sea heat fluxes and oceanic processes are explored. The north-south Sverdrup transport demonstrates strong southward transport during the northeast monsoon period aiding the SST cooling by bringing relatively cold water from the north. The zonal and meridional Ekman transports exhibit relatively weak westward and northward transports to the CT region during this period. The study suggests that wind-driven ocean transports have a significant role in regulating the shape and spatial extent of the CT. The heat budget analysis revealed that net surface heat flux decrease during the northeast monsoon acts as the primary cooling mechanism responsible for the development of the SCS CT, while the horizontal advection of cold water by the western boundary current along the coast of Vietnam plays a secondary role. The wintertime SST anomalies over the CT region are significantly linked to the Nino3 index. Most of the warming/cooling events in the SST anomalies coincide with the El Nino/La Nina phenomena in the Pacific Ocean.

  5. Carbon dioxide variability during cold front passages and fair weather days at a forested mountaintop site

    NASA Astrophysics Data System (ADS)

    Lee, Temple R.; De Wekker, Stephan F. J.; Andrews, Arlyn E.; Kofler, Jonathan; Williams, Jonathan

    2012-01-01

    This study describes temporal carbon dioxide (CO 2) changes at a new meteorological site on a mountaintop in the Virginia Blue Ridge Mountains during the first year of measurements. Continental mountaintop locations are increasingly being used for CO 2 monitoring, and investigations are needed to better understand measurements made at these locations. We focus on CO 2 mixing ratio changes on days with cold front passages and on fair weather days. Changes in CO 2 mixing ratios are largest during cold front passages outside the growing season and on clear, fair weather days in the growing season. 67% (60%) of the frontal passages during the non-growing (growing) season have larger postfrontal than prefrontal CO 2 mixing ratios. The increase in CO 2 mixing ratio around the frontal passage is short-lived and coincides with changes in CO and O 3. The CO 2 increase can therefore be used as an additional criterion to determine the timing of frontal passages at the mountaintop station. The CO 2 increase can be explained by an accumulation of trace gases along frontal boundaries. The magnitude and duration of the CO 2 increase is affected by the wind speed and direction that determine the source region of the postfrontal air. Southward-moving fronts result in the largest prolonged period of elevated CO 2, consistent with the postfrontal advection of air from the Northeastern United States where anthropogenic contributions are relatively large compared to other areas in the footprint of the mountaintop station. These anthropogenic contributions to the CO 2 changes are confirmed through concurrent CO measurements and output from NOAA's CarbonTracker model.

  6. Experimental study of the cold front propagation in the plasma shut-down experiment in the J-TEXT tokamak

    NASA Astrophysics Data System (ADS)

    Huang, Yanhua; Tang, Yi; Luo, Yihui; Huang, Duwei; Jin, Wei; Xiao, Jinshui; Yang, Zhoujun; Chen, Zhongyong

    2014-07-01

    Mitigation of major disruptions is essential in achieving fusion energy as a commercial energy source. Many tokamaks are using massive gas injection (MGI) as the disruption mitigation method since it is the most prospective potential disruption mitigation technique at present. However, mitigation efficiency by gas jet is limited by the shallow penetration of the gas jet which results in low gas mixing efficiency. In order to improve the mixture efficiency, the propagation of the cold front induced by supersonic molecular beam injection and the interaction between the cold front and the q = 2 surface have been studied in the J-TEXT tokamak.

  7. Isotope meteorology of cold front passages: A case study combining observations and modeling

    NASA Astrophysics Data System (ADS)

    Aemisegger, F.; Spiegel, J. K.; Pfahl, S.; Sodemann, H.; Eugster, W.; Wernli, H.

    2015-07-01

    This study investigates the role of below-cloud evaporation and evapotranspiration for the short-term variability of stable isotopes in near-surface water vapor and precipitation associated with central European cold fronts. To this end, a combination of observations with high temporal resolution and numerical sensitivity experiments with the isotope-enabled regional weather prediction model COSMOiso is used. The representation of the interaction between rain droplets and ambient vapor below the cloud is fundamental for adequately simulating precipitation isotopes (?p) and total rainfall amount. Neglecting these effects leads to depletion biases of 20-40 in ?p2H and 5-10 in ?p18O and to an increase of 74% in rainfall amount. Isotope fractionation during soil evaporation is of primary importance for correctly simulating the variability of continental low-level vapor ?v2H and ?v18O and particularly of the secondary isotope parameter deuterium excess (dv).

  8. Nitrogen oxides measurements in an Amazon site and enhancements associated with a cold front

    NASA Astrophysics Data System (ADS)

    Cordova, A. M.; Longo, K.; Freitas, S.; Gatti, L. V.; Artaxo, P.; Procpio, A.; Silva Dias, M. A. F.; Freitas, E. D.

    2004-05-01

    An intensive atmospheric chemistry study was carried out in a pristine Amazonian forest site (Balbina), Amazonas state, Brazil during the 2001 wet season, as part of the LBA/CLAIRE 2001 (The Large Scale Biosphere Atmosphere Experiment in Amazonia/Cooperative LBA Airborne Regional Experiment) field campaign. Measurements of nitrogen oxide (NO), nitrogen dioxide (NO2) and ozone (O3) were performed simultaneously with aerosol particles and black carbon concentrations and meteorological parameters observations. Very low trace gases and aerosol concentrations are typically observed at this pristine tropical site. During the measurement period, there was a three-day episode of enhancement of NO2 and black carbon concentration. NO2 concentration reached a maximum value of 4 ppbv, which corresponds to three times the background concentration observed for this site. Black carbon concentration increased from the approximated 100 ng/m3 average value to a 200 ng/m3 maximum during the same period. Biomass burning spots were detected southward, between latitudes 15 to 10 S, 5-6 days before this episode from GOES-8 WF_ABBA (Wildfire Automated Biomass Burning Algorithm). An atmospheric numerical simulation of the whole measurement period was carried out using the RAMS model coupled to a biomass burning emission and transport model. The simulation results pictured a smoke transport event from Central Brazil associated to an approach of a mid-latitude cold front, reinforcing the hypothesis of biomass burning products being long-range transported from the South by the cold front and crossing the Equator. This transport event shows how the pristine atmosphere pattern in Amazonia is impacted by biomass burning emissions from sites very far away.

  9. Characterization and effects of cold fronts in the Colombian Caribbean Coast and their relationship to extreme wave events

    NASA Astrophysics Data System (ADS)

    Ortiz-Royero, J. C.; Otero, L. J.; Restrepo, J. C.; Ruiz, J.; Cadena, M.

    2013-07-01

    Extreme ocean waves in the Caribbean Sea are commonly related to the effects of storms and hurricanes during the months of June through November. The collapse of 200 m of the Puerto Colombia pier in March 2009 revealed the effects of meteorological phenomena other than storms and hurricanes that may be influencing the extreme wave regime in the Colombian Caribbean. The marked seasonality of these atmospheric fronts was established by analyzing the meteorological-marine reports of Instituto de Hidrologa, Meteorologa y Estudios Ambientales of Colombia (IDEAM, based on its initials in Spanish) and Centro de Investigacin en Oceanografa y Meteorologa of Colombia (CIOH, based on its initials in Spanish). The highest occurrences were observed during the months of January, February, and March, with 6 fronts occurring per year. An annual trend was not observed, although the highest number of fronts occurred in 2010 (20 in total). An annual strong relationship between the maximum average wave values and the cold fronts, in the central zone of the Colombian Caribbean during the first three months of the year was established. In addition, the maximum values of the significant height produced by the passage of cold fronts during the last 16 yr were identified. Although the Colombian Caribbean has been affected by storms and hurricanes in the past, this research allows us to conclude that, there is a strong relationship between cold fronts and the largest waves in the Colombian Caribbean during the last 16 yr, which have caused damage to coastal infrastructure. We verified that the passage of a cold front corresponded to the most significant extreme wave event of the last two decades in the Colombian Caribbean, which caused the structural collapse of the Puerto Colombia pier, located near the city of Barranquilla, between 5 and 10 March 2009. This information is invaluable when evaluating average and extreme wave regimes for the purpose of informing the design of structures in this region of the Caribbean.

  10. Improved management of winter operations to limit subsurface contamination with degradable deicing chemicals in cold regions.

    PubMed

    French, Helen K; van der Zee, Sjoerd E A T M

    2014-01-01

    This paper gives an overview of management considerations required for better control of deicing chemicals in the unsaturated zone at sites with winter maintenance operations in cold regions. Degradable organic deicing chemicals are the main focus. The importance of the heterogeneity of both the infiltration process, due to frozen ground and snow melt including the contact between the melting snow cover and the soil, and unsaturated flow is emphasised. In this paper, the applicability of geophysical methods for characterising soil heterogeneity is considered, aimed at modelling and monitoring changes in contamination. To deal with heterogeneity, a stochastic modelling framework may be appropriate, emphasizing the more robust spatial and temporal moments. Examples of a combination of different field techniques for measuring subsoil properties and monitoring contaminants and integration through transport modelling are provided by the SoilCAM project and previous work. Commonly, the results of flow and contaminant fate modelling are quite detailed and complex and require post-processing before communication and advising stakeholders. The managers' perspectives with respect to monitoring strategies and challenges still unresolved have been analysed with basis in experience with research collaboration with one of the case study sites, Oslo airport, Gardermoen, Norway. Both scientific challenges of monitoring subsoil contaminants in cold regions and the effective interaction between investigators and management are illustrated. PMID:24281673

  11. VHF radar observations of gravity-wave production by cold fronts over southern Australia

    SciTech Connect

    Eckermann, S.D. ); Vincent, R.A. )

    1993-03-15

    Four extended observational campaigns were conducted during August and November 1988 with an ST (stratosphere-troposphere) radar in southern Australia during the passage of cold fronts over the system, giving around 30 days of three-dimensional wind measurements with 15-min time and 0.5-km height resolution over the 2-11.5-km height range. Order of magnitude increases in the variance of time-fluctuating wind velocities were measured during frontal passages, which are ascribed to gravity waves. The time-height morphology of the horizontal and vertical velocity fluctuations differed. Bursts of horizontal velocity variance arose at upper levels about a day before the frontal boundary arrived; this activity extended to lower heights as the front neared. The arrival of the frontal boundary marked a sudden reduction in this activity. After the frontal boundary passed, reduced activity persisted for 12 hours, after which bursts returned at upper levels and persisted typically for about a day. Analysis associates this activity with a spectrum of many saturating inertia-gravity waves with long horizontal wavelengths and large ground-based phase speeds. Bursts in vertical-velocity fluctuations, w[prime], were confined to the troposphere and were quasi-sinusoidal in appearance. These fluctuations are ascribed to gravity waves with high intrinsic frequencies. Significant w[prime] amplitudes were evident after and prior to frontal passage. The largest amplitudes occurred with the onset of strong vertical circulation when the frontal boundary arrived. The smaller w[prime] amplitudes observed in the stratosphere are due in part to the more oblique propagation of wave energy in this more stable environment. Two clear cases of ducted w[prime] oscillations are identified with the aid of radiosonde temperature data from a nearby site. Comparisons between these measurements and the limited numerical modeling of frontal gravity waves show some similarities in wave characteristics.

  12. Cold Hardening of Spring and Winter Wheat and Rape Results in Differential Effects on Growth, Carbon Metabolism, and Carbohydrate Content.

    PubMed

    Hurry, V. M.; Strand, A.; Tobiaeson, M.; Gardestrom, P.; Oquist, G.

    1995-10-01

    The effect of long-term (months) exposure to low temperature (5[deg]C) on growth, photosynthesis, and carbon metabolism was studied in spring and winter cultivars of wheat (Triticum aestivum) and rape (Brassica napus). Cold-grown winter rape and winter wheat maintained higher net assimilation rates and higher in situ CO2 exchange rates than the respective cold-grown spring cultivars. In particular, the relative growth rate of spring rape declined over time at low temperature, and this was associated with a 92% loss in in situ CO2 exchange rates. Associated with the high photosynthetic rates of cold-grown winter cultivars was a 2-fold increase per unit of protein in both stromal and cytosolic fructose-1,6-bisphosphatase activity and a 1.5- to 2-fold increase in sucrose-phosphate synthase activity. Neither spring cultivar increased enzyme activity on a per unit of protein basis. We suggest that the recovery of photosynthetic capacity at low temperature and the regulation of enzymatic activity represent acclimation in winter cultivars. This allow these overwintering herbaceous annuals to maximize the production of sugars with possible cryoprotective function and to accumulate sufficient carbohydrate storage reserve to support basal metabolism and regrowth in the spring. PMID:12228623

  13. Research on winter-hardiness: deacclimation resistance, reacclimation ability, photoprotection strategies, and a cold acclimation protocol design

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Freezing is a major environmental stress during the annual cycle of temperate zone perennials. Freeze- injury can occur due to mid-winter temperatures that are colder than the tolerance threshold of a tissue / plant or due to untimely freezing temperatures before cold acclimation (development of fre...

  14. Spatial use by wintering greater white-fronted geese relative to a decade of habitat change in California's Central Valley

    USGS Publications Warehouse

    Ackerman, J.T.; Takekawa, J.Y.; Orthmeyer, D.L.; Fleskes, J.P.; Yee, J.L.; Kruse, K.L.

    2006-01-01

    We investigated the effect of recent habitat changes in California's Central Valley on wintering Pacific greater white-fronted geese (Anser albifrons frontalis) by comparing roost-to-feed distances, distributions, population range sizes, and habitat use during 1987-1990 and 1998-2000. These habitat changes included wetland restoration and agricultural land enhancement due to the 1990 implementation of the Central Valley Joint Venture, increased land area used for rice (Oryza sativa) production, and the practice of flooding, rather than burning, rice straw residues for decomposition because of burning restrictions enacted in 1991. Using radiotelemetry, we tracked 192 female geese and recorded 4,516 locations. Geese traveled shorter distances between roosting and feeding sites during 1998-2000 (24.2 ?? 2.2 km) than during 1987-1990 (32.5 ?? 3.4 km); distance traveled tended to decline throughout winter during both decades and varied among watershed basins. Population range size was smaller during 1998-2000 (3,367 km2) than during 1987-1990 (5,145 km2), despite a 2.2-fold increase in the size of the Pacific Flyway population of white-fronted geese during the same time period. The population range size also tended to increase throughout winter during both decades. Feeding and roosting distributions of geese also differed between decades; geese shifted into basins that had the greatest increases in the amount of area in rice production (i.e., American Basin) and out of other basins (i.e., Delta Basin). The use of rice habitat for roosting (1987-1990: 40%, 1998-2000: 54%) and feeding (1987-1990: 57%, 1998-2000: 72%) increased between decades, whereas use of wetlands declined for roosting (1987-1990: 36%, 1998-2000: 31%) and feeding (1987-1990: 22%, 1998-2000: 12%). Within postharvested rice habitats, geese roosted and fed primarily in burned rice fields during 1987-1990 (roost: 43%, feed: 34%), whereas they used flooded rice fields during 1998-2000 (roost: 78%, feed: 64%). Our results suggest that white-fronted geese have altered their spatial use of California's Central Valley during the past decade in response to changing agricultural practices and the implementation of the Central Valley Joint Venture.

  15. Can Winter-Active Bumblebees Survive the Cold? Assessing the Cold Tolerance of Bombus terrestris audax and the Effects of Pollen Feeding

    PubMed Central

    Owen, Emily L.; Bale, Jeffrey S.; Hayward, Scott A. L.

    2013-01-01

    There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change. PMID:24224036

  16. MAGNETOHYDRODYNAMIC SIMULATIONS OF THE FORMATION OF COLD FRONTS IN CLUSTERS OF GALAXIES: EFFECTS OF ANISOTROPIC VISCOSITY

    SciTech Connect

    Suzuki, Kentaro; Ogawa, Takayuki; Matsumoto, Yosuke; Matsumoto, Ryoji E-mail: ogawa@astro.s.chiba-u.ac.jp E-mail: matumoto@astro.s.chiba-u.ac.jp

    2013-05-10

    We carried out three-dimensional magnetohydrodynamic simulations to study the effects of plasma viscosity on the formation of sharp discontinuities of density and temperature distributions, cold fronts, in clusters of galaxies. By fixing the gravitational potential that confines the cool, dense plasma in a moving subcluster, we simulated its interaction with the hot, lower density plasma around the subcluster. At the initial state, the intracluster medium (ICM) is assumed to be threaded by uniform magnetic fields. The enhancement of plasma viscosity along the direction of magnetic fields is incorporated as anisotropic viscosity depending on the direction of magnetic fields. We found that the Kelvin-Helmholtz instability at the surface of the subcluster grows even in models with anisotropic viscosity, because its effects on the velocity shear across the magnetic field lines are suppressed. We also found that magnetic fields around the interface between the subcluster and ICM are amplified even in the presence of viscosity, while magnetic fields behind the subcluster are amplified up to {beta}{sup -1} {approx} 0.01 in models with viscosity, whereas they are amplified up to {beta}{sup -1} {approx} 0.1 in models without viscosity, where {beta} is the ratio of gas pressure to magnetic pressure.

  17. Chemical characteristics of PM2.5 and organic aerosol source analysis during cold front episodes in Hong Kong, China

    NASA Astrophysics Data System (ADS)

    Li, Yun-Chun; Yu, Jian Zhen; Ho, Steven Sai Hang; Yuan, Zibing; Lau, Alexis K. H.; Huang, Xiao-Feng

    2012-11-01

    In this study, we investigate the influence of long-range transport (LRT) episodes brought in by cold front on the concentration levels of PM2.5, major aerosol constituents, organic tracers, and PM2.5 source characteristics in Hong Kong, China. PM2.5 samples were collected during January-March 2004 and January-March 2005 and analyzed for major constituents and organic tracer species. Synoptic weather conditions and characteristics of common air pollutants were used to categorize the sampling days to three groups, i.e., groups mainly affected by local emissions or regional transport (RT) or cold front LRT. Concentrations of PM2.5 mass and its major constituents during cold-front days were lower than those during RT-dominated periods but higher than those during local emissions-dominated periods. Source apportionment using chemical mass balance (CMB) indicates that vehicular exhaust was a significant primary OC source of mainly local emissions, making average contributions of 1.82, 1.50, and 2.39 μg C m- 3 to OC in the local, LRT, and RT sample groups, respectively. During cold front periods, primary OC concentrations attributable to biomass burning and coal combustion were approximately triple and double, respectively, those during periods dominated by local emissions. Suspended dust, a minor primary OC source (0.24-0.40 μg C m- 3), also showed increased contribution during cold fronts. The unexplained OC by CMB (i.e., total OC minus apportioned primary OC), an approximate indicator for secondary OC, was a significant fraction of OC (> 48%) and its mass concentration was much higher in the cold front LRT and RT sample groups (6.37 and 9.48 μg C m- 3) than in the local sample group (3.8 μg C m- 3). Source analysis as well as tracer concentration variation shows that biomass burning OC and water soluble organic carbon (WSOC) were correlated, suggesting biomass burning as a significant contributor to WSOC.

  18. Storms or cold fronts? What is really responsible for the extreme waves regime in the Colombian Caribbean coast

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2015-05-01

    On Friday, 7 March 2009, a 200 m-long section of the tourist pier in Puerto Colombia collapsed under the impact of the waves generated by a cold front in the area. The aim of this study is to determine the contribution and importance of cold fronts and storms on extreme waves in different areas of the Colombian Caribbean to determine the degree of the threat posed by the flood processes to which these coastal populations are exposed and the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the wave's height; therefore, it is necessary to definitively know the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. Using Gumbel's extreme value methodology, the significant height values for the study area were calculated. The methodology was evaluated using data from the re-analysis of the spectral NOAA Wavewatch III (WW3) model for 15 points along the 1600 km of the Colombia Caribbean coast (continental and insular) of the last 15 years. The results demonstrated that the extreme waves caused by tropical cyclones and cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area formed by Baja Guajira, Santa Marta, Barranquilla, and Cartagena, the strong influence of cold fronts on extreme waves is evident. On the other hand, in the southern region of the Colombian Caribbean coast, from the Gulf of Morrosquillo to the Gulf of Urabá, even though extreme waves are lower than in the previous regions, extreme waves are dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to its geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than the extreme waves associated with hurricane season. These results are of great importance when evaluating the threat of extreme waves in the coastal and port infrastructure, for purposes of the design of new constructions, and in the coastal flood processes due to run-up because, according to the site of interest in the coast, the forces that shape extreme waves are not the same.

  19. A model study of the effects of river discharges and interannual variation of winds on the plume front in winter in Pearl River Estuary

    NASA Astrophysics Data System (ADS)

    Zheng, Shu; Guan, Weibing; Cai, Shuqun; Wei, Xing; Huang, Daji

    2014-02-01

    A three-dimensional numerical model, Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED), is employed to study the mechanism of plume front in the Pearl River Estuary (PRE) in detail. The model is forced by winds, tides and river discharges. The modeled results of tidal elevation, current velocity and salinity are in reasonable agreement with observational data in the PRE. By analyzing momentum and saltwater transport balance equations, it is found that the wind stress term, the pressure gradient term and the local time derivative term of velocity are dominant in the momentum equation, while the local time derivative term, the horizontal advective term and the vertical mixing term of salinity are dominant in the salinity transport equation. The residual current at surface along the plume front is seaward and stronger, whilst that in the bottom layer is mainly landward. A series of sensitive experiments is also run to examine the responses of plume front to changes of river discharges at different inlets in Lingdingyang Bay and interannual variation of northeast winds in winter. The location of plume front responds differently to the change of river discharge at different inlets. An increase in the river discharge at Dahu inlet seems to affect the location of plume front most among the four river inlets, it makes the plume front move eastward and southward wholly; the variation of river discharge at Nansha or Fengmamiao inlet on the location of plume front is more local and weaker; whilst the variation of river discharge at Hengmen inlet has little effect on the plume front. The location of plume front also changes in response to the interannual variation of northeast winds in winter, the stronger or the more eastward the winds are, the more westward the plume front moves, and only in the northern PRE, the response of plume front to the variation of wind speeds is largely different from that to the variation of wind directions.

  20. Runoff and nutrient losses during winter periods in cold climates--requirements to nutrient simulation models.

    PubMed

    Deelstra, Johannes; Kvaern, Sigrun H; Granlund, Kirsti; Sileika, Antanas Sigitas; Gaigalis, Kazimieras; Kyllmar, Katarina; Vagstad, Nils

    2009-03-01

    Large areas in Europe may experience frozen soils during winter periods which pose special challenges to modelling. Extensive data are collected in small agricultural catchments in Nordic and Baltic countries. An analysis on measurements, carried out in four small agricultural catchments has shown that a considerable amount of the yearly nutrient loss occurs during the freezing period. A freezing period was defined as the time period indicated by the maximum and minimum points on the cumulative degree-day curve. On average 6-32% of the yearly runoff was generated during this period while N-loss varied from 5-35% and P loss varied from 3-33%. The results indicate that infiltration into frozen soils might occur during the freezing period and that the runoff generating processes, at least during a considerable part of the freezing period, are rather similar compared to the processes outside the freezing period. Freeze-thaw cycles affect the infiltration capacity and aggregate stability, thereby the erosion and nutrient losses. The Norwegian catchment had a high P loss during the freezing period compared to the other catchments, most likely caused by catchment characteristics such as slope, soil types, tillage methods and fertiliser application. It is proposed to use data, collected on small agricultural dominated catchments, in the calibration and validation of watershed management models and to take into account runoff and nutrient loss processes which are representative for cold climates, thereby obtaining reliable results. PMID:19280038

  1. SLOSHING COLD FRONTS IN GALAXY GROUPS AND THEIR PERTURBING DISK GALAXIES: AN X-RAY, OPTICAL, AND RADIO CASE STUDY

    SciTech Connect

    Gastaldello, Fabio; Di Gesu, Laura; Ghizzardi, Simona; Rossetti, Mariachiara; Giacintucci, Simona; Girardi, Marisa; Roediger, Elke; Brighenti, Fabrizio; Buote, David A.; Humphrey, Philip J.; Eckert, Dominique; Ettori, Stefano; Mathews, William G.

    2013-06-10

    We present a combined X-ray, optical, and radio analysis of the galaxy group IC 1860 using the currently available Chandra and XMM data, multi-object spectroscopy data from the literature, and Giant Metrewave Radio Telescope (GMRT) data. The Chandra and XMM imaging and spectroscopy reveal two surface brightness discontinuities at 45 and 76 kpc shown to be consistent with a pair of cold fronts. These features are interpreted as due to sloshing of the central gas induced by an off-axis minor merger with a perturber. This scenario is further supported by the presence of a peculiar velocity of the central galaxy IC 1860 and the identification of a possible perturber in the optically disturbed spiral galaxy IC 1859. The identification of the perturber is consistent with the comparison with numerical simulations of sloshing. The GMRT observation at 325 MHz shows faint, extended radio emission contained within the inner cold front, as seen in some galaxy clusters hosting diffuse radio mini-halos. However, unlike mini-halos, no particle reacceleration is needed to explain the extended radio emission, which is consistent with aged radio plasma redistributed by the sloshing. There is a strong analogy between the X-ray and optical phenomenology of the IC 1860 group and that of two other groups, NGC 5044 and NGC 5846, showing cold fronts. The evidence presented in this paper is among the strongest supporting the currently favored model of cold-front formation in relaxed objects and establishes the group scale as a chief environment for studying this phenomenon.

  2. Lesser White-fronted (Anser erythropus) and Greater White-fronted (A. albifrons) Geese wintering in Greek wetlands are not threatened by Pb through shot ingestion.

    PubMed

    Aloupi, Maria; Kazantzidis, Savas; Akriotis, Triantaphyllos; Bantikou, Evangelia; Hatzidaki, Victoria-Ourania

    2015-09-15

    Fecal lead (Pb) levels were investigated in the threatened European population of the Lesser White-fronted Goose (LWfG, Anser erythropus) and of the non-threatened Greater White-fronted Goose (GWfG, Anser albifrons) wintering in two wetland areas in northern Greece in order to assess the potential risk from Pb exposure. Fecal, soil and food plant samples were analyzed. Levels of Pb were normalized using Al concentrations in order to separate the effect of possible ingestion of Pb shot from that of soil or sediment accidentally ingested with food. All concentrations are expressed on a dry weight basis. Geometric means of Pb content in the feces of LWfG were 6.24 mg/kg at Evros Delta and 7.34 mg/kg at Lake Kerkini (maximum values of 28.61 mg/kg and 36.68 mg/kg, respectively); for fecal samples of GWfG geometric means were 2.39 mg/kg at Evros Delta and 6.90 mg/kg at Kerkini (corresponding maximum values of 25.09 mg/kg and 42.26 mg/kg). Soil Pb was in the range of 5.2-60.2mg/kg (geometric mean = 22.6 mg/kg) for the Evros Delta and between 13.4 and 64.9 mg/kg (geometric mean=28.1mg/kg) for Kerkini. A general linear model fitted to the data showed that Pb levels were very closely dependent on Al levels in the feces from both species and at both sites indicating soil or sediment were the only significant source of Pb; species and site, as well as their interaction, were not statistically significant factors. For both species and at both sites exposure to Pb was evidently very mild and the observed levels of Pb were well below the proposed thresholds for lethal or sublethal effects of Pb poisoning. Soil ingestion appeared to gradually increase from October to December for LWfG at Kerkini, corresponding to a gradual depletion of their food source. PMID:25965041

  3. Effects of cold acclimation on sugar metabolism and sugar-related gene expression in tea plant during the winter season.

    PubMed

    Yue, Chuan; Cao, Hong-Li; Wang, Lu; Zhou, Yan-Hua; Huang, Yu-Ting; Hao, Xin-Yuan; Wang, Yu-Chun; Wang, Bo; Yang, Ya-Jun; Wang, Xin-Chao

    2015-08-01

    Sugar plays an essential role in plant cold acclimation (CA), but the interaction between CA and sugar remains unclear in tea plants. In this study, during the whole winter season, we investigated the variations of sugar contents and the expression of a large number of sugar-related genes in tea leaves. Results indicated that cold tolerance of tea plant was improved with the development of CA during early winter season. At this stage, starch was dramatically degraded, whereas the content of total sugars and several specific sugars including sucrose, glucose and fructose were constantly elevated. Beyond the CA stage, the content of starch was maintained at a low level during winter hardiness (WH) period and then was elevated during de-acclimation (DC) period. Conversely, the content of sugar reached a peak at WH stage followed by a decrease during DC stage. Moreover, gene expression results showed that, during CA period, sugar metabolism-related genes exhibited different expression pattern, in which beta-amylase gene (CsBAM), invertase gene (CsINV5) and raffinose synthase gene (CsRS2) engaged in starch, sucrose and raffinose metabolism respectively were solidly up-regulated; the expressions of sugar transporters were stimulated in general except the down-regulations of CsSWEET2, 3, 16, CsERD6.7 and CsINT2; interestingly, the sugar-signaling related CsHXK3 and CsHXK2 had opposite expression patterns at the early stage of CA. These provided comprehensive insight into the effects of CA on carbohydrates indicating that sugar accumulation contributes to tea plant cold tolerance during winter season, and a simply model of sugar regulation in response to cold stimuli is proposed. PMID:26216393

  4. Storms or cold fronts: what is really responsible for the extreme waves regime in the Colombian Caribbean coastal region?

    NASA Astrophysics Data System (ADS)

    Otero, L. J.; Ortiz-Royero, J. C.; Ruiz-Merchan, J. K.; Higgins, A. E.; Henriquez, S. A.

    2016-02-01

    The aim of this study is to determine the contribution and importance of cold fronts and storms to extreme waves in different areas of the Colombian Caribbean in an attempt to determine the extent of the threat posed by the flood processes to which these coastal populations are exposed. Furthermore, the study wishes to establish the actions to which coastal engineering constructions should be subject. In the calculation of maritime constructions, the most important parameter is the height of the wave. For this reason, it is necessary to establish the design wave height to which a coastal engineering structure should be resistant. This wave height varies according to the return period considered. The significant height values for the areas focused on in the study were calculated in accordance with Gumbel's extreme value methodology. The methodology was evaluated using data from the reanalysis of the spectral National Oceanic and Atmospheric Administration (NOAA) WAVEWATCH III® (WW3) model for 15 points along the 1600 km of the Colombian Caribbean coastline (continental and insular) between the years 1979 and 2009. The results demonstrated that the extreme waves caused by tropical cyclones and those caused by cold fronts have different effects along the Colombian Caribbean coast. Storms and hurricanes are of greater importance in the Guajira Peninsula (Alta Guajira). In the central area (consisting of Baja Guajira, and the cities of Santa Marta, Barranquilla, and Cartagena), the strong impact of cold fronts on extreme waves is evident. However, in the southern region of the Colombian Caribbean coast (ranging from the Gulf of Morrosquillo to the Gulf of Urabá), the extreme values of wave heights are lower than in the previously mentioned regions, despite being dominated mainly by the passage of cold fronts. Extreme waves in the San Andrés and Providencia insular region present a different dynamic from that in the continental area due to their geographic location. The wave heights in the extreme regime are similar in magnitude to those found in Alta Guajira, but the extreme waves associated with the passage of cold fronts in this region have lower return periods than those associated with the hurricane season.

  5. Evolution of cold-tolerant fungal symbionts permits winter fungiculture by leafcutter ants at the northern frontier of a tropical antfungus symbiosis

    PubMed Central

    Mueller, Ulrich G.; Mikheyev, Alexander S.; Hong, Eunki; Sen, Ruchira; Warren, Dan L.; Solomon, Scott E.; Ishak, Heather D.; Cooper, Mike; Miller, Jessica L.; Shaffer, Kimberly A.; Juenger, Thomas E.

    2011-01-01

    The obligate mutualism between leafcutter ants and their Attamyces fungi originated 8 to 12 million years ago in the tropics, but extends today also into temperate regions in South and North America. The northernmost leafcutter ant Atta texana sustains fungiculture during winter temperatures that would harm the cold-sensitive Attamyces cultivars of tropical leafcutter ants. Cold-tolerance of Attamyces cultivars increases with winter harshness along a south-to-north temperature gradient across the range of A. texana, indicating selection for cold-tolerant Attamyces variants along the temperature cline. Ecological niche modeling corroborates winter temperature as a key range-limiting factor impeding northward expansion of A. texana. The northernmost A. texana populations are able to sustain fungiculture throughout winter because of their cold-adapted fungi and because of seasonal, vertical garden relocation (maintaining gardens deep in the ground in winter to protect them from extreme cold, then moving gardens to warmer, shallow depths in spring). Although the origin of leafcutter fungiculture was an evolutionary breakthrough that revolutionized the food niche of tropical fungus-growing ants, the original adaptations of this host-microbe symbiosis to tropical temperatures and the dependence on cold-sensitive fungal symbionts eventually constrained expansion into temperate habitats. Evolution of cold-tolerant fungi within the symbiosis relaxed constraints on winter fungiculture at the northern frontier of the leafcutter ant distribution, thereby expanding the ecological niche of an obligate hostmicrobe symbiosis. PMID:21368106

  6. Cold temperature increases winter fruit removal rate of a bird-dispersed shrub.

    PubMed

    Kwit, Charles; Levey, Douglas J; Greenberg, Cathryn H; Pearson, Scott F; McCarty, John P; Sargent, Sarah

    2004-03-01

    We tested the hypothesis that winter removal rates of fruits of wax myrtle, Myrica cerifera, are higher in colder winters. Over a 9-year period, we monitored M. cerifera fruit crops in 13 0.1-ha study plots in South Carolina, U.S.A. Peak ripeness occurred in November, whereas peak removal occurred in the coldest months, December and January. Mean time to fruit removal within study plots was positively correlated with mean winter temperatures, thereby supporting our hypothesis. This result, combined with the generally low availability of winter arthropods, suggests that fruit abundance may play a role in determining winter survivorship and distribution of permanent resident and short-distance migrant birds. From the plant's perspective, it demonstrates inter-annual variation in the temporal component of seed dispersal, with possible consequences for post-dispersal seed and seedling ecology. PMID:14716556

  7. Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley

    2003-03-01

    A quantitative comparison of six meteorological analyses is presented for the cold 1999/2000 and 1995/1996 Arctic winters. Using different analyzed data sets to obtain temperatures and temperature histories can have significant consequences. The area with temperatures below a polar stratospheric cloud (PSC) formation threshold commonly varies by ˜25% between the analyses, with some differences over 50%. Biases between analyses vary from year to year; in January 2000, Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses were warmest, while NCEP analyses were usually coldest in 1995/1996 and NCEP/National Center for Atmospheric Research Reanalysis (REAN) were usually warmest. Freie Universität Berlin analyses are often colder than others at T ≲ 205 K. European Centre for Medium-Range Weather Forecasts (ECMWF) temperatures agreed better with other analyses in 1999/2000, after improvements in the assimilation system, than in 1995/1996. Temperature history case studies show substantial differences using Met Office, NCEP, REAN, ECMWF, and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), all analyses gave qualitatively similar results. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with the cold region near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly between the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days, while in 1996 they were at 1-3 days. Different meteorological conditions in comparably cold winters have a large impact on expectations for PSC formation and on the effects of discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used in modeling polar processes; the choice of analysis can strongly influence the results of such studies.

  8. Creation and tidal advection of a cold salinity front in Storfjorden: 1. Polynya dynamics

    NASA Astrophysics Data System (ADS)

    Skogseth, Ragnheid; McPhee, Miles G.; Nilsen, Frank; Smedsrud, Lars H.

    2013-07-01

    Hydrographical measurements from the Storfjorden polynya document the presence of an abrupt front in near-freezing water dividing saline water recently created by a polynya event, from less saline water originating further south. This event occurred days before the survey with estimated heat flux 400 W m-2 over the polynya. Brine-enriched shelf water (BSW) is observed downslope toward deeper parts of Storfjorden, and BSW from earlier polynya events overflows the sill. Current measurements from a nearby sound, Freemansundet, document tidal currents exceeding 80 cm s-1 that displaced the front back and forth beneath the measurement site on fast ice 400 m from the polynya edge. Front displacement of 12 km is documented and mainly due to the M2 component superimposed on a mean residual current of 0.28 m s-1 into the sound induced by southerly wind during the survey. Complex topography imposes baroclinic tidal currents with strong vertical shear in the fast ice-covered sound, and with significant cross-channel flow. Supercooling events indicated in the hydrographical time series, and likely enhanced frazil ice production, are associated with double-diffusive turbulent mixing when the salinity front passes. In this way, these measurements indicate a novel ice production process along the edge of tidally induced latent heat polynyas where salinity fronts are generated. Turbulence increases (decreases) during flood (ebb) due to the destabilization (stabilization) of the water column when the salinity front passes the measurement site. Double-diffusive turbulent mixing related to tidal advection of salinity front below fast ice is pursued in a companion paper.

  9. 'Only old ladies would do that': age stigma and older people's strategies for dealing with winter cold.

    PubMed

    Day, Rosie; Hitchings, Russell

    2011-07-01

    Concerns over the welfare of older people in winter have led to interventions and advice campaigns meant to improve their ability to keep warm, but older people themselves are not always willing to follow these recommendations. In this paper we draw on an in-depth study that followed twenty one older person households in the UK over a cold winter and examined various aspects of their routine warmth-related practices at home and the rationales underpinning them. We find that although certain aspects of ageing did lead participants to feel they had changing warmth needs, their practices were also shaped by the problematic task of negotiating identities in the context of a wider stigmatisation of older age and an evident resistance to ageist discourses. After outlining the various ways in which this was manifest in our study, we conclude by drawing out the implications for future policy and research. PMID:21606000

  10. Extreme temperature contrast of the year 2012 in Greece: An exceptionally cold winter and a record breaking summer

    NASA Astrophysics Data System (ADS)

    Tolika, Konstantia; Anagnostopoulou, Christina; Maheras, Panagiotis; Velikou, Kondylia

    2013-04-01

    During the past decade several regions all over Europe have experienced severe heat waves with serious social and environmental impacts. The year of 2003 was characterized by record breaking high temperatures for central Europe, while the year of 2007 was a remarkably warm year of the majority of the Eastern Mediterranean. During this year, three major heat waves were detected in Greece during summer and abnormally high temperatures were also observed through the cold season of 2007. It was found that the winter minimum temperatures were statistically more extreme than the summer maxima. Moreover, exceptionally high maximum and minimum temperatures occurred in November of 2010 affection the entire Greek region while September of the following year was also characterized by large departures of maximum temperatures from the long term mean values and the highest minimum temperature average in comparison to the reference period 1958-2000. The past year (2012) could also be characterized as a year of extremes. This time a temperature contrast was detected in the domain of study with a prolonged cold - season spell during winter and new record - breaking extreme maximum and minimum summer temperatures. More specifically it was found that the summer of 2012 was the warmest one since 1958. The whole season was characterized by long - lasting warm conditions with large departures from the long term (up to 4oC for Tmax) and this warming phenomenon was more intense during July and August. In contrast the winter season (December 2011 - February 2012) was found to be in the ten coldest winters of the last 55 years. The departures from the mean are lower than summer (1oC to 1.5oC negative anomalies) but most of the days were found to have lower Tmax, Tmin and Tmean values than the average daily temperatures of the period 1958-2000. Finally, it is worth mentioning that the year of 2012 was characterized by the highest annual temperature range reaching up to 26oC in several stations. Consequently, these abnormal cold (warm) conditions during the winter (summer) months motivated the present study in order to conduct a statistical analysis of these temperature extremes and their characteristics in addition to an investigation of the synoptic large scale atmospheric conditions which possibly result to this year of contrasts. Acknowledgments: This study has been supported by the Research Committee of the Aristotle University of Thessaloniki.

  11. [Low-temperature response and cold tolerance at spike differentiation stage of winter wheat varieties sowed in spring].

    PubMed

    Xu, Lan; Gao, Zhi-fiang; An, Wei; Yuan, Ya-qi; Li, Yan-liang

    2015-06-01

    A total of 10 winter wheat varieties were imported from the middle and lower reaches of the Yangtze River region in China. Those varieties were sowed in spring in Xinding basin area of Shanxi Province, and the field trials were performed for two years (2013-2014). The traits and physiological characteristics under low temperature stress including grain yield, total content of chlorophyll, osmotic adjustment, membrane system, ion leakage rate, contents of soluble sugar and soluble protein were investigated, and the cold tolerance levels of the wheat varieties were assessed. The results showed that low temperature stress led to increases in wheat leaf ion leakage rate, soluble sugar and protein contents, but obvious reduction of chlorophyll content. According to principal component analysis and cold tolerance (D value) , Yumai 10, Yangmai 20, and Yunmai 42 were classed as cold sensitive wheat varieties. Yangmai 13, Yumai 12, and Ningmai 13 were classed as stronger cold-resistant wheat genotypes, and showed stability through two-year field trials, with the D values being 0.665-0.659, 0.493-0.495, and 0.471-0.583, respectively, while the D values for the controls Ning 2038 and Xinchun 30 were 0.368-0.397, and 0.328-0.330, respectively. The grain yields of the cold resistant wheat varieties were significantly higher than that of the other varieties tested. Therefore, Yangmai 13, Yumai 12 and Ningmai 13 could be imported and used as the cold tolerant wheat varieties for North Plain of China. PMID:26572019

  12. Winter flounder antifreeze protein genes: demonstration of a cold-inducible promoter and gene transfer to other species

    SciTech Connect

    Huang, R.C.; Gourlie, B.; Price, J.

    1987-05-01

    During the late fall and winter, the winter flounder produces a family of unique antifreeze proteins (AFP) to prevent the lethal formation of ice crystals in its blood. They have been able to induce winter flounder AFP mRNA synthesis in vivo by lowering the ambient temperature of the fish from 18/sup 0/C in the summer months when AFP synthesis is at a minimum to 4/sup 0/C. Furthermore, they have demonstrated and thoroughly investigated this cold induction of AFP mRNA synthesis in vitro in isolated liver tissue and in nuclear preparations isolated from liver tissue. A drug selection vector (pRSV/sub gpt/) which uses RSV promoter for the expression of xanthine-guanine phosphoribosyltransferase (gpt) gene and contains an AFP gene and 1.7 kb of its 5' upstream control region has been constructed for studies of gene transfer into cells of other fish species. These studies were made using a variety of gene transfer techniques into tissue culture cell lines derived from rainbow trout, bluegill, and salmon. Drug resistant colonies from all three species have been obtained and the presence of AFP DNA has been positively identified by Southern analysis. In addition, Northern blot analysis has shown that both gpt gene and AFP gene are active in these cells since mRNA/sub gpt/ and mRNA/sub AFP/ can be detected by probing with the respective gene sequences.

  13. Use of ``Cold Spell'' indices to quantify excess chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March 2000-2007): case study in Porto

    NASA Astrophysics Data System (ADS)

    Monteiro, Ana; Carvalho, Vnia; Gis, Joaquim; Sousa, Carlos

    2013-11-01

    The aim of this study was to examine the relationship between the occurrence of cold episodes and excess hospital admissions for chronic obstructive pulmonary disease (COPD) in Porto, Portugal, in order to further understand the effects of cold weather on health in milder climates. Excess COPD winter morbidity was calculated from admissions for November to March (2000-2007) in the Greater Porto Metropolitan Area (GPMA). Cold spells were identified using several indices (Daz, World Meteorological Organization, Cold Spell Duration Index, Australian Index and Ondas Project Index) for the same period. Excess admissions in the periods before and after the occurrence of cold spells were calculated and related to the cold spells identified. The COPD seasonal variation admission coefficient (CVSA) showed excess winter admissions of 59 %, relative to other months. The effect of cold spell on the aggravation of COPD occurs with a lag of at least 2 weeks and differs according to the index used. This study indicates the important role of the persistence of cold periods of at least 2 weeks duration in the increase in COPD admissions. The persistence of moderate temperatures (Tmin ?5 C) for a week can be more significant for increasing COPD admissions than very low temperatures (Tmin ? 1.6 C) for just a few days. The Ondas projects index provides the most accurate detection of the negative impacts of cold persistency on health, while the Diaz index is better at evaluating the consequences of short extreme cold events.

  14. Use of "Cold Spell" indices to quantify excess chronic obstructive pulmonary disease (COPD) morbidity during winter (November to March 2000-2007): case study in Porto.

    PubMed

    Monteiro, Ana; Carvalho, Vnia; Gis, Joaquim; Sousa, Carlos

    2013-11-01

    The aim of this study was to examine the relationship between the occurrence of cold episodes and excess hospital admissions for chronic obstructive pulmonary disease (COPD) in Porto, Portugal, in order to further understand the effects of cold weather on health in milder climates. Excess COPD winter morbidity was calculated from admissions for November to March (2000-2007) in the Greater Porto Metropolitan Area (GPMA). Cold spells were identified using several indices (Daz, World Meteorological Organization, Cold Spell Duration Index, Australian Index and Ondas' Project Index) for the same period. Excess admissions in the periods before and after the occurrence of cold spells were calculated and related to the cold spells identified. The COPD seasonal variation admission coefficient (CVSA) showed excess winter admissions of 59%, relative to other months. The effect of cold spell on the aggravation of COPD occurs with a lag of at least 2weeks and differs according to the index used. This study indicates the important role of the persistence of cold periods of at least 2weeks duration in the increase in COPD admissions. The persistence of moderate temperatures (Tmin ?5C) for a week can be more significant for increasing COPD admissions than very low temperatures (Tmin???1.6C) for just a few days. The Ondas projects' index provides the most accurate detection of the negative impacts of cold persistency on health, while the Diaz index is better at evaluating the consequences of short extreme cold events. PMID:23274835

  15. Lower Stratospheric Temperature Differences Between Meteorological Analyses in two cold Arctic Winters and their Impact on Polar Processing Studies

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley; Atlas, Robert (Technical Monitor)

    2001-01-01

    A quantitative intercomparison of six meteorological analyses is presented for the cold 1999-2000 and 1995-1996 Arctic winters. The impacts of using different analyzed temperatures in calculations of polar stratospheric cloud (PSC) formation potential, and of different winds in idealized trajectory-based temperature histories, are substantial. The area with temperatures below a PSC formation threshold commonly varies by approximately 25% among the analyses, with differences of over 50% at some times/locations. Freie University at Berlin analyses are often colder than others at T is less than or approximately 205 K. Biases between analyses vary from year to year; in January 2000. U.K. Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses warmest. while NCEP analyses were usually coldest in 1995-1996 and Met Office or NCEP[National Center for Atmospheric Research Reanalysis (REAN) warmest. European Centre for Medium Range Weather Forecasting (ECMWF) temperatures agreed better with other analyses in 1999-2000, after improvements in the assimilation model. than in 1995-1996. Case-studies of temperature histories show substantial differences using Met Office, NCEP, REAN and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), qualitatively similar results were obtained for all analyses. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with large cold regions near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly among the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days. while in the 1996 periods, they were at 1-3 days. Thus different meteorological conditions in comparably cold winters had a large impact on expectations for PSC formation and on the discrepancies between different meteorological analyses. Met Office. NCEP, REAN, ECMWF and DAO analyses are commonly used for trajectory calculations and in chemical transport models; the choice of which analysis to use can strongly influence the results of such studies.

  16. Effect of simulated fall heat waves on cold hardiness and winter survival of hemlock looper, Lambdina fiscellaria (Lepidoptera: Geometridae).

    PubMed

    Vallires, Rosemarie; Rochefort, Sophie; Berthiaume, Richard; Hbert, Christian; Bauce, ric

    2015-02-01

    The hemlock looper (Lambdina fiscellaria) is an important pest of eastern Canadian forests. The ongoing climate warming could modify the seasonal ecology of this univoltine species that lays eggs at the end of summer and overwinters at this stage. Indeed, the increase in frequency and intensity of extreme climatic events such as fall heat waves could interfere with the winter metabolism of the hemlock looper. Moreover, the host plant quality, which influences the quantity of insect energetic reserves, the geographic origin of populations and the conditions prevailing during the cold acclimation period, could cause various responses of this pest to climate warming. The main objective of this study is to determine the impact of these factors on hemlock looper winter biology. In October 2010, hemlock looper eggs initially collected from two geographic areas in the province of Qubec, and from parents reared on two host plants, were exposed to fall heat waves of different intensities during 5 consecutive days. Supercooling points and cryoprotectant levels were measured on eggs on four different dates in 2010-2011 and survival rate was measured in April 2011. Our results show that hemlock looper eggs have a very low supercooling point and high levels of trehalose, glucose and mannitol in September and November. However, there is no clear relationship between the concentration of these compounds and the decrease in supercooling points. Contents in trehalose, glucose and mannitol were significantly influenced by fall heat waves and by the origin of the population. Winter survival of eggs from the temperate population was negatively affected by strong heat waves while the boreal population was not affected. This study suggests that the metabolism and winter survival of temperate hemlock looper populations in Qubec will be more affected by fall heat waves that will increase in frequency due to climate change, than boreal populations. PMID:25585353

  17. Shelf circulation prior to and post a cold front event measured from vessel-based acoustic Doppler current profiler

    NASA Astrophysics Data System (ADS)

    Li, Chunyan; Chen, Changsheng

    2014-11-01

    Shelf circulation impacted by a shift in wind regime during the passage of an atmospheric cold front system is studied with a field survey over the mid-shelf of the South Atlantic Bight between Oct 4 and 9, 2004. Weak southerly winds preceded the cold front for a few days, followed by a rapid shift in wind direction and strengthening of northeasterly winds over a few more days. More than 93 h of acoustic Doppler current profiler (ADCP) data were obtained along an equilateral triangle of 105 km in perimeter, which was continuously occupied for 11 times. A harmonic analysis was applied to extract tidal and subtidal wind-driven flow components by collapsing the 93 hour data into one M2 tidal period. It was found that the cross-shelf flow was barely affected by the wind while the along-shelf flow responded with a spatially uniform and almost steadily increasing mean flow velocity, superimposed on an oscillatory tidal current. The wind induced along-shelf transport was estimated to be ~ 0.3 Sv over the inner and middle shelf. The net cross-shelf transport was negligible. Apparently, the northeasterly wind causes an along-shelf current which was subject to Coriolis force that sets up an increasing coastal sea level pressure gradient as the water kept piling up against the coast, which was confirmed by tide gauge data. The observations found that the flow field prior to the strong winds had more complicated structures including eddy-like features, while after the strong northeasterly winds, the flow became eddy free and uniform in space. A theoretical model solved by a Laplace Transform was used to examine the wind-driven flow mechanism and the results were compared with the observations of net along-shelf flow velocity.

  18. In Vitro Evaluation Mimics Influences of Winter Cold Water Ingestion on Ruminal Function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  19. Effect of Phosphorus, Potassium, and Chloride Nutrition on Cold Tolerance of Winter Canola (Brassica napus L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field experiment was conducted to determine whether fertility treatments improve cold hardiness of canola (Brassica napus L.). Measurements of chlorophyll fluorescence and overwinter survival of field-grown canola were used to evaluate the effect of chloride (Cl), potassium (K), and phosphorus (P)...

  20. In vitro evaluation mimics influences of winter cold water ingestion on ruminal function

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ingestion of cold feed and water may suddenly reduce ruminal temperature, which could result in decreased microbial activity and diet digestibility. The objective of this study was to investigate the association between critical rumen in vitro incubation temperature and activity of ruminal microorga...

  1. IRREGULAR SLOSHING COLD FRONTS IN THE NEARBY MERGING GROUPS NGC 7618 AND UGC 12491: EVIDENCE FOR KELVIN-HELMHOLTZ INSTABILITIES

    SciTech Connect

    Roediger, E.; Kraft, R. P.; Machacek, M. E.; Forman, W. R.; Nulsen, P. E. J.; Jones, C.; Murray, S. S.

    2012-08-01

    We present results from two {approx}30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts (CFs) wrapped around each group center and {approx}100 kpc long spiral tails in both groups. Most interestingly, the CFs are highly distorted in both groups, exhibiting 'wings' along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the CFs. This is in contrast to the structure seen in many other sloshing and merger CFs, which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth CFs, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger CFs that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the CFs in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI distortions in CFs can be used as a measure of the effective viscosity and/or magnetic field strengths in the intracluster medium.

  2. Comparison of the mass circulation and AO indices as indicators of cold air outbreaks in northern winter

    NASA Astrophysics Data System (ADS)

    Yu, Yueyue; Ren, Rongcai; Cai, Ming

    2015-04-01

    Using the daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011, we find that midlatitude cold air outbreaks (CAOs) tend to preferentially occur within a week after simultaneously stronger mass circulations into the Arctic region in upper levels and out of the Arctic region below. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Results indicate that only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO, whereas when the equatorward branch leads (19%), CAOs tend to occur after a positive phase of AO. In the remaining cases when the two branches are almost in phase, CAOs can be observed during either negative (24%) or positive (13%) phase of AO.

  3. Proteins involved in distinct phases of cold hardening process in frost resistant winter barley (Hordeum vulgare L.) cv Luxor.

    PubMed

    Hlav?kov, Iva; Vtmvs, Pavel; Santr??ek, Ji?; Kosov, Klra; Zelenkov, Sylva; Pril, Ilja Tom; Ovesn, Jaroslava; Hynek, Radovan; Kod?ek, Milan

    2013-01-01

    Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600-700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and "enhanced disease susceptibility 1" in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley. PMID:23584021

  4. Proteins Involved in Distinct Phases of Cold Hardening Process in Frost Resistant Winter Barley (Hordeum vulgare L.) cv Luxor

    PubMed Central

    Hlav?kov, Iva; Vtmvs, Pavel; antr??ek, Ji?; Kosov, Klra; Zelenkov, Sylva; Pril, Ilja Tom; Ovesn, Jaroslava; Hynek, Radovan; Kod?ek, Milan

    2013-01-01

    Winter barley is an economically important cereal crop grown in higher latitudes and altitudes where low temperatures represent an important environmental constraint limiting crop productivity. In this study changes in proteome of leaves and crowns in a frost tolerant winter barley cv. Luxor in relation to short and long term periods of cold followed by a brief frost treatment were studied in order to disclose proteins responsible for the cold hardening process in distinct plant tissues. The mentioned changes have been monitored using two dimensional difference gel electrophoresis (2D-DIGE) with subsequent peptide-mapping protein identification. Regarding approximately 600700 distinct protein spots detected on 2D gels, there has been found at least a two-fold change after exposure to low temperatures in about 10% of proteins in leaves and 13% of proteins in crowns. Protein and nitrogen metabolic processes have been influenced by low temperature to a similar extent in both tissues while catabolism, carbohydrate metabolism and proteins involved in stress response have been more affected in crowns than in leaves. The range of changes in protein abundance was generally higher in leaves and chloroplast proteins were frequently affected which suggests a priority to protect photosynthetic apparatus. Overall, our data proved existence of slightly different response strategies to low temperature stress in crowns and leaves, i.e., tissues with different biological role. Moreover, there have been found several proteins with large increase in accumulation, e.g., 33 kDa oxygen evolving protein of photosystem II in leaves and enhanced disease susceptibility 1 in crowns; these proteins might have potential to indicate an enhanced level of frost tolerance in barley. PMID:23584021

  5. Synoptic climatological study on precipitation in the Hokuriku District of Central Japan associated with the cold air outbreak in early winter (With Comparison to that in midwinter for the 1983/1984 winter)

    NASA Astrophysics Data System (ADS)

    Kato, Kuranoshin; Nishimura, Nanako; Haga, Yuichi

    2014-05-01

    In midwinter, heavy snowfall events are often brought in the Japan Sea side of the Japan Islands by the organized convective snowfall systems in the cold air outbreak situations. However, although the air temperature around the Japan Islands is still rather higher from November to early December ("early winter"), the "wintertime pressure pattern" often appears due to the considerable development of the Siberian high already in that season. Since the seasonal cycle in East Asia shows great variety with many rapid seasonal transitions influenced by the Asian monsoon system, detailed comparison of the daily precipitation climatology and the relating atmospheric processes in the cold air outbreak situations between early winter and midwinter would give us an interesting information for comprehending the overall aspects of such seasonal cycle there. Thus the present study firstly examined the daily precipitation climatology mainly at Takada, as an example for Hokuriku District, during the early to mid- winter of 1970/71 to 2009/10. Then the detailed analyses were made for the 1983/1984 winter (one of the coldest winters during that period) based on the operational meteorological data by JMA, including the ocean buoy data in the southern part of the Japan Sea for evaluating the sensible and the latent heat fluxes from the sea (referred to as SH and LH, respectively). The total precipitation at Takada in early winter was as large as in midwinter, although it was brought mainly not as snow but as rain. Such large climatological value was mainly reflected by the precipitation in the "wintertime pressure pattern" with large contribution of the days with more than 30 mm/day. Interestingly, mean daily precipitation in the "wintertime pressure pattern" in early winter was greater than in midwinter. It is noted that such features were generally found even in the latter half of the analysis period when the warmer winter years appeared more frequently than in the former half. According to the case study for 1983/84 winter, although the "wintertime pressure pattern" appeared rather frequently already from early November, each event of that pattern tended to persist only a several days. In addition, the organization of the shallow convective clouds in the cold air outbreak situation as often found in midwinter was not clearly observed. However, strong cold air advection in early winter as in midwinter over the warm underlying sea, at least in the mature stage of each "wintertime pressure situation", seems to enable the extremely huge amount of LH and the equivalently intense SH to that in midwinter, resulting in the large daily precipitation there through the enhancement of the air mass transformation process over the Japan Sea.

  6. European cold winter 2009-2010: How unusual in the instrumental record and how reproducible in the ARPEGE-Climat model?

    NASA Astrophysics Data System (ADS)

    Ouzeau, G.; Cattiaux, J.; Douville, H.; Ribes, A.; Saint-Martin, D.

    2011-06-01

    Boreal winter 2009-2010 made headlines for cold anomalies in many countries of the northern mid-latitudes. Northern Europe was severely hit by this harsh winter in line with a record persistence of the negative phase of the North Atlantic Oscillation (NAO). In the present study, we first provide a wider perspective on how unusual this winter was by using the recent 20th Century Reanalysis. A weather regime analysis shows that the frequency of the negative NAO was unprecedented since winter 1939-1940, which is then used as a dynamical analog of winter 2009-2010 to demonstrate that the latter might have been much colder without the background global warming observed during the twentieth century. We then use an original nudging technique in ensembles of global atmospheric simulations driven by observed sea surface temperature (SST) and radiative forcings to highlight the relevance of the stratosphere for understanding if not predicting such anomalous winter seasons. Our results demonstrate that an improved representation of the lower stratosphere is necessary to reproduce not only the seasonal mean negative NAO signal, but also its intraseasonal distribution and the corresponding increased probability of cold waves over northern Europe.

  7. Influences of Arctic Oscillation and Madden-Julian Oscillation on cold surges and heavy snowfalls over Korea: A case study for the winter of 2009-2010

    NASA Astrophysics Data System (ADS)

    Park, Tae-Won; Ho, Chang-Hoi; Yang, Song; Jeong, Jee-Hoon

    2010-12-01

    In the winter of 2009-2010, frequent and long-lasting cold weather affected Korea. Four major cold surges and several heavy snowfall events were observed, including a record-breaking event on 4 January 2010. These four cold surges had distinct properties with regard to their relationships to the phases of the Arctic Oscillation (AO) and the Madden-Julian Oscillation (MJO), suggesting the possible influences of the AO and MJO on the cold surges and heavy snowfalls. The four cold surges were of two distinct types: the wave train type and the blocking type, which were differentiated by their mechanisms. With regard to the relationships of the cold surges to the AO, three cold surges occurred during a strongly negative AO period, which lasted for more than 1 month. The Siberian High expanded from the Arctic high-pressure region to East Asia during the negative AO period. A cold surge occurred during a positive AO, with the expansion of the Siberian High across the Eurasian continent. An MJO-induced circulation, corresponding to strong tropical convection over the tropical Indian Ocean, seems to have reinforced the cold surges over East Asia. In addition, the active local Hadley circulation modulated by a convection center over the Indian Ocean tends to enhance midlatitude synoptic disturbances across East Asia and provides favorable conditions for upward motion over the region. In short, the effects of the AO and MJO, along with the existing low-level moisture supply, contributed to heavy snowfalls associated with strong cold surges over Korea during the winter of 2009-2010.

  8. Evaluating the role of fronts in habitat overlaps between cold and warm water species in the western North Pacific: A proof of concept

    NASA Astrophysics Data System (ADS)

    Mugo, Robinson M.; Saitoh, Sei-Ichi; Takahashi, Fumihiro; Nihira, Akira; Kuroyama, Tadaaki

    2014-09-01

    Cold- and warm-water species' fishing grounds show a spatial synchrony around fronts in the western North Pacific (WNP). However, it is not yet clear whether a front (thermal, salinity or chlorophyll) acts as an absolute barrier to fish migration on either side or its structure allows interaction of species with different physiological requirements. Our objective was to assess potential areas of overlap between cold- and warm-water species using probabilities of presence derived from fishery datasets and remotely sensed environment data in the Kuroshio-Oyashio region in the WNP. Fishery data comprised skipjack tuna (Katsuwonus pelamis) fishing locations and proxy presences (derived from fishing night light images) for neon flying squid (Ommastrephes bartrami) and Pacific saury (Cololabis saira). Monthly (August-November) satellite remotely sensed sea-surface temperature, chlorophyll-a and sea-surface height anomaly images were used as environment data. Maximum entropy (MaxEnt) models were used to determine probabilities of presence (PoP) for each set of fishery and environment data for the area 35-45°N and 140-160°E. Maps of both sets of PoPs were compared and areas of overlap identified using a combined probability map. Results indicated that areas of spatial overlap existed among the species habitats, which gradually widened from September to November. The reasons for these overlaps include the presence of strong thermal/ocean-color gradients between cold Oyashio and warm Kuroshio waters, and also the presence of the sub-arctic front. Due to the high abundance of food along frontal zones, the species use the fronts as foraging grounds while confining within physiologically tolerable waters on either side of the front. The interaction zone around the front points to areas that might be accessible to both species for foraging, which suggests intense prey-predator interaction zones.

  9. Coping with the cold: an ecological context for the abundance and distribution of rock sandpipers during winter in upper Cook Inlet, Alaska

    USGS Publications Warehouse

    Ruthrauff, Daniel R.; Gill, Robert E., Jr.; Tibbitts, T. Lee

    2013-01-01

    Shorebirds are conspicuous and abundant at high northern latitudes during spring and summer, but as seasonal conditions deteriorate, few remain during winter. To the best of our knowledge, Cook Inlet, Alaska (60.6˚ N, 151.6˚ W), is the world’s coldest site that regularly supports wintering populations of shorebirds, and it is also the most northerly nonbreeding location for shorebirds in the Pacific Basin. During the winters of 1997–2012, we conducted aerial surveys of upper Cook Inlet to document the spatial and temporal distribution and number of Rock Sandpipers (Calidris ptilocnemis) using the inlet. The average survey total was 8191 ± 6143 SD birds, and the average of each winter season’s highest single-day count was 13 603 ± 4948 SD birds. We detected only Rock Sandpipers during our surveys, essentially all of which were individuals of the nominate subspecies (C. p. ptilocnemis). Survey totals in some winters closely matched the population estimate for this subspecies, demonstrating the region’s importance as a nonbreeding resource to the subspecies. Birds were most often found at only a handful of sites in upper Cook Inlet, but shifted their distribution to more southerly locations in the inlet during periods of extreme cold. Two environmental factors allow Rock Sandpipers to inhabit Cook Inlet during winter: 1) an abundant bivalve (Macoma balthica) food source and 2) current and tidal dynamics that keep foraging substrates accessible during all but extreme periods of cold and ice accretion. C. p. ptilocnemis is a subspecies of high conservation concern for which annual winter surveys may serve as a relatively inexpensive population-monitoring tool that will also provide insight into adaptations that allow these birds to exploit high-latitude environments in winter.

  10. Impacts of extraordinary warm and cold late-winter temperatures on observed and modelled plant phenology in Switzerland

    NASA Astrophysics Data System (ADS)

    Rutishauser, This; Stckli, Reto

    2010-05-01

    The impact of gradual change in the climate system during the second half of the 20th century left a strong imprint on the timing of seasonal events in biotic and biotic systems such as e.g. plant development stages and the greenness of the Earth's surface. Temporal trends in seasonal events largely correspond to the effects expected from the increases in temperature. The impact of extraordinary temperature and precipitation events on plant phenology in spring is less understood. For example a strong early-spring frost event in the USA in April 2007 lead to reduced greenness and freeze damage to leaves and fruits of natural and horticultural species whereas a winter warming event in northern Scandinavia in December 2007 caused considerable damage to sub-Arctic dwarf shrub vegetation and reduced vegetation activity (26% reduced maximum Normalized Difference Vegetation Index NDVI relative to the previous year) in the following summer. In Germany and Switzerland, the effects of the extraordinary warm temperature anomalies of autumn 2006, winter 2006/2007 and spring 2007 showed strong impacts on selected plant phenological phases back to 1951 and 1702. Common hazel and snowdrop flowered up to 35 days earlier in Germany and beech and fruits tree were two weeks earlier in Switzerland. This contribution presents empirical evidence of extraordinary warm and cold late-winter temperatures on species-specific plant phenology and modelled landscape-scale phenology in Switzerland in the period 1958-2008. Species-specific observations were extracted from the Swiss Plant Phenological Network of MeteoSwiss for 23 low-altitude stations and 12 stations that report to the Global Climate Observation System (GCOS). Observations cover all climate regions and altitudes. For each GCOS station we also estimated daily Leaf Area Index with a prognostic phenology model. The model's empirical parameter space was constrained by assimilated Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) and Leaf Area Index (LAI) from the MODerate Resolution Imaging Spectroradiometer (MODIS). We present first results from an ongoing study that compares climate impacts of extraordinary characteristics on spring plant and vegetation development at the species and at the landscape level at different altitudes in the Swiss Alps.

  11. 2012/13 abnormal cold winter in Japan associated with Large-scale Atmospheric Circulation and Local Sea Surface Temperature over the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Ando, Y.; Ogi, M.; Tachibana, Y.

    2013-12-01

    On Japan, wintertime cold wave has social, economic, psychological and political impacts because of the lack of atomic power stations in the era of post Fukushima world. The colder winter is the more electricity is needed. Wintertime weather of Japan and its prediction has come under the world spotlight. The winter of 2012/13 in Japan was abnormally cold, and such a cold winter has persisted for 3 years. Wintertime climate of Japan is governed by some dominant modes of the large-scale atmospheric circulations. Yasunaka and Hanawa (2008) demonstrated that the two dominant modes - Arctic Oscillation (AO) and Western Pacific (WP) pattern - account for about 65% of the interannual variation of the wintertime mean surface air temperature of Japan. A negative AO brings about cold winter in Japan. In addition, a negative WP also brings about cold winter in Japan. Looking back to the winter of 2012/13, both the negative AO and negative WP continued from October through December. If the previous studies were correct, it would have been extremely very cold from October through December. In fact, in December, in accordance with previous studies, it was colder than normal. Contrary to the expectation, in October and November, it was, however, warmer than normal. This discrepancy signifies that an additional hidden circumstance that heats Japan overwhelms these large-scale atmospheric circulations that cool Japan. In this study, we therefore seek an additional cause of wintertime climate of Japan particularly focusing 2012 as well as the AO and WP. We found that anomalously warm oceanic temperature surrounding Japan overwhelmed influences of the AO or WP. Unlike the inland climate, the island climate can be strongly influenced by surrounding ocean temperature, suggesting that large-scale atmospheric patterns alone do not determine the climate of islands. (a) Time series of a 5-day running mean AO index (blue) as defined by Ogi et al., (2004), who called it the SVNAM index. For reference, the conventional AO index is shown by the gray line. (b) a 5-day running mean WP index, (c) area-averaged Surface Air Temperature anomalies in Japan, (d) Air Temperature anomalies, (e) heat flux anomalies, and (f) Sea Surface Temperature anomalies. The boxed area on the Sea of Japan indicates the area in which the (d)-(f) indexes were calculated.

  12. How much can we learn from a merging cold front cluster? Insights from X-ray temperature and radio maps of A3667

    SciTech Connect

    Datta, Abhirup; Schenck, David E.; Burns, Jack O.; Skillman, Samuel W.; Hallman, Eric J.

    2014-10-01

    The galaxy cluster A3667 is an ideal laboratory to study the plasma processes in the intracluster medium. High-resolution Chandra X-ray observations show a cold front in A3667. At radio wavelengths, A3667 reveals a double radio-relic feature in the outskirts of the cluster. These suggest multiple merger events in this cluster. In this paper, we analyze the substantial archival X-ray observations of A3667 from the Chandra X-ray Observatory and compare these with existing radio observations as well as state-of-the-art adaptive mesh refinement MHD cosmological simulations using Enzo. We have used two temperature map making techniques, weighted Voronoi tessellation and adaptive circular binning, to produce the high-resolution and largest field-of-view temperature maps of A3667. These high-fidelity temperature maps allow us to study the X-ray shocks in the cluster using a new two-dimensional shock-finding algorithm. We have also estimated the Mach numbers from the shocks inferred from previous ATCA radio observations. The combined shock statistics from the X-ray and radio data are in agreement with the shock statistics in a simulated MHD cluster. We have also studied the profiles of the thermodynamic properties across the cold front using ∼447 ks from the combined Chandra observations on A3667. Our results show that the stability of the cold front in A3667 can be attributed to the suppression of the thermal conduction across the cold front by a factor of ∼100-700 compared to the classical Spitzer value.

  13. How Much can we Learn from a Merging Cold Front Cluster? Insights from X-Ray Temperature and Radio Maps of A3667

    NASA Astrophysics Data System (ADS)

    Datta, Abhirup; Schenck, David E.; Burns, Jack O.; Skillman, Samuel W.; Hallman, Eric J.

    2014-10-01

    The galaxy cluster A3667 is an ideal laboratory to study the plasma processes in the intracluster medium. High-resolution Chandra X-ray observations show a cold front in A3667. At radio wavelengths, A3667 reveals a double radio-relic feature in the outskirts of the cluster. These suggest multiple merger events in this cluster. In this paper, we analyze the substantial archival X-ray observations of A3667 from the Chandra X-ray Observatory and compare these with existing radio observations as well as state-of-the-art adaptive mesh refinement MHD cosmological simulations using Enzo. We have used two temperature map making techniques, weighted Voronoi tessellation and adaptive circular binning, to produce the high-resolution and largest field-of-view temperature maps of A3667. These high-fidelity temperature maps allow us to study the X-ray shocks in the cluster using a new two-dimensional shock-finding algorithm. We have also estimated the Mach numbers from the shocks inferred from previous ATCA radio observations. The combined shock statistics from the X-ray and radio data are in agreement with the shock statistics in a simulated MHD cluster. We have also studied the profiles of the thermodynamic properties across the cold front using ~447 ks from the combined Chandra observations on A3667. Our results show that the stability of the cold front in A3667 can be attributed to the suppression of the thermal conduction across the cold front by a factor of ~100-700 compared to the classical Spitzer value.

  14. The 12/13 January 1988 Narrow Cold-Frontal Rainband Observed during MFDP/FRONTS 87. Part II: Microphysics.

    NASA Astrophysics Data System (ADS)

    Marcal, Virginie; Hauser, Danile; Roux, Frank

    1993-04-01

    The microphysics of a narrow cold-frontal rainband (NCFR) observed during the MFDP/FRONTS87 experiment is investigated by using a microphysical retrieval model. The equations of evolution of the water substance and of the temperature are solved using a wind field prescribed from dual-Doppler radar observations.Different runs of the model were performed to investigate the role of various microphysical processes. All of them use a two-dimensional version of the model and give a solution for the steady state corresponding to the input wind field. The validity of this approach was checked a posteriori by comparing the results obtained from vertical cross sections at two different locations and two different times. In each case, the consistency of the results was controlled through comparisons with in situ measurements (aircraft, ground stations, and radiosondes) and radar reflectivity observations.The main result obtained from this study was that the precipitation associated with the NCFR was mostly composed of graupel particles, essentially formed by riming. Rain was produced by accretion of cloud water in the condensation zone and by melting of graupel. The choice of the type of ice-precipitating particles introduced in the model appeared very important. Only rimed particles (graupel) could reproduce observed precipitation. The precipitation efficiency was rather high (73%). The zone of light precipitation in which the NCFR was embedded seemed to play no-seeder role in the growth of precipitation in the NCFR, probably due to the overturning airflow located in the prefrontal zone.Another important result concerns the role of the microphysical processes on the thermodynamics. The temperature drop observed at low levels just behind the frontal discontinuity could be explained at the time of the observations by two cooling effects of equal importance: the melting of graupel and the evaporation of precipitation.

  15. A Investigation of Colorado Front Range Winter Storms Using a Nonhydrostatic Mesoscale Numerical Model Designed for Operational Use

    NASA Astrophysics Data System (ADS)

    Snook, John Stover

    State-of-the-art data sources such as Doppler radar, automated surface observations, wind profiler, digital satellite, and aircraft reports are for the first time providing the capability to generate real-time, operational three-dimensional gridded data sets with sufficient spatial and temporal resolutions to diagnose the structure and evolution of mesoscale systems. A prototype data assimilation system of this type, called the Local Analysis and Prediction System (LAPS), is being developed at the National Oceanic and Atmospheric System's Forecast Systems Laboratory (FSL). The investigation utilizes the three-dimensional LAPS analyses for initialization of the full physics, nonhydrostatic Regional Atmospheric Modeling System (RAMS) model developed at the Colorado State University to create a system capable of generating operational mesoscale predictions. The LAPS/RAMS system structured for operational use can add significant value to existing operational model output and can provide an improved scientific understanding of mesoscale weather events. The results are presented through two case study analyses, the 7 January 1992 Colorado Front Range blizzard and the 8-9 March 1992 eastern Colorado snow storm. Both cases are ideal for this investigation due to the significant mesoscale variation observed in the precipitation and flow structure. The case study results demonstrate the ability to successfully detect and predict mesoscale features using a mesoscale numerical model initialized with high resolution (10 km horizontal grid interval), non-homogeneous data. The strong influence of the Colorado topography on the resultant flow is suggested by the generation of a lee vortex that frequently develops east of the Front Range and south of the Cheyenne Ridge in stable, northwest synoptic flow. The lee vortex exhibits surface flow characteristics that are similar to results from low Froude number flow around an isolated obstacle. A series of numerical experiments using RAMS with idealized topography and horizontally homogeneous initial conditions are presented to investigate typical low Froude number flow characteristics in the vicinity of barriers representative of the Colorado topography. The results are compared to the findings of previous investigations and to the case study observations and numerical predictions.

  16. Numerical simulations of the transport and diffusion during the 1991 Winter Validation Study along the front range in Colorado

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Osteen, B. L.

    An important aspect of the U.S. Department of Energy's Atmospheric Studies in Complex Terrain (ASCOT) program is the development and evaluation of numerical models that predict transport and diffusion of pollutants in complex terrain. Operational mesoscale modeling of the transport of pollutants in complex terrain will become increasingly practical as computational costs decrease and additional data from high-resolution remote sensing instrumentation networks become available during the 1990s. Four-dimensional data assimilation (4DDA) techniques are receiving a great deal of attention recently not only to improve the initial conditions of mesoscale forecast models, but to create high-quality four-dimensional mesoscale analysis fields that can be used as input to air-quality models. In this study, a four-dimensional data assimilation technique based on Newtonian relaxation is incorporated into the Colorado State University (CSU) Regional Atmospheric Modeling System (RAMS) and evaluated using data taken from one experiment of the 1991 ASCOT field study along the front range of the Rockies in Colorado. The main objective of this study is to compare the observed surface concentrations with those predicted by a Lagrangian particle dispersion model and to demonstrate the effect of data assimilation on the simulated plume. In contrast to previous studies in which the smallest horizontal grid spacing was 10 km (Stauffer and Seaman, 1991) and 8 km (Yamada and Hermi, 1991), data assimilation is applied in this study to domains with a horizontal grid spacing as small as 1 km.

  17. Hygroscopic property of water-soluble organic-enriched aerosols in Ulaanbaatar, Mongolia during the cold winter of 2007

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; King, Young J.; Aggarwal, Shankar Gopala; Kawamura, Kimitaka

    2011-05-01

    The hygroscopic properties of the water-soluble matter extracts of atmospheric aerosols collected at an urban site (47.92 N, 106.90 E, 1300 m above sea level) in Ulaanbaatar, Mongolia during the cold winter of 2007 were investigated using a hygroscopicity tandem differential mobility analyzer (H-TDMA). Dynamic shape correction factor ( ?), the ratio of the actual drag force on a non-spherical aerosol particle to that on a sphere of equivalent volume, of the laboratory generated water-soluble matter (WSM) was found to be 1.09-1.38 (avg. 1.23 0.10), implying that particles generated from the WSM are highly non-spherical. The reduction in the mobility diameter can cause 11% underestimation in a hygroscopic growth factor at 85% RH. The hygroscopic growth factors at 85% RH ( g(85%)), defined as the ratio of the particle diameter at 85% RH to that at RH < 10% (initial dry diameter), of the WSM (initial dry particle diameter = 100 nm) were 1.32-1.50 (avg. 1.40 0.06). The g(RH) of the water-soluble organic matter (WSOM) was retrieved from the measured g(RH) of the WSM and using the ZSR (Zdanovskii-Stokes-Robinson) approach and the thermodynamic aerosol inorganic model (AIM). We found that the g(85%) of the WSOM were in the range of 1.11-1.35 (avg. 1.22 0.08), which are comparable to those of the biomass burning aerosols.

  18. A Winter Survival Unit.

    ERIC Educational Resources Information Center

    Phillips, Ronald E.

    1979-01-01

    The article is a condensation of materials from the winter survival unit of a Canadian snow ecology course. The unit covers: cold physiology, frostbite, snowblindness, hypothermia, winter campout, and survival strategies. (SB)

  19. Winter Weather Emergencies

    MedlinePLUS

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  20. Organic and inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold winter of 2007 to 2008: Dicarboxylic acids, ketocarboxylic acids, and ?-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka

    2010-11-01

    To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92N, 106.90E, 1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and ?-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 28 ng m-3, 15%), succinic (63 20 ng m-3, 9%), glyoxylic (55 18 ng m-3, 8%), and phthalic (54 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.

  1. Significant relationships among frost tolerance and net photosynthetic rate, water use efficiency and dehydrin accumulation in cold-treated winter oilseed rapes.

    PubMed

    Urban, Milan Old?ich; Klma, Miroslav; Vtmvs, Pavel; Vaek, Jakub; Hilgert-Delgado, Alois Albert; Ku?era, Vratislav

    2013-12-15

    Five winter oilseed rape cultivars (Benefit, Californium, Cortes, Ladoga, Navajo) were subjected to 30 days of cold treatment (4 C) to examine the effect of cold on acquired frost tolerance (FT), dehydrin (DHN) content, and photosynthesis-related parameters. The main aim of this study was to determine whether there are relationships between FT (expressed as LT50 values) and the other parameters measured in the cultivars. While the cultivar Benefit accumulated two types of DHNs (D45 and D35), the other cultivars accumulated three additional DHNs (D97, D47, and D37). The similar-sized DHNs (D45 and D47) were the most abundant; the others exhibited significantly lower accumulations. The highest correlations were detected between LT50 and DHN accumulation (r=-0.815), intrinsic water use efficiency (WUEi; r=-0.643), net photosynthetic rate (r=-0.628), stomatal conductance (r=0.511), and intracellular/intercellular CO2 concentration (r=0.505). Those cultivars that exhibited higher Pn rate in cold (and further a significant increase in WUEi) had higher levels of DHNs and also higher FT. No significant correlation was observed between LT50 and E, PRI, or NDVI. Overall, we have shown the selected physiological parameters to be able to distinguish different FT cultivars of winter oilseed rape. PMID:24054752

  2. Cold-front driven storm erosion and overwash in the central part of the Isles Dernieres, a Louisiana barrier-island arc

    USGS Publications Warehouse

    Dingler, J.R.; Reiss, T.E.

    1990-01-01

    Tropical and extratropical storms produce significant erosion on the barrier islands of Louisiana. Over the past 100 years, such storms have produced at least 2 km of northward beach-face retreat and the loss of 63% of the surface area of the Isles Dernieres, a low-lying barrier-island arc along the central Louisiana coast. Elevations on the islands within the arc are typically less than 2 m above mean sea level. The islands typically have a washover-flat topography with occasional, poorly developed, dune-terrace topography consisting of low-lying and broken dunes. The central part of the arc consists of salt-marsh deposits overlain by washover sands along the Gulf of Mexico shoreline. Sand thicknesses range from zero behind the beach, to less than 2 m under the berm crest, and back to zero in the first nearshore trough. The sand veneer is sufficiently thin that storms can strip all the sand from the beach face, exposing the underlying marsh deposits. The geomorphic changes produced by cold fronts, a type of extratropical storm that commonly affect the Isles Dernieres between late fall and early spring are described. Between August 1986 and September 1987, repeated surveys along eleven shore-normal transects that covered 400 m of shoreline revealed the timing and extent of cold-front-produced beach change along a typical section of the central Isles Dernieres. During the study period, the beach face retreated approximately 20 m during the cold-front season but did not rebuild during the subsequent summer. Because the volume of sand deposited on the backshore (5600 m3) was less than the volume of material lost from the beach face (19,200 m3), approximately 13,600 m3 of material disappeared. Assuming that underlying marsh deposits decrease in volume in direct proportion to the amount of beach-face retreat, an estimate of the mud loss during the study period is 14,000 m3. Thus, the decrease in volume along the profiles can be accounted for without removing any sand from the area, suggesting that a major effect of cold fronts is first to strip the sand from the beach face and then to erode the underlying marsh deposits. After being eroded, the mud is lost from the islands because currents transport it away from the islands. ?? 1990.

  3. Plasma membrane lipid alterations associated with cold acclimation of winter rye seedlings (Secale cereale L. cv Puma)

    SciTech Connect

    Lynch, D.V.; Steponkus, P.L. )

    1987-01-01

    Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted > 50 mole % of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole % of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole %, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole % and 4 to 1 mole %, respectively. Sterol analyses of these lipid classes demonstrated that free {beta}-sitosterol increased from 21 to 32 mole % (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing {beta}-sitosterol. Glucocerebrosides decreased from 16 to 7 mole % of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h) were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole % of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane.

  4. Plasma Membrane Lipid Alterations Associated with Cold Acclimation of Winter Rye Seedlings (Secale cereale L. cv Puma) 1

    PubMed Central

    Lynch, Daniel V.; Steponkus, Peter L.

    1987-01-01

    Highly enriched plasma membrane fractions were isolated from leaves of nonacclimated (NA) and acclimated (ACC) rye (Secale cereale L. cv Puma) seedlings. Collectively, free sterols, steryl glucosides, and acylated steryl glucosides constituted >50 mole% of the total lipid in both NA and ACC plasma membrane fractions. Glucocerebrosides containing hydroxy fatty acids constituted the major glycolipid class of the plasma membrane, accounting for 16 mole% of the total lipid. Phospholipids, primarily phosphatidylcholine and phosphatidylethanolamine with lesser amounts of phosphatidylglycerol, phosphatidic acid, phosphatidylserine, and phosphatidylinositol, comprised only 32 mole% of the total lipid in NA samples. Following cold acclimation, free sterols increased from 33 to 44 mole%, while steryl glucosides and acylated steryl glucosides decreased from 15 to 6 mole% and 4 to 1 mole%, respectively. Sterol analyses of these lipid classes demonstrated that free ?-sitosterol increased from 21 to 32 mole% (accounting for the increase in free sterols as a class) at the expense of sterol derivatives containing ?-sitosterol. Glucocerebrosides decreased from 16 to 7 mole% of the total lipid following cold acclimation. In addition, the relative proportions of associated hydroxy fatty acids, including 22:0 (h), 24:0 (h), 22:1 (h), and 24:1 (h), were altered. The phospholipid content of the plasma membrane fraction increased to 42 mole% of the total lipid following cold acclimation. Although the relative proportions of the individual phospholipids did not change appreciably after cold acclimation, there were substantial differences in the molecular species. Di-unsaturated molecular species (18:2/18:2, 18:2/18:3, 18:3/18:3) of phosphatidylcholine and phosphatidylethanolamine increased following acclimation. These results demonstrate that cold acclimation results in substantial changes in the lipid composition of the plasma membrane. PMID:16665335

  5. Impacts of the North India Ocean SST on the extremely cold winters of 2011 and 2012 in the region of Da Hinggan Mountains and its western areas in China

    NASA Astrophysics Data System (ADS)

    Gao, Tao; Han, Jingwei; Gao, Lian; Yan, Wei

    2014-08-01

    The study of the winter temperatures, averaged from the records of 11 observatories in the Da Hinggan Mountains and its western areas in China (DHM-WA), identified 11 extremely cold (? - 1.5 C) and 13 extremely warm winters (? + 1.5 C) during the past 60 years (1951-2010). The winters of 2011 and 2012 are another two extremely cold events. Aimed at exploring the climate causes, a comprehensive investigation is carried out on variations of some major atmospheric circulation components. Additionally, opposite circulation regimes are verified by examining the mean 500-hPa circulation patterns and sea level pressure (SLP) corresponding to 14 warm and 18 cold sea surface temperature (SST) phases over the North India Ocean (NIO) during the period of 1951-2010. Composite of an extremely cold winter usually includes a large and strong Siberian High, a deep East Asian trough to the west, an small and weak western Pacific Subtropical High to the east, a large North Polar vortex and a weakened westerly stream over Eurasia continent accompanied by a strong meridional winds from the polar region to lower latitude. Moreover, it has been found that a favorable circulation condition associated with the extremely cold winters to DHM-WA is mainly controlled by the SST over NIO in the previous warm season (June-September); This is primarily related to changes in the intensity of the Walker and Anti-Walker circulations, which subsequently influence the major circulation components and result in an extremely cold winter in DHM-WA.

  6. Influence of the Eurasian snow on the negative North Atlantic Oscillation in subseasonal forecasts of the cold winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Orsolini, Y. J.; Senan, R.; Vitart, F.; Balsamo, G.; Weisheimer, A.; Doblas-Reyes, F. J.

    2015-11-01

    The winter 2009/2010 was remarkably cold and snowy over North America and across Eurasia, from Europe to the Far East, coinciding with a pronounced negative phase of the North Atlantic Oscillation (NAO). While previous studies have investigated the origin and persistence of this anomalously negative NAO phase, we have re-assessed the role that the Eurasian snowpack could have played in contributing to its maintenance. Many observational and model studies have indicated that the autumn Eurasian snow cover influences circulation patterns over high northern latitudes. To investigate that role, we have performed a suite of forecasts with the coupled ocean-atmosphere ensemble prediction system from the European Centre for Medium-Range Weather Forecasts. Pairs of 2-month ensemble forecasts with either realistic or else randomized snow initial conditions are used to demonstrate how an anomalously thick snowpack leads to an initial cooling over the continental land masses of Eurasia and, within 2 weeks, to the anomalies that are characteristic of a negative NAO. It is also associated with enhanced vertical wave propagation into the stratosphere and deceleration of the polar night jet. The latter then exerts a downward influence into the troposphere maximizing in the North Atlantic region, which establishes itself within 2 weeks. We compare the forecasted NAO index in our simulations with those from several operational forecasts of the winter 2009/2010 made at the ECWMF, and highlight the importance of relatively high horizontal resolution.

  7. Observational analyses of baroclinic boundary layer characteristics during one frontal winter snowstorm

    NASA Astrophysics Data System (ADS)

    Xu, Y. L.; Qian, F. L.; Chen, Z.; Li, S. M.; Zhou, M. Y.

    2002-02-01

    The evolution and characteristics of the baroclinic boundary layer for one frontal winter snowstorm were analyzed by using the well-documented dataset during Intensive Observation Period (IOP) 17 of STORM-FEST. It is found that when the warm moist air was lifted across the front, a great amount of latent heat release because of snowing increased the frontal temperature contrast to intensify frontogenesis, It is shown in the zig-zag section diagram of potential temperature that when the frontogenesis got stronger, a cold trough was formed and both low-level jet (LLJ) and upper-level jet (ULJ) emerged ahead of the front. In the strongest stage of frontogenesis, the frontal contrast of potential temperature of cold trough reached as high as 20 K, Hereafter the LLJ ahead of the front tended to weaken and the LLJ behind the front tended to strengthen. The frontal circulation system was dominated by the cold air advection behind the front, which transported the cold air behind the front forward to the warm area ahead of the front to weaken the cold trough and finally frontolysis occurred. It is shown by the analyses of turbulent characteristics of frontal baroclinic boundary-layer that the vertical shear (wv) above the boundary layer was very large, and the pumping of the strong wind shear in turbulent energy budget made the characteristic variables within the PBL well mixed. Sufficient moisture carried by southerly flow from the Mexico Gulf, and the strong baroclinity of the frontal boundary layer played key roles in this frontal winter snowstorm, and the large-scale ULJ behind the cold front is also advantageous to the development of the convective boundary layer.

  8. The impact of winter 2012 cold outbreak over the Northern Adriatic Sea dynamics: preliminary comparison among data and high resolution operational atmospheric models

    NASA Astrophysics Data System (ADS)

    Davolio, Silvio; Miglietta, Mario M.; Carniel, Sandro; Benetazzo, Alvise; Buzzi, Andrea; Drofa, Oxana; Falco, Pierpaolo; Fantini, Maurizio; Malguzzi, Piero; Ricchi, Antonio; Russo, Aniello; Paccagnella, Tiziana; Sclavo, Mauro

    2013-04-01

    Shelf dense water formation (DWF) events may be taking place during winter time on the broad, shallow shelf in the northern region of the Adriatic basin exposed to the Bora winds, bringing cold, dry air from the north-east down the Dinaric Alps. Indeed, the resulting intense evaporation and cooling of the shelf waters may produce North Adriatic Dense Water (NAdDW), which then tends to sink and ''cascade'' all the way to the southern basin. During these rather episodic formation processes, more frequent during winter time, the main controlling factors are intense cold wind out- breaks, the ambient water density, preconditioned during late autumn, and also other factors, e.g. river discharges. When such processes of buoyancy extraction happen, several isopycnic surfaces outcrop and very often the whole water column (20-25 m deep) may be ventilated. However, the general process of northern water masses flowing to the southern part of the Adriatic basin is complex and far from being completely understood. In order to understand and model these processes, it is mandatory to utilize high resolution meteorological forcing fields and circulation models, at least to model particular events in Adriatic marine circulation, if not its longer term (e.g., seasonal) characteristics. The use of low resolution winds in fact necessarily implies a calibration factor to better match surface fluxes and to reproduce wind-driven circulation. This is particularly evident in the case of the cross-basin Bora pattern, because the complexity and small scale of Adriatic orography is often poorly reproduced in atmospheric models, while Bora flow is composed of an alternation of high and low wind speed 'strips' crossing the Adriatic in correspondence of the fine scale (10-100 km) Balkanic orographic gaps. Within the framework of activities of the Italian flagship Project "RITMARE" and of the FIRB "DECALOGO", we focused on the current meteorological modeling capabilities to describe an event of exceptionally dense water formation, registered during the 2012 winter in the northern Adriatic region. During late January and early February, indeed, the basin was characterized by a persistent and exceptional cold anomaly responsible for large energy losses due to cold and extremely strong winds. Sea waters temperatures dropped to about 6C and the Venice lagoon got partially covered by ice. In the period of interest, available measurements in the northern Adriatic Sea (temperature, salinity, density, wind speed, direction and inferred heat fluxes) were used, together with satellite measurements, to carry out a first semi-quantitative comparison among existing meteorological models implemented over the region. Namely, the work presents an intercomparison among three state-of-the-art, non-hydrostatic NWP models: COSMO-I7, WRF and MOLOCH. All models are run in operational mode, and their results are used by several Regional authorities and institutions for weather forecasting and support to civil protection decision. Therefore, this evaluation is a useful assessment preliminary to a full coupling of the above mentioned atmospheric models with existing ocean models already implemented in the region (e.g. ROMS in the COAWST system). Preliminary results show also some uncommon mesoscale structures reproduced by the models in the proximity of the central-south Italian coast, and highlight their possible influence on the local surface sea circulation. These effects will be soon explored by means of fully-coupled ocean-atmosphere models within on-going projects.

  9. Frontal passage and cold pool detection using Oklahoma Mesonet observations

    NASA Astrophysics Data System (ADS)

    Lesage, Andrew T.

    For over a dozen years the Oklahoma Mesonet network has provided surface observations at over 100 stations. These observations are used to analyze mass flux estimates from surface divergence, frontal passages, and cold pools, the latter defined herein as active regions where precipitation processes are creating near-surface cold air masses. Case studies are detailed and a 15-yr climatology of frontal passages and cold pools was computed in this research. Convergence, divergence, and precipitation are most strongly correlated in the summer months and least correlated in the winter months. Wet spring and summer days had the highest average convergence and divergence values while dry summer and fall days had the lowest average convergence and divergence. Frontal passages and cold pools are tracked throughout the Mesonet in various case studies, four of which are covered herein. The methodology is able to represent front location and cold pool areas quite well despite the low resolution of the Mesonet grid. The climatology of front and cold pool data yielded many similarities. Winter has the largest magnitude changes in DeltaT, DeltaP, and Deltah/cp while spring and fall had the largest magnitude change in Deltaqv. Summer has the lowest with the exception of spring DeltaT. Correlations between these variables are lowest in the more convectively active summer season. Convergence is roughly equal ahead of fronts from spring through fall; however, divergence is present in summer frontal passages earlier and stronger compared to the other seasons. Fronts and cold pools are most likely to occur in summer and spring with summer having the highest percentage of fronts which lead to cold pools. Fronts and cold pools are substantially more likely to occur during the late afternoon and early evening in the summer; other seasons had a slighter nocturnal increase in frequency. Western Oklahoma had higher frequencies of frontal passages and cold pools than Eastern Oklahoma with frontal passages having the stronger signal. These findings help identify seasonal, diurnal, and geographic distributions of fronts and cold pools and can be used in modeling studies to better the understanding of cold pool processes and parameterizations.

  10. Gravity wave characteristics in the middle atmosphere during the CESAR campaign at Palma de Mallorca in 2011/2012: Impact of extratropical cyclones and cold fronts

    NASA Astrophysics Data System (ADS)

    Kramer, R.; Wüst, S.; Schmidt, C.; Bittner, M.

    2015-06-01

    Based on a measuring campaign which was carried out at Mallorca (39.6°N, 2.7°E) as cooperation between Agència Estatal de Meteorologia (AEMET) and Deutsches Zentrum für Luft- und Raumfahrt, engl. 'German Aerospace Center' (DLR) in 2011/2012 (September-January), 143 radiosondes (day and night) providing vertical temperature and wind profiles were released. Additionally, nocturnal mesopause temperature measurements with a temporal resolution of about 1 min were conducted by the infrared (IR) - Ground-based Infrared P-branch Spectrometer (GRIPS) during the campaign period. Strongly enhanced gravity wave activity in the lower stratosphere is observed which can be attributed to a hurricane-like storm (so-called Medicane) and to passing by cold fronts. Statistical features of gravity wave parameters including energy densitiy and momentum fluxes are calculated. Gravity wave momentum fluxes turned out being up to five times larger during severe weather. Moreover, gravity wave horizontal propagation characteristics are derived applying hodograph and Stokes parameter analysis. Preferred directions are of southeast and northwest due to prevailing wind directions at Mallorca.

  11. Bio-Optical Properties and Ocean Color Algorithms for Coastal Waters Influenced by the Mississippi River During a Cold Front Passage

    NASA Technical Reports Server (NTRS)

    D'Sa Eurico J.; Miller, Richard L.; DelCastillo, Carlos

    2006-01-01

    During the passage of a cold front in March 2002, bio-optical properties examined in coastal waters impacted by the Mississippi River indicated westward advective flows and increasing river discharge containing a larger nonalgal particle content contributed significantly to surface optical variability. A comparison of seasonal data from three cruises indicated spectral models of absorption and scattering to be generally consistent with other coastal environments, while their parameterization in terms of chlorophyll a concentration (Chl) showed seasonal variability. The exponential slope of the colored dissolved organic matter (CDOM) averaged 0.0161 plus or minus 0.00054 per nanometer, and for nonalgal absorption it averaged 0.011 per nanometer with deviations from general trends observed due to anomalous water properties. Although the phytoplankton specific absorption coefficients varied over a wide range (0.02 to 0.1 square meters (mg Chl) sup -1)) being higher in offshore surface waters, values of phytoplankton absorption spectra at the SeaWiFS wavebands were highly correlated to modeled values. The normalized scattering spectral shapes and the mean spectrum were in agreement to observations in other coastal waters, while the backscattering ratios were on average lower in phytoplankton dominated surface waters (0.0101 plus or minus 0.002) and higher in near-bottom waters (0.0191 plus or minus 0.0045) with low Chl. Average percent differences in remote sensing reflectance R (sub rs) derived form modeled and in-eater radiometric measurements were highest in the blue wavebands (52%) and at sampling stations with a ore stratified water column. Estimates of Chl and CDOM absorption derived from SeaWiFS images generated using regional empirical algorithms were highly correlated to in situ data.

  12. Kelvin-Helmholtz Instabilities at the Sloshing Cold Fronts in the Virgo Cluster as a Measure for the Effective Intracluster Medium Viscosity

    NASA Astrophysics Data System (ADS)

    Roediger, E.; Kraft, R. P.; Forman, W. R.; Nulsen, P. E. J.; Churazov, E.

    2013-02-01

    Sloshing cold fronts (CFs) arise from minor merger triggered gas sloshing. Their detailed structure depends on the properties of the intracluster medium (ICM): hydrodynamical simulations predict the CFs to be distorted by Kelvin-Helmholtz instabilities (KHIs), but aligned magnetic fields, viscosity, or thermal conduction can suppress the KHIs. Thus, observing the detailed structure of sloshing CFs can be used to constrain these ICM properties. Both smooth and distorted sloshing CFs have been observed, indicating that the KHI is suppressed in some clusters, but not in all. Consequently, we need to address at least some sloshing clusters individually before drawing general conclusions about the ICM properties. We present the first detailed attempt to constrain the ICM properties in a specific cluster from the structure of its sloshing CF. Proximity and brightness make the Virgo Cluster an ideal target. We combine observations and Virgo-specific hydrodynamical sloshing simulations. Here, we focus on a Spitzer-like temperature-dependent viscosity as a mechanism to suppress the KHI, but discuss the alternative mechanisms in detail. We identify the CF at 90 kpc north and northeast of the Virgo center as the best location in the cluster to observe a possible KHI suppression. For viscosities >~ 10% of the Spitzer value KHIs at this CF are suppressed. We describe in detail the observable signatures at low and high viscosities, i.e., in the presence or the absence of KHIs. We find indications for a low ICM viscosity in archival XMM-Newton data and demonstrate the detectability of the predicted features in deep Chandra observations.

  13. The transformation of frequency distributions of winter precipitation to spring streamflow probabilities in cold regions; case studies from the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Shook, Kevin; Pomeroy, John; van der Kamp, Garth

    2015-02-01

    Hydrological processes alter the states and/or locations of water, and so they can be regarded as being transformations of the properties of the time series of input variables to those of output variables, such as the transformation of precipitation to streamflow. Semi-arid cold regions such as the Canadian Prairies have extremely low annual streamflow efficiencies because of high infiltration rates, large surface water storage capacities, high evaporation rates and strong climate seasonality. As a result snowfall produces the majority of streamflow. It is demonstrated that the probability distributions of Prairie spring streamflows are controlled by three frequency transformations. The first is the transformation of snowfall by wind redistribution and ablation over the winter to form the spring snowpack. The second transformation is the melt of the spring snowpack to produce runoff over frozen agricultural soils. The third is the transformation of runoff to streamflow by the filling and spilling of depressional storage by connecting fields, ponds, wetlands and lakes. Each transformation of the PDF of the input variable to that of the output variable is demonstrated at a number of locations in the Canadian Prairies and is explained in terms of the hydrological processes causing the transformation. The resulting distributions are highly modified from that of precipitation, and the modification depends on which processes dominate streamflow formation in each basin. The results demonstrate the need to consider the effect of the interplay among hydrological processes, climate and basin characteristics in transforming precipitation frequency distributions into those of streamflow for the design of infrastructure and for water management.

  14. Winter Storms and Extreme Cold

    MedlinePLUS

    ... add the following supplies to your emergency kit : Rock salt or more environmentally safe products to melt ... spelling out HELP or SOS and line with rocks or tree limbs to attract the attention of ...

  15. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    NASA Astrophysics Data System (ADS)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within minutes. Superimposed to these variations are local diurnal processes like dewfall, which cause a diurnal pattern captured by the deuterium excess.

  16. Study of a Winter Monsoon Front over the South China Sea by Multi-Sensor Satellite and Weather Radar Data, and a Numerical Model

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai

    2013-03-01

    An atmospheric frontal system over the South China Sea (SCS) arising from the replenishment of the northeast monsoon is investigated by using multi-sensor satellite data, weather radar data, and a numerical model. The replenishment or freshening of the northeast monsoon results from the merging of high pressure areas over the Chinese Continent. The near-sea surface wind field associated with this event was measured by the Advanced Scatterometer (ASCAT) onboard the European MetOp satellite and the Advanced Synthetic Aperture Radar (ASAR) onboard the European Envisat satellite. The high resolution ASAR image reveals that the frontal line separating this wind field from the synoptic-scale ambient wind field is as sharp as in the case of a cold air outbreak and contains embedded rain cells. Furthermore, it shows that this replenishment was associated with northeasterly winds with speeds of up to 13 ms-1 over the SCS at offshore distances larger than 60 km, but only with speeds of around 6 ms-1 near the coast. The comparison of the observational data with model results of the pre-operational version of the AIR (Atmospheric Integrated Rapid-cycle) forecast model of the Hong Kong Observatory shows that the AIR model can successfully simulate the time evolution of the frontal system and the wind field over the open ocean, but fails to simulate the wind field near the coast.

  17. Implementation of Cold-Cloud Processes in a Source-Oriented WRF/Chem Model to Study a Winter Storm in California

    NASA Astrophysics Data System (ADS)

    Lee, H.; Chen, S.; Kleeman, M.

    2013-12-01

    Mineral dust particles commonly have a favorable arrangement of surface sites that allows them to serve as ice nuclei (IN). Secondary coatings that condense on mineral dust particles may reduce their ability to serve as IN. Both of these effects point to the importance of the particle mixing state when predicting cloud condensation nuclei (CCN) / IN concentrations. The source-oriented Weather Research and Forecasting chemistry model (SOWC) was modified to include cold cloud processes and applied to investigate how source-oriented aerosols influence cloud and ice formation and optical properties in the atmosphere. SOWC tracks 6-dimensional chemical variables (X, Z, Y, Size Bins, Source Types, Species) through an explicit simulation of atmospheric chemistry and physics. Particle radius and number concentration are conserved for each source type and size bin. Simulations in this study use 38 chemical species from 6 emission sources (wood smokes, gasoline, diesel, meat cooking, dust, and other aerosol types) and 8 size bins, spanning the particle diameter range from 0.01 to 10 microns. A new source-oriented hydrometeors module was implemented into the SOWC model to simulate microphysics processes with all source-oriented hydrometeors (cloud, ice, rain, snow and graupel) using the Morrison two-moment microphysics scheme. In our study, all aerosol source types can activate to form cloud droplets based on the Köhler theory, and dust is the only source of IN. We considered the impact of Asian dust on the ice formation in clouds over the Sierra Nevada mountain range during the CalWater field campaign (2011) and estimated dust contributions to total IN concentrations. Aerosols within hydrometeors alter the radiative properties of the cloud droplets. The Goddard shortwave and longwave radiation schemes were modified to interact with source-oriented aerosols and hydrometeors so that aerosol direct and indirect effects could be studied. Geometric-optics approach in the radiation schemes considered the chemistry components and the physical shape of ice crystal to more accurately calculate the atmospheric optical thickness, signal scattering albedo, and asymmetry factor. The enhanced SOWC model was implemented to study a winter storm event that occurred on February 16th, 2011, in California, and the results are compared to the measurements obtained during the CalWater field campaign.

  18. Exercising in Cold Weather

    MedlinePLUS

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  19. Ocean backscatter across the Gulf Stream sea surface temperature front

    SciTech Connect

    Nghiem, S.V.; Li, F.K.

    1997-06-01

    Ocean backscatter was measured by the Jet Propulsion Laboratory, with the airborne NUSCAT K{sub u}-band scatterometer, across the Gulf Stream sea surface temperature front during the Surface Wave Dynamics Experiment off the coast of Virginia and Maryland in the winter of 1991. Backscatter across the front between the National Oceanic and Atmospheric Administration experimental coastal buoy A (44024) on the cold side and Discus C buoy (44023) on the warm side shows a difference of more than 5 dB for vertical polarization in many cases. This large frontal backscatter change is observed in all upwind, downwind, and crosswind directions. The sea surface temperature difference measured by the buoys was about 9{degrees}C. The corresponding difference in wind speed cannot account for the large backscatter change in view of geophysical model functions depending only on neutral wind velocity such as SASS. The measured backscatter also has larger upwind-downwind and upwind-crosswind ratios compared to the model results. Furthermore, NUSCAT data reveal that upwind backscatter on the cold side was smaller than or close to crosswind backscatter on the warm side for incidence angles between 30{degrees} to 50{degrees}. This suggests that the temperature front can be detected by the scatterometer at these incidence angles for different wind directions in the cold and warm sides.

  20. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition.

    PubMed

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0?cm (non-snowpack), 10?cm, 20?cm, 30?cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5?g N m(-2) yr(-1); medium-N, 10?g N m(-2) yr(-1); and high-N, 15?g N m(-2) yr(-1)) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013-2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8.??0.3% (control), 3.6??0.6% (low-N), 4.3??0.4% (medium-N) and 6.4??0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget. PMID:26732991

  1. Mammals in Winter.

    ERIC Educational Resources Information Center

    Wapner, Suzanne

    1985-01-01

    Mammals that tolerate the winter cold and stay active all year exploit the harsh northern climate to their advantage. By simple experiments and observation you can better understand their adaptations which include furry bodies, snowshoe feet, extra blubber, light coloration, and strategically distributed food caches. (JHZ)

  2. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0 cm (non-snowpack), 10 cm, 20 cm, 30 cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5 g N m‑2 yr‑1 medium-N, 10 g N m‑2 yr‑1 and high-N, 15 g N m‑2 yr‑1) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013–2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8. ± 0.3% (control), 3.6 ± 0.6% (low-N), 4.3 ± 0.4% (medium-N) and 6.4 ± 0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget.

  3. Annual soil CO2 efflux in a cold temperate forest in northeastern China: effects of winter snowpack and artificial nitrogen deposition

    PubMed Central

    Liu, Boqi; Mou, Changcheng; Yan, Guoyong; Xu, Lijian; Jiang, Siling; Xing, Yajuan; Han, Shijie; Yu, Jinghua; Wang, Qinggui

    2016-01-01

    We conducted a snow depth 0 cm (non-snowpack), 10 cm, 20 cm, 30 cm and natural depth) gradient experiment under four quantities of nitrogen addition (control, no added N; low-N, 5 g N m−2 yr−1; medium-N, 10 g N m−2 yr−1; and high-N, 15 g N m−2 yr−1) and took an-entire-year measurements of soil respiration (Rs) in Korean pine forests in northeastern China during 2013–2014. No evidence for effects of N on Rs could be found during the growing season. On the other hand, reduction of snowpack decreased winter soil respiration due to accompanied relatively lower soil temperature. We found that winter temperature sensitivities (Q10) of Rs were significantly higher than the growing season Q10 under all the N addition treatments. Moderate quantities of N addition (low-N and medium-N) significantly increased temperature sensitivities (Q10) of Rs, but excessive (high-N) addition decreased it during winter. The Gamma empirical model predicted that winter Rs under the four N addition treatments contributed 4.8. ± 0.3% (control), 3.6 ± 0.6% (low-N), 4.3 ± 0.4% (medium-N) and 6.4 ± 0.5% (high-N) to the whole year Rs. Our results demonstrate that N deposition will alter Q10 of winter Rs. Moreover, winter Rs may contribute very few to annual Rs budget. PMID:26732991

  4. Investigation of the relationship between permafrost distribution in NW Europe and extensive winter sea-ice cover in the North Atlantic Ocean during the cold phases of the Last Glaciation

    NASA Astrophysics Data System (ADS)

    Renssen, H.; Vandenberghe, J.

    2003-02-01

    Atmospheric model simulations with different extents of sea-ice are compared with reconstructed European mean annual temperatures derived from permafrost indicators. Analysis of the results suggest that during cold phases of the Last Glacial, the southern margin of permafrost in western Europe was controlled by the latitude of the winter sea-ice margin in the North Atlantic Ocean. In this case reconstructions of permafrost extent in Europe may be used to constrain past winter sea-ice conditions in the North Atlantic Ocean. Accordingly, extensive North Atlantic sea-ice cover southwards to at least 50N is inferred during four phases of the Last Glaciation: (1) Early Pleniglacial (74- 59 cal kyr BP ), (2) the Hasselo Stadial (41.5- 40 cal kyr BP ), (3) the LGM (23- 19 cal kyr BP ) and (4) the Younger Dryas (12.7- 11.5 cal kyr BP ). The extensive sea-ice cover for the phase of maximum cold disagrees with recent studies suggesting a relatively warm North Atlantic during the LGM, while it agrees with the original CLIMAP reconstruction. Moreover, the estimate for the Younger Dryas cooling conflicts with reconstructions based on marine proxy data.

  5. Cross-shelf circulation and phytoplankton distribution at the summertime New England shelfbreak front

    NASA Astrophysics Data System (ADS)

    Houghton, Robert W.; Vaillancourt, Robert D.; Marra, John; Hebert, Dave; Hales, Burke

    2009-10-01

    We investigate aspects of the secondary (cross-shelf) circulation at the Middle Atlantic Bight shelfbreak front using high-resolution data collected on the New England Shelf in August 2002. The alongshore shelfbreak jet coincides with the front at the seaward edge of the cold pool (remnant winter shelf water) and there is a suggestion of a cross-stream convergence centered at the jet core. Despite indications of convergence we found no evidence of a surface subduction on the seaward side of the front. At depth 70 m near the shelfbreak there was a patch of chlorophyll, located within a local temperature-salinity maximum which, though significantly below the euphotic zone, appeared to be photo-acclimated and viable. The chlorophyll feature could be the result of a local subduction by a larger scale eddy circulation seaward of the front. Dye tracer experiments directly observed the convergence at the foot of the shelfbreak front and subsequent upwelling of bottom boundary layer water along the shoreward side of the shelfbreak front. But, we found no evidence that this upwelling influenced productivity at the front. Further, since there was no cross-shelf maximum in subsurface chlorophyll at the front, we conclude that this productivity is in general, sustained by a broadly distributed local vertical nutrient flux from an underlying nutrient reservoir.

  6. Fronts and frontogenesis as revealed by high time resolution data

    NASA Technical Reports Server (NTRS)

    Frank, A. E.; Barber, D. A.

    1977-01-01

    Upper air sounding are used to examine a cold front of average intensity. Vertical cross sections of potential temperature and wind, and horizontal analyses were compared and adjusted for consistency. These analyses were then used to study the evolution of the front, found to consist of a complex system of fronts occurring at all levels of the troposphere. Low level fronts were strongest at the surface and rapidly weakened with height. Fronts in the midddle troposphere were much more intense. The warm air ahead of the fronts was nearly barotropic, while the cold air behind was baroclinic through deep layers. A deep mixed layer was observed to grow in this cold air.

  7. Livable Winter Cities--Leisure Attitudes and Activities.

    ERIC Educational Resources Information Center

    Neal, Larry; Coles, Roger, Ed.

    1989-01-01

    The nine articles included in this feature emphasize how leisure, recreation, health and physical activities make winter cities more livable. Specific topics include techniques for teaching about cold weather safety and cold related injuries, Arctic Winter Games, and results of a study on winter recreation in large North American communities. (IAH)

  8. First records of winter sea ice concentration in the southwest Pacific sector of the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Ferry, Alexander J.; Crosta, Xavier; Quilty, Patrick G.; Fink, David; Howard, William; Armand, Leanne K.

    2015-11-01

    We use a Generalized Additive Model (GAM) to provide the first winter sea ice concentration record from two cores located within the southwest Pacific sector of the Southern Ocean. To compliment the application of GAM, a time series analysis on satellite records of sea ice concentration data was used to extend the standard 13.25 year time series used for paleoceanography. After comparing GAM sea ice estimates with previously published paleo sea ice data we then focus on a new paleo winter sea ice record for marine sediment core E27-23 (5937.1'S, 15514.3'E), allowing us to provide a more comprehensive view of winter sea ice dynamics for the southwest Pacific Ocean. The paleo winter sea ice concentration estimates provide the first suggestion that winter sea ice within the southwestern Pacific might have expanded during the Antarctic Cold Reversal. Throughout the Holocene, core E27-23 documents millennial scale variability in paleo winter sea ice coverage within the southwest Pacific. Holocene winter sea ice expansion may have resulted from the Laurentide Ice Sheet deglaciation, increased intensity of the westerly winds, as well as a northern migration of the Subtropical and/or Sub-Antarctic Fronts. Brief consideration is given to the development of a paleo summer sea ice proxy. We conclude that there is no evidence that summer sea ice ever existed at core sites SO136-111 and E27-23 over the last 220 and 52,000 years, respectively.

  9. Weather fronts and acute myocardial infarction

    NASA Astrophysics Data System (ADS)

    Kveton, Vit

    1991-03-01

    Some methodological aspects are discussed of the investigation of acute infarct myocarditis (AIM) in relation to weather fronts. Results of a new method of analysis are given. Data were analysed from about the hour of the onset of symptoms, and led to the diagnosis of AIM either immediately or within a few hours or days (3019 cases observed over 4.5 years during 1982 1986 in Plzen, Czechoslovakia). Weather classification was based on three factors (the type of the foregoing front, the type of the subsequent front, the time section of the time interval demarcated by the passage of the surfaces of the fronts). AIM occurrence increased in particular types of weather fronts: (i) by 30% during 7 12 h after a warm front, if the time span between fronts exceeded 24 h; (ii) by 10% in time at least 36 h distant from the foregoing cold or occlusion front and from the succeeding warm or occlusion front; (iii) by 20% during 0 2 h before the passage of the front, provided the foregoing front was not warm and the interval between fronts exceeded 5 h. AIM occurrence decreased by 15% 20% for time span between fronts > 24 h at times 6 11, 6 23 and 6 35 h before a coming warm or occlusion front (for interfrontal intervals 25 48, 49 72 and possibly > 72 h), and also at 12 23 and possibly 12 35 h before a cold front (for intervals 49 72 and possibly > 72 h), if the foregoing front was cold or an occlusion front.

  10. Winter Wonderlands

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter

  11. Winter Ecology.

    ERIC Educational Resources Information Center

    Birkeland, Karl W.; Halfpenny, James C.

    1987-01-01

    Discusses some of the ecological variables involved with plant and animal survival during the winter months. Addresses the effects of changing climatic conditions on habitats, foot-loading indexes, and the overall concept of adaptation. Provides some simple teaching activities dealing with winter survival. (TW)

  12. The Barents Sea polar front and water masses variability (1980-2011)

    NASA Astrophysics Data System (ADS)

    Oziel, L.; Sirven, J.; Gascard, J.-C.

    2015-03-01

    The polar front separates the warm and saline Atlantic Waters encountered in the western part of the Barents Sea from the cold and fresh Arctic Waters situated in the northern part. These water masses can mix together, mainly in the eastern part of the Barents Sea, generating dense waters in winter which can cascade into the Arctic Ocean to form the Artic Intermediate Waters. To study the interannual variability and evolution of these water masses and the fronts, we have merged data from the International Council for the Exploration of the Sea and the Arctic and Antarctic Research Institute and have built a new database which covers the period 1980-2011. The summer data is interpolated on a regular grid and a "Probability Density Function" method is used to show that the polar front splits into two branches east of 32° E where the topographic constraint weakens. Two fronts can then be defined: the "Northern Polar Front" is associated with strong salinity gradients and the "Southern Polar Front" with temperature gradients. They enclose the dense Barents Sea Water. The interannual variability of the water masses is apparent in the observed data and is linked to that of the ice cover. In contrast, the link with the Arctic Oscillation is not clear. However, results from a general circulation model suggest that such a link could be found if winter data were taken into account. A strong trend, which amplifies during the last decade, is also found: the Atlantic Water occupies a larger volume of the Barents Sea. This "Atlantification" could be accompanied by a northwards displacement of the southern polar front in the eastern part of the Barents Sea (which is suggested by a model based study) and a decrease of the volume occupied by the Arctic Waters.

  13. Winter mortality and its causes.

    PubMed

    Keatinge, W R

    2002-11-01

    In the 1970s scientific research focussed for the first time on dramatic rises in mortality every winter, and on smaller rises in unusually hot weather. Following the recent decline in influenza epidemics, approximately half of excess winter deaths are due to coronary thrombosis. These peak about two days after the peak of a cold spell. Approximately half the remaining winter deaths are caused by respiratory disease, and these peak about 12 days after peak cold. The rapid coronary deaths are due mainly to haemoconcentration resulting from fluid shifts during cold exposure; some later coronary deaths are secondary to respiratory disease. Heat related deaths often result from haemoconcentration resulting from loss of salt and water in sweat. With the possible exception of some tropical countries, global warming can be expected to reduce cold related deaths more than it increases the rarer heat related deaths, but statistics on populations in different climates suggest that, given time, people will adjust to global warming with little change in either mortality. Some measures may be needed to control insect borne diseases during global warming, but current indications are that cold will remain the main environmental cause of illness and death. Air pollution in cities may also still be causing some deaths, but these are hard to differentiate from the more numerous deaths due to associated cold weather, and clear identification of pollution deaths may need more extensive data than is currently available. PMID:12546188

  14. Nuclear Winter.

    ERIC Educational Resources Information Center

    Ehrlich, Anne

    1984-01-01

    "Nuclear Winter" was recently coined to describe the climatic and biological effects of a nuclear war. These effects are discussed based on models, simulations, scenarios, and projections. Effects on human populations are also considered. (JN)

  15. Rossby waves, extreme fronts, and wildfires in southeastern Australia

    NASA Astrophysics Data System (ADS)

    Reeder, Michael J.; Spengler, Thomas; Musgrave, Ruth

    2015-03-01

    The most catastrophic fires in recent history in southern Australia have been associated with extreme cold fronts. Here an extreme cold front is defined as one for which the maximum temperature at 2 m is at least 17C lower on the day following the front. An anticyclone, which precedes the cold front, directs very dry northerlies or northwesterlies from the interior of the continent across the region. The passage of the cold front is followed by strong southerlies or southwesterlies. European Centre for Medium-Range Weather Forecasts ERA-Interim Reanalyses show that this regional synoptic pattern common to all strong cold fronts, and hence severe fire conditions, is a consequence of propagating Rossby waves, which grow to large amplitude and eventually irreversibly overturn. The process of overturning produces the low-level anticyclone and dry conditions over southern Australia, while simultaneously producing an upper level trough and often precipitation in northeastern Australia.

  16. Game Plan: Save Lives, Winterize!

    ERIC Educational Resources Information Center

    Children & Animals, 1988

    1988-01-01

    Describes a learning center game which deals with the needs of dogs and cats in the winter months. Provides background information on the potential risks to pets during cold weather. Contains the game cards, along with assembly instructions and the rules of the games. (TW)

  17. WINTER TRITICALE: A FORAGE FOR ALL SEASONS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter Triticale (X Triticosecale Wittmack) is usually planted in late summer or early fall, grows vegetatively prior to vernalization by cold winter temperatures and develops reproductively the following spring. Earlier establishment could increase production of high quality forage by extending the...

  18. Winter Hydrographer

    USGS Multimedia Gallery

    Robert Bradley, a hydrologic technician with the Massachusetts USGS Office, headed to Maine to experience a winter ice measurement trip with Laura Flight, a hydrologic technician from the Maine USGS Office. Robert, originally from Florida, went to Aroostook County with Laura and got smacked in the f...

  19. Winter Workshop.

    ERIC Educational Resources Information Center

    Council of Outdoor Educators of Quebec, Montreal.

    Materials on 11 topics presented at a winter workshop for Quebec outdoor educators have been compiled into this booklet. Action story, instant replay, shoe factory, sound and action, and find an object to fit the description are described and recommended as group dynamic activities. Directions for five games (Superlative Selection; Data

  20. Winter Wonderlands

    ERIC Educational Resources Information Center

    Coy, Mary

    2011-01-01

    Listening to people complain about the hardships of winter and the dreariness of the nearly constant gray sky prompted the author to help her sixth graders recognize and appreciate the beauty that surrounds them for nearly five months of the year in western New York. The author opines that if students could see things more artistically, the winter…

  1. Winter Games.

    ERIC Educational Resources Information Center

    Tarbuth, Lawson, Comp.

    Educators may find activities for indoor and outdoor winter programs in the games of the traditional Eskimo. These games are dominated by few-step operations and low level structural organization. For the most part they are quickly organized, begun, terminated, and ready to be recommenced. All types of games can be found, including quiet ones,

  2. Winter Blast.

    ERIC Educational Resources Information Center

    MacDonald, Beverley

    1999-01-01

    Describes an art lesson for fifth- and sixth-grade students where they learn about the cold colors on the color wheel and apply that knowledge as they create a picture of a snowstorm. Explains that the students depict a snowstorm by layering the colors and drawings of snowflakes to make a three-dimensional effect. (CMK)

  3. Observation of dust emission and transport over Iraq and northwest Iran associated with winter Shamal

    NASA Astrophysics Data System (ADS)

    Flamant, C.; Abdi Vishkaee, F.; Cuesta, J.; Khalesifard, H.; Oolman, L.; Flamant, P.

    2012-04-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and space-borne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for one to two days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (less than 1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom and Tehran) is consistent with the downward mixing of dust in the PBL just after sunset, as evidenced in Zanjan. This study shades new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  4. Dust transport over Iraq and northwest Iran associated with winter Shamal: A case study

    NASA Astrophysics Data System (ADS)

    Abdi Vishkaee, Farhad; Flamant, Cyrille; Cuesta, Juan; Oolman, Larry; Flamant, Pierre; Khalesifard, Hamid R.

    2012-02-01

    Dynamical processes leading to dust emission over Syria and Iraq, in response to a strong winter Shamal event as well as the subsequent transport of dust over Iraq and northwest Iran, are analyzed on the basis of a case study (22-23 February 2010) using a suite of ground-based and spaceborne remote sensing platforms together with modeling tools. Surface measurements on 22 February show a sharp reduction in horizontal visibility over Iraq occurring shortly after the passage of a cold front (behind which the northwesterly Shamal winds were blowing) and that visibilities could be as low as 1 km on average for 1-2 days in the wake of the front. The impact of the southwesterly Kaus winds blowing ahead (east) of the Shamal winds on dust emission over Iraq is also highlighted. Unlike what is observed over Iraq, low near-surface horizontal visibilities (<1 km) over northwest Iran are observed well after the passage of the cold front on 23 February, generally in the hours following sunrise. Ground-based lidar measurements acquired in Zanjan show that, in the wake of the front, dust from Syria/Iraq was transported in an elevated 1 to 1.5 km thick plume separated from the surface during the night/morning of 23 February. After sunrise, strong turbulence in the developing convective boundary layer led to mixing of the dust into the boundary layer and in turn to a sharp reduction of the horizontal visibility in Zanjan. The timing of the reduction of surface horizontal visibility in other stations over northwest Iran (Tabriz, Qom, and Tehran) is consistent with the downward mixing of dust in the planetary boundary layer just after sunset, as evidenced in Zanjan. This study sheds new light on the processes responsible for dust emission and transport over Iraq and northwest Iran in connection with winter Shamal events. Enhanced knowledge of these processes is key for improving dust forecasts in this region.

  5. Radiative magnetized thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The evolution of plane-parallel magnetized thermal conduction fronts in the interstellar medium (ISM) was studied. Separating the coronal ISM phase and interstellar clouds, these fronts have been thought to be the site of the intermediate-temperature regions whose presence was inferred from O VI absorption-line studies. The front evolution was followed numerically, starting from the initial discontinuous temperature distribution between the hot and cold medium, and ending in the final cooling stage of the hot medium. It was found that, for the typical ISM pressure of 4000 K/cu cm and the hot medium temperature of 10 to the 6th K, the transition from evaporation to condensation in a nonmagnetized front occurs when the front thickness is 15 pc. This thickness is a factor of 5 smaller than previously estimated. The O VI column densities in both evaporative and condensation stages agree with observations if the initial hot medium temperature Th exceeds 750,000 K. Condensing conduction fronts give better agreement with observed O VI line profiles because of lower gas temperatures.

  6. Cold waves in Serbia

    NASA Astrophysics Data System (ADS)

    Unkasevic, Miroslava; Tosic, Ivana

    2013-04-01

    Climate extreme indices allow the assessment of changes in extreme climate events. The cold Spell Duration Indice (CSDI), from which the duration and severity of the cold waves are estimated, was applied to the seasonal series of the daily minimum temperatures at 15 meteorological stations in Serbia during the period 1949 to 2012. An analysis of the daily minimum temperatures during the winter season revealed that the longest (up to 20-22 days) and most severe cold waves were recorded in 1954, 1956, 1963 and 1983. In the transient seasons, the cooling episodes were observed in 1983 and 1988 (autumn season) and in 1987 (spring season) followed with a great reduction in duration and severity of cold waves. During the summer season, only in 1962, the longest (from 6 to 8 days) and most intense cold wave was registered almost over the whole territory of Serbia.

  7. Phospholipase A2 activity during cold acclimation of wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phospholipase A2 (EC 3.1.1.4; PLA2) activity in wheat (Triticum aestivum L.) crown tissue from plants undergoing cold acclimation and/or chilling stress was investigated in a moderately cold tolerant winter wheat, a spring wheat, and a poorly cold tolerant winter wheat. Activity levels were inv...

  8. Titan's Winter Polar Vortex

    NASA Technical Reports Server (NTRS)

    Flasar, F.M.; Achterberg, R.K.; Schinder, P.J.

    2008-01-01

    Titan's atmosphere has provided an interesting study in contrasts and similarities with Earth's. While both have N$_2$ as the dominant constituent and comparable surface pressures $\\sim1$ bar, Titan's next most abundant molecule is CH$_4$, not O$_2$, and the dissociative breakup of CH$_4$ and N$_2$ by sunlight and electron impact leads to a suite of hydrocarbons and nitriles, and ultimately the photochemical smog that enshrouds the moon. In addition, with a 15.95-day period, Titan is a slow rotator compared to Earth. While the mean zonal terrestrial winds are geostrophic, Titan's are mostly cyclostrophic, whipping around the moon in as little as 1 day. Despite the different dynamical regime, Titan's winter stratosphere exhibits several characteristics that should be familiar to terrestrial meteorologists. The cold winter pole near the 1 -mbar level is circumscribed by strong winds (up to 190 m/s) that act as a barrier to mixing with airmasses at lower latitudes. There is evidence of enhancement of several organic species over the winter pole, indicating subsidence. The adiabatic heating associated with this subsidence gives rise to a warm anomaly at the 0.01-mbar level, raising the stratopause two scale heights above its location at equatorial latitudes. Condensate ices have been detected in Titan's lower stratosphere within the winter polar vortex from infrared spectra. Although not always unambiguously identified, their spatial distribution exhibits a sharp gradient, decreasing precipitously across the vortex away from the winter pole. The interesting question of whether there is important heterogeneous chemistry occurring within the polar vortex, analogous to that occurring in the terrestrial polar stratospheric clouds in the ozone holes, has not been addressed. The breakup of Titan's winter polar vortex has not yet been observed. On Earth, the polar vortex is nonlinearly disrupted by interaction with large-amplitude planetary waves. Large-scale waves have not been identified in Titan's atmosphere, so the decay of its polar vortex may be more gradual than on Earth. Observations from an extended Cassini mission into late northern spring should provide critical data indicating whether the vortex goes away with a bang or just fades away.

  9. Climate warming will not decrease winter mortality

    NASA Astrophysics Data System (ADS)

    Staddon, Philip L.; Montgomery, Hugh E.; Depledge, Michael H.

    2014-03-01

    It is widely assumed by policymakers and health professionals that the harmful health impacts of anthropogenic climate change will be partially offset by a decline in excess winter deaths (EWDs) in temperate countries, as winters warm. Recent UK government reports state that winter warming will decrease EWDs. Over the past few decades, however, the UK and other temperate countries have simultaneously experienced better housing, improved health care, higher incomes and greater awareness of the risks of cold. The link between winter temperatures and EWDs may therefore no longer be as strong as before. Here we report on the key drivers that underlie year-to-year variations in EWDs. We found that the association of year-to-year variation in EWDs with the number of cold days in winter ( <5 °C), evident until the mid 1970s, has disappeared, leaving only the incidence of influenza-like illnesses to explain any of the year-to-year variation in EWDs in the past decade. Although EWDs evidently do exist, winter cold severity no longer predicts the numbers affected. We conclude that no evidence exists that EWDs in England and Wales will fall if winters warm with climate change. These findings have important implications for climate change health adaptation policies.

  10. Ocean fronts trigger high latitude phytoplankton blooms

    NASA Astrophysics Data System (ADS)

    Taylor, J. R.; Ferrari, R.

    2011-12-01

    Density fronts are ubiquitous features of the upper ocean. Here, numerical simulations show that restratification at fronts inhibits vertical mixing, triggering phytoplankton blooms in low-light conditions. The stability of the water column at fronts is set by a competition between frontal instabilities, which restratify the upper ocean, and turbulent mixing, which acts to destroy this stratification. Recent studies have found that frontal instabilities can restratify the upper ocean, even in the presence of strong surface cooling and destabilizing winds. During winter at high latitudes, primary production by phytoplankton is generally limited by low ambient light levels and deep turbulent mixing. When the turbulent mixing, inhibited by frontal restratification, becomes smaller than a critical turbulence threshold, a phytoplankton bloom can develop. The finding that fronts can trigger phytoplankton blooms by reducing mixing, provides an explanation for satellite observations of high chlorophyll concentrations at high latitude fronts.

  11. Annual and interannual variability of the Barents Sea water masses and polar front: 1980-2011

    NASA Astrophysics Data System (ADS)

    Oziel, Laurent; Sirven, Jerome; Gascard, Jean-Claude

    2015-04-01

    The Barents Sea (BS) is a transition area between the warm and saline Atlantic Waters (AW) and the cold and fresh Arctic Waters (ArW). The BS is characterized by a polar front structure separating AW from ArW. The mixing and cooling of these two water mass generates dense waters in winter. Dense waters are of prior importance because they cascade into the Arctic Ocean to form the Artic Intermediate Waters. This study will use a new hydrographic data set fulfilled by recent stations in the Russian area and a 3D model coupled with atmosphere and ice as a back up to investigate the link between fronts and water masses, as well as their variability over the last 30 years. This study suggests that the polar front structure is composed of two branches and that the dense waters are found in between. The BS, especially in the East, is experiencing an "Atlantification" accompanied with a drastic sea ice decline. These changes, amplified during the last decade, shift the southern branch of the polar front structure in the Norh-East direction and affect negatively the dense water formation. This could have major impacts on the Arctic Ocean ventilation and primary production.

  12. Pressure transient method for front tracking

    SciTech Connect

    Benson, S.M.; Bodvarsson, G.S.

    1983-08-01

    A pressure transient technique for tracking the advance of cold water fronts during water flooding and goethermal injection operations has been developed. The technique is based on the concept that the steady state pressure buildup in the reservoir region inside the front can be calculated by a fluid skin factor. By analyzing successive pressure falloff tests, the advance of the front in the reservoir can be monitored. The validity of the methods is demonstrated by application to three numerically simulated data sets, a nonisothermal step-rate injection test, a series of pressure falloffs in a multilayered reservoir, and a series of pressure falloff tests in a water flooded oil reservoir.

  13. Cold intolerance

    MedlinePLUS

    ... intolerance is an abnormal sensitivity to a cold environment or cold temperatures. ... often very thin women) do not tolerate cold environments because they have very little body fat and are unable to keep warm.

  14. Common Cold

    MedlinePLUS

    ... nose, coughing - everyone knows the symptoms of the common cold. It is probably the most common illness. In ... avoid colds. There is no cure for the common cold. For relief, try Getting plenty of rest Drinking ...

  15. Winter season mortality: will climate warming bring benefits?

    NASA Astrophysics Data System (ADS)

    Kinney, Patrick L.; Schwartz, Joel; Pascal, Mathilde; Petkova, Elisaveta; Le Tertre, Alain; Medina, Sylvia; Vautard, Robert

    2015-06-01

    Extreme heat events are associated with spikes in mortality, yet death rates are on average highest during the coldest months of the year. Under the assumption that most winter excess mortality is due to cold temperature, many previous studies have concluded that winter mortality will substantially decline in a warming climate. We analyzed whether and to what extent cold temperatures are associated with excess winter mortality across multiple cities and over multiple years within individual cities, using daily temperature and mortality data from 36 US cities (1985-2006) and 3 French cities (1971-2007). Comparing across cities, we found that excess winter mortality did not depend on seasonal temperature range, and was no lower in warmer vs. colder cities, suggesting that temperature is not a key driver of winter excess mortality. Using regression models within monthly strata, we found that variability in daily mortality within cities was not strongly influenced by winter temperature. Finally we found that inadequate control for seasonality in analyses of the effects of cold temperatures led to spuriously large assumed cold effects, and erroneous attribution of winter mortality to cold temperatures. Our findings suggest that reductions in cold-related mortality under warming climate may be much smaller than some have assumed. This should be of interest to researchers and policy makers concerned with projecting future health effects of climate change and developing relevant adaptation strategies.

  16. Gene expression analysis to understand cold tolerance in citrus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Citrus cultivars show a wide range of tolerance to cold temperatures. Lemons and limes are known to be sensitive to cold while certain mandarins and trifoliate oranges can endure severe winters. To understand the mechanism of cold tolerance in citrus, we selected three known cold-sensitive and three...

  17. Leap Day 2012 Severe Storm Front - Duration: 26 seconds.

    NASA Video Gallery

    This movie was created using GOES-13 visible and infrared satellite imagery from Feb. 28 at 1245 UTC (7:45 a.m. EST) through March 1, and shows the progression of the cold front and associated low ...

  18. EXTERIOR VIEW OF THE FRONT AND NORTHEAST SIDE OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW OF THE FRONT AND NORTHEAST SIDE OF BUILDING 190 FACING WEST. - U.S. Naval Base, Pearl Harbor, Warehouse & Cold Storage Building, North corner of Pokomoke Street & Hornet Avenue, Pearl City, Honolulu County, HI

  19. EXTERIOR VIEW OF THE FRONT AND SOUTHWEST SIDE OF BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EXTERIOR VIEW OF THE FRONT AND SOUTHWEST SIDE OF BUILDING 190 FACING NORTH. - U.S. Naval Base, Pearl Harbor, Warehouse & Cold Storage Building, North corner of Pokomoke Street & Hornet Avenue, Pearl City, Honolulu County, HI

  20. Endothermic heat production in honeybee winter clusters.

    PubMed

    Stabentheiner, Anton; Pressl, Helga; Papst, Thomas; Hrassnigg, Norbert; Crailsheim, Karl

    2003-01-01

    In order to survive cold northern winters, honeybees crowd tightly together in a winter cluster. Present models of winter cluster thermoregulation consider the insulation by the tightly packed mantle bees as the decisive factor for survival at low temperatures, mostly ignoring the possibility of endothermic heat production. We provide here direct evidence of endothermic heat production by 'shivering' thermogenesis. The abundance of endothermic bees is highest in the core and decreases towards the surface. This shows that core bees play an active role in thermal control of winter clusters. We conclude that regulation of both the insulation by the mantle bees and endothermic heat production by the inner bees is necessary to achieve thermal stability in a winter cluster. PMID:12477904

  1. Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833-1900

    NASA Astrophysics Data System (ADS)

    Grab, S. W.; Nash, D. J.

    2009-04-01

    This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as ‘very severe', ‘severe' or ‘normal/mild', with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century. Keywords: Cold season chronology, 19th century, Lesotho, volcanic forcing

  2. Classification of thrust fronts

    SciTech Connect

    Morley, C.K.

    1986-01-01

    Variations in structural style at thrust fronts are examined to determine whether they represent different stages of typical thrust sheet development or unique events as orogenic stresses declined. Thrust fronts are classified as buried or emergent, in which either the sole thrust died out in the subsurface or emerged to the synorogenic surface. Buried thrust fronts are subdivided into two types: type 1 fronts end in broad zones of low strain; type 2 fronts end in zones of high strain. Emergent thrust fronts may display significant horizontal displacement (strongly emergent) or limited displacements of about 1 km (weakly emergent). Tip-stick thrust fronts exhibit high strains and out-of-sequence thrusting. Different types of thrust fronts are linked by transitional tip-line anticlines and strike-slip zones. Most thrust front types represent different stages of typical thrust sheet development, but those in type 1 display atypical development unique to thrust fronts. 16 figures.

  3. Cold adaptations.

    PubMed

    Launay, Jean-Claude; Savourey, Gustave

    2009-07-01

    Nowdays, occupational and recreational activities in cold environments are common. Exposure to cold induces thermoregulatory responses like changes of behaviour and physiological adjustments to maintain thermal balance either by increasing metabolic heat production by shivering and/or by decreasing heat losses consecutive to peripheral cutaneous vasoconstriction. Those physiological responses present a great variability among individuals and depend mainly on biometrical characteristics, age, and general cold adaptation. During severe cold exposure, medical disorders may occur such as accidental hypothermia and/or freezing or non-freezing cold injuries. General cold adaptations have been qualitatively classified by Hammel and quantitatively by Savourey. This last classification takes into account the quantitative changes of the main cold reactions: higher or lower metabolic heat production, higher or lesser heat losses and finally the level of the core temperature observed at the end of a standardized exposure to cold. General cold adaptations observed previously in natives could also be developed in laboratory conditions by continuous or intermittent cold exposures. Beside general cold adaptation, local cold adaptation exists and is characterized by a lesser decrease of skin temperature, a more pronounced cold induced vasodilation, less pain and a higher manual dexterity. Adaptations to cold may reduce the occurrence of accidents and improve human performance as surviving in the cold. The present review describes both general and local cold adaptations in humans and how they are of interest for cold workers. PMID:19531907

  4. Halting Hypothermia: Cold Can Be Dangerous

    MedlinePLUS

    ... who spends much time outdoors in very cold weather can get hypothermia. But hypothermia can happen anywhere— ... just outside and not just in bitter winter weather. It can strike when temperatures are cool—for ...

  5. Greater understanding is need of whether warmer and shorter winters associated with climate change could reduce winter mortality

    NASA Astrophysics Data System (ADS)

    Ebi, Kristie L.

    2015-11-01

    In temperate regions, mortality is higher during winter than summer seasons. Assuming this seasonality is associated with ambient temperature, assessments often conclude that climate change will likely reduce winter mortality. However, there has been limited evaluation of the extent to which cold temperatures are actually the proximal cause of winter mortality in temperate regions. Kinney et al (2015 Environ Res. Lett. 10 064016) analyzed multi-decadal data from 39 cities in the US and France and concluded that cold temperatures are not a primary driver of most winter excess mortality. These analyses suggest that increases in heat-related mortality with climate change will unlikely be balanced by reductions in winter mortality, reinforcing the importance of health systems continuing to ensure adequate health protection against cold temperatures even as temperatures warm.

  6. Measurements of Chlorine Partitioning in the Winter Arctic Stratosphere

    NASA Technical Reports Server (NTRS)

    Stachnik, R.; Salawitch, R.; Engel, A.; Schmidt, U.

    1999-01-01

    Under the extremely cold conditions in the polar winter stratosphere, heterogeneous reactions involving HCl and CIONO(sub 2) on the surfaces of polar stratospheric cloud particles can release large amounts of reactive chlorine from these reservoirs leading to rapid chemical loss of ozone in the Arctic lower stratosphere during late winter and early spring.

  7. Documentary evidence of climate variability during cold seasons in Lesotho, southern Africa, 1833-1900

    NASA Astrophysics Data System (ADS)

    Grab, Stefan W.; Nash, David J.

    2010-03-01

    This study presents the first 19th century cold season climate chronology for the Kingdom of Lesotho in southern Africa. The chronology is constructed using a variety of documentary sources including letters, diaries, reports, monographs and newspaper articles obtained from southern African and British archives. Information relating to cold season weather phenomena during the austral autumn, winter and early spring months were recorded verbatim. Each of the cold seasons from 1833 to 1900 was then classified as “very severe”, “severe” or “normal/mild”, with a confidence rating ranging from low (1) to high (3) awarded against each annual classification. The accuracy of the document-derived chronology was verified against temperature data for Maseru for the period 1893-1900. Excellent correspondence of the document-derived chronology with the Maseru instrumental data and also with other global proxy temperature records for the 19th century is achieved. The results indicate 12 (18% of the total) very severe, 16 (23%) severe and 40 (59%) normal/mild cold seasons between 1833 and 1900. The overall trend is for more severe and snow-rich cold seasons during the early part of the study period (1833-1854) compared with the latter half of the 19th century (with the exception of the 1880s). A reduction in the duration of the frost season by over 20 days during the 19th century is also tentatively identified. Several severe to very severe cold seasons in Lesotho follow after major tropical and SH volcanic eruptions; such years are usually characterized by early frosts, and frequent and heavy snowfalls. The blocking of solar radiation and the enhanced northward displacement of polar fronts that are directly or indirectly associated with volcanic events, may account for many of the most severe Lesotho winters during the 19th century.

  8. Cold Stress

    MedlinePLUS

    ... beacon, whistles, flares, waterproof radio) and having a means of being retrieved from the water. Below you will find links with information about cold water survival and cold water rescue. NIOSH Commercial Fishing Safety ...

  9. Common cold

    MedlinePLUS

    The common cold most often causes a runny nose, nasal congestion, and sneezing. You may also have a sore throat, ... It is called the common cold for good reason. There are over one billion colds in the United States each year. You and your children will ...

  10. The Gulf Stream - Troposphere connection: warm and cold paths

    NASA Astrophysics Data System (ADS)

    Czaja, Arnaud; Sheldon, Luke; Vanniere, Benoit; Parfitt, Rhys

    2015-04-01

    In this talk, the role of moist processes in ocean-atmosphere coupling over the Gulf Stream will be discussed, using ERA interim reanalysis data (1979-2012) and nested simulations with the UK Met Office Unified Model. The focus is on the cold season (December through February). Two types of moist processes will be highlighted. First, shallow convection driven by surface fluxes of heat and moisture, usually found behind the cold front of extra-tropical cyclones. It will be shown that the warm flank of the Gulf Stream is instrumental in amplifying these convective events. In addition, it will be suggested that they are also responsible for simulated changes in precipitation found in numerical experiments with Atmospheric General Circulation Models forced with smoothed and realistic sea surface temperature (SST) distributions. The impact of this type of air-sea interaction on the larger scale is however unclear as it mostly affects low levels (below 700hPa). The second type of moist processes of relevance is that of moist inertial ascent along the cold front of extra-tropical cyclones. It will be shown that such ascent typically occurs 10% of the time in winter and that it is preferentially rooted over the warm flank of the Gulf Stream. The moist inertial ascent is intense and narrow, and not compensated within a given synoptic system. As a result, and despite being infrequent, it will be shown to contribute crucially to the time mean upward motion over the Gulf Stream at middle (500hPa) and upper tropospheric levels (300 hPa). This result suggests that warm advection by the Gulf Stream acts in effect as a horizontally broad, downward push, on air masses above the boundary layer, a push required to compensate for the upward mass flux in the moist inertial ascent.

  11. Effects of the Cold Tongue in the South China Sea on the Monsoon, Diurnal Cycle and Rainfall in the Maritime Continent

    NASA Astrophysics Data System (ADS)

    Koseki, Shunya; Koh, Tieh-Yong; Kiat Teo, Chee

    2013-04-01

    We investigate the effects of the Cold Tongue in the South China Sea (SCS) on the winter monsoon, rainfall and diurnal cycle in the Maritime Continent using a numerical model verified with satellite rainfall and reanalysis data. Composite analysis of the observation and reanalysis data based on Cold Tongue Index indicates that the penetration of the monsoon to Java Sea is enhanced when the cold tongue is strong. A sensitivity experiment without the cold tongue shows that the winter monsoon is diminished over SCS and around coastal regions because of anomalous low-level cyclonic circulation associated with enhanced convection over SCS due to the warmer SST. The diurnal cycle, in particular, the night-morning rainfall over the ocean in coastal regions is modified. The effect on daytime rainfall over the land is weaker. Along the northern coast of Java far from SCS, the night-morning rainfall is much reduced over Java Sea when the cold tongue is suppressed because of the weakened land breeze front due to the weakened northerly monsoon. In contrast, the afternoon-evening rainfall on Java Island is enhanced showing that the local impacts are not simply the result of large-scale subsidence from the convective anomaly in SCS. Along the northwestern coast of Borneo adjacent to SCS, the weakened winter monsoon tends to reduce the rainfall at the land breeze front near the coastline. On the other hand, the warmer SST forces a stronger land breeze and the weakened monsoon encourages further and faster offshore propagation of the land breeze front. Consequently, the rainfall peak shifts further offshore in the sensitivity experiment. We conclude that the cold tongue has two effects, the sustenance of a strong monsoon (indirect effect) and the cooling of local SST (direct effect), which have opposite influences on the diurnal cycle in the Maritime Continent. Reference: Koseki, S., T. Y. Koh and C. K. Teo (2012), "Effects of the Cold Tongue in the South China Sea on the Monsoon, Diurnal Cycle and Rainfall in the Maritime Continent", Quarterly Journal of the Royal Meteorological Society, DOI: 10.1002/qj.2052, accepted (early online release).

  12. Isentropic analysis of polar cold air mass streams

    NASA Astrophysics Data System (ADS)

    Iwasaki, Toshiki; Kanno, Yuki

    2015-04-01

    1. Introduction A diagnostic method is presented of polar cold air mass streams defined below a threshold potential temperature. The isentropic threshold facilitates a Lagrangian view of the cold air mass streams from diabatic generation to disappearance. 2. Mass-weighted isentropic zonal mean (MIM) cold air streams In winter hemispheres, MIM's mass stream functions show a distinct extratropical direct (ETD) cell in addition to the Hadley cell. The mass stream functions have local maxima at around (280K, 45N) for NH winter and, around (280K, 50S) for SH winter. Thus, =280K may be appropriate to a threshold of the polar cold air mass for both hemispheres. The high-latitude downward motion indicates the diabatic generation of cold air mass, whereas the mid-latitude equatorward flow does its outbreak. The strength of equatorward flow is under significant control of wave-mean flow interactions. 3. Geographical distribution of the cold air mass streams in the NH winter In the NH winter, the polar cold air mass flux has two distinct mainstreams, hereafter called as East Asian (EA) stream and the North American (NA) stream. The former grows over the northern part of the Eurasian continent, turns down southeastward toward East Asia and disappears over the western North Pacific Ocean. The latter grows over the Arctic Ocean, flows toward the East Coast of North America and disappears over the western North Atlantic Ocean. These coincide well with main routes of cold surges. 4. Comparison between NH and SH winter streams The cold air mass streams in NH winter are more asymmetric than those in SH winter. The NH total cold air mass below =280K is about 1.5 times greater than the SH one. These come mainly from the topography and land-sea distribution. The mid-latitude mountains steer the cold air mass streams on the northern sides and enhance the residence time over its genesis region.

  13. Stationary superfluid turbulent fronts

    NASA Astrophysics Data System (ADS)

    Tough, J. T.; Kafkalidis, J. F.; Klinich, G.; Murphy, P. J.; Castiglione, J.

    1994-02-01

    Stationary fronts of superfluid turbulence have been produced in small nonuniform channels. The front occurs at that position in the channel where the local velocity reaches the critical value. Converging and diverging flows in a channel of circular cross section and diverging flow in a channel of rectangular cross section have been studied. The front in the diverging circular channel is anomalous, becoming unstable at a position near the middle of the channel.

  14. Physiological processes during winter dormancy and their ecological significance

    SciTech Connect

    Havranek, W.M.; Tranquillini, W.

    1995-07-01

    Lengthy and severe winters require that trees in the forests of boreal and mountain zones undergo winter dormancy. Physiologically, a high resistance to subfreezing temperatures and concomitant dehydration are necessary. To accomplish this dormancy, both physiological and structural changes are needed at the cellular level that require induction by endogenous and photoperiodic control early in autumn. Endogenous rhythmicity promotes cold hardening in early autumn and the persistence of hardiness throughout the winter. Numerous physiological functions are maintained at a reduced level, or become completely inhibited during true winter dormancy. Winter hardiness also includes the capability to minimize water loss effectively when water uptake is severely impeded or impossible. Anatomical features such as tracheids act to minimize xylem embolism during frequent freeze-thaw cycles, and {open_quotes}crown{close_quotes} tissues enable buds to stay in a dehydrated and, thus, more resistant state during winter. Both these structural features are adaptations that contribute to the dominance of conifers in cold climates. Interestingly, deciduous tree species rather than evergreen conifers dominate in the most severe winter climates, although it is not clear whether limitations during winter, during the summer growth period, or during both are most limiting to conifer tree ecology. Additional work that evaluates the importance of winter and summer growth restriction, and their interaction, is needed before a comprehensive understanding of conifer tree ecophysiology will be possible.

  15. Fronts, fish, and predators

    NASA Astrophysics Data System (ADS)

    Belkin, Igor M.; Hunt, George L.; Hazen, Elliott L.; Zamon, Jeannette E.; Schick, Robert S.; Prieto, Rui; Brodziak, Jon; Teo, Steven L. H.; Thorne, Lesley; Bailey, Helen; Itoh, Sachihiko; Munk, Peter; Musyl, Michael K.; Willis, Jay K.; Zhang, Wuchang

    2014-09-01

    Ocean fronts play a key role in marine ecosystems. Fronts shape oceanic landscapes and affect every trophic level across a wide range of spatio-temporal scales, from meters to thousands of kilometers, and from days to millions of years. At some fronts, there is an elevated rate of primary production, whereas at others, plankton is aggregated by advection and by the behavior of organisms moving against gradients in temperature, salinity, light irradiance, hydrostatic pressure and other physico-chemical and biological factors. Lower trophic level organisms - phytoplankton and zooplankton - that are aggregated in sufficient densities, attract organisms from higher trophic levels, from planktivorous schooling fish to squid, large piscivorous fish, seabirds and marine mammals. Many species have critical portions of their life stages or behaviors closely associated with fronts, including spawning, feeding, ontogenetic development, migrations, and other activities cued to frontal dynamics. At different life stages, an individual species or population might be linked to different fronts. The nature and strength of associations between fronts and biota depend on numerous factors such as the physical nature and spatio-temporal scales of the front and the species and their life stages in question. In other words, fronts support many different niches and micro/macro-habitats over a wide range of spatial and temporal scales.

  16. Atypical occlusion process caused by the merger of a sea-breeze front and gust front

    NASA Astrophysics Data System (ADS)

    Abulikemu, Abuduwaili; Xu, Xin; Wang, Yuan; Ding, Jinfeng; Wang, Yan

    2015-10-01

    An atypical occlusion process that occurred in North China on 14 July 2011 is studied based on both observations and a real-data Weather Research and Forecasting (WRF) model simulation. The results show that this atypical occlusion process was significantly different from the traditional, synoptic-scale occlusion process that occurs within extratropical cyclones. It was caused by the merger of two cold-type mesoscale fronts. One of the fronts developed from the gust front of convective storms, while the other was a sea-breeze front. As the two fronts moved towards each other, the warm air between them was squeezed and separated from the surface. An atypical occluded front was formed when the two fronts merged, with the warm air forced aloft. This kind of occlusion is termed a "merger" process, different from the well-known "catch-up" and "wrap-up" processes. Moreover, local convection was found to be enhanced during the merger process, with severe convective weather produced in the merger area.

  17. Cold Fusion.

    ERIC Educational Resources Information Center

    Dutton, Eileen; Salazar, Chris

    1998-01-01

    Discusses ways of preparing school-building roofs for the winter season by paying attention to common problem areas. Also highlights the use of white elastomeric roof coatings, their benefits, and considerations when applying them. (GR)

  18. Cold Pools in the Columbia Basin

    SciTech Connect

    Whiteman, Charles D.; Zhong, Shiyuan; Shaw, William J.; Hubbe, John M.; Bian, Xindi; Mittelstadt, J.

    2001-01-01

    Persistent midwinter cold air pools produce multi-day periods of cold, dreary weather in valleys and basins. Persistent stable stratification leads to the buildup of pollutants and moisture in the pool. Because the pool sometimes has temperatures below freezing while the air above is warmer, freezing precipitation often occurs with consequent effects on transportation and safety. Forecasting the buildup and breakdown of these cold pools is difficult because the physical mechanisms leading to their formation, maintenance, and destruction have received little study. This paper provides a succinct meteorological definition of a cold pool, develops a climatology of Columbia Basin cold pools, and analyzes remote and in situ temperature and wind sounding data for two winter cold pool episodes that were accompanied by fog and stratus, illustrating many of the physical mechanisms affecting cold pool evolution.

  19. Winters fuels report

    SciTech Connect

    1995-10-27

    The outlook for distillate fuel oil this winter is for increased demand and a return to normal inventory patterns, assuming a resumption of normal, cooler weather than last winter. With industrial production expected to grow slightly from last winter`s pace, overall consumption is projected to increase 3 percent from last winter, to 3.4 million barrels per day during the heating season (October 1, 1995-March 31, 1996). Much of the supply win come from stock drawdowns and refinery production. Estimates for the winter are from the Energy Information Administration`s (EIA) 4th Quarter 1995 Short-Tenn Energy Outlook (STEO) Mid-World Oil Price Case forecast. Inventories in place on September 30, 1995, of 132 million barrels were 9 percent below the unusually high year-earlier level. Inventories of high-sulfur distillate fuel oil, the principal type used for heating, were 13 percent lower than a year earlier. Supply problems are not anticipated because refinery production and the ready availability of imports should be adequate to meet demand. Residential heating off prices are expected to be somewhat higher than last winter`s, as the effects of lower crude oil prices are offset by lower distillate inventories. Heating oil is forecast to average $0.92 per gallon, the highest price since the winter of 1992-93. Diesel fuel (including tax) is predicted to be slightly higher than last year at $1.13 per gallon. This article focuses on the winter assessment for distillate fuel oil, how well last year`s STEO winter outlook compared to actual events, and expectations for the coming winter. Additional analyses include regional low-sulfur and high-sulfur distillate supply, demand, and prices, and recent trends in distillate fuel oil inventories.

  20. Dehydration in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Jensen, Eric; Podolske, James; Selkirk, Henry; Anderson, Bruce; Avery, Melody; Diskin. Glenn

    2004-01-01

    Recent work has shown that limited amounts of tropospheric air can penetrate as much as 1 km into the middleworld stratosphere during the arctic winter. This, coupled with temperatures that are cold enough to produce saturation mixing ratios of less than 5 ppmv at the tropopause, results in stratospheric cloud formation and upper tropospheric dehydration. Even though these "cold outbreaks" occupy only a small portion of the area in the arctic (1-2%), their importance is magnified by an order of magnitude because of the air flow through them. This is reinforced by evidence of progressive drying through the winter measured during SOLVE-1. The significance of this process lies in its effect on the upper tropospheric water content of the middle and high latitude tropopause region, which plays an important role in regulating the earth's radiative balance. There appears to be significant year-to-year variability in the incidence of the cold outbreaks. This work has two parts. First, we describe case studies of dehydration taken from the SOLVE and SOLVE2 aircraft sampling missions during the Arctic winters of 2000 and 2003 respectively. Trajectory based microphysical modeling is employed to examine the sensitivity of the dehydration to microphysical parameters and the nature of sub-grid scale temperature fluctuations. We then examine the year-to-year variations in potential dehydration using a trajectory climatology.

  1. Clouds in the Winter Arctic Tropopause Region

    NASA Technical Reports Server (NTRS)

    Pfister, Leonhard; Selkirk, Henry; Anderson, Bruce; Podolske, James; Sachse, Glen; Avery, Melody; Schoeberl, Mark; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    Water vapor in the winter arctic tropopause region is important because, after the tropical tropopause region, the winter arctic tropopause has the coldest temperatures in the tropospheric northern hemisphere. This suggests the potential for cloud formation that can remove water vapor from a part of the atmosphere where radiatively active gases (such as water) exert a disproportionate influence on the earth's radiation budget. Previous work by the same authors has shown that this cloud formation extends into the stratosphere, with 20% of the parcels having ozone values of 300-350 ppbv experiencing ice saturation in any given 10 day period period during the late winter. In fact, temperatures are cold enough that 5-10% of the parcels experience saturation even if the water content is below the prevailing stratospheric value of 5 ppmv. This work describes a case study of clouds observed by aircraft near the winter arctic tropopause during the SAGE Ozone Loss and Validation Experiment (SOLVE). This provided a unique opportunity to examine dehydration processes in this region since in situ water, tracer, cloud particle, and meteorological data were all available simultaneously. During this period, temperatures were cold enough at the tropopause to produce saturation mixing ratios of 3-4 ppmv. Thus, clouds were actually observed within the stratosphere. Back trajectories indicate that the air in these clouds came from lower latitudes and altitudes. The study describes the nature of the clouds, the history of the air, and the possible implications for the upper tropospheric water budget.

  2. Negative Ion Density Fronts

    SciTech Connect

    Igor Kaganovich

    2000-12-18

    Negative ions tend to stratify in electronegative plasmas with hot electrons (electron temperature Te much larger than ion temperature Ti, Te > Ti ). The boundary separating a plasma containing negative ions, and a plasma, without negative ions, is usually thin, so that the negative ion density falls rapidly to zero-forming a negative ion density front. We review theoretical, experimental and numerical results giving the spatio-temporal evolution of negative ion density fronts during plasma ignition, the steady state, and extinction (afterglow). During plasma ignition, negative ion fronts are the result of the break of smooth plasma density profiles during nonlinear convection. In a steady-state plasma, the fronts are boundary layers with steepening of ion density profiles due to nonlinear convection also. But during plasma extinction, the ion fronts are of a completely different nature. Negative ions diffuse freely in the plasma core (no convection), whereas the negative ion front propagates towards the chamber walls with a nearly constant velocity. The concept of fronts turns out to be very effective in analysis of plasma density profile evolution in strongly non-isothermal plasmas.

  3. The effects of phenotypic plasticity on photosynthetic performance in winter rye, winter wheat and Brassica napus.

    PubMed

    Dahal, Keshav; Kane, Khalil; Gadapati, Winona; Webb, Elizabeth; Savitch, Leonid V; Singh, Jasbir; Sharma, Pooja; Sarhan, Fathey; Longstaffe, Fred J; Grodzinski, Bernard; Hner, Norman P A

    2012-02-01

    The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20C [non-acclimated (NA)] or 5C [cold acclimated (CA)] were assessed. The 22-40% increase in light-saturated rates of CO? assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO? assimilation and photosynthetic electron transport, (2) the increased efficiency and light-saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non-photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q??) of CO? assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17-overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness. PMID:21883254

  4. Some Chinese folk prescriptions for wind-cold type common cold

    PubMed Central

    Hai-long, Zhai; Shimin, Chen; Yalan, Lu

    2015-01-01

    Although self-limiting, the common cold (??g?n mo) is highly prevalent. There are no effective antivirals to cure the common cold and few effective measures to prevent it, However, for thousands years, Chinese people have treated the common cold with natural herbs, According to the traditional Chinese medicine (TCM) theory (???? zh?ng y? l? ln), the common cold is considered as an exterior syndrome, which can be further divided into the wind-cold type (??? f?ng hn xng), the wind-heat type (??? f?ng r xng), and the summer heat dampness type (??? sh? r xng). Since the most common type of common cold caught in winter and spring is the wind-cold type, the article introduced some Chinese folk prescriptions for the wind-cold type common cold with normal and weak physique, respectively. For thousands of years, Chinese folk prescriptions for the common cold, as complementary and alternative medicine (CAM; ??????? b? ch?ng y? t di y? xu), have been proven to be effective, convenient, cheap, and most importantly, safe. The Chinese folk prescriptions (?????? zh?ng gu mn ji?n ch? f?ng) for the wind-cold type common cold are quite suitable for general practitioners or patients with the wind-cold type common cold, to treat the disease. Of course, their pharmacological features and mechanisms of action need to be further studied. PMID:26151024

  5. Midlatitude tropical interactions during winter

    NASA Technical Reports Server (NTRS)

    Chang, C. P.

    1985-01-01

    Pre-FGGE and FGGE/MONEX data are used to identify short term midlatitude tropical and longitudinal interactions during the winter monsoon. These interactions occur as cold surges, which develop over the East Asian continent and penetrate deep into the tropics with fast gravity wave speed. The observed interactions that occur after a surge include cyclogenesis and enhanced convection in the equatorial region, feedback from equatorial convection to midlatitude circulation systems, tropical east-west (Walker) circulations, and cross-equatorial influence. These interactions are also studied theoretically by analytical solutions of linearized shallow water equations. Response to transient forcing (monsoon surges) are mainly in Rossby and Kelvin modes. When the forcing time scale is short, significant gravity modes are also excited. The responses closely resemble observed winter monsoon flow. Responses to stationary forcing show that deep (barotropic) motions propagate energy away into high latitudes and that shallow (baroclinic) motions are trapped around the equator. It is shown that the barotropic teleconnection-type response to tropical sources found in previous numerical studies was due to the specified vertical wind shear and surface friction.

  6. Relativistic Runaway Ionization Fronts

    NASA Astrophysics Data System (ADS)

    Luque, A.

    2014-01-01

    We investigate the first example of self-consistent impact ionization fronts propagating at relativistic speeds and involving interacting, high-energy electrons. These fronts, which we name relativistic runaway ionization fronts, show remarkable features such as a bulk speed within less than one percent of the speed of light and the stochastic selection of high-energy electrons for further acceleration, which leads to a power-law distribution of particle energies. A simplified model explains this selection in terms of the overrun of Coulomb-scattered electrons. Appearing as the electromagnetic interaction between electrons saturates the exponential growth of a relativistic runaway electron avalanche, relativistic runaway ionization fronts may occur in conjunction with terrestrial gamma-ray flashes and thus explain recent observations of long, power-law tails in the terrestrial gamma-ray flash energy spectrum.

  7. Winter and Specialty Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The two main commercial types of wheat are durum (Triticum durum L., 2n=4x= 28) and common (T. aestivum L, 2n=6x=42.) wheat, the latter being the more widely grown. Wheat has three growth habits, namely winter (wheats grown over the winter months that require vernalization and can withstand prolong...

  8. Bison in Winter

    USGS Multimedia Gallery

    A plains bison in winter at Yellowstone National Park. A bison's hump is useful as a snowplow in winter when the animal swings its head from side to side to brush aside the snow to reach food underneath. The hump is composed of muscles supported by long vertebrae....

  9. Winter Art Education Project

    ERIC Educational Resources Information Center

    Jokela, Timo

    2007-01-01

    The purpose of this article is to describe how the Department of Art Education at the University of Lapland in Finland has developed winter art as a method of environmental and community-based art education. I will focus on the Snow Show Winter Art Education Project, a training project funded by the European Union and the State Provincial Office…

  10. Early Childhood: The World in Winter.

    ERIC Educational Resources Information Center

    McIntyre, Margaret, Ed.

    1983-01-01

    Various winter activities and experiences for young children are suggested. These include a getting ready for winter walk in the fall, winter birds, winter clothing, traveling in winter, winter sky watch, and others. (JN)

  11. Interannual salinity variability of the Northern Yellow Sea Cold Water Mass

    NASA Astrophysics Data System (ADS)

    Li, Ang; Yu, Fei; Diao, Xinyuan

    2015-05-01

    This paper discusses the interannual variability of the Northern Yellow Sea Cold Water Mass (NYSCWM) and the factors that influence it, based on survey data from the 1976-2006 national standard section and the Korea Oceanographic Data Center, monthly E-P flux data from the European Centre for Medium-Range Weather Forecasts, and meridional wind speed data from the International Comprehensive Ocean-Atmosphere Data Set. The results show that: 1) the mean salinity of the NYSCWM center has a slightly decreasing trend, which is not consistent with the high salinity center; 2) both the southern salinity front and the halocline of the NYSCWM display a weakening trend, which indicates that the difference between the NYSCWM and coastal water decreases; 3) the Yellow Sea Warm Current intrusion, the E-P flux of the northern Yellow Sea, and the strength of the winter monsoon will affect the NYSCWM salinity during the following summer.

  12. Winter-to-winter variations in indoor radon.

    PubMed

    Mose, D G; Mushrush, G W; Kline, S W

    1989-01-01

    Indoor radon concentrations in northern Virginia and central Maryland show a strong dependence on weather. Winter tends to be associated with higher than average indoor radon, and summer with lower than average. However, compared to the winter of 1986-1987, the winter of 1987-1988 was warmer and drier. Consequently, winter-to-winter indoor radon decreased by about 25%. This winter-to-winter decrease is unexpectedly large, and simulates winter-to-summer variations that have been reported. PMID:2795698

  13. A front propagation formulation for under-resolved reaction fronts

    NASA Astrophysics Data System (ADS)

    Kim, Seung Hyun

    2015-03-01

    A method to simulate propagating reaction fronts on under-resolved grids is presented. The proposed method prevents the spurious propagation of under-resolved reaction fronts by introducing a front propagation form of the chemical reaction term. The front propagation formulation adopts a regularized Delta function to discretely preserve the total reaction rates on computational grids. By introducing the regularized Delta function that reproduces the physical mechanism of front propagation, the present method allows for the simulation of reaction fronts with variable thicknesses on under-resolved grids. Applications to isothermal reaction fronts, laminar premixed flames, and large eddy simulation of turbulent premixed flames are presented.

  14. Winter marine atmospheric conditions over the Japan Sea

    NASA Astrophysics Data System (ADS)

    Dorman, C. E.; Beardsley, R. C.; Dashko, N. A.; Friehe, C. A.; Kheilf, D.; Cho, K.; Limeburner, R.; Varlamov, S. M.

    2004-12-01

    Four basic types of synoptic-scale conditions describe the atmospheric structure and variability observed over the Japan Sea during the 1999/2000 winter season: (1) flow of cold Asian air from the northwest, (2) an outbreak of very cold Siberian air from the north and northeast, (3) passage of a weak cyclone over the southern Japan Sea with a cold air outbreak on the backside of the low, and (4) passage of a moderate cyclone along the northwestern side of the Japan Sea. In winter, the Russian coastal mountains and a surface-air temperature inversion typically block cold surface continental air from the Japan Sea. Instead, the adiabatic warming of coastal mountain lee-side air results in small air-sea temperature differences. Occasional outbreaks of very cold Siberian air eliminate the continental surface-based inversion and stability, allowing very cold air to push out over the Japan Sea for 1-3 days. During these outbreaks, the 0°C surface air isotherm extends well southward of 40°N, the surface heat losses in the center of the Japan Sea can exceed 600 W m-2, and sheet clouds cover most of the Japan Sea, with individual roll clouds extending from near the Russian coast to Honshu. During December through February, 1991-2002, these strong cold-air outbreak conditions occur 39% of the time and contribute 43% of the net heat loss from the Japan Sea. The average number of strong cold-air events per winter (November-March) season is 13 (ranging from 5 to 19); the 1999/2000 winter season covered in our measurements was normal.

  15. Cold injuries.

    PubMed

    Long, William B; Edlich, Richard F; Winters, Kathryne L; Britt, L D

    2005-01-01

    Exposure to cold can produce a variety of injuries that occur as a result of man's inability to adapt to cold. These injuries can be divided into localized injury to a body part, systemic hypothermia, or a combination of both. Body temperature may fall as a result of heat loss by radiation, evaporation, conduction, and convection. Hypothermia or systemic cold injury occurs when the core body temperature has decreased to 35 degrees C (95 degrees F) or less. The causes of hypothermia are either primary or secondary. Primary, or accidental, hypothermia occurs in healthy individuals inadequately clothed and exposed to severe cooling. In secondary hypothermia, another illness predisposes the individual to accidental hypothermia. Hypothermia affects multiple organs with symptoms of hypothermia that vary according to the severity of cold injury. The diagnosis of hypothermia is easy if the patient is a mountaineer who is stranded in cold weather. However, it may be more difficult in an elderly patient who has been exposed to a cold environment. In either case, the rectal temperature should be checked with a low-reading thermometer. The general principals of prehospital management are to (1) prevent further heat loss, (2) rewarm the body core temperature in advance of the shell, and (3) avoid precipitating ventricular fibrillation. There are two general techniques of rewarming--passive and active. The mechanisms of peripheral cold injury can be divided into phenomena that affect cells and extracellular fluids (direct effects) and those that disrupt the function of the organized tissue and the integrity of the circulation (indirect effects). Generally, no serious damage is seen until tissue freezing occurs. The mildest form of peripheral cold injury is frostnip. Chilblains represent a more severe form of cold injury than frostnip and occur after exposure to nonfreezing temperatures and damp conditions. Immersion (trench) foot, a disease of the sympathetic nerves and blood vessels in the feet, is observed in shipwreck survivors or in soldiers whose feet have been wet, but not freezing, for long periods. Patients with frostbite frequently present with multisystem injuries (e.g., systemic hypothermia, blunt trauma, substance abuse). The freezing of the corneas has been reported to occur in individuals who keep their eyes open in high wind-chill situations without protective goggles (e.g., snowmobilers, cross-country skiers). PMID:15715518

  16. Anti-correlation of summer/winter monsoons?

    PubMed

    Zhang, De'er; Lu, Longhua

    2007-11-15

    On the basis of the anti-correlation of their palaeoclimatic proxy for the strength of the East Asian winter monsoon from Lake Huguang Maar, China, with stalagmite records of the strength of the summer monsoon, Yancheva et al. claim that the strengths of the summer and winter monsoons are anti-correlated on a decadal timescale. They argue that the summer rainfall deficit during ad 700-900 that they infer from their evidence of a stronger winter monsoon, in conjunction with a Tanros battle, led to the collapse of the Tang dynasty (ad 618-907). Using historical climate records, we show here that most cold winters during ad 700-900 were associated with relatively wet summers, indicating that the strengths of the winter and summer monsoons were not negatively correlated during this period. PMID:18004320

  17. Impact of declining Arctic sea ice on winter snowfall

    PubMed Central

    Liu, Jiping; Curry, Judith A.; Wang, Huijun; Song, Mirong; Horton, Radley M.

    2012-01-01

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters. PMID:22371563

  18. Impact of declining Arctic sea ice on winter snowfall.

    PubMed

    Liu, Jiping; Curry, Judith A; Wang, Huijun; Song, Mirong; Horton, Radley M

    2012-03-13

    While the Arctic region has been warming strongly in recent decades, anomalously large snowfall in recent winters has affected large parts of North America, Europe, and east Asia. Here we demonstrate that the decrease in autumn Arctic sea ice area is linked to changes in the winter Northern Hemisphere atmospheric circulation that have some resemblance to the negative phase of the winter Arctic oscillation. However, the atmospheric circulation change linked to the reduction of sea ice shows much broader meridional meanders in midlatitudes and clearly different interannual variability than the classical Arctic oscillation. This circulation change results in more frequent episodes of blocking patterns that lead to increased cold surges over large parts of northern continents. Moreover, the increase in atmospheric water vapor content in the Arctic region during late autumn and winter driven locally by the reduction of sea ice provides enhanced moisture sources, supporting increased heavy snowfall in Europe during early winter and the northeastern and midwestern United States during winter. We conclude that the recent decline of Arctic sea ice has played a critical role in recent cold and snowy winters. PMID:22371563

  19. The role of Xylella fastidiosa cold shock proteins in Pierce’s disease of grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pierce’s disease of grapevine, caused by the bacterial pathogen Xylella fastidiosa (Xf) is limited to warmer climates, and plant infection can be eliminated by cold winter conditions. Milder winters can increase the likelihood of pathogen persistence from one growing season to the next. Cold adaptat...

  20. Cold neutron interferometry

    NASA Astrophysics Data System (ADS)

    Kitaguchi, Masaaki

    2009-10-01

    Neutron interferometry is a powerful technique for studying fundamental physics. A large dimensional interferometer for long wavelength neutrons is extremely important in order to investigate problems of fundamental physics, including tests of quantum measurement theories and searches for non-Newtonian effects of gravitation, since the sensitivity of interferometer depends on the wavelength and the interaction length. Neutron multilayer mirrors enable us to develop the large scale interferometer for long wavelength neutrons. The multilayer mirror is one of the most useful devices in cold neutron optics. A multilayer of two materials with different potentials is understood as a one-dimensional crystal, which is suitable for Bragg reflection of long wavelength neutrons. Cold and very cold neutrons can be utilized for the interferometer by using the multilayer mirrors with the proper lattice constants. Jamin-type interferometer by using beam splitting etalons (BSEs) has shown the feasibility of the development of large scale interferometer, which enables us to align the four independent mirrors within required precision. The BSE contains two parallel multilayer mirrors. A couple of the BSEs in the Jamin-type interferometer separates and recombines the two paths spatially. Although the path separation was small at the first test, now we have already demonstrated the interferometer with perfectly separated paths. This has confirmed that the multilayer mirrors cause no serious distortion of wave front to compose a interferometer. Arranging such mirrors, we are capable of establishing even a Mach-Zehnder type with much larger size. The interferometer using supermirrors, which reflects the wide range of the wavelength of neutrons, can increase the neutron counts for high precision measurements. We are planning the experiments using the interferometer both for the very cold neutrons and for the pulsed neutrons including J-PARC.

  1. The Winter Is Past.

    ERIC Educational Resources Information Center

    Busch, Phyllis S.

    1985-01-01

    Teacher, writer, and naturalist Phyllis S. Busch takes the reader on an early evening woodland walk in March, describing the many changes in plants and animals that are perceptible by sight, smell, and sound as nature awakens from winter. (NEC)

  2. Winter Weather Checklists

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Checklists Language: English Español (Spanish) Recommend on Facebook ...

  3. Beam front accelerators

    SciTech Connect

    Reiser, M.

    1982-01-01

    An intense relativistic electron beam cannot propagate in a metal drift tube when the current exceeds the space charge limit. Very high charge density and electric field gradients (10/sup 2/ to 10/sup 3/ MV/m) develop at the beam front and the electrons are reflected. When a neutral gas or a plasma is present, collective acceleration of positive ions occur, and the resulting charge neutralization enables the beam to propagate. Experimental results, theoretical understanding, and schemes to achieve high ion energies by external control of the beam front velocity will be reviewed.

  4. Additives pump up winterized diesel performance

    SciTech Connect

    Adler, K.

    1996-09-01

    With cooler weather just around the corner for North America and Europe, refiners and marketers again turn their attention to ensuring that diesel fuel performs properly under winter operating conditions. More often, opportunities are available for fuel refiners and marketers to use additives to enhance diesel fuel in a cost-effective manner and improve customer satisfaction. In cold weather, the heavy, paraffinic compounds in diesel fuel form a wax that precipitates out of the fuel. This can plug the fuel filter in a vehicle and impedes the flow of fuel to the engine. Recognizing this problem, state fuels regulators, engine manufactures, refiners and pipeline companies developed minimum standards for cold-temperature fuel performance for various parts of the country (based on historical climate conditions). Laboratory tests to measure cold-flow performance give a level of security to fuel users that their vehicles won`t be stopped in their tracks. For decades, the simplest way to handle cold-weather operability was to blend No. 2 diesel fuel with kerosene. Yet, kerosene blending has its downside. For one thing, kerosene can be more costly than low-sulfur No. 2 oil, sometimes by as much as 30 cents/gallon. Given these issues, additives are valued as another route to solving cold-weather operability concerns. The use of additives in diesel fuels is discussed.

  5. Project COLD.

    ERIC Educational Resources Information Center

    Kazanjian, Wendy C.

    1982-01-01

    Describes Project COLD (Climate, Ocean, Land, Discovery) a scientific study of the Polar Regions, a collection of 35 modules used within the framework of existing subjects: oceanography, biology, geology, meterology, geography, social science. Includes a partial list of topics and one activity (geodesic dome) from a module. (Author/SK)

  6. Cold Sores

    MedlinePLUS

    ... causes oral herpes, or cold sores. Type 1 herpes virus infects more than half of the U.S. population by the time they reach their 20s. Type 2 usually affects the genital area ... Protecting your lips from the sun with sunblock lip balm can also help.

  7. American woodcock winter distribution and fidelity to wintering areas

    USGS Publications Warehouse

    Diefenbach, D.R.; Derleth, E.L.; Vander Haegen, W.M.; Nichols, J.D.; Hines, J.E.

    1990-01-01

    We examined winter distribution and fidelity to wintering areas for the American Woodcock (Scolopax minor), which exhibits reversed, sexual size dimorphism. Band-recovery data revealed no difference in winter distributions of different age/sex classes for woodcock from the same breeding areas. Similarly, band recoveries from woodcock banded on wintering grounds revealed no difference in fidelity to wintering sites. Males may winter north of a latitude that is optimal for survival based on physiological considerations, but they gain a reproductive advantage if they are among the first to arrive on the breeding grounds. This may explain our results, which indicate males and females have similar distribution patterns during winter.

  8. Front Range Branch Officers

    NASA Astrophysics Data System (ADS)

    The Front Range Branch of AGU has installed officers for 1990: Ray Noble, National Center for Atmospheric Research, chair; Sherry Oaks, U.S. Geological Survey, chair-elect; Howard Garcia, NOAA, treasurer; Catharine Skokan, Colorado School of Mines, secretary. JoAnn Joselyn of NOAA is past chair. Members at large are Wallace Campbell, NOAA; William Neff, USGS; and Stephen Schneider, NCAR.

  9. MHD Ionization Fronts

    NASA Astrophysics Data System (ADS)

    Williams, R. J. R.; Dyson, J. E.; Hartquist, T. W.; Redman, M. P.

    2002-02-01

    We describe the effect of magnetic fields threading the interstellar medium on an ionization front (IF) moving through it. The standard classification of IF breaks down, with separate classes of R- and D-type solutions appearing about each of the fast and slow magnetosonic critical speeds. Internal structure calculations confirm the results derived from evolutionary constraints.

  10. Stories from the Front.

    ERIC Educational Resources Information Center

    Melnick, Blake

    2002-01-01

    Shares some of the author's personal experiences from the "front line" to illustrate the potential of computer-supported learning environments. Concludes that technology, if used in conjunction with sound pedagogy, allows students to tep outside the confines of the traditional classroom and school structure and take responsibility for both their

  11. Nitrification treatment of swine wastewater under cold temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In addition to N load, cold weather nitrification is an important consideration for stabilized performance of biological processes applied to continuous animal production systems. We conducted a winter simulation experiment in the laboratory to evaluate performance of immobilized bacteria under cold...

  12. A computer model for predicting grapevine cold hardiness

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We developed a robust computer model of grapevine bud cold hardiness that will aid in the anticipation of and response to potential injury from fluctuations in winter temperature and from extreme cold events. The model uses time steps of 1 day along with the measured daily mean air temperature to ca...

  13. Role of mixed layer depth in surface frontogenesis: The Agulhas Return Current front

    NASA Astrophysics Data System (ADS)

    Tozuka, Tomoki; Cronin, Meghan F.

    2014-04-01

    Air-sea interaction processes that modify the sea surface temperature (SST) front in the Agulhas Return Current region (between 40E and 55E) during austral summer and winter are examined using observational data and output from a high-resolution ocean general circulation model. While the air-sea heat flux frontal variations tend to relax the SST front, the frontolysis is amplified (damped) in summer (winter) when frontal variations in the mixed layer depth (MLD) are incorporated. The stronger (weaker) frontolysis associated with the MLD variations is due to the fact that the warming (cooling) by the surface heat flux is amplified south of the front where the MLD is shallower and is reduced north of the front where the MLD is deeper. This study is the first to show that the MLD variations play an important role in affecting the strength of the SST front.

  14. Double SST fronts observed from MODIS data in the East China Sea off the Zhejiang-Fujian coast, China

    NASA Astrophysics Data System (ADS)

    He, Shuangyan; Huang, Daji; Zeng, Dingyong

    2016-02-01

    We report a double coastal front system off the Zhejiang (Zhe) and Fujian (Min) Provinces in the East China Sea in winter. In addition to the well-known Zhe-Min offshore coastal front along 50 m isobath, a secondary near-shore coastal thermal front along 20 m isobath is also apparent in December and January. The fronts were observed by Moderate Resolution Imaging Spectroradiometer (MODIS) at monthly mean nighttime sea surface temperature (SST) during 2000-2013 in terms of SST gradients. Our results showed temporal and spatial variations of the two fronts as follows: (1) both offshore front and near-shore front often co-exist between 26.5°N and 29.5°N in December and between 28.0°N and 29.5°N in January. However, only the offshore front is apparent in November and February. (2) The near-shore front is narrow (4-16 km), while the offshore front is three to four times wider (16-48 km). (3) In contrast to the well-known offshore front which exists throughout the winter with a strong intensity, the near-shore front has a shorter lifetime with a weak intensity, and has been overlooked by previous studies. Finally, we proposed that the bottom bathymetric gradients may play an important role in the frontogenesis of the double fronts.

  15. Crow Deaths Caused by West Nile Virus during Winter

    PubMed Central

    Stone, Ward B.; Ebel, Gregory D.; Young, David S.; Galinski, David S.; Pensabene, Jason P.; Franke, Mary A.; Eidson, Millicent; Kramer, Laura D.

    2007-01-01

    In New York, an epizootic of American crow (Corvus brachyrhynchos) deaths from West Nile virus (WNV) infection occurred during winter 20042005, a cold season when mosquitoes are not active. Detection of WNV in feces collected at the roost suggests lateral transmission through contact or fecal contamination. PMID:18258045

  16. Logistic Regression Analysis of Freezing Tolerance in Winter Wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Four winter wheat cultivars, Eltan, Froid, Kestrel, and Tiber, were cold-acclimated for five weeks and then tested for freezing tolerance in a programmable freezer. The temperature of the soil was recorded every two minutes and the freezing episode was described as five parameters: the minimum temp...

  17. Membrane stability of winter wheat plants exposed to subzero temperatures for variable lengths of time

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability to survive episodes of subfreezing temperature is essential to winter wheat. Fully cold-acclimated plants of six lines of winter wheat were exposed to -12, -14, -16 or -18 C, four 1-5 hours. Electrolyte leakage and plant survival were used to assess damage to the plants. Plants exposed ...

  18. Hot, Cold, and Really Cold.

    ERIC Educational Resources Information Center

    Leyden, Michael

    1997-01-01

    Describes a physics experiment investigating temperature prediction and the relationship between the physical properties of heat units, melting, dissolving, states of matter, and energy loss. Details the experimental setup, which requires hot and cold water, a thermometer, and ice. Notes that the experiment employs a deliberate counter-intuitive

  19. 3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. VIEW NORTH, SOUTHWEST FRONT, SOUTHEAST SIDE Front and side elevation. Note gasoline sign post added. Flush store window not altered, 1900 clapboard siding and panelling remaining. - 510 Central Avenue (Commercial Building), Ridgely, Caroline County, MD

  20. FRONT LANAI OF THE HONOLUA STORE. SHOWING THE DOUBLE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FRONT LANAI OF THE HONOLUA STORE. SHOWING THE DOUBLE FRONT ENTRY DOORS, PROJECTING STOREFRONT WINDOWS, AND TYPICAL TWO-LIGHT AWNING WINDOWS, OBLIQUE, LOOKING NORTHEAST. - Honolua Store & Warehouse, 502 Office Street, Kapalua, Maui County, HI

  1. 9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. DETAIL OF INTERIOR OF FRONT PORCH SHOWING FRONT ENTRY (LEFT) AND BLANK WALL (CENTER) CORRESPONDING TO LOCATION OF INTERIOR VAULTS. VIEW TO SOUTHEAST. - Boise Project, Boise Project Office, 214 Broadway, Boise, Ada County, ID

  2. 35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. EAST FRONT OF POWERHOUSE AND CAR BARN: East front of powerhouse and car barn. 'Annex' is right end of building. - San Francisco Cable Railway, Washington & Mason Streets, San Francisco, San Francisco County, CA

  3. Winter Weather: Outdoor Safety

    MedlinePLUS

    ... Avoid Frostbite and Hypothermia When exposed to cold temperatures, your body begins to lose heat faster than ... The result is hypothermia, or abnormally low body temperature. Body temperature that is too low affects the ...

  4. Winter precipitation change in South China in recent decades

    NASA Astrophysics Data System (ADS)

    Cai, Jingning

    2013-04-01

    Precipitation change is one of important climate researches in China, but winter precipitation variation in South China has not been studied so frequently. In China, it is rainy when hot; so summer precipitation is usually one focus in research, esp. in South China. However, winter precipitation and its change influence people profoundly in South China, also. The most recent example is what happened over South China in winter 2008. In this winter, millions of people suffered from the unusual cold and snowy winter. It led to huge loss in economy and traffic as well. Roads closed and railway stations were jammed and crowded with people; many planes were grounded for heavy snow and bad weather. Transmission lines faulted in the mountains. The ommunication signals were affected. Everyday food supply including vegetables and meats had to be delayed or interrupted. In some city even water supply was interrupted. And garbage in the city was piled up. Just in this winter the snow depth and coverage area in many places in South China broke or equaled the historical records. In fact, it isn't the only one unusual winter precipitation event in South China. Since 1950s, several freezing and snowy winters struck the South in China. In this research, winter precipitation change in recent years in South China has been discussed based on the precipitation observations. The associated large scale atmospheric circulation change is also analyzed. It is found that snowy winter in South China hardly comes in most periods of 2000s, but in recent decades this heavy snow in winter has appeared several times as observations shows. This phenomenon could be related to the large scale atmospheric circulation change.

  5. Two cold-season derechoes in Europe

    NASA Astrophysics Data System (ADS)

    Gatzen, Christoph; P?ik, Tomas; Ryva, David

    2011-06-01

    In this study, we apply for the first time the definition of a derecho (Johns and Hirt, 1987) to European cold-season convective storm systems. These occurred on 18 January 2007 and 1 March 2008, respectively, and they are shown to fulfill the criteria of a derecho. Damaging winds were reported over a distance of 1500 km and locally reached F3 intensity. Synoptic analysis for the events reveal strongly forced situations that have been described for cold-season derechoes in the United States. A comparison of swaths of damaging winds, radar structures, detected lightning, cold pool development, and cloud-top temperatures indicates that both derechoes formed along cold fronts that were affected by strong quasi-geostrophic forcing. It seems that the overlap of the cold front position with the strong differential cyclonic vorticity advection at the cyclonic flank of mid-level jet streaks favoured intense convection and high winds. The movement and path width of the two derechoes seemed to be related to this overlap. The wind gust intensity that was also different for both events is discussed and could be related to the component of the mid-level winds perpendicular to the gust fronts.

  6. [Research fronts in medicine].

    PubMed

    Vlach, J

    1989-02-10

    Citation mapping of communicating structures of science and derived indices of the most active research fronts make it possible to adopt and create factographic bases for operative management and prognosis of fundamental medical research. Information data bases and printed registers for systematic use of these materials can be processed according to published analyses of priority trends of science, using methods of aggregated quotations or using networks of descriptors. The referred investigations pertain to the problem of allergy, AIDS, biomedical engineering, hyperthermia, hypnosis, risk pregnancy, epidemiology, modelling, bacterial bioluminescence, prostaglandins, aberrant genes, theory of immune systems, monoclonal antibodies, cholesterol metabolism, immunogenetics and neurobiology, incl. association to the work of Nobel prize winners. The science atlases for biochemistry, molecular biology, biotechnology and molecular genetics, and in new series for pharmacology, biochemistry, immunology, clinical and neurological and psychological disciplines provides a new type of standardized prognostic surveys with identification of the foremost world science fronts. PMID:2720752

  7. ARIEL front end

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Baartman, R. A.; Laxdal, R. E.

    2014-01-01

    The ARIEL project at TRIUMF will greatly expand the variety and availability of radioactive ion beams (RIBs) (Laxdal, Nucl Inst Methods Phys Res B 204:400-409, 2003). The ARIEL front end connects the two ARIEL target stations to the existing ISAC facility to expand delivery to two and eventually three simultaneous RIB beams with up to two simultaneous accelerated beams (Laxdal et al. 2008). The low-energy beam transport lines and mass separators are designed for maximum flexibility to allow a variety of operational modes in order to optimize the radioactive ion beam delivery. A new accelerator path is conceived for high mass delivery from an EBIS charge state breeder. The front-end design utilizes the experience gained in 15 years of ISAC beam delivery.

  8. Strong Costs and Benefits of Winter Acclimatization in Drosophila melanogaster

    PubMed Central

    Schou, Mads Fristrup; Loeschcke, Volker; Kristensen, Torsten Nygaard

    2015-01-01

    Studies on thermal acclimation in insects are often performed on animals acclimated in the laboratory under conditions that are not ecologically relevant. Costs and benefits of acclimation responses under such conditions may not reflect costs and benefits in natural populations subjected to daily and seasonal temperature fluctuations. Here we estimated costs and benefits in thermal tolerance limits in relation to winter acclimatization of Drosophila melanogaster. We sampled flies from a natural habitat during winter in Denmark (field flies) and compared heat and cold tolerance of these to that of flies collected from the same natural population, but acclimated to 25 °C or 13 °C in the laboratory (laboratory flies). We further obtained thermal performance curves for egg-to-adult viability of field and laboratory (25 °C) flies, to estimate possible cross-generational effects of acclimation. We found much higher cold tolerance and a lowered heat tolerance in field flies compared to laboratory flies reared at 25 °C. Flies reared in the laboratory at 13 °C exhibited the same thermal cost-benefit relations as the winter acclimatized flies. We also found a cost of winter acclimatization in terms of decreased egg-to-adult viability at high temperatures of eggs laid by winter acclimatized flies. Based on our findings we suggest that winter acclimatization in nature can induce strong benefits in terms of increased cold tolerance. These benefits can be reproduced in the laboratory under ecologically relevant rearing and testing conditions, and should be incorporated in species distribution modelling. Winter acclimatization also leads to decreased heat tolerance. This may create a mismatch between acclimation responses and the thermal environment, e.g. if temperatures suddenly increase during spring, under current and expected more variable future climatic conditions. PMID:26075607

  9. Radiative thermal conduction fronts

    NASA Technical Reports Server (NTRS)

    Borkowski, Kazimierz J.; Balbus, Steven A.; Fristrom, Carl C.

    1990-01-01

    The discovery of the O VI interstellar absorption lines in our Galaxy by the Copernicus observatory was a turning point in our understanding of the Interstellar Medium (ISM). It implied the presence of widespread hot (approx. 10 to the 6th power K) gas in disk galaxies. The detection of highly ionized species in quasi-stellar objects' absorption spectra may be the first indirect observation of this hot phase in external disk galaxies. Previous efforts to understand extensive O VI absorption line data from our Galaxy were not very successful in locating the regions where this absorption originates. The location at interfaces between evaporating ISM clouds and hot gas was favored, but recent studies of steady-state conduction fronts in spherical clouds by Ballet, Arnaud, and Rothenflug (1986) and Bohringer and Hartquist (1987) rejected evaporative fronts as the absorption sites. Researchers report here on time-dependent nonequilibrium calculations of planar conductive fronts whose properties match well with observations, and suggest reasons for the difference between the researchers' results and the above. They included magnetic fields in additional models, not reported here, and the conclusions are not affected by their presence.

  10. Theory of pinned fronts.

    PubMed

    Weissmann, Haim; Shnerb, Nadav M; Kessler, David A

    2016-01-01

    The properties of a front between two different phases in the presence of a smoothly inhomogeneous external field that takes its critical value at the crossing point is analyzed. Two generic scenarios are studied. In the first, the system admits a bistable solution and the external field governs the rate in which one phase invades the other. The second mechanism corresponds to a continuous transition that, in the case of reactive systems, takes the form of a transcritical bifurcation at the crossing point. We solve for the front shape and for the response of competitive fronts to external noise, showing that static properties and also some of the dynamical features cannot discriminate between the two scenarios. A reliable indicator turns out to be the fluctuation statistics. These take a Gaussian form in the bifurcation case and a double-peaked shape in a bistable system. Our results are discussed in the context of biological processes, such as species and communities dynamics in the presence of a resource gradient. PMID:26871099

  11. Theory of pinned fronts

    NASA Astrophysics Data System (ADS)

    Weissmann, Haim; Shnerb, Nadav M.; Kessler, David A.

    2016-01-01

    The properties of a front between two different phases in the presence of a smoothly inhomogeneous external field that takes its critical value at the crossing point is analyzed. Two generic scenarios are studied. In the first, the system admits a bistable solution and the external field governs the rate in which one phase invades the other. The second mechanism corresponds to a continuous transition that, in the case of reactive systems, takes the form of a transcritical bifurcation at the crossing point. We solve for the front shape and for the response of competitive fronts to external noise, showing that static properties and also some of the dynamical features cannot discriminate between the two scenarios. A reliable indicator turns out to be the fluctuation statistics. These take a Gaussian form in the bifurcation case and a double-peaked shape in a bistable system. Our results are discussed in the context of biological processes, such as species and communities dynamics in the presence of a resource gradient.

  12. Comparison of two cases of strong increase in the bottom temperature in the Yellow Sea in winter

    NASA Astrophysics Data System (ADS)

    L, Lian-Gang; Yang, Guang-Bing; Wang, Guansuo; Liu, Zong-Wei; Jiang, Ying; Yang, Chunmei; Zhang, Chao

    2015-09-01

    Mooring observations were carried out on the western slope of the southern Yellow Sea (YS) to observe the Yellow Sea Warm Current (YSWC). Strong increases in the bottom temperature (about 3C within 1 day) were observed at mooring M5 (shelf break) on 8 January 2007, and at mooring A2 (mid-slope) on 5 December 2008. The strong temperature increase of bottom water at M5 was closely related to the burst of the YSWC. The bottom temperature at mooring A2 increased and decreased alternately from 7 November to 14 December 2008, and the strong increase (about 3C within 1 day) occurring on 5 December was one of the four rises during that period. The significant semi-diurnal-oscillation during that period indicated that the thermal fronts outlining the Yellow Sea Cold Water Mass (YSCWM) boundary was very close to location A2. The notable rises in the bottom temperature at A2 were associated with bottom eastward currents, while the distinct falls in temperature coincide with bottom westward currents. The distinctive distribution in the bottom temperature associated with the YSCWM and the bottom eastward currents were mainly responsible for the strong increase in the bottom temperature at A2. The variations in the bottom temperature described here are valuable for understanding the time evolution of the YSWC in winter and the YSCWM from late autumn to early winter.

  13. Coastal circulation off southern Tamaulipas and northern Veracruz, western Gulf of Mexico, during winter 2012-2013

    NASA Astrophysics Data System (ADS)

    Rivas, David

    2015-04-01

    Four months of observations from a near-coastal mooring deployed off southern Tamaulipas-northern Veracruz coast (western Gulf of Mexico) during winter 2012-2013 provides velocity, temperature, and salinity series in a region where apparently no in-situ measurements have been formally reported. The measurements show numerous events of intense alongshore velocities with magnitudes typically exceeding 80 cm/s, associated with intensified winds associated with the cold fronts invading the western Gulf during fall-winter, via coastal-trapped motions coming from northern locations. These motions must induce a coastal jet that modulates the regional along-shelf transports. This notion is corroborated by an analytical coastal-trapped wave (CTW) model which explains most of the variability of the sea level and the alongshore barotropic velocity observed in the mooring. Several near-inertial signals exceeding 50 cm/s are also observed at the surface levels. These high-frequency (HF) signals occur several hours before the intensified currents induced by the winds. Comparison between HF series of water velocity and wind suggests a direct influence of the winds affecting the NW Gulf (northern Tamaulipas/southern Texas) about 6-9 hours before the occurrence of the HF currents at the mooring. These near-inertial events induce a vigorous mixing of the local riverine discharge.

  14. Logistic Regression Analysis of the Response of Winter Wheat to Components of Artificial Freezing Episodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improvement of cold tolerance of winter wheat (Triticum aestivum L.) through breeding methods has been problematic. A better understanding of how individual wheat cultivars respond to components of the freezing process may provide new information that can be used to develop more cold tolerance culti...

  15. Thermal Fronts in Solar Flares

    NASA Astrophysics Data System (ADS)

    Karlický, Marian

    2015-12-01

    We studied the formation of a thermal front during the expansion of hot plasma into colder plasma. We used a three-dimensional electromagnetic particle-in-cell model that includes inductive effects. In early phases, in the area of the expanding hot plasma, we found several thermal fronts, which are defined as a sudden decrease of the local electron kinetic energy. The fronts formed a cascade. Thermal fronts with higher temperature contrast were located near plasma density depressions, generated during the hot plasma expansion. The formation of the main thermal front was associated with the return-current process induced by hot electron expansion and electrons backscattered at the front. A part of the hot plasma was trapped by the thermal front while another part, mainly with the most energetic electrons, escaped and generated Langmuir and electromagnetic waves in front of the thermal front, as shown by the dispersion diagrams. Considering all of these processes and those described in the literature, we show that anomalous electric resistivity is produced at the location of the thermal front. Thus, the thermal front can contribute to energy dissipation in the current-carrying loops of solar flares. We estimated the values of such anomalous resistivity in the solar atmosphere together with collisional resistivity and electric fields. We propose that the slowly drifting reverse drift bursts, observed at the beginning of some solar flares, could be signatures of the thermal front.

  16. Improving WEPP Winter Hydrology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Palouse area of the Northwestern Wheat and Range Region in southeastern Washington, northern Idaho, and north-eastern Oregon has serious winter erosion problems due to recurring rainfall and snowmelt runoff on freezing and thawing soil. The Water Erosion Prediction Project (WEPP) model has prove...

  17. Winter Here and Now.

    ERIC Educational Resources Information Center

    Finlay, Joy

    This book contains a wide variety of winter-oriented ideas and activities that can be adapted to all elementary grade levels and can also be integrated into existing mathematics, science, social studies, and/or art programs. The activities aim to help students develop the skills of observation, appreciation, and problem solving as well as

  18. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is…

  19. The News. Winter 2007

    ERIC Educational Resources Information Center

    Giles, Ray, Ed.

    2007-01-01

    This Winter 2007 quarterly newsletter from the Community College League of California includes: (1) Incumbents: Some Win, Some Lose in November Trustee Elections; (2) Voters Approve $2 Billion in Bonds; (3) Photos from the "Together We Can" conference; (4) Report, Media Criticize Transfer, Completion Rates and Colleges; (5) District Leader…

  20. Winter Playscape Dreaming

    ERIC Educational Resources Information Center

    Keeler, Rusty

    2006-01-01

    Winter, like all seasons, adds a new sense of mystery and discovery to the world of young children. It is the time when they can study snowflakes, find icicles, or observe the birds that share their yards. This article presents ideas and suggestions on how to plan a playscape. A playscape is a man-made seasonal playground for young children. It…

  1. Teaching Ecology in Winter.

    ERIC Educational Resources Information Center

    Clearing: Nature and Learning in the Pacific Northwest, 1984

    1984-01-01

    Presents ideas for teaching ecology in the winter. Suggested topic areas or units include snow insulation and density, snowflakes and snow crystals, goldenrod galls, bird behavior, survival techniques, bacteriology and decomposition, trees and keying, biomass and productivity, pollution, and soil organisms. A sample student activity sheet is

  2. Taxonomy of Greater White-fronted Geese (Aves: Anatidae)

    USGS Publications Warehouse

    Banks, Richard C.

    2011-01-01

    Five subspecies of the Greater White-fronted Goose, Anser albifrons (Scopoli, 1769), have been named, all on the basis of wintering birds, and up to six subspecies have been recognized. There has been confusion over the application of some names, particularly in North America, because of lack of knowledge of the breeding ranges and type localities, and incorrect taxonomic decisions. There is one clinally varying subspecies in Eurasia, one that breeds in Greenland, and three in North America, one newly named herein.

  3. DEACCLIMATION AND REACCLIMATION OF COLD-HARDY PLANTS: CURRENT UNDERSTANDING AND EMERGING CONCEPTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of cold-hardy plants to resist deacclimation during transient warm spells and to reacclimate when cold temperatures return are significant for winter survival. Yet compared to the volume of research on the biology of cold acclimation, relatively little is known about how plants maintain...

  4. Nuclear Winter: Implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1988-05-01

    ''Nuclear Winter'' is the term given to the cooling hypothesized to occur in the Northern Hemisphere following a nuclear war as the result of the injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the paper was published in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. Three-dimensional global circulation models have resulted in reduced estimates of cooling---15 to 25/degree/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought is likely to be a direct threat to human survival for populations with the wherewithal to survive normal January temperatures. The principal threat from nuclear winter is to food production, and this could present problems to third parties who are without food reserves. Loss of a crop year is neither a new nor an unexpected threat from nuclear war to the United States and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the United States due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year.

  5. Nuclear Winter: The implications for civil defense

    SciTech Connect

    Chester, C.V.; Perry, A.M.; Hobbs, B.F.

    1987-01-01

    ''Nuclear Winter'' is the term given to hypothesized cooling in the northern hemisphere following a nuclear war due to injection of smoke from burning cities into the atmosphere. The voluminous literature on this subject produced since the original paper in 1983 by Turco, Toon, Ackerman, Pollack, and Sagen (TTAPS) has been reviewed. The widespread use of 3-dimensional global circulation models have resulted in reduced estimates of cooling; 15 to 25/sup 0/C for a summer war and a few degrees for a winter war. More serious may be the possibility of suppression of convective precipitation by the altered temperature profiles in the atmosphere. However, very large uncertainties remain in input parameters, the models, and the results of calculations. We believe the state of knowledge about nuclear winter is sufficiently developed to conclude: Neither cold nor drought are likely to be direct threats to human survival for populations with the wherewithal to survive normal January temperatures; The principal threat from nuclear winter is to food production, and could present problems to third parties without food reserves; and Loss of a crop year is neither a new nor unexpected threat from nuclear war to the US and the Soviet Union. Both have at least a year's food reserve at all times. Both face formidable organizational problems in distributing their reserves in a war-damaged environment. The consequences of nuclear winter could be expected to fall more heavily on the Soviet Union than the US due to its higher latitude and less productive agriculture. This may be especially true if disturbances of rainfall amounts and distribution persist for more than a year. 6 refs.

  6. Canoeists' disorientation following cold immersion

    PubMed Central

    Baker, S.; Atha, J.

    1981-01-01

    As an initial step to a broader study of the disorientating effects of cold water immersions on top class competitive canoeists a survey was made of the incidence of hazardous immersions amongst a majority sample of the better canoeists in the country. Virtually the entire entry to one of the most important national competitive meets was canvassed. A total of 288 canoeists in the 1st and 2nd divisions were identified and asked to participate. Replies were received from 247 (86%). All those responding had had extensive experience of canoeing in winter spate and were capable of fast and efficient first-time canoe rolls in cases of capsize. Particular interest was focussed on the 85 (34%) who had experienced at least one capsize in cold water during training or competition in mid-winter. Respondents viewed the winter capsize seriously. Despite their familiarity with the conditions in which they trained all 85, recalling their capsize experiences, reported being concerned, most (79%) only modestly so, but a significant proportion (21%) confessed to feelings of extreme alarm. A number of marked physical symptoms that regularly attend on a capsize were widely reported, the most usual of which was severe pain in the forehead (89%) and breathing and speaking difficulties when afloat (64%). Additionally 62% reported sensory problems including visual difficulties, dizziness and disorientation. Five canoeists admitted fainting. Despite these hazards few preventive measures were taken and clothing with negligible thermal insulation properties was commonly worn. It is concluded that transient cold immersions can be disturbing, and can disorientate the canoeist, but that although conscious of this and to his own potentially high cost, he takes little notice of it in his desire to compete successfully. Imagesp111-ap111-bp112-ap113-ap114-a PMID:7272652

  7. Link between warm conveyor belts and fronts and the impact on extreme rainfall

    NASA Astrophysics Data System (ADS)

    Catto, Jennifer; Madonna, Erica; Joos, Hanna; Wernli, Heini; Rudeva, Irina; Simmonds, Ian

    2015-04-01

    The various dynamical features within extratropical cyclones have been shown to be very important for the precipitation produced by these systems. Warm conveyor belts (WCBs) and fronts are both strongly associated with total and extreme precipitation in the midlatitudes. Here we have brought together two automated feature detection methods to answer questions on the frequency of matching of fronts and WCBs, whether this depends on frontal type or height of WCB, and the impact this matching has on extreme precipitation events. We find that WCBs and fronts are strongly related in the midlatitudes - annually 60% of WCBs are associated with cold fronts and around 50% associated with warm fronts, and a fairly large proportion associated with both together. The frequency of linked WCBs and fronts shows a strong seasonal cycle. In some regions warm fronts are more strongly linked to WCBs than cold fronts. To the east of Australia in particular, there are often WCBs not associated with fronts at all. Fronts that co-occur with a WCB are much more likely to produce an extreme precipitation event.

  8. Factors affecting outdoor exposure in winter: population-based study

    NASA Astrophysics Data System (ADS)

    Mäkinen, Tiina M.; Raatikka, Veli-Pekka; Rytkönen, Mika; Jokelainen, Jari; Rintamäki, Hannu; Ruuhela, Reija; Näyhä, Simo; Hassi, Juhani

    2006-09-01

    The extent of outdoor exposure during winter and factors affecting it were examined in a cross-sectional population study in Finland. Men and women aged 25-74 years from the National FINRISK 2002 sub-study ( n=6,591) were queried about their average weekly occupational, leisure-time and total cold exposure during the past winter. The effects of gender, age, area of residence, occupation, ambient temperature, self-rated health, physical activity and education on cold exposure were analysed. The self-reported median total cold exposure time was 7 h/week (8 h men, 6 h women),<1 h/week (2 h men, 0 h women) at work, 4 h/week (5 h men, 4 h women) during leisure time and 1 h/week (1 h men, 1.5 h women) while commuting to work. Factors associated with increased occupational cold exposure among men were: being employed in agriculture, forestry and industry/mining/construction or related occupations, being less educated and being aged 55-64 years. Factors associated with increased leisure-time cold exposure among men were: employment in industry/mining/construction or related occupations, being a pensioner or unemployed, reporting at least average health, being physically active and having college or vocational education. Among women, being a housewife, pensioner or unemployed and engaged in physical activity increased leisure-time cold exposure, and young women were more exposed than older ones. Self-rated health was positively associated with leisure time cold exposure in men and only to a minor extent in women. In conclusion, the subjects reported spending 4% of their total time under cold exposure, most of it (71%) during leisure time. Both occupational and leisure-time cold exposure is greater among men than women.

  9. Simple front tracking

    SciTech Connect

    Glimm, J.; Grove, J.W.; Li, X.; Zhao, N.

    1999-04-01

    A new and simplified front tracking algorithm has been developed as an aspect of the extension of this algorithm to three dimensions. Here the authors emphasize two main results: (1) a simplified description of the microtopology of the interface, based on interface crossings with cell block edges, and (2) an improved algorithm for the interaction of a tracked contact discontinuity with an untracked shock wave. For the latter question, they focus on the post interaction jump at the contact, which is a purely 1D issue. Comparisons to other methods, including the level set method, are included.

  10. Deciduous Plant Twigs in Winter

    ERIC Educational Resources Information Center

    Clark, Eloise

    1977-01-01

    Describing, via illustration and narrative, the winter twigs found in the U.S., this article presents a sophisticated discussion of: beech, white ash, aspen, sycamore, red oak, butternut, and other winter twigs. (JC)

  11. Air pollution episodes associated with East Asian winter monsoons.

    PubMed

    Hien, P D; Loc, P D; Dao, N V

    2011-11-01

    A dozen multi-day pollution episodes occur from October to February in Hanoi, Vietnam due to prolonged anticyclonic conditions established after the northeast monsoon surges (cold surges). These winter pollution episodes (WPEs) account for most of the 24-h PM(10) exceedances and the highest concentrations of gaseous pollutants in Hanoi. In this study, WPEs were investigated using continuous air quality monitoring data and information on upper-air soundings and air mass trajectories. The 24-h pollutant concentrations are lowest during cold surges; concurrently rise thereafter reaching the highest levels toward the middle of a monsoon cycle, then decline ahead of the next cold surge. Each monsoon cycle usually proceeds through a dry phase and a humid phase as Asiatic continental cold air arrives in Hanoi through inland China then via the East China Sea. WPEs are associated with nighttime radiation temperature inversions (NRTIs) in the dry phase and subsidence temperature inversions (STIs) in the humid phase. In NRTI periods, the rush hour pollution peak is more pronounced in the evening than in the morning and the pollution level is about two times higher at night than in daytime. In STI periods, broad morning and evening traffic peaks are observed and pollution is as high at night as in daytime. The close association between pollution and winter monsoon meteorology found in this study for the winter 2003-04 may serve as a basis for advance warning of WPEs and for forecasting the 24-h pollutant concentrations. PMID:21925714

  12. Farmers’ Market Expands to Offer Products in Winter | Poster

    Cancer.gov

    By Carolynne Keenan, Contributing Writer The 2013 National Cancer Institute (NCI) at Frederick Farmers’ Market regular season may have closed, but that doesn’t mean customers who want fresh produce, handmade crafts, and other homemade goodies from local vendors are out of luck. Winter Markets, which began Jan. 7, will be held every other Tuesday, from 11 a.m. to 1 p.m., in front of Building 549 or in the Café Room, depending on the weather.

  13. From the front

    SciTech Connect

    Price, Stephen

    2009-01-01

    The causes of recent dynamic thinning of Greenland's outlet glaciers have been debated. Realistic simulations suggest that changes at the marine fronts of these glaciers are to blame, implying that dynamic thinning will cease once the glaciers retreat to higher ground. For the last decade, many outlet glaciers in Greenland that terminate in the ocean have accelerated, thinned, and retreated. To explain these dynamic changes, two hypotheses have been discussed. Atmospheric warming has increased surface melting and may also have increased the amount of meltwater reaching the glacier bed, increasing lubrication at the base and hence the rate of glacier sliding. Alternatively, a change in the delicate balance of forces where the glacier fronts meet the ocean could trigger the changes. Faezeh Nick and colleagues5 present ice-sheet modeling experiments that mimic the observations on Helheim glacier, East Greenland, and suggest that the dynamic behaviour of outlet glaciers follows from perturbations at their marine fronts. Greenland's ice sheet loses mass partly through surface melting and partly through fast flowing outlet glaciers that connect the vast plateau of inland ice with the ocean. Earlier ice sheet models have failed to reproduce the dynamic variability exhibited by ice sheets over time. It has therefore not been possible to distinguish with confidence between basal lubrication from surface meltwater and changes at the glaciers' marine fronts as causes for the observed changes on Greenland's outlet glaciers. But this distinction bears directly on future sea-level rise, the raison d'etre of much of modern-day glaciology: If the recent dynamic mass loss Greenland's outlet glaciers is linked to changing atmospheric temperatures, it may continue for as long as temperatures continue to increase. On the other hand, if the source of the dynamic mass loss is a perturbation at the ice-ocean boundary, these glaciers will lose contact with that perturbation after a finite amount of thinning and retreat. Therefore, the first hypothesis implies continued retreat of outlet glaciers into the foreseeable future, while the second does not -- provided the bedrock topography prohibits a connection between the retreating glacier and the ocean. Nick and coauthors test the physical mechanisms implied in each hypotbesis in an innovative ice-flow model, and use that model to try to match a time series of observations from Helheim glacier, one of Greenland's three largest outlet glaciers. Along with many observations, the simulations strongly support the contention that the recent retreat of Greenland's outlet glaciers is the result of changes at their marine fronts.Further, the simulations confirm the earlier hypotheses that bedrock topography largely controlled Helheim glacier's rapid acceleration and retreat in 2004 and 2005, and its deceleration and stabilization in 2006. Finally, the current work implies that if requirements of observational data (high-resolution bed topography) and computational resources (fine computational grid resolution) can be met, improved predictive capability for ice-sheet models is attainable. With respect to the concerns raised by the IPCC, this study signals progress.

  14. Geometry of Winter model

    NASA Astrophysics Data System (ADS)

    Aglietti, U. G.; Santini, P. M.

    2015-06-01

    By constructing the Riemann surface controlling the resonance structure of Winter model, we determine the limitations of perturbation theory. We then derive explicit non-perturbative results for various observables in the weak-coupling regime, in which the model has an infinite tower of long-lived resonant states. The problem of constructing proper initial wavefunctions coupled to single excitations of the model is also treated within perturbative and non-perturbative methods.

  15. Role of surface heat fluxes underneath cold pools

    NASA Astrophysics Data System (ADS)

    Gentine, Pierre; Garelli, Alix; Park, Seung-Bu; Nie, Ji; Torri, Giuseppe; Kuang, Zhiming

    2016-01-01

    The role of surface heat fluxes underneath cold pools is investigated using cloud-resolving simulations with either interactive or horizontally homogenous surface heat fluxes over an ocean and a simplified land surface. Over the ocean, there are limited changes in the distribution of the cold pool temperature, humidity, and gust front velocity, yet interactive heat fluxes induce more cold pools, which are smaller, and convection is then less organized. Correspondingly, the updraft mass flux and lateral entrainment are modified. Over the land surface, the heat fluxes underneath cold pools drastically impact the cold pool characteristics with more numerous and smaller pools, which are warmer and more humid and accompanied by smaller gust front velocities. The interactive fluxes also modify the updraft mass flux and reduce convective organization. These results emphasize the importance of interactive surface fluxes instead of prescribed flux boundary conditions, as well as the formulation of surface heat fluxes, when studying convection.

  16. Winter Wilderness Travel and Camping.

    ERIC Educational Resources Information Center

    Gilchrest, Norman

    Knowledge and skill are needed for safe and enjoyable travel and camping in the wilderness in winter. The beauty of snow and ice, reduced human use, and higher tolerance of animals toward humans make the wilderness attractive during winter. The uniqueness of winter travel presents several challenges that are not present in other seasons. Safety is…

  17. Changes in carbohydrates, ABA and bark proteins during seasonal cold acclimation and deacclimation in Hydrangea species differing in cold hardiness.

    PubMed

    Pagter, Majken; Jensen, Christian R; Petersen, Karen K; Liu, Fulai; Arora, Rajeev

    2008-11-01

    Cold injury is frequently seen in the commercially important shrub Hydrangea macrophylla but not in Hydrangea paniculata. Cold acclimation and deacclimation and associated physiological adaptations were investigated from late September 2006 to early May 2007 in stems of field-grown H. macrophylla ssp. macrophylla (Thunb.) Ser. cv. Blaumeise and H. paniculata Sieb. cv. Kyushu. Acclimation and deacclimation appeared approximately synchronized in the two species, but they differed significantly in levels of mid-winter cold hardiness, rates of acclimation and deacclimation and physiological traits conferring tolerance to freezing conditions. Accumulation patterns of sucrose and raffinose in stems paralleled fluctuations in cold hardiness in both species, but H. macrophylla additionally accumulated glucose and fructose during winter, indicating species-specific differences in carbohydrate metabolism. Protein profiles differed between H. macrophylla and H. paniculata, but distinct seasonal patterns associated with winter acclimation were observed in both species. In H. paniculata concurrent increases in xylem sap abscisic acid (ABA) concentrations ([ABA](xylem)) and freezing tolerance suggests an involvement of ABA in cold acclimation. In contrast, ABA from the root system was seemingly not involved in cold acclimation in H. macrophylla, suggesting that species-specific differences in cold hardiness may be related to differences in [ABA](xylem). In both species a significant increase in stem freezing tolerance appeared long after growth ceased, suggesting that cold acclimation is more regulated by temperature than by photoperiod. PMID:18636985

  18. The isotopic composition of precipitation from a winter storm - a case study with the limited-area model COSMOiso

    NASA Astrophysics Data System (ADS)

    Pfahl, S.; Wernli, H.; Yoshimura, K.

    2012-04-01

    Stable water isotopes are valuable tracers of the atmospheric water cycle, and potentially provide useful information also on weather-related processes. In order to further explore this potential, the water isotopes H218O and HDO are incorporated into the limited-area weather forecast and climate model COSMO. The new COSMOiso model includes an advanced microphysical scheme, a convection parameterisation and non-hydrostatic dynamics that facilitate simulations from sub-kilometre to synoptic spatial scales. In a first case study, the model is applied for simulating a winter storm event in January 1986 over the eastern United States associated with intense frontal precipitation. The modelled isotope ratios in precipitation and water vapour are compared to spatially distributed ?18O observations from a study by Gedzelman and Lawrence (1990). COSMOiso very accurately reproduces the statistical distribution of ?18O in precipitation, and also the synoptic-scale spatial pattern and temporal evolution agree well with the measurements. Deviations at single stations can partly be attributed to errors in the representation of mesoscale atmospheric structures in the model. Grounded on this overall meteorological evaluation, the model is then used for investigating the physical processes causing the synoptic-scale variability of ?18O during the selected event. Perpendicular to the front that triggers most of the rainfall, COSMOiso simulates a gradient in the isotopic composition of the precipitation, with high ?18O values in the warm air to the east and lower values in the cold sector behind the front. This spatial gradient is connected to a temporal evolution with high ?18O values in the beginning and a decrease later on at locations where the front passes by. Two major processes are identified that contribute to creating the spatial pattern. First, the advection of cold, depleted water vapour to the west of the front and warm, more enriched vapour further to the east, in concert with the progressive removal of heavy isotopes by precipitation in the frontal band, cause a large scale west-to-east gradient of ?18O of vapour and precipitation. Second, this large scale pattern is modulated by microphysical effects, namely the isotope fractionation and equilibration during the interaction of rain drops and water vapour beneath the cloud base. This investigation illustrates the usefulness of high resolution, event-based model simulations for understanding the complex processes that cause synoptic-scale variability of the isotopic composition of atmospheric waters. In future research, this will be particularly beneficial in combination with laser spectrometric isotope observations with high temporal resolution.

  19. A numerical investigation of severe thunderstorm gust fronts

    NASA Technical Reports Server (NTRS)

    Mitchell, K. E.

    1975-01-01

    A numerical model was developed to simulate the evolution and structure of severe thunderstorm gust fronts. The model is a non-hydrostatic, fine resolution, cross-sectional primitive equation model. Two-dimensional horizontal and vertical equations of motion, the continuity equation, and the thermodynamic energy equation were utilized. It was shown that two dominant factors influencing gust front configuration are surface friction and the solenoidal field coincident with the front. It is suggested that solenoidal accelerations oppose the deceleration of surface friction. After a downdraft is initiated in the model, these opposing tendencies soon reach a balance and the gust front achieves a quasi-steady configuration. Thus, the experiments indicate that surface friction does not induce a cycle of front formation and collapse. In addition, the effect of evaporative cooling in producing a vigorous downdraft was parameterized by a local cooling function. Greater cooling in the downdraft results in a more intense gust front that exhibits stronger wind maximums and greater shears. The ambient air stability was shown to be an important factor influencing the depth of the cold outflow.

  20. Assessment of cold stress in outdoor work.

    PubMed

    Anttonen, H; Virokannas, H

    1994-01-01

    The evaluation of cold stress in working life was done in 13, mainly outdoor, occupations and 143 workers using local temperatures, body cooling and thermal sensations. The subjects in the study were young, healthy men and they wore the type of winter clothing generally used in those ambient temperatures (+6...-29 degrees C), for in a work load of from 112 to 480 W. Local temperatures on finger skin indicated that manual dexterity was often reduced in outdoor work. A risk of frostbite was frequently found on the cheek and the wind chill index predicted the risk quite well. Body cooling was often temporarily too high when measured by heat debt and mean skin temperature. Thermal sensations were cool or cold occasionally in 28% of the workers interviewed. The insulation of clothing worn was often lower than the IREQmin-value recommends. The results showed that in outdoor work in winter time cold stress frequently reduced (70%) working ability at least for a short period. Mean skin temperature seems to be, in practice, a useful indicator for body cooling and the IREQmin-value was suitable, especially in light work, to indicate body cooling. A very sensitive factor for the expression of cold stress was finger temperature, at least as an indicator of finger dexterity. Due to the adverse health effects found the cold stress should also be evaluated more systematically in occupational health and safety with health examinations, with protective clothing and technical preventive means. PMID:8049001

  1. FACILITY 209, SINGLESTORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 209, SINGLE-STORY DUPLEX, FRONT OBLIQUE VIEW OF FRONT FROM CENTER DRIVE, FACING SW. - U.S. Naval Base, Pearl Harbor, Housing Area 1, Single Story Duplex Type, Bounded by Kamehameha Highway, Plantation Drive, South Avenue, Pearl City, Honolulu County, HI

  2. FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    FACILITY 1042. FRONT OBLIQUE SHOWING ROYAL PALMS LINING FRONT WALK. VIEW FACING SOUTHEAST - U.S. Naval Base, Pearl Harbor, Naval Housing Area Hale Alii, Junior Officers' Quarters Type, 9-10 Hale Alii Avenue, 1-2 Eighth Street, Pearl City, Honolulu County, HI

  3. Cough & Cold Medicine Abuse

    MedlinePLUS

    ... How Can I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold ... Someone Quit? Avoiding DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ...

  4. Cold symptoms (image)

    MedlinePLUS

    Colds are caused by a virus and can occur year-round. The common cold generally involves a runny nose, nasal congestion, and ... symptoms include sore throat, cough, and headache. A cold usually lasts about 7 days, with perhaps a ...

  5. Cough & Cold Medicine Abuse

    MedlinePLUS

    ... I Help a Friend Who Cuts? Cough & Cold Medicine Abuse KidsHealth > For Teens > Cough & Cold Medicine Abuse ... DXM Why Do People Use Cough and Cold Medicines to Get High? There's an ingredient in many ...

  6. Coping with Cold Sores

    MedlinePLUS

    ... Getting Cold Sores? Treating Cold Sores en español Herpes labial Adam's lip had been feeling itchy all ... Cold sores are caused by a virus called herpes (say: HUR-peez). Herpes is one of the ...

  7. Zooplankton data report: Winter MIZEX, 1987

    SciTech Connect

    Smith, S.L.; Lane, P.V.Z.; Schwartling, E.M.; Beck, B.

    1988-12-01

    The Marginal Ice Zone Experiment (MIZEX) was an interdisciplinary, international Arctic research program designed to study the atmospheric, oceanic, and ice interactions in the Fram Strait region of the Greenland Sea. This report focuses on zooplankton data collected during the winter MIZEX program of 1987. The primary objectives of our group during MIZEX 87 were to study the distribution of zooplankton species in relation to the ice-edge, the Polar Front, and the mesoscale eddy field, and to study zooplanktonic physiology just prior to the spring phytoplankton bloom. The data in this report are quantitative analyses of zooplankton samples collected while aboard the research vessel HAKON MOSBY during MIZEX 87. This is the third in a series of data reports on zooplankton collected in the Fram Strait region during the MIZEX project. A complete catalog of the reports generated from the MIZEX program is archived at the National Snow and Ice Data Center in Boulder, Colorado, USA. 1 ref., 3 tabs.

  8. Cold confusion

    SciTech Connect

    Chapline, G.

    1989-07-01

    On March 23 two chemists, Martin Fleischmann and Stanley Pons startled the world with a press conference at the University of Utah where they announced that they had achieved nuclear fusion at room temperatures. As evidence they cited the production of ''excess'' amounts of heat in an electrochemical apparatus and observation of neutron production. While the production of heat in a chemical apparatus is not in itself unusual the observation of neutrons is certainly extraordinary. As it turned out, though, careful measurements of the neutron production in electrochemical apparatus similar to that used by Fleischmann and Pons carried out at dozens of other laboratories has shown that the neutron production fails by many orders of magnitude to support the assertion by Fleischmann and Pons that their discovery represents a new and cheap source of fusion power. In particular, independent measurements of the neutron production rate suggest that the actual rate of fusion energy production probably does not exceed 1 trillionth of a watt. This paper discusses the feasibility that cold fusion is actually being achieved. 7 refs.

  9. Winter Frost and Fog

    NASA Technical Reports Server (NTRS)

    2005-01-01

    This somewhat oblique blue wide angle Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows the 174 km (108 mi) diameter crater, Terby, and its vicinity in December 2004. Located north of Hellas, this region can be covered with seasonal frost and ground-hugging fog, even in the afternoon, despite being north of 30oS. The subtle, wavy pattern is a manifestation of fog.

    Location near: 28oS, 286oW Illumination from: upper left Season: Southern Winter

  10. Study of a Wind Front over the Northern South China Sea Generated by the Freshening of the North-East Monsoon

    NASA Astrophysics Data System (ADS)

    Alpers, Werner; Wong, Wai Kin; Dagestad, Knut-Frode; Chan, Pak Wai

    2015-10-01

    Wind fronts associated with cold-air outbreaks from the Chinese continent in the winter are often observed over the northern South China Sea and are well studied. However, wind fronts caused by another type of synoptic setting, the sudden increase or freshening of the north-east monsoon, which is caused by the merging of two anticyclonic regions over the Chinese continent, are also frequently encountered over the northern South China Sea. For the first time, such an event is investigated using multi-sensor satellite data, weather radar images, and a high-resolution atmospheric numerical model. It is shown that the wind front generated by the freshening of the north-east monsoon is quite similar to wind fronts generated by cold-air outbreaks. Furthermore, we investigate fine-scale features of the wind front that are visible on synthetic aperture radar (SAR) images through variations of the small-scale sea-surface roughness. The SAR image was acquired by the Advanced SAR of the European Envisat satellite over the South China Sea off the coast of Hong Kong and has a resolution of 150 m. It shows notches (dents) in the frontal line and also radar signatures of embedded rain cells. This (rare) SAR image, together with a quasi-simultaneously acquired weather radar image, provide excellent data with which to test the performance of the pre-operational version of the Atmospheric Integrated Rapid-cycle (AIR) forecast model system of the Hong Kong Observatory with respect to modelling rain cells at frontal boundaries. The calculations using a horizontal resolution with 3-km resolution show that the model reproduces quite well the position of the notches where rain cells are generated. The model shows further that at the position of the notches the vorticity of the airflow is increased leading to the uplift of warmer, moister air from the sea-surface to higher levels. With respect to the 10-km resolution model, the comparison of model data with the near-surface wind field derived from the SAR image shows that the AIR model overestimates the wind speed in the lee of the coastal mountains east of Hong Kong, probably due to the incorrect inclusion of the coastal topography.

  11. Model and observational analysis of the Northeast's regional winter climate and its relationship to the PNA pattern

    NASA Astrophysics Data System (ADS)

    Notaro, Michael

    A study was performed of the winter climate in the Northeast United States and its relationship to the large-scale circulation. Temperature, radiation, precipitation, and circulation features of the La Nina winter of 1998--1999 were analyzed through observations, NCEP-NCAR Reanalysis, and model simulations by SUNYA regional climate model (RCM). The relationship between the Pacific North American (PNA) pattern and regional winter climate of the Northeast was also investigated. Ten Decembers during the 1980s and 1990s were simulated, five with the most positive and five with the most negative PNA index. RCM reproduced the key climate features of the Northeast during the winter of 1998--1999. The model's circulation closely agreed with the reanalysis, particularly in the mid- and upper-troposphere, and with surface wind observations. Spatial and temporal patterns of temperature and precipitation agreed well with observations, despite a cold bias in the boundary layer (2--3C) and dry bias in precipitation. The use of six-hourly, rather than twelve-hourly, reanalysis boundary conditions improved the diurnal cycle and increased the success at capturing fast-moving systems, such as fronts, and reproducing hourly weather variations. The relationship of the PNA pattern, and other teleconnection patterns, to the Northeast winter climate was investigated. Positive PNA pattern was associated with a stronger, southeastward shifted jet and colder, drier conditions in the Northeast, while mild surface southerlies were more frequent with negative PNA pattern. In the positive PNA simulations, there was a large air-water thermal gradient over the Great Lakes, enhancing evaporation and fluxes of sensible and latent heat. Precipitation and clouds during positive PNA pattern were less abundant across the domain, although lake-effect maxima were well defined. The PDO (Pacific Decadal Oscillation), PNA, and ENSO (El Nino/Southern Oscillation) teleconnections significantly influenced the initial date, final date, and duration of the Great Lakes' ice season. Observed snowfall in the Northeast exhibited a stronger relationship to the North Atlantic Oscillation (NAO) than PNA pattern. Frontal passages were most frequent under a negative PNA and positive NAO pattern, characterized by the jet stream centered over New York. Finally, the tracks of highly positive quasi-geostrophic potential vorticity anomalies were influenced by the modes of PNA and PDO.

  12. Spirit's Winter Work Site

    NASA Technical Reports Server (NTRS)

    2006-01-01

    [figure removed for brevity, see original site] Annotated Version

    This portion of an image acquired by the Mars Reconnaissance Orbiter's High Resolution Imaging Science Experiment camera shows the Spirit rover's winter campaign site. Spirit was parked on a slope tilted 11 degrees to the north to maximize sunlight during the southern winter season. 'Tyrone' is an area where the rover's wheels disturbed light-toned soils. Remote sensing and in-situ analyses found the light-toned soil at Tyrone to be sulfate rich and hydrated. The original picture is catalogued as PSP_001513_1655_red and was taken on Sept. 29, 2006.

    NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor for the project and built the spacecraft. The High Resolution Imaging Science Experiment is operated by the University of Arizona, Tucson, and the instrument was built by Ball Aerospace and Technology Corp., Boulder, Colo.

  13. Cold energy

    NASA Astrophysics Data System (ADS)

    Wallace, John P.

    2015-12-01

    Deviations in Q for resonant superconducting radio frequency niobium accelerator cavities are generally correlated with resistivity loss mechanisms. Field dependent Qs are not well modeled by these classical loss mechanisms, but rather can represent a form of precision cavity surface thermometry. When the field dependent Q variation shows improvement with increasing B field level the classical treatment of this problem is inadequate. To justify this behavior hydrogen as a ubiquitous impurity in niobium, which creates measurable property changes, even at very low concentrations is typically considered the cause of such anomalous behavior. This maybe the case in some instances, but more importantly any system operating with a highly coherent field with a significant time dependent magnetic component at near 2° K will have the ability to organize the remaining free spins within the London penetration depth to form a coupled energy reservoir in the form of low mass spin waves. The niobium resonant cavities are composed of a single isotope with a large nuclear spin. When the other loss mechanisms are stripped away this may be the gain medium activated by the low level residual magnetic fields. It was found that one resonant cavity heat treatment produced optimum surface properties and then functioned as a MASER extracting energy from the 2° K thermal bath while cooling the cavity walls. The cavity operating in this mode is a simulator of what can take place in the wider but not colder universe using the cosmic microwave background (CMB) as a thermal source. The low mass, long lifetimes, and the scale of the magnetic spin waves on the weakly magnetized interstellar medium allows energy to be stored that is many orders of magnitude colder than the cosmic microwave background. A linear accelerator cavity becomes a tool to explore the properties of the long wave length magnetic spin waves that populate this cold low energy regime.

  14. Surface properties of ocean fronts

    NASA Technical Reports Server (NTRS)

    Wolff, P. M.; Hubert, W. E.

    1976-01-01

    Background information on oceanic fronts is presented and the results of several models which were developed to study the dynamics of oceanic fronts and their effects on various surface properties are described. The details of the four numerical models used in these studies are given in separate appendices which contain all of the physical equations, program documentation and running instructions for the models.

  15. Cover Crop Biomass and Corn Yield Following 13 Rye, Wheat, and Triticale Cultivars Used as Winter Cover Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops have the potential to reduce nitrate leaching and erosion in corn-soybean rotations in the upper Midwest. The cover crop growing season between harvest and planting of corn and soybean, however, is short and cold. Additionally, previous studies in Iowa have indicated that winter r...

  16. Field efficacy of wintertime insecticide applications against greenbugs, Schizaphis graminum (Rondani) (Hemiptera: Aphididae), on winter wheat (Triticum aestivum L.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat producers in Oklahoma often combine an insecticide with a top-dress application of nitrogen during late fall or winter to control existing greenbug populations. We evaluated the efficacy of three classes of insecticides applied in cold weather conditions ranging from -13.3 degrees to 2...

  17. Active learning of Pareto fronts.

    PubMed

    Campigotto, Paolo; Passerini, Andrea; Battiti, Roberto

    2014-03-01

    This paper introduces the active learning of Pareto fronts (ALP) algorithm, a novel approach to recover the Pareto front of a multiobjective optimization problem. ALP casts the identification of the Pareto front into a supervised machine learning task. This approach enables an analytical model of the Pareto front to be built. The computational effort in generating the supervised information is reduced by an active learning strategy. In particular, the model is learned from a set of informative training objective vectors. The training objective vectors are approximated Pareto-optimal vectors obtained by solving different scalarized problem instances. The experimental results show that ALP achieves an accurate Pareto front approximation with a lower computational effort than state-of-the-art estimation of distribution algorithms and widely known genetic techniques. PMID:24807447

  18. Identifying Lagrangian fronts with favourable fishery conditions

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-08-01

    Lagrangian fronts (LFs) in the ocean are defined as boundaries between surface waters with strongly different Lagrangian properties. They can be accurately detected in a given velocity field by computing synoptic maps for displacements of synthetic tracers and other Lagrangian indicators. We use Pacific saury catch and location data for a number of commercial fishery seasons in the region of the northwest Pacific with one of the richest fishery in the world. It is shown statistically that the saury fishing grounds with maximal catches are not randomly distributed over the region but located mainly along the sharp LFs where productive cold waters of the Oyashio Current, warmer waters of the southern branch of the Soya Current, and waters of warm-core Kuroshio rings converge. Computation of those fronts in altimetric geostrophic velocity fields both in the years with the First and Second Oyashio Intrusions shows that in spite of different oceanographic conditions LF locations may serve as good indicators of potential fishing grounds. Possible biophysical reasons for saury aggregation near sharp LFs are discussed. We propose a mechanism for effective export of nutrient rich waters based on stretching of material lines in the vicinity of hyperbolic objects in the ocean. The developed method, based on identifying LFs in any velocity fields, is quite general and may be applied to find potential fishing grounds for the other pelagic fish.

  19. Winter Lake Breezes near the Great Salt Lake

    NASA Astrophysics Data System (ADS)

    Crosman, Erik T.; Horel, John D.

    2015-12-01

    Case studies of lake breezes during wintertime cold air pools in Utah's Salt Lake Valley are examined. While summer breezes originating from the Great Salt Lake are typically deeper, of longer duration, and have higher wind speeds than winter breezes, the rate of inland penetration and cross-frontal temperature differences can be higher during the winter. The characteristics of winter breezes and the forcing mechanisms controlling them (e.g., snow cover, background flow, vertical stability profile, clouds, lake temperature, lake sheltering, and drainage pooling) are more complex and variable than those evident in summer. During the afternoon in the Salt Lake Valley, these lake breezes can lead to elevated pollution levels due to the transport of fine particle pollutants from over the Great Salt Lake, decreased vertical mixing depth, and increased vertical stability.

  20. Climatological characteristics of fronts in the western North Pacific based on surface weather charts

    NASA Astrophysics Data System (ADS)

    Utsumi, Nobuyuki; Kim, Hyungjun; Seto, Shinta; Kanae, Shinjiro; Oki, Taikan

    2014-08-01

    Composite front climatology in the western North Pacific is determined using a newly developed 1.0 gridded data set. Here we propose a research strategy for determining the spatiotemporal distribution of fronts using weather chart images published by the Japan Meteorological Agency, one of the major data providers in the region. A preliminarily investigation of the internal data characteristics for the period of 2000-2010 is undertaken, and the final 4 years of data are used for an analysis of front climatology to avoid the effect of any spurious trends. This enables in-depth analyses to be conducted, which have not previously been possible in the region, including the composites of cross-sectional patterns for the thermal fields and precipitation near fronts, front length seasonality, and the significance of the thermal gradient near the fronts, in addition to determining the frontal frequency and spatial distribution of frontal precipitation. Pixel-wise analysis reveals that 56% of the local precipitation maximum is located on the warm side of a cold front caused by less tilted upward motion on the warm side, with the intrusion of the upper level cold dry air into the warm side. This new data set also enables a further analysis of the occluded fronts, which are not correctly distinguished in the existing objective detection method.

  1. a Climatology of Extreme Minimum Winter Temperatures in Ohio

    NASA Astrophysics Data System (ADS)

    Edgell, Dennis Joe

    The Extreme Minimum Winter Temperature (EMWT) is the coldest temperature recorded each winter at a given weather station. This variable is a measure of winter temperature stress. Extreme cold influences the geographic distribution of plants, and is a prime control for the production of some valuable fruit crops grown in Ohio. EMWT values are often used to map plant hardiness zones, however the magnitude of EMWT and the date that it occurs has varied widely from year to year. Climatic variables rarely remain constant over time, and the plant hardiness zones could shift significantly if the climate changes and there is a trend towards warmer EMWTs. Plants that have their present geographic ranges limited by cold winter temperatures could increase their spatial extent. Furthermore, EMWT has impacts on human health and has applications for architecture. EMWTs at eighty-nine weather stations in Ohio were analyzed. Summary statistics and return period intervals for critical EMWTs are tabulated and mapped. Return period maps may be more useful for environmental planning than plant hardiness zone maps based on average EMWT, especially in a variable climate. Graphical methods, curve fitting and a probability model for the mean were utilized to examine the long term trend. The EMWT has not warmed during the known climatic record of this variable in Ohio. This study demonstrates the need for more applied climatological studies based on the observed climate record, not obscured by the assumptions of the global warming paradigm.

  2. Mesoscale numerical simulations of heavy nocturnal rainbands associated with coastal fronts in the Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Mazon, J.; Pino, D.

    2014-05-01

    Three offshore rainbands associated with nocturnal coastal fronts formed near the Israeli coastline, the Gulf of Genoa and on the northeastern coast of the Iberian Peninsula, are simulated using version 3.3 of the WRF-ARW mesoscale model in order to study the dynamics of the atmosphere in each case. The simulations show coastal fronts producing relatively high (in comparison with some other similar rainbands) 1 and 10 h accumulated precipitations that formed in the Mediterranean Basin. According to these simulations, the coastal fronts that formed near the Israeli coastline and over the Gulf of Genoa are quasi-stationary, while the one that formed on the northeastern coast of the Iberian Peninsula moves away from the coast. For the three events, we evaluate and intercompare some parameters related to convective triggering, deceleration induced by the cold pool in the upstream flow, and the blockage that the cold coastal front offers to the warmer maritime air mass.

  3. Is the OJIP Test a Reliable Indicator of Winter Hardiness and Freezing Tolerance of Common Wheat and Triticale under Variable Winter Environments?

    PubMed

    Rapacz, Marcin; Sasal, Monika; Kalaji, Hazem M; Kościelniak, Janusz

    2015-01-01

    OJIP analysis, which explores changes in photosystem II (PSII) photochemical performance, has been used as a measure of plant susceptibility to stress. However, in the case of freezing tolerance and winter hardiness, which are highly environmentally variable, the use of this method can give ambiguous results depending on the species as well as the sampling year and time. To clarify this issue, we performed chlorophyll fluorescence measurements over three subsequent winters (2010/11, 2011/12 and 2012/13) on 220 accessions of common winter wheat and 139 accessions of winter triticale. After freezing, leaves were collected from cold-acclimated plants in the laboratory and field-grown plants. Observations of field survival in seven locations across Poland and measurements of freezing tolerance of the studied plants were also recorded. Our results confirm that the OJIP test is a reliable indicator of winter hardiness and freezing tolerance of common wheat and triticale under unstable winter environments. Regardless of species, the testing conditions giving the most reliable results were identical, and the reliability of the test could be easily checked by analysis of some relationships between OJIP-test parameters. We also found that triticale is more winter hardy and freezing tolerant than wheat. In addition, the two species were characterized by different patterns of photosynthetic apparatus acclimation to cold. PMID:26230839

  4. Expansion of a cold non-neutral plasma slab

    SciTech Connect

    Karimov, A. R.; Yu, M. Y.; Stenflo, L.

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  5. Winter fuels report

    SciTech Connect

    Not Available

    1995-02-03

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day and 30-Day outlook for temperature and precipitation and US total heating degree-days by city.

  6. Spirit Scans Winter Haven

    NASA Technical Reports Server (NTRS)

    2006-01-01

    At least three different kinds of rocks await scientific analysis at the place where NASA's Mars Exploration Rover Spirit will likely spend several months of Martian winter. They are visible in this picture, which the panoramic camera on Spirit acquired during the rover's 809th sol, or Martian day, of exploring Mars (April 12, 2006). Paper-thin layers of light-toned, jagged-edged rocks protrude horizontally from beneath small sand drifts; a light gray rock with smooth, rounded edges sits atop the sand drifts; and several dark gray to black, angular rocks with vesicles (small holes) typical of hardened lava lie scattered across the sand.

    This view is an approximately true-color rendering that combines images taken through the panoramic camera's 753-nanometer, 535-nanometer, and 432-nanometer filters.

  7. Predictability of winter temperature in China from previous autumn Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Zuo, Jinqing; Ren, Hong-Li; Wu, Bingyi; Li, Weijing

    2016-01-01

    The potential predictability of winter temperature in China from autumn Arctic sea ice anomalies is studied by examining and statistically modeling the large-scale interannual covariability between them on the basis of singular value decomposition analysis. It is demonstrated that an intimate relationship exists between September and October sea ice anomalies in the Eurasian Arctic and following winter temperature anomalies in China, except in the Tibetan Plateau. When the autumn sea ice anomalies decline in the Eurasian Arctic, above-normal pressure anomalies appear to prevail over the region from the Eurasian Arctic to Eastern Europe and Mongolia, and below-normal anomalies prevail over the mid-latitudes of Asia and Northwestern Pacific in the following winter. Consequently, the winter Siberian High and East Asian trough are both strengthened, favoring the southward invasion of high-latitude cold air masses and thus cold temperature anomalies in China. It is found that the Siberian High plays a crucial role in delivering effects of the autumn Arctic sea ice anomalies on winter temperature variability in China. Based on this evidence, a statistical model is established to examine the potential predictability of winter temperature anomalies in China by taking the autumn Arctic sea ice signals as a predictor. Validation shows considerable skill in predicting winter temperature anomalies over a large part of China, indicating a significant potential for improving winter climate prediction in China.

  8. Cold tolerance of the montane Sierra leaf beetle, Chrysomela aeneicollis.

    PubMed

    Boychuk, Evelyn C; Smiley, John T; Dahlhoff, Elizabeth P; Bernards, Mark A; Rank, Nathan E; Sinclair, Brent J

    2015-10-01

    Small ectothermic animals living at high altitude in temperate latitudes are vulnerable to lethal cold throughout the year. Here we investigated the cold tolerance of the leaf beetle Chrysomela aeneicollis living at high elevation in California's Sierra Nevada mountains. These insects spend over half their life cycle overwintering, and may therefore be vulnerable to winter cold, and prior studies have demonstrated that survival is reduced by exposure to summertime cold. We identify overwintering microhabitat of this insect, describe cold tolerance strategies in all life stages, and use microclimate data to determine the importance of snow cover and microhabitat buffering for overwinter survival. Cold tolerance varies among life history stages and is typically correlated with microhabitat temperature: cold hardiness is lowest in chill-susceptible larvae, and highest in freeze-tolerant adults. Hemolymph osmolality is higher in quiescent (overwintering) than summer adults, primarily, but not exclusively, due to elevated hemolymph glycerol. In nature, adult beetles overwinter primarily in leaf litter and suffer high mortality if early, unseasonable cold prevents them from entering this refuge. These data suggest that cold tolerance is tightly linked to life stage. Thus, population persistence of montane insects may become problematic as climate becomes more unpredictable and climate change uncouples the phenology of cold tolerance and development from the timing of extreme cold events. PMID:26231921

  9. Seasonal variation of trehalose and glycerol concentrations in winter snow-active insects.

    PubMed

    Vanin, Stefano; Bubacco, Luigi; Beltramini, Mariano

    2008-01-01

    Different kinds of molecules were identified as antifreezing agents in the body fluids of cold tolerant invertebrates: sugars, polyols and proteins. While none of the active arthropods were so far reported to accumulate polyols, these compounds are present in the haemolymph of species that hibernate in a passive stage such as diapause. In this work we investigated insect species that are active during winter and we demonstrated the ability of the mecopteran Boreus hiemalis (Mecoptera, Boreidae), the wingless fly Chionea sp. (Diptera, Limoniidae) and cantharid larvae (Coleoptera, Cantharidae) to accumulate sugars in their haemolymph to survive during winter. We report, for the first time, that for snow-active insects, trehalose comprises an important haemolymph component, its concentration changing as a function of the season, suggesting that the same adaptive strategies against cold conditions have evolved both in winter active and winter diapausing insects. PMID:19280052

  10. Asymmetric counterpropagating fronts without flow

    NASA Astrophysics Data System (ADS)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2015-06-01

    Out-of-equilibrium systems exhibit domain walls between different states. These walls, depending on the type of connected states, can display rich spatiotemporal dynamics. In this Rapid Communication, we investigate the asymmetrical counterpropagation of fronts in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the different front shapes and propagation speeds. These fronts present dissimilar elastic deformations that are responsible for their asymmetric speeds. Theoretically, using a phenomenological model, we describe the observed dynamics with fair agreement.

  11. Lagrangian sources of frontogenesis in the equatorial Atlantic front

    NASA Astrophysics Data System (ADS)

    Giordani, Herv; Caniaux, Guy

    2014-12-01

    Estimating the processes that control the north equatorial sea surface temperature (SST)-front on the northern edge of the cold tongue in the tropical Atlantic is a key issue for understanding the dynamics of the oceanic equatorial Atlantic and the West African Monsoon. Diagnosis of the frontogenetic forcings on a realistic high-resolution simulation was used to identify the processes involved in the formation and evolution of the equatorial SST-front. The turbulent forcing associated with the mixed-layer turbulent heat flux was found to be systematically frontolytic while the dynamic forcing associated with currents was found to be frontogenetic for the equatorial SST-front. Nevertheless, the low-frequency component of the turbulent forcing was frontogenetic and initiated the SST-front which was then amplified and maintained by the leading dynamic forcing. This forcing was mainly driven by the meridional convergence of the northern South Equatorial Current (nSEC) and the Guinea Current, which points out the essential role played by the circulation in the equatorial SST-front evolution. The quasi-biweekly variability of the equatorial SST-front and its forcings were found to be more strongly coupled to the wind energy flux ( WEF) than to the surface wind stress. In fact the WEF controlled the convergence/divergence of the nSEC and Guinea Current and thus the meridional component of the leading dynamic forcing. The WEF explains the equatorial SST-front development better than the wind does because it is a coupled ocean-atmosphere process.

  12. Lagrangian sources of frontogenesis in the equatorial Atlantic front

    NASA Astrophysics Data System (ADS)

    Giordani, Herv; Caniaux, Guy

    2014-09-01

    Estimating the processes that control the north equatorial sea surface temperature (SST)-front on the northern edge of the cold tongue in the tropical Atlantic is a key issue for understanding the dynamics of the oceanic equatorial Atlantic and the West African Monsoon. Diagnosis of the frontogenetic forcings on a realistic high-resolution simulation was used to identify the processes involved in the formation and evolution of the equatorial SST-front. The turbulent forcing associated with the mixed-layer turbulent heat flux was found to be systematically frontolytic while the dynamic forcing associated with currents was found to be frontogenetic for the equatorial SST-front. Nevertheless, the low-frequency component of the turbulent forcing was frontogenetic and initiated the SST-front which was then amplified and maintained by the leading dynamic forcing. This forcing was mainly driven by the meridional convergence of the northern South Equatorial Current (nSEC) and the Guinea Current, which points out the essential role played by the circulation in the equatorial SST-front evolution. The quasi-biweekly variability of the equatorial SST-front and its forcings were found to be more strongly coupled to the wind energy flux (WEF) than to the surface wind stress. In fact the WEF controlled the convergence/divergence of the nSEC and Guinea Current and thus the meridional component of the leading dynamic forcing. The WEF explains the equatorial SST-front development better than the wind does because it is a coupled ocean-atmosphere process.

  13. INSTABILITY OF MAGNETIZED IONIZATION FRONTS SURROUNDING H II REGIONS

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2014-12-20

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes the transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number M{sub M2}?1. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor ? by a factor of 1 + 1/(2?{sub 1}) compared to the unmagnetized case, with ?{sub 1} denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations owing to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber, as well as the upstream flow speed, and approximately to ?{sup 1/2}. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when M{sub M2}{sup 2}<2/(2?{sub 1}?1). When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.

  14. Instability of Magnetized Ionization Fronts Surrounding H II Regions

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae

    2014-12-01

    An ionization front (IF) surrounding an H II region is a sharp interface where a cold neutral gas makes the transition to a warm ionized phase by absorbing UV photons from central stars. We investigate the instability of a plane-parallel D-type IF threaded by parallel magnetic fields, by neglecting the effects of recombination within the ionized gas. We find that weak D-type IFs always have the post-IF magnetosonic Mach number {M}_M2 ? 1. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor ? by a factor of 1 + 1/(2?1) compared to the unmagnetized case, with ?1 denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations owing to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber, as well as the upstream flow speed, and approximately to ?1/2. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when {M}_M22 < 2/(2? 1 - 1). When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.

  15. Instability of Magnetized Ionization Fronts Surrounding H II Regions

    NASA Astrophysics Data System (ADS)

    Kim, Jeong-Gyu; Kim, Woong-Tae

    2015-01-01

    An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and stability of a plane-parallel D-type IF threaded by parallel magnetic fields. We find that weak D-type IFs always have the post-IF magnetosonic Mach number M_{M2} ? 1. For such fronts, magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor by a factor of 1+1/(2?_1) compared to the unmagnetized case, with ?_1 denoting the plasma beta in the pre-IF region. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when M_{M2}^2 < 2/(?_1 - 1). When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable.

  16. Cold Signaling and Cold Response in Plants

    PubMed Central

    Miura, Kenji; Furumoto, Tsuyoshi

    2013-01-01

    Plants are constantly exposed to a variety of environmental stresses. Freezing or extremely low temperature constitutes a key factor influencing plant growth, development and crop productivity. Plants have evolved a mechanism to enhance tolerance to freezing during exposure to periods of low, but non-freezing temperatures. This phenomenon is called cold acclimation. During cold acclimation, plants develop several mechanisms to minimize potential damages caused by low temperature. Cold response is highly complex process that involves an array of physiological and biochemical modifications. Furthermore, alterations of the expression patterns of many genes, proteins and metabolites in response to cold stress have been reported. Recent studies demonstrate that post-transcriptional and post-translational regulations play a role in the regulation of cold signaling. In this review article, recent advances in cold stress signaling and tolerance are highlighted. PMID:23466881

  17. Coastal dynamics off Northwest Iberia during a stormy winter period

    NASA Astrophysics Data System (ADS)

    Otero, Pablo; Ruiz-Villarreal, Manuel; García-García, Luz; González-Nuevo, Gonzalo; Cabanas, Jose Manuel

    2013-01-01

    The consequences of a stormy winter period (2009/2010) on the shelf and coastal dynamics off Northwest Iberia are analysed by using model results in combination with the set of available observations in the frame of the Iberian Margin Ocean Observatory (RAIA), a cross-border infrastructure among North Portugal and Galicia (Spain). During the study winter, the frequent arrival of weather fronts forced river plumes to flow along the inner shelf in a fast (>1 m s-1) jet-like structure. The buoyant current strongly influenced the outer rías, the name of the estuaries in the region, where a strong decay of surface salinity (<10.5) has been observed. Once the weather front has passed, the wind reversal forced the offshore expansion of river plumes and also the development of a winter upwelling event. Thermohaline patterns in both model and observations revealed an intrusion of warm (>15 °C) and salty (>35.9) waters into the rías associated with the Iberian Poleward Current. Finally, some Lagrangian modelling experiments were performed to analyse the transport ability of the plume and the effect that could have had in the biological material trapped on it. The experiments reveal that an overall northward displacement of surface particles will be expected after several alternate wind events.

  18. The ABCs of Front Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Frost protection or protecting plants from cold temperatures where they could be damaged must be a major consideration in orchard planning. Cold temperature protection events commonly occur during "radiation" frost conditions when the sky is clear, there is little wind and temperature inversions ca...

  19. Restless rays, steady wave fronts.

    PubMed

    Godin, Oleg A

    2007-12-01

    Observations of underwater acoustic fields with vertical line arrays and numerical simulations of long-range sound propagation in an ocean perturbed by internal gravity waves indicate that acoustic wave fronts are much more stable than the rays comprising these wave fronts. This paper provides a theoretical explanation of the phenomenon of wave front stability in a medium with weak sound-speed perturbations. It is shown analytically that at propagation ranges that are large compared to the correlation length of the sound-speed perturbations but smaller than ranges at which ray chaos develops, end points of rays launched from a point source and having a given travel time are scattered primarily along the wave front corresponding to the same travel time in the unperturbed environment. The ratio of root mean square displacements of the ray end points along and across the unperturbed wave front increases with range as the ratio of ray length to correlation length of environmental perturbations. An intuitive physical explanation of the theoretical results is proposed. The relative stability of wave fronts compared to rays is shown to follow from Fermat's principle and dimensional considerations. PMID:18247745

  20. Evolution of a physical and biological front from upwelling to relaxation

    NASA Astrophysics Data System (ADS)

    Zhang, Yanwu; Bellingham, James G.; Ryan, John P.; Godin, Michael A.

    2015-10-01

    Fronts influence the structure and function of coastal marine ecosystems. Due to the complexity and dynamic nature of coastal environments and the small scales of frontal gradient zones, frontal research is difficult. To advance this challenging research we developed a method enabling an autonomous underwater vehicle (AUV) to detect and track fronts, thereby providing high-resolution observations in the moving reference frame of the front itself. This novel method was applied to studying the evolution of a frontal zone in the coastal upwelling environment of Monterey Bay, California, through a period of variability in upwelling intensity. Through 23 frontal crossings in four days, the AUV detected the front using real-time analysis of vertical thermal stratification to identify water types and the front between them, and the vehicle tracked the front as it moved more than 10 km offshore. The physical front coincided with a biological front between strongly stratified phytoplankton-enriched water inshore of the front, and weakly stratified phytoplankton-poor water offshore of the front. While stratification remained a consistent identifier, conditions on both sides of the front changed rapidly as regional circulation responded to relaxation of upwelling winds. The offshore water type transitioned from relatively cold and saline upwelled water to relatively warm and fresh coastal transition zone water. The inshore water type exhibited an order of magnitude increase in chlorophyll concentrations and an associated increase in oxygen and decrease in nitrate. It also warmed and freshened near the front, consistent with the cross-frontal exchange that was detected in the high-resolution AUV data. AUV-observed cross-frontal exchanges beneath the surface manifestation of the front emphasize the importance of AUV synoptic water column surveys in the frontal zone.

  1. Winter fuels report

    SciTech Connect

    Not Available

    1995-01-27

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysis, and State and local governments on the following topics: distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s, as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  2. Winter fuels report

    SciTech Connect

    Not Available

    1994-10-01

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and State and local governments on the following topics: Distillate fuel oil net production, imports and stocks on a US level and for all Petroleum Administration for Defense Districts (PADD) and product supplied on a US level; propane net production, imports and stocks on a US level and for PADD`s I, II, and III; natural gas supply and disposition and underground storage for the US and consumption for all PADD`s; as well as selected National average prices; residential and wholesale pricing data for heating oil and propane for those States participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil and petroleum price comparisons for the US and selected cities; and a 6-10 Day, 30-Day, and 90-Day outlook for temperature and precipitation and US total heating degree-days by city.

  3. Winter fuels report

    SciTech Connect

    Not Available

    1990-10-04

    The Winter Fuels Report is intended to provide concise, timely information to the industry, the press, policymakers, consumers, analysts, and state and local governments on the following topics: distillate fuel oil net production, imports and stocks for all PADD's and product supplied on a US level; propane net production, imports and stocks for Petroleum Administration for Defense Districts (PADD) I, II, and III; natural gas supply and disposition, underground storage, and consumption for all PADD's; residential and wholesale pricing data for propane and heating oil for those states participating in the joint Energy Information Administration (EIA)/State Heating Oil and Propane Program; crude oil price comparisons for the United States and selected cities; and US total heating degree-days by city. This report will be published weekly by the EIA starting the first week in October 1990 and will continue until the first week in April 1991. The data will also be available electronically after 5:00 p.m. on Thursday during the heating season through the EIA Electronic Publication System (EPUB). 12 tabs.

  4. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame?

    NASA Astrophysics Data System (ADS)

    D'Arrigo, Rosanne; Seager, Richard; Smerdon, Jason E.; LeGrande, Allegra N.; Cook, Edward R.

    2011-03-01

    The multi-stage eruption of the Icelandic volcano Laki beginning in June, 1783 is speculated to have caused unusual dry fog and heat in western Europe and cold in North America during the 1783 summer, and record cold and snow the subsequent winter across the circum-North Atlantic. Despite the many indisputable impacts of the Laki eruption, however, its effect on climate, particularly during the 1783-1784 winter, may be the most poorly constrained. Here we test an alternative explanation for the unusual conditions during this time: that they were caused primarily by a combined negative phase of the North Atlantic Oscillation (NAO) and an El Nio-Southern Oscillation (ENSO) warm event. A similar combination of NAO-ENSO phases was identified as the cause of record cold and snowy conditions during the 2009-2010 winter in Europe and eastern North America. 600-year tree-ring reconstructions of NAO and ENSO indices reveal values in the 1783-1784 winter second only to their combined severity in 2009-2010. Data sources and model simulations support our hypothesis that a combined, negative NAO-ENSO warm phase was the dominant cause of the anomalous winter of 1783-1784, and that these events likely resulted from natural variability unconnected to Laki.

  5. The Anomalous Winter of 1783-1784: Was the Laki Eruption or an Analog of the 2009-2010 Winter to Blame?

    NASA Technical Reports Server (NTRS)

    D'Arrigo, Rosanne; Seager, Richard; Smerdon, Jason E.; LeGrande, Allegra N.; Cook, Edward R.

    2011-01-01

    The multi ]stage eruption of the Icelandic volcano Laki beginning in June, 1783 is speculated to have caused unusual dry fog and heat in western Europe and cold in North America during the 1783 summer, and record cold and snow the subsequent winter across the circum-North Atlantic. Despite the many indisputable impacts of the Laki eruption, however, its effect on climate, particularly during the 1783.1784 winter, may be the most poorly constrained. Here we test an alternative explanation for the unusual conditions during this time: that they were caused primarily by a combined negative phase of the North Atlantic Oscillation (NAO) and an El Nino ]Southern Oscillation (ENSO) warm event. A similar combination of NAO ]ENSO phases was identified as the cause of record cold and snowy conditions during the 2009.2010 winter in Europe and eastern North America. 600-year tree-ring reconstructions of NAO and ENSO indices reveal values in the 1783.1784 winter second only to their combined severity in 2009.2010. Data sources and model simulations support our hypothesis that a combined, negative NAO ]ENSO warm phase was the dominant cause of the anomalous winter of 1783.1784, and that these events likely resulted from natural variability unconnected to Laki.

  6. Development- and cold-regulated accumulation of cold shock domain proteins in wheat.

    PubMed

    Radkova, Mariana; Vtmvs, Pavel; Sasaki, Kentaro; Imai, Ryozo

    2014-04-01

    Cold shock domain (CSD) proteins, or Y-box proteins, are nucleic acid-binding proteins that are widely distributed from bacteria to higher plants and animals. Bacterial CSD proteins play an essential role in cold adaptation by destabilizing RNA secondary structures. WHEAT COLD SHOCK DOMAIN PROTEIN 1 (WCSP1) shares biochemical functions with bacterial CSD proteins and is possibly involved in cold adaptation. In this study, the temporal and spatial distribution of the wheat cold shock domain protein family (WCSPs) was serologically characterized with regard to plant development and cold adaptation. Four WCSP genes were identified through database analysis and were classified into three classes based on their molecular masses and protein domain structures. Class I (20kD) and class II (23kD) WCSPs demonstrated a clear pattern of accumulation in root and shoot meristematic tissues during vegetative growth. In response to cold, marked increases in WCSP levels were observed but the pattern of accumulation differed by tissue. Accumulation of WCSPs in crown tissue during cold acclimation was observed in the winter cultivar 'Chihokukomugi' but not in the spring cultivar 'Haruyutaka', suggesting a possible function for WCSPs in cold acclimation. During flower and seed development, protein levels of class I and class II WCSPs remained high. The class III WCSP (27kD) was detected only during seed development. The highest level of class III WCSP accumulation was observed at the milky seed stage. Together, the results of this study provide a view of CSD protein accumulation throughout the life cycle of wheat and suggest that WCSPs function differentially in plant development and cold adaptation. PMID:24534004

  7. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This

  8. Cold Stress and the Cold Pressor Test

    ERIC Educational Resources Information Center

    Silverthorn, Dee U.; Michael, Joel

    2013-01-01

    Temperature and other environmental stressors are known to affect blood pressure and heart rate. In this activity, students perform the cold pressor test, demonstrating increased blood pressure during a 1- to 2-min immersion of one hand in ice water. The cold pressor test is used clinically to evaluate autonomic and left ventricular function. This…

  9. Turbulent statistics in the vicinity of an SST front: A north wind case, FASINEX February 16, 1986

    NASA Technical Reports Server (NTRS)

    Stage, Steven A.; Herbster, Chris

    1990-01-01

    The technique of boxcar variances and covariances is used to examine NCAR Electra data from FASINEX (Frontal Air-Sea Interaction EXperiment). This technique was developed to examine changes in turbulent fluxes near a sea surface temperature (SST) front. The results demonstrate the influence of the SST front on the MABL (Marine Atmospheric Boundary Layer). Data shown are for February 16, 1986, when the winds blew from over cold water to warm. The front directly produced horizontal variability in the turbulence. The front also induced a secondary circulation which further modified the turbulence.

  10. COLD TEMPERATURE MOTOR VEHICLE EMISSIONS TESTING IN ALASKA

    EPA Science Inventory

    A motor vehicle emissions testing study was conducted in Anchorage and Fairbanks during the winter of 1998-99 to collect actual measurements of initial idle emission rates. The study was performed for a sample of 111 automobiles and light-duty trucks under cold wintertime ambient...

  11. IMPROVEMENT OF VARIETAL GARLIC VIABILITY BY COLD STORAGE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Garlic is a specialty horticultural crop that is usually planted in the fall and harvested in late summer. By delaying the planting until spring, high winter winds that blow away much needed mulch and irrigation operational challenges could be avoided. Cold storage trials were performed to determi...

  12. Occurrence of large temperature inversion in the thermohaline frontal zone at the Yellow Sea entrance in winter and its relation to advection

    NASA Astrophysics Data System (ADS)

    Lie, Heung-Jae; Cho, Cheol-Ho; Jung, Kyung Tae

    2015-01-01

    inversion (higher temperature at a deeper depth) in winter and its relation to advection were investigated by analyzing both conductivity-temperature-depth data in the southern Yellow Sea (YS) and northwestern East China Sea during the winter of 2002-2003 and time series data of temperature, salinity, and currents at a buoy station at the YS entrance. Significant temperature inversions occur predominantly along the thermohaline front at the YS entrance where the Cheju Warm Current Water (CWCW) and the cold coastal waters meet. In February 2003, on the northern frontal zone along 34°N where isotherms and isohalines declined downward to the north, particularly large inversions with temperature differences of larger than 2.0°C were observed to occur more in troughs than in the crests of the wave-like frontal meander where the cold Korean coastal water (KCW) advances farther southward. The inversion persisted until mid-April at the buoy station in the frontal zone, and both temperature and salinity showed simultaneous variations in the same manner. During episodic occurrences of large inversions, temperature and salinity decreased sharply in the upper layer, but increased concurrently in the lower layer. These episodic inversions were found to be closely related to the westward advection of the KCW in the upper layer and the northward advection of the CWCW in the lower layer. It is considered that these advections may play an important role in maintaining baroclinicity in the northern frontal zone, which is responsible for driving the westward transversal flow across the YS entrance.

  13. Identification of cold-responsive genes in blueberry (Vaccinium corymbosum L.) using a hybridization approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enhanced cold tolerance, including tolerance to winter freezing and spring frosts, is needed for genetic improvement of current highbush blueberry (Vaccinium corymbosum L.) cultivars. To gain a better understanding of changes in gene expression associated with development of cold tolerance in bluebe...

  14. Air-sea interaction over a thermal marine front in the Denmark Strait

    NASA Astrophysics Data System (ADS)

    Vihma, Timo; Uotila, Juha; Launiainen, Jouko

    1998-11-01

    An investigation was conducted into air-sea interaction in the Denmark Strait, where a distinct thermal front separates warm North Atlantic water from the cold East Greenland Current. The field data consisted of ship weather station data and rawinsonde soundings from R/V Aranda's expedition in August-September 1993. The surface energy balance differed drastically between the warm and cold side of the front (net fluxes of 95 W m-2 upward and 82 W m-2 downward, respectively). The difference resulted mostly from the contradictory turbulent fluxes. The air temperature, humidity and wind speed showed more variation on the warm side of the front. Lower wind speeds were observed on the cold side. The cross-frontal differences in the air temperature and wind speed were largest during front-parallel flow, but those in the sensible and latent heat flux were largest during cross-frontal flow. During cases of air advection across the front, the modification in the air temperature was strongest with a low wind speed. Downwind of the front, the sensible heat flux strongly depended on the south-north wind component. The rawinsonde data revealed temperature inversions and low-level jets. The wind profile was affected by the combined effects of baroclinity, surface layer stability, and stratification through the atmospheric boundary layer. The surface heterogeneity caused by the sea surface temperature front resulted in the Schmidt paradox: the area-averaged sensible heat flux was upward, while the area-averaged air temperature exceeded the area-averaged surface temperature. A mosaic method, extended by estimates of the local wind speed over the warm and cold water side, was applicable to parameterizing the area-averaged sensible heat flux.

  15. Winter Anomaly 1982/83 in Comparison with Earlier Winters (1960-82)

    NASA Technical Reports Server (NTRS)

    Lastovicka, J.

    1984-01-01

    The winter anomaly in the winter of 1982/83 is compared with the winter anomalies of earlier winters (1960-82) from the point of view of amplitude and timing of the winter anomaly, and geomagnetic and dynamic activity influences. Some evidence of a negative influence of sudden stratospheric warnings on the winter anomaly is given.

  16. Temperature characteristics of winter roost-sites for birds and mammals: tree cavities and anthropogenic alternatives

    NASA Astrophysics Data System (ADS)

    Grüebler, Martin U.; Widmer, Silv; Korner-Nievergelt, Fränzi; Naef-Daenzer, Beat

    2014-07-01

    The microclimate of potential roost-sites is likely to be a crucial determinant in the optimal roost-site selection of endotherms, in particular during the winter season of temperate zones. Available roost-sites for birds and mammals in European high trunk orchards are mainly tree cavities, wood stacks and artificial nest boxes. However, little is known about the microclimatic patterns inside cavities and thermal advantages of using these winter roost-sites. Here, we simultaneously investigate the thermal patterns of winter roost-sites in relation to winter ambient temperature and their insulation capacity. While tree cavities and wood stacks strongly buffered the daily cycle of temperature changes, nest boxes showed low buffering capacity. The buffering effect of tree cavities was stronger at extreme ambient temperatures compared to temperatures around zero. Heat sources inside roosts amplified Δ T (i.e., the difference between inside and outside temperatures), particularly in the closed roosts of nest boxes and tree cavities, and less in the open wood stacks with stronger circulation of air. Positive Δ T due to the installation of a heat source increased in cold ambient temperatures. These results suggest that orchard habitats in winter show a spatiotemporal mosaic of sites providing different thermal benefits varying over time and in relation to ambient temperatures. At cold temperatures tree cavities provide significantly higher thermal benefits than nest boxes or wood stacks. Thus, in winter ecology of hole-using endotherms, the availability of tree cavities may be an important characteristic of winter habitat quality.

  17. Projected changes to winter temperature characteristics over Canada based on an RCM ensemble

    NASA Astrophysics Data System (ADS)

    Jeong, Dae Il; Sushama, Laxmi; Diro, Gulilat Tefera; Khaliq, M. Naveed

    2015-11-01

    Cold temperature and associated extremes often impact adversely human health and environment and bring disruptions in economic activities during winter over Canada. This study investigates projected changes in winter (December to March) period cold extreme days (i.e., cold nights, cold days, frost days, and ice days) and cold spells over Canada based on 11 regional climate model (RCM) simulations for the future 2040-2069 period with respect to the current 1970-1999 period. These simulations, available from the North American Regional Climate Change Assessment Program, were obtained with six different RCMs, when driven by four different Atmosphere-Ocean General Circulation Models, under the Special Report on Emissions Scenarios A2 scenario. Based on the reanalysis boundary conditions, the RCM simulations reproduce spatial patterns of observed mean values of the daily minimum and maximum temperatures and inter-annual variability of the number of cold nights over different Canadian climatic regions considered in the study. A comparison of current and future period simulations suggests decreases in the frequency of cold extreme events (i.e., cold nights, cold days and cold spells) and in selected return levels of maximum duration of cold spells over the entire study domain. Important regional differences are noticed as the simulations generally indicate smaller decreases in the characteristics of extreme cold events over western Canada compared to the other regions. The analysis also suggests an increase in the frequency of midwinter freeze-thaw events, due mainly to a decrease in the number of frost days and ice days for all Canadian regions. Especially, densely populated southern and coastal Canadian regions will require in depth studies to facilitate appropriate adaptation strategies as these regions are clearly expected to experience large increases in the frequency of freeze-thaw events.

  18. Glycogen, not dehydration or lipids, limits winter survival of side-blotched lizards (Uta stansburiana).

    PubMed

    Zani, Peter A; Irwin, Jason T; Rollyson, Mary E; Counihan, Jessica L; Healas, Sara D; Lloyd, Emily K; Kojanis, Lee C; Fried, Bernard; Sherma, Joseph

    2012-09-01

    Climate change is causing winters to become milder (less cold and shorter). Recent studies of overwintering ectotherms have suggested that warmer winters increase metabolism and decrease winter survival and subsequent fecundity. Energetic constraints (insufficient energy stores) have been hypothesized as the cause of winter mortality but have not been tested explicitly. Thus, alternative sources of mortality, such as winter dehydration, cannot be ruled out. By employing an experimental design that compared the energetics and water content of lizards that died naturally during laboratory winter with those that survived up to the same point but were then sacrificed, we attempt to distinguish among multiple possible causes of mortality. We test the hypothesis that mortality is caused by insufficient energy stores in the liver, abdominal fat bodies, tail or carcass or through excessive water loss. We found that lizards that died naturally had marginally greater mass loss, lower water content, and less liver glycogen remaining than living animals sampled at the same time. Periodically moistening air during winter reduced water loss, but this did not affect survival, calling into question dehydration as a cause of death. Rather, our results implicate energy limitations in the form of liver glycogen, but not lipids, as the primary cause of mortality in overwintering lizards. When viewed through a lens of changing climates, our results suggest that if milder winters increase the metabolic rate of overwintering ectotherms, individuals may experience greater energetic demands. Increased energy use during winter may subsequently limit individual survival and possibly even impact population persistence. PMID:22875774

  19. Cold knife cone biopsy

    MedlinePLUS

    A cold knife cone biopsy (conization) is surgery to remove a sample of abnormal tissue from the cervix. The ... Cold knife cone biopsy is done to detect cervical cancer or early changes that lead to cancer. ...

  20. Cold and Cough Medicines

    MedlinePLUS

    ... What can you do for your cold or cough symptoms? Besides drinking plenty of fluids and getting ... medicines. There are lots of different cold and cough medicines, and they do different things. Nasal decongestants - ...

  1. Vitamin C and colds

    MedlinePLUS

    ... popular belief that vitamin C can cure the common cold , research about this claim is conflicting. Large doses ... E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev. 2013;1:CD000980. DOI: ...

  2. Identifying the Western Pacific Salinity Front Using Aquarius Measurement

    NASA Astrophysics Data System (ADS)

    Kao, H.; Lagerloef, G.

    2012-04-01

    Aquarius satellite mission is designed to measure high-resolution sea surface salinity both spatially and temporally. In this study, we smoothed the Aquarius salinity data on a 1/3*1/3 degree weekly gridded map over the western Pacific warm pool region. A sharp northeast-southwest oriented salinity front is seen in detail, but is not observed in the 1*1 degree monthly Argo map due to the low resolution. The salinity front (defined by the largest salinity gradient) is located close to 34.6 PSU isohaline (criteria generally used to define the location of salinity front), but is better defined with physical meanings. During the first four months of Aquarius measurement from Sep/2011-Dec/2011, the salinity front has penetrated much farther west than usual, associated with the westward shift of eastern edge of warm pool. Also, from the surface currents calculated from Ocean Surface Current Analyses - Real time (OSCAR), we notice that the strong westward currents enhance the zonal advection of sea surface temperature/salinity and bring the cold/salty water from central to western Pacific. This is related to the evolution of the central Pacific type of La Nina (i.e. cooling event centered in the central Pacific) in the end of 2011. The results also show that the salinity front shows up at the boundary between the south equatorial currents and north equatorial counter currents, suggesting the strong relationship between the formation of salinity front and the movement of salty and fresh water. Although further calibration/validation work is still ongoing, the preliminary results give us the confidence that the Aquarius measurement is going to help us better understand the fresh water flux and zonal advections in the western Pacific warm pool.

  3. The Challenge of Winter Backpacking.

    ERIC Educational Resources Information Center

    Cavanaugh, Michael; Mapes, Alan

    1981-01-01

    Tips and techniques for safe and enjoyable winter backpacking are offered. Topics covered include cross county skis, snowshoes, clothing, footwear, shelter, sleeping bags, food, hypothermia prevention, as well as general rules and requirements. (CO)

  4. Winter Weather Frequently Asked Questions

    MedlinePLUS

    ... Health Matters What's New Preparation & Planning Disasters & Severe Weather Earthquakes Extreme Heat Floods Hurricanes Landslides Tornadoes Tsunamis ... Weather Information on Specific Types of Emergencies Winter Weather Frequently Asked Questions Language: English Español (Spanish) Recommend ...

  5. Chilling Out with Colds

    MedlinePLUS

    ... these droplets can spread a cold from one person to another. You also can catch a cold if you touch your eyes, nose, or mouth after handling something with cold viruses on it. Video games, the doors at the mall, and your school ...

  6. Red spruce decline---Winter injury and air pollutants

    SciTech Connect

    Roberts, T.M. )

    1989-10-01

    There has been a widespread decline in growth of red spruce (Picea rubens Sarg.) since 1960 in the eastern United States. There is evidence that this decline is at least partly attributable to age- and density-related growth patterns, particularly at lower elevations. Mortality has been severe at high elevation sites where similar episodes have occasionally occurred in the last 100 years. At these sites, periods of low growth preceding 1960 were related to periods with warm late summers and cold early winters. Since 1960, this relationship no longer holds, although there is an association with unusual deviations from mean temperatures. There are field reports that one of the main causes of reduced growth and mortality is apical dieback induced by severe winter conditions. Preliminary observations suggest that high elevation red spruce may not be sufficiently hardened to tolerate low autumn temperatures. However, appearance of injury in the spring, association of injury with wind exposure and correlation of provenance susceptibility with cuticular transpiration rates, including the importance of desiccation injury. Sensitivity to both types of winter injury may be increased by air pollutants (particularly ozone and less probably, acid mist or excess nitrogen deposition). Nutrient deficiency (particularly magnesium and to a lesser extent potassium) may also increase cold sensitivity. The nature and extent of these interactions are being actively researched for red spruce. 48 refs.

  7. HVAC design considerations for cold climates

    SciTech Connect

    Armstrong, R.S. )

    1993-09-01

    The design of heating, ventilating and air-conditioning (HVAC) systems in cold climate areas requires modifications to the standard designs used in more temperate climates. While most of the US experiences freezing temperatures at least once during the winter months, certain areas experience several months of extended cold. No single location in the US experiences these extended cold conditions more than Alaska. While most areas in the continental US will not require modifications to standard design guidelines, many design modifications commonly used in the Arctic regions of Alaska and Canada can also be applied to any cold climate area in the continental US. The geographic area of Alaska is about one-third the size of the continental US. Climatic extremes range from Ketchikan with 6.697 heating degree days (at 55[degree]21 minutes N latitude) to Barrow with 20,341 heating degree days (at 71[degree]18 minutes N latitude), according to the Arctic Environmental Information and Data Center. The suggestions in this article are a compilation of general approaches the authors used to address the challenge of cold climate design. Of course, each detail design must be adapted to the specific climate and application at hand.

  8. Analytical models of dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Vasko, Ivan; Artemyev, Anton

    Dipolarization fronts (DFs) are mesoscale structures generated during the transient magnetic reconnection in the Earth's magnetotail. Spacecraft often observe these structures propagating toward the Earth with velocities 300-100 km/s. Modern multispacecraft observations allow reconstruction of 3D configuration of electromagnetic fields of DF: front is strongly curved in the XY plane and spatially localized along the Z axis (in GSM coordinate system). DFs play important role in plasma heating and charged particle acceleration. Thus, the simplified analytical models of 2D and 3D configuration of DF are necessary to model charge particle interaction with fronts. In the present report we propose 3D analytical model of DF. For several given distributions of B _{z} magnetic field component we have found analytical expressions for magnetic fields B _{x}, B _{y} and electric fields E _{x}, E _{y}. We also discuss distribution of electric field, which is due to the polarization of plasma in the vicinity of DF.

  9. The Front-End System For MARE In Milano

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Claudio; Pessina, Gianluigi

    2009-12-01

    The first phase of MARE consists of 72 μ-bolometers composed each of a crystal of AgReO4 readout by Si thermistors. The spread in the thermistor characteristics and bolometer thermal coupling leads to different energy conversion gains and optimum operating points of the detectors. Detector biasing levels and voltage gains are completely remote-adjustable by the front end system developed, the subject of this paper, achieving the same signal range at the input of the DAQ system. The front end consists of a cold buffer stage, a second pseudo differential stage followed by a gain stage, an antialiasing filter, and a battery powered detector biasing set up. The DAQ system can be used to set all necessary parameters of the electronics remotely, by writing to a μ-controller located on each board. Fiber optics are used for the serial communication between the DAQ and the front end. To suppress interference noise during normal operation, the clocked devices of the front end are maintained in sleep-mode, except during the set-up phase of the experiment. An automatic DC detector characterization procedure is used to establish the optimum operating point of every detector of the array. A very low noise level has been achieved: about 3nV/□Hz at 1 Hz and 1 nV/□Hz for the white component, high frequencies.

  10. Cyclonic eddies formed at the Pacific tropical instability wave fronts

    NASA Astrophysics Data System (ADS)

    Ubelmann, Clement; Fu, Lee-Lueng

    2011-12-01

    Sea surface temperature images and surface drifter observations are compared to the results from a high-resolution numerical simulation to study the properties of cyclonic eddies generated at the density front of the tropical instability waves in the tropical Pacific Ocean. These cyclonic eddies, of which the diameter is about 30-100 km and the vertical extent is limited to the upper 100 m in depth, have physical characteristics similar to those of smaller submesoscale eddies at the midlatitudes according to the model. They have highly coherent structures below the surface, carrying cold and salty upwelled equatorial water probably rich in marine life. The stretching and tilting of the upper layer of the ocean provides the main mechanism responsible for the intense cyclonic vorticity of the eddies, involving complex evolution of the density field into occluded fronts.

  11. Cyclonic eddies formed at the Tropical Instability Wave fronts

    NASA Astrophysics Data System (ADS)

    Ubelmann, C.; Fu, L.

    2011-12-01

    Sea surface temperature images and surface drifter observations are compared to the results from a high resolution numerical simulation to study the properties of cyclonic eddies generated at the density front of the tropical instability waves in the Pacific. These cyclonic eddies, of which the diameter is about 50-150km and the vertical extent is limited to the upper 100 m in depth, have physical characteristics similar to those of smaller submesoscale eddies at the mid latitudes according to the model. They have highly coherent structures below the surface, carrying cold and salty upwelled equatorial water probably rich in marine life. The stretching and tilting of the upper layer of the ocean provides the main mechanism responsible for the intense cyclonic vorticity of the eddies, involving complex evolution of the density field into occluded fronts.

  12. Shifts of the Subtropical Shelf Front controlled by atmospheric variations

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2013-10-01

    In the western South Atlantic, off the coast of South America, a band of cold, fresh, nutrient-rich Sub-Antarctic Shelf Water (SASW) meets warm, salty, nutrient-poor Subtropical Shelf Water (STSW) to form the Subtropical Shelf Front (STSF). This front is the shallow-water expression of the major Brazil-Malvinas Confluence Zone and has moved northward and southward during the Holocene (the past ~12,000 years). Bender et al. reconstruct the latitudinal shifts of the STSF over the past 11,000 calendar-equivalent years using records of oxygen and carbon stable isotope compositions of benthic foraminifera and total organic carbon and calcium carbonate content from a sediment record collected off Uruguay. These measurements serve as proxies for ocean water temperature and nutrient content, which can be used to distinguish the SASW and STSW.

  13. Episodic Dust Events along Utah's Wasatch Front

    NASA Astrophysics Data System (ADS)

    Massey, J.; Steenburgh, W. J.; Painter, T. H.

    2011-12-01

    Episodic dust events contribute to hazardous air quality along Utah's Wasatch Front urban corridor and, through deposition onto the snowpack of the adjacent Wasatch Mountains, regional hydroclimate change. This study creates a climatology of these episodic dust events using surface-weather observations, GOES visible satellite imagery, and the North American Regional Analysis. In hourly weather observations from the Salt Lake International Airport (KSLC), a dust storm, blowing dust, and/or dust in suspension (i.e., dust haze) with a visibility 10 km (6 mi) or less occurs an average of ~4 days per water year (Oct-Sep), with considerable interannual variability during the 1930-2010 period of record. The monthly frequency of days with at least one dust report is strongly bimodal with primary and secondary maxima in Apr and Sep, respectively. Dust reports exhibit a strong diurnal modulation and are most common in the late afternoon and evening. Most recent (2001-2010) events observed at KSLC are produced by intermountain cyclones and/or cold-frontal troughs (i.e., cyclone/frontal), followed by outflow from airmass/monsoon convection. In the case of the former, dust is most frequently observed right around the time of cold frontal passage. GOES satellite imagery and backtrajectories of events at KSLC and in the surrounding region indicate that the primary dust emission sources are clustered in the deserts and dry lake beds of southern Utah as well as the burn area of the 2007 Milford Flat Fire and the Carson Sink of Nevada.

  14. Seasonal changes in the cold hardiness of the two-spotted spider mite females (Acari: Tetranychidae).

    PubMed

    Khodayari, S; Colinet, H; Moharramipour, S; Renault, D

    2013-12-01

    The twospotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) is an important agricultural pest. Population dynamics and pest outbreaks highly depend on the overwintering success of the mite specimens; therefore, it is necessary to assess winter survival dynamics of this pest. Seasonal changes in supercooling point (SCP) and acute cold tolerance (2-h exposure at -5, -10, -15, -20, -23, or -25C) were assessed in field-collected females during the winter in 2010-2011 in Iran. The SCP values varied from a minimum of -30.5C (January 2011) to a maximum of -12.6C (April 2011). Significant differences were recorded in the SCP distribution patterns between autumn- and winter-sampled females, depicting the acquisition of cold hardiness over the winter. The mean ambient air temperature was the lowest in January (4C), when the females showed the highest supercooling ability. Correlated patterns between monthly temperatures and acute cold tolerance also were found. At -20C, the survival of the mites was very low (10%) when they were sampled in October 2010; whereas it was high (97.5%) in January 2011, before decreasing to 5% in April 2011. The present data show that T. urticae females are chill tolerant and capable of adjusting their cold tolerance over the winter season. Acute cold tolerance (-15 and -20C) and SCP represent valuable metrics that can be used for predicting the seasonal changes of the cold hardiness of T. urticae females. PMID:24252290

  15. Lagrangian fronts in the ocean

    NASA Astrophysics Data System (ADS)

    Prants, S. V.; Budyansky, M. V.; Uleysky, M. Yu.

    2014-05-01

    We introduce the concept of Lagrangian fronts (LFs) in the ocean and describe their importance for analyzing water mixing and transport and the specific features and differences from hydrological fronts. A method of calculating LFs in a given velocity field is proposed. Based on altimeter velocity fields from AVISO data in the northwestern Pacific, we calculate the Lagrangian synoptic maps and identify LFs of different spatial and temporal scales. Using statistical analysis of saury catches in different years according to the Goskomrybolovstvo (State Fisheries Committee of the Russian Federation), we show that LFs can serve as good indicators of places that are favorable for fishing.

  16. Change in abundance of pacific brant wintering in alaska: evidence of a climate warming effect?

    USGS Publications Warehouse

    Ward, D.H.; Dau, C.P.; Lee, T.; Sedinger, J.S.; Anderson, B.A.; Hines, J.E.

    2009-01-01

    Winter distribution of Pacific Flyway brant (Branta bernicla nigricans) has shifted northward from lowtemperate areas to sub-Arctic areas over the last 42 years. We assessed the winter abundance and distribution of brant in Alaska to evaluate whether climate warming may be contributing to positive trends in the most northern of the wintering populations. Mean surface air temperatures during winter at the end of the Alaska Peninsula increased about 1??C between 1963 and 2004, resulting in a 23% reduction in freezing degree days and a 34% decline in the number of days when ice cover prevents birds from accessing food resources. Trends in the wintering population fluctuated with states of the Pacific Decadal Oscillation, increasing during positive (warm) phases and decreasing during negative (cold) phases, and this correlation provides support for the hypothesis that growth in the wintering population of brant in Alaska is linked to climate warming. The size of the wintering population was negatively correlated with the number of days of strong northwesterly winds in November, which suggests that the occurrence of tailwinds favorable for migration before the onset of winter was a key factor in whether brant migrated from Alaska or remained there during winter. Winter distribution of brant on the Alaska Peninsula was highly variable and influenced by ice cover, particularly at the heavily used Izembek Lagoon. Observations of previously marked brant indicated that the Alaska wintering population was composed primarily of birds originating from Arctic breeding colonies that appear to be growing. Numbers of brant in Alaska during winter will likely increase as temperatures rise and ice cover decreases at high latitudes in response to climate warming. ?? The Arctic Institute of North America.

  17. Summer hot snaps and winter conditions: modelling white syndrome outbreaks on Great Barrier Reef corals.

    PubMed

    Heron, Scott F; Willis, Bette L; Skirving, William J; Eakin, C Mark; Page, Cathie A; Miller, Ian R

    2010-01-01

    Coral reefs are under increasing pressure in a changing climate, one such threat being more frequent and destructive outbreaks of coral diseases. Thermal stress from rising temperatures has been implicated as a causal factor in disease outbreaks observed on the Great Barrier Reef, Australia, and elsewhere in the world. Here, we examine seasonal effects of satellite-derived temperature on the abundance of coral diseases known as white syndromes on the Great Barrier Reef, considering both warm stress during summer and deviations from mean temperatures during the preceding winter. We found a high correlation (r(2) = 0.953) between summer warm thermal anomalies (Hot Snap) and disease abundance during outbreak events. Inclusion of thermal conditions during the preceding winter revealed that a significant reduction in disease outbreaks occurred following especially cold winters (Cold Snap), potentially related to a reduction in pathogen loading. Furthermore, mild winters (i.e., neither excessively cool nor warm) frequently preceded disease outbreaks. In contrast, disease outbreaks did not typically occur following warm winters, potentially because of increased disease resistance of the coral host. Understanding the balance between the effects of warm and cold winters on disease outbreak will be important in a warming climate. Combining the influence of winter and summer thermal effects resulted in an algorithm that yields both a Seasonal Outlook of disease risk at the conclusion of winter and near real-time monitoring of Outbreak Risk during summer. This satellite-derived system can provide coral reef managers with an assessment of risk three-to-six months in advance of the summer season that can then be refined using near-real-time summer observations. This system can enhance the capacity of managers to prepare for and respond to possible disease outbreaks and focus research efforts to increase understanding of environmental impacts on coral disease in this era of rapidly changing climate. PMID:20808912

  18. A Theoretical Study of Cold Air Damming.

    NASA Astrophysics Data System (ADS)

    Xu, Qin

    1990-12-01

    The dynamics of cold air damming are examined analytically with a two-layer steady state model. The upper layer is a warm and saturated cross-mountain (easterly or southeasterly onshore) flow. The lower layer is a cold mountain-parallel (northerly) jet trapped on the windward (eastern) side of the mountain. The interface between the two layers represents a coastal front-a sloping inversion layer coupling the trapped cold dome with the warm onshore flow above through pressure continuity.An analytical expression is obtained for the inviscid upper-layer flow with hydrostatic and moist adiabatic approximations. Blackadar's PBL parameterization of eddy viscosity is used in the lower-layer equations. Solutions for the mountain-parallel jet and its associated secondary transverse circulation are obtained by expanding asymptotically upon a small parameter proportional to the square root of the inertial aspect ratio-the ratio between the mountain height and the radius of inertial oscillation. The geometric shape of the sloping interface is solved numerically from a differential-integral equation derived from the pressure continuity condition imposed at the interface.The observed flow structures and force balances of cold air damming events are produced qualitatively by the model. In the cold dome the mountain-parallel jet is controlled by the competition between the mountain-parallel pressure gradient and friction: the jet is stronger with smoother surfaces, higher mountains, and faster mountain-normal geostrophic winds. In the mountain-normal direction the vertically averaged force balance in the cold dome is nearly geostrophic and controls the geometric shape of the cold dome. The basic mountain-normal pressure gradient generated in the cold dome by the negative buoyancy distribution tends to flatten the sloping interface and expand the cold dome upstream against the mountain-normal pressure gradient (produced by the upper-layer onshore wind) and Coriolis force (induced by the lower-layer mountain-parallel jet). It is found that the interface slope increases and the cold dome shrinks as the Froude number and/or upstream mountain-parallel geostrophic wind increase, or as the Rossby number, upper-layer depth, and/or surface roughness length decrease, and vice versa. The cold dome will either vanish or not be in a steady state if the Froude number is large enough or the roughness length gets too small. The theoretical findings are explained physically based on detailed analyses of the force balance along the inversion interface.

  19. Cough and Cold Medicine Abuse

    MedlinePLUS

    ... and Cold Medicine Abuse DrugFacts: Cough and Cold Medicine Abuse Email Facebook Twitter Revised May 2014 Some ... diverted for abuse. How Are Cough and Cold Medicines Abused? Cough and cold medicines are usually consumed ...

  20. Comparative analysis of the vernal and wintry thermally-induced structural front in the Baltic Sea on base of field data

    NASA Astrophysics Data System (ADS)

    Demchenko, N.

    2012-04-01

    This study is a continuation of thermally-induced structural front investigation (a direct analogue of the lacustrine thermal bar - front, associated with the temperature of maximum density, Tmd = 3.98C for the fresh waters) in the Baltic Sea during spring and winter periods. The manifestation and specific features of the vernal structural front after winters of varying severity were examined (Demchenko et al., 2011). The Baltic Sea exhibits 2 layers of salinity stratification, consisting of an upper freshened layer (down to a depth of 70 m in the Baltic proper) that is almost homogeneous in terms of salinity, and a more salty deep layer below the permanent pycno(halo) cline. The spring thermal front travels only to the upper layer, with the halocline playing the role of a 'liquid bottom'. The speed of structural front propagation is derived from an interplay of 3 physically different factors: (1) south-north variations in incoming solar radiation, (2) bottom and pycnocline topography, and (3) significant variation of the Tmd-value due to large horizontal salinity differences (increasing in a northerly direction). In the present study a comparative analysis of thermal structure in presence of the Tmd during spring and winter periods was performed. The following field data were analyzed (1) Subsurface temperature, salinity and chlorophyll-a along the sections Travemende - Gdynia - Helsinki and Travemende - Helsinki performed by Finnish Environment Institute for the spring 2010 and winter 2010-2011. (2) Subsurface temperature and salinity, measuring every hour during spring period 2010 and winter period 2010-2011 in the MARNET stations (Arkona basin, Darss Sill, courtesy of the BSH, www.bsh.de). It was concluded, that after severe winter 2010/2011 the vernal structural front, associated with the Tmd, has the same features as after severe winter 2002/2003. Thermal structural front is formed in winter as well; its specific features were revealed. The thermal front, developing near the gentle slopes, is much shaper in comparison with the front in the open Baltic. The two-phase propagation of the thermal front was observed; the speed of the Tmd was estimated for both seasons: vernal thermal front moves faster. The work is supported by grant of RFBR # 10-05-00472a, 11-05-90743_mob_st.

  1. Habitat Suitability Index Models: American Black Duck (Wintering)

    USGS Publications Warehouse

    Lewis, James C.; Garrison, Russell L.

    1984-01-01

    INTRODUCTION The American black duck, commonly known as the black duck, is migratory and has a wide geographic range. American black ducks breed from Cape Hatteras, North Carolina, west to the Mississippi River and north through the eastern Canadian boreal forest (Bellrose 1976). The winter range extends from the Rio Grande River on the Texas coast, northeast to Lake Michigan, east to Nova Scotia, south to Florida, and west to Texas (Wright 1954). American black ducks arrive on their wintering habitats between September and early December and remain there until February to April (Bellrose 1976). Their preferred habitat varies considerably through the wintering range. Habitat use appears related to food availability, freedom from disturbance, weather, and often upon the presence of large bodies of open water. These interrelated elements are essential for meeting the energy demands and other nutritional requirements of black ducks in response to the rigors of cold weather and migration. In the Atlantic Flyway, winter populations of American black ducks concentrate in marine and estuarine wetlands (U.S. Fish and Wildlife Service 1979). They use salt marshes and small tidal bays for feeding and loafing areas. In wintering areas north of Chesapeake Bay, American black ducks frequently feed on tidal flats and rest in emergent wetlands or on ice-free bays, rivers, and coastal reservoirs. In the Chesapeake bay area, migrant and wintering American black ducks occupy a wide variety of habitats (Stewart 1962). They strongly favor brackish bays with extensive adjacent agricultural lands. Estuarine bays, coastal salt marshes, tidal fresh marshes, and adjacent impoundments receive high usage. American black ducks also concentrate in forested wetlands in and adjacent to estuaries in the South Atlantic Flyway, especially in Virginia and North Carolina.

  2. Ocean properties, ice-ocean interactions, and calving front morphology at two major west Greenland glaciers

    NASA Astrophysics Data System (ADS)

    Chauch, N.; Hubbard, A.; Gascard, J.-C.; Box, J. E.; Bates, R.; Koppes, M.; Sole, A.; Patton, H.

    2013-11-01

    Warm sub-polar mode water (SPMW) has been identified as a primary driver of mass loss of marine terminating glaciers draining the Greenland Ice Sheet (GrIS) yet, the specific mechanisms by which SPMW interacts with these tidewater termini remain uncertain. We present oceanographic data from Rink Glacier (RG) and Store Glacier (SG) fjords, two major marine outlets draining the western sector of the GrIS into Baffin Bay over the contrasting melt-seasons of 2009 and 2010. Submarine melting occurs wherever ice is in direct contact with warmer water and the consistent presence of 2.8 C SPMW adjacent to both ice fronts below 400 m throughout all surveys indicates that melting is maintained by a combination of molecular diffusion and large scale, weak convection, diffusional (hereafter called ubiquitous) melting. At shallower depths (50-200 m), cold, brine-enriched water (BEW) formed over winter appears to persist into the summer thereby buffering this melt by thermal insulation. Our surveys reveal four main modes of glacier-ocean interaction, governed by water depth and the rate of glacier runoff water (GRW) injected into the fjord. Deeper than 200 m, submarine melt is the only process observed, regardless of the intensity of GRW or the depth of injection. However, between the surface and 200 m depth, three further distinct modes are observed governed by the GRW discharge. When GRW is weak (?1000 m3 s-1), upward motion of the water adjacent to the glacier front is subdued, weak forced or free convection plus diffusional submarine melting dominates at depth, and seaward outflow of melt water occurs from the glacier toe to the base of the insulating BEW. During medium intensity GRW (?1500 m3 s-1), mixing with SPMW yields deep mixed runoff water (DMRW), which rises as a buoyant plume and intensifies local submarine melting (enhanced buoyancy-driven melting). In this case, DMRW typically attains hydrostatic equilibrium and flows seaward at an intermediate depth of ?50-150 m, taking the BEW with it. Strong GRW (? 2000 m3 s-1) yields vigorous, buoyant DMRW, which has sufficient vertical momentum to break the sea surface before sinking and flowing seaward, thereby leaving much of the BEW largely intact. Whilst these modes of glacier-ocean interaction significantly affect the ice-ocean interaction in the upper water column (0-200 m), below 200 m both RG and SG are dominated by the weak forced convection/diffusional (herein termed ubiquitous) melting due to the presence of SPMW.

  3. ELF-magnetic flux densities measured in a city environment in summer and winter.

    PubMed

    Straume, Aksel; Johnsson, Anders; Oftedal, Gunnhild

    2008-01-01

    Epidemiological studies have indicated a connection between extremely low frequency magnetic flux densities above 0.4 microT (time weighted average) and childhood leukemia risks. This conclusion is based mainly on indoor exposure measurements. We therefore regarded it important to map outdoor magnetic flux densities in public areas in Trondheim, Norway. Because of seasonal power consumption variations, the fields were measured during both summer and winter. Magnetic flux density was mapped 1.0 m above the ground along 17 km of pavements in downtown Trondheim. The spectrum was measured at some spots and the magnetic flux density emanated mainly from the power frequency of 50 Hz. In summer less than 4% of the streets showed values exceeding 0.4 microT, increasing to 29% and 34% on cold and on snowy winter days, respectively. The average levels were 0.13 microT (summer), 0.85 microT (winter, cold), and 0.90 microT (winter, snow), with the highest recorded value of 37 microT. High spot measurements were usually encountered above underground transformer substations. In winter electric heating of pavements also gave rise to relatively high flux densities. There was no indication that the ICNIRP basic restriction was exceeded. It would be of interest to map the flux density situation in other cities and towns with a cold climate. PMID:17786926

  4. How cold is cold dark matter?

    SciTech Connect

    Armendariz-Picon, Cristian; Neelakanta, Jayanth T. E-mail: jtneelak@syr.edu

    2014-03-01

    If cold dark matter consists of particles, these must be non-interacting and non-relativistic by definition. In most cold dark matter models however, dark matter particles inherit a non-vanishing velocity dispersion from interactions in the early universe, a velocity that redshifts with cosmic expansion but certainly remains non-zero. In this article, we place model-independent constraints on the dark matter temperature to mass ratio, whose square root determines the dark matter velocity dispersion. We only assume that dark matter particles decoupled kinetically while non-relativistic, when galactic scales had not entered the horizon yet, and that their momentum distribution has been Maxwellian since that time. Under these assumptions, using cosmic microwave background and matter power spectrum observations, we place upper limits on the temperature to mass ratio of cold dark matter today (away from collapsed structures). These limits imply that the present cold dark matter velocity dispersion has to be smaller than 54 m/s. Cold dark matter has to be quite cold, indeed.

  5. Simultaneous Genetic Analysis of Winterhardiness Traits and Development of Winter Malting Barley Varieties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The practical goal of this project is to develop winter malting barley varieties with superior cold tolerance. The basic goal is to advance our understanding of the genetics of low temperature tolerance and vernalization sensitivity. By addressing the question, Is vernalization sensitivity required...

  6. UARS Microwave Limb Sounder observations of dentrification and ozone loss in the 2000 Arctic late winter

    NASA Technical Reports Server (NTRS)

    Santee, M. L.; Manney, G. L.; Livesey, N. J.; Waters, J. W.

    2000-01-01

    The UARS Microwave Limb Sounder obtained measurements of CIO, HNO3, and O-3 inside the Arctic lower stratospheric vortex during two intervals in February and March 2000. The data show evidence of significant chemical processing in February, consistent with the exceptionally cold conditions that prevailed earlier in the winter.

  7. Winter Hydrological and Erosion Processes in the U. S. Palouse Region: Field Experimentation and WEPP Simulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil erosion by water is detrimental to soil fertility and crop yield as well as the environment. For cold areas, knowledge of winter hydrological processes is critical to determining alternative land-use and management practices for reducing soil loss and protecting land and water resources. Adequa...

  8. OVER WINTER STABILITY AND HYDROLOGY OF MACROPORES IN THE NORTHERN US CORN BELT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Macropores created by biological or physical processes can profoundly influence water movement through the soil. In cold regions, macropore stability can be influenced by natural processes such as wetting/drying and freezing/thawing. Little is known, however, concerning the over winter stability of ...

  9. A NEW MODEL TO ESTIMATE DAILY ENERGY EXPENDITURE FOR WINTERING WATERFOWL

    EPA Science Inventory

    Activity budgets of wintering waterfowl have been widely used to assess habitat quality. However, when factors such as prey abundance or protection from exposure to cold or wind determine quality, measures of daily energy expenditure (DEE) may be more appropriate for this purpos...

  10. Multiple WH-Fronting Constructions.

    ERIC Educational Resources Information Center

    Rudin, Catherine

    The unique position of WH words in Slavic languages is discussed, with specific reference to Bulgarian and Serbo-Croatian. The multiple fronting characteristics of Bulgarian and Serbo-Croatian differ in terms of the following positions and behaviors: extraction from embedded questions; clitic placement and other indications of constituent status;

  11. Align the Front End First.

    ERIC Educational Resources Information Center

    Perry, Jim

    1995-01-01

    Discussion of management styles and front-end analysis focuses on a review of Douglas McGregor's theories. Topics include Theories X, Y, and Z; leadership skills; motivational needs of employees; intrinsic and extrinsic rewards; and faulty implementation of instructional systems design processes. (LRW)

  12. Advanced RF Front End Technology

    NASA Technical Reports Server (NTRS)

    Herman, M. I.; Valas, S.; Katehi, L. P. B.

    2001-01-01

    The ability to achieve low-mass low-cost micro/nanospacecraft for Deep Space exploration requires extensive miniaturization of all subsystems. The front end of the Telecommunication subsystem is an area in which major mass (factor of 10) and volume (factor of 100) reduction can be achieved via the development of new silicon based micromachined technology and devices. Major components that make up the front end include single-pole and double-throw switches, diplexer, and solid state power amplifier. JPL's Center For Space Microsystems - System On A Chip (SOAC) Program has addressed the challenges of front end miniaturization (switches and diplexers). Our objectives were to develop the main components that comprise a communication front end and enable integration in a single module that we refer to as a 'cube'. In this paper we will provide the latest status of our Microelectromechanical System (MEMS) switches and surface micromachined filter development. Based on the significant progress achieved we can begin to provide guidelines of the proper system insertion for these emerging technologies. Additional information is contained in the original extended abstract.

  13. Front instability in stratified media

    NASA Astrophysics Data System (ADS)

    Beltrame, Philippe

    2013-04-01

    Preferential flow in unsaturated soil may due to local heterogeneities like worm burrows but also to front instability leading to unstable finger flow (fingered pattern) in sandy textured soils. This last spontaneous preferential flow cannot be described by the standard Richards equation. Cueto-Felgueroso and Juanes proposed recently a phase field model in order to take into account a macroscopic surface tension effect at the front [1]. Their model simulates successfully the interface instability of an advancing front. We aim at simulating and understanding front instability passing a textural soil discontinuity for which the finger flow is particularly visible. We consider sand layers with different characteristics such as granulometry. Moreover, the wettability is taken into account by adding a hydrophobic term in the free energy of the phase field model. The hydrophobicity part is not only relevant for repellent soil but also to model the ultra-thin films [2]. Therefore, in our framework, this may have an influence at the front because the water saturation is nearly zero. Such a wettability influence on infiltration in porous media has recently been measured in [3]. The governing equation is analogous to the lubrication equation for which we pointed out the specific numerical difficulties [4]. A numerical code to perform time integration and bifurcation analysis was developed in [4] allowing to determine the onset of instability and its resulting dynamics in the parameter space [5]. We compute the parameter range for which the front stops when reaching the layers interface. As in [4], there is two main mechanisms that allow water to cross over the discontinuity. A first mechanism, called depinning, leads to an intermittent flow and the second one, to a front instability and then to a finger flow. There is a parameter domain where both instabilities are present leading to a complex spatio-temporal dynamics. Finally, it is noteworthy that the wettability property has a crucial impact on the fingering emergence. References [1] Cueto-Felgueroso and Juanes, Water Res. Res., 45, W10409 (2009). [2] De Gennes, Rev. Mod. Phys. 57, 827-863 (1985). [3] Goebel, Woche and Bachmann, vol. 442-443(6), (2012). [4] Beltrame and Thiele, SIADS, 9, No. 2, pp. 484-518 (2010). [5] Beltrame and Knobloch et al. Phys. Rev. E, 83, 016305 (2011).

  14. Fluctuation-controlled front propagation

    NASA Astrophysics Data System (ADS)

    Ridgway, Douglas Thacher

    1997-09-01

    A number of fundamental pattern-forming systems are controlled by fluctuations at the front. These problems involve the interaction of an infinite dimensional probability distribution with a strongly nonlinear, spatially extended pattern-forming system. We have examined fluctuation-controlled growth in the context of the specific problems of diffusion-limited growth and biological evolution. Mean field theory of diffusion-limited growth exhibits a finite time singularity. Near the leading edge of a diffusion-limited front, this leads to acceleration and blowup. This may be resolved, in an ad hoc manner, by introducing a cutoff below which growth is weakened or eliminated (8). This model, referred to as the BLT model, captures a number of qualitative features of global pattern formation in diffusion-limited aggregation: contours of the mean field match contours of averaged particle density in simulation, and the modified mean field theory can form dendritic features not possible in the naive mean field theory. The morphology transition between dendritic and non-dendritic global patterns requires that BLT fronts have a Mullins-Sekerka instability of the wavefront shape, in order to form concave patterns. We compute the stability of BLT fronts numerically, and compare the results to fronts without a cutoff. A significant morphological instability of the BLT fronts exists, with a dominant wavenumber on the scale of the front width. For standard mean field fronts, no instability is found. The naive and ad hoc mean field theories are continuum-deterministic models intended to capture the behavior of a discrete stochastic system. A transformation which maps discrete systems into a continuum model with a singular multiplicative noise is known, however numerical simulations of the continuum stochastic system often give mean field behavior instead of the critical behavior of the discrete system. We have found a new interpretation of the singular noise, based on maintaining the symmetry of the absorbing state, but which is unsuccessful at capturing the behavior of diffusion-limited growth. In an effort to find a simpler model system, we turned to modelling fitness increases in evolution. The work was motivated by an experiment on vesicular stomatitis virus, a short (9600bp) single-stranded RNA virus. A highly bottlenecked viral population increases in fitness rapidly until a certain point, after which the fitness increases at a slower rate. This is well modeled by a constant population reproducing and mutating on a smooth fitness landscape. Mean field theory of this system displays the same infinite propagation velocity blowup as mean field diffusion-limited aggregation. However, we have been able to make progress on a number of fronts. One is solving systems of moment equations, where a hierarchy of moments is truncated arbitrarily at some level. Good results for front propagation velocity are found with just two moments, corresponding to inclusion of the basic finite population clustering effect ignored by mean field theory. In addition, for small mutation rates, most of the population will be entirely on a single site or two adjacent sites, and the density of these cases can be described and solved. (Abstract shortened by UMI.)

  15. Crystallization and saturation front propagation in silicic magma chambers

    NASA Astrophysics Data System (ADS)

    Lake, Ethan T.

    2013-12-01

    The cooling and crystallization style of silicic magma bodies in the upper crust falls on a continuum between whole-chamber processes of convection, crystal settling, and cumulate formation and interface-driven processes of conduction and crystallization front migration. In the end-member case of vigorous convection and crystal settling, volatile saturation advances downward from the roof and upward from the floor throughout the chamber. In the end-member case of stagnant magma bodies, volatile saturation occurs along an inward propagating front from all sides of the chamber. Ambient thermal gradient primarily controls the propagation rate; warm (?40 C/km) geothermal gradients lead to thick (1200+ m) crystal mush zones and slow crystallization front propagation. Cold (<40 C/km) geothermal gradients lead to rapid crystallization front propagation and thin (<1000 m) mush zones. Magma chamber geometry also exerts a first-order control on propagation rates; bodies with high surface to magma volume ratio and large Earth-surface-parallel faces exhibit more rapid propagation and thinner mush zones. Crystallization front propagation occurs at speeds of greater than 10 cm/yr (rhyolitic magma; 1 km thick sill geometry in a 20 C/km geotherm), far faster than diffusion of volatiles in magma and faster than bubbles can nucleate, grow, and ascend through the chamber. Numerical simulations indicate saturation front propagation is determined primarily by pressure and magma crystallization rate; above certain initial water contents (4.4 wt.% in a dacite) the mobile magma is volatile-rich enough above 10 km depth to always contains a saturation front. Saturation fronts propagate down from the magma chamber roof at lower water contents (3.3 wt.% in a dacite at 5 km depth), creating an upper saturated interface for most common (4-6 wt.%) magma water contents. This upper interface promotes the production of a fluid pocket underneath the apex of the magma chamber. If the fluid pocket grew faster than rates of escape into the wall rock, fluid accumulation and hydro-fracturing could possibly trigger an eruption.

  16. An optimal index for measuring the effect of East Asian winter monsoon on China winter temperature

    NASA Astrophysics Data System (ADS)

    Hu, Chundi; Yang, Song; Wu, Qigang

    2015-11-01

    Extreme cold events occur frequently in China. The authors define a representative yet simple index to reveal the monthly changes in China winter temperature associated with the East Asian winter monsoon (EAWM), which is represented by both the leading empirical orthogonal function (EOF) mode and the country-mean temperature index of Chinese 160 gauge stations. A combined technique of correlation and multivariate EOF (Corr-MVEOF) analyses is applied to capture the dominant coupled patterns of EAWM circulation system. Based on the atmospheric circulation features captured by the leading Corr-MVEOF mode, a new EAWM index referred to as CNWMI is derived by using a stepwise regression analysis. The CNWMI highlights the importance of (1) the Mongolia-Siberian High (MSH) and its southward expansion and (2) the Asia-wide meridional dipole anomaly of 500 hPa geopotential height. Compared with the 27 existing EAWM indices, the CNWMI not only best represents the leading modes of both EAWM circulation system and China winter temperature, but also reasonably tracks the intraseasonal-to-interdecadal variations of EAWM so that the monthly intensity of EAWM can be monitored conveniently. In particular, the Aleutian low (AL) is not strongly related to the MSH and may not be responsible for the variability of EAWM/MSH. Moreover, the indices that are highly correlated with the temperature over southern East Asia do not show significant relationships with the AL, which is different from the conventional concept that a strong EAWM/MSH is linked to a deepened AL. In contrast, the anomalous Australia-Maritime Continent low is in good agreement with the variation of EAWM/MSH.

  17. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning

    PubMed Central

    Duijns, Sjoerd; van Gils, Jan A; Spaans, Bernard; ten Horn, Job; Brugge, Maarten; Piersma, Theunis

    2014-01-01

    Sexual size dimorphism (SSD) implies correlated differences in energetic requirements and feeding opportunities, such that sexes will face different trade-offs in habitat selection. In seasonal migrants, this could result in a differential spatial distribution across the wintering range. To identify the ecological causes of sexual spatial segregation, we studied a sexually dimorphic shorebird, the bar-tailed godwit Limosa lapponica, in which females have a larger body and a longer bill than males. With respect to the trade-offs that these migratory shorebirds experience in their choice of wintering area, northern and colder wintering sites have the benefit of being closer to the Arctic breeding grounds. According to Bergmann's rule, the larger females should incur lower energetic costs per unit of body mass over males, helping them to winter in the cold. However, as the sexes have rather different bill lengths, differences in sex-specific wintering sites could also be due to the vertical distribution of their buried prey, that is, resource partitioning. Here, in a comparison between six main intertidal wintering areas across the entire winter range of the lapponica subspecies in northwest Europe, we show that the percentage of females between sites was not correlated with the cost of wintering, but was positively correlated with the biomass in the bottom layer and negatively with the biomass in the top layer. We conclude that resource partitioning, rather than relative expenditure advantages, best explains the differential spatial distribution of male and female bar-tailed godwits across northwest Europe. PMID:25505527

  18. Sex-specific winter distribution in a sexually dimorphic shorebird is explained by resource partitioning.

    PubMed

    Duijns, Sjoerd; van Gils, Jan A; Spaans, Bernard; Ten Horn, Job; Brugge, Maarten; Piersma, Theunis

    2014-10-01

    Sexual size dimorphism (SSD) implies correlated differences in energetic requirements and feeding opportunities, such that sexes will face different trade-offs in habitat selection. In seasonal migrants, this could result in a differential spatial distribution across the wintering range. To identify the ecological causes of sexual spatial segregation, we studied a sexually dimorphic shorebird, the bar-tailed godwit Limosa lapponica, in which females have a larger body and a longer bill than males. With respect to the trade-offs that these migratory shorebirds experience in their choice of wintering area, northern and colder wintering sites have the benefit of being closer to the Arctic breeding grounds. According to Bergmann's rule, the larger females should incur lower energetic costs per unit of body mass over males, helping them to winter in the cold. However, as the sexes have rather different bill lengths, differences in sex-specific wintering sites could also be due to the vertical distribution of their buried prey, that is, resource partitioning. Here, in a comparison between six main intertidal wintering areas across the entire winter range of the lapponica subspecies in northwest Europe, we show that the percentage of females between sites was not correlated with the cost of wintering, but was positively correlated with the biomass in the bottom layer and negatively with the biomass in the top layer. We conclude that resource partitioning, rather than relative expenditure advantages, best explains the differential spatial distribution of male and female bar-tailed godwits across northwest Europe. PMID:25505527

  19. Covariability of zooplankton gradients with glider-detected density fronts in the Southern California Current System

    NASA Astrophysics Data System (ADS)

    Powell, Jesse R.; Ohman, Mark D.

    2015-02-01

    Fronts represent sharp boundaries between water masses, but seasonal and interannual variation in their occurrence and effects on the distributions of pelagic organisms are poorly understood. This study reports results from six years of ocean front observations (2006-2011) along two transect lines across the Southern California Current System (SCCS) using autonomous Spray ocean gliders. During this time, 154 positive near-surface density fronts were identified within 124 completed transects consisting of nearly 23,000 vertical profiles. The incidence of surface density fronts showed distinct seasonality along line 80 off Pt. Conception, with fewer fronts occurring during winter months and more numerous fronts in the nearshore and during spring, summer and fall. On line 90, fronts were the least common nearshore and most frequent in a transitional region offshore. Horizontal density gradients in the surface layer (0-50 m) were significantly correlated with horizontal gradients in surface layer Chlorophyll-a (Chl-a) fluorescence, as well as with mean volume backscatter (MVBS) recorded by a 750 kHz acoustic Doppler profiler. Density fronts were not only zones of rapidly changing phytoplankton and zooplankton biomass concentrations, but also more likely to be zones of enhanced acoustic backscatter and Chl-a fluorescence than regions flanking the fronts. MVBS and Chl-a gradients were significantly correlated with gradients in other hydrographic variables such as temperature, salinity, and spiciness, and weakly with cross-track current velocity, though density gradients remained the single best predictor of strong MVBS and fluorescence gradients. Large mobile predators foraging in the vicinity of such features could locate habitat with higher zooplankton biomass concentrations up to 85% of the time by traveling up local density gradients (i.e., toward rather than away from denser surface waters). We discuss implications of these results in the context of long-term trends in ocean fronts in the SCCS.

  20. Deuterium content of snow as an index to winter climate in the Sierra Nevada area

    USGS Publications Warehouse

    Friedman, I.; Smith, G.I.

    1972-01-01

    The winter of 1968-69 produced two to three times the amount of precipitation in the Sierra Nevada area, California and Nevada, as the winter of 1969-70. The deuterium content in snow cores collected at the end of each winter at the same sites, which represents the total snowfall of each interval, shows a depletion in 1968-69 of approximately 20 per mil. The higher snowfall in 1968-69 and the depletion of deuterium can be explained by an uncommonly strong westward flow of cold air over and down the western slopes of the Sierras, which interacted with an eastward flow of moist Pacific air that overrode and mixed with the cold air; this resulted in precipitation that occurred in greater than normal amounts and at a lower than normal temperature. Pluvial periods of the Pleistocene may have had the same shift in air-mass trajectory as the wet 1968-69 year. Snow cores collected in the normal 1970-71 winter have deuterium concentrations that resemble those of the normal 1969-70 winter. Small and nonsystematic differences in samples from these two normal winters are due to variations in climatic character as well as to factors inherent in the sampling sites.

  1. The History of Winter: teachers as scientists

    NASA Astrophysics Data System (ADS)

    Koenig, L.; Courville, Z.; Wasilewski, P. J.; Gow, T.; Bender, K. J.

    2013-12-01

    The History of Winter (HOW) is a NASA Goddard Space Flight Center-funded teacher enrichment program that was started by Dr. Peter Wasilewski (NASA), Dr. Robert Gabrys (NASA) and Dr. Tony Gow (Cold Regions Research and Engineering Laboratory, or CRREL) in 2001 and continues with support and involvement of scientists from both the NASA Cryospheric Sciences Laboratory and CREEL. The program brings educators mostly from middle and high schools but also from state parks, community colleges and other institutions from across the US to the Northwood School (a small, private boarding school) in Lake Placid, NY for one week to learn about several facets of winter, polar, and snow research, including the science and history of polar ice core research, lake ice formation and structure, snow pack science, winter ecology, and remote sensing including current and future NASA cryospheric missions. The program receives support from the Northwood School staff to facilitate the program. The goal of the program is to create 'teachers as scientists' which is achieved through several hands-on field experiences in which the teachers have the opportunity to work with polar researchers from NASA, CRREL and partner Universities to dig and sample snow pits, make ice thin sections from lake ice, make snow shelters, and observe under-ice lake ecology. The hands-on work allows the teachers to use the same tools and techniques used in polar research while simultaneously introducing science concepts and activities to support their classroom work. The ultimate goal of the program is to provide the classroom teachers with the opportunity to learn about current and timely cryospheric research as well as to engage in real fieldwork experiences. The enthusiasm generated during the week-long program is translated into classroom activities with guidance from scientists, teachers and educational professionals. The opportunity to engage with polar researchers, both young investigators and renowned veterans in the field, is a unique experience for many of the teachers. Here we present lessons learned throughout the lifetime of the program, including successes and improvements made, and present our vision for the future of HOW.

  2. Winter Weather Frequently Asked Questions

    MedlinePLUS

    ... All What is hypothermia? When exposed to cold temperatures, your body begins to lose heat faster than ... The result is hypothermia, or abnormally low body temperature. Body temperature that is too low affects the ...

  3. Reaction front formation in contaminant plumes

    NASA Astrophysics Data System (ADS)

    Cribbin, Laura B.; Winstanley, Henry F.; Mitchell, Sarah L.; Fowler, Andrew C.; Sander, Graham C.

    2014-12-01

    The formation of successive fronts in contaminated groundwater plumes by subsoil bacterial action is a commonly accepted feature of their propagation, but it is not obviously clear from a mathematical standpoint quite how such fronts are formed or propagate. In this paper we show that these can be explained by combining classical reaction-diffusion theory involving just two reactants (oxidant and reductant), and a secondary reaction in which a reactant on one side of such a front is (re-)formed on the other side of the front via diffusion of its product across the front. We give approximate asymptotic solutions for the reactant profiles, and the propagation rate of the front.

  4. Haemonchus contortus microtubules are cold resistant.

    PubMed

    Ashraf, Shoaib; Prichard, Roger K

    2014-01-01

    Haemonchus contortus is an important nematode of livestock that is present in most parts of the world. The life cycle comprises free living stages (egg, L1, L2 and L3 larvae), and parasitic stages (L4, adult and egg) in a ruminant. Microtubules are filamentous structures which are made from polymerization of ?- and ?-tubulin. In vitro polymerization of ?- and ?-tubulin can be achieved by increasing the temperature to 37C under certain conditions. As part of its normal functioning, in mammals, the microtubules can be depolymerized when the temperature is reduced to 0C. However, interestingly the microtubules of H. contortus are cold resistant i.e. they do not depolymerize at 0C. Moreover these microtubules did not depolymerize even in the presence of 5 mM CaCl2 or 50 ?M colchicine. These interesting findings may explain how larvae in the free living stages may survive cold temperatures over winter. PMID:24525483

  5. Winter storm-induced hydrodynamics and morphological response of a shallow transgressive shoal complex: Northern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Siadatmousavi, S. Mostafa; Jose, Felix

    2015-03-01

    Using extended deployments during seasons of low and high discharge from the Atchafalaya River, meteorological, hydrodynamic and bottom boundary layer parameters were monitored from Tiger and Trinity Shoal complex, off Louisiana coast, USA. During winter storms, the surface current speed measured at both shoals exceeded 0.5 m/s and the entire water column followed the prevailing wind direction. The current speed close to the bottom exceeded 0.3 m/s during high energy northerly winds. The mean water level in the shoal complex increased during southerly winds and decreased during northerly winds, such that the difference between wind set-up and set-down exceeded 0.7 m in Tiger Shoal and 0.6 m in Trinity Shoal during high energy frontal passages. The swell height was inversely correlated with mean water level, and increased during pre-frontal phase and decreased during post-frontal phase of winter storms. The sea (short waves) height responded quickly to wind direction and speed; and within a few hours after the wind shifted and blowing from the north, the sea height increased during both deployments. Bimodal wave frequency spectrum was observed during wind veering from southerly to northerly, when both sea and swell intensities were significant. The Tiger Shoal bed sediment texture transformed drastically, from mud to shell and shell hash assemblage, within a period of two weeks during the December 2008 deployment. Backscatter signal intensity from a Pulse Coherent Acoustic Doppler Profiler (PCADP) and its velocity estimates were used to determine the vertical extend and timing of mud resuspension and their eventual flushing out from the shoal environment, when exposed to high energy winter storm passages. The computed time frame for a total transformation of bottom sediment texture (from muddy bottom to shell and shell hash assemblage) was supported by the combined wave and bottom current induced shear stress at shoal bed. The bed samples collected from Tiger Shoal before and after the deployment in spring 2009 consisted of more than 80% shell and shell hash, which again confirmed a stable bottom as predicted from the PCADP data. However, the fine sand and mud dominated bed at Trinity Shoal was highly dynamic and experienced a few cm of ephemeral sediment deposition during the passage of each cold front, as revealed from the analysis of acoustic backscatter data from the PCADP. Suspended sediment concentration estimated from Optical Backscatterance Sensors (OBS) and PCADP were in good agreement during low river discharge events in December 2008; but significantly diverged during the spring 2009 deployment, when a high suspended sediment load was discharged into the shelf from the Atchafalaya River, and subsequently pushed farther offshore into the deployment sites by wind-induced strong currents during the passage of cold fronts.

  6. Influence of the winter North Atlantic Oscillation (NAO) on ENSO in the following winter by Multi-model evaluation

    NASA Astrophysics Data System (ADS)

    Nakamura, Tetsu; Tachibana, Yoshihiro; Hara, Masayuki; Oshika, Miki

    2015-04-01

    This study tested the hypothesis that occurrence of a warm (clod) phase of El Nio/Southern Oscillation (ENSO) in a given winter can be predicted 1 year in advance by the North Atlantic Oscillation (NAO). A one-year-lagged relationship between the NAO in winter and ENSO in the following year was examined with a multi-model ensemble analysis using Coupled Model Intercomparison Project phase 3 models and reanalysis data. On the basis of a 51-year statistical analysis of reanalysis data, we propose that El Nio outbreak in the winter is linked to the negative phase of the NAO in the previous winter. A coherency index was developed as a measure of the coherence between the NAO and ENSO in each model and used as a weighting factor in the ensemble model. Weighted multi-model ensemble means of the regressed field on the maximum covariance analysis coefficients between the surface pressure field in the North Atlantic (NAO field) and the sea surface temperature field in the equatorial Pacific (ENSO field) were explored. The results indicated that when the wintertime NAO was in its negative (positive) phase, anomalous atmospheric circulation associated with a large (small) Eurasian snow mass anomaly intensified (weakened) the Asian cold surge and the westerly wind burst (WWB) in the warm pool region. Intensification of the WWB initiates El Nio. A sensitivity experiment using an idealized dry general circulation model revealed that the atmospheric response to anomalous, near-surface cooling associated with an anomalous Eurasian snow mass induced higher surface pressure near the Tibetan plateau and thus intensified the Asian cold surge and WWB. Linear regression analyses applied to the reanalysis data strongly supported the model results. Our results therefore suggest an influence of the NAO on the initiation of El Nio via a process that involves Eurasian snow anomalies associated with the NAO phase.

  7. Enzymatic activity of rodents acclimated to cold and long scotophase

    NASA Astrophysics Data System (ADS)

    Fourie, F. Le R.; Haim, A.

    1980-09-01

    Rodents representative of a diurnal species ( Rhabdomys pumilio) as well as a nocturnal species ( Praomys natalensis) were acclimated to cold (Ta = 8°C) at a photoperiod of LD 12:12 and a long scotophase (LD 8; 16) at a temperature of 25° C(Ta). Control groups were kept for both species at Ta = 25° C and LD 12:12 and winter acclimated individuals were obtained during July and August to serve as further reference. Blood samples obtained from the tail were analysed for enzymes representative of three major biochemical pathways. The enzymatic activity of LDH (glycolytic pathway), MDH (Krebs cycle) and G6PDH (hexose monophosphate shunt, as an indicator of gonadal activity) were monitored to represent metabolic activity of the respective cycles. Cold acclimated as well as winter acclimatized mice revealed similar enzymatic patterns for both species and significant increases in LDH and MDH were recorded with a concurrent decrease in G6PDH activity. Specimens exposed to long scotophase exhibited similar enzymatic patterns for both species studied, but enzymatic activity was higher than those of cold acclimated individuals. From these results it is concluded that cold as well as long scotophase induce metabolic adaptations through biochemical activity in the experimental animals. The effect of long scotophase is assumed to be an important factor in the induction of winter acclimatization.

  8. Cold fusion, Alchemist's dream

    SciTech Connect

    Clayton, E.D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalysed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalysed cold fusion; vibrational mechanisms in excited states of D{sub 2} molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D{sub 2} fusion at low energies; fusion of deuterons into {sup 4}He; secondary D+T fusion within the hydrogenated metal lattice; {sup 3}He to {sup 4}He ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of {sup 3}He/{sup 4}He.

  9. Cold end additive compositions

    SciTech Connect

    Sujdak, R.J.

    1980-09-23

    The present invention is drawn to ethylene polyamines in combination with certain alkanolamines as cold-end additives. More specifically, it has been discovered that if these additives are fed to the moving combustion gases of a combustion system which uses sulfur containing fuel and upstream of cold-end surfaces to be treated, the additive will travel along with the gases as vapor and/or liquid droplets and deposit on the cold-end surfaces. As a result, the amount of sulfuric acid corrosion of metallic cold-end surfaces is reduced.

  10. Cold fusion: Alchemist's dream

    NASA Astrophysics Data System (ADS)

    Clayton, E. D.

    1989-09-01

    In this report the following topics relating to cold fusion are discussed: muon catalyzed cold fusion; piezonuclear fusion; sundry explanations pertaining to cold fusion; cosmic ray muon catalyzed cold fusion; vibrational mechanisms in excited states of D2 molecules; barrier penetration probabilities within the hydrogenated metal lattice/piezonuclear fusion; branching ratios of D2 fusion at low energies; fusion of deuterons into He-4; secondary D+T fusion within the hydrogenated metal lattice; helium-3 to helium-4 ratio within the metal lattice; shock induced fusion; and anomalously high isotopic ratios of helium-3/helium-4.

  11. Febrile/cold agglutinins

    MedlinePLUS

    ... tularemia Inflammatory bowel disease Lymphoma Systemic lupus erythematosus Use of certain medicines, including methyldopa, penicillin, and quinidine Cold agglutinins may occur with: Infections, ...

  12. Individual inconsistencies in basal and summit metabolic rate highlight flexibility of metabolic performance in a wintering passerine.

    PubMed

    Corts, Pablo Andrs; Petit, Magali; Lewden, Agns; Milbergue, Myriam; Vzina, Franois

    2015-03-01

    Resident passerines inhabiting high latitude environments are faced with strong seasonal changes in thermal conditions and energy availability. Summit metabolic rate (maximal metabolic rate elicited by shivering during cold exposure: M(sum)) and basal metabolic rate (BMR) vary in parallel among seasons and increase in winter due to cold acclimatization, and these adjustments are thought to be critical for survival. Wintering individuals expressing consistently higher M(sum) and BMR could therefore be seen as better performers with higher chances of winter survival than those exhibiting lower metabolic performance. In this study, we calculated repeatability to evaluate temporal consistency of body mass, BMR and M(sum) within and across three consecutives winters in black-capped chickadees (Poecile atricapillus). We found that body mass was significantly repeatable both within and across winters (R 0.51-0.90). BMR (R 0.29-0.47) was only repeatable within winter while M(sum) was repeatable both among (R 0.33-0.49) and within winters (R 0.33-0.49) with the magnitude and significance of repeatability in both variables depending on the year and whether they were corrected for body mass or body size. The patterns of repeatability observed among years also differed between the two variables. Our findings suggest that the relative ranking of individuals in winter metabolic performance is affected by local ecological conditions and can change within relatively short periods of time. PMID:25690265

  13. Firing up the front line.

    PubMed

    Katzenbach, J R; Santamaria, J A

    1999-01-01

    For many organizations, achieving competitive advantage means eliciting superior performance from employees on the front line--the burger flippers, hotel room cleaners, and baggage handlers whose work has an enormous effect on customers. That's no easy task. Front line workers are paid low wages, have scant hope of advancement, and--not surprisingly--often care little about the company's performance. But then how do some companies succeed in engaging the emotional energy of rank-and-file workers? A team of researchers at McKinsey & Company and the Conference Board recently explored that question and discovered that one highly effective route is demonstrated by the U.S. Marine Corps. The Marines' approach to motivation follows the "mission, values, and pride" path, which researchers say is practical and relevant for the business world. More specifically, the authors say the Marines follow five practices: they over-invest in cultivating core value; prepare every person to lead, including front line supervisors; learn when to create teams and when to create single-leader work groups; attend to all employees, not just the top half; and encourage self-discipline as a way of building pride. The authors admit there are critical differences between the Marines and most businesses. But using vivid examples from companies such as KFC and Marriott International, the authors illustrate how the Marines' approach can be translated for corporate use. Sometimes, the authors maintain, minor changes in a company's standard operating procedure can have a powerful effect on front line pride and can result in substantial payoffs in company performance. PMID:10387573

  14. Directly Imaging Fast Reaction Fronts

    SciTech Connect

    Kim, J S; LaGrange, T B; Reed, B W; Campbell, G H; Browning, N D

    2007-02-21

    Direct observation of fast intermetallic phase formation in Reactive Multilayer Foils (RMLFs) has been achieved. Snap-shots of the reaction appear to show development of mass-thickness contrast of the unmixed Al and Ni layers and an intermetallic phase. Electron imaging of these RMLF reaction fronts have never been attained in the past. The reaction front travels at {approx}10 meters per second as the nanoscale layers mix in an exothermic chain reaction, thus making traditional in situ electron microscopy {approx}10{sup 5} times too slow to produce such an image. The DTEM capability to produce several million electrons within nanoseconds for single-pulse imaging made this experiment possible. Additionally, the sample drive laser ensures reliable experiment initiation and repeatability. In no other way could such a high velocity event be captured at this magnification. RMLF reaction fronts continue to be analyzed via diffraction for complete phase evolution with respect to time. High quality diffraction patterns enable quantitative phase information to be obtained for future comparison to simulation.

  15. Avalanche dynamics of imbibition fronts

    NASA Astrophysics Data System (ADS)

    Santucci, Stephane

    2010-03-01

    The spatio-temporal dynamics of interfaces driven through random media has become a subject of central importance in non-equilibrium statistical mechanics in last years. A wide variety of slowly driven physical systems - vortex lines in superconductors, dislocation lines in defective crystalline solids, fracture fronts in heterogeneous materials, magnetic domain walls in disordered ferromagnets or wetting contact lines on rough substrates - exhibit a self-affine morphology and burst-like correlated motion, that arise from the interplay between competing interactions. In this context, we address here the problem of forced-flow imbibition in a disordered medium where a fluid (oil) that preferentially wets the medium displaces a resident fluid (air) at a constant flow rate. Using a high resolution fast camera, we follow the propagation of the fluid-air interface invading a disordered Hele-Shaw cell. Measuring the local waiting time fluctuations along the front during its propagation, we show that the imbibition fronts display an intermittent behavior signature of an avalanche-like dynamics. First, we will discuss the Non-Gaussian fluctuations of the global (spatialy averaged) velocity V (t) of the interface. Then, we will focus on the various scaling behavior of the local avalanches defined as spatial clusters of large local velocity. Our experimental results underline the critical behavior of the imbibition dynamics, suggesting the existence of a critical depinning transition for this process at V=0.

  16. Distribution patterns during winter and fidelity to wintering areas of American black ducks

    USGS Publications Warehouse

    Diefenbach, D.R.; Nichols, J.D.; Hines, J.E.

    1988-01-01

    The distribution patterns during winter of American black ducks were compared among age-sex classes using band recivery data. In addition, fidelity to wintering areas was compared between sexes and between coastal and inland wintering sites.

  17. Winter Snowfall Turns an Emerald White

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Ireland's climate is normally mild due to the nearby Gulf Stream, but the waning days of 2000 saw the Emerald Isle's green fields swathed in an uncommon blanket of white. The contrast between summer and winter is apparent in this pair of images of southwestern Ireland acquired by MISR's vertical-viewing (nadir) camera on August 23, 2000 (left) and December 29, 2000 (right). The corresponding Terra orbit numbers are 3628 and 5492, respectively.

    The year 2000 brought record-breaking weather to the British Isles. England and Wales experienced the wettest spring and autumn months since 1766. Despite being one of the warmest years in recent history, a cold snap arrived between Christmas and New Year's Day. According to the UK Meteorological Office, the 18 centimeters (7 inches) of snow recorded at Aldergrove, Northern Ireland, on December 27-28 was the deepest daily fall since 1930.

    Prominent geographical features visible in the MISR images include Galway Bay near the top left. Further south, the mouth of the River Shannon, the largest river in the British Isles, meets the Atlantic Ocean. In the lower portions of the images are the counties of Limerick, Kerry and Cork.

    MISR was built and is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Office of Earth Science, Washington, DC. The Terra satellite is managed by NASA's Goddard Space Flight Center, Greenbelt, MD. JPL is a division of the California Institute of Technology

  18. Reducing winter injury in blackberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the combination of primocane training and cane positioning techniques using a rotatable cross-arm (RCA) trellis system and covering plants in winter to protect buds and canes from freezing temperatures in Apache, Boysenberry, Siskiyou, and Triple Crown blackberry. After tying p...

  19. Registration of Atlantic winter barley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Atlantic (Reg. No. CV-354, PI 665041), a six-row, hulled winter barley (Hordeum vulgare L.) tested as VA06B-19 by the Virginia Agricultural Experiment Station, was released in March 2011. Atlantic was derived from the cross VA97B-176/VA92-44-279 using a modified bulk-breeding method. It was evalua...

  20. Record low total ozone during northern winters of 1992 and 1993

    SciTech Connect

    Bojkov, R.D. )

    1993-07-09

    The authors look at recorded ozone data over the northern hemisphere during the winters of 1992 and 1993. They use data from the World Meteorological Organization data base. During both of these winter, there have been marked decreases in the column ozone levels over North America, Europe, and Siberia, in the latitude belt from 45[degrees]N to 65[degrees]N. During these winters there have been ten times as many days with ozone levels deviated more than 2[sigma] below the 35 year average. They seek explanations for these observations by looking at meterological information. Evidences indicate that there was transport of ozone deficient air masses during these winters. In addition cold air masses with excess ClO show evidence of having transported into the more southern latitudes. The authors conclude there is evidence for both displacement of large air masses, and increased chemical destruction potential, to have contributed to these observed decreases.

  1. Cold Weather Entomology.

    ERIC Educational Resources Information Center

    McLure, John W.

    1983-01-01

    Suggests instructional strategies and student activities related to the study of insects during the winter. Includes possible collecting sites and classroom activities once the insects have been collected. (JN)

  2. Evaporation fronts in porous media

    NASA Astrophysics Data System (ADS)

    Pakala, Venkata Krishna Chaitanya

    Experimental and computational studies have been conducted to model the propagation of evaporating fronts through porous media. The results from the experiments are compared with a numerical model and the results agree qualitatively with the temperature distribution in the vapor and liquid regions obtained from the numerical solution. The condition for which a two-phase zone does not exist due to high heat flux is also examined. Results also confirm earlier analysis of the front stability. In this thesis an implicit finite difference scheme is utilized to simulate the propagation of an evaporating front in a porous medium saturated with water and undergoing the phase change process. The following three numerical models are developed: (1) a one-equation model that assumes local thermal equilibrium; (2) a two-equation model that utilizes the lumped capacitance assumption to predict the heat transfer to the solid phase; and (3) a two-equation model that utilizes a more precise quasi-analytical approach to more accurately characterize the conduction in the solid phase. Results illustrate that the one-equation model does not yield accurate results when the thermophysical properties characterized by the volume weighted ratio of thermal diffusivities, C, is greater than 10 (within 5% error). Hence a two-equation model is necessary depending on the level of accuracy desired. In addition, consistent with the established "rule of thumb", for Biot number, Biv, is less than 0.1, the traditional two-equation model which makes the lumped capacitance assumption for the solid phase compares well with a two-equation model that more accurately predicts the time dependent diffusion in the solid phase using Duhamel's theorem. High intensity drying is used to characterize those situations for which the drying medium is sufficiently above the saturation temperature of water to preclude the existence of a two-phase zone. High intensity drying is modeled numerically and the relationship between pressure, the drying conditions and material properties is examined since elevated pressure that can occur during high intensity drying is potentially destructive. A quasi two-dimensional numerical model of high intensity drying with specific application to underground coal gasification is presented. The anisotropy due to permeability of coal is considered and the results illustrate that a decrease in permeability, K (10-14 to 10-12 m2), results in faster front propagation. Front propagation for the same thick coal seam at two different depths indicated that it is faster when the depth increases. It was also found that as the thickness of coal seam decreases the front propagates faster. Decreasing the pressure or increasing the temperature in the cavity results in a faster front propagation. Groundwater contamination can be a potential problem when the pressure and temperature in the cavity are lowered.

  3. Role of the nocturnal coastal-front depth on cloud formation and precipitation in the Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Mazon, Jordi; Pino, David

    2015-02-01

    Ten nocturnal coastal front events formed in the Mediterranean basin are simulated and analyzed, focusing on the coastal-front depth by using version 3.3 of the WRF-ARW mesoscale model. During the night the inland air cools faster than the air over the Mediterranean Sea. Consequently, this colder air may move offshore, forming a coastal front when interacting with the warmer and moister maritime air mass, which is lifted over the colder air. Then clouds and precipitation may occur. In this mechanism the depth of the cold air mass (H) plays an important role in theformation of clouds and precipitation. Stratiform clouds appear if H is higher than the lifting condensation level of the warm air mass. Moreover, if H is higher than the corresponding level of free convection convective clouds are formed. H is estimated from the mesoscale simulations at an hourly scale, as well as taking the average and maximum values during the whole night. Furthermore, several parameters related to trigger convection, the blockage effect that the cold air mass offers to the prevailing flow, the deceleration induced by cold front on the upstream maritime flow and the location of precipitation with respect to the front are estimated. Additionally, a forecasting cloud-band index is proposed in order to evaluate whether stratiform clouds are formed offshore in the ten simulated nocturnal coastal fronts.

  4. Deadly Cold: Health Hazards Due to Cold Weather. An Information Paper by the Subcommittee on Health and Long-Term Care of the Select Committee on Aging. House of Representatives, Ninety-Eighth Congress, Second Session (February 1984).

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. House Select Committee on Aging.

    This paper, on the health hazards of cold weather for elderly persons, presents information from various sources on the death rates in winter throughout the United States. After reviewing the scope of the problem, specific health hazards associated with cold weather are discussed, i.e., hypothermia, fires, carbon monoxide poisoning, and influenza…

  5. Cold fusion research

    SciTech Connect

    1989-11-01

    I am pleased to forward to you the Final Report of the Cold Fusion Panel. This report reviews the current status of cold fusion and includes major chapters on Calorimetry and Excess Heat, Fusion Products and Materials Characterization. In addition, the report makes a number of conclusions and recommendations, as requested by the Secretary of Energy.

  6. Intraseasonal Cold Air Outbreak over East Asia and the preceding atmospheric condition over the Barents-Kara Sea

    NASA Astrophysics Data System (ADS)

    Hori, M. E.; Inoue, J.

    2011-12-01

    Frequent occurrence of cold air outbreak is a dominant feature of the East Asian winter monsoon. A contributing factor for the this cold air outbreak is the role of stationary Rossby waves over the Eurasian continent which intensifies the surface Siberian High and the accompanying cold air outflow. Reduced sea ice and increase in turbulence heat flux is hypothesized as a source of such stationary waves (Honda et al. 2009). In particular, the winter of 2009/2010 saw a strong correlation of high pressure anomaly over the Barents/Kara sea and the following cold air buildup over the Eurasian continent and its advection towards East Asia (Hori et al. 2011). The lag correlation of surface temperature over Japan and the 850hPa geopotential height shows a cyclonic anomaly appearing over the Barents/Kara sea which creates a cold air advection over the Eurasian continent. The pressure anomaly subsequently shifted westward to mature into a blocking high which created a wave- train pattern downstream advecting the cold air buildup eastward toward East Asia and Japan (Fig1). We further examine this mechanism for other years including the 2005/2006, 2010/2011 winter and other winters with extreme cold air outbreaks. Overall, the existence of an anticyclonic anomaly over the Barents/Kara sea correlated well with the seasonal dominance of cold air over the Eurasian continent thereby creating a contrast of a warm Arctic and cold Eurasian continent.In the intraseasonal timescale, the existence of this anticyclone corresponds to a persisting atmospheric blocking in the high latitudes. In the presentation, we address the underlying chain of events leading up to a strong cold air outbreak over East Asia from an atmosphere - sea ice - land surafce interaction point of view for paritular cold winter years.

  7. Instability of evaporation fronts in the interstellar medium

    SciTech Connect

    Kim, Jeong-Gyu; Kim, Woong-Tae E-mail: wkim@astro.snu.ac.kr

    2013-12-10

    The neutral component of the interstellar medium is segregated into the cold neutral medium (CNM) and warm neutral medium (WNM) as a result of thermal instability. It was found that a plane-parallel CNM-WNM evaporation interface, across which the CNM undergoes thermal expansion, is linearly unstable to corrugational disturbances, in complete analogy with the Darrieus-Landau instability (DLI) of terrestrial flames. We perform a full linear stability analysis as well as nonlinear hydrodynamic simulations of the DLI of such evaporation fronts in the presence of thermal conduction. We find that the DLI is suppressed at short length scales by conduction. The length and time scales of the fastest growing mode are inversely proportional to the evaporation flow speed of the CNM and its square, respectively. In the nonlinear stage, the DLI saturates to a steady state where the front deforms to a finger-like shape protruding toward the WNM, without generating turbulence. The evaporation rate at nonlinear saturation is larger than the initial plane-parallel value by a factor of ?2.4 when the equilibrium thermal pressure is 1800 k {sub B} cm{sup 3} K. The degrees of front deformation and evaporation-rate enhancement at nonlinear saturation are determined primarily by the density ratio between the CNM and WNM. We demonstrate that the Field length in the thermally unstable medium should be resolved by at least four grid points to obtain reliable numerical outcomes involving thermal instability.

  8. The Winter 2010 and 2011 FRONT/NIRSS In-Flight Icing Hazard Detection Project

    NASA Technical Reports Server (NTRS)

    Serke, David; Hubbert, John; Reehorst, Andrew; Kennedy, Patrick; Politovich, Marcia

    2011-01-01

    The NASA Icing Remote Sensing System (NIRSS) deploys a vertically-pointing K-band radar, a lidar ceiliometer, and a profiling microwave radiometer to obtain measurements for diagnosing local inflight icing conditions. RAL is working with NASA GRC to develop algorithms and data ingest and display software for the system. NASA has an ongoing activity to develop remote sensing technologies for the detection and measurement of icing conditions aloft. As part of that effort NASA teamed with NCAR to develop software that fuses data from multiple instruments into a single detected icing condition product. The multiple instrument approach, which is the current emphasis of this activity, utilizes a K-band vertical staring radar, a microwave radiometer that detects twelve frequencies between 22 and 59 GHz, and a lidar ceilometer. The radar data determine cloud boundaries, the radiometer determines the sub-freezing temperature heights and total liquid water content, and the ceilometer refines the lower cloud boundary. Data is post-processed in C++ program with a Java-based web display of resultant supercooled LWC profile and aircraft hazard identification. In 2010, a multi-channel scanning radiometer, designed and built by Radiometrics, Inc. under a SBIR grant,,was added to the system to assess its utility in improving icing diagnoses.

  9. Ice conditions on the Chesapeake Bay as observed from LANDSAT during the winters of 1977, 1978 and 1979

    NASA Technical Reports Server (NTRS)

    Foster, J. L.

    1980-01-01

    The LANDSAT observations during the winters of 1977, 1978 and 1979, which were unusually cold in the northeastern U.S. and in the Chesapeake Bay area, were evaluated. Abnormal atmospheric circulation patterns displaced cold polar air to the south, and as a result, the Chesapeake Bay experienced much greater than normal icing conditions during these 3 years. The LANDSAT observations of the Chesapeake Bay area during these winters demonstrate the satellite's capabilities to monitor ice growth and melt, to detect ice motions, and to measure ice extent.

  10. Xanthophyll cycle pigment and antioxidant profiles of winter-red (anthocyanic) and winter-green (acyanic) angiosperm evergreen species.

    PubMed

    Hughes, Nicole M; Burkey, Kent O; Cavender-Bares, Jeannine; Smith, William K

    2012-03-01

    Leaves of many angiosperm evergreen species change colour from green to red during winter, corresponding with the synthesis of anthocyanin pigments. The ecophysiological function of winter colour change (if any), and why it occurs in some species and not others, are not yet understood. It was hypothesized that anthocyanins play a compensatory photoprotective role in species with limited capacity for energy dissipation. Seasonal xanthophyll pigment content, chlorophyll fluorescence, leaf nitrogen, and low molecular weight antioxidants (LMWA) of five winter-red and five winter-green angiosperm evergreen species were compared. Our results showed no difference in seasonal xanthophyll pigment content (V+A+Z g(-1) leaf dry mass) or LMWA between winter-red and winter-green species, indicating red-leafed species are not deficient in their capacity for non-photochemical energy dissipation via these mechanisms. Winter-red and winter-green species also did not differ in percentage leaf nitrogen, corroborating previous studies showing no difference in seasonal photosynthesis under saturating irradiance. Consistent with a photoprotective function of anthocyanin, winter-red species had significantly lower xanthophyll content per unit chlorophyll and less sustained photoinhibition than winter-green species (i.e. higher pre-dawn F(v)/F(m) and a lower proportion of de-epoxidized xanthophylls retained overnight). Red-leafed species also maintained a higher maximum quantum yield efficiency of PSII at midday (F'(v)/F'(m)) during winter, and showed characteristics of shade acclimation (positive correlation between anthocyanin and chlorophyll content, and negative correlation with chlorophyll a/b). These results suggest that the capacity for photon energy dissipation (photochemical and non-photochemical) is not limited in red-leafed species, and that anthocyanins more likely function as an alternative photoprotective strategy to increased VAZ/Chl during winter. PMID:22162871

  11. Wintering ecology of adult North American ospreys

    USGS Publications Warehouse

    Washburn, Brian E.; Martell, Mark S.; Bierregaard, Richard O., Jr.; Henny, Charles J.; Dorr, Brian S.; Olexa, Thomas J.

    2014-01-01

    North American Ospreys (Pandion haliaetus) typically migrate long distances to their wintering grounds in the tropics. Beyond the general distribution of their wintering range (i.e., the Caribbean, South America, and Central America), very little is known about the wintering ecology of these birds. We used satellite telemetry to determine the duration of wintering period, to examine the characteristics of wintering areas used by Ospreys, and to quantify space use and activity patterns of wintering Ospreys. Adult Ospreys migrated to wintering sites and exhibited high wintering site fidelity among years. Overall, Ospreys wintered on river systems (50.6%) more than on lakes (19.0%), and use of coastal areas was (30.4%) intermediate. Ospreys remained on their wintering grounds for an average of 154 d for males and 167 d for females. Locations of wintering Ospreys obtained via GPS-capable satellite telemetry suggest these birds move infrequently and their movements are very localized (i.e., 2 and 1.4 km2, respectively. Overall, our findings suggest wintering adult North American Ospreys are very sedentary, demonstrating a pattern of limited daily movements and high fidelity to a few select locations (presumably roosts). We suggest this wintering strategy might be effective for reducing the risk of mortality and maximizing energy conservation.

  12. How cold pool triggers deep convection?

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi

    2014-05-01

    The cold pool in the boundary layer is often considered a major triggering mechanism of convection. Here, presented are basic theoretical considerations on this issue. Observations suggest that cold pool-generated convective cells is available for shallow maritime convection (Warner et al. 1979; Zuidema et al. 2012), maritime deep convection (Barnes and Garstang 1982; Addis et al. 1984; Young et al. 1995) and continental deep convection (e.g., Lima and Wilson 2008; Flamant 2009; Lothon et al. 2011; Dione et al. 2013). Moreover, numerical studies appear to suggest that cold pools promote the organization of clouds into larger structures and thereby aid the transition from shallow to deep convection (Khairoutdinov and Randall 2006, Boing et al. 2012, Schlemmer and Hohenegger, 2014). Even a cold--pool parameterization coupled with convection is already proposed (Grandpeix and Lafore 2010: but see also Yano 2012). However, the suggested link between the cold pool and deep convection so far is phenomenological at the best. A specific process that the cold pool leads to a trigger of deep convection must still to be pinned down. Naively, one may imagine that a cold pool lifts up the air at the front as it propagates. Such an uplifting leads to a trigger of convection. However, one must realize that a shift of air along with its propagation does not necessarily lead to an uplifting, and even if it may happen, it would not far exceed a depth of the cold pool itself. Thus, the uplifting can never be anything vigorous. Its thermodynamic characteristics do help much either for inducing convection. The cold-pool air is rather under rapid recovering process before it can induce convection under a simple parcel-lifting argument. The most likely reason that the cold pool may induce convection is its gust winds that may encounter an air mass from an opposite direction. This induces a strong convergence, also leading to a strong uplifting. This is an argument essentially developed by Moncrieff and Liu (1999). As a whole, in attempting a statistical description of boundary-layer processes, the cold pool is essentially nothing other than an additional contribution to a TKE (turbulent kinetic energy) budget. Significance of trigger of convection by cold pool in context of convection parameterization must also be seen with much caution. Against a common misunderstanding, current convection parameterization is not designed to describe a trigger process of individual convection. In this respect, process studies on cold pool do not contribute to improvements of convection parameterization until a well-defined parameterization formulation for individual convection processes is developed. Even before then a question should also be posed whether such a development is necessary. Under a current mass-flux convection parameterization, a more important process to consider is re-evaporative cooling of detrained cloudy air, which may also be associated with downdraft, possibly further leading to a generation of a cold pool. Yano and Plant (2012) suggest, from a point of view of the convective-energy cycle, what follows would be far less important than the fact the re-evaporation induces a generation of convective kinetic energy (though it may initially be considered TKE). Both well-focused convective process studies as well as convection parameterization formulation would be much needed.

  13. Passive thermal refugia provided warm water for Florida manatees during the severe winter of 2009-2010

    USGS Publications Warehouse

    Stith, B.M.; Slone, D.H.; de Wit, M.; Edwards, H.H.; Langtimm, C.A.; Swain, E.D.; Soderqvist, L.E.; Reid, J.P.

    2012-01-01

    Haloclines induced by freshwater inflow over tidal water have been identified as an important mechanism for maintaining warm water in passive thermal refugia (PTR) used by Florida manatees Trichechus manatus latirostris during winter in extreme southwestern Florida. Record-setting cold during winter 20092010 resulted in an unprecedented number of manatee deaths, adding to concerns that PTR may provide inadequate thermal protection during severe cold periods. Hydrological data from 20092010 indicate that 2 canal systems in the Ten Thousand Islands (TTI) region acted as PTR and maintained warm bottom-water temperatures, even during severe and prolonged cold periods. Aerial survey counts of live and dead manatees in TTI during the winter of 20092010 suggest that these PTR were effective at preventing mass mortality from hypothermia, in contrast to the nearby Everglades region, which lacks similar artificial PTR and showed high manatee carcass counts. Hydrological data from winter 20082009 confirmed earlier findings that without haloclines these artificial PTR may become ineffective as warm-water sites. Tidal pumping of groundwater appears to provide additional heat to bottom water during low tide cycles, but the associated thermal inversion is not observed unless salinity stratification is present. The finding that halocline-driven PTR can maintain warm water even under extreme winter conditions suggests that they may have significant potential as warm-water sites. However, availability and conflicting uses of freshwater and other management issues may make halocline-driven PTR unreliable or difficult to manage during winter.

  14. Local flame front disturbance development under acceleration

    SciTech Connect

    Tsuruda, T.; Hirano, T. )

    1991-03-01

    The development of a local flame front disturbance in an accelerating gas flow was explored using high-speed schilieren photography. The movement of the local flame front is examined to detail, and, based on these results, the flow field around the disturbed flame front is inferred. From this, it was confirmed that in an accelerating flow field, the unburned gas penetrates into the burned gas region at a velocity about 30 times higher than the laminar burning velocity. Flame front acceleration generates intense shear flow layers across disturbed flame fronts.

  15. Trends of cold and heat waves in Serbia

    NASA Astrophysics Data System (ADS)

    Unkaevi?, Miroslava; Toi?, Ivana

    2014-05-01

    The series of the daily minimum and maximum temperatures at fifteen stations in Serbia were used to calculate the cold and warm spell duration indicators, from which the duration and severity of the cold and heat waves were estimated. The trend analysis for all seasons was presented using the data from 1949 to 2012. The most important result of this study is the significant decreasing trends in the frequency of cold waves and increasing trends of heat waves in Serbia. An analysis of the daily minimum temperatures almost at all meteorological stations revealed that the longest and most severe cold waves were observed in winter of 1956, spring of 1987, summer of 1962 and 1996, and during the autumn 1983 and 1988. The longest and most severe heat waves, based on the analysis of the daily maximum temperatures, were recorded in winter of 2007, spring of 2003, summer of 2012, and after 1989 during the autumn. The longest heat waves observed in 2012 did not reach the severity of the heat waves in 2007 at ten of fifteen stations. The obtained results indicated that the warming in Serbia was more related to increase in frequency of heat waves than to reduction in cold waves.

  16. FRIGIDA-related genes are required for the winter-annual habit in Arabidopsis

    PubMed Central

    Michaels, Scott D.; Bezerra, Isabel C.; Amasino, Richard M.

    2004-01-01

    In temperate climates, the prolonged cold temperature of winter serves as a seasonal landmark for winter-annual and biennial plants. In these plants, flowering is blocked before winter. In Arabidopsis thaliana, natural variation in the FRIGIDA (FRI) gene is a major determinate of the rapid-cycling vs. winter-annual flowering habits. In winter-annual accessions of Arabidopsis, FRI activity blocks flowering through the up-regulation of the floral inhibitor FLOWERING LOCUS C (FLC). Most rapid-flowering accessions, in contrast, contain null alleles of FRI. By performing a mutant screen in a winter-annual strain, we have identified a locus, FRIGIDA LIKE 1 (FRL1), that is specifically required for the up-regulation of FLC by FRI. Cloning of FRL1 revealed a gene with a predicted protein sequence that is 23% identical to FRI. Despite sequence similarity, FRI and FRL1 do not have redundant functions. FRI and FRL1 belong to a seven-member gene family in Arabidopsis, and FRI, FRL1, and at least one additional family member, FRIGIDA LIKE 2 (FRL2), are in a clade of this family that is required for the winter-annual habit in Arabidopsis. PMID:14973192

  17. Observed and modelled record ozone decline over the Arctic during winter/spring 2011

    NASA Astrophysics Data System (ADS)

    Balis, D.; Isaksen, I. S. A.; Zerefos, C.; Zyrichidou, I.; Eleftheratos, K.; Tourpali, K.; Bojkov, R.; Rognerud, B.; Stordal, F.; Svde, O. A.; Orsolini, Y.

    2011-12-01

    This work describes observational and modelling results of the ozone depletion which took place during the winter/spring of 2011 in the Arctic stratosphere. Assimilated total ozone data from GOME-2 were used to estimate the integrated ozone mass deficit at polar latitudes and the Oslo CTM2 model calculated low winter/spring ozone values over the Arctic, which compare well with the satellite observations. Model runs with and without chemistry in the Arctic during the winter/spring of 2011 show that the very low Arctic stratospheric air temperatures led to significant chemical ozone loss. The calculated winter/spring ozone mass deficit (O3MD) reached extreme high values in 2011 (2700 Mt) and the seasonal zonal mean total ozone extreme low values of 333DU. Dynamics have set up the conditions for cold temperatures in the lower stratosphere in winter/spring of 2011. Comparison of ozone columns with the previous 13 years shows record low ozone column values during winter/spring in the Arctic in 2011. A comparison is also given with similar model studies for the overall warmer winter/spring of 2010 which show higher ozone column values and significantly less chemical ozone loss. The interannual variability of column ozone over the northern polar region is, as expected, highly correlated with the corresponding year-to-year variability of the seasonally-averaged temperatures in the lower stratosphere.

  18. Microphysical simulations of polar stratospheric clouds during the 2010-2011 Arctic Winter

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Toon, O. B.; Kinnison, D. E.; Lambert, A.; Brakebusch, M.

    2013-12-01

    Polar stratospheric clouds (PSCs) form in the lower stratosphere during the polar night due to the cold temperature inside the polar vortex. PSCs are important to understand because they are one of the important factors for the formation of the Antarctic ozone hole and the "mini" ozone hole over the Arctic during the winter of 2010-2011. In this work, We explore the formation and evolution of STS particles (Super-cooled Ternary Solution) and NAT (Nitric-acid Trihydrate ) particles using the SD-WACCM/CARMA model for 2010-2011 Arctic winter. SD-WACCM/CARMA is the Whole Atmosphere Community Climate Model coupled with the microphysics model (CARMA) using Specific Dynamics. The 2010-2011 Arctic winter is special because a cold Arctic vortex lasted from December until the end of March [Manney et al., 2011]. The long length of this cold period resulted in a prolonged presence of PSCs and consequently strong ozone depletion. This work includes comparison of the simulated microphysical features of PSCs with historical observations. Also, simulations and observations from MLS and Calipso showing the evolution of temperature, PSCs and related chemical species (HNO3, H2O) in 2010-2011 Arctic winter are presented.

  19. Impact of the winter North Atlantic Oscillation (NAO) on the Western Pacific (WP) pattern in the following winter through Arctic sea ice and ENSO

    NASA Astrophysics Data System (ADS)

    Tachibana, Yoshihiro; Oshika, Miki; Nakamura, Tetsu

    2015-04-01

    This study tested the hypothesis that Asian weather and climate in a given winter can be predicted 1 year in advance. On the basis of a 51-year statistical analysis of reanalysis data, we propose for the first time that the positive phase of the Western Pacific (WP) pattern in the winter is linked to the negative phase of the North Atlantic Oscillation (NAO) in the previous winter, and vice versa. We show that there are two possible mechanisms responsible for this interannual remote linkage. One is an Arctic mechanism. Extensive Arctic sea ice in the summer after a negative NAO acts as a bridge to the positive phase of the WP in the next winter. The negative (positive) phase of the winter NAO changes oceanic currents in the North Atlantic and weakens (strengthens) oceanic heat transport into the Arctic. This weakened (strengthened) heat transport also slows down (speeds up) the reduction of sea ice in the spring. A condition of more (less) ice than normal then persists until the season of ice freezing in autumn. In winter, all of the Arctic Ocean is covered by sea ice, regardless of the autumn ice area. Less (more) ice production during the freezing season reduces (increases) the heat released from the ocean to the atmosphere in the Arctic. An anomalously small (large) heat flux excites stationary Rossby wave propagation, which induces warm (cold) advection to Japan. The other mechanism involves the tropics. An El Niño occurrence after a negative winter NAO acts as another bridge to the positive phase of the WP in the following winter. The timescale of the Arctic route is nearly decadal, whereas that of the tropical route is about 3-5 years. The tropical mechanism indicates that the NAO remotely excites an El Niño in the second half of the following year. A process perhaps responsible for the El Niño occurrence was investigated statistically. A negative NAO in the winter increases Eurasian snow cover. This anomalous snow cover then intensifies the cold air outbreak from Asia to the western tropical Pacific. This outbreak can intensify the westerly wind burst and excite El Niño in the following year. We suggest that the phase of the NAO in the winter could be a predictor of the WP in the following year. Detailed is in Oshika, Tachibana and Nakamura in Climate Dynamics (2014), DOI: 10.1007/s00382-014-2384-1.

  20. Structure of the marine atmospheric boundary layer over an oceanic thermal front: SEMAPHORE experiment

    NASA Astrophysics Data System (ADS)

    Kwon, B. H.; BNech, B.; Lambert, D.; Durand, P.; Druilhet, A.; Giordani, H.; Planton, S.

    1998-10-01

    The Structure des Echanges Mer-Atmosphere, Proprietes des Heterogeneites Oceaniques: Recherche Experimentale (SEMAPHORE) experiment, the third phase of which took place between October 4 and November 17, 1993, was conducted over the oceanic Azores Current located in the Azores basin and mainly marked at the surface by a thermal front due to the gradient of the sea surface temperature (SST) of about 1 to 2C per 100 km. The evolution of the marine atmospheric boundary layer (MABL) over the SST front was studied with two aircraft and a ship in different meteorological conditions. For each case, the influence of the incoming air direction with respect to the orientation of the oceanic front was taken into account. During the campaign, advanced very high resolution radiometer pictures did not show any relation between the SST field and the cloud cover. The MABL was systematically thicker on the warm side than on the cold side. The mean MABL structure described from aircraft data collected in a vertical plane crossing the oceanic front was characterized by (1) an atmospheric horizontal gradient of 1 to 2C per 100 km in the whole depth of the mixed layer and (2) an increase of the wind intensity from the cold to the warm side when the synoptic wind blew from the cold side. The surface sensible heat (latent heat) flux always increased from the cold to the warm sector owing to the increase of the wind and of the temperature (specific humidity) difference between the surface and the air. Turbulence increased from the cold to the warm side in conjunction with the MABL thickening, but the normalized profiles presented the same structure, regardless of the position over the SST front. In agreement with the Action de Recherche Programme te Petite Echelle and Grande Echelle model, the mean temperature and momentum budgets were highly influenced by the horizontal temperature gradient. In particular, the strong ageostrophic influence in the MABL above the SST front seems linked with the secondary circulation due to the SST front.

  1. Crack Front Dynamics across a Single Heterogeneity

    NASA Astrophysics Data System (ADS)

    Chopin, J.; Prevost, A.; Boudaoud, A.; Adda-Bedia, M.

    2011-09-01

    We study the spatiotemporal dynamics of a crack front propagating at the interface between a rigid substrate and an elastomer. We first characterize the kinematics of the front when the substrate is homogeneous and find that the equation of motion is intrinsically nonlinear. We then pattern the substrate with a single defect. Steady profiles of the front are well described by a standard linear theory with nonlocal elasticity, except for large slopes of the front. In contrast, this theory seems to fail in dynamical situations, i.e., when the front relaxes to its steady shape, or when the front pinches off after detachment from a defect. More generally, these results may impact the current understanding of crack fronts in heterogeneous media.

  2. Benefits of front brakes on heavy trucks

    SciTech Connect

    Radlinski, R.W.; Flick, M.A.

    1987-01-01

    This paper addresses the issue of front wheel braking on heavy trucks and reviews testing that has been performed over the years dating back to 1948 to evaluate the effect of front brakes on braking performance. It also describes in detail a test and demonstration program on front wheel brakes that was conducted in September 1986. The paper indicates that front wheel brakes have a strong effect on braking performance and that vehicles without front wheel brakes take longer distances to stop and are more likely to lose control in emergency situations. The paper also indicates that the use of front brake pressure limiting valves with typical, current design front brakes degrades vehicle braking performance.

  3. Hypothermia: A Cold Weather Hazard

    MedlinePLUS

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  4. Could Behaviour and Not Physiological Thermal Tolerance Determine Winter Survival of Aphids in Cereal Fields?

    PubMed Central

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios. PMID:25490555

  5. Could behaviour and not physiological thermal tolerance determine winter survival of aphids in cereal fields?

    PubMed

    Alford, Lucy; Andrade, Thiago Oliveira; Georges, Romain; Burel, Françoise; van Baaren, Joan

    2014-01-01

    Traits of physiological thermotolerance are commonly measured in the laboratory as predictors of the field success of ectotherms at unfavourable temperatures (e.g. during harsh winters, heatwaves, or under conditions of predicted global warming). Due to being more complicated to measure, behavioural thermoregulation is less commonly studied, although both physiology and behaviour interact to explain the survival of ectotherms. The aphids Metopolophium dirhodum, Rhopalosiphum padi and Sitobion avenae are commercially important pests of temperate cereal crops. Although coexisting, these species markedly differ in winter success, with R. padi being the most abundant species during cold winters, followed by S. avenae and lastly M. dirhodum. To better understand the thermal physiology and behavioural factors contributing to differential winter success, the lethal temperature (physiological thermotolerance) and the behaviour of aphids in a declining temperature regime (behavioural thermotolerance) of these three species were investigated. Physiological thermotolerance significantly differed between the three species, with R. padi consistently the least cold tolerant and S. avenae the most cold tolerant. However, although the least cold tolerant of the study species, significantly more R. padi remained attached to the host plant at extreme sub-zero temperatures than S. avenae and M. dirhodum. Given the success of anholocyclic R. padi in harsh winters compared to its anholocyclic counterparts, this study illustrates that behavioural differences could be more important than physiological thermotolerance in explaining resistance to extreme temperatures. Furthermore it highlights that there is a danger to studying physiological thermotolerance in isolation when ascertaining risks of ectotherm invasions, the establishment potential of exotic species in glasshouses, or predicting species impacts under climate change scenarios. PMID:25490555

  6. Preventing cold-related morbidity and mortality in a changing climate

    PubMed Central

    Conlon, Kathryn C; Rajkovich, Nicholas B; White-Newsome, Jalonne L; Larsen, Larissa; Neill, Marie S O

    2011-01-01

    Winter weather patterns are anticipated to become more variable with increasing average global temperatures. Research shows that excess morbidity and mortality occurs during cold weather periods. We critically reviewed evidence relating temperature variability, health outcomes, and adaptation strategies to cold weather. Health outcomes included cardiovascular-, respiratory-, cerebrovascular-, and all-cause morbidity and mortality. Individual and contextual risk factors were assessed to highlight associations between individual- and neighborhood- level characteristics that contribute to a persons vulnerability to variability in cold weather events. Epidemiologic studies indicate that the populations most vulnerable to variations in cold winter weather are the elderly, rural and, generally, populations living in moderate winter climates. Fortunately, cold-related morbidity and mortality are preventable and strategies exist for protecting populations from these adverse health outcomes. We present a range of adaptation strategies that can be implemented at the individual, building, and neighborhood level to protect vulnerable populations from cold-related morbidity and mortality. The existing research justifies the need for increased outreach to individuals and communities for education on protective adaptations in cold weather. We propose that future climate change adaptation research couple building energy and thermal comfort models with epidemiological data to evaluate and quantify the impacts of adaptation strategies. PMID:21592693

  7. Effects of weather on habitat selection and behavior of mallards wintering in Nebraska

    USGS Publications Warehouse

    Jorde, D.G.; Krapu, G.L.; Crawford, R.D.; Hay, M.A.

    1984-01-01

    Sex and age ratios, habitat selection, spatial characteristics, and time budgets of Mallards (Anas platyrhynchos) wintering on the Platte River in south central Nebraska were studied from mid-December to early April 1978-1980. The proportion of females and subadults in the population increased substantially from a cold to a mild winter. Radio-tagged Mallards shifted from riverine to canal roost sites during the coldest periods of the winter, seemingly because of more favorable microclimatic conditions there. Subadults ranged over larger areas during winter than did adults. Activity patterns varied with weather conditions, time of day, and habitat type. During cold periods, energetically costly activities such as aggression and courtship decreased at roost sites and the intensity of foraging activities in fields increased. Mallards were more active at riverine than canal sites during both years. High energy requirements and intense competition for scarce food appear to be primary factors limiting the northernmost distribution of Mallards in winter and causing their skewed sex and age ratios.

  8. Informing the Front Line about Common Respiratory Viral Epidemics

    PubMed Central

    Gesteland, Per H; Samore, Matthew H; Pavia, Andrew T; Srivastava, Rajendu; Korgenski, Kent; Gerber, Kristine; Daly, Judy A; Mundorff, Michael B; Rolfs, Robert T; James, Brent C.; Byington, Carrie L.

    2007-01-01

    The nature of clinical medicine is to focus on individuals rather than the populations from which they originate. This orientation can be problematic in the context of acute healthcare delivery during routine winter outbreaks of viral respiratory disease where an individuals likelihood of viral infection depends on knowledge of local disease incidence. The level of interest in and perceived utility of community and regional infection data for front line clinicians providing acute care is unclear. Based on input from clinicians, we developed an automated analysis and reporting system that delivers pathogen-specific epidemic curves derived from a viral panel that tests for influenza, RSV, adenovirus, parainfluenza and human metapneumovirus. Surveillance summaries were actively e-mailed to clinicians practicing in emergency, urgent and primary care settings and posted on a web site for passive consumption. We demonstrated the feasibility and sustainability of a system that provides both timely and clinically useful surveillance information. PMID:18693841

  9. Winter cover crops influence Amaranthus palmeri establishment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops were evaluated for their effect on Palmer amaranth (PA) suppression in cotton production. Cover crops examined included rye and four winter legumes: narrow-leaf lupine, crimson clover, Austrian winter pea, and cahaba vetch. Each legume was evaluated alone and in a mixture with rye...

  10. Leadership in American Indian Communities: Winter Lessons

    ERIC Educational Resources Information Center

    Metoyer, Cheryl A.

    2010-01-01

    Winter lessons, or stories told in the winter, were one of the ways in which tribal elders instructed and directed young men and women in the proper ways to assume leadership responsibilities. Winter lessons stressed the appropriate relationship between the leader and the community. The intent was to remember the power and purpose of that

  11. WINTER FORAGE STRATEGIES TO REDUCE FEED COSTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The major input in a cow/calf operation is cost associated with feeding harvested forages during the winter months. Producers can extend the grazing season into the fall and winter months with decreased dependence on stored or purchased feeds by overseeding winter annuals and (or) stockpiling forage...

  12. Spring grazing winter cereals in Montana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter wheat (Triticum aestivum L.) is widely utilized for winter pasture and grain production in the central and southern US plains. Under rainfed conditions in the northern Great Plains, winter wheat seldom achieves adequate fall biomass for grazing, and little is known about the impacts of grazi...

  13. Attribution of UK Winter Floods to Anthropogenic Forcing

    NASA Astrophysics Data System (ADS)

    Schaller, N.; Alison, K.; Sparrow, S. N.; Otto, F. E. L.; Massey, N.; Vautard, R.; Yiou, P.; van Oldenborgh, G. J.; van Haren, R.; Lamb, R.; Huntingford, C.; Crooks, S.; Legg, T.; Weisheimer, A.; Bowery, A.; Miller, J.; Jones, R.; Stott, P.; Allen, M. R.

    2014-12-01

    Many regions of southern UK experienced severe flooding during the 2013/2014 winter. Simultaneously, large areas in the USA and Canada were struck by prolonged cold weather. At the time, the media and public asked whether the general rainy conditions over northern Europe and the cold weather over North America were caused by climate change. Providing an answer to this question is not trivial, but recent studies show that probabilistic event attribution is feasible. Using the citizen science project weather@home, we ran over 40'000 perturbed initial condition simulations of the 2013/2014 winter. These simulations fall into two categories: one set aims at simulating the world with climate change using observed sea surface temperatures while the second set is run with sea surface temperatures corresponding to a world that might have been without climate change. The relevant modelled variables are then downscaled by a hydrological model to obtain river flows. First results show that anthropogenic climate change led to a small but significant increase in the fractional attributable risk for 30-days peak flows for the river Thames. A single number can summarize the final result from probabilistic attribution studies indicating, for example, an increase, decrease or no change to the risk of the event occurring. However, communicating this to the public, media and other scientists remains challenging. The assumptions made in the chain of models used need to be explained. In addition, extreme events, like the UK floods of the 2013/2014 winter, are usually caused by a range of factors. While heavy precipitation events can be caused by dynamic and/or thermodynamic processes, floods occur only partly as a response to heavy precipitation. Depending on the catchment, they can be largely due to soil properties and conditions of the previous months. Probabilistic attribution studies are multidisciplinary and therefore all aspects need to be communicated properly.

  14. Overwintering Strategy and Mechanisms of Cold Tolerance in the Codling Moth (Cydia pomonella)

    PubMed Central

    Rozsypal, Jan; Kotl, Vladimr; Zahradn?kov, Helena; imek, Petr

    2013-01-01

    Background The codling moth (Cydia pomonella) is a major insect pest of apples worldwide. Fully grown last instar larvae overwinter in diapause state. Their overwintering strategies and physiological principles of cold tolerance have been insufficiently studied. No elaborate analysis of overwintering physiology is available for European populations. Principal Findings We observed that codling moth larvae of a Central European population prefer to overwinter in the microhabitat of litter layer near the base of trees. Reliance on extensive supercooling, or freeze-avoidance, appears as their major strategy for survival of the winter cold. The supercooling point decreases from approximately ?15.3C during summer to ?26.3C during winter. Seasonal extension of supercooling capacity is assisted by partial dehydration, increasing osmolality of body fluids, and the accumulation of a complex mixture of winter specific metabolites. Glycogen and glutamine reserves are depleted, while fructose, alanine and some other sugars, polyols and free amino acids are accumulated during winter. The concentrations of trehalose and proline remain high and relatively constant throughout the season, and may contribute to the stabilization of proteins and membranes at subzero temperatures. In addition to supercooling, overwintering larvae acquire considerable capacity to survive at subzero temperatures, down to ?15C, even in partially frozen state. Conclusion Our detailed laboratory analysis of cold tolerance, and whole-winter survival assays in semi-natural conditions, suggest that the average winter cold does not represent a major threat for codling moth populations. More than 83% of larvae survived over winter in the field and pupated in spring irrespective of the overwintering microhabitat (cold-exposed tree trunk or temperature-buffered litter layer). PMID:23613923

  15. Field Demonstration of Automated Demand Response for Both Winter and Summer Events in Large Buildings in the Pacific Northwest

    SciTech Connect

    Piette, Mary Ann; Kiliccote, Sila; Dudley, Junqiao H.

    2011-11-11

    There are growing strains on the electric grid as cooling peaks grow and equipment ages. Increased penetration of renewables on the grid is also straining electricity supply systems and the need for flexible demand is growing. This paper summarizes results of a series of field test of automated demand response systems in large buildings in the Pacific Northwest. The objective of the research was two fold. One objective was to evaluate the use demand response automation technologies. A second objective was to evaluate control strategies that could change the electric load shape in both winter and summer conditions. Winter conditions focused on cold winter mornings, a time when the electric grid is often stressed. The summer test evaluated DR strategies in the afternoon. We found that we could automate both winter and summer control strategies with the open automated demand response communication standard. The buildings were able to provide significant demand response in both winter and summer events.

  16. Double-Front Detonation Waves

    NASA Astrophysics Data System (ADS)

    Gubin, S. A.; Sumskoi, S. I.; Victorov, S. B.

    According to the theory of detonation, in a detonation wave there is a sound plane, named Chapman-Jouguet (CJ) plane. There are certain stationary parameters for this plane. In this work the possibility of the second CJ plane is shown. This second CJ plane is stationary as well. The physical mechanism of non-equilibrium transition providing the existence of the second CJ plane is presented. There is a non-equilibrium state, when the heat is removed from the reaction zone and the heat capacity decreases sharply. As a result of this non-equilibrium state, the sound velocity increases, and the local supersonic zone with second sonic plane (second CJ plane) appears. So the new mode of detonation wave is predicted. Equations describing this mode of detonation are presented. The exact analytical solution for the second CJ plane parameters is obtained. The example of double-front detonation in high explosive (TNT) is presented. In this double-front structure "nanodiamond-nanographite" phase transition takes place in condensed particles of detonation products.

  17. Asymmetry in the response of central Eurasian winter temperature to AMO

    NASA Astrophysics Data System (ADS)

    Hao, Xin; He, Shengping; Wang, Huijun

    2015-12-01

    The asymmetry in the teleconnection of the central Eurasian winter surface air temperature (SAT) with the Atlantic multidecadal oscillation (AMO) is discussed using observations and model simulations. Observations indicate that the winter SAT over central Eurasia (30°-70°E, 30°-50°N) shows significant positive anomalies during the warm AMO period but weak and insignificant anomalies in the cold AMO period. In general, the warm winters in central Eurasia are associated with large-scale negative sea level pressure anomalies in Europe, anomalous southwesterly winds at 850 hPa over Europe, the "+ - +" geopotential height anomalies at 500 hPa in the south of Greenland, northern Europe, western Asia, and the slant north-south "+ -" pattern jet stream anomalies at 200 hPa in the north and south of the Caspian Sea. Reverse patterns occur during cold winters. These statistically significant features are observed in the warm phase of AMO. Reversed circulation anomalies are observed during the cold phase of AMO; however, these anomalies are weak and not statistically significant. Furthermore, the asymmetry in the atmospheric response to AMO is well supported by simulations with a suite of GFDL atmospheric model idealized experiments and four CMIP5 models historical experiments. Both observations and simulations indicate that Rossby waves propagating from the North Atlantic eastward to Eurasia emerge in the warm AMO and disappear in the cold AMO. Thus, the different propagations of Rossby waves, induced by the different surface thermal conditions of the warm and cold AMO, are the potential connection between the North Atlantic Ocean and central Eurasian climate, and may explain the asymmetry.

  18. 1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW SOUTHWARD FROM SOUTHWEST CORNER FRONT AND ARCH STREETS (2. N. Front Street starts at left) - North Front Street Area Study, 2-66 North Front Street (Commercial Buildings), Philadelphia, Philadelphia County, PA

  19. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    USGS Publications Warehouse

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2015-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (AprilSeptember) and summer (OctoberMarch) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adlie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adlie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

  20. Water masses, ocean fronts, and the structure of Antarctic seabird communities: putting the eastern Bellingshausen Sea in perspective

    USGS Publications Warehouse

    Ribic, Christine A.; Ainley, David G.; Ford, R. Glenn; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-01-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (AprilSeptember) and summer (OctoberMarch) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adlie penguins (Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adlie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

  1. Water masses, ocean fronts, and the structure of Antarctic seabird communities: Putting the eastern Bellingshausen Sea in perspective

    NASA Astrophysics Data System (ADS)

    Ribic, Christine A.; Ainley, David G.; Glenn Ford, R.; Fraser, William R.; Tynan, Cynthia T.; Woehler, Eric J.

    2011-07-01

    Waters off the western Antarctic Peninsula (i.e., the eastern Bellingshausen Sea) are unusually complex owing to the convergence of several major fronts. Determining the relative influence of fronts on occurrence patterns of top-trophic species in that area, therefore, has been challenging. In one of the few ocean-wide seabird data syntheses, in this case for the Southern Ocean, we analyzed ample, previously collected cruise data, Antarctic-wide, to determine seabird species assemblages and quantitative relationships to fronts as a way to provide context to the long-term Palmer LTER and the winter Southern Ocean GLOBEC studies in the eastern Bellingshausen Sea. Fronts investigated during both winter (April-September) and summer (October-March) were the southern boundary of the Antarctic Circumpolar Current (ACC), which separates the High Antarctic from the Low Antarctic water mass, and within which are embedded the marginal ice zone and Antarctic Shelf Break Front; and the Antarctic Polar Front, which separates the Low Antarctic and the Subantarctic water masses. We used clustering to determine species' groupings with water masses, and generalized additive models to relate species' densities, biomass and diversity to distance to respective fronts. Antarctic-wide, in both periods, highest seabird densities and lowest species diversity were found in the High Antarctic water mass. In the eastern Bellingshausen, seabird density in the High Antarctic water mass was lower (as low as half that of winter) than found in other Antarctic regions. During winter, Antarctic-wide, two significant species groups were evident: one dominated by Adlie penguins ( Pygoscelis adeliae) (High Antarctic water mass) and the other by petrels and prions (no differentiation among water masses); in eastern Bellingshausen waters during winter, the one significant species group was composed of species from both Antarctic-wide groups. In summer, Antarctic-wide, a High Antarctic group dominated by Adlie penguins, a Low Antarctic group dominated by petrels, and a Subantarctic group dominated by albatross were evident. In eastern Bellingshausen waters during summer, groups were inconsistent. With regard to frontal features, Antarctic-wide in winter, distance to the ice edge was an important explanatory factor for nine of 14 species, distance to the Antarctic Polar Front for six species and distance to the Shelf Break Front for six species; however, these Antarctic-wide models could not successfully predict spatial relationships of winter seabird density (individual species or total) and biomass in the eastern Bellingshausen. Antarctic-wide in summer, distance to land/Antarctic continent was important for 10 of 18 species, not a surprising result for these summer-time Antarctic breeders, as colonies are associated with ice-free areas of coastal land. Distance to the Shelf Break Front was important for 8 and distance to the southern boundary of the ACC was important for 7 species. These summer models were more successful in predicting eastern Bellingshausen species density and species diversity but failed to predict total seabird density or biomass. Antarctic seabirds appear to respond to fronts in a way similar to that observed along the well-studied upwelling front of the California Current. To understand fully the seabird patterns found in this synthesis, multi-disciplinary at-sea investigations, including a quantified prey field, are needed.

  2. Dehumidification to reduce cold weather swine housing energy demand

    SciTech Connect

    Sharma, A.D.; Brusewitz, G.H.; Huhnke, R.L.

    1981-01-01

    Dehumidificaiton is proposed as an alternative to the use of heated cold outside air for controlling the environment of winter swine building. Algorithms were develped to estimate the heat-moisture balance and the economics of an alternative system. The effect of changes in fuel cost, temperature, air flow, and equipment cost on the break even time between the conventional and alternative system was determined. 17 refs.

  3. Cold Sores (HSV-1)

    MedlinePLUS

    ... Are Cold Sores Diagnosed and Treated? en espaol Herpes labial Neal knew something weird was going on. ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don' ...

  4. Chilling Out with Colds

    MedlinePLUS

    ... moist, which loosens mucus. Practice healthy habits. Your immune system will be ready to fight colds if you eat a balanced diet , get plenty of sleep , and keep your body fit through regular exercise. ...

  5. Cold hardiness in molluscs

    NASA Astrophysics Data System (ADS)

    Ansart, Armelle; Vernon, Philippe

    2003-05-01

    Molluscs inhabit all types of environments: seawater, intertidal zone, freshwater and land, and of course may have to deal with subzero temperatures. Ectotherm animals survive cold conditions by avoiding it by extensive supercooling (freezing avoidant species) or by bearing the freezing of their extracellular body fluids (freezing tolerant species). Although some studies on cold hardiness are available for intertidal molluscs, they are scarce for freshwater and terrestrial ones. Molluscs often exhibit intermediary levels of cold hardiness, with a moderate or low ability to supercool and a limited survival to the freezing of their tissues. Several factors could be involved: their dependence on water, their ability to enter dormancy, the probability of inoculative freezing in their environment, etc. Size is an important parameter in the development of cold hardiness abilities: it influences supercooling ability in land snails, which are rather freezing avoidant and survival to ice formation in intertidal organisms, which generally tolerate freezing.

  6. Colds and the Flu

    MedlinePLUS

    ... with green- or yellow-colored discharge) Sore throat Cough Sneezing Fatigue Muscle aches Headache Watery eyes Cold ... aches, especially in your back, arms and legs Cough Headache Loss of appetite What is H1N1 flu? ...

  7. Colds and flus - antibiotics

    MedlinePLUS

    ... J, Hamilton A. Treatments for symptoms of the common cold. Am Fam Physician. 2013;88(12):Online. PMID: ... gov/pubmed/24364554 . Melio FR, Berge LR. Upper respiratory tract infection. In: Marx JA, Hockberger RS, Walls RM, et ...

  8. Cold Sores (HSV-1)

    MedlinePLUS

    ... Are Cold Sores Diagnosed and Treated? en español Herpes labial Neal knew something weird was going on. ... or around a person's lips, are caused by herpes simplex virus-1 (HSV-1) . But they don' ...

  9. Cold Sores (Orofacial Herpes)

    MedlinePLUS

    ... clinical tools newsletter | contact Share | Cold Sores (Orofacial Herpes) Information for adults A A A Grouped, crusted ... on the lips and chin are typical of herpes simplex infection. Overview Herpes simplex infection of the ...

  10. Light-Front Holographic QCD

    SciTech Connect

    Brodsky, Stanley J.; de Teramond, Guy F.; /Costa Rica U.

    2012-02-16

    The relation between the hadronic short-distance constituent quark and gluon particle limit and the long-range confining domain is yet one of the most challenging aspects of particle physics due to the strong coupling nature of Quantum Chromodynamics, the fundamental theory of the strong interactions. The central question is how one can compute hadronic properties from first principles; i.e., directly from the QCD Lagrangian. The most successful theoretical approach thus far has been to quantize QCD on discrete lattices in Euclidean space-time. Lattice numerical results follow from computation of frame-dependent moments of distributions in Euclidean space and dynamical observables in Minkowski spacetime, such as the time-like hadronic form factors, are not amenable to Euclidean lattice computations. The Dyson-Schwinger methods have led to many important insights, such as the infrared fixed point behavior of the strong coupling constant, but in practice, the analyses are limited to ladder approximation in Landau gauge. Baryon spectroscopy and the excitation dynamics of nucleon resonances encoded in the nucleon transition form factors can provide fundamental insight into the strong-coupling dynamics of QCD. New theoretical tools are thus of primary interest for the interpretation of the results expected at the new mass scale and kinematic regions accessible to the JLab 12 GeV Upgrade Project. The AdS/CFT correspondence between gravity or string theory on a higher-dimensional anti-de Sitter (AdS) space and conformal field theories in physical space-time has led to a semiclassical approximation for strongly-coupled QCD, which provides physical insights into its nonperturbative dynamics. The correspondence is holographic in the sense that it determines a duality between theories in different number of space-time dimensions. This geometric approach leads in fact to a simple analytical and phenomenologically compelling nonperturbative approximation to the full light-front QCD Hamiltonian 'Light-Front Holography'. Light-Front Holography is in fact one of the most remarkable features of the AdS/CFT correspondence. The Hamiltonian equation of motion in the light-front (LF) is frame independent and has a structure similar to eigenmode equations in AdS space. This makes a direct connection of QCD with AdS/CFT methods possible. Remarkably, the AdS equations correspond to the kinetic energy terms of the partons inside a hadron, whereas the interaction terms build confinement and correspond to the truncation of AdS space in an effective dual gravity approximation. One can also study the gauge/gravity duality starting from the bound-state structure of hadrons in QCD quantized in the light-front. The LF Lorentz-invariant Hamiltonian equation for the relativistic bound-state system is P{sub {mu}}P{sup {mu}}|{psi}(P)> = (P{sup +}P{sup -} - P{sub {perpendicular}}{sup 2})|{psi}(P)> = M{sup 2}|{psi}(P)>, P{sup {+-}} = P{sup 0} {+-} P{sup 3}, where the LF time evolution operator P{sup -} is determined canonically from the QCD Lagrangian. To a first semiclassical approximation, where quantum loops and quark masses are not included, this leads to a LF Hamiltonian equation which describes the bound-state dynamics of light hadrons in terms of an invariant impact variable {zeta} which measures the separation of the partons within the hadron at equal light-front time {tau} = x{sup 0} + x{sup 3}. This allows us to identify the holographic variable z in AdS space with an impact variable {zeta}. The resulting Lorentz-invariant Schroedinger equation for general spin incorporates color confinement and is systematically improvable. Light-front holographic methods were originally introduced by matching the electromagnetic current matrix elements in AdS space with the corresponding expression using LF theory in physical space time. It was also shown that one obtains identical holographic mapping using the matrix elements of the energy-momentum tensor by perturbing the AdS metric around its static solution. A gravity dual to QCD is not known, but the mechanisms of confinement can be incorporated in the gauge/gravity correspondence by modifying the AdS geometry in the large infrared (IR) domain z {approx} 1 = {Lambda}{sub QCD}, which also sets the scale of the strong interactions. In this simplified approach we consider the propagation of hadronic modes in a fixed effective gravitational background asymptotic to AdS space, which encodes salient properties of the QCD dual theory, such as the ultraviolet (UV) conformal limit at the AdS boundary, as well as modifications of the background geometry in the large z IR region to describe confinement. The modified theory generates the point-like hard behavior expected from QCD, instead of the soft behavior characteristic of extended objects.

  11. Mercury in wintering seabirds, an aggravating factor to winter wrecks?

    PubMed

    Fort, Jérôme; Lacoue-Labarthe, Thomas; Nguyen, Hanh Linh; Boué, Amélie; Spitz, Jérôme; Bustamante, Paco

    2015-09-15

    Every year, thousands of seabirds are cast ashore and are found dead along the coasts of North America and Western Europe. These massive mortality events called 'winter wrecks' have generally been attributed to harsh climatic conditions and prolonged storms which affect bird energy balance and impact their body condition. Nevertheless, additional stress factors, such as contaminant body burden, could potentially cumulate to energy constraints and actively contribute to winter wrecks. However, the role played by these additional factors in seabird massive winter mortality has received little attention to date. In February/March 2014, an unprecedented seabird wreck occurred along the Atlantic French coasts during which > 43,000 seabirds were found dead. By analyzing mercury (Hg) concentrations in various tissues collected on stranded birds, we tested the hypothesis that Hg played a significant role in this mortality. More specifically, we aimed to (1) describe Hg contamination in wintering seabirds found along the French coasts in 2014, and (2) determine if Hg concentrations measured in some vital organs such as kidney and brain reached toxicity thresholds that could have led to deleterious effects and to an enhanced mortality. We found some of the highest Hg levels ever reported in Atlantic puffins, common guillemots, razorbills and kittiwakes. Measured concentrations ranged from 0.8 to 3.6 μg · g(-1) of dry weight in brain, 1.3 to 7.2 μg · g(-1) in muscle, 2.5 to 13.5 μg · g(-1) in kidney, 2.9 to 18.6 μg · g(-1) in blood and from 3.1 to 19.5 μg · g(-1) in liver. Hg concentrations in liver and brain were generally below the estimated acute toxicity levels. However, kidney concentrations were not different than those measured in the liver, and above levels associated to renal sub-lethal effects, suggesting a potential Hg poisoning. We concluded that although Hg was not directly responsible for the high observed mortality, it has been a major aggravating stress factor for emaciated birds already on the edge. Importantly, this study also demonstrated that total blood, which can be non-lethally collected in seabirds, can be used as a predictor of Hg contamination in other tissues. PMID:25984703

  12. PBF Cooling Tower under construction. Cold water basin is five ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Cooling Tower under construction. Cold water basin is five feet deep. Foundation and basin walls are reinforced concrete. Camera facing west. Pipe openings through wall in front are outlets for return flow of cool water to reactor building. Photographer: John Capek. Date: September 4, 1968. INEEL negative no. 68-3473 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  13. Antidipolarization fronts observed by ARTEMIS

    NASA Astrophysics Data System (ADS)

    Li, S.-S.; Liu, Jiang; Angelopoulos, V.; Runov, A.; Zhou, X.-Z.; Kiehas, S. A.

    2014-09-01

    Near-Earth reconnection on closed plasma sheet field lines is thought to generate plasmoids. A plasmoid is usually described as a plasma sheet expansion into the lobe, encompassed by closed magnetic loops or the helical fields of a flux rope (in this paper we do not distinguish plasmoids from flux ropes; rather we use the term plasmoid generically). Recently, sharp, highly asymmetric north-then-south bipolar variations (with a larger southward portion) in the magnetic field BZ component have been noted in midtail (XGSM ~ -60 RE) plasmoids. These variations do not fit the classical plasmoid model but are mirror images of earthward moving dipolarization fronts (DFs), which show asymmetric south-then-north BZ bipolar variations with a larger northward portion. Using case and statistical studies from 3 years of Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon's Interaction with the Sun (ARTEMIS) data (at XGSM ~ -60 RE), we show that magnetic and particle properties of these typically tailward moving fronts, which we refer to as "antidipolarization fronts" (ADFs), are very similar to those of classical, typically earthward moving DFs, except for their BZ polarity and flow direction. First, like DFs and plasmoids, ADFs are associated with auroral electrojet enhancements. Second, like DFs, ADFs exhibit a sharp density decrease, plasma pressure increase, magnetic pressure increase, and particle heating immediately following the sharp BZ change. Third, particle spectra indicate that, as with DFs, there are two distinctly different magnetically separated populations ahead of and behind ADFs. The energy spectrograms of plasmoids, however, indicate a single hot population at the plasmoid center. We conclude that midtail ADFs are likely products of fast reconnection, observed on the tailward side of the reconnection site, just as DFs are products of fast reconnection seen on the earthward side. ADFs are observed at ARTEMIS much less frequently (~10%) than typical plasmoids but twice as frequently as DFs at the same distance. We suggest that ADFs are protoplasmoids that emerge from near-Earth reconnection and evolve quickly into plasmoids as they propagate down the tail.

  14. Northern Front Range air quality study: Apportionment of carbonaceous particles

    SciTech Connect

    Fujita, E.M.; McDonald, J.D.; Hayes, T.L.; Zielinska, B.; Sagebiel, J.C.; Chow, J.C.; Watson, J.G.; Lawson, D.R.

    1998-12-31

    The Chemical Mass Balance (CMB) receptor model was applied to source profiles and ambient measurements taken during Winter 1997 at locations near Denver, CO. Chemical speciation included particulate and gaseous polycyclic aromatic hydrocarbons and other organic compounds (e.g., methoxylated phenols, hopanes, steranes, sterols, and lactones) in combination with inorganic particulate species and total elemental and organic carbon. Emissions were tested for more than 200 in-use vehicles, including heavy-duty trucks and buses, light-duty diesel vehicles and, smoking and high emitting gasoline vehicles. Separate profiles were obtained for light-duty vehicle for cold-start and hot stabilized modes. Wood burning and meat cooking emissions were also characterized. Motor vehicles account for about 85 percent of the ambient PM2.5 carbon in Denver and about 75 percent in areas north of Denver. Light-duty gasoline vehicles are the major sources of PM2.5 carbon in Denver, with cold starts (or high emitters) and smokers contributing about 30 percent each to PM2.5 carbon. Normal hot stabilized emissions and diesel exhaust contribute about 5 and 17 percent, respectively, and paved road dust contributes less than 5 percent. Smokers, and cold starts (or high emitters) are the largest contributors to PM2.5 organic carbon, and diesel exhaust, and cold starts (or high emitters) are the largest contributors to PM2.5 elemental carbon. PM2.5 emissions from the exhaust of light-duty gasoline vehicles are seriously underestimated in current inventories relative to diesel exhaust. Diesel exhaust, which is about two-thirds of the on-road vehicle PM2.5 emissions in the current inventory, account for only 18 percent according to the ambient source apportionment.

  15. People who live in a cold climate: thermal adaptation differences based on availability of heating.

    PubMed

    Yu, J; Cao, G; Cui, W; Ouyang, Q; Zhu, Y

    2013-08-01

    Are there differences in thermal adaptation to cold indoor environments between people who are used to living in heating and non-heating regions in China? To answer this question, we measured thermal perceptions and physiological responses of young men from Beijing (where there are indoor space heating facilities in winter) and Shanghai (where there are not indoor space heating facilities in winter) during exposures to cold. Subjects were exposed to 12C, 14C, 16C, 18C, 20C for 1 h. Subjects from Beijing complained of greater cold discomfort and demonstrated poorer physiological acclimatization to cold indoor environments than those from Shanghai. These findings indicate that people's chronic indoor thermal experience might be an important determinant of thermal adaptation. PMID:23278325

  16. Relationship between mitochondrial haplogroup and seasonal changes of physiological responses to cold

    PubMed Central

    2014-01-01

    Background Physiological responses to cold exhibit individual variation that can be affected by various factors, such as morphological characteristics, seasonal changes, and lifestyle; however, the genetic factors associated with this variation remain unclear. Recent studies have identified mtDNA as a potential genetic factor affecting cold adaptation. In addition, non-shivering thermogenesis (NST), a process closely related to mitochondrial dynamics, has also been suggested as an important factor affecting human response to cold. The present study aimed to clarify the relationship between mitochondrial haplogroup and NST during periods of mild cold exposure. Methods Seventeen healthy university students (D: n = 8, non-D: n = 9) participated in the present study during summer and winter. A climate chamber was programmed so that ambient temperature inside dropped from 28°C to 16°C over the course of an 80-minute period. Physiological parameters were recorded throughout the course of the experiments. Results Increases in VO2 were significantly greater during periods of cold exposure in winter than they were during periods of cold exposure in summer, and individuals from the D group exhibited greater winter values of ΔVO2 than individuals from the non-D group. Tre was significantly lower during periods of rest and cold exposure in winter; however, no significant difference was observed between Tre values of individuals in the D and non-D groups. In addition, although T¯dist was significantly lower during periods of rest in winter than it was during those same periods in summer, no significant seasonal differences in values of T¯dist were observed during periods of cold exposure. Conclusions Results of the present study indicated that NST was greater in winter, and that the D group exhibited greater NST than the non-D group during winter. Despite the differences between groups in NST, no significant differences in rectal and skin temperatures were found between groups in either season. Therefore, it was supposed that mitochondrial DNA haplogroups had a greater effect on variation in energy expenditure involving NST than they had on insulative responses. Future studies are necessary in order to investigate more multiple candidate genes related to human cold adaptation and to elucidate the relationship between gene polymorphism and physiological polytypism. PMID:25183371

  17. Ice-dependent winter survival of juvenile Atlantic salmon

    PubMed Central

    Hedger, R D; Næsje, T F; Fiske, P; Ugedal, O; Finstad, A G; Thorstad, E B

    2013-01-01

    Changes in snow and ice conditions are some of the most distinctive impacts of global warming in cold temperate and Arctic regions, altering the environment during a critical period for survival for most animals. Laboratories studies have suggested that reduced ice cover may reduce the survival of stream dwelling fishes in Northern environments. This, however, has not been empirically investigated in natural populations in large rivers. Here, we examine how the winter survival of juvenile Atlantic salmon in a large natural river, the River Alta (Norway, 70°N), is affected by the presence or absence of surface ice. Apparent survival rates for size classes corresponding to parr and presmolts were estimated using capture-mark-recapture and Cormack-Jolly-Seber models for an ice-covered and an ice-free site. Apparent survival (Φ) in the ice-covered site was greater than in the ice-free site, but did not depend on size class (0.64 for both parr and presmolt). In contrast, apparent survival in the ice-free site was lower for larger individuals (0.33) than smaller individuals (0.45). The over-winter decline in storage energy was greater for the ice-free site than the ice-covered site, suggesting that environmental conditions in the ice-free site caused a strong depletion in energy reserves likely affecting survival. Our findings highlight the importance of surface ice for the winter survival of juvenile fish, thus, underpinning that climate change, by reducing ice cover, may have a negative effect on the survival of fish adapted to ice-covered habitats during winter. PMID:23532172

  18. Condensation Front Migration in a Protoplanetary Nebula

    NASA Technical Reports Server (NTRS)

    Davis, Sanford S.

    2004-01-01

    Condensation front dynamics are investigated in the mid-solar nebula region. A quasi-steady model of the evolving nebula is combined with equilibrium vapor pressure curves to determine evolutionary condensation fronts for selected species. These fronts are found to migrate inwards from the far-nebula to final positions during a period of 10(exp 7) years. The physical process governing this movement is a combination of local viscous heating and luminescent heating from the central star. Two luminescent heating models are used and their effects on the ultimate radial position of the condensation front are discussed. At first the fronts move much faster than the nebular accretion velocity, but after a time the accreting gas and dust overtakes the slowing condensation front.

  19. Front propagation and rejuvenation in flipping processes

    SciTech Connect

    Ben-naim, Eli; Krapivsky, P I; Antal, T; Ben - Avrahm, D

    2008-01-01

    We study a directed flipping process that underlies the performance of the random edge simplex algorithm. In this stochastic process, which takes place on a one-dimensional lattice whose sites may be either occupied or vacant, occupied sites become vacant at a constant rate and simultaneously cause all sites to the right to change their state. This random process exhibits rich phenomenology. First, there is a front, defined by the position of the leftmost occupied site, that propagates at a nontrivial velocity. Second, the front involves a depletion zone with an excess of vacant sites. The total excess {Delta}{sub k} increases logarithmically, {Delta}{sub k} {approx_equal}ln k, with the distance k from the front. Third, the front exhibits ageing -- young fronts are vigorous but old fronts are sluggish. We investigate these phenomena using a quasi-static approximation, direct solutions of small systems and numerical simulations.

  20. Progress in front propagation research

    NASA Astrophysics Data System (ADS)

    Fort, Joaquim; Pujol, Toni

    2008-08-01

    We review the progress in the field of front propagation in recent years. We survey many physical, biophysical and cross-disciplinary applications, including reduced-variable models of combustion flames, Reid's paradox of rapid forest range expansions, the European colonization of North America during the 19th century, the Neolithic transition in Europe from 13 000 to 5000 years ago, the description of subsistence boundaries, the formation of cultural boundaries, the spread of genetic mutations, theory and experiments on virus infections, models of cancer tumors, etc. Recent theoretical advances are unified in a single framework, encompassing very diverse systems such as those with biased random walks, distributed delays, sequential reaction and dispersion, cohabitation models, age structure and systems with several interacting species. Directions for future progress are outlined.

  1. Study of formation process of cold intermediate layer based on reanalysis of Black Sea hydrophysical fields for 1971-1993

    NASA Astrophysics Data System (ADS)

    Korotaev, G. K.; Knysh, V. V.; Kubryakov, A. I.

    2014-01-01

    A reanalysis of hydrophysical fields for 1971-1993 is used to study the formation mechanisms of the cold intermediate layer (CIL): the advective mechanism (associated with the advection of cold waters formed in the northwestern shelf (NWS)) and the convective mechanism (caused by wintertime convection inside cyclonic gyres in the central part of the sea). We consider the periods of alternating atmospheric conditions: the mild winter of 1980-1981, normal winter of 1987-1988, and cold winter of 1992-1993. Interannual features of replenishment and renewal of "old" CIL waters caused by these mechanisms are identified. In particular, cooled shelf waters sink along the continental slope and merge with "old" CIL waters during the mild winter of 1980-1981 more than 1 month later than during the cold winter 1992-1993 and more than 3 weeks later than during the normal winter of 1987-1988. The Sevastopol anticyclonic gyre and the northwest branch of the Black Sea Rim Current markedly influence the transformation of entrained cold NWS waters transported to the southwest and the central part of the water area. The local formation process of cold intermediate waters is found to be caused by the wintertime penetrating convection over domelike isosurfaces of temperature and salinity arising due to rising constant halocline (pycnocline) at the centers of cyclonic gyres because of the intensification of the wintertime circulation. Anomalously cold surface water, characterized by increased density, gradually sinks. An analysis of TS indices indicates that the transformed cold water spreads out over isopycnic surfaces with time, being entrained in cyclonic circulation and spreading throughout the sea, thus renewing "old" CIL waters.

  2. Interannual variation of East Asian Winter Monsoon and ENSO

    SciTech Connect

    Zhang, Yi; Sperber, Kenneth R.; Boyle, James S.

    1996-12-01

    This paper examines the interannual variation of the East Asian winter monsoon and its relationship with EJSO based on the 1979-1995 NCEP/NCAR reanalysis. Two stratifications of cold surges are used. The first one, described as the conventional cold surges, indicates that the surge frequency reaches a urn one year after El Nino events. The second one, originated from the same region as the first, is defined as the maximum wind events near the South China Sea. The variation of this stratification of surges is found to be in good agreement with the South Oscillation Index (SOI). Low SOI (high SOI) events coincide with years of low (high) surge frequency. The interannual variation of averaged meridional wind near the South China Sea and western Pacific is dominated by the South China Sea cold surges, and is also well correlated (R--O.82) with the SOI. Strong wind seasons are associated with La Nina and high SOI events; likewise, weak wind years are linked with El Nino and low SOI cases. This pattern is restricted north of the equator within the region of (OON-20 N, 11OOE-1300E), and is confined to the near surface layer. The surface Siberian high, 500 hPa trough and 200 hPa jetstream, all representing the large-scale monsoon flow, are found to be weaker than normal during El Nino years. In particular, the interannual variation of the Siberian high is in general agreement with the SOL.

  3. Field Observations and Modeling of the Microphysics within Winter Storms over Long Island, NY

    NASA Astrophysics Data System (ADS)

    Stark, David

    Forecasting snowfall accumulation is challenging due to limitations and uncertainties in model bulk microphysical parameterizations (BMPs). The source of these errors is often unknown, since there have been relatively few in situ observations of the microphysics (ice habit, degree of riming, and snow density) during east coast winter storms. This thesis describes the microphysical evolution and model validation within east coast winter storms observed at Stony Brook, NY (SBNY) during the 2009-2010, 2010-2011, and 2011-2012 winter seasons. Surface microphysical measurements were taken every 15 to 30 minutes using a stereo microscope and camera, and snow depth and snow density were also recorded in 15 storms over SBNY. During these storms, a vertically-pointing Ku-band radar was used to observe the vertical evolution of reflectivity and Doppler vertical velocities. A Particle Size and Velocity (PARSIVEL) disdrometer was also used to measure the surface size distribution and fall speeds of snow at SBNY. Changes in the height of the maximum vertical motion relative to the favored growth temperatures led to changes in ice habit throughout the evolution in the comma head of extratropical cyclones and two heavy snow bands. Cold type ice habits with a few plates and dendrites were observed with light riming as the surface low was located along or east of the Mid-Atlantic coast. As the cyclone moved northward towards SBNY, moderately rimed dendrites, plates, and needles were observed. Heavily rimed needles and graupel were observed near the warm front and cyclone center. Mainly needles with light riming and a snow-liquid ratio from 8:1 to 9:1 were observed 2 to 4 hours before two heavy snow bands. With the strongest frontogenetical ascent during snow band maturity, moderately rimed dendrites were observed with snow-liquid ratios from 11:1 to 13:1. Lightly rimed plates and a snow-liquid ratio of 8:1 were observed after the heavy snow bands. The WSM6, MORR, THOM2, and SBU-YLIN BMPs were validated in this study. A non-spherical snow assumption (THOM2 and SBU-YLIN) simulated a more realistic distribution of reflectivity than spherical snow assumptions in the WSM6 and MORR schemes. In heavier riming, the Doppler velocity in the WSM6, THOM2, and MORR schemes were 0.25 m s-1 too slow with the SBU-YLIN was 0.25 to 0.5 m s-1 too fast. For size distributions, the BMPs simulate a smaller size distribution than observed when larger aggregates are observed for D > 6 mm. For snow density forecasts, the Roebber probabilistic snow-liquid ratio approach provides more skill than using the standard 10:1 ratio or deterministic forecasts from the WRF BMPs.

  4. Communicating Certainty About Nuclear Winter

    NASA Astrophysics Data System (ADS)

    Robock, A.

    2013-12-01

    I have been spending much of my time in the past several years trying to warn the world about the continuing danger of nuclear weapons, and that the solution is a rapid reduction in the nuclear arsenal. I feel that a scientist who discovers dangers to society has an ethical duty to issue a warning, even if the danger is so scary that it is hard for people to deal with. The debate about nuclear winter in the 1980s helped to end the nuclear arms race, but the planet still has enough nuclear weapons, even after reductions planned for 2017 under the New START treaty, to produce nuclear winter, with temperatures plunging below freezing in the summer in major agricultural regions, threatening the food supply for most of the planet. New research by myself, Brian Toon, Mike Mills, and colleagues over the past six years has found that a nuclear war between any two countries, such as India and Pakistan, using 50 atom bombs each of the size dropped on Hiroshima could produce climate change unprecedented in recorded human history, and a world food crisis because of the agricultural effects. This is much less than 1% of the current global arsenal. Communicating certainty - what we know for sure - has been much more effective than communicating uncertainty. The limited success I have had has come from persistence and serendipity. The first step was to do the science. We have published peer-reviewed articles in major journals, including Science, Nature, Proceedings of the National Academy of Sciences, Journal of Geophysical Research, Atmospheric Chemistry and Physics, Physics Today, and Climatic Change. But policymakers do not read these journals. Through fairly convoluted circumstances, which will be described in this talk, we were able to get papers published in Scientific American and the Bulletin of Atomic Scientists. I have also published several encyclopedia articles on the subject. As a Lead Author of Chapter 8 (Radiative Forcing) of the recently published Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), I inserted a paragraph pointing out that volcanic eruptions serve as an analog that supports new work on nuclear winter. This is the first time that nuclear winter has been in the IPCC report. I will tell the story of the discussions within our chapter, with review editors, and with the IPCC leadership that resulted in a box in Chapter 8 that discusses nuclear winter. We gave a briefing to John Holdren, the President's Science Advisor, about the work. Daniel Ellsberg, Fidel Castro, and Mikhail Gorbachev found out about our work, and used the results to appeal for nuclear abolition. In 2013 the work was featured at the Conference on the Humanitarian Impact of Nuclear Weapons in Oslo, Norway attended by 132 nations, and I gave a TEDx talk, I published an opinion piece on the CNN website, and I gave an invited public lecture in Nagasaki, Japan, all about the climatic consequences of nuclear war. I am now using Twitter and Facebook to communicate about nuclear winter. The threat that nuclear weapons pose to the planet is a much easier problem to solve than global warming. We need to eliminate nuclear weapons so we have the luxury of working on the global warming problem without the possibility of the existential global threat still posed by the global nuclear arsenal.

  5. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    The key to a successful program in a cold environment lies in dealing with the cold while still accomplishing program goals and objectives. Teachers and students must be aware of physiological and psychological reactions to the cold, cold injuries and their treatment, and techniques for staying warm. (SB)

  6. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    Instructors who teach outdoors in an environment so cold as to cause injury must satisfy program objectives while avoiding cold injury to themselves and students, help students focus on learning instead of discomfort, and alleviate some students' intense fear of the cold. Dealing with the cold successfully requires a thorough knowledge of:…

  7. Teaching in a Cold Environment.

    ERIC Educational Resources Information Center

    Ewert, Alan

    1979-01-01

    Designed to help teachers deal with students in a cold environment, this article explains cold physiology and fundamental laws of heat; describes 14 common cold injuries and their current treatment; and lists a number of useful teaching techniques for cold environments. (SB)

  8. Improving the health forecasting alert system for cold weather and heat-waves in England: a case-study approach using temperature-mortality relationships

    NASA Astrophysics Data System (ADS)

    Masato, Giacomo; Cavany, Sean; Charlton-Perez, Andrew; Dacre, Helen; Bone, Angie; Carmicheal, Katie; Murray, Virginia; Danker, Rutger; Neal, Rob; Sarran, Christophe

    2015-04-01

    The health forecasting alert system for cold weather and heatwaves currently in use in the Cold Weather and Heatwave plans for England is based on 5 alert levels, with levels 2 and 3 dependent on a forecast or actual single temperature action trigger. Epidemiological evidence indicates that for both heat and cold, the impact on human health is gradual, with worsening impact for more extreme temperatures. The 60% risk of heat and cold forecasts used by the alerts is a rather crude probabilistic measure, which could be substantially improved thanks to the state-of-the-art forecast techniques. In this study a prototype of a new health forecasting alert system is developed, which is aligned to the approach used in the Met Office's (MO) National Severe Weather Warning Service (NSWWS). This is in order to improve information available to responders in the health and social care system by linking temperatures more directly to risks of mortality, and developing a system more coherent with other weather alerts. The prototype is compared to the current system in the Cold Weather and Heatwave plans via a case-study approach to verify its potential advantages and shortcomings. The prototype health forecasting alert system introduces an "impact vs likelihood matrix" for the health impacts of hot and cold temperatures which is similar to those used operationally for other weather hazards as part of the NSWWS. The impact axis of this matrix is based on existing epidemiological evidence, which shows an increasing relative risk of death at extremes of outdoor temperature beyond a threshold which can be identified epidemiologically. The likelihood axis is based on a probability measure associated with the temperature forecast. The new method is tested for two case studies (one during summer 2013, one during winter 2013), and compared to the performance of the current alert system. The prototype shows some clear improvements over the current alert system. It allows for a much greater degree of flexibility, provides more detailed regional information about the health risks associated with periods of extreme temperatures, and is more coherent with other weather alerts which may make it easier for front line responders to use. It will require validation and engagement with stakeholders before it can be considered for use.

  9. Cold moderators at ORNL

    SciTech Connect

    Lucas, A. T.

    1997-09-01

    The Advanced Neutron Source (ANS) cold moderators were not an 'Oak Ridge first', but would have been the largest both physically and in terms of cold neutron flux. Two cold moderators were planned each 410 mm in diameter and containing about 30L of liquid deuterium. They were to be completely independent of each other. A modular system design was used to provide greater reliability and serviceability. When the ANS was terminated, upgrading of the resident High Flux Isotope Reactor (HFIR) was examined and an initial study was made into the feasibility of adding a cold source. Because the ANS design was modular, it was possible to use many identical design features. Sub-cooled liquid at 4 bar abs was initially chosen for the HFIR design concept, but this was subsequently changed to 15 bar abs to operate above the critical pressure. As in the ANS, the hydrogen will operate at a constant pressure throughout the temperature range and a completely closed loop with secondary containment was adopted. The heat load of 2 kW made the heat flux comparable with that of the ANS. Subsequent studies into the construction of cryogenic moderators for the proposed new Synchrotron Neutron source indicated that again many of the same design concepts could be used. By connecting the two cold sources together in series, the total heat load of 2 kW is very close to that of the HFIR allowing a very similar supercritical hydrogen system to be configured. The two hydrogen moderators of the SNS provide a comparable heat load to the HFIR moderator. It is subsequently planned to connect the two in series and operate from a single cold loop system, once again using supercritical hydrogen. The spallation source also provided an opportunity to re-examine a cold pellet solid methane moderator operating at 20K.

  10. The Remarkable 2003-2004 Winter and Other Recent Warm Winters in the Arctic Stratosphere Since the Late 1990s

    NASA Technical Reports Server (NTRS)

    Manney, Gloria L.; Krueger, Kirstin; Sabutis, Joseph L.; Sena, Sara Amina; Pawson, Steven

    2004-01-01

    The 2003-2004 Arctic winter was remarkable in the 40-year record of meteorological analyses. A major warming beginning in early January 2004 led to nearly two months of vortex disruption with high-latitude easterlies in the middle to lower stratosphere. The upper stratospheric vortex broke up in late December, but began to recover by early January, and in February and March was the strongest since regular observations began in 1979. The lower stratospheric vortex broke up in late January. Comparison with two previous years, 1984-1985 and 1986-1987, with prolonged mid-winter warming periods shows unique characteristics of the 2003-2004 warming period: The length of the vortex disruption, the strong and rapid recovery in the upper stratosphere, and the slow progression of the warming from upper to lower stratosphere. January 2004 zonal mean winds in the middle and lower stratosphere were over two standard deviations below average. Examination of past variability shows that the recent frequency of major stratospheric warmings (seven in the past six years) is unprecedented. Lower stratospheric temperatures were unusually high during six of the past seven years, with five having much lower than usual potential for PSC formation and ozone loss (nearly none in 1998-1999, 2001-2002 and 2003-2004, and very little in 1997-1998 and 2000-2001). Middle and upper stratospheric temperatures, however, were unusually low during and after February. The pattern of five of the last seven years with very low PSC potential would be expected to occur randomly once every approximately 850 years. This cluster of warm winters, immediately following a period of unusually cold winters, may have important implications for possible changes in interannual variability and for determination and attribution of trends in stratospheric temperatures and ozone.

  11. COLD WEATHER PLUME STUDY

    EPA Science Inventory

    While many studies of power plant plume transport and transformation have been performed during the summer, few studies of these processes during the winter have been carried out. Accordingly, the U.S. Environmental Protection Agency and the Electric Power Research Institute join...

  12. [Investigation of the essence of chilliness and cold limbs of yang deficiency syndrome in Chinese medicine based on the adaptability of body to cold stimulation].

    PubMed

    Jin, Rui; Zhang, Bing

    2012-05-01

    Chinese medicine (CM) theories attach great importance to the interaction between the human body and the environment. From this entry point, based on a great number of related CM literatures and knowledge of modern medicine, this paper investigated the essence of chilliness and cold limbs of yang deficiency syndrome. The differences on cognition and solution to this problem between CM theory and modern medicine theory were also analyzed. Firstly, the close relationship between the CM concepts of yang deficiency, "external cold", and winter was put forward after a review of yang deficiency in CM scripture Huangdi Neijing. Chilliness and cold limbs of yang deficiency patients was believed to be highly similar to the body state of "external cold" of healthy people in winter. Secondly, the state of "external cold" was described as a reduction of body surface blood flow (heat) with references to the adaptability to cold stimulation. Then according to a collection of physiological and pathological factors which may cause such reduction, we proposed that the essence of chilliness and cold limbs of yang deficiency patients may probably be the state of reduction of body surface blood flow (heat) due to some pathological factors already known as heart failure, poor circulation, and thyroid dysfunction. Thirdly, by using the method of "syndrome differentiation through formula effects assessment", this recognition was confirmed because the pharmacological activities of cardiotonic or peripheral vasodilating, or surface temperature increasing were found in a great number of single medicines and prescriptions applied to yang deficiency syndrome in CM. PMID:22679738

  13. The Argentine ant persists through unfavorable winters via a mutualism facilitated by a native tree.

    PubMed

    Brightwell, Robert J; Silverman, Jules

    2011-10-01

    Mutualisms and facilitations can fundamentally change the relationship between an organism's realized and fundamental niche. Invasive species may prove particularly suitable models for investigating this relationship as many are dependent on finding new partners for successful establishment. We conducted field-based experiments testing whether a native tree facilitates the successful survival of the invasive Argentine ant, Linepithema humile (Mayr), through unfavorable winter conditions in the southeastern United States. We found Argentine ant nests aggregated around the native loblolly pine, Pinus taeda L., during the winter months. The bark of this tree absorbed enough radiant solar energy to reach temperatures suitable for Argentine ant foraging even when ambient temperatures should have curtailed all foraging. Conversely, foraging ceased when the trunk was shaded. The sun-warmed bark of this tree gave the Argentine ant access to a stable honeydew resource. Argentine ants were not found on or near deciduous trees even though bark temperatures were warm enough to permit Argentine ant foraging on cold winter days. Augmenting deciduous trees with sucrose water through the winter months lead to Argentine ant nests remaining at their base and Argentine ants foraging on the tree. The Argentine ant requires both foraging opportunity and a reliable winter food source to survive through unfavorable winter conditions in the southeastern United States. The loblolly pine provided both of these requirements extending the realized niche of Argentine ants beyond its fundamental niche. PMID:22251714

  14. Winter diversity and expression of proteorhodopsin genes in a polar ocean.

    PubMed

    Nguyen, Dan; Maranger, Roxane; Balagu, Vanessa; Coll-Llad, Montserrat; Lovejoy, Connie; Pedrs-Ali, Carlos

    2015-08-01

    Mixotrophy is a valuable functional trait used by microbes when environmental conditions vary broadly or resources are limited. In the sunlit waters of the ocean, photoheterotrophy, a form of mixotrophy, is often mediated by proteorhodopsin (PR), a seven helices transmembrane protein binding the retinal chromophore. Altogether, they allow bacteria to capture photic energy for sensory and proton gradient formation cell functions. The seasonal occurrence and diversity of the gene coding for PR in cold oligotrophic polar oceans is not known and PR expression has not yet been reported. Here we show that PR is widely distributed among bacterial taxa, and that PR expression decreased markedly during the winter months in the Arctic Ocean. Gammaproteobacteria-like PR sequences were always dominant. However, within the second most common affiliation, there was a transition from Flavobacteria-like PR in early winter to Alphaproteobacteria-like PR in late winter. The phylogenetic shifts followed carbon dynamics, where patterns in expression were consistent with community succession, as identified by DNA community fingerprinting. Although genes for PR were always present, the trend in decreasing transcripts from January to February suggested reduced functional utility of PR during winter. Under winter darkness, sustained expression suggests that PR may continue to be useful for non-ATP forming functions, such as environmental sensing or small solute transport. The persistence of PR expression in winter among some bacterial groups may offer a competitive advantage, where its multifunctionality enhances microbial survival under harsh polar conditions. PMID:25700336

  15. Relations between winter 700-mb height anomalies and mass balance of South Cascade Glacier, Washington

    SciTech Connect

    McCabe, G.J.; Fountain, A.G.

    1995-12-31

    The yearly net mass balance of South Cascade Glacier, Washington, decreased during the mid-1970`s. Results show that the decrease is primarily caused by a significant decrease in the winter mass balance. The decrease in winter mass balance is caused, in part, by changes in winter mean atmospheric circulation that began during the mid-1970`s. Since the mid-1970`s, there has been an increase in winter mean atmospheric pressure over western Canada and the northern western contiguous US and a decrease in winter mean atmospheric pressure in the eastern North Pacific Ocean centered near the Aleutian islands. These changes in atmospheric circulation indicate a decrease in the movement of storms and moisture from the Pacific Ocean into the western contiguous US. In addition, the increase in atmospheric pressure over western Canada and the northern western contiguous US indicates an increase in subsidence, which results in a warming and drying of the air that further reduces precipitation and also increases the ratio of rain to snow during the cold season. These factors contribute to below-average winter mass balances.

  16. Deep Thermal Front (southeastern Brazilian coast) see through acoustics: a preliminary study from an operational oceanography perspective

    NASA Astrophysics Data System (ADS)

    Ponsoni, L.; Hermand, J.-P.; da Silveira, I. C. A.

    2012-04-01

    The continental shelf region off the southeastern Brazilian coast (between 20°S and 28°S) is characterized by intrusions of the relatively cold and fertile South Atlantic Central Water (SACW) from the open ocean. Prediction and monitoring of this water mass are topics of great interest given its importance, for example, on climate, carbon cycle, fishing, mariculture, nutrients and pollutants dispersion, and for the oil industry. The intersection of the 18°C isotherm with the seafloor is appointed in the literature as a good tracer for SACW presence on the continental shelf and also to characterize the Deep Thermal Front (DTF) [Castro, 1996]. Among different factors that drive the SACW penetration on the continental shelf, one prominent mechanism is the water transport driven by the conditions of NE-E wind forcing. These winds varies seasonally, and they are prevalent during the spring and summer months. During these months, the water column is generally stratified due the combined effects of solar heating and DTF presence. In contrast, the reverse effect is characteristic in winter, when the water column is nearly homogeneous, relatively colder on the surface and relatively warm close to the bottom. Consequently, the sound speed field changes and thus the acoustic rays are propagated with different characteristics depending on presence, absence or DTF position. Considering this information, acoustics may provide an additional source of data that supplements the other conventional methods (e.g., hydrographic moorings and cruises, buoys, gliders, and others) for tracking and monitoring the front movement. In addition, it is worth emphasizing that acoustic methods present one interesting advantage in that they are able to sample the water column over large three-dimensional distances on an effectively synoptic scale. In this paper, a preliminary study of acoustic propagation modelling through one vertical section off the Brazilian southeastern coast at Cananéia region (state of São Paulo) is presented. Theorical temperature and salinity fields with differents conditions of DTF position are used for the calculations. Notable variations in the transmission loss field, rays propagations and time arrivals are found when the DTF is moving. These results support the idea that acoustics can be an interesting tool in monitoring and tracking of DTF movement, especially in the context of an intregrated program of observational oceanography and numerical ocean modeling.

  17. Global transcriptome profiles of Camellia sinensis during cold acclimation

    PubMed Central

    2013-01-01

    Background Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants. Results Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the “carbohydrate metabolism pathway” and the “calcium signaling pathway” might play a vital role in tea plants’ responses to cold stress. Conclusions Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions. PMID:23799877

  18. Understanding Colds: Anatomy of the Nose

    MedlinePLUS

    ... Colds Prevention Treatment Children Complications Special Features References Common Cold Understanding Colds Anatomy of the Nose The nose ... cm (3/8 inch) per minute. What a Common Cold Is A common cold is an illness caused ...

  19. Differences in vernalization duration requirement in soft winter wheat associated with variation at the vrn-B1 locus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In winter wheat (Triticum aestivum L.), the timing of flowering initiation is governed by the action two main environmentally controlled group of genes; vernalization that defines a plant’s requirement for a prolonged exposure to cold temperatures and photoperiod sensitivity defining the need for a ...

  20. Differential expression of proteins in response to molybdenum deficiency in winter wheat leaves under low-temperature stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Molybdenum (Mo) is an essential micronutrient for plants. To obtain a better understanding of the molecular mechanisms of cold resistance enhanced by molybdenum application in winter wheat, we applied a proteomic approach to investigate the differential expression of proteins in response to molybden...

  1. Progress toward cold antihydrogen

    SciTech Connect

    Gabrielse, G.; Estrada, J.; Peil, S.; Roach, T.; Tan, J. N.; Yesley, P.

    1999-12-10

    The production and study of cold antihydrogen will require the manipulation of dense and cold, single component plasmas of antiprotons and positrons. The undertaking will build upon the experience of the nonneutral plasma physics community. Annihilations of the antimatter particles in the plasmas can be imaged, offering unique diagnostic opportunities not available to this community when electrons and protons are used. The techniques developed by our TRAP collaboration to capture and cool antiprotons will certainly be used by our expanded ATRAP collaboration, and by the competing ATHENA Collaboration, both working at the nearly completed AD facility of CERN. We recently demonstrated a new techniques for accumulating cold positrons directly into a cryogenic vacuum system. The closest we have come to low energy antihydrogen so far is to confine cold positrons and cold antiprotons within the same trap structure and vacuum container. Finally, we mention that stored electrons have been cooled to 70 mK, the first time that elementary particles have been cooled below 4 K. In such an apparatus it should be possible to study highly magnetized plasmas of electrons or positrons at this new low temperature.

  2. Comparison of the impact of the Arctic Oscillation and Eurasian teleconnection on interannual variation in East Asian winter temperatures and monsoon

    NASA Astrophysics Data System (ADS)

    Lim, Young-Kwon; Kim, Hae-Dong

    2015-03-01

    The large-scale impacts of the Arctic Oscillation (AO) and the Eurasian teleconnection (EU) on the East Asian winter climate are compared for the past 34 winters, focusing on (1) interannual monthly to seasonal temperature variability, (2) East Asian winter monsoon (EAWM), and (3) the Siberian high (SH) and cold surge. Regression analysis reveals warming by AO and cooling by EU over mid-latitude East Asia during their positive phase and vice versa (i.e., warm phase: +AO, -EU; cold phase: -AO, +EU). The EU impact was found to be comparable to the AO impact. For example, warm (cold) months during the warm (cold) AO phase are found clearly when the AO is in the same warm (cold) EU phase. No significant correlation was found between East Asian temperature and the AO when the warm (cold) AO coincided with the cold (warm) EU. The well-known relationship of strong (weak) SH during the cold (warm) AO phase was observed significantly more often when the AO was in the same cold (warm) EU phase. Also, the indices of EAWM, cold surge, and SH were more highly correlated with the EU than with the AO. The advective temperature change and associated circulation demonstrate that the large-scale field including the SH over the mid-latitude Asian inland is better represented by the EU, influencing the East Asian climate. These results suggest that the impact of EU should be considered more important than previously thought for a better understanding of East Asian winter temperature and monsoon variability.

  3. Effects of winter feeding on growth body composition and processing traits of co-cultured blue catfish Ictalurus furcatus channel catfish I. punctatus and channel catfish x blue catfish hybrids

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many catfish farmers do not feed or feed fish very infrequently during the winter months because feeding activity is reduced at cold water temperatures. However, studies have demonstrated that winter feeding can improve catfish weight gain and processing yield relative to not feeding. We compared ...

  4. Operational forecasting of daily temperatures in the Valencia Region. Part II: minimum temperatures in winter.

    NASA Astrophysics Data System (ADS)

    Gómez, I.; Estrela, M.

    2009-09-01

    Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).

  5. Recent contrasting winter temperature changes over North America linked to enhanced positive Pacific-North American pattern

    NASA Astrophysics Data System (ADS)

    Liu, Zhongfang; Jian, Zhimin; Yoshimura, Kei; Buenning, Nikolaus H.; Poulsen, Christopher J.; Bowen, Gabriel J.

    2015-09-01

    Recently enhanced contrasts in winter (December-January-February) mean temperatures and extremes (cold southeast and warm northwest) across North America have triggered intensive discussion both within and outside of the scientific community, but the mechanisms responsible for these contrasts remain unresolved. Here we use a combination of observations and reanalysis data sets to show that the strengthened contrasts in winter mean temperatures and extremes across North America are closely related to an enhancement of the positive Pacific-North American (PNA) pattern during the second half of the 20th century. Recent intensification of positive PNA events is associated with amplified planetary waves over North America, driving cold-air outbreaks into the southeast and warm tropical/subtropical air into the northwest. This not only results in a strengthened winter mean temperature contrast but increases the occurrence of the opposite-signed extremes in these two regions.

  6. Polar Stratospheric Cloud formation and denitrification during the Arctic winter 2009/2010 and 2010/2011

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Urban, Joachim; Pitts, Michael C.; Kirner, Oliver; Braesicke, Peter; Santee, Michelle L.; Manney, Gloria L.; Murtagh, Donal

    2015-04-01

    The sedimentation of HNO3 containing polar stratospheric cloud particles leads to a permanent removal of HNO3 from the stratosphere. The so-called denitrification is an effect that plays an important role in stratospheric ozone depletion. The Arctic winter 2009/2010 and 2010/2011 were both quite unique. The Arctic winter 2010/2011 was one of the coldest winters on record leading to the strongest depletion of ozone measured in the Arctic. Though the Arctic winter 2009/2010 was rather warm in the climatological sense it was distinguished by an exceptionally cold stratosphere from mid December 2009 to mid January 2010 leading to prolonged PSC formation and significant denitrification. Model simulations and space-borne observations are used to investigate PSC formation and denitrification during these two winters. Model simulations were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) and compared to observations by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations Satellite (CALIPSO) and the Odin Sub-Millimetre Radiometer (Odin/SMR) as well as with observations from the Microwave Limb Sounder on Aura (Aura/MLS). While PSCs were present during the Arctic winter 2010/2011 over nearly four months, from mid December to end of March, they were not as persistent as the ones that occurred during the shorter (one month) cold period during the Arctic winter 2009/2010. Although the PSC season during the Arctic winter 2009/2010 was much shorter than in 2010/2011, denitrification during the Arctic winter 2009/2010 was similar in magnitude than during 2010/2011.

  7. Progress Towards a Future Cold Land Processes Remote Sensing Mission

    NASA Astrophysics Data System (ADS)

    Cline, D.

    2001-12-01

    Developing a more complete understanding of fluxes, storage, and transformations of water and energy in cold land areas is a critical focus of the NASA Earth Science Enterprise, the Global Energy and Water Cycle Experiment (GEWEX), and the GEWEX Americas Prediction Project (GAPP). The movement of water and energy through cold regions in turn plays a large role in ecological activity and biogeochemical cycles. Quantative understanding of cold land processes over large areas will require synergistic advancements in 1) understanding how cold land processes, most comprehensively understood at local or hillslope scales, extend to larger scales, 2) improved representation of cold land processes in coupled and uncoupled land-surface models, and 3) a breakthrough in large-scale observation of hydrologic properties, including snow characteristics, soil moisture, the extent of frozen soils, and the transition between frozen and thawed soil conditions. Synergistic advancement on these fronts requires that four major science questions be addressed together that pertain to process understanding, spatial and temporal variability, and uncertainty. NASA's Earth Science Enterprise has identified the need for improved measurement of snow properties and frozen soils via an exploratory space-flight mission in the next decade. To prepare for such a mission and address these science questions, the Cold Land Processes Field Experiment (CLPX) has been organized through 2003, and is now underway.

  8. "Cold training" affects rat liver responses to continuous cold exposure.

    PubMed

    Venditti, Paola; Napolitano, Gaetana; Barone, Daniela; Di Meo, Sergio

    2016-04-01

    Continuous exposure of homeothermic animals to low environmental temperatures elicits physiological adaptations necessary for animal survival, which are associated to higher generation of pro-oxidants in thermogenic tissues. It is not known whether intermittent cold exposure (cold training) is able to affect tissue responses to continuous cold exposure. Therefore, we investigated whether rat liver responses to continuous cold exposure of 2 days are modified by cold training (1h daily for 5 days per week for 3 consecutive weeks). Continuous cold increased liver oxidative metabolism by increasing tissue content of mitochondrial proteins and mitochondrial aerobic capacity. Cold training did not affect such parameters, but attenuated or prevented the changes elicited by continuous cold exposure. Two-day cold exposure increased lipid hydroperoxide and protein-bound carbonyl levels in homogenates and mitochondria, whereas cold training decreased such effects although it decreased only homogenate protein damage in control rats. The activities of the antioxidant enzymes GPX and GR and H2O2 production were increased by continuous cold exposure. Despite the increase in GPX and GR activities, livers from cold-exposed rats showed increased susceptibility to in vitro oxidative challenge. Such cold effects were decreased by cold training, which in control rats reduced only H2O2 production and susceptibility to stress. The changes of PGC-1, NRF-1, and NRF-2 expression levels were consistent with those induced by cold exposure and cold training in mitochondrial protein content and antioxidant enzyme activities. However, the mechanisms by which cold training attenuates the effects of the continuous cold exposure remain to be elucidated. PMID:26808664

  9. Quantifying the chemical ozone loss in the polar vortex during the fifteen winters from 1988-89 to 2002-2003

    NASA Astrophysics Data System (ADS)

    Braathen, G.; Mueller, M.; Sinnhuber, B.-M.; Chipperfield, M.; von der Gathen, P.; Kyro, E.; Mikkelsen, I. S.; Dorokhov, V.; Fast, H.; Parrondo, C.

    2003-04-01

    Several of the winters during the 1990s are characterised by substantial ozone loss in the north polar vortex. The Arctic sonde network built during the last decade makes it possible to quantify this loss throughout the winter. The ozone mixing ratio based on ozonesonde data from a number of stations is studied as function of time at several isentropic levels (400, 435, 475 and 525 K). Data from 16 stations between 60 and 83°N have been used in the study. The ozone data are corrected for the diabatic descent that takes place during the winter. Diabatic descent has been calculated with the Cambridge SLIMCAT model. The model calculated descent has been checked against high-precision tracer measurements. This comparison shows good agreement between modelled and measured descent around 475K. A tracer-tracer correlation (N2O vs CFC-11) also shows that the amount of mixing across the vortex edge at 475K was negligible during mid-winter (late Jan. to early March) of 2000. This means that the observed ozone loss, after the effect of diabatic descent has been accounted for, represents the chemical ozone loss. Results for the 475 K level show that the degree of chemically-induced ozone loss varies a lot from year to year. It is clear from the comparison between the ozone loss and the PSC area that the winters with the biggest ozone loss are the winters that have been cold most of the time from early January and into March. A cold spell, where T drops below TNAT at the end of the winter will of course cause substantial ozone loss, but it will not be enough to cause the same accumulated loss as the most severe winters. The three winters with the most severe loss are 1994-95, 1995-96 and 1999-00. All these winters had PSC temperatures from early December and through most of the winter. Two winters with late cold spells were 1993-94 and 1996-97, but these winters had much less PSCs during the early winter. Whereas the accumulated loss for the three severe winters was around 70% at 475 K, the 1993-94 and 1996-97 winters experienced a loss of 38 and 47%, respectively.

  10. Chamaeleon's Cold Cloud Cores

    NASA Astrophysics Data System (ADS)

    Hotzel, Stephan; Lemke, Dietrich; Krause, Oliver; Stickel, Manfred; Toth, L. Viktor

    ISOPHOT Serendipity Survey (ISOSS) observations of the nearby interstellar medium towards Chamaeleon have revealed a number of cold cloud cores. Far-infrared colours have been studied using ISOSS and IRAS data. 10 very cold cores with colour temperatures Tdust 13 K have been found in an 11 8 sized region. Comparing the FIR data with radio measurements, all of the very cold cores have high gas column densities, N(H2) > 1021 cm-2, and 7 out of 10 have low gas temperatures as indicated by Tex(C18O) ~~ 8 K.Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, the Netherlands and the United Kingdom) and with the participation of ISAS and NASA. Members of the Consortium on the ISOPHOT Serendipity Survey (CISS) are MPIA Heidelberg, ESA ISO SOC Villafranca, AIP Potsdam, IPAC Pasadena, Imperial College London.

  11. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2003-12-19

    The recent experimental advances in cold atomic traps have induced a great amount of interest in fields from condensed matter to particle physics, including approaches and prospects from the theoretical point of view. In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have show in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  12. Effects of fluctuations on propagating fronts

    NASA Astrophysics Data System (ADS)

    Panja, Debabrata

    Propagating fronts are seen in varieties of nonequilibrium pattern forming systems in Physics, Chemistry and Biology. In the last two decades, many researchers have contributed to the understanding of the underlying dynamics of the propagating fronts. Of these, the deterministic and mean-field dynamics of the fronts were mostly understood in late 1980s and 1990s. On the other hand, although the earliest work on the effect of fluctuations on propagating fronts dates back to early 1980s, the subject of fluctuating fronts did not reach its adolescence until the mid 1990s. From there onwards the last few years witnessed a surge in activities in the effect of fluctuations on propagating fronts. Scores of papers have been written on this subject since then, contributing to a significant maturity of our understanding, and only recently a full picture of fluctuating fronts has started to emerge. This review is an attempt to collect all the works on fluctuating (propagating) fronts in a coherent and cogent manner in proper perspective. It is based on the idea of making our knowledge in this field available to a broader audience, and it is also expected to help to collect bits and pieces of loose thread-ends together for possible further investigation.

  13. The APS beamline front end vacuum system

    SciTech Connect

    Nielsen, R.W.

    1993-10-15

    This report discusses the design of the vacuum system for the advanced photon source beamline front ends. Included in this report are discussions on: vacuum calculations, the differential pump; front end vacuum set points; cleaning methods and agents; and continuing and completed research and development.

  14. Seasonal and decadal variations of ice-shelf front positions in Dronning Maud Land, East Antarctica

    NASA Astrophysics Data System (ADS)

    Deschamps-Berger, Csar; Matsuoka, Kenichi; Moholdt, Geir; Knig, Max

    2015-04-01

    Most of recent rapid changes of the Antarctic ice sheet have been triggered from the ice shelves through enhanced basal melting and/or iceberg calving. The Dronning Maud Land (DML) coastal region is encompassed by many semi-continuous ice shelves, and its mass balance is thus particularly sensitive to changes in the coastal environment. Better knowledge on the region's ice shelves is necessary to predict future behavior of the ice sheet. Here, we present temporal changes of the ice-shelf front positions in DML over the past decade. RADARSAT-2 imagery was used to delineate the front positions at six times between August 2012 and December 2013. Displacements of the ice-shelf edges over this period are mostly in good agreement with displacements derived from satellite interferometery observations. Yet we observe in several sub-regions that displacement during the austral summer is larger than that during the winter. We also observe winter-growth of sea ice from the ice-shelf fronts and outwards to icebergs that are grounded on the continental shelf. Fast sea ice growth and break-up is seasonal and could influence ice-shelf flow close to the fronts. On a longer term, comparison between 2004 and 2009 MOA coast line datasets and our 2012-13 dataset highlights the general stability of the area in the past decade. Between 2004 and 2013, only six ice shelves experienced considerable retreat due to calving of tabular icebergs, leaving the remaining 90 % of the region's ice-shelf fronts advancing in accordance with their local flow.

  15. Stability of cosmological deflagration fronts

    NASA Astrophysics Data System (ADS)

    Mgevand, Ariel; Membiela, Federico Agustn

    2014-05-01

    In a cosmological first-order phase transition, bubbles of the stable phase nucleate and expand in the supercooled metastable phase. In many cases, the growth of bubbles reaches a stationary state, with bubble walls propagating as detonations or deflagrations. However, these hydrodynamical solutions may be unstable under corrugation of the interface. Such instability may drastically alter some of the cosmological consequences of the phase transition. Here, we study the hydrodynamical stability of deflagration fronts. We improve upon previous studies by making a more careful and detailed analysis. In particular, we take into account the fact that the equation of motion for the phase interface depends separately on the temperature and fluid velocity on each side of the wall. Fluid variables on each side of the wall are similar for weakly first-order phase transitions, but differ significantly for stronger phase transitions. As a consequence, we find that, for large enough supercooling, any subsonic wall velocity becomes unstable. Moreover, as the velocity approaches the speed of sound, perturbations become unstable on all wavelengths. For smaller supercooling and small wall velocities, our results agree with those of previous works. Essentially, perturbations on large wavelengths are unstable, unless the wall velocity is higher than a critical value. We also find a previously unobserved range of marginally unstable wavelengths. We analyze the dynamical relevance of the instabilities, and we estimate the characteristic time and length scales associated with their growth. We discuss the implications for the electroweak phase transition and its cosmological consequences.

  16. Stability of cosmological detonation fronts

    NASA Astrophysics Data System (ADS)

    Mgevand, Ariel; Membiela, Federico Agustn

    2014-05-01

    The steady-state propagation of a phase-transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.

  17. Acral coldness in migraineurs.

    PubMed

    Zaproudina, Nina; Lipponen, Jukka A; Karjalainen, Pasi A; Kamshilin, Alexei A; Giniatullin, Rashid; Nrhi, Matti

    2014-02-01

    In search for new biomarkers of vascular disturbances accompanying migraine, we compared the facial and hand skin temperatures in 41 women, including 12 migraine patients during the headache-free period and 29 healthy controls. Compared to the controls, the acral skin temperatures were lower in migraineurs, especially in those with right-sided headache. Our findings suggest that migraine is associated with a peripheral coldness possibly due to abnormal autonomic vascular control. The cold nose and hands may represent easily assessable biomarkers of these disorders. PMID:24080404

  18. Cold asymmetrical fermion superfluids

    SciTech Connect

    Caldas, Heron

    2004-06-01

    In this work we investigate the general properties and the ground state of an asymmetrical dilute gas of cold fermionic atoms, formed by two particle species having different densities. We have shown in a recent paper, that a mixed phase composed of normal and superfluid components is the energetically favored ground state of such a cold fermionic system. Here we extend the analysis and verify that in fact, the mixed phase is the preferred ground state of an asymmetrical superfluid in various situations. We predict that the mixed phase can serve as a way of detecting superfluidity and estimating the magnitude of the gap parameter in asymmetrical fermionic systems.

  19. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard.

    PubMed

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-08-01

    The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring together with rain, can substantially remove snow cover and thereby expose plants to cold winter air. Depending on morphology, different parts of the plant can be directly exposed. On this picture, we see Dryas octopetala seed heads from the previous growing season protrude through the remaining ice layer after a warming event in early 2010. The rest of the plant, including meristems and flower primordia, are still somewhat protected by the ice. In the background we can see a patch of Cassiope tetragona protruding through the ice; in this case, the whole plant including flower primordia is exposed, which might be one reason why this species experienced a loss of flowers the following season. Photograph by Philipp Semenchuk. PMID:24567826

  20. Snow cover and extreme winter warming events control flower abundance of some, but not all species in high arctic Svalbard

    PubMed Central

    Semenchuk, Philipp R; Elberling, Bo; Cooper, Elisabeth J

    2013-01-01

    Abstract The High Arctic winter is expected to be altered through ongoing and future climate change. Winter precipitation and snow depth are projected to increase and melt out dates change accordingly. Also, snow cover and depth will play an important role in protecting plant canopy from increasingly more frequent extreme winter warming events. Flower production of many Arctic plants is dependent on melt out timing, since season length determines resource availability for flower preformation. We erected snow fences to increase snow depth and shorten growing season, and counted flowers of six species over 5years, during which we experienced two extreme winter warming events. Most species were resistant to snow cover increase, but two species reduced flower abundance due to shortened growing seasons. Cassiope tetragona responded strongly with fewer flowers in deep snow regimes during years without extreme events, while Stellaria crassipes responded partly. Snow pack thickness determined whether winter warming events had an effect on flower abundance of some species. Warming events clearly reduced flower abundance in shallow but not in deep snow regimes of Cassiope tetragona, but only marginally for Dryas octopetala. However, the affected species were resilient and individuals did not experience any long term effects. In the case of short or cold summers, a subset of species suffered reduced reproductive success, which may affect future plant composition through possible cascading competition effects. Extreme winter warming events were shown to expose the canopy to cold winter air. The following summer most of the overwintering flower buds could not produce flowers. Thus reproductive success is reduced if this occurs in subsequent years. We conclude that snow depth influences flower abundance by altering season length and by protecting or exposing flower buds to cold winter air, but most species studied are resistant to changes. Winter warming events, often occurring together with rain, can substantially remove snow cover and thereby expose plants to cold winter air. Depending on morphology, different parts of the plant can be directly exposed. On this picture, we see Dryas octopetala seed heads from the previous growing season protrude through the remaining ice layer after a warming event in early 2010. The rest of the plant, including meristems and flower primordia, are still somewhat protected by the ice. In the background we can see a patch of Cassiope tetragona protruding through the ice; in this case, the whole plant including flower primordia is exposed, which might be one reason why this species experienced a loss of flowers the following season. Photograph by Philipp Semenchuk. PMID:24567826