Science.gov

Sample records for wireless weather stations

  1. Equating minimalist snowmelt and runoff generation models via validation with a wireless weather station network

    NASA Astrophysics Data System (ADS)

    Tobin, C. C.; Schaefli, B.; Nicotina, L.; Simoni, S.; Barrenetxea, G.; Parlange, M. B.; Rinaldo, A.

    2011-12-01

    A wireless network of 12 weather stations in the Val Ferret watershed (approximately 21 km2) in the Swiss Alps was used to validate snowmelt models with distributed temperature and radiation data. Using this extensive dataset, an improved yet simplistic degree-day method was compared with a radiation-based method proposed by Hock et al., 1999. The original degree-day approach is a widely used snowmelt model, relating snowmelt directly to air temperature. Numerous hydrological models use this minimalist approach due to its equivalent simplicity. Modifications of this simple method have been proposed in the past which typically incorporate local radiation conditions. However, these modifications generally require more data and/or a finer hydrological grid resolution. Results herein as well as theoretical considerations illustrate that the Hock point or grid-scale method is not always a robust method when combined with spatially explicit rainfall-runoff transformation models. This generalized hydrological application suggests that a simple diurnal cycle of the degree-day melt parameter has the potential to outperform the Hock local radiation-based approach for sub-daily melt simulations. We therefore suggest that the improved degree-day method enables a flexible melt modeling approach, which can be easily adapted into spatially-explicit hydrological models of varying complexity. Furthermore, as this new degree-day method is based upon solely daily temperature extremes, this approach is capable of being adapted for climate change predictions.

  2. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering

  3. Designing a Weather Station

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The collection and analysis of weather data is crucial to the location of alternate energy systems like solar and wind. This article presents a design challenge that gives students a chance to design a weather station to collect data in advance of a large wind turbine installation. Data analysis is a crucial part of any science or engineering…

  4. The Home Weather Station.

    ERIC Educational Resources Information Center

    Steinke, Steven D.

    1991-01-01

    Described is how an amateur weather observer measures and records temperature and precipitation at a well-equipped, backyard weather station. Directions for building an instrument shelter and a description of the instruments needed for measuring temperature and precipitation are included. (KR)

  5. Micro Weather Station

    NASA Technical Reports Server (NTRS)

    Hoenk, Michael E.

    1999-01-01

    Improved in situ meteorological measurements in the troposphere and stratosphere are needed for studies of weather and climate, both as a primary data source and as validation for remote sensing instruments. Following the initial development and successful flight validation of the surface acoustic wave (SAW) hygrometer, the micro weather station program was directed toward the development of an integrated instrument, capable of accurate, in situ profiling of the troposphere, and small enough to fly on a radiosonde balloon for direct comparison with standard radiosondes. On April 23, 1998, working with Frank Schmidlin and Bob Olson of Wallops Island Flight Facility, we flew our instrument in a dual payload experiment, for validation and direct comparison with a Vaisala radiosonde. During that flight, the SAW dewpoint hygrometer measured frostpoint down to -76T at 44,000 feet. Using a laptop computer in radio contact with the balloon, we monitored data in real time, issued the cutdown command, and recovered the payload less than an hour after landing in White Sands Missile Range, 50 miles from the launch site in Hatch, New Mexico. Future flights will extend the intercomparison, and attempt to obtain in situ meteorological profiles from the surface through the tropopause. The SAW hygrometer was successfully deployed on the NASA DC8 as part of NASA's Third Convection and Moisture Experiment (CAMEX-3) during August and September, 1998. This field campaign was devoted to the study of hurricane tracking and intensification using NASA-funded aircraft. In situ humidity data from the SAW hygrometer are currently being analyzed and compared with data from other instruments on the DC8 and ER2 aircraft. Additional information is contained in the original.

  6. Snowslip Mountain Weather Station, MT

    USGS Physical Scientist Erich Peitzsch sets up a weather station on Snowslip Mountain in Glacier National Park. It provides meteorological data for avalanche forecasting and research, including wind speed and direction, air temperature, relative humidity, and net radiation measurements....

  7. Snowslip Mountain Weather Station, MT

    USGS Physical Scientist Erich Peitzsch sets up a weather station on Snowslip Mountain in Glacier National Park.  It provides meteorological data for avalanche forecasting and research, including wind speed and direction, air temperature, relative humidity, and net radiation measurements....

  8. Garden Wall Weather Station, MT

    The Garden Wall Weather Station is situated below the Garden Wall and adjacent to the Haystack Creek avalanche path in Glacier National Park. It provides meteorological data for avalanche forecasting and research, including wind speed and direction, air temperature, relative humidity, and net radiat...

  9. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A.R.; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2000-01-01

    An autonomous, low-power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. This compact, portable lidar will operate continuously in a temperature controlled enclosure, charge its own batteries through a combination of a small rugged wind generator and solar panels, and transmit its data from remote locations to ground stations via satellite. A network of these instruments will be established by co-locating them at remote Automatic Weather Station (AWS) sites in Antarctica under the auspices of the National Science Foundation (NSF). The NSF Office of Polar Programs provides support to place the weather stations in remote areas of Antarctica in support of meteorological research and operations. The AWS meteorological data will directly benefit the analysis of the lidar data while a network of ground based atmospheric lidar will provide knowledge regarding the temporal evolution and spatial extent of Type la polar stratospheric clouds (PSC). These clouds play a crucial role in the annual austral springtime destruction of stratospheric ozone over Antarctica, i.e. the ozone hole. In addition, the lidar will monitor and record the general atmospheric conditions (transmission and backscatter) of the overlying atmosphere which will benefit the Geoscience Laser Altimeter System (GLAS). Prototype lidar instruments have been deployed to the Amundsen-Scott South Pole Station (1995-96, 2000) and to an Automated Geophysical Observatory site (AGO 1) in January 1999. We report on data acquired with these instruments, instrument performance, and anticipated performance of the AWS Lidar.

  10. Wireless sensor network for monitoring soil moisture and weather conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A wireless sensor network (WSN) was developed and deployed in three fields to monitor soil water status and collect weather data for irrigation scheduling. The WSN consists of soil-water sensors, weather sensors, wireless data loggers, and a wireless modem. Soil-water sensors were installed at three...

  11. PV powering a weather station for severe weather

    SciTech Connect

    Young, W. Jr.; Schmidt, J.

    1997-12-31

    A natural disaster, such as Hurricane Andrew, destroys thousands of homes and businesses. The destruction from this storm left thousands of people without communications, potable water, and electrical power. This prompted the Florida Solar Energy Center to study the application of solar electric power for use in disasters. During this same period, volunteers at the Tropical Prediction Center at the National Hurricane Center (NHC), Miami, Florida and the Miami Office of the National Weather Service (NWS) were working to increase the quantity and quality of observations received from home weather stations. Forecasters at NHC have found surface reports from home weather stations a valuable tool in determining the size, strength and course of hurricanes. Home weather stations appear able to record the required information with an adequate level of accuracy. Amateur radio, utilizing the Automatic Packet Report System, (APRS) can be used to transmit this data to weather service offices in virtually real time. Many weather data collecting stations are at remote sites which are not readily serviced by dependable commercial power. Photovoltaic (solar electric) modules generate electricity and when connected to a battery can operate as a stand alone power system. The integration of these components provides an inexpensive standalone system. The system is easy to install, operates automatically and has good communication capabilities. This paper discusses the design criteria, operation, construction and deployment of a prototype solar powered weather station.

  12. The Lizard Wireless Station of Guglielmo Marconi

    NASA Astrophysics Data System (ADS)

    Montstein, Christian

    2014-08-01

    During the vacation with my wife in Cornwall, we by chance were walking by the Lizard wireless station, originally installed by Guglielmo Marconi and recently refurbished by The National Trust/UK. Fortunately the shed was open for public visitors and a student was present telling stories about the station and its history. The historic equipment was demonstrated by sending some Morse codes. The high voltage sparks and its sound were quite impressive while in the background the Morse code receiver punched dots and dashes onto the strip chart.

  13. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use

  14. Aviation Weather Observations for Supplementary Aviation Weather Reporting Stations (SAWRS) and Limited Aviation Weather Reporting Stations (LAWRS). Federal Meteorological Handbook No. 9.

    ERIC Educational Resources Information Center

    Department of Transportation, Washington, DC.

    This handbook provides instructions for observing, identifying, and recording aviation weather at Limited Aviation Weather Reporting Stations (LAWRS) and Supplementary Aviation Weather Reporting Stations (SAWRS). Official technical definitions, meteorological and administrative procedures are outlined. Although this publication is intended for use…

  15. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    ERIC Educational Resources Information Center

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students

  16. Development and Evaluation of a City-Wide Wireless Weather Sensor Network

    ERIC Educational Resources Information Center

    Chang, Ben; Wang, Hsue-Yie; Peng, Tian-Yin; Hsu, Ying-Shao

    2010-01-01

    This project analyzed the effectiveness of a city-wide wireless weather sensor network, the Taipei Weather Science Learning Network (TWIN), in facilitating elementary and junior high students' study of weather science. The network, composed of sixty school-based weather sensor nodes and a centralized weather data archive server, provides students…

  17. Types of weather at selected meteorological stations in Sri Lanka

    NASA Astrophysics Data System (ADS)

    Dobrowolska, Ksenia

    2014-09-01

    The paper aims to present the structure of weather types at two meteorological stations Galle and Nuwara Eliya (Sri Lanka). The weather type is determined as a generalized characteristic of the weather by features and gradation of selected meteorological elements. All available data on daily average, maximum and minimum air temperature, the average daily total cloud amount and the daily precipitation amount come from OGIMET database and have been used to designate weather types. The analysis was performed for the period April 2002 - March 2012. The weather types were designated based on the modified A. Woś (2010) classification of weather types. The frequency of groups, subgroups, classes, and types of weather were determined. Additionally, determined frequency of sequences of days with the same weather type. The analysis allows to conclude, that the structure of weather types at both stations was poorly differentiated. There were very stable weather conditions. In Galle, the most frequent was very warm, partly cloudy weather, without precipitation (920) and in Nuwara Eliya warm, partly cloudy weather without precipitation (820).

  18. A Computerized Weather Station for the Apple IIe.

    ERIC Educational Resources Information Center

    Lorson, Mark V.

    Predicting weather conditions is a topic of interest for students who want to make plans for outside activities. This paper discusses the development of an inexpensive computer-interfaced classroom weather station using an Apple IIe computer that provides the viewer with up to the minute digital readings of inside and outside temperature,…

  19. Propagation Characteristics of International Space Station Wireless Local Area Network

    NASA Technical Reports Server (NTRS)

    Sham, Catherine C.; Hwn, Shian U.; Loh, Yin-Chung

    2005-01-01

    This paper describes the application of the Uniform Geometrical Theory of Diffraction (UTD) for Space Station Wireless Local Area Networks (WLANs) indoor propagation characteristics analysis. The verification results indicate good correlation between UTD computed and measured signal strength. It is observed that the propagation characteristics are quite different in the Space Station modules as compared with those in the typical indoor WLANs environment, such as an office building. The existing indoor propagation models are not readily applicable to the Space Station module environment. The Space Station modules can be regarded as oversized imperfect waveguides. Two distinct propagation regions separated by a breakpoint exist. The propagation exhibits the guided wave characteristics. The propagation loss in the Space Station, thus, is much smaller than that in the typical office building. The path loss model developed in this paper is applicable for Space Station WLAN RF coverage and link performance analysis.

  20. WEATHER DATA PROCESSOR USING COMMERCIAL WEATHER STATION SYSTEM TO GENERATE CATTLE LIVESTOCK SAFETY INDEX

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Livestock production facilities exist in environments that may differ significantly from the conditions at the closest weather station. Additionally, the Livestock Safety Index is no longer available over commercial radio/television stations for many livestock production areas. A need exists to inte...

  1. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  2. Weather Stations as Educational and Hazard-Forecasting Tools

    NASA Astrophysics Data System (ADS)

    Bowman, L. J.; Gierke, J. S.; Gochis, E. E.; Dominguez, R.; Mayer, A. S.

    2014-12-01

    Small, relatively inexpensive (<$1000 USD) weather stations can be valuable tools for enhancing inquiry-based educational opportunities at all grade levels, while also facilitating compilation of climate data for longer term research. Weather stations and networks of stations have been installed both locally and abroad in mostly rural and resource-limited settings. The data are being used either in the classroom to engage students in place-based, scientific investigations and/or research to improve hydrometeorological hazard forecasting, including water scarcity. The San Vicente (El Salvador) Network of six stations monitors rainfall to aid warning and evacuations for landslide and flooding hazards. Other parameters are used in modeling the watershed hydrology. A station installed in Hermosillo, Mexico is used in both Geography and Ecology Classes. Trends in temperature and rainfall are graphed and compared to historic data gathered over the last 30 years by CONAGUA. These observations are linked to local water-related problems, including well salinization, diminished agriculture, depleted aquifers, and social conflict regarding access to water. Two weather stations were installed at the Hannahville Indian Community School (Nah Tah Wahsh) in Michigan for educational purposes of data collection, analysis, and presentation. Through inquiry-based explorations of local hydrological processes, students are introduced to how meteorological data are used in understanding watershed hydrology and the sustainable management of groundwater resources. Several Michigan Technological University Peace Corps Masters International students have deployed weather stations in and around the communities where they serve, and the data are used in research to help in understanding water resource availability and irrigation needs.

  3. Improved Recharge Estimation from Portable, Low-Cost Weather Stations.

    PubMed

    Holländer, Hartmut M; Wang, Zijian; Assefa, Kibreab A; Woodbury, Allan D

    2016-03-01

    Groundwater recharge estimation is a critical quantity for sustainable groundwater management. The feasibility and robustness of recharge estimation was evaluated using physical-based modeling procedures, and data from a low-cost weather station with remote sensor techniques in Southern Abbotsford, British Columbia, Canada. Recharge was determined using the Richards-based vadose zone hydrological model, HYDRUS-1D. The required meteorological data were recorded with a HOBO(TM) weather station for a short observation period (about 1 year) and an existing weather station (Abbotsford A) for long-term study purpose (27 years). Undisturbed soil cores were taken at two locations in the vicinity of the HOBO(TM) weather station. The derived soil hydraulic parameters were used to characterize the soil in the numerical model. Model performance was evaluated using observed soil moisture and soil temperature data obtained from subsurface remote sensors. A rigorous sensitivity analysis was used to test the robustness of the model. Recharge during the short observation period was estimated at 863 and 816 mm. The mean annual recharge was estimated at 848 and 859 mm/year based on a time series of 27 years. The relative ratio of annual recharge-precipitation varied from 43% to 69%. From a monthly recharge perspective, the majority (80%) of recharge due to precipitation occurred during the hydrologic winter period. The comparison of the recharge estimates with other studies indicates a good agreement. Furthermore, this method is able to predict transient recharge estimates, and can provide a reasonable tool for estimates on nutrient leaching that is often controlled by strong precipitation events and rapid infiltration of water and nitrate into the soil. PMID:26011672

  4. 78 FR 13895 - Certain Wireless Communications Base Stations and Components Thereof; Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-01

    ... COMMISSION Certain Wireless Communications Base Stations and Components Thereof; Institution of Investigation... wireless communications base stations and components thereof by reason of infringement of U.S. Patent No. 6..., the sale for importation, or the sale within the United States after importation of certain...

  5. Weather satellite picture receiving stations, APT digital scan converter

    NASA Technical Reports Server (NTRS)

    Vermillion, C. H.; Kamowski, J. C.

    1975-01-01

    The automatic picture transmission digital scan converter is used at ground stations to convert signals received from scanning radiometers to data compatible with ground equipment designed to receive signals from vidicons aboard operational meteorological satellites. Information necessary to understand the circuit theory, functional operation, general construction and calibration of the converter is provided. Brief and detailed descriptions of each of the individual circuits are included, accompanied by a schematic diagram contained at the end of each circuit description. Listings of integral parts and testing equipment required as well as an overall wiring diagram are included. This unit will enable the user to readily accept and process weather photographs from the operational meteorological satellites.

  6. Comparison Between Radar and Automatic Weather Station Refractivity Variability

    NASA Astrophysics Data System (ADS)

    Hallali, Ruben; Dalaudier, Francis; Parent du Chatelet, Jacques

    2016-03-01

    Weather radars measure changes in the refractive index of air in the atmospheric boundary layer. The technique uses the phase of signals from ground targets located around the radar to provide information on atmospheric refractivity related to meteorological quantities such as temperature, pressure and humidity. The approach has been successfully implemented during several field campaigns using operational S-band radars in Canada, UK, USA and France. In order to better characterize the origins of errors, a recent study has simulated temporal variations of refractivity based on Automatic Weather Station (AWS) measurements. This reveals a stronger variability of the refractivity during the summer and in the afternoon when the refractivity is the most sensitive to humidity, probably because of turbulence close to the ground. This raises the possibility of retrieving information on the turbulent state of the atmosphere from the variability in radar refractivity. An analysis based on a 1-year dataset from the operational C-band radar at Trappes (near Paris, France) and AWS refractivity variability measurements was used to measure those temporal and spatial variabilities. Particularly during summer, a negative bias increasing with range is observed between radar and AWS estimations, and is well explained by a model based on Taylor's hypotheses. The results demonstrate the possibility of establishing, depending on season, a quantitative and qualitative link between radar and AWS refractivity variability that reflects low-level coherent turbulent structures.

  7. Capturing the WUnder: Using weather stations and WeatherUnderground to increase middle school students' understanding and interest in science

    NASA Astrophysics Data System (ADS)

    Schild, K. M.; Dunne, P.

    2014-12-01

    New models of elementary- and middle-school level science education are emerging in response to the need for science literacy and the development of the Next Generation Science Standards. One of these models is fostered through the NSF's Graduate Teaching Fellows in K-12 Education (GK-12) program, which pairs a graduate fellow with a science teacher at a local school for an entire school year. In our project, a PhD Earth Sciences student was paired with a local middle school science teacher with the goal of installing a weather station, and incorporating the station data into the 8th grade science curriculum. Here we discuss how we were able to use a school weather station to introduce weather and climate material, engage and involve students in the creative process of science, and motivate students through inquiry-based lessons. In using a weather station as the starting point for material, we were able to make science tangible for students and provide an opportunity for each student to experience the entire process of scientific inquiry. This hands-on approach resulted in a more thorough understanding the system beyond a knowledge of the components, and was particularly effective in challenging prior weather and climate misconceptions. We were also able to expand the reach of the lessons by connecting with other weather stations in our region and even globally, enabling the students to become members of a larger system.

  8. Antarctic meteorology: a study with automatic weather stations

    NASA Astrophysics Data System (ADS)

    Reijmer, C.

    2001-09-01

    This thesis chiefly addresses a) the use of Automatic Weather Stations (AWS) in determining the near-surface climate and heat budget of Antarctica and, specifically, Dronning Maud Land (DML), and b) the determination of source regions of Antarctic moisture with the aid of a trajectory model and an atmospheric model. The primary motivation behind this interest is the drilling of two ice cores in the Antarctic ice sheet within the framework of the European Project for Ice Coring in Antarctica (EPICA). A thorough knowledge of the meteorological conditions will increase our understanding of the processes that influence the surface mass balance and heat budget. In Chapter 2, ground-based observations of broadband, narrowband, and bidirectional reflectance are used to study the albedo of blue ice and snow. During summer, surface albedo plays an important role in the amount of heat exchanged between the surface and the atmosphere. The aim is therefore to improve the methods used to derive surface albedo from satellite measurements and arrive at a better understanding of the processes influencing the magnitude of the albedo. Chapters 3, 4 and 5 describe the data obtained from ten AWS in Antarctica and how they were used to determine the local surface energy budget. The AWS were placed on two transects perpendicular to the coastline in DML and one on Berkner Island. Mainly the strength of the katabatically forced flow, in combination with the geostrophic flow, determines the near-surface conditions at these locations. The katabatic flow varies in strength depending on the magnitude of surface slope and temperature inversion, and is not active on Berkner Island, a station on a topographic dome. In DML, the strength of the katabatic flow varies, resulting in maximum wind speeds and potential temperatures at the sites with the steepest slopes, at the edge of the Antarctic plateau. The AWS data, together with a model based on Monin-Obukhov similarity theory, are used to calculate the surface energy budget for the measuring period. The strength of the katabatic flow largely determines not only the near-surface meteorological conditions but also the surface energy budget. In Chapters 6 and 7, moisture sources of snow falling at five deep-drilling locations in Antarctica (Byrd, DML05, Dome C, Dome F and Vostok) are defined, based on five-day backward air parcel trajectories calculated from data of the European Centre for Medium Range Weather Forecasts. Based on model precipitation, a distinction is made between cases with and without snowfall at the point of arrival. A case study for May 1998 shows that during snowfall exceptionally high temperatures and wind speeds prevail in the atmospheric boundary layer. The trajectories from the ECMWF Re-analysis Project (ERA-15) cover a 15-year period and show that the oceans closest to the five drilling sites contribute most of the moisture. The calculated trajectories show seasonal dependency, resulting in a seasonal cycle in the moisture sources, which is further enhanced by a seasonal cycle in the amount of precipitation.

  9. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Disclosure requirements for wireless... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... by the Wireless Telecommunications Bureau and the Consumer and Governmental Affairs Bureau, at...

  10. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Disclosure requirements for wireless... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... by the Wireless Telecommunications Bureau and the Consumer and Governmental Affairs Bureau, at...

  11. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Disclosure requirements for wireless... wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. (a... by the Wireless Telecommunications Bureau and the Consumer and Governmental Affairs Bureau, at...

  12. A web-based tool that combines satellite and weather station observations to support irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Abstract: The Satellite Irrigation Management Support (SIMS) project combines NASA's Terrestrial Observation and Prediction System (TOPS), Landsat and MODIS satellite imagery, and reference evapotranspiration from surface weather station networks to map daily crop irrigation demand in California in ...

  13. Severe Weather Tool using 1500 UTC Cape Canaveral Air Force Station Soundings

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2013-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  14. Optimal Base Station Placement for Wireless Sensor Networks with Successive Interference Cancellation

    PubMed Central

    Shi, Lei; Zhang, Jianjun; Shi, Yi; Ding, Xu; Wei, Zhenchun

    2015-01-01

    We consider the base station placement problem for wireless sensor networks with successive interference cancellation (SIC) to improve throughput. We build a mathematical model for SIC. Although this model cannot be solved directly, it enables us to identify a necessary condition for SIC on distances from sensor nodes to the base station. Based on this relationship, we propose to divide the feasible region of the base station into small pieces and choose a point within each piece for base station placement. The point with the largest throughput is identified as the solution. The complexity of this algorithm is polynomial. Simulation results show that this algorithm can achieve about 25% improvement compared with the case that the base station is placed at the center of the network coverage area when using SIC. PMID:25594600

  15. Evaluation of pan evaporation modeling with two different neural networks and weather station data

    NASA Astrophysics Data System (ADS)

    Kim, Sungwon; Singh, Vijay P.; Seo, Youngmin

    2014-07-01

    This study evaluates neural networks models for estimating daily pan evaporation for inland and coastal stations in Republic of Korea. A multilayer perceptron neural networks model (MLP-NNM) and a cascade correlation neural networks model (CCNNM) are developed for local implementation. Five-input models (MLP 5 and CCNNM 5) are generally found to be the best for local implementation. The optimal neural networks models, including MLP 4, MLP 5, CCNNM 4, and CCNNM 5, perform well for homogeneous (cross-stations 1 and 2) and nonhomogeneous (cross-stations 3 and 4) weather stations. Statistical results of CCNNM are better than those of MLP-NNM during the test period for homogeneous and nonhomogeneous weather stations except for MLP 4 being better in BUS-DAE and POH-DAE, and MLP 5 being better in POH-DAE. Applying the conventional models for the test period, it is found that neural networks models perform better than the conventional models for local, homogeneous, and nonhomogeneous weather stations.

  16. Building and Operating Weather Satellite Ground Stations for High School Science. Teachers Guide.

    ERIC Educational Resources Information Center

    Summers, R. Joe; Gotwald, Timothy

    Automatic Picture Transmission (APT) images are real-time weather pictures transmitted from satellites on a radio frequency in a video format. Amateur radio enthusiasts and electronic experimenters have for a number of years designed, built, and operated direct readout stations capable of receiving APT photographs. The equipment to receive weather…

  17. The NASA-Lewis terrestrial photovoltaics program. [solar cell power system for weather station

    NASA Technical Reports Server (NTRS)

    Bernatowicz, D. T.

    1973-01-01

    Research and technology efforts on solar cells and arrays having relevance to terrestrial uses are outline. These include raising cell efficiency, developing the FEP-covered module concept, and exploring low cost cell concepts. Solar cell-battery power systems for remote weather stations have been built to demonstrate the capabilities of solar cells for terrestrial applications.

  18. Meteorological data for water years 1988-94 from five weather stations at Yucca Mountain, Nevada

    SciTech Connect

    Flint, A.L.; Davies, W.J.

    1997-11-01

    This report describes meteorological data collected from five weather stations at Yucca Mountain, Nevada, from as early as April 1987 through September 1994. The measurements include solar radiation, temperature, relative humidity, wind speed, wind vector magnitude, wind direction, wind vector direction, barometric pressure, and precipitation. Measurements were made very 10 seconds and averaged every 15 minutes. The data were collected as part of the geologic and hydrologic site-characterization studies of Yucca Mountain, a potential repository for high-level radioactive waste. Precipitation at the site ranged from a low of 12 millimeters total for water year 1989 to a high of 312 millimeters total for water year 1993. Air temperature ranged from a low of 15.1 degrees Celsius in December 1990 (water year 1991) to a high of 41.9 degrees Celsius in July 1989 (water year 1989). The weather station network also provides information on the spatial variability of precipitation and temperature.

  19. The Optimization Based Dynamic and Cyclic Working Strategies for Rechargeable Wireless Sensor Networks with Multiple Base Stations and Wireless Energy Transfer Devices

    PubMed Central

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating “bottleneck” sensor nodes is also developed in this paper. PMID:25785305

  20. The optimization based dynamic and cyclic working strategies for rechargeable wireless sensor networks with multiple base stations and wireless energy transfer devices.

    PubMed

    Ding, Xu; Han, Jianghong; Shi, Lei

    2015-01-01

    In this paper, the optimal working schemes for wireless sensor networks with multiple base stations and wireless energy transfer devices are proposed. The wireless energy transfer devices also work as data gatherers while charging sensor nodes. The wireless sensor network is firstly divided into sub networks according to the concept of Voronoi diagram. Then, the entire energy replenishing procedure is split into the pre-normal and normal energy replenishing stages. With the objective of maximizing the sojourn time ratio of the wireless energy transfer device, a continuous time optimization problem for the normal energy replenishing cycle is formed according to constraints with which sensor nodes and wireless energy transfer devices should comply. Later on, the continuous time optimization problem is reshaped into a discrete multi-phased optimization problem, which yields the identical optimality. After linearizing it, we obtain a linear programming problem that can be solved efficiently. The working strategies of both sensor nodes and wireless energy transfer devices in the pre-normal replenishing stage are also discussed in this paper. The intensive simulations exhibit the dynamic and cyclic working schemes for the entire energy replenishing procedure. Additionally, a way of eliminating "bottleneck" sensor nodes is also developed in this paper. PMID:25785305

  1. Wireless Video System for Extra Vehicular Activity in the International Space Station and Space Shuttle Orbiter Environment

    NASA Technical Reports Server (NTRS)

    Loh, Yin C.; Boster, John; Hwu, Shian; Watson, John C.; deSilva, Kanishka; Piatek, Irene (Technical Monitor)

    1999-01-01

    The Wireless Video System (WVS) provides real-time video coverage of astronaut extra vehicular activities during International Space Station (ISS) assembly. The ISS wireless environment is unique due to the nature of the ISS structure and multiple RF interference sources. This paper describes how the system was developed to combat multipath, blockage, and interference using an automatic antenna switching system. Critical to system performance is the selection of receiver antenna installation locations determined using Uniform Geometrical Theory of Diffraction (GTD) techniques.

  2. Wind Climate Analyses for National Weather Service Stations in the Southeast

    SciTech Connect

    Weber, A.H.

    2003-02-10

    Wind speed and direction data have been collected by National Weather Service (NWS) Stations in the U.S. for a number of years and presented in various forms to help depict the climate for different regions. The Savannah River Technology Center (SRTC) is particularly interested in the Southeast since mesoscale models using NWS wind observations are run on a daily basis for emergency response and other operational purposes at the Savannah River Site (SRS). Historically, wind roses have been a convenient method to depict the predominant wind speeds and directions at measurement sites. Some typical applications of wind rose data are for climate and risk assessment; air pollution exposure and dose calculations; siting industrial plants, wind turbine generators, businesses, and homes; city planning; and air stagnation and high ozone concentration studies. The purpose of this paper is to demonstrate the overall relationships of wind patterns for NWS stations in the Southeast. Since organized collection of wind data records in the NWS developed rapidly in conjunction with the expansion of commercial aviation after World War II there are now about 50 years of wind speed and direction data available for a large number of NWS stations in this area. In this study we used wind roses for relatively short time scales to show the progression of winds diurnally and monthly to span a typical year. The date used here consist of wind records from 13 National Weather Service Stations in the Southeastern U.S. for approximately 50-year periods.

  3. Solar Weather Ice Monitoring Station (SWIMS). A low cost, extreme/harsh environment, solar powered, autonomous sensor data gathering and transmission system

    NASA Astrophysics Data System (ADS)

    Chetty, S.; Field, L. A.

    2013-12-01

    The Arctic ocean's continuing decrease of summer-time ice is related to rapidly diminishing multi-year ice due to the effects of climate change. Ice911 Research aims to develop environmentally respectful materials that when deployed will increase the albedo, enhancing the formation and/preservation of multi-year ice. Small scale deployments using various materials have been done in Canada, California's Sierra Nevada Mountains and a pond in Minnesota to test the albedo performance and environmental characteristics of these materials. SWIMS is a sophisticated autonomous sensor system being developed to measure the albedo, weather, water temperature and other environmental parameters. The system (SWIMS) employs low cost, high accuracy/precision sensors, high resolution cameras, and an extreme environment command and data handling computer system using satellite and terrestrial wireless communication. The entire system is solar powered with redundant battery backup on a floating buoy platform engineered for low temperature (-40C) and high wind conditions. The system also incorporates tilt sensors, sonar based ice thickness sensors and a weather station. To keep the costs low, each SWIMS unit measures incoming and reflected radiation from the four quadrants around the buoy. This allows data from four sets of sensors, cameras, weather station, water temperature probe to be collected and transmitted by a single on-board solar powered computer. This presentation covers the technical, logistical and cost challenges in designing, developing and deploying these stations in remote, extreme environments. Image captured by camera #3 of setting sun on the SWIMS station One of the images captured by SWIMS Camera #4

  4. Weather.

    ERIC Educational Resources Information Center

    Ruth, Amy, Ed.

    1996-01-01

    This theme issue of "The Goldfinch" focuses on weather in Iowa and weather lore. The bulletin contains historical articles, fiction, activities, and maps. The table of contents lists: (1) "Wild Rosie's Map"; (2) "History Mystery"; (3) "Iowa's Weather History"; (4) "Weather Wonders"; (6) "Seasonal Jobs"; (7) "Fiction: Winter Courage"; (8) "Stayin'…

  5. Workgroup Report: Base Stations and Wireless Networks—Radiofrequency (RF) Exposures and Health Consequences

    PubMed Central

    Valberg, Peter A.; van Deventer, T. Emilie; Repacholi, Michael H.

    2007-01-01

    Radiofrequency (RF) waves have long been used for different types of information exchange via the airwaves—wireless Morse code, radio, television, and wireless telephony (i.e., construction and operation of telephones or telephonic systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephony and base stations are not likely to adversely affect human health. PMID:17431492

  6. Workgroup report: base stations and wireless networks-radiofrequency (RF) exposures and health consequences.

    PubMed

    Valberg, Peter A; van Deventer, T Emilie; Repacholi, Michael H

    2007-03-01

    Radiofrequency (RF) waves have long been used for different types of information exchange via the air waves--wireless Morse code, radio, television, and wireless telephone (i.e., construction and operation of telephones or telephone systems). Increasingly larger numbers of people rely on mobile telephone technology, and health concerns about the associated RF exposure have been raised, particularly because the mobile phone handset operates in close proximity to the human body, and also because large numbers of base station antennas are required to provide widespread availability of service to large populations. The World Health Organization convened an expert workshop to discuss the current state of cellular-telephone health issues, and this article brings together several of the key points that were addressed. The possibility of RF health effects has been investigated in epidemiology studies of cellular telephone users and workers in RF occupations, in experiments with animals exposed to cell-phone RF, and via biophysical consideration of cell-phone RF electric-field intensity and the effect of RF modulation schemes. As summarized here, these separate avenues of scientific investigation provide little support for adverse health effects arising from RF exposure at levels below current international standards. Moreover, radio and television broadcast waves have exposed populations to RF for > 50 years with little evidence of deleterious health consequences. Despite unavoidable uncertainty, current scientific data are consistent with the conclusion that public exposures to permissible RF levels from mobile telephone and base stations are not likely to adversely affect human health. PMID:17431492

  7. Trends and uncertainties in U.S. cloud cover from weather stations and satellite data

    NASA Astrophysics Data System (ADS)

    Free, M. P.; Sun, B.; Yoo, H. L.

    2014-12-01

    Cloud cover data from ground-based weather observers can be an important source of climate information, but the record of such observations in the U.S. is disrupted by the introduction of automated observing systems and other artificial shifts that interfere with our ability to assess changes in cloudiness at climate time scales. A new dataset using 54 National Weather Service (NWS) and 101 military stations that continued to make human-augmented cloud observations after the 1990s has been adjusted using statistical changepoint detection and visual scrutiny. The adjustments substantially reduce the trends in U.S. mean total cloud cover while increasing the agreement between the cloud cover time series and those of physically related climate variables such as diurnal temperature range and number of precipitation days. For 1949-2009, the adjusted time series give a trend in U.S. mean total cloud of 0.11 ± 0.22 %/decade for the military data, 0.55 ± 0.24 %/decade for the NWS data, and 0.31 ± 0.22 %/decade for the combined dataset. These trends are less than half those in the original data. For 1976-2004, the original data give a significant increase but the adjusted data show an insignificant trend of -0.17 (military stations) to 0.66 %/decade (NWS stations). The differences between the two sets of station data illustrate the uncertainties in the U.S. cloud cover record. We compare the adjusted station data to cloud cover time series extracted from several satellite datasets: ISCCP (International Satellite Cloud Climatology Project), PATMOS-x (AVHRR Pathfinder Atmospheres Extended) and CLARA-a1 (CM SAF cLoud Albedo and RAdiation), and the recently developed PATMOS-x diurnally corrected dataset. Like the station data, satellite cloud cover time series may contain inhomogeneities due to changes in the observing systems and problems with retrieval algorithms. Overall we find good agreement between interannual variability in most of the satellite data and that in our station data, with the diurnally corrected PATMOS-x product generally showing the best match. For the satellite period 1984-2007, trends in the U.S. mean cloud cover from satellite data vary widely among the datasets, and all are more negative than those in the station data, with PATMOS-x having the trends closest to those in the station data.

  8. Terrestrial photography as a complementary measurement in weather stations for snow monitoring

    NASA Astrophysics Data System (ADS)

    Pimentel, Rafael; José Pérez-Palazón, María; Herrero, Javier; José Polo, María

    2015-04-01

    Snow monitoring constitutes a basic key to know snow behaviour and evolution, which have particular features in semiarid regions (i.e. highly strong spatiotemporal variability, and the occurrence of several accumulation-melting cycles throughout the year). On one hand, traditional snow observation, such as snow surveys and snow pillows have the inconvenience of a limited accessibility during snow season and the impossibility to cover a vast extension. On the other hand, satellite remote sensing techniques, largely employed in medium to large scale regional studies, has the disadvantage of a fixed spatial and temporal resolutions which in some cases are not able to reproduce snow processes at small scale. An economic alternative is the use of terrestrial photography which scales are adapted to the study problem. At the microscale resolution permits the continuous monitoring of snow, adapting the resolution of the observation to the scales of the processes. Besides its use as raw observation datasets to calibrate and validate models' results, terrestrial photography constitutes valuable information to complement weather stations observations. It allows the discriminating possible mistakes in meteorological observations (i.e. overestimation on rain measurements) and a better understanding of snow behaviour against certain weather agents (i.e. blowing snow). Thus, terrestrial photography is a feasible and convenient technique to be included in weather monitoring stations in mountainous areas in semiarid regions.

  9. Sensor web enablement in a network of low-energy, low-budget amateur weather stations

    NASA Astrophysics Data System (ADS)

    Herrnkind, S.; Klump, J.; Schmidt, G.

    2009-04-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a „proof of concept" we equipped amateur weather stations with low-budget, standard components to read the data from its base station and feed the weather observation data into the sensor observation service using its standard web-service interface. We chose amateur weather station as an example because of the simplicity of measured phenomena and low data volume. As sensor observation service we chose the open source software package offered by the 52°North consortium. Furthermore, we investigated registry services for sensors and measured phenomena. When deploying a sensor platform in the field, power consumption can be an issue. Instead of common PCs we used Network Storage Link Units (NSLU2) with a Linux operating system, also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 1W, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular set-up is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple set-up, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  10. STATISTICAL CORRELATIONS OF SURFACE WIND DATA: A COMPARISON BETWEEN A NATIONAL WEATHER SERVICE STATION AND A NEARBY AEROMETRIC MONITORING NETWORK

    EPA Science Inventory

    This report presents a statistical analysis of wind data collected at a network of stations in the Southeast Ohio River Valley. The purpose of this study is to determine the extent to which wind measurements made by the National Weather Service (NWS) station at the Tri-State Airp...

  11. Weather-related Ground Motions Recorded by Taiwan Broadband Seismic Network Stations

    NASA Astrophysics Data System (ADS)

    Yang, C. F.; Chi, W. C.

    2014-12-01

    Broadband seismometers record ground motions, which can be induced by weather-related processes. Analyzing such signals might help to better understand those natural processes. Previously, abnormal seismic signals have been detected during rainfall and snowmelt events. The amplitudes of those seismic signals correlated with the variations of the discharge in a nearby river and scientists have proposed that such signals were generated by bed load transport. Here, we used the continuous seismic data from the Broadband Array in Taiwan for Seismology (BATS) to analyze the weather-related ground motions during rainfall events. The sampling rate for seismic data is 100 samples per second. We compared the seismic data with the precipitation data from the rain gauge stations in Taiwan in three select rainfall periods, Typhoon Kalmaegi in 2008, Typhoon Morakot in 2009 and the East Asian rainy season in 2012. During raining, the Power Spectral Density (PSD) of high frequency (> 1 Hz) seismic noises is apparently high, and the amplitude of the seismic noise also correlates with the local precipitation, especially at the stations in the drainage basins, and the PSD decreased gradually after peaks of precipitation. At some seismic stations, we observed vertical ground motions at several bands of frequencies: 0-1 Hz, 1-5 Hz, and 5-45 Hz. However, on horizontal components we found the 5-45 Hz energy splits into two bands: 5-25 Hz and 30-45 Hz. For stations near the ridge tops or on the coastal plain, the 30-45 Hz band energy is weaker or missing. Preliminary results show that the amplitudes of the seismic waves correlate with the stream flow discharge. Next, we plan to study the sources of the different bands of energy to examine if we can monitor and quantify natural processes, like precipitation and river discharge, using seismic signals.

  12. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Disclosure requirements for wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section 15.216 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY...

  13. 47 CFR 15.216 - Disclosure requirements for wireless microphones and other low power auxiliary stations capable...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Disclosure requirements for wireless microphones and other low power auxiliary stations capable of operating in the core TV bands. 15.216 Section 15.216 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL RADIO FREQUENCY...

  14. Low-energy, low-budget sensor web enablement of an amateur weather station

    NASA Astrophysics Data System (ADS)

    Schmidt, G.; Herrnkind, S.; Klump, J.

    2008-12-01

    Sensor Web Enablement (OGC SWE) has developed in into a powerful concept with many potential applications in environmental monitoring and in other fields. This has spurred development of software applications for Sensor Observation Services (SOS), while the development of client applications still lags behind. Furthermore, the deployment of sensors in the field often places tight constraints on energy and bandwidth available for data capture and transmission. As a "proof of concept" we equipped an amateur weather station with low-budget, standard components to read the data from its base station and feed it into a sensor observation service using its standard web- service interface. We chose the weather station as an example because of its simple measured phenomena and its low data volume. As sensor observation service we chose the open source software package offered by the 52North consortium. Power consumption can be problematic when deploying a sensor platform in the field. Instead of a common PC we used a Network Storage Link Unit (NSLU2) with a Linux operating system, a configuration also known as "Debian SLUG". The power consumption of a "SLUG" is of the order of 2 to 5 Watt, compared to 40W in a small PC. The "SLUG" provides one ethernet and two USB ports, one used by its external USB hard-drive. This modular setup is open to modifications, for example the addition of a GSM modem for data transmission over a cellular telephone network. The simple setup, low price, low power consumption, and the low technological entry-level allow many potential uses of a "SLUG" in environmental sensor networks in research, education and citizen science. The use of a mature sensor observation service software allows an easy integration of monitoring networks with other web services.

  15. AIRS Observations of DomeC in Antarctica and Comparison with Automated Weather Stations (AWS)

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Gregorich, Dave; Broberg, Steve

    2006-01-01

    We compare the surface temperatures at Dome Concordia (DomeC) deduced from AIRS data and two Automatic Weather Stations at Concordia Station: AWS8989 , which has been in operation since December 1996, and AWS.it, for which data are available between January and November 2005. The AWS8989 readings are on average 3 K warmer than the AWS.it readings, with a warmer bias in the Antarctic summer than in the winter season. Although AIRS measures the skin brightness temperature, while the AWS reports the temperature of the air at 3 meter above the surface, the AIRS measurements agree well with the AWS.it readings for all data and separately for the summer and winter seasons, if data taken in the presence of strong surface inversions are filtered out. This can be done by deducing the vertical temperature gradient above the surface directly from the AIRS temperature sounding channels or indirectly by noting that extreme vertical gradients near the surface are unlikely if the wind speed is more than a few meters per second. Since the AIRS measurements are very well calibrated, the agreement with AWS.it is very encouraging. The warmer readings of AWS8989 are likely due to thermal contamination of the AWS8989 site by the increasing activity at Concordia Station. Data from an AWS.it quality station could be used for the evaluation of radiometric accuracy and stability of polar orbiting sounders at low temperatures. Unfortunately, data from AWS.it was available only for a limited time. The thermal contamination of the AWS8989 data makes long-term trends deduced from AWS8989 and possibly results about the rapid Antarctic warming deduced from other research stations on Antarctica suspect. AIRS is the first hyperspectral infrared sounder designed in support of weather forecasting and climate research. It was launched in May 2002 on the EOS Aqua spacecraft into a 704 km altitude polar sun-synchronous orbit. The lifetime of AIRS, estimated before launch to be at least 5 years is, based on the latest evaluation, limited by the amount of attitude control gas on the EOS Aqua spacecraft, which is expected to last through 2015.

  16. Multi-decadal Estimation of Trends in Evapotranspiration from Weather Station Data using a New Approach

    NASA Astrophysics Data System (ADS)

    Rigden, A. J.; Salvucci, G.; Gentine, P.

    2013-12-01

    We apply a new method of estimating evapotranspiration using historical weather station data and analyze the associated trends in evapotranspiration in the context of climate change. The method used to estimate ET is described and validated at field sites elsewhere (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291). The approach is built around the idea that the key, rate-limiting, parameter of typical ET models, the land-surface resistance to water vapor transport, can be estimated from an emergent relationship between the diurnal cycle of the relative humidity profile and ET. The emergent relation is that the vertical variance of the relative humidity profile is less than what would occur for increased or decreased evaporation rates, suggesting that land-atmosphere feedback processes minimize this variance. This relation was found to hold over a wide range of climate conditions (arid to humid) and limiting factors (soil moisture, leaf area, energy). Using this relation, daily estimates of ET are obtained across the United States for the second half of the twentieth century using meteorological data measured at common weather stations, without requiring measurements of surface limiting factors (soil moisture, leaf area, canopy conductance). Required measurements include diurnal air temperature, specific humidity, wind speed, and net shortwave radiation. Using relatively simple models for the less commonly measured radiation terms (incoming long wave radiation, dependent on screen height air temperature and humidity, and ground heat flux, dependent on surface temperature), estimates of daily ET are made and compared with a water budget estimate of ET using UNH GRDC runoff dataset across the United States. The estimated ET trends (both annual and seasonal) are regional and the variability of the ET trends can be attributed to three terms: radiation (longwave down + net shortwave), surface resistance, and atmospheric resistance. An analysis of ET trends and the associated drivers of these trends will be presented.

  17. Modelling monthly precipitation with circulation weather types for a dense network of stations over Iberia

    NASA Astrophysics Data System (ADS)

    Cortesi, N.; Trigo, R. M.; Gonzalez-Hidalgo, J. C.; Ramos, A. M.

    2013-02-01

    Precipitation over the Iberian Peninsula (IP) is highly variable and shows large spatial contrasts between wet mountainous regions to the north, and dry regions in the inland plains and southern areas. In this work, we modelled the relationship between atmospheric circulation weather types (WTs) and monthly precipitation for the wet half of the year (October to May) using a 10 km grid derived from a high-density dataset for the IP (3030 precipitation series, overall mean density one station each 200 km2). We detected two spatial gradients in the relationship between WTs and precipitation. The percentage of monthly precipitation explained by WTs varies from northwest (higher variance explained) to southeast (lower variance explained). Additionally, in the IP the number of WTs that contribute significantly to monthly precipitation increase systematically from east to west. Generally speaking, the model performance is better to the west than to the east where the WTs approach produce the less accurate results. We applied the WTs modelling approach to reconstruct the long-term precipitation time series for three major stations of Iberia (Lisbon, Madrid, Valencia).

  18. Improvements to water use and water stress estimates with the addition of IR and net radiometers to weather stations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is often estimated with the Penman-Monteith (P-M) equation. Net radiation (Rn) is a major component of the surface energy balance and an input to the P-M equation, but it is challenging and expensive to measure accurately. For these reasons, most weather stations do not inclu...

  19. Using Satellite Imagery with ET Weather Station Networks to Map Crop Water Use for Irrigation Scheduling: TOPS-SIMS.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration estimates for scheduling irrigation must be field specific and real time. Weather station networks provide daily reference ET values, but users need to select crop coefficients for their particular crop and field. A prototype system has been developed that combines satellite image...

  20. Long-Range Wireless Mesh Network for Weather Monitoring in Unfriendly Geographic Conditions

    PubMed Central

    Toledano-Ayala, Manuel; Herrera-Ruiz, Gilberto; Soto-Zarazúa, Genaro M.; Rivas-Araiza, Edgar A.; Bazán Trujillo, Rey D.; Porrás-Trejo, Rafael E.

    2011-01-01

    In this paper a long-range wireless mesh network system is presented. It consists of three main parts: Remote Terminal Units (RTUs), Base Terminal Units (BTUs) and a Central Server (CS). The RTUs share a wireless network transmitting in the industrial, scientific and medical applications ISM band, which reaches up to 64 Km in a single point-to-point communication. A BTU controls the traffic within the network and has as its main task interconnecting it to a Ku-band satellite link using an embedded microcontroller-based gateway. Collected data is stored in a CS and presented to the final user in a numerical and a graphical form in a web portal. PMID:22164008

  1. Boreal Atmospheric circulation patterns on the basis of the world network weather station data

    NASA Astrophysics Data System (ADS)

    Melnikov, V. A.; Moskalenko, L. V.; Golenko, N. N.; Golenko, M. N.

    2012-04-01

    Due to the recent developments of various methods of data representation in meteorology, the image of the globe-scale atmospheric circulation system has appeared. Basically, the circulation assessment is based on the indirect teleconnection method and rotated principal component analysis of the sea level pressure or geopotential height fields. These methods have several constraints because of the integration of intermittent and frontal atmospheric synoptic variability.As follows from the work of prof. B.L. Dzerdzeevskii, due to the existing of Arctic blocking processes, simplified geostrophic wind concept on the basis of the low-frequency baric patterns of the permanent centers of action, should be reconsidered in more details. For this purpose, weather station direct in-situ data with the use of progressive vector diagrams for wind speed and direction time series visualization are appropriate. Wind diagrams incorporate various fluctuations with time scales from synoptic to climatic, which can be considered without any filtration applied. The subject of work is to study the long-term wind regimes in the Northern Hemisphere, with the aim to obtain atmospheric circulation patterns in the regions of interest, in particular induced by the NAO(North Atlantic oscillation), EAWR(East Atlantic-West Russia) and SH(Siberian High) centers of action at different time and space scales. The analysis is based on the standard meteorological data (including wind direction and speed) of WMO network weather stations in the period since 1998 up to the present. For intercalibration and validation, NCEP-NCAR and QuickSCAT sea winds databases were considered, as well. Basic features of the wind variability are governed by the relevant types of the large-scale synoptic atmospheric processes, which depend upon the state of the global atmospheric circulation, their large-scale gyres and separate smaller vorticity cells. All the individual wind diagrams appear as having rather simple low-frequency structure. Long-term wind variations were splitted to winter and summer seasons. Schematic view of the troposhere circulation in NCP(North-Caspian Pattern) or EAWR baric permanent structure was not confirmed by the data in hand. According to the weather stations around the Black Sea, the climatic winds have cyclonic vorticity, the center of rotation being located approximately over Turkey. The evolution of fields from small to large time scales is carried out by the "universal" set of wind vector variations, which due to their crucial role deserves a special name "Elementary cycle" (EC). Typical EC variations are described by a cyclic wind change from one persistent direction to another. The similarity of EC variations at different time scales is considered as wind fractality. It is shown, that the fractality is due to recurrence of basic regional baric synoptic fields. Fractal dimensions on the basis of wavelet decomposition and statistical significance using Monte Carlo technique were estimated.

  2. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1.3-octave spectrograms.

  3. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server can control the operations of the field stations for calibration and for recording of measurement data. A test engineer positions and activates the WAMS. The WAMS automatically establishes the wireless network. Next, the engineer performs pretest calibrations. Then the engineer executes the test and measurement procedures. After the test, the raw measurement files are copied and transferred, through the wireless network, to a hard disk in the control server. Subsequently, the data are processed into 1/3-octave spectrograms.

  4. Characteristics of intense space weather events as observed from a low latitude station during solar minimum

    NASA Astrophysics Data System (ADS)

    Paul, A.; Roy, B.; Ray, S.; Das, A.; Dasgupta, A.

    2011-10-01

    Using a dual-frequency high-resolution software-based GPS receiver, TEC and phase have been monitored from Calcutta, India situated near the northern crest of the Equatorial Ionization Anomaly for studying some Space Weather events during 2008-2010. Data from a dual-frequency Ionospheric TEC and Scintillation Monitor operational at this station under the international SCINDA program of the U.S. Air Force have also been used. This paper presents two cases of intense Space Weather events occurring in the equatorial latitudes under magnetically quiet conditions during the abnormally prolonged minimum of solar cycle 24. High values of S4 with maximum ˜0.8 were noted on GPS links located almost due south of Calcutta (22.58°N, 88.38°E geographic; magnetic dip: 32°N) when the look angles of the satellites are more-or-less aligned with the axis of the anisotropic field-aligned irregularities over the magnetic equator. Associated bite-outs in TEC of amplitude 40 units were recorded in the local post-sunset hours. Well-defined patches of phase scintillations and associated cycle slips were identified. On these days, higher values of ambient ionization were noted and the diurnal maximum of the electrojet strength was found to be delayed followed by a significant rise of the F region with a high upward drift velocity over the magnetic equator around sunset indicated by ionosonde. Measurements of in situ ion density using LEO DMSP corroborate the F region height rise. Presence of irregularities in ionization density distributions around 450km was found from C/NOFS measurements.

  5. Energy balance of a glacier surface: Analysis of automatic weather station data from the Morteratschgletscher, Switzerland

    NASA Astrophysics Data System (ADS)

    Oerlemans, J.; Klok, E. J.

    2002-11-01

    We describe and analyze a complete 1-yr data set from an automatic weather station (AWS) located on the snout of the Morteratschgletscher, Switzerland. The AWS stands freely on the glacier surface and measures pressure, windspeed, wind direction, air temperature and humidity, incoming and reflected solar radiation, incoming and outgoing longwave radiation, snow temperature, and change in surface height (giving melt rates and snow accumulation). The wind is downglacier most of the time. As expected for a flow of katabatic origin, for air temperatures above the melting point we find a correlation between windspeed and temperature. We evaluate all significant components of the surface energy flux. For a (constant) turbulent exchange coefficient of 0.00153 (reference height 3.5 m) we obtain a perfect match between calculated and measured ice melt. The sensible heat flux is positive (towards the glacier surface) all the time with the largest values on fine summer days (daily mean values are typically 100 W m(-2) on the warmest days). The latent heat flux is small and negative in winter. In summer it is mainly positive (condensation), but negative values also occur. Altogether about 75% of the melt energy is supplied by radiation (shortwave and longwave) and 25% by the turbulent fluxes.

  6. Using stochastic activity networks to study the energy feasibility of automatic weather stations

    SciTech Connect

    Cassano, Luca; Cesarini, Daniel; Avvenuti, Marco

    2015-03-10

    Automatic Weather Stations (AWSs) are systems equipped with a number of environmental sensors and communication interfaces used to monitor harsh environments, such as glaciers and deserts. Designing such systems is challenging, since designers have to maximize the amount of sampled and transmitted data while considering the energy needs of the system that, in most cases, is powered by rechargeable batteries and exploits energy harvesting, e.g., solar cells and wind turbines. To support designers of AWSs in the definition of the software tasks and of the hardware configuration of the AWS we designed and implemented an energy-aware simulator of such systems. The simulator relies on the Stochastic Activity Networks (SANs) formalism and has been developed using the Möbius tool. In this paper we first show how we used the SAN formalism to model the various components of an AWS, we then report results from an experiment carried out to validate the simulator against a real-world AWS and we finally show some examples of usage of the proposed simulator.

  7. National Scale Rainfall Map Based on Linearly Interpolated Data from Automated Weather Stations and Rain Gauges

    NASA Astrophysics Data System (ADS)

    Alconis, Jenalyn; Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo; Lester Saddi, Ivan; Mongaya, Candeze; Figueroa, Kathleen Gay

    2014-05-01

    In response to the slew of disasters that devastates the Philippines on a regular basis, the national government put in place a program to address this problem. The Nationwide Operational Assessment of Hazards, or Project NOAH, consolidates the diverse scientific research being done and pushes the knowledge gained to the forefront of disaster risk reduction and management. Current activities of the project include installing rain gauges and water level sensors, conducting LIDAR surveys of critical river basins, geo-hazard mapping, and running information education campaigns. Approximately 700 automated weather stations and rain gauges installed in strategic locations in the Philippines hold the groundwork for the rainfall visualization system in the Project NOAH web portal at http://noah.dost.gov.ph. The system uses near real-time data from these stations installed in critical river basins. The sensors record the amount of rainfall in a particular area as point data updated every 10 to 15 minutes. The sensor sends the data to a central server either via GSM network or satellite data transfer for redundancy. The web portal displays the sensors as a placemarks layer on a map. When a placemark is clicked, it displays a graph of the rainfall data for the past 24 hours. The rainfall data is harvested by batch determined by a one-hour time frame. The program uses linear interpolation as the methodology implemented to visually represent a near real-time rainfall map. The algorithm allows very fast processing which is essential in near real-time systems. As more sensors are installed, precision is improved. This visualized dataset enables users to quickly discern where heavy rainfall is concentrated. It has proven invaluable on numerous occasions, such as last August 2013 when intense to torrential rains brought about by the enhanced Southwest Monsoon caused massive flooding in Metro Manila. Coupled with observations from Doppler imagery and water level sensors along the Marikina River, the local officials used this information and determined that the river would overflow in a few hours. It gave them a critical lead time to evacuate residents along the floodplain and no casualties were reported after the event.

  8. Comparative Analysis of Thunderstorm Activity in the West Caucasus According to the Instrumental Measurements and Weather Stations Observations

    NASA Astrophysics Data System (ADS)

    Knyazeva, Zalina; Gergokova, Zainaf; Gyatov, Ruslan; Boldyreff, Anton

    2014-05-01

    The number of thunderstorms days is one of the main characteristics of thunderstorms. In most cases, the number of days with different meteorological phenomena are the climate characteristic of the area. This characteristic is a common climate indicator. The comparative analysis of thunderstorms days quantity, received with lightning detector LS 8000 by Vaisala and weather stations of Krasnodar District (Russia), is presented. For this purpose the Krasnodar region was divided into 19 sites. The thunderstorm days amount and their comparison were conducted for each site according to the data of weather stations and LS 8000 lightning detectors. Totally 29 weather stations are located in this area. The number of thunderstorm days per year for the period of 2009-2012 was determined according to data, received from stations. It was received that average annual number of thunderstorm days for this area was from 33 to 39 days. The majority of thunderstorm days per year (up to 77) was registered in the south of Krasnodar region and on the Black Sea coast. The lowest thunderstorm activity (about 20 days) was observed in the North of the region. To compare visual and voice data for calculating thunderstorm days quantity of the Krasnodar region, the day was considered thundery if at least one weather station registered a storm. These instrumental observations of thunderstorms allow to obtain the basic characteristics and features of the distribution of thunderstorm activity over a large territory for a relatively short period of time. However, some characteristics such as thunderstorms intensity, damages from lightning flashes and others could be obtained only with instrumental observations. The territory of gathering thunderstorm discharges data by system LS8000 is limited by perimeter of 2250 km and square of 400 000 km2. According to the instrumental observations, the majority of storm activity also takes place on the Black Sea coast, near the cities of Sochi and Tuapse. Thus the number of thunderstorm days data characterized by the values from 49 to 158. To compare instrumental and visual-voice observations the difference between thunderstorms days quantity, obtained with visual-voice and instrumental methods, was selected as an indicator of thunderstorm activity. Total number of thunderstorm days in the Krasnodar region during 4 years is 565 according to the lightning detectors and 519 according to the weather stations. The presence of significant differences was revealed to compare number of thunderstorm days between instrumental observations and weather stations data. Thus the value of the average number of thunderstorms days on 29 meteorological stations of the Krasnodar region is reached 33-39 days. At the same time, 49-138 thunderstorm days were recorded according to the LS8000 system. This difference is caused by two factors: 1) limitations of visual-audio thunderstorms detection method at weather stations; 2) development of thunderstorms in a limited areas of the Krasnodar region, which is not the whole territory.

  9. Using Arduinos and 3D-printers to Build Research-grade Weather Stations and Environmental Sensors

    NASA Astrophysics Data System (ADS)

    Ham, J. M.

    2013-12-01

    Many plant, soil, and surface-boundary-layer processes in the geosphere are governed by the microclimate at the land-air interface. Environmental monitoring is needed at smaller scales and higher frequencies than provided by existing weather monitoring networks. The objective of this project was to design, prototype, and test a research-grade weather station that is based on open-source hardware/software and off-the-shelf components. The idea is that anyone could make these systems with only elementary skills in fabrication and electronics. The first prototypes included measurements of air temperature, humidity, pressure, global irradiance, wind speed, and wind direction. The best approach for measuring precipitation is still being investigated. The data acquisition system was deigned around the Arduino microcontroller and included an LCD-based user interface, SD card data storage, and solar power. Sensors were sampled at 5 s intervals and means, standard deviations, and maximum/minimums were stored at user-defined intervals (5, 30, or 60 min). Several of the sensor components were printed in plastic using a hobby-grade 3D printer (e.g., RepRap Project). Both passive and aspirated radiation shields for measuring air temperature were printed in white Acrylonitrile Butadiene Styrene (ABS). A housing for measuring solar irradiance using a photodiode-based pyranometer was printed in opaque ABS. The prototype weather station was co-deployed with commercial research-grade instruments at an agriculture research unit near Fort Collins, Colorado, USA. Excellent agreement was found between Arduino-based system and commercial weather instruments. The technology was also used to support air quality research and automated air sampling. The next step is to incorporate remote access and station-to-station networking using Wi-Fi, cellular phone, and radio communications (e.g., Xbee).

  10. The International Space Station as a Launch Platform for CubeSats to Study Space Weather

    NASA Astrophysics Data System (ADS)

    Fish, C. S.; Swenson, C.; Sojka, J. J.

    2011-12-01

    The Ionosphere-Thermosphere-Mesosphere (ITM) region (80 to 250 km) is the boundary between the sensible atmosphere of the Earth and space. This region receives energy and momentum contributions from the sun in the form of solar ultra-violet light and electromagnetic energy coupled via the earth's magnetosphere. The ITM region also receives energy and momentum from the lower atmosphere via waves that break and terminate turbulently in this beach-like region. The various processes, acting both as system drivers and feedback elements in the ITM region, are still poorly understood and the weather of the ITM region cannot be predicted. It is also the area where satellite drag ensures a quick end to satellite lifetimes and it has thus become known as the "inaccessible region." As the terrestrial populations wrestle with the question of "change" (global, climate, etc), our need to continue making long-term measurements is crucial, but is hampered by cost and launch opportunities for even smaller dedicated satellites. The ITM region itself has been identified as a region where almost un-measurable atmospheric changes have very measurable consequences. The International Space Station (ISS), orbiting just above this "inaccessible region", is an ideal platform from which CubeSats can be launched to study the region below. It could become a permanent launch platform for regular or responsive deployment of the small satellite fleet. For example, a group of satellites could be launched in response to a storm or an important lower atmospheric event that has been identified as occurring. Such satellites would last approximately one year before re-entering the upper atmosphere. It is an ideal location from which to routinely launch probes into the inaccessible region below to maintain a long term climate observational capability. The advantage of the ISS is that deployments of these small satellites is not contingent on finding a suitable ground based launch opportunity, whose scheduling could never be triggered by a storm type scenario. The relatively high the ISS orbit inclination also provides complete mid-latitude and equatorial coverage; during storms, the regions of interest are exactly these. We propose that 100 to 200 CubeSats could be stationed on the ISS as an Exposed Facility on the Japanese Experiment Module. Many of these spacecraft would be identical copies for space weather purposes but several different types of CubeSats could be accommodated. Small constellations would be deployed from the ISS over time by ground command. The CubeSat dispenser would eject spacecraft in the down and aft direction consistent with the ISS jettison policy to insure safety for the ISS. The dispenser would also provide the ability to communicate and recharge the hosted CubeSats through the ISS systems to maintain the CubeSats over an extended stay at the ISS. This ability would require modifications to the existing CubeSat standard. Within this paper we describe the conceptual design of such a CubeSat deplorer system for the ISS and the systems level study conducted at Utah State University - Space Dynamics Laboratory for the National Science Foundation on these concepts.

  11. Analysis of fog occurrence on E11-A75 Motorway, with weather station data in relation to satellite observation

    NASA Astrophysics Data System (ADS)

    Colomb, M.; Bernardin, F.; Favier, B.; Mallet, E.; Laurantin, O.

    2010-07-01

    Transport is often disturbed in wintertime by fog occurrence causing delay. Fog may also be responsible for dramatic accidents causing injuries and fatalities. For meteorological weather services, fog is defined as when visibility is less than 1000 m. However, for road traffic, when visibility becomes less than 200 m, fog is considered a traffic hazard for road transport. Fog forecast remains a difficult task. Satellite observation combined with surface measurements by a network of road weather stations can provide short-term information that could be useful to assist traffic authorities in taking decisions relating to traffic control measures or drivers information. Satellite images allow to identify cloud types and to establish a map of the risk of fog occurrence. The surface measurements help to discriminate between low clouds and fog. The analysis method has already been tested last winter on some case studies on the motorway E11-A75 in Auvergne region in France, thanks to a network of 15 weather stations along the 300 km of motorway. In the highest area that is between 580 and 1100 m, the value of the relative humidity has been analysed in relation to the visibility measured by a diffusiometer and the observations of road maintenance staff. The main results will be presented and connected to the traditional synoptic network of Météo-France. In order to improve the map of fog risks, the requirement to have relevant data has been pointed out, especially for the relative humidity near the ground surface (i.e. 2 m above the ground). To go further in this investigation, one weather station, at the Col de la Fageole, has been identified as having the greatest occurrence of dense fog, i.e. less than 200 m. Then it has been decided to enrich the instrumentation at this observation point later on with a present weather sensor and with a camera. This paper will focus on the physical data of the weather station. It will be examined how the additional data of the new sensor, the meteorological visibility and the discrimination of the nature of precipitation will help to improve the analysis.

  12. Modelling the seasonal cycle of dissolved oxygen in the upper ocean at ocean weather station P

    NASA Astrophysics Data System (ADS)

    Thomas, F.; Garcon, V.; Minster, J.-F.

    1990-03-01

    Three main processes regulate the variations of dissolved O 2 concentrations in the surface waters: gas exchange at the air-sea interface, vertical mixing and biological activity of marine organisms. A one-dimensional integral mixed layer model ( GASPAR, 1988) is used to study the temporal evolution of monthly averaged dissolved O 2 content of surface waters at Ocean Weather Station P, and to assess the relative importance of the various contributing mechanisms during 1969-1972. Production and consumption due to biological activity are taken into account as an input function of the model. A large part of the seasonal signal of dissolved O 2 in surface waters can be reproduced by the physical model without biological activity. However, kinetics of gas exchange, biological production and entrainment of sub-mixed layer water all contribute by the same order of magnitude to supersaturation during warming periods and undersaturation during cooling periods. Various shapes (over depth and time) of production-consumption function have been tested for the year 1970. Most of the evolution of monthly average dissolved O 2 in the surface waters can be obtained (1) with a total annual production rate of the order of 5 mol O 2 m -2 y -1, (2) with a constant production throughout the year and in the 0-50 m layer, and (3) with logarithmic decrease in consumption between 50 and 300 m. The relative influence of various parameters on the three processes supplying O 2 to the surface waters is investigated. Total annual production P seems to be the most influential. Vertical mixing and depth of photic zone, z 0, affect the gas exchange flux during the cooling season. Episodic events, like storms, modify the supersaturation of the mixed layer O 2 content by up to 4 mmol m -3, but gas exchange later draws back this content towards a smooth evolution curve. Finally, the sensitivity of the net annual gas exchange to various parameters is too large for the model to provide a reliable value.

  13. Comparison of parallel temperature measurements from conventional and automatic weather stations at Fabra Observatory (Barcelona).

    NASA Astrophysics Data System (ADS)

    Aguilar, Enric; Gilabert, Alba; Prohom, Marc

    2013-04-01

    Fabra Observatory , located in a promontory at 411 meters above sea level in the outskirts of Barcelona, hosts a continuous climate record since 1913. Additionally, it has been recording since 1996 simultaneous temperature and precipitation data with conventional instruments and automated systems. The automatization of recording sites employed with climatological purposes is happening elsewhere in the country and across the globe. Unfortunately, in most cases long lasting parallel measurements, are not kept. Thereafter, this site offers an excellent opportunity to study the impact of the introduction of Automatic Weather Stations (AWS). The conventional station (CON) equips a liquid in glass thermometer, located inside a standard Stevenson screen. The automatic measurements (AWS) have been taken using MCV-STA sensors sheltered in a MCV small plate-like ventilated screen between 1996 and the end of July 2007. For our analysis, this MCV period is split in two (T1, T2) due to an obvious jump in the differences AWS-CON in October 2002, produced by unknown reasons. From August 2007 to the present (T3), a Vaisala HMP45AL sensor was placed inside a Stevenson Screen and used for automatic measurements. For daily maximum temperatures, the median differences reach 3.2C in T1, 1.1C in T2 and merely -0.1C in T3. In this later period, 94% of the differences are comprised in a 0.5C range, compared to 23% in T2 and only 6% in T1. It is interesting to note how the overheating of the MCV screen dominates the difference series, as 85% of the AWS values taken in T1 and T2 are warmer than the conventional measurements, contrasting with only 27% of cases during T3, when the automated measurements were taken inside a Stevenson screen. These differences are highly temperature dependent: low (high) AWS temperatures are associated with small (large) differences with the CON series. This effect is also evident if temperatures are analyzed by seasons: summer differences are much higher than winter differences in T1 (median value of 3.6C vs 2.6C) and T2 (1.7C vs. 1.0 C). In T3, the effect of sheltering makes winter AWS temperatures slightly cooler (-0.2C), meanwhile summer median difference is 0.0C. This effect is also noticed when looking at other elements such as the sunshine hours. Days with very short sunshine periods (<=3 hours) are characterized by lower median differences in T1 and T2 (1.6C/0.4C) compared to those days with more than 10 hours of sunshine (3.8C/1.6C). For T3, in days with low sunshine duration, the AWS tends to be cooler by -0.2C, meanwhile the median difference for days with more than 10 hours of sunshine is 0.0C. Also, windy, rainless and high pressure days are linked to high temperature differences in T1 and T2. The AWS-CON differences for daily minimum temperatures are smaller and more uniform in all cases. In T1 and T2 (0.4C for both periods) compared to those found in the daily maximum values. Also, the percentage of differences in a 0.5 range approaches 50% in T1 and T2. In contrast, T3 median difference doubles to -0.2C, compared to daily maximum temperature, although the percentage of differences inside the 0.5 range remains at 94%. As can be seen, the sheltering differences become less important during nighttime. Not surprisingly, about 80% of the values in T1 and T2 and 93% in T3 are cooler in the AWS. Seasonally, in winter, the 3 periods show a median difference of -0.3. During summer, nighttime values recorded at the MCV screen (T1, T2) differ by -0.5C to the conventional thermometer readings, meanwhile the Vaisala sensor sheltered inside a Stevenson screen, has a median difference of -0.1C with the conventional data. Also, although there is a relation with other climate elements such as sunshine duration, pressure, wind or precipitation, it is less remarkable than in the daytime values. In the framework of the Spanish project CGL2012-32193, "Determination and evaluation of the bias introduced by the automatation of meteorological stations in climate time series", the different segments of Fabra Observatory, as well as other series across the country with available parallel measurements, will be further evaluated and adjusted using state-of-the- art correction methods.

  14. One-Dimensional Coupled Ecosystem-Carbon Flux Model for the Simulation of Biogeochemical Parameters at Ocean Weather Station P

    NASA Technical Reports Server (NTRS)

    Signorini, S.; McClain, C.; Christian, J.; Wong, C. S.

    2000-01-01

    In this Technical Publication, we describe the model functionality and analyze its application to the seasonal and interannual variations of phytoplankton, nutrients, pCO2 and CO2 concentrations in the eastern subarctic Pacific at Ocean Weather Station P (OWSP, 50 deg. N 145 deg. W). We use a verified one-dimensional ecosystem model, coupled with newly incorporated carbon flux and carbon chemistry components, to simulate 22 years (1958-1980) of pCO2 and CO2 variability at Ocean Weather Station P (OWS P). This relatively long period of simulation verifies and extends the findings of previous studies using an explicit approach for the biological component and realistic coupling with the carbon flux dynamics. The slow currents and the horizontally homogeneous ocean in the subarctic Pacific make OWS P one of the best available candidates for modeling the chemistry of the upper ocean in one dimension. The chlorophyll and ocean currents composite for 1998 illustrates this premise. The chlorophyll concentration map was derived from SeaWiFS data and the currents are from an OGCM simulation (from R. Murtugudde).

  15. Evaluation of radar and automatic weather station data assimilation for a heavy rainfall event in southern China

    NASA Astrophysics Data System (ADS)

    Hou, Tuanjie; Kong, Fanyou; Chen, Xunlai; Lei, Hengchi; Hu, Zhaoxia

    2015-07-01

    To improve the accuracy of short-term (0-12 h) forecasts of severe weather in southern China, a real-time storm-scale forecasting system, the Hourly Assimilation and Prediction System (HAPS), has been implemented in Shenzhen, China. The forecasting system is characterized by combining the Advanced Research Weather Research and Forecasting (WRF-ARW) model and the Advanced Regional Prediction System (ARPS) three-dimensional variational data assimilation (3DVAR) package. It is capable of assimilating radar reflectivity and radial velocity data from multiple Doppler radars as well as surface automatic weather station (AWS) data. Experiments are designed to evaluate the impacts of data assimilation on quantitative precipitation forecasting (QPF) by studying a heavy rainfall event in southern China. The forecasts from these experiments are verified against radar, surface, and precipitation observations. Comparison of echo structure and accumulated precipitation suggests that radar data assimilation is useful in improving the short-term forecast by capturing the location and orientation of the band of accumulated rainfall. The assimilation of radar data improves the short-term precipitation forecast skill by up to 9 hours by producing more convection. The slight but generally positive impact that surface AWS data has on the forecast of near-surface variables can last up to 6-9 hours. The assimilation of AWS observations alone has some benefit for improving the Fractions Skill Score (FSS) and bias scores; when radar data are assimilated, the additional AWS data may increase the degree of rainfall overprediction.

  16. Generalized Potential Temperature in a Diagnostic Study of High Impact Weather over an Urban Station of India

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Sutapa; Dutta, Debashree

    2014-08-01

    The tropospheric atmosphere is neither absolutely dry nor completely saturated. It is, in general, moist. The purpose of the present study is to reveal the role of generalized potential temperature (GPT) in describing the humid state of the real moist atmosphere pertaining to understanding the prevalence of high impact weather systems over an urban station, Kolkata (22°32'N; 88°20'E), of India. A comparative study among GPT, equivalent potential temperature (EPT), potential temperature and relative humidity to reveal the significance of GPT in a precise understanding of the high impact weather of Kolkata is carried out. To attain the objectives, 50 cases of thunderstorms, 15 cases of tropical cyclones and 15 heavy rainfall days are selected during the pre-monsoon season (April-May) over Kolkata (22°32'N; 88°20'E), India. The condition—decision support system of rough set theory is adopted as the methodology. The result of the study reveals that GPT is the most pertinent convective parameter in estimating the prevalence of the high impact weather of Kolkata during the pre-monsoon season and is observed to be better than RH. The results, thus, show that the moist air is capable of describing the distribution of water vapour and thermodynamic properties of the real atmosphere more precisely than an absolutely dry and completely saturated state of the atmosphere.

  17. On Deployment of Multiple Base Stations for Energy-Efficient Communication in Wireless Sensor Networks

    DOE PAGESBeta

    Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; Du, Xiaojiang; Kwon, Ki-Hyeon

    2010-01-01

    Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less

  18. A Sounding-based Severe Weather Tool to Support Daily Operations at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H.; Roeder, William P.

    2014-01-01

    People and property at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) are at risk when severe weather occurs. Strong winds, hail and tornadoes can injure individuals and cause costly damage to structures if not properly protected. NASA's Launch Services Program and Ground Systems Development and Operations Program and other KSC programs use the daily and weekly severe weather forecasts issued by the 45th Weather Squadron (45 WS) to determine if they need to limit an activity such as working on gantries, or protect property such as a vehicle on a pad. The 45 WS requested the Applied Meteorology Unit (AMU) develop a warm season (May-September) severe weather tool for use in the Meteorological Interactive Data Display System (MIDDS) based on the late morning, 1500 UTC (1100 local time), CCAFS (XMR) sounding. The 45 WS frequently makes decisions to issue a severe weather watch and other severe weather warning support products to NASA and the 45th Space Wing in the late morning, after the 1500 UTC sounding. The results of this work indicate that certain stability indices based on the late morning XMR soundings can depict differences between days with reported severe weather and days with no reported severe weather. The AMU determined a frequency of reported severe weather for the stability indices and implemented an operational tool in MIDDS.

  19. Corrective Action Decision Document for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada

    SciTech Connect

    U.S. Department of Energy, Nevada Operations Office

    1999-07-22

    This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative appropriate to facilitate the closure of Corrective Action Unit (CAU) 321, Weather Station Fuel Storage, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 321 is located at the Nevada Test Site (NTS) in Area 22, and consists of a single Corrective Action Site (CAS) 22-99-05, Fuel Storage Area. This CAS contains a fuel storage area approximately 325 by 540 feet, which was used to store fuel and other petroleum products necessary for motorized operations at the historical Camp Desert Rock facility, which was operational from 1951 to 1958. The corrective action investigation conducted in February 1999 found the only contaminant of concern above preliminary action levels to be total petroleum hydrocarbons as diesel-range organics at two sample locations. During this investigation, the two corrective action objectives identified were (1) to prevent or mitigate exposure to near-surface soil containing contaminants of concern, and (2) to prevent spread of contaminants of concern beyond the corrective action unit. Based on the corrective action objectives, the two corrective action alternatives developed for consideration were: Alternative 1 - No Further Action; and Alternative 2 - Clean Closure by Excavation and Disposal. The two alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors, and the preferred corrective action alternative chosen on technical merit, focusing on performance, reliability, feasibility, and safety was Alternative 2. This alternative meets all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the contaminated soils at the Weather Station Fuel Storage site.

  20. Climatology of the East Antarctic ice sheet (100[degrees]E to 140[degrees]E) derived from automatic weather stations

    SciTech Connect

    Allison, I. ); Wendler, G. ); Radok, U. )

    1993-05-20

    The authors present a climate picture of a large share of eastern Antarctica, arrived at from records obtained from automatic weather stations. These stations have permitted sampling of such data over extended periods of time, which have not been possible before. Data from remote sensing units has been sampled by the ARGOS data collection system on the NOAA series satellites since the late 1970's. Data is presented on temperature, pressure, and wind speed and direction.

  1. Teachers guide for building and operating weather satellite ground stations for high school science

    NASA Technical Reports Server (NTRS)

    Summers, R. J.; Gotwald, T.

    1981-01-01

    A number of colleges and universities are operating APT direct readout stations. However, high school science teachers have often failed to realize the potential of meteorological satellites and their products as unique instructional tools. The ability to receive daily pictures from these satellites offers exciting opportunities for secondary school teachers and students to assemble the electronic hardware and to view real time pictures of Earth from outer space. The station and pictures can be used in the classroom to develop an approach to science teaching that could span many scientific disciplines and offer many opportunities for student research and participation in scientific processes. This can be accomplished with relatively small expenditures of funds for equipment. In most schools some of the equipment may already be available. Others can be constructed by teachers and/or students. Yet another source might be the purchase of used equipment from industry or through the government surplus channels. The information necessary for individuals unfamiliar with these systems to construct a direct readout for receiving real time APT photographs on a daily basis in the classroom is presented.

  2. Concentration of atmospheric carbon dioxide at Ocean Weather Station P from 1969 to 1981

    SciTech Connect

    Keeling, C.D.; Whorf, T.P.; Wong, C.S.; Bellagay, R.D.

    1985-10-20

    From May 1959 to June 1981 the concentration of atmospheric carbon dioxide was measured in 2419 samples of air collected on a weather ship situated at 50/sup 0/N and 145/sup 0/W in the North Pacific Ocean. Three principal characteristics of the variation in concentration of atmospheric CO/sub 2/ are revealed by these data: an annual variation that repeats with nearly the same pattern each year, an interannual variation that correlates with the large-scale circulation of the atmosphere, and a long-term increase that is nearly proportional to the global input of CO/sub 2/ from the combustion of fossil fuels. The peak-to-trough amplitude of the smoothed annual signal increased from 13.3 ppM in 1969 to 14.5 ppM in 1981. The phasing of the annual CO/sub 2/ cycle suggests a close relation to the activity of land plants in the broad region of the northern hemisphere where plants grow mainly during the summer. The increasing amplitude suggests a heightening plant activity. The interannual variation and its first derivative correlate with the Southern Oscillation. A lag of 6 months in the derivative suggests a distant oceanic or terrestrial source-sink in the tropics or southern hemisphere. The seasonally adjusted CO/sub 2/ concentration increased from 324.9 ppM in May 1969 to 340.8 ppM in June 1981. This increase is 60% of the increase that would have occurred if all the CO/sub 2/ from fossil fuel combustion had remained in the atmosphere and had been uniformly distributed there. The seasonally adjusted concentration, when averaged from 1975 to 1981, is 0.8 ppM lower than that found at Point Barrow, Alaska, at 71/sup 0/N and 0.9 ppM higher than that found at Mauna Loa Observatory, Hawaii, at 19/sup 0/N, suggesting a steadily decreasing concentration in CO/sub 2/ from north to south in the broad band from 70/sup 0/N to 20/sup 0/N.

  3. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of…

  4. Weather Instruments.

    ERIC Educational Resources Information Center

    Brantley, L. Reed, Sr.; Demanche, Edna L.; Klemm, E. Barbara; Kyselka, Will; Phillips, Edwin A.; Pottenger, Francis M.; Yamamoto, Karen N.; Young, Donald B.

    This booklet presents some activities to measure various weather phenomena. Directions for constructing a weather station are included. Instruments including rain gauges, thermometers, wind vanes, wind speed devices, humidity devices, barometers, atmospheric observations, a dustfall jar, sticky-tape can, detection of gases in the air, and pH of

  5. Phenology model from weather station meteorology does not predict satellite-based onset

    NASA Astrophysics Data System (ADS)

    Fisher, J. I.; Richardson, A. D.; Mustard, J. F.

    2006-12-01

    Seasonal temperature changes in temperate forests are known to trigger the start of spring growth, and both interannual and spatial variations in spring growth have been tied to climatic variability. Satellite data are finding increased use in regional and global phenological studies, but to date there have been few efforts to rigorously tie remotely sensed phenology to surface climate records. Where satellite records have been compared to broad-scale climate patterns, broadleaf deciduous forests have typically been characterized as a single functional type and differences between communities ignored. We used a simple two-parameter spring warming model to explore the relationship between interannual climate variability and satellite-based phenology in New England broadleaf temperate forests. We employed daily air temperature records between 2000 and 2005 from 171 NOAA meteorological stations to parameterize a simple spring warming model predicting the date of MODIS half-maximum greenness (spring onset). We find that the best model starts accumulating heating degree days (HDD) after March 20th and when average daily temperatures exceed 5°C. Critical heat sums to reach onset range from 150 to 300 degree-days, with increasing requirements southward and in coastal regions. In our findings, the spring warming model offers little improvement on the photoperiod null model (i.e. the average date of onset). However, differences between the relative goodness-of-fit of the spring warming model compared to the null (coined the 'climate sensitivity ratio', or CSR) displayed unexpected spatial coherency. The spatial variation in CSR appears to be related to differences in forest composition, with clear differences between northern (beech-maple-birch) and central (oak-hickory) hardwood forests. The two forest types may respond to climate differently, with disparate sensitivities to the minimum temperature initiating spring growth (3 and 6°C, respectively). We conclude that spatial location and species composition are critical factors which regulate the phenological response to climate. Regardless of model choice, satellite observations of temperate phenology cannot be effectively tied to climate without regard to community composition.

  6. Corrective Action Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada

    SciTech Connect

    D. S. Tobiason

    2000-06-01

    The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Weather Station Fuel Storage. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during February 1999. Soil samples were collected using a direct-push method. Soil samples were collected at 0.6-m (2-ft) intervals from the surface to 1.8 m (6 ft) below ground surface. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE, 1999b). Soil sample results indicated that two locations in the bermed area contain total petroleum hydrocarbons (TPH) as diesel at concentrations of 124 milligrams per kilogram (mg/kg) and 377 mg/kg. This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). The TPH-impacted soil will be removed and disposed as part of the corrective action.

  7. Insolation data manual: long-term monthly averages of solar radiation, temperature, degree-days and global anti K/sub T/ for 248 national weather service stations

    SciTech Connect

    Knapp, C L; Stoffel, T L; Whitaker, S D

    1980-10-01

    Monthly averaged data is presented which describes the availability of solar radiation at 248 National Weather Service stations. Monthly and annual average daily insolation and temperature values have been computed from a base of 24 to 25 years of data. Average daily maximum, minimum, and monthly temperatures are provided for most locations in both Celsius and Fahrenheit. Heating and cooling degree-days were computed relative to a base of 18.3/sup 0/C (65/sup 0/F). For each station, global anti K/sub T/ (cloudiness index) were calculated on a monthly and annual basis. (MHR)

  8. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada

    SciTech Connect

    DOE /NV

    1999-01-28

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

  9. Wireless environmental data acquisition for the international space station (for mission flights 3A, 4A, 5A and 7A.1)

    NASA Astrophysics Data System (ADS)

    Kiefer, Karl; Champaigne, Kevin

    1999-01-01

    Invocon, Inc. has developed a next generation data acquisition and communications network to be deployed in, on, and around space structures under construction. This Wireless Instrumentation System (WIS) is a highly integrated remote data acquisition system for use in a wide variety of distributed sensor applications. Typical applications include modal analysis, condition-based maintenance, structural monitoring and manufacturing process control. Designed for NASA Johnson Space Center, the system will monitor critical temperatures during the assembly of the International Space Station (ISS), and verify structural dynamics models for the ISS on-orbit. Similar units are used on Navy aircraft for flight testing data acquisition. The relaying network is automatically configured by the imbedded system software, which provides for simple installation and consistent operation in almost any environment. The ability to relocate the data acquisition electronics near the sensors decreases setup costs and reduces ``noise'' induced on analog signals by long wires. The first WIS hardware items flew as a Risk Mitigation Experiment on STS-83 in November of 1996 and STS-94 in July of 1997. The next phase of WIS involves development of the IWIS or Internal Wireless Instrumentation System and the SWIS or Shuttle Wireless Instrumentation System. IWIS, the internal system, will be deployed by the astronauts inside the partially completed ISS to collect data on the impulse response of the structure. The Shuttle-based system (SWIS) will provide units installed on the outside of the Station modules prior to launch. As the ISS modules are removed from the Cargo Bay and transferred to the assembly point on the Station, the SWIS data gathering units will transfer sensor data from the ISS module to the Crew Compartment of the Shuttle where the data will be down-linked to Mission Control for use by the flight controllers.

  10. An Intelligent Weather Station

    PubMed Central

    Mestre, Gonçalo; Ruano, Antonio; Duarte, Helder; Silva, Sergio; Khosravani, Hamid; Pesteh, Shabnam; Ferreira, Pedro M.; Horta, Ricardo

    2015-01-01

    Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN) algorithm and artificial neural network (ANN) models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead. PMID:26690433

  11. An Intelligent Weather Station.

    PubMed

    Mestre, Gonçalo; Ruano, Antonio; Duarte, Helder; Silva, Sergio; Khosravani, Hamid; Pesteh, Shabnam; Ferreira, Pedro M; Horta, Ricardo

    2015-01-01

    Accurate measurements of global solar radiation, atmospheric temperature and relative humidity, as well as the availability of the predictions of their evolution over time, are important for different areas of applications, such as agriculture, renewable energy and energy management, or thermal comfort in buildings. For this reason, an intelligent, light-weight, self-powered and portable sensor was developed, using a nearest-neighbors (NEN) algorithm and artificial neural network (ANN) models as the time-series predictor mechanisms. The hardware and software design of the implemented prototype are described, as well as the forecasting performance related to the three atmospheric variables, using both approaches, over a prediction horizon of 48-steps-ahead. PMID:26690433

  12. Lessons Learned JSC Micro-Wireless Instrumentation Systems on Space Shuttle and International Space Station CANEUS 2006

    NASA Technical Reports Server (NTRS)

    Studor, George

    2007-01-01

    A viewgraph presentation on lessons learned from NASA Johnson Space Center's micro-wireless instrumentation is shown. The topics include: 1) Background, Rationale and Vision; 2) NASA JSC/Structural Engineering Approach & History; 3) Orbiter Wing Leading Edge Impact Detection System; 4) WLEIDS Confidence and Micro-WIS Lessons Learned; and 5) Current Projects and Recommendations.

  13. Record of Technical Change No.1 for ``Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada''

    SciTech Connect

    DOE /NV

    1999-02-16

    This Record of Technical Change provides updates to the technical information provided in ''Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada,'' Revision 0. The change specified is in Table 3-1 on page 11. The total lead analyte should specify a Minimum Reporting Limit for soil of 1.0 mg/kg instead of 0.3 mg/kg. The EMAX laboratory cannot meet the 0.3 mg/kg limit.

  14. Linking the Annual Variation of Snow Radar-derived Accumulation in West Antarctica to Long-term Automatic Weather Station Measurements

    NASA Astrophysics Data System (ADS)

    Feng, B.; Braaten, D. A.; Gogineni, P.; Paden, J. D.; Leuschen, C.; Purdon, K.

    2013-12-01

    Understanding the snow accumulation rate on polar ice sheets is important in assessing mass balance and ice sheet contribution to sea level rise. Measuring annual accumulation on a regional scale and extending back in time several decades has been accomplished using the Center for Remote Sensing of Ice Sheets (CReSIS) Snow Radar on the NASA DC-8 that is part of NASA's Ice-Bridge project. The Snow Radar detects and maps near-surface internal layers in polar firn, operating from 2- 6 GHz and providing a depth resolution of ~4 cm. During November 2011, Snow Radar data were obtained for large areas of West Antarctica, including a flight segment that passed within ~70 km of Byrd Station (80°S, 119°W). Byrd Station has a very long automatic weather station (AWS) record, extending from present to 1980, with 3 relatively brief gaps in the record. The AWS data for Byrd Station were obtained from the Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin. The L1B Snow Radar data products, available from the National Snow and Ice Data Center (NSIDC), were analyzed using layer picking software to obtain the depth of reflectors in the firn that are detected by the radar. These reflectors correspond to annual markers in the firn, and allow annual accumulation to be determined. Using the distance between the reflectors and available density profiles from ice cores, water equivalent accumulation for each annual layer back to 1980 is obtained. We are analyzing spatial variations of accumulation along flight lines, as well as variations in the time series of annual accumulation. We are also analyzing links between annual accumulation and surface weather observations from the Byrd Station AWS. Our analyses of surface weather observations have focused on annual temperature, atmospheric pressure and wind extremes (e.g. 5th and 95th percentiles) and links to annual snow accumulation. We are also examining satellite-derived sea ice extent records for the Bellingshausen and Amundsen seas sector (60°W-120°W) over the same 31-year time period and comparing results to annual snow accumulation. Results from this work will be presented at the meeting.

  15. Climatology of the East Antarctic ice sheet (100°E to 140°E) derived from automatic weather stations

    NASA Astrophysics Data System (ADS)

    Allison, Ian; Wendler, Gerd; Radok, Uwe

    1993-05-01

    A decade ago, automatic weather stations (AWS) were placed in remote areas of Antarctica where little or no information on the meteorological conditions was available. These stations report to the ARGOS data collection system onboard polar orbiting satellites of the NOAA series. The Australian National Antarctic Research Expeditions (ANARE) and the United States Antarctic Research Program (USARP) of the National Science Foundation (with logistic support from the French Expéditions Polaires Françaises (EPF)) have built up two AWS data nets in East Antarctica. There are a total of 16 stations in the area 55°-145°E and 65°-75°S, stretching from sea level to above 3000 m altitude. The records of 10 of these stations are sufficiently long to be adequate for a climatological study of the basic parameters of surface temperature, pressure, and wind and have been used in this study. The station data were reduced to a common format and interpreted jointly to describe the broad-scale climatic features of the ice sheet. Climatological results include (1) an absolute lowest minimum temperature of -84.6°C at Dome C; (2) no minimum below -40°C at D10 near the coast; (3) a "coreless" winter temperature regime, without seasonal temperature trends for 6 months, at all stations; (4) mean surface wind speeds increasing to maxima near, rather than at, the coast; (5) high directional constancy in all seasons, with directions closer to the fall line in winter and during night hours than in summer and during day hours; (7) a distinct semiannual pressure variation with a main minimum in spring (September) and a secondary minimum in autumn (March); and (8) interrelationships among surface temperature, pressure, and wind related to the ice sheet topography.

  16. A proposal for a unified process to improve probabilistic ground snow loads in the United States using SNODAS modeled weather station data

    NASA Astrophysics Data System (ADS)

    DePaolo, Michael Robert

    Snow loads govern roof design in many parts of the United States. These loads are largely prescribed by the American Society of Civil Engineers ASCE 7 Standard for minimum design loads. Where ASCE 7 does not specify snow loads due to extreme local variability, such as in the West, many state jurisdictions have developed individual roof snow load documents and maps. However, among the western states border discrepancies and a general lack of uniformity in the methodology for developing such loads indicates a need for a unified approach. This paper proposes a methodology to develop ground snow loads for the western United States, the application of which is illustrated for the state of Colorado. An innovative approach is taken which utilizes a hydrological snowpack model, Snow Data Assimilation System (SNODAS), developed by NOAA. This model provides estimates of ground snow depth and snow water content, easily convertible into loads, at 588 SNODAS weather stations in Colorado. The methodology proposed here then incorporates statistical techniques such as principal component analysis (PCA) and multivariate cluster analyses to regionalize the SNODAS stations by key shared properties. Several types of cluster analyses are evaluated including agglomerative hierarchical clustering (AHC), k-means, and a PCA-based method. Using various statistical and practical measures of quality, a step-wise hybrid method combining both AHC and k-means techniques is found to be the most statistically sound and robust clustering method. A relationship is then developed between ground snow depths and ground snow loads for each cluster of SNODAS weather stations. This paper proposes the following additional steps. A database of National Weather Service CO-OP stations with snow depth only measurements is gathered for the state of interest. The 50-year ground snow depths are extrapolated by testing the goodness-of-fit of several probability distributions. The ground snow depth-load relationships for each cluster produced by the hybrid method are then coupled with these 50-year ground snow depths to produce 50-year ground snow loads. Finally, these ground snow loads are mapped in GIS software using a Kriging geostatistical interpolation method to create continuous snow load isolines.

  17. Workstation-Based Real-Time Mesoscale Modeling Designed for Weather Support to Operations at the Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Manobianco, John; Zack, John W.; Taylor, Gregory E.

    1996-01-01

    This paper describes the capabilities and operational utility of a version of the Mesoscale Atmospheric Simulation System (MASS) that has been developed to support operational weather forecasting at the Kennedy Space Center (KSC) and Cape Canaveral Air Station (CCAS). The implementation of local, mesoscale modeling systems at KSC/CCAS is designed to provide detailed short-range (less than 24 h) forecasts of winds, clouds, and hazardous weather such as thunderstorms. Short-range forecasting is a challenge for daily operations, and manned and unmanned launches since KSC/CCAS is located in central Florida where the weather during the warm season is dominated by mesoscale circulations like the sea breeze. For this application, MASS has been modified to run on a Stardent 3000 workstation. Workstation-based, real-time numerical modeling requires a compromise between the requirement to run the system fast enough so that the output can be used before expiration balanced against the desire to improve the simulations by increasing resolution and using more detailed physical parameterizations. It is now feasible to run high-resolution mesoscale models such as MASS on local workstations to provide timely forecasts at a fraction of the cost required to run these models on mainframe supercomputers. MASS has been running in the Applied Meteorology Unit (AMU) at KSC/CCAS since January 1994 for the purpose of system evaluation. In March 1995, the AMU began sending real-time MASS output to the forecasters and meteorologists at CCAS, Spaceflight Meteorology Group (Johnson Space Center, Houston, Texas), and the National Weather Service (Melbourne, Florida). However, MASS is not yet an operational system. The final decision whether to transition MASS for operational use will depend on a combination of forecaster feedback, the AMU's final evaluation results, and the life-cycle costs of the operational system.

  18. WegenerNet climate station network region Feldbach/Austria: From local measurements to weather and climate data products at 1 km-scale resolution

    NASA Astrophysics Data System (ADS)

    Kabas, T.; Leuprecht, A.; Bichler, C.; Kirchengast, G.

    2010-12-01

    South-eastern Austria is characteristic for experiencing a rich variety of weather and climate patterns. For this reason, the county of Feldbach was selected by the Wegener Center as a focus area for a pioneering observation experiment at very high resolution: The WegenerNet climate station network (in brief WegenerNet) comprises 151 meteorological stations within an area of about 20 km × 15 km (~ 1.4 km × 1.4 km station grid). All stations measure the main parameters temperature, humidity and precipitation with 5 minute sampling. Selected further stations include measurements of wind speed and direction completed by soil parameters as well as air pressure and net radiation. The collected data is integrated in an automatic processing system including data transfer, quality control, product generation, and visualization. Each station is equipped with an internet-attached data logger and the measurements are transferred as binary files via GPRS to the WegenerNet server in 1 hour intervals. The incoming raw data files of measured parameters as well as several operating values of the data logger are stored in a relational database (PostgreSQL). Next, the raw data pass the Quality Control System (QCS) in which the data are checked for its technical and physical plausibility (e.g., sensor specifications, temporal and spatial variability). In consideration of the data quality (quality flag), the Data Product Generator (DPG) results in weather and climate data products on various temporal scales (from 5 min to annual) for single stations and regular grids. Gridded data are derived by vertical scaling and squared inverse distance interpolation (1 km × 1 km and 0.01° × 0.01° grids). Both subsystems (QCS and DPG) are realized by the programming language Python. For application purposes the resulting data products are available via the bi-lingual (dt, en) WegenerNet data portal (www.wegenernet.org). At this time, the main interface is still online in a system in which MapServer is used to import spatial data by its database interface and to generate images of static geographic formats. However, a Java applet is additionally needed to display these images on the users local host. Furthermore, station data are visualized as time series by the scripting language PHP. Since February 2010, the visualization of gridded data products is a first step to a new data portal based on OpenLayers. In this GIS framework, all geographic information (e.g., OpenStreetMap) is displayed with MapServer. Furthermore, the visualization of all meteorological parameters are generated on the fly by a Python CGI script and transparently overlayed on the maps. Hence, station data and gridded data are visualized and further prepared for download in common data formats (csv, NetCDF). In conclusion, measured data and generated data products are provided with a data latency less than 1-2 hours in standard operation (near real time). Following an introduction of the processing system along the lines above, resulting data products are presented online at the WegenerNet data portal.

  19. Airborne wireless communication systems, airborne communication methods, and communication methods

    DOEpatents

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  20. A processing-modeling routine to use rough data from automatic weather stations in snowpack mass dynamics modeling at fine temporal resolutions

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; De Michele, Carlo; Ghezzi, Antonio; Jommi, Cristina; Pepe, Monica

    2015-04-01

    We discuss a proposal of coupled routine to process rough data from automatic weather stations at an hourly resolution and to model snowpack mass dynamics. Seasonal snow represents an important component of the water cycle in mountain environment, and the modeling of its mass dynamics is a living topic in modern hydrology, given the expected modifications of the climate in the near future. Nevertheless, model forcing, calibration and evaluation operations are often hampered by the noisiness of rough data from automatic weather stations. The noise issue include, among others, non-physical temperature-based fluctuations of the signal or gauge under-catch. Consequently, it can be difficult to quantify precipitation inputs, accumulation/ablation periods or melt-runoff timing and amounts. This problem is particularly relevant at fine temporal resolution (e.g., the hourly one). To tackle this issue, 40 SNOTEL sites from western US are here considered, and the proposed processing-modeling routine is applied on multi-year datasets to assess its performances to both process hourly data and model snowpack dynamics. A simple one-layer snowpack model is used for this purpose. Specific attention is paid to remove sub-daily erroneous oscillations of snow depth. Under these assumptions, we can separate events of different types and recover catch deficiency by means of a data-fusion procedure that relies on the mass conservation law, instead of site- or instrument-specific relations. Since the considered model needs the calibration of two parameters, and given that sub-daily physical oscillations in snow depth data are difficult to be separated from instrument noise, a coupled processing-modeling procedure has been designed. Results prove that noise can be successfully removed from data, and that sub-daily data-series can be exploited as useful sources to model snowpack dynamics.

  1. Diurnal variation of the global fair weather current from measurements at a Negev desert station in Israel

    NASA Astrophysics Data System (ADS)

    Elhalel, G.; Yair, Y.; Price, C.; Halatzi, S.; Reuveni, Y.; Shtibelman, D.

    2012-04-01

    The global electrical circuit (GEC) postulates a constant downward flowing current (Jz) equal to ~2 pA m-2 (Williams, 2009). We have been measuring the vertical fair-weather atmospheric electrical current from May 2011 continuously at the Wise astronomical observatory in the Negev desert, Israel. The instrument used is a modified version of the GDACCS design described by Bennet and Harrison (2008) which is capable of measuring the fair-weather current density with an accuracy of 0.4 pA m-2. The sensors are placed on a flat 1.5m x 1.5m concrete surface 150m away from the observatory. The signal is passed in a differential mode to the computer at the observatory, sampled at 250Hz by the data acquisition program (LabView) and saved to 1 minute files with a GPS time stamp every 1 second. The results show a clear daily pattern in the fluctuation of the fair weather vertical current Jz measured at the surface. The presence of airborne dust should reduce the conductivity (due to the attachment of small ions to aerosol particles). When analyzing the data with larger temporal resolution we note a strong correlation between the wind speed at the surface, the relative humidity and the Jz, suggesting the movement of space charge and rapid changes in the atmospheric conductivity. Additionally, we report initial indications for a response in Jz to the external forcing of geomagnetic conditions such as storms induced by solar flares, as evident from the correlation we find between Jz and Kp in solar quiescent and storm conditions. Bennett, A.J., Harrison, R.G. (2009), Evidence for global circuit current flow through water droplet layers. J. Atmos. Sol. Terr Phys. 71 (12), 1219-1221, doi:10.1016/j.jastp.2009.04.011. Williams, E. R. (2009), The global electrical circuit, Atmos. Res., 91, 2-4, doi:10.1016/j.atmosres.2008.05.018

  2. Challenges for Environmental Wireless Sensor Networks (WSNs) (Invited)

    NASA Astrophysics Data System (ADS)

    Liang, X.; Davis, T. W.

    2013-12-01

    There are many challenges posed to researchers looking to collect eco-hydrological information with monitoring systems exposed to the natural environment due, in part, to the unpredictable interactions between the environment and the wireless hardware and the scale of the deployment. While wireless sensor network technology has introduced autonomy and pervasiveness to studying the environment, it is not a panacea for outdoor monitoring systems. Despite the fact that each outdoor deployment will encounter its own unique set of challenges, it is often a benefit to researchers to know what problems were faced during other deployments and how these problems were mitigated or solved. This work examines a long-term (i.e., multi-year) environmental wireless sensor network which was deployed in a forested hill-sloped region of western Pennsylvania, USA and the main challenges that were encountered. These include: (1) the startup and maintenance costs of the wireless network; (2) the data collection system and remote access to the network; (3) the security of the network hardware and software; and (4) the reliability of wireless network connectivity. Based on our field study, it was found that while wireless sensor networks (WSNs) have less expensive startup costs compared to similarly sized wired systems (such as data logging), the WSN has relatively high maintenance costs as it requires frequent site visits (mean of 38 days per wireless node). One possible way to reduce the maintenance costs is by adjusting the sampling and/or collection frequency of the wireless nodes. In addition to the high maintenance costs, wireless communications, especially over complex networks, have low success rates of data capture from the field (approximately 50%). Environmental conditions, such as background noise, interference and weather conditions, may significantly influence the wireless communications. Technological advancements (such as smart sampling and data compression) are being developed to improve the data success rates within WSNs. Furthermore, a complex network of monitoring devices depends on the reliability of base station and gateway system for collecting, storing, and analyzing data from the field. Limitations and vulnerabilities in base station designs can lead to network outages and loss of data. In addition to addressing the above concerns, this project also examines both the reliability and security of a networked base station.

  3. Weather monitor station and 225 GHz radiometer system installed at Sierra Negra: the Large Millimeter Telescope site

    NASA Astrophysics Data System (ADS)

    Ferrusca, D.; Contreras R., J.

    2014-07-01

    The Large Millimeter Telescope (LMT) is a 50-m dish antenna designed to observe in the wavelength range of 0.85 to 4 mm at an altitude of 4600 m on the summit of Sierra Negra Puebla, Mexico. The telescope has a new atmospheric monitoring system that allows technical staff and astronomers to evaluate the conditions at the site and have enough information to operate the antenna in safe conditions, atmospheric data is also useful to schedule maintenance activities and conduct scientific observations, opacity data is used to calibrate the astronomical data and evaluate the quality of the sky at millimeter wavelengths. In this paper we describe the integration of a weather atmospheric monitoring system and a 225 GHz radiometer to the facilities around the telescope and also describe the hardware integration of these systems and the software methodology used to save and process the data and then make it available in real time to the astronomers and outside world through an internet connection. Finally we present a first set of atmospheric measurements and statistics taken with this new equipment during the wet and dry seasons of 2013/2014.

  4. A Conflict-Free Low-Jitter Guaranteed-Rate MAC Protocol for Base-Station Communications in Wireless Mesh Networks

    NASA Astrophysics Data System (ADS)

    Szymanski, T. H.

    A scheduling algorithm and MAC protocol which provides low-jitter guaranteed-rate (GR) communications between base-stations (BS) in a Wireless Mesh Network (WMN) is proposed. The protocol can provision long-term multimedia services such as VOIP, IPTV, or Video-on-Demand. The time-axis is partitioned into scheduling frames with F time-slots each. A directional antennae scheme is used to provide each directed link with a fixed transmission rate. A protocol such as IntServ is used to provision resources along an end-to-end path of BSs for GR sessions. The Guaranteed Rates between the BSs are then specified in a doubly stochastic traffic rate matrix, which is recursively decomposed to yield a low-jitter GR frame transmission schedule. In the resulting schedule, the end-to-end delay and jitter are small and bounded, and the cell loss rate due to primary scheduling conflicts is zero. For dual-channel WMNs, the MAC protocol can achieve 100% utilization, as well as near-minimal queueing delays and near minimal delay jitter. The scheduling time complexity is O(NFlogNF), where N is the number of BSs. Extensive simulation results are presented.

  5. Wireless Orbiter Hang-Angle Inclinometer System

    NASA Technical Reports Server (NTRS)

    Lucena, Angel; Perotti, Jose; Green, Eric; Byon, Jonathan; Burns, Bradley; Mata, Carlos; Randazzo, John; Blalock, Norman

    2011-01-01

    A document describes a system to reliably gather the hang-angle inclination of the orbiter. The system comprises a wireless handheld master station (which contains the main station software) and a wireless remote station (which contains the inclinometer sensors, the RF transceivers, and the remote station software). The remote station is designed to provide redundancy to the system. It includes two RF transceivers, two power-management boards, and four inclinometer sensors.

  6. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2013-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and also highlights a cross-disciplinary need in both measurement and modeling to study the regional environmental, weather and climate problems in East China.

  7. Trace gases, aerosols and their interactions with synoptic weather: An overview of in-situ measurements at the SORPES Station in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Ding, A.; Fu, C.; Yang, X.; Petaja, T.; Kerminen, V.; Kulmala, M. T.

    2011-12-01

    This work presents an overview of 1 yr measurements of ozone (O3) and fine particular matter (PM2.5) and related trace gases at a recently developed regional background site, the Station for Observing Regional Processes of the Earth System (SORPES), in the western part of the Yangtze River Delta (YRD) in eastern China. Ozone and PM2.5 showed strong seasonal cycles but with contrast patterns: O3 reached a maximum in warm seasons but PM2.5 in cold seasons. Correlation analysis suggests a VOC-sensitive regime for O3 chemistry and a formation of secondary aerosols under conditions of high O3 in summer. Compared with the National Ambient Air Quality Standards in China, our measurements report 15 days of O3 exceedance and 148 days of PM2.5 exceedance during the 1 yr period, suggesting a severe air pollution situation in this region. A calculation of potential source contributions based on Lagrangian dispersion simulations suggests that emissions from the YRD contributed to over 70% of the O3 precursor CO, with a majority from the mid-YRD. North-YRD and the North China Plain are the main contributors to PM2.5pollution in this region. Case studies for typical O3 and PM2.5 episodes showed that synoptic weather played an important role in air pollution, especially for O3. Observation during the typical biomass burning seasons also shows clear air pollution - weather interactions. For the typical episode occurred on 10 June, 2012, the measurement suggest that the mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease of solar radiation by more than 70 %, of sensible heat flux over 85 %, a temperature drop by almost 10 K, and a change 10 of rainfall during daytime and nighttime. This work shows an important environmental impact from industrialization and urbanization in the YRD region, and suggests an urgent need for improving air quality in these areas through collaborative control measures among different administrative regions, and also highlights a cross-disciplinary need in both measurement and modeling to study the regional environmental, weather and climate problems in East China.

  8. Addendum to the Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada (Rev. 0, November 2000)

    SciTech Connect

    DOE /NV

    2000-11-03

    This addendum to the Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to determine the extent of contamination existing at Corrective Action Unit (CAU) 321. This addendum was required when the extent of contamination exceeded the estimate in the original Corrective Action Decision Document (CADD). Located in Area 22 on the Nevada Test Site, Corrective Action Unit 321, Weather Station Fuel Storage, consists of Corrective Action Site 22-99-05, Fuel Storage Area, was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility. This facility was operational from 1951 to 1958 and dismantled after 1958. Based on site history and earlier investigation activities at CAU 321, the contaminant of potential concern (COPC) was previously identified as total petroleum hydrocarbons (diesel-range organics). The scope of this corrective action investigation for the Fuel Storage Area will include the selection of biased sample locations to determine the vertical and lateral extent of contamination, collection of soil samples using rotary sonic drilling techniques, and the utilization of field-screening methods to accurately determine the extent of COPC contamination. The results of this field investigation will support a defensible evaluation of corrective action alternatives and be included in the revised CADD.

  9. KSC Weather and Research

    NASA Technical Reports Server (NTRS)

    Maier, Launa; Huddleston, Lisa; Smith, Kristin

    2016-01-01

    This briefing outlines the history of Kennedy Space Center (KSC) Weather organization, past research sponsored or performed, current organization, responsibilities, and activities, the evolution of weather support, future technologies, and an update on the status of the buoys located offshore of Cape Canaveral Air Force Station and KSC.

  10. A Retrospective, Iterative, Geometry-Based (RIGB) tilt-correction method for radiation observed by automatic weather stations on snow-covered surfaces: application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, Wenshan; Zender, Charles S.; van As, Dirk; Smeets, Paul C. J. P.; van den Broeke, Michiel R.

    2016-03-01

    Surface melt and mass loss of the Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh-water storage. With few other regular meteorological observations available in this extreme environment, measurements from automatic weather stations (AWS) are the primary data source for studying surface energy budgets, and for validating satellite observations and model simulations. Station tilt, due to irregular surface melt, compaction and glacier dynamics, causes considerable biases in the AWS shortwave radiation measurements. In this study, we identify tilt-induced biases in the climatology of surface shortwave radiative flux and albedo, and retrospectively correct these by iterative application of solar geometric principles. We found, over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) networks, insolation on fewer than 40 % of clear days peaks within ±0.5 h of solar noon time, with the largest shift exceeding 3 h due to tilt. Hourly absolute biases in the magnitude of surface insolation can reach up to 200 W m-2, with respect to the well-understood clear-day insolation. We estimate the tilt angles and their directions based on the solar geometric relationship between the simulated insolation at a horizontal surface and the observed insolation by these tilted AWS under clear-sky conditions. Our adjustment reduces the root mean square error (RMSE) against references from both satellite observation and reanalysis by 16 W m-2 (24 %), and raises the correlation coefficients with them to above 0.95. Averaged over the whole Greenland Ice Sheet in the melt season, the adjustment in insolation to compensate station tilt is ˜ 11 W m-2, enough to melt 0.24 m of snow water equivalent. The adjusted diurnal cycles of albedo are smoother, with consistent semi-smiling patterns. The seasonal cycles and inter-annual variabilities of albedo agree better with previous studies. This tilt-corrected shortwave radiation data set derived using the Retrospective, Iterative, Geometry-Based (RIGB) method provide more accurate observations and validations for surface energy budgets studies on the Greenland Ice Sheet, including albedo variations, surface melt simulations and cloud radiative forcing estimates.

  11. A Retrospective, Iterative, Geometry-Based (RIGB) tilt correction method for radiation observed by Automatic Weather Stations on snow-covered surfaces: application to Greenland

    NASA Astrophysics Data System (ADS)

    Wang, W.; Zender, C. S.; van As, D.; Smeets, P. C. J. P.; van den Broeke, M. R.

    2015-11-01

    Surface melt and mass loss of the Greenland Ice Sheet may play crucial roles in global climate change due to their positive feedbacks and large fresh water storage. With few other regular meteorological observations available in this extreme environment, measurements from Automatic Weather Stations (AWS) are the primary data source for studying surface energy budgets, and for validating satellite observations and model simulations. Station tilt, due to irregular surface melt and/or compaction, causes considerable biases in the AWS shortwave radiation measurements. In this study, we identify tilt-induced biases in the climatology of surface shortwave radiative flux and albedo, and retrospectively correct these by iterative application of solar geometric principles. We found, over all the AWS from the Greenland Climate Network (GC-Net), the Kangerlussuaq transect (K-transect) and the Programme for Monitoring of the Greenland Ice Sheet (PROMICE) networks, insolation on fewer than 40 % of clear days peaks within ±0.5 h of solar noon time, with the largest shift exceeding 3 h due to tilt. Hourly absolute biases in the magnitude of surface insolation can reach up to 200 W m-2. We estimate the tilt angles and their directions based on the solar geometric relationship between the simulated insolation at a horizontal surface and the observed insolation by these tilted AWS under clear-sky conditions. Our adjustment reduces the Root Mean Square Error (RMSE) against references from both satellite observation and reanalysis by ~ 20W W m-2, and raises the correlation coefficients with them to above 0.95. Averaged over the whole Greenland Ice Sheet in the melt season, the adjustment in insolation to compensate station tilt is 18 ± 13 W m-2, enough to melt 0.40 ± 0.29 m of snow water equivalent. The adjusted diurnal cycles of albedo are smoother, with consistent semi-smiling patterns. The seasonal cycles and inter-annual variabilities of albedo agree better with previous studies. This tilt-corrected shortwave radiation dataset derived using the Retrospective, Iterative, Geometry-Based (RIGB) method provide more accurate observations and validations for surface energy budgets studies on the Greenland Ice Sheet, including albedo variations, surface melt simulations and cloud radiative forcing estimates.

  12. Statistical Analysis of Model Data for Operational Space Launch Weather Support at Kennedy Space Center and Cape Canaveral Air Force Station

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III

    2010-01-01

    The 12-km resolution North American Mesoscale (NAM) model (MesoNAM) is used by the 45th Weather Squadron (45 WS) Launch Weather Officers at Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) to support space launch weather operations. The 45 WS tasked the Applied Meteorology Unit to conduct an objective statistics-based analysis of MesoNAM output compared to wind tower mesonet observations and then develop a an operational tool to display the results. The National Centers for Environmental Prediction began running the current version of the MesoNAM in mid-August 2006. The period of record for the dataset was 1 September 2006 - 31 January 2010. The AMU evaluated MesoNAM hourly forecasts from 0 to 84 hours based on model initialization times of 00, 06, 12 and 18 UTC. The MesoNAM forecast winds, temperature and dew point were compared to the observed values of these parameters from the sensors in the KSC/CCAFS wind tower network. The data sets were stratified by model initialization time, month and onshore/offshore flow for each wind tower. Statistics computed included bias (mean difference), standard deviation of the bias, root mean square error (RMSE) and a hypothesis test for bias = O. Twelve wind towers located in close proximity to key launch complexes were used for the statistical analysis with the sensors on the towers positioned at varying heights to include 6 ft, 30 ft, 54 ft, 60 ft, 90 ft, 162 ft, 204 ft and 230 ft depending on the launch vehicle and associated weather launch commit criteria being evaluated. These twelve wind towers support activities for the Space Shuttle (launch and landing), Delta IV, Atlas V and Falcon 9 launch vehicles. For all twelve towers, the results indicate a diurnal signal in the bias of temperature (T) and weaker but discernable diurnal signal in the bias of dewpoint temperature (T(sub d)) in the MesoNAM forecasts. Also, the standard deviation of the bias and RMSE of T, T(sub d), wind speed and wind direction indicated the model error increased with the forecast period all four parameters. The hypothesis testing uses statistics to determine the probability that a given hypothesis is true. The goal of using the hypothesis test was to determine if the model bias of any of the parameters assessed throughout the model forecast period was statistically zero. For th is dataset, if this test produced a value >= -1 .96 or <= 1.96 for a data point, then the bias at that point was effectively zero and the model forecast for that point was considered to have no error. A graphical user interface (GUI) was developed so the 45 WS would have an operational tool at their disposal that would be easy to navigate among the multiple stratifications of information to include tower locations, month, model initialization times, sensor heights and onshore/offshore flow. The AMU developed the GUI using HyperText Markup Language (HTML) so the tool could be used in most popular web browsers with computers running different operating systems such as Microsoft Windows and Linux.

  13. Comparison of hourly solar radiation from ground-based station, remote sensing sensors and weather forecast models: A preliminary study, in a coastal site of South Italy (Lamezia Terme).

    NASA Astrophysics Data System (ADS)

    Lo Feudo, Teresa; Avolio, Elenio; Gullì, Daniel; Federico, Stefano; Sempreviva, Annamaria; Calidonna, Claudia Roberta

    2015-04-01

    The solar radiation is a very complex parameter to cope with due to its random and nonlinear characteristics depending on changeable weather conditions and complex orography. Therefore it is a critical input parameter to address many climatic, meteorological, and solar energy issues. In this preliminary study we made an intercomparison between the hourly solar MSG SEVIRI (Meteosat Second Generation Spinning Enhanced Visible and Infrared) data product DSSF(Down-welling Surface Short-wave Flux) developed by LSA SAF( Land Surface Analysis Satellite Application Facility), a pyranometer sensor (CNR 4 Net Radiometer - Kipp&Zonen) and two weather forecast models. The solar radiation datasets were obtained from a pyranometer sensor situated in Weather Station of CNR ISAC Lamezia Terme(38,88 LAT 16,24 LON), a satellite based product DSSF with spatial resolution of 3km and outputs of two weather forecast models. Models adopted are WRF(Weather Research and Forecasting) and Rams( Regional Atmospheric Modeling System)running operatively with a 3Km horizontal resolution. Both DSSF and model outputs are extracted at Latitude and Longitude previously defined. The solar radiation performance and accuracy are evaluated for datasets segmented into two atmospheric conditions clear and cloudy sky, and both conditions, additionally, for a quantitative analysis the exact acquisition times of satellite measurements was taken into account. The RMSE and BIAS for hourly, daily and monthly - averaged solar radiation are estimated including clear and sky conditions and snow or ice cover. Comparison between DSSF product, Solar Radiation ground based pyranometer measurements and output of two weather forecast models, made over the period June2013-December2013, showed a good agreement in this costal site and we demonstrated that the forecast models generally overestimate solar radiation respect the ground based sensor and DSSF product. As results in general the RMSE monthly-averaged are calculated for datasets DFFs vs ground-based station and vs weather forecast models are respectively about 75W/m2 and 100W/m^2.

  14. Pilot Weather Advisor System

    NASA Technical Reports Server (NTRS)

    Lindamood, Glenn; Martzaklis, Konstantinos Gus; Hoffler, Keith; Hill, Damon; Mehrotra, Sudhir C.; White, E. Richard; Fisher, Bruce D.; Crabill, Norman L.; Tucholski, Allen D.

    2006-01-01

    The Pilot Weather Advisor (PWA) system is an automated satellite radio-broadcasting system that provides nearly real-time weather data to pilots of aircraft in flight anywhere in the continental United States. The system was designed to enhance safety in two distinct ways: First, the automated receipt of information would relieve the pilot of the time-consuming and distracting task of obtaining weather information via voice communication with ground stations. Second, the presentation of the information would be centered around a map format, thereby making the spatial and temporal relationships in the surrounding weather situation much easier to understand

  15. Automatic Weather Station (AWS) Lidar

    NASA Technical Reports Server (NTRS)

    Rall, Jonathan A. R.; Campbell, James; Abshire, James B.; Spinhirne, James D.; Smith, David E. (Technical Monitor)

    2001-01-01

    A ground based, autonomous, low power atmospheric lidar instrument is being developed at NASA Goddard Space Flight Center. We report on the design and anticipated performance of the proposed instrument and show data from two prototype lidar instruments previously deployed to Antarctica.

  16. Olive fruit fly adult response to attract-and-kill bait stations in greenhouse cages with weathered bait spray and a commercial table olive orchard

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An attract-and-kill trap for olive fruit fly, Bactrocera oleae (Rossi) adults, and olive foliage sprayed with insecticidal bait spray were evaluated for efficacy after 1-4 weeks in outdoor weather. Adults caged for 1-3 days with weathered material on foliage and traps in the greenhouse resulted in h...

  17. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada, Revision 0

    SciTech Connect

    Lynn Kidman

    2008-10-01

    This document constitutes an addendum to the August 2001, Corrective Action Decision Document / Closure Report for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications. In conformance with the UR Modification document, this addendum consists of: • This cover page that refers the reader to the UR Modification document for additional information • The cover and signature pages of the UR Modification document • The NDEP approval letter • The corresponding section of the UR Modification document This addendum provides the documentation justifying the cancellation of the UR for CAS 22-99-05, Fuel Storage Area. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996; as amended August 2006). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006c). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004f). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

  18. Wireless Headset Communication System

    NASA Technical Reports Server (NTRS)

    Lau, Wilfred K.; Swanson, Richard; Christensen, Kurt K.

    1995-01-01

    System combines features of pagers, walkie-talkies, and cordless telephones. Wireless headset communication system uses digital modulation on spread spectrum to avoid interference among units. Consists of base station, 4 radio/antenna modules, and as many as 16 remote units with headsets. Base station serves as network controller, audio-mixing network, and interface to such outside services as computers, telephone networks, and other base stations. Developed for use at Kennedy Space Center, system also useful in industrial maintenance, emergency operations, construction, and airport operations. Also, digital capabilities exploited; by adding bar-code readers for use in taking inventories.

  19. Wireless Power Transfer

    SciTech Connect

    2013-07-22

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  20. Wireless Power Transfer

    ScienceCinema

    None

    2013-11-19

    Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consumption. Previously worrisome traffic delays now provide longer periods of charge while passing over in-motion chargers. Inclement weather such as rain and snow do not affect the charging capability. At ORNL, we are working to develop the robust nature of wireless power technology to provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions.

  1. Weather Watch

    ERIC Educational Resources Information Center

    Bratt, Herschell Marvin

    1973-01-01

    Suggests a number of ways in which Federal Aviation Agency weather report printouts can be used in teaching the weather section of meteorology. These weather sequence reports can be obtained free of charge at most major airports. (JR)

  2. Seasonal and interannual variability of phytoplankton, nutrients, TCO2, pCO2, and O2 in the eastern subarctic Pacific (ocean weather station Papa)

    NASA Astrophysics Data System (ADS)

    Signorini, Sergio R.; McClain, Charles R.; Christian, James R.; Wong, C. S.

    2001-12-01

    A coupled, one-dimensional ecosystem/carbon flux model is used to simulate the seasonal and interannual variability of phytoplankton, nutrients, TCO2, O2, and pCO2 at ocean weather station Papa (OWS P at 50°N, 145°W). The 23-year interannual simulation (1958-1980) is validated with available data and analyzed to extend seasonal and interannual variations beyond the limited observational records. The seasonal cycles of pCO2 and sea-air CO2 flux are controlled by a combination of thermodynamics, winds, and biological uptake. There is ingassing of CO2 during the fall-winter months when SSTs are colder and wind forcing is vigorous, while there is a much smaller ingassing of CO2 during the summer when sea surface temperatures are warmer and wind speeds are reduced. Biological production plays a major role in maintaining the air-sea equilibrium. An abiotic simulation showed that OWS P would be a source of atmospheric CO2 (1.41 mol C m-2 yr-1) if the biological sink of CO2 were removed. The peak net community production in summer compensates for the increased temperature effect on pCO2, which prevents large outgassing in summer. Oxygen anomalies relative to the temperature-determined saturation value show that there is a seasonal cycle of air-sea flux, with ingassing in winter and outgassing in summer. The net surface oxygen flux is positive (0.8 mol m-2 yr-1), indicating that OWS P is a source of oxygen to the atmosphere. The average primary production is 167 g C m-2 yr-1. The 1960-1980 (1958 and 1959 spin-up years removed) mean carbon flux is -1.8 mol C m-2 yr-1, indicating that the ocean at OWS P is a sink of atmospheric carbon. The sea-air CO2 flux ranges from -1.2 to -2.3 mol C m-2 yr-1 during the 21-year simulation period. This finding emphasizes the need for long-term observations to accurately determine carbon flux budgets. A series of sensitivity experiments indicate that the seasonal variability and overall (21 years) mean of TCO2, pCO2, ΔpCO2, and air-sea CO2 flux are strongly dependent on the gas transfer formulation adopted, the total alkalinity near the surface, and the bottom (350 m) value adopted for TCO2. The secular atmospheric pCO2 upward trend is manifested in the TCO2 concentration within the upper 100 m by an increase of 15 mmol m-3 in 20 years, consistent with observations at other locations [Winn et al., 1998; Bates, 2001].

  3. RBSP Space Weather data

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Fox, N. J.; Mauk, B. H.; Barnes, R. J.; Potter, M.; Romeo, G.; Smith, D.

    2012-12-01

    On August 23, 2012, NASA will launch two identical probes into the radiation belts to provide unprecedented insight into the physical processes and dynamics of near-Earth space. The RBSP mission in addition to the scientific data return, provides a 1Kbps real-time space weather broadcast data in support of real time space weather modeling, forecast and prediction efforts. Networks of ground stations have been identified to downlink the space weather data. The RBSP instrument suites have selected space weather data to be broadcast from their collected space data on board the spacecraft, a subset from measurements based on information normally available to the instrument. The data subset includes particle fluxes at a variety of energies, and magnetic and electric field data. This selected space weather data is broadcast at all times through the primary spacecraft science downlink antennas when an observatory is not in a primary mission-related ground contact. The collected data will resolve important scientific issues and help researchers develop and improve various models for the radiation belts that can be used by forecasters to predict space weather phenomena and alert astronauts and spacecraft operators to potential hazards. The near real-time data from RBSP will be available to monitor and analyze current environmental conditions, forecast natural environmental changes and support anomaly resolution. The space weather data will be available on the RBSP Science Gateway at http://athena.jhuapl.edu/ and will provide access to the space weather data received from the RBSP real-time space weather broadcast. The near real-time data will be calibrated and displayed on the web as soon as possible. The CCMC will ingest the RBSP space weather data into real-time models. The raw space weather data will be permanently archived at APL. This presentation will provide a first look at RBSP space weather data products.

  4. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in

  5. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,

  6. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This article deals with a poster entitled, "Severe Weather," that has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in…

  7. Severe Weather

    ERIC Educational Resources Information Center

    Forde, Evan B.

    2004-01-01

    Educating the public about safety issues related to severe weather is part of the National Oceanic and Atmospheric Administration's (NOAA) mission. This month's insert, Severe Weather, has been created by NOAA to help educate the public about hazardous weather conditions. The four types of severe weather highlighted in this poster are hurricanes,…

  8. Thermal, pressure and wind fields at ground level in the area of the Italian base at Terra Nova Bay, Victoria Land, Antarctica, as observed by a network of automatic weather stations

    NASA Astrophysics Data System (ADS)

    Cogliani, E.; Abbate, G.; Racalbuto, S.

    1996-10-01

    Ground temperature, pressure and wind speed monthly averages in the area of the Italian Station at Terra Nova Bay, Antarctica, were analyzed for the period 1987-1991 by means of a network of nine AWS (automatic weather stations). Spatial configurations of temperature show a well-defined, relatively warm island in the area of Terra Nova Bay, between Drygalsky and Campbell ice tongues, throughout the year. A second warm island is present to the north along the coast, between Aviator and Mariner ice tongues, for most of the year. From February to March a rapid drop in temperature is observed at all stations. A strong thermal gradient develops during February, March, April and October, November, December, between the coastal region and inner highlands. The baric configuration follows the elevation of the area. Annual average pressure and temperature as functions of stations altitude show linear trends. Severe katabatic wind episodes are recorded at all stations, with wind speed exceeding 25 m s-1 and direction following the orographic features of the inner areas. Co-occurrences of these episodes were observed for stations located along stream lines of cold air drainage. The autocorrelation function of maximum wind speed time series shows wind persistence of 2-3 days and wind periodicity of about one week. Acknowledgements. We gratefully appreciate the on-line DMSP database facility at APL (Newell et al., 1991) from which this study has benefited greatly. We wish to thank E. Friis-Christensen for his encouragement and useful discussions. A. Y. would like to thank the Danish Meteorological Institute, where this work was done, for its hospitality during his stay there and the Nordic Baltic Scholarship Scheme for its financial support of this stay. Topical Editor K.-H. Glassmeier thanks M. J. Engebretson and H. Lühr for their help in evaluating this paper.--> Correspondence to: A. Yahnin-->

  9. High Altitude Weather Balloons to Support Rayleigh and Sodium Lidar Studies of the Troposphere, Stratosphere and Mesosphere at the Amundsen-Scott South Pole Station

    NASA Technical Reports Server (NTRS)

    Papen, George

    1995-01-01

    This proposal funded 100 high altitude weather balloons costing $15,500 to support the deployment of a Rayleigh/Raman/Na lidar at the South Pole. One year of measurements have been completed and it is estimated that the balloons will provide another 1-2 years of data.

  10. Reviews Book: Marie Curie and Her Daughters Resource: Cumulus Equipment: Alpha Particle Scattering Apparatus Equipment: 3D Magnetic Tube Equipment: National Grid Transmission Model Book: Einstein's Physics Equipment: Barton's Pendulums Equipment: Weather Station Web Watch

    NASA Astrophysics Data System (ADS)

    2013-09-01

    WE RECOMMEND Marie Curie and Her Daughters An insightful study of a resilient and ingenious family and their achievements Cumulus Simple to install and operate and with obvious teaching applications, this weather station 'donationware' is as easy to recommend as it is to use Alpha Particle Scattering Apparatus Good design and construction make for good results National Grid Transmission Model Despite its expense, this resource offers excellent value Einstein's Physics A vivid, accurate, compelling and rigorous treatment, but requiring an investment of time and thought WORTH A LOOK 3D Magnetic Tube Magnetic fields in three dimensions at a low cost Barton's Pendulums A neat, well-made and handy variant, but not a replacement for the more traditional version Weather Station Though not as robust or substantial as hoped for, this can be put to good use with the right software WEB WATCH An online experiment and worksheet are useful for teaching motor efficiency, a glance at CERN, and NASA's interesting information on the alpha-magnetic spectrometer and climate change

  11. 47 CFR 74.870 - Wireless video assist devices.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 4 2014-10-01 2014-10-01 false Wireless video assist devices. 74.870 Section... Stations § 74.870 Wireless video assist devices. Television broadcast auxiliary licensees and motion picture and television producers, as defined in § 74.801 may operate wireless video assist devices on...

  12. 47 CFR 74.870 - Wireless video assist devices.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 4 2013-10-01 2013-10-01 false Wireless video assist devices. 74.870 Section... Stations § 74.870 Wireless video assist devices. Television broadcast auxiliary licensees and motion picture and television producers, as defined in § 74.801 may operate wireless video assist devices on...

  13. 47 CFR 74.870 - Wireless video assist devices.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 4 2012-10-01 2012-10-01 false Wireless video assist devices. 74.870 Section... Stations § 74.870 Wireless video assist devices. Television broadcast auxiliary licensees and motion picture and television producers, as defined in § 74.801 may operate wireless video assist devices on...

  14. 47 CFR 74.870 - Wireless video assist devices.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Wireless video assist devices. 74.870 Section... Stations § 74.870 Wireless video assist devices. Television broadcast auxiliary licensees and motion picture and television producers, as defined in § 74.801 may operate wireless video assist devices on...

  15. 47 CFR 74.870 - Wireless video assist devices.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 4 2011-10-01 2011-10-01 false Wireless video assist devices. 74.870 Section... Stations § 74.870 Wireless video assist devices. Television broadcast auxiliary licensees and motion picture and television producers, as defined in § 74.801 may operate wireless video assist devices on...

  16. Weather & Weather Maps. Teacher's Manual.

    ERIC Educational Resources Information Center

    Metro, Peter M.; Green, Rachel E.

    This guide is intended to provide an opportunity for students to work with weather symbols used for reporting weather. Also included are exercises in location of United States cities by latitude and longitude, measurement of distances in miles and kilometers, and prediction of weather associated with various types of weather fronts. (RE)

  17. Feasibility study of wireless power transmission systems

    NASA Technical Reports Server (NTRS)

    Robinson, W. J., Jr.

    1968-01-01

    Wireless microwave or laser energy transfers power from a manned earth-orbiting central station to unmanned astronomical substations. More efficient systems are required for the microwave power transmission.

  18. Wireless autonomous device data transmission

    NASA Technical Reports Server (NTRS)

    Sammel, Jr., David W. (Inventor); Cain, James T. (Inventor); Mickle, Marlin H. (Inventor); Mi, Minhong (Inventor)

    2013-01-01

    A method of communicating information from a wireless autonomous device (WAD) to a base station. The WAD has a data element having a predetermined profile having a total number of sequenced possible data element combinations. The method includes receiving at the WAD an RF profile transmitted by the base station that includes a triggering portion having a number of pulses, wherein the number is at least equal to the total number of possible data element combinations. The method further includes keeping a count of received pulses and wirelessly transmitting a piece of data, preferably one bit, to the base station when the count reaches a value equal to the stored data element's particular number in the sequence. Finally, the method includes receiving the piece of data at the base station and using the receipt thereof to determine which of the possible data element combinations the stored data element is.

  19. Implementing wireless sensor networks for architectural heritage conservation

    NASA Astrophysics Data System (ADS)

    Martínez-Garrido, M. I.; Aparicio, S.; Fort, R.; Izquierdo, M. A. G.; Anaya, J. J.

    2012-04-01

    Preventive conservation in architectural heritage is one of the most important aims for the development and implementation of new techniques to assess decay, lending to reduce damage before it has occurred and reducing costs in the long term. For that purpose, it is necessary to know all aspects influencing in decay evolution depending on the material under study and its internal and external conditions. Wireless sensor networks are an emerging technology and a minimally invasive technique. The use of these networks facilitates data acquisition and monitoring of a large number of variables that could provoke material damages, such as presence of harmful compounds like salts, dampness, etc. The current project presents different wireless sensors networks (WSN) and sensors used to fulfill the requirements for a complete analysis of main decay agents in a Renaissance church of the 16th century in Madrid (Spain). Current typologies and wireless technologies are studied establishing the most suitable system and the convenience of each one. Firstly, it is very important to consider that microclimate is in close correlation with material deterioration. Therefore a temperature(T) and relative humidity (RH)/moisture network has been developed, using ZigBee wireless communications protocols, and monitoring different points along the church surface. These points are recording RH/T differences depending on the height and the sensor location (inside the material or on the surface). On the other hand, T/RH button sensors have been used, minimizing aesthetical interferences, and concluding which is the most advisable way for monitoring these specific parameters. Due to the fact that microclimate is a complex phenomenon, it is necessary to examine spatial distribution and time evolution at the same time. This work shows both studies since the development expects a long term monitoring. A different wireless network has been deployed to study the effects of pollution caused by other active systems such as a forced-air heating system, the parishioners presence or feasts and other ventilation conditions. Finally weather conditions are registered through a weather station. Outside and inside conditions are compared to incorporate data to the network for a later decay modeling.

  20. Wireless Andrew.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Describes the use of the Internet and laptops help Carnegie Mellon University students carry out sophisticated research anywhere on campus. How the university became a wireless community is discussed. (GR)

  1. NASA Bluetooth Wireless Communications

    NASA Technical Reports Server (NTRS)

    Miller, Robert D.

    2007-01-01

    NASA has been interested in wireless communications for many years, especially when the crew size of the International Space Station (ISS) was reduced to two members. NASA began a study to find ways to improve crew efficiency to make sure the ISS could be maintained with limited crew capacity and still be a valuable research testbed in Low-Earth Orbit (LEO). Currently the ISS audio system requires astronauts to be tethered to the audio system, specifically a device called the Audio Terminal Unit (ATU). Wireless communications would remove the tether and allow astronauts to freely float from experiment to experiment without having to worry about moving and reconnecting the associated cabling or finding the space equivalent of an extension cord. A wireless communication system would also improve safety and reduce system susceptibility to Electromagnetic Interference (EMI). Safety would be improved because a crewmember could quickly escape a fire while maintaining communications with the ground and other crewmembers at any location. In addition, it would allow the crew to overcome the volume limitations of the ISS ATU. This is especially important to the Portable Breathing Apparatus (PBA). The next generation of space vehicles and habitats also demand wireless attention. Orion will carry up to six crewmembers in a relatively small cabin. Yet, wireless could become a driving factor to reduce launch weight and increase habitable volume. Six crewmembers, each tethered to a panel, could result in a wiring mess even in nominal operations. In addition to Orion, research is being conducted to determine if Bluetooth is appropriate for Lunar Habitat applications.

  2. New weather radar coming

    NASA Astrophysics Data System (ADS)

    Maggs, William Ward

    What would you call the next generation of radar for severe weather prediction? NEXRAD, of course. A prototype for the new system was recently completed in Norman, Okla., and by the early 1990s up to 195 stations around the United States will be tracking dangerous weather and sending faster, more accurate, and more detailed warnings to the public.NEXRAD is being built for the Departments of Commerce, Transportation, and Defense by the Unisys Corporation under a $450 million contract signed in December 1987. Th e system will be used by the National Weather Service, the Federal Aviation Administration (FAA), and the U.S. Air Force and Navy. The NEXRAD radar tower in Norman is expected to be operational in October.

  3. Kazakhstan Space Weather Initiative

    NASA Astrophysics Data System (ADS)

    Kryakunova, Olga

    2012-07-01

    Kazakhstan experimental complex is a center of experimental study of space weather. This complex is situated near Almaty, Kazakhstan and includes experimental setup for registration of cosmic ray intensity (neutron monitor) at altitude of 3340 m above sea level, geomagnetic observatory and setup for registration of solar flux density with frequency of 1 and 3 GHz with 1 second time resolution. Results of space environment monitoring in real time are accessible via Internet. This experimental information is used for space weather investigations and different cosmic ray effects. Almaty mountain cosmic ray station is one of the most suitable and sensitive stations for investigation and forecasting of the dangerous situations for satellites; for this reason Almaty cosmic ray station is included in the world-wide neutron monitor network for the real-time monitoring of the space weather conditions and European Database NMDB (www.nmdb.eu). All data are represented on the web-site of the Institute of Ionosphere (www.ionos.kz) in real time. Since July, 2006 the space environment prediction laboratory represents the forecast of geomagnetic activity every day on the same site (www.ionos.kz/?q=en/node/21).

  4. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit

  5. Space Weather

    NASA Technical Reports Server (NTRS)

    Gallagher, Dennis L.

    2010-01-01

    This video provides a narrated exploration of the history and affects of space weather. It includes information the earth's magnetic field, solar radiation, magnetic storms, and how solar winds affect electronics on earth, with specific information on how space weather affects space exploration in the future.

  6. Wacky Weather

    ERIC Educational Resources Information Center

    Sabarre, Amy; Gulino, Jacqueline

    2013-01-01

    What do a leaf blower, water hose, fan, and ice cubes have in common? Ask the students who participated in an integrative science, technology, engineering, and mathematics (I-STEM) education unit, "Wacky Weather," and they will tell say "fun and severe weather"--words one might not have expected! The purpose of the unit…

  7. Accuracy assessment of land surface temperature retrievals from Landsat 7 ETM + in the Dry Valleys of Antarctica using iButton temperature loggers and weather station data.

    PubMed

    Brabyn, Lars; Zawar-Reza, Peyman; Stichbury, Glen; Cary, Craig; Storey, Bryan; Laughlin, Daniel C; Katurji, Marwan

    2014-04-01

    The McMurdo Dry Valleys of Antarctica are the largest snow/ice-free regions on this vast continent, comprising 1% of the land mass. Due to harsh environmental conditions, the valleys are bereft of any vegetation. Land surface temperature is a key determinate of microclimate and a driver for sensible and latent heat fluxes of the surface. The Dry Valleys have been the focus of ecological studies as they arguably provide the simplest trophic structure suitable for modelling. In this paper, we employ a validation method for land surface temperatures obtained from Landsat 7 ETM + imagery and compared with in situ land surface temperature data collected from four transects totalling 45 iButtons. A single meteorological station was used to obtain a better understanding of daily and seasonal cycles in land surface temperatures. Results show a good agreement between the iButton and the Landsat 7 ETM + product for clear sky cases. We conclude that Landsat 7 ETM + derived land surface temperatures can be used at broad spatial scales for ecological and meteorological research. PMID:24366817

  8. Forecast skill of a high-resolution real-time mesoscale model designed for weather support of operations at Kennedy Space Center and Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory E.; Zack, John W.; Manobianco, John

    1994-01-01

    NASA funded Mesoscale Environmental Simulations and Operations (MESO), Inc. to develop a version of the Mesoscale Atmospheric Simulation System (MASS). The model has been modified specifically for short-range forecasting in the vicinity of KSC/CCAS. To accomplish this, the model domain has been limited to increase the number of horizontal grid points (and therefore grid resolution) and the model' s treatment of precipitation, radiation, and surface hydrology physics has been enhanced to predict convection forced by local variations in surface heat, moisture fluxes, and cloud shading. The objective of this paper is to (1) provide an overview of MASS including the real-time initialization and configuration for running the data pre-processor and model, and (2) to summarize the preliminary evaluation of the model's forecasts of temperature, moisture, and wind at selected rawinsonde station locations during February 1994 and July 1994. MASS is a hydrostatic, three-dimensional modeling system which includes schemes to represent planetary boundary layer processes, surface energy and moisture budgets, free atmospheric long and short wave radiation, cloud microphysics, and sub-grid scale moist convection.

  9. Wireless vibration sensor using frequency modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, Minhyuck; Yoon, Hwan-Sik; Kim, Sehun; Kim, Joo-Hyung

    2012-04-01

    In recent years, wireless strain sensors have received attention as an efficient method to measure response of a structure in a remote location. Wireless sensors developed for remote measurement include RF wireless sensor modules and microstrip antenna-based sensors. In this paper, a simple wireless vibration sensor based on a piezoelectric sensor and the Frequency Modulation (FM) technique is developed for remote measurement of vibrating structures. The piezoelectric sensor can generate a voltage signal proportional to dynamic strain of the host structure. The voltage signal is then frequency modulated and transmitted wirelessly to a remote station by a simple FM transmitter circuit. Finally, the received signal is demodulated by a conventional FM radio circuit, and the vibration measurement data can be recovered. Since this type of wireless sensor employs a simple FM circuit, they do not require any wireless data transmission protocols allowing a low-cost wireless sensor in compact format. The proposed concept of the wireless vibration measurement is experimentally verified by measuring vibration of an aluminum cantilever beam. The proposed sensor could potentially be an efficient and cost effective method for measuring vibration of remote structures for dynamic testing or structural health monitoring.

  10. Development of a Wireless Remote Monitoring System Utilizing Multiple Wireless Sensors

    NASA Astrophysics Data System (ADS)

    Masuda, Shinichi; Hattori, Tetsuo

    A novel remote monitoring system for all day outdoor observation using multiple wireless sensors and wireless communication (Handy phone and PHS) is proposed. The whole system consists of three parts: (i) a host station that is PC (Personal Computer), (ii) remote station that contains a camera controlled by CPU and power supply (battery attached by solar cell), and (iii) multiple wireless sensors having each ID signal. The remote station usually works by an event-driven method based on the wireless sensor signals. Because of this event-driven method, various multi-vision systems are easily configurable. This paper describes the details of the system and evaluates the possibility of the application of the system. Since some of the systems are now really running in many places, we can consider that the effectiveness of the system is shown by the fact in a practical sense.

  11. UMTS Network Stations

    NASA Astrophysics Data System (ADS)

    Hernandez, C.

    2010-09-01

    The weakness of small island electrical grids implies a handicap for the electrical generation with renewable energy sources. With the intention of maximizing the installation of photovoltaic generators in the Canary Islands, arises the need to develop a solar forecasting system that allows knowing in advance the amount of PV generated electricity that will be going into the grid, from the installed PV power plants installed in the island. The forecasting tools need to get feedback from real weather data in "real time" from remote weather stations. Nevertheless, the transference of this data to the calculation computer servers is very complicated with the old point to point telecommunication systems that, neither allow the transfer of data from several remote weather stations simultaneously nor high frequency of sampling of weather parameters due to slowness of the connection. This one project has developed a telecommunications infrastructure that allows sensorizadas remote stations, to send data of its sensors, once every minute and simultaneously, to the calculation server running the solar forecasting numerical models. For it, the Canary Islands Institute of Technology has added a sophisticated communications network to its 30 weather stations measuring irradiation at strategic sites, areas with high penetration of photovoltaic generation or that have potential to host in the future photovoltaic power plants connected to the grid. In each one of the stations, irradiance and temperature measurement instruments have been installed, over inclined silicon cell, global radiation on horizontal surface and room temperature. Mobile telephone devices have been installed and programmed in each one of the weather stations, which allow the transfer of their data taking advantage of the UMTS service offered by the local telephone operator. Every minute the computer server running the numerical weather forecasting models receives data inputs from 120 instruments distributed over the 30 radiometric stations. As a the result, currently it exist a stable, flexible, safe and economic infrastructure of radiometric stations and telecommunications that allows, on the one hand, to have data in real time from all 30 remote weather stations, and on the other hand allows to communicate with them in order to reprogram them and to carry out maintenance works.

  12. Impact of climate change on snow distribution in Japan estimated using data from the remote weather stations (AMeDAS) and Spot VGT

    NASA Astrophysics Data System (ADS)

    Kominami, Y.; Asaoka, Y.; Tsuyama, I.; Tanaka, N.

    2010-12-01

    Change of the amount of snow by climate change is possibly remarkable in Japan, because air temperature is relatively high as snowy area in the world. And the change of the amount of snow cover highly depends on the supply form of precipitation (rain or snow) in winter corresponding to the change of the temperature in addition to the change of precipitation. And vegetation distribution of Japan is highly affected by snow conditions (snow duration and snow accumulation). To evaluate the change of snow condition in Japan climate change, daily change of SWE of 1km mesh was estimated using daily precipitation and air temperature of AMeDAS(Automated Meteorological Data Acquisition System) data. And using this model, changes of SWE and snow cover period were estimated in condition of global warming. Daily air temperature and precipitation on 1km mesh were estimated over all of Japan by interpolation of the AMeDAS data. AMeDAS is a system that observes the temperature and precipitation, etc. per hour automatically in about 1,300 places (about 17km spacing) in Japan. And daily change of SWE of each point was calculated using degree-day method and threshold temperature for the distinction between snow and rain using these data. We used precipitation and air temperature data of AMeDAS for 23 years from 1980 to 2002. Snow melt coefficient and elevation dependency of winter precipitation of each grid were optimized by snow duration estimated using satellite data (S3 index of Spot VGT) from 1990 to 2000 To estimate the change in the snow accumulation for the years from 2031 to 2051 and from 2081 to 2100, we used the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. Estimated snow duration was evaluated in 10 points of mountainous snow measurement stations. Averaged error was about 4 days from 1980 to 1999. And estimated SWE was evaluated at 14 points in Niigata and Gunma prefecture from 2000 to 2001. Averaged error of SWE was about 32% in this period. Estimated change of SWE and snow cover period according to air temperature rise was remarkable at plain field along Sea of Japan in main land. Estimated decrease of snow cover period in this area was more than 80% in condition from 2 to 3 degrees air temperature rise for the years from 2031 to 2051.

  13. Weatherizing America

    SciTech Connect

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony

    2009-01-01

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  14. Weatherizing America

    ScienceCinema

    Stewart, Zachary; Bergeron, T.J.; Barth, Dale; Qualis, Xavier; Sewall, Travis; Fransen, Richard; Gill, Tony;

    2013-05-29

    As Recovery Act money arrives to expand home weatherization programs across the country, Zachary Stewart of Phoenix, Ariz., and others have found an exciting opportunity not only to start working again, but also to find a calling.

  15. Wireless Communications

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A technology utilization project led to the commercial adaptation of a Space Shuttle Orbiter wireless infrared voice communications system. The technology was adapted to a LAN system by Wilton Industries, one of the participants. Because the system is cable-free, installation charges are saved, and it can be used where cable is impractical. Resultant products include the IRplex 6000. Transceivers can be located anywhere and can include mobile receivers. The system provides wireless LAN coverage up to 44,000 square feet. applications include stock exchange communications, trade shows, emergency communications, etc.

  16. Wireless Tots

    ERIC Educational Resources Information Center

    Scott, Lee-Allison

    2003-01-01

    The first wireless technology program for preschoolers was implemented in January at the Primrose School at Bentwater in Atlanta, Georgia, a new corporate school operated by Primrose School Franchising Co. The new school serves as a testing and training facility for groundbreaking educational approaches, including emerging innovations in

  17. Wireless Technician

    ERIC Educational Resources Information Center

    Tech Directions, 2011

    2011-01-01

    One of the hottest areas in technology is invisible. Wireless communications allow people to transmit voice messages, data, and other signals through the air without physically connecting senders to receivers with cables or wires. And the technology is spreading at lightning speed. Cellular phones, personal digital assistants, and wireless…

  18. Wireless Protection.

    ERIC Educational Resources Information Center

    Conforti, Fred

    2003-01-01

    Discusses wireless access-control equipment in the school and university setting, particularly the integrated reader lock at the door with a panel interface module at the control panel. Describes its benefits, how it works, and its reliability and security. (EV)

  19. 1980 Weather summary

    NASA Astrophysics Data System (ADS)

    Bell, Peter M.

    The weather in the United States during 1980 was bad. A 3-month heat wave in the southwest caused about $20 billion in ruined crops, an increase in power consumption, and damage to roads and highways. Nationwide, the heat killed 1320 people. Floods caused more than $1 billion in losses. Hurricane Allen caused about $500 million in property losses and took two lives.The highest temperature reading during 1980, 51°C (124°F), was reached five times. Locations were at Bull Head, Arizona; Death Valley, California; and three times at Baker, California. Preliminary figures also show that the lowest temperature for the year was recorded at Tok weather station, 150 miles southeast of Fairbanks, Alaska. There the mercury plummeted to -56°C (-68°F). In the lower 48 states the minimum thermometer reading was -44°C at Wisdom, Montana.

  20. INSTRUMENTATION AND CONTROL FOR WIRELESS SENSOR NETWORK FOR AUTOMATED IRRIGATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An in-field sensor-based irrigation system is of benefit to producers in efficient water management. A distributed wireless sensor network eliminates difficulties to wire sensor stations across the field and reduces maintenance cost. Implementing wireless sensor-based irrigation system is challengin...

  1. Wireless Instrumentation System and Power Management Scheme Therefore

    NASA Technical Reports Server (NTRS)

    Perotti, Jose (Inventor); Lucena, Angel (Inventor); Eckhoff, Anthony (Inventor); Mata, Carlos T. (Inventor); Blalock, Norman N. (Inventor); Medelius, Pedro J. (Inventor)

    2007-01-01

    A wireless instrumentation system enables a plurality of low power wireless transceivers to transmit measurement data from a plurality of remote station sensors to a central data station accurately and reliably. The system employs a relay based communications scheme where remote stations that cannot communicate directly with the central station due to interference, poor signal strength, etc., are instructed to communicate with other of the remote stations that act as relays to the central station. A unique power management scheme is also employed to minimize power usage at each remote station and thereby maximize battery life. Each of the remote stations prefembly employs a modular design to facilitate easy reconfiguration of the stations as required.

  2. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark

    2005-01-01

    The Applied Meteorology Unit developed a forecast tool that provides an assessment of the likelihood of local convective severe weather for the day in order to enhance protection of personnel and material assets of the 45th Space Wing Cape Canaveral Air Force Station (CCAFS), and Kennedy Space Center (KSC).

  3. Health dynamic measurement of tall building using wireless sensor network

    NASA Astrophysics Data System (ADS)

    Ou, J. P.; Li, H. W.; Xiao, Y. Q.; Li, Q. S.

    2005-05-01

    Health Monitoring is very important for large structures like suspension- and cable-stayed bridges, offshore platforms, tall buildings and so on. Due to recent developments in new sensor systems, wireless communication systems, Internet-based data sharing and monitoring, advanced technologies for structure health monitoring (SHM) have been caused much more attentions, in which the wireless sensor network is recently received special interests. Wireless sensor networks (WSNs) consist of large populations of wirelessly connected nodes, capable of computation, communication, and sensing. In this paper, a wireless sensor networks based health monitoring system for tall buildings has been explored integrated with wireless sensing communication, computation, data management and data remote access via Internet. Firstly, a laboratory prototype was designed and developed to demonstrate the feasibility and validity of the proposed system. Wireless sensor nodes were deployed on a test structure, the data being sensed by the sensor nodes in the network is eventually transmitted to a base station, where the information can be accessed. Through a Wireless Local Area Network (WLAN, IEEE802.11b), the simulated data was transferred among personal computers and wireless sensor nodes peripherals without cables. And then, a Wireless Sensor Network (WSN) includes eight sensor nodes and one base station was installed on Di Wang Tower to verify the performance of the present system in-depth. Finally, comparisons between WSN and cable-based monitoring analytical acceleration responses of field measurement have been performed. The proposed system is shown to be effective for structural health monitoring.

  4. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada, Revision 0. UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

    SciTech Connect

    U.S. DOE /NV

    1999-02-08

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (DOE/NV, 1996a). The Fuel Storage Area was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

  5. Wireless Sensing Opportunities for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2007-01-01

    Wireless sensors and sensor networks is an emerging technology area with many applications within the aerospace industry. Integrated vehicle health monitoring (IVHM) of aerospace vehicles is needed to ensure the safety of the crew and the vehicle, yet often high costs, weight, size and other constraints prevent the incorporation of instrumentation onto spacecraft. This paper presents a few of the areas such as IVHM, where new wireless sensing technology is needed on both existing vehicles as well as future spacecraft. From ground tests to inflatable structures to the International Space Station, many applications could receive benefits from small, low power, wireless sensors. This paper also highlights some of the challenges that need to overcome when implementing wireless sensor networks for aerospace vehicles.

  6. Predicting the magnetospheric plasma of weather

    NASA Technical Reports Server (NTRS)

    Dawson, John M.

    1986-01-01

    The prediction of the plasma environment in time, the plasma weather, is discussed. It is important to be able to predict when large magnetic storms will produce auroras, which will affect the space station operating in low orbit, and what precautions to take both for personnel and sensitive control (computer) equipment onboard. It is also important to start to establish a set of plasma weather records and a record of the ability to predict this weather. A successful forecasting system requires a set of satellite weather stations to provide data from which predictions can be made and a set of plasma weather codes capable of accurately forecasting the status of the Earth's magnetosphere. A numerical magnetohydrodynamic fluid model which is used to model the flow in the magnetosphere, the currents flowing into and out of the auroral regions, the magnetopause, the bow shock location and the magnetotail of the Earth is discussed.

  7. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Station files. 1.911 Section 1.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.911 Station files....

  8. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Station files. 1.911 Section 1.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Wireless Radio Services Applications and Proceedings Application Requirements and Procedures § 1.911 Station files....

  9. 47 CFR 95.1129 - Station inspection.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station inspection. 95.1129 Section 95.1129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions 95.1129 Station inspection....

  10. 47 CFR 95.1127 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Station identification. 95.1127 Section 95.1127 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions 95.1127 Station identification....

  11. 47 CFR 95.1129 - Station inspection.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station inspection. 95.1129 Section 95.1129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions 95.1129 Station inspection....

  12. 47 CFR 95.1127 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Station identification. 95.1127 Section 95.1127 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions 95.1127 Station identification....

  13. 47 CFR 95.1129 - Station inspection.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station inspection. 95.1129 Section 95.1129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1129 Station inspection....

  14. 47 CFR 95.1127 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Station identification. 95.1127 Section 95.1127 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1127 Station identification....

  15. 47 CFR 95.1127 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station identification. 95.1127 Section 95.1127 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1127 Station identification....

  16. 47 CFR 95.1129 - Station inspection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station inspection. 95.1129 Section 95.1129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1129 Station inspection....

  17. 47 CFR 95.1129 - Station inspection.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Station inspection. 95.1129 Section 95.1129 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1129 Station inspection....

  18. 47 CFR 95.1127 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Station identification. 95.1127 Section 95.1127 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PERSONAL RADIO SERVICES Wireless Medical Telemetry Service (WMTS) General Provisions § 95.1127 Station identification....

  19. Earth Observation Services Weather Imaging

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Microprocessor-based systems for processing satellite data offer mariners real-time images of weather systems, day and night, of large areas or allow them to zoom in on a few square miles. Systems West markets these commercial image processing systems, which have significantly decreased the cost of satellite weather stations. The company was assisted by the EOCAP program, which provides government co-funding to encourage private investment in, and to broaden the use of, NASA-developed technology for analyzing information about Earth and ocean resources.

  20. Comparison of Weather Shows in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Najman, M.

    2009-09-01

    Comparison of Weather Shows in Eastern Europe Television weather shows in Eastern Europe have in most cases in the high graphical standard. There is though a wast difference in duration and information content in the weather shows. There are few signs and regularities by which we can see the character of the weather show. The main differences are mainly caused by the income structure of the TV station. Either it is a fully privately funded TV relying on the TV commercials income. Or it is a public service TV station funded mainly by the national budget or fixed fee structure/tax. There are wast differences in duration and even a graphical presentation of the weather. Next important aspect is a supplier of the weather information and /or the processor. Shortly we can say, that when the TV show is produced by the national met office, the TV show consists of more scientific terms, synoptic maps, satellite imagery, etc. If the supplier is the private meteorological company, the weather show is more user-friendly, laical with less scientific terms. We are experiencing a massive shift in public weather knowledge and demand for information. In the past, weather shows consisted only of maps with weather icons. In todaýs world, even the laic weather shows consist partly of numerical weather model outputs - they are of course designed to be understandable and graphically attractive. Outputs of the numerical weather models used to be only a part of daily life of a professional meteorologist, today they are common part of life of regular people. Video samples are a part of this presentation.

  1. Weather and Climate Monitoring Protocol, Channel Islands National Park, California

    USGS Publications Warehouse

    McEachern, Kathryn; Power, Paula; Dye, Linda; Rudolph, Rocky

    2008-01-01

    Weather and climate are strong drivers of population dynamics, plant and animal spatial distributions, community interactions, and ecosystem states. Information on local weather and climate is crucial in interpreting trends and patterns in the natural environment for resource management, research, and visitor enjoyment. This document describes the weather and climate monitoring program at the Channel Islands National Park (fig. 1), initiated in the 1990s. Manual and automated stations, which continue to evolve as technology changes, are being used for this program. The document reviews the history of weather data collection on each of the five Channel Islands National Park islands, presents program administrative structure, and provides an overview of procedures for data collection, archival, retrieval, and reporting. This program overview is accompanied by the 'Channel Islands National Park Remote Automated Weather Station Field Handbook' and the 'Channel Islands National Park Ranger Weather Station Field Handbook'. These Handbooks are maintained separately at the Channel Island National Park as 'live documents' that are updated as needed to provide a current working manual of weather and climate monitoring procedures. They are available on request from the Weather Program Manager (Channel Islands National Park, 1901 Spinnaker Dr., Ventura, CA 93001; 805.658.5700). The two Field Handbooks describe in detail protocols for managing the four remote automated weather stations (RAWS) and the seven manual Ranger Weather Stations on the islands, including standard operating procedures for equipment maintenance and calibration; manufacturer operating manuals; data retrieval and archiving; metada collection and archival; and local, agency, and vendor contracts.

  2. Weather satellites

    NASA Astrophysics Data System (ADS)

    1984-02-01

    A manual about the operation of meteorological satellites and of the reception station KOSMOSS of the Royal Dutch Meteorological Institute (KNMI) is presented. A historical review of meteorological satellites is given. The theory of satellite orbits and the calculation of favorable orbits are presented. Solar radiation is treated. The TIROS N series and METEOSAT are described. The reception of satellite signals and image processing are explained. The interpretation of satellite pictures is treated.

  3. Wireless Augmented Reality Prototype (WARP)

    NASA Technical Reports Server (NTRS)

    Devereaux, A. S.

    1999-01-01

    Initiated in January, 1997, under NASA's Office of Life and Microgravity Sciences and Applications, the Wireless Augmented Reality Prototype (WARP) is a means to leverage recent advances in communications, displays, imaging sensors, biosensors, voice recognition and microelectronics to develop a hands-free, tetherless system capable of real-time personal display and control of computer system resources. Using WARP, an astronaut may efficiently operate and monitor any computer-controllable activity inside or outside the vehicle or station. The WARP concept is a lightweight, unobtrusive heads-up display with a wireless wearable control unit. Connectivity to the external system is achieved through a high-rate radio link from the WARP personal unit to a base station unit installed into any system PC. The radio link has been specially engineered to operate within the high- interference, high-multipath environment of a space shuttle or space station module. Through this virtual terminal, the astronaut will be able to view and manipulate imagery, text or video, using voice commands to control the terminal operations. WARP's hands-free access to computer-based instruction texts, diagrams and checklists replaces juggling manuals and clipboards, and tetherless computer system access allows free motion throughout a cabin while monitoring and operating equipment.

  4. NASA Lunar Base Wireless System Propagation Analysis

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.; Upanavage, Matthew; Sham, Catherine C.

    2007-01-01

    There have been many radio wave propagation studies using both experimental and theoretical techniques over the recent years. However, most of studies have been in support of commercial cellular phone wireless applications. The signal frequencies are mostly at the commercial cellular and Personal Communications Service bands. The antenna configurations are mostly one on a high tower and one near the ground to simulate communications between a cellular base station and a mobile unit. There are great interests in wireless communication and sensor systems for NASA lunar missions because of the emerging importance of establishing permanent lunar human exploration bases. Because of the specific lunar terrain geometries and RF frequencies of interest to the NASA missions, much of the published literature for the commercial cellular and PCS bands of 900 and 1800 MHz may not be directly applicable to the lunar base wireless system and environment. There are various communication and sensor configurations required to support all elements of a lunar base. For example, the communications between astronauts, between astronauts and the lunar vehicles, between lunar vehicles and satellites on the lunar orbits. There are also various wireless sensor systems among scientific, experimental sensors and data collection ground stations. This presentation illustrates the propagation analysis of the lunar wireless communication and sensor systems taking into account the three dimensional terrain multipath effects. It is observed that the propagation characteristics are significantly affected by the presence of the lunar terrain. The obtained results indicate the lunar surface material, terrain geometry and antenna location are the important factors affecting the propagation characteristics of the lunar wireless systems. The path loss can be much more severe than the free space propagation and is greatly affected by the antenna height, surface material and operating frequency. The results from this paper are important for the lunar wireless system link margin analysis in order to determine the limits on the reliable communication range, achievable data rate and RF coverage performance at planned lunar base work sites.

  5. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  6. A video wireless capsule endoscopy system powered wirelessly: design, analysis and experiment

    NASA Astrophysics Data System (ADS)

    Pan, Guobing; Xin, Wenhui; Yan, Guozheng; Chen, Jiaoliao

    2011-06-01

    Wireless capsule endoscopy (WCE), as a relatively new technology, has brought about a revolution in the diagnosis of gastrointestinal (GI) tract diseases. However, the existing WCE systems are not widely applied in clinic because of the low frame rate and low image resolution. A video WCE system based on a wireless power supply is developed in this paper. This WCE system consists of a video capsule endoscope (CE), a wireless power transmission device, a receiving box and an image processing station. Powered wirelessly, the video CE has the abilities of imaging the GI tract and transmitting the images wirelessly at a frame rate of 30 frames per second (f/s). A mathematical prototype was built to analyze the power transmission system, and some experiments were performed to test the capability of energy transferring. The results showed that the wireless electric power supply system had the ability to transfer more than 136 mW power, which was enough for the working of a video CE. In in vitro experiments, the video CE produced clear images of the small intestine of a pig with the resolution of 320 × 240, and transmitted NTSC format video outside the body. Because of the wireless power supply, the video WCE system with high frame rate and high resolution becomes feasible, and provides a novel solution for the diagnosis of the GI tract in clinic.

  7. NOAA/National Weather Service Support in Response to the Threat of Debris Flows from the 2009 Station Fire in Los Angeles County: Lessons Learned in Hazard Communications and Public Response

    NASA Astrophysics Data System (ADS)

    Jackson, M.; Laber, J. L.; Boldt, E.

    2010-12-01

    The National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS) and the United States Geological Survey (USGS) have developed a prototype debris flow early warning system for Southern California. The system uses USGS-defined rainfall rate thresholds for debris flows and burn area hazard maps to protect interests in and near burn areas of damaging and potentially deadly debris flows. Although common throughout Southern California, as witnessed by the December 25, 2003 storm in which sixteen people were swept to their deaths by debris flows generated from a recent burn area near Devore, debris flows are commonly misunderstood by the public. They are often perceived as rare events, are difficult to warn for with sufficient lead time, and present unique challenges when communicating proper calls to action to best save lives and property. Many improvements to the system have been realized since the project’s inception in 2005, including using more refined rainfall rate thresholds, use of burn area hazard maps, and the establishment of a tiered system to categorize the potential severity of flash floods and debris flows. These efforts have collectively resulted in a reduction of warning false alarms. However, the massive 400,000 hectare 2009 Station burn area in the Angeles National Forest of Los Angeles County has created numerous challenges to the early warning system. The geology of the area burned is highly susceptible to debris flows, due in part to the burn severity, soil types and steep slopes. Most importantly, the burn area is adjacent to and uphill of the highly populated lower foothills of the San Fernando Valley. NOAA/NWS and the USGS have thus worked closely with local response and preparedness agencies to analyze and communicate the threat and assist in developing a unified command response plan in preparation for flash flood and debris flows from this burn area. The early warning system was put to the ultimate test on February 6, 2010 when intense rainfall over the burn area produced very damaging but fortunately nonfatal flash flooding and debris flows. Unfortunately public and local agency response to NWS forecasts, watches, and warnings issued for this event was minimal. Possible causes of, and actions needed to improve upon, this minimal response are examined, including 1) complacency due to previous watch and warning false alarms, 2) underestimating the hazard threat due to local residents having not personally experienced a severe debris flow event in recent history if ever, 3) misinterpretation of NWS point precipitation forecasts and current limits of predictability related to forecasting specific locations and amounts of intense rainfall beyond 12-24 hours, 4) the challenges of ensuring NWS information is consistently received and interpreted among the multiple agencies and jurisdictions of the unified command, and 5) the likelihood that most people did not hear NWS warnings due to the event taking place late at night. Also examined are proper calls to action to protect life and property at a time when evacuations may put people in harm's way.

  8. Development of Arduino based wireless control system

    NASA Astrophysics Data System (ADS)

    Sun, Zhuoxiong; Dyke, Shirley J.; Pena, Francisco; Wilbee, Alana

    2015-03-01

    Over the past few decades, considerable attention has been given to structural control systems to mitigate structural vibration under natural hazards such as earthquakes and extreme weather conditions. Traditional wired structural control systems often employ a large amount of cables for communication among sensors, controllers and actuators. In such systems, implementation of wired sensors is usually quite complicated and expensive, especially on large scale structures such as bridges and buildings. To reduce the laborious installation and maintenance cost, wireless control systems (WCSs) are considered as a novel approach for structural vibration control. In this work, a WCS is developed based on the open source Arduino platform. Low cost, low power wireless sensing and communication components are built on the Arduino platform. Structural control algorithms are embedded within the wireless sensor board for feedback control. The developed WCS is first validated through a series of tests. Next, numerical simulations are performed simulating wireless control of a 3-story shear structure equipped with a semi-active control device (MR damper). Finally, experimental studies are carried out implementing the WCS on the 3-story shear structure in the Intelligent Infrastructure Systems Lab (IISL). A hydraulic shake table is used to generate seismic ground motions. The control performance is evaluated with the impact of modeling uncertainties, measurement noises as well as time delay and data loss induced by the wireless network. The developed WCS is shown to be effective in controlling structural vibrations under several historical earthquake ground motions.

  9. Wireless steganography

    NASA Astrophysics Data System (ADS)

    Agaian, Sos S.; Akopian, David; D'Souza, Sunil

    2006-02-01

    Modern mobile devices are some of the most technologically advanced devices that people use on a daily basis and the current trends in mobile phone technology indicate that tasks achievable by mobile devices will soon exceed our imagination. This paper undertakes a case study of the development and implementation of one of the first known steganography (data hiding) applications on a mobile device. Steganography is traditionally accomplished using the high processing speeds of desktop or notebook computers. With the introduction of mobile platform operating systems, there arises an opportunity for the users to develop and embed their own applications. We take advantage of this opportunity with the introduction of wireless steganographic algorithms. Thus we demonstrates that custom applications, popular with security establishments, can be developed also on mobile systems independent of both the mobile device manufacturer and mobile service provider. For example, this might be a very important feature if the communication is to be controlled exclusively by authorized personnel. The paper begins by reviewing the technological capabilities of modern mobile devices. Then we address a suitable development platform which is based on Symbian TM/Series60 TM architecture. Finally, two data hiding applications developed for Symbian TM/Series60 TM mobile phones are presented.

  10. THE USDA/AGRICULTURAL RESEARCH SERVICE RESEARCH WEATHER NETWORK IN LAKE COUNTY, OHIO - 2002 UPDATE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Permanent meteorological stations have been installed in Northeast Ohio production nurseries to archive weather data during horticultural experiments. Insect and disease management research require detailed knowledge of weather conditions. Data such as soil moisture and temperature, air temperature...

  11. Commercializing Space Weather using GAIM

    NASA Astrophysics Data System (ADS)

    Tobiska, W. Kent; Schunk, Robert; Sojka, Jan J.

    Space weather's effects upon the near-Earth environment are due to dynamic changes in the en-ergy transfer processes from the Sun's photons, particles, and fields. Of the space environment domains that are affected by space weather, the ionosphere is the key region that affects com-munication and navigation systems. The Utah State University (USU) Space Weather Center (SWC) was organized in 2009 to develop commercial space weather applications. It uses the Global Assimilation of Ionospheric Measurements (GAIM) system as the basis for providing improvements to communication and navigation systems. For example, in August 2009 SWC released, in conjunction with Space Environment Technologies, the world's first real-time space weather via an iPhone app, Space WX. It displays the real-time, current global ionosphere to-tal electron content along with its space weather drivers, is available through the Apple iTunes store, and is used around the world. The GAIM system is run operationally at SWC for global and regional (continental U.S.) conditions. Each run stream continuously ingests up to 10,000 slant TEC measurements every 15-minutes from approximately 500 stations in a Kalman filter to adjust the background output from the physics-based Ionosphere Forecast Model (IFM). Additionally, 80 real-time digisonde data streams from around the world provide ionosphere characterization up to the F-region peak. The combination of these data dramatically improves the current epoch ionosphere specification beyond the physics-based solution. The altitudinal range is 90-1500 km for output TEC, electron densities, and other data products with a few degrees resolution in latitude and longitude at 15-minute time granularity. We describe the existing SWC products that are used as commercial space weather information. SWC funding is provided by the State of Utah's Utah Science Technology and Research (USTAR) initiative. The SWC is physically located on the USU campus in Logan, Utah.

  12. Community Wireless Networks

    ERIC Educational Resources Information Center

    Feld, Harold

    2005-01-01

    With increasing frequency, communities are seeing the arrival of a new class of noncommercial broadband providers: community wireless networks (CWNs). Utilizing the same wireless technologies that many colleges and universities have used to create wireless networks on campus, CWNs are creating broadband access for free or at costs well below…

  13. National Weather Service

    MedlinePlus

    HOME FORECAST Local Graphical Aviation Marine Rivers and Lakes Hurricanes Severe Weather Fire Weather Sun/Moon Long ... Policy LOADING... ACTIVE ALERTS FORECAST MAPS RADAR RIVERS, LAKES, RAINFALL AIR QUALITY SATELLITE PAST WEATHER American Samoa ...

  14. Forecasting the Weather.

    ERIC Educational Resources Information Center

    Bollinger, Richard

    1984-01-01

    Presents a computer program which predicts the weather based on student input of such weather data as wind direction and barometric pressure. Also provides procedures for several hands-on, weather-related activities. (JN)

  15. Weather in the News.

    ERIC Educational Resources Information Center

    Markle, Sandra

    1989-01-01

    A discussion of TV weather forecasting introduces this article which features several hands-on science activities involving observing, researching, and experimenting with the weather. A reproducible worksheet on the reliability of weather forecasts is included. (IAH)

  16. Development of a Global Fire Weather Database

    NASA Astrophysics Data System (ADS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-06-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5° latitude by 2/3° longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia, Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA-based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DC = 1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRA's precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphere-ocean controls on fire weather, and calibration of FWI-based fire prediction models.

  17. Introducing GFWED: The Global Fire Weather Database

    NASA Technical Reports Server (NTRS)

    Field, R. D.; Spessa, A. C.; Aziz, N. A.; Camia, A.; Cantin, A.; Carr, R.; de Groot, W. J.; Dowdy, A. J.; Flannigan, M. D.; Manomaiphiboon, K.; Pappenberger, F.; Tanpipat, V.; Wang, X.

    2015-01-01

    The Canadian Forest Fire Weather Index (FWI) System is the mostly widely used fire danger rating system in the world. We have developed a global database of daily FWI System calculations, beginning in 1980, called the Global Fire WEather Database (GFWED) gridded to a spatial resolution of 0.5 latitude by 2-3 longitude. Input weather data were obtained from the NASA Modern Era Retrospective-Analysis for Research and Applications (MERRA), and two different estimates of daily precipitation from rain gauges over land. FWI System Drought Code calculations from the gridded data sets were compared to calculations from individual weather station data for a representative set of 48 stations in North, Central and South America, Europe, Russia,Southeast Asia and Australia. Agreement between gridded calculations and the station-based calculations tended to be most different at low latitudes for strictly MERRA based calculations. Strong biases could be seen in either direction: MERRA DC over the Mato Grosso in Brazil reached unrealistically high values exceeding DCD1500 during the dry season but was too low over Southeast Asia during the dry season. These biases are consistent with those previously identified in MERRAs precipitation, and they reinforce the need to consider alternative sources of precipitation data. GFWED can be used for analyzing historical relationships between fire weather and fire activity at continental and global scales, in identifying large-scale atmosphereocean controls on fire weather, and calibration of FWI-based fire prediction models.

  18. Commercial Space Tourism and Space Weather

    NASA Astrophysics Data System (ADS)

    Turner, Ronald

    2007-08-01

    Space tourism, a concept which even a few years ago was perveived as science fantasy, is now a credible industry. Five individuals have paid up to $25 M to spend more than a week on the International Space Station. Several enterprises are working toward viable suborbital and orbital private space operations. while operational space weather support to human space flight has been the domain of government entities the emergence of space tourism now presents a new opportunity for the commercial space weather community. This article examines the space weather impact on crews and passengers of the future space tourism industry.

  19. Advancing Profiling Sensors with a Wireless Approach

    PubMed Central

    Galvis, Alex; Russomanno, David J.

    2012-01-01

    The notion of a profiling sensor was first realized by a Near-Infrared (N-IR) retro-reflective prototype consisting of a vertical column of wired sparse detectors. This paper extends that prior work and presents a wireless version of a profiling sensor as a collection of sensor nodes. The sensor incorporates wireless sensing elements, a distributed data collection and aggregation scheme, and an enhanced classification technique. In this novel approach, a base station pre-processes the data collected from the sensor nodes and performs data re-alignment. A back-propagation neural network was also developed for the wireless version of the N-IR profiling sensor that classifies objects into the broad categories of human, animal or vehicle with an accuracy of approximately 94%. These enhancements improve deployment options as compared with the first generation of wired profiling sensors, possibly increasing the application scenarios for such sensors, including intelligent fence applications. PMID:23443371

  20. Wireless adiabatic power transfer

    SciTech Connect

    Rangelov, A.A.; Suchowski, H.; Silberberg, Y.; Vitanov, N.V.

    2011-03-15

    Research Highlights: > Efficient and robust mid-range wireless energy transfer between two coils. > The adiabatic energy transfer is analogous to adiabatic passage in quantum optics. > Wireless energy transfer is insensitive to any resonant constraints. > Wireless energy transfer is insensitive to noise in the neighborhood of the coils. - Abstract: We propose a technique for efficient mid-range wireless power transfer between two coils, by adapting the process of adiabatic passage for a coherently driven two-state quantum system to the realm of wireless energy transfer. The proposed technique is shown to be robust to noise, resonant constraints, and other interferences that exist in the neighborhood of the coils.

  1. Could You Build a Satellite Tracking Station?

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1987-01-01

    Reviews the procedures and activities involved in establishing a weather satellite tracking station. Discusses how the students and community participated in the project. Highlights the activities resulting from student efforts in the project. (ML)

  2. 47 CFR 87.107 - Station identification.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... consisting of the name of the company owning or operating the aircraft, followed by the word “Maintenance... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter,...

  3. 47 CFR 87.107 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... consisting of the name of the company owning or operating the aircraft, followed by the word “Maintenance... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter,...

  4. 47 CFR 87.107 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... consisting of the name of the company owning or operating the aircraft, followed by the word “Maintenance... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter,...

  5. 47 CFR 87.107 - Station identification.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... consisting of the name of the company owning or operating the aircraft, followed by the word “Maintenance... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter,...

  6. 47 CFR 87.107 - Station identification.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... consisting of the name of the company owning or operating the aircraft, followed by the word “Maintenance... of stations are exempted from the use of a call sign: Airborne weather radar, radio altimeter,...

  7. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa

  8. Weather in Your Life.

    ERIC Educational Resources Information Center

    Kannegieter, Sandy; Wirkler, Linda

    Facts and activities related to weather and meteorology are presented in this unit. Separate sections cover the following topics: (1) the water cycle; (2) clouds; (3) the Beaufort Scale for rating the speed and force of wind; (4) the barometer; (5) weather prediction; (6) fall weather in Iowa (sleet, frost, and fog); (7) winter weather in Iowa…

  9. Teaching Weather Concepts.

    ERIC Educational Resources Information Center

    Sebastian, Glenn R.

    Ten exercises based on the weather map provided in the national newspaper "U.S.A. Today" are used to teach intermediate grade students about weather. An overview describes the history of "U.S.A. Today," the format of the newspaper's weather map, and the map's suitability for teaching weather concepts. Specific exercises, which are briefly…

  10. Wireless mesh networks.

    PubMed

    Wang, Xinheng

    2008-01-01

    Wireless telemedicine using GSM and GPRS technologies can only provide low bandwidth connections, which makes it difficult to transmit images and video. Satellite or 3G wireless transmission provides greater bandwidth, but the running costs are high. Wireless networks (WLANs) appear promising, since they can supply high bandwidth at low cost. However, the WLAN technology has limitations, such as coverage. A new wireless networking technology named the wireless mesh network (WMN) overcomes some of the limitations of the WLAN. A WMN combines the characteristics of both a WLAN and ad hoc networks, thus forming an intelligent, large scale and broadband wireless network. These features are attractive for telemedicine and telecare because of the ability to provide data, voice and video communications over a large area. One successful wireless telemedicine project which uses wireless mesh technology is the Emergency Room Link (ER-LINK) in Tucson, Arizona, USA. There are three key characteristics of a WMN: self-organization, including self-management and self-healing; dynamic changes in network topology; and scalability. What we may now see is a shift from mobile communication and satellite systems for wireless telemedicine to the use of wireless networks based on mesh technology, since the latter are very attractive in terms of cost, reliability and speed. PMID:19047448

  11. Ultrahigh-Bitrate Wireless Data Communications via THz-Links; Possibilities and Challenges

    NASA Astrophysics Data System (ADS)

    Schneider, Thomas

    2015-02-01

    The data rate in the communication networks increases by a two number digit every year. Even today's mobile, wireless devices offer a large number of high-bitrate data services reaching from entertainment over information to communication. However, for the so called last-mile problem, for the connection of the network with remote cellular base stations and for other wireless links ultrahigh-bitrate connections are required. Another important application of ultrahigh-bitrate wireless links is the very fast rebuilding of a network infrastructure after natural disasters like tsunamis, hurricanes and blizzards. Contrary to optical links, carrier waves in the submillimeter-wave, or THz-region of the electromagnetic spectrum offer a high capacity and reliability even under worst weather conditions like a strong rain or dense fog. The THz-range has a large bandwidth so that even with simple modulation formats a quite high bitrate can be transmitted. However, ultrahigh bitrates require spectrally efficient modulation formats and these formats require THz-sources with a very high quality, i.e. low phase noise and narrow linewidth. Here an overview of the possibilities and challenges for ultrahigh bitrate transmission and the generation of high-quality THz-waves is given and a method for the generation of very stable and precise millimeter and THz waves is presented. In first proof of concept experiments a linewidth of < 1 Hz and a phase noise of < -130 dBc/Hz at an offset of 10 kHz from the carrier was measured in the microwave range.

  12. Daily Weather from Monthly Averages -- Hocus Pocus, or Useful Tool?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Just how much can you legitimately extract from monthly statistics of daily weather parameters? In this paper we present the utility and limitations of a simple weather generator (CLIGEN) which has over 750 registered users, most of whom are international. CLIGEN's 4,000-plus station files of mont...

  13. WEATHER OBSERVATIONS - SUMMARY OF THE DAY - FIRST ORDER

    EPA Science Inventory

    The National Climatic Data Center makes available daily weather data for approximately 300 currently active National Weather Service stations, with a lag time (after end of data month) of about 8-10 weeks. Coverage includes the contiguous United States, Caribbean Islands, Pacific...

  14. Forecast and virtual weather driven plant disease risk modeling system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe a system in use and development that leverages public weather station data, several spatialized weather forecast types, leaf wetness estimation, generic plant disease models, and online statistical evaluation. Convergent technological developments in all these areas allow, with funding f...

  15. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    PubMed Central

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  16. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    PubMed

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-01-01

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months. PMID:26213941

  17. 47 CFR 74.882 - Station identification.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... operation at a single location, over the transmitting unit being operated, identifying the transmitting unit's call sign or designator, its location, and the call sign of the broadcasting station or name of... transmission or intermittent transmissions pertaining to a single event. (b) Each wireless video assist...

  18. 47 CFR 74.882 - Station identification.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... operation at a single location, over the transmitting unit being operated, identifying the transmitting unit's call sign or designator, its location, and the call sign of the broadcasting station or name of... transmission or intermittent transmissions pertaining to a single event. (b) Each wireless video assist...

  19. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Station files. 1.911 Section 1.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings Application Requirements and Procedures §...

  20. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Station files. 1.911 Section 1.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings Application Requirements and Procedures §...

  1. 47 CFR 1.911 - Station files.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Station files. 1.911 Section 1.911 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL PRACTICE AND PROCEDURE Grants by Random Selection Wireless Radio Services Applications and Proceedings Application Requirements and Procedures §...

  2. Materials International Space Station Experiment (MISSE)

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Back dropped by the blue and white Earth is a Materials International Space Station Experiment (MISSE) on the exterior of the Station. The photograph was taken during the second bout of STS-118 Extra Vehicular Activity (EVA). MISSE collects information on how different materials weather in the environment of space.

  3. Weather Information System

    NASA Technical Reports Server (NTRS)

    1995-01-01

    WxLink is an aviation weather system based on advanced airborne sensors, precise positioning available from the satellite-based Global Positioning System, cockpit graphics and a low-cost datalink. It is a two-way system that uplinks weather information to the aircraft and downlinks automatic pilot reports of weather conditions aloft. Manufactured by ARNAV Systems, Inc., the original technology came from Langley Research Center's cockpit weather information system, CWIN (Cockpit Weather INformation). The system creates radar maps of storms, lightning and reports of surface observations, offering improved safety, better weather monitoring and substantial fuel savings.

  4. Pilot weather advisor

    NASA Technical Reports Server (NTRS)

    Kilgore, W. A.; Seth, S.; Crabill, N. L.; Shipley, S. T.; Graffman, I.; Oneill, J.

    1992-01-01

    The results of the work performed by ViGYAN, Inc., to demonstrate the Pilot Weather Advisor cockpit weather data system using a broadcast satellite communication system are presented. The Pilot Weather Advisor demonstrated that the technical problems involved with transmitting significant amount of weather data to an aircraft in-flight or on-the-ground via satellite are solvable with today's technology. The Pilot Weather Advisor appears to be a viable solution for providing accurate and timely weather information for general aviation aircraft.

  5. Winter Weather Emergencies

    MedlinePlus

    Severe winter weather can lead to health and safety challenges. You may have to cope with Cold related health problems, including ... there are no guarantees of safety during winter weather emergencies, you can take actions to protect yourself. ...

  6. Evaporation over a Heterogeneous Mixed Savanna-Agricultural Catchment using a Distributed Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Ceperley, N. C.; Mande, T.; Barrenetxea, G.; Vetterli, M.; Yacouba, H.; Repetti, A.; Parlange, M. B.

    2010-12-01

    Small scale rain fed agriculture is the primary livelihood for a large part of the population of Burkina Faso. Regional climate change means that this population is becoming increasingly vulnerable. Additionally, as natural savanna is converted for agriculture, hydrological systems are observed to become less stable as infiltration is decreased and rapid runoff is increased to the detriment of crop productivity, downstream populations and local water sources. The majority of the Singou River Basin, located in South East Burkina Faso is managed by hunting reserves, geared to maintaining high populations of wild game; however, residents surrounding the protected areas have been forced to intensify agriculture that has resulted in soil degradation as well as increases in the frequency and severity of flooding and droughts. Agroforestry, or planting trees in cultivated fields, has been proposed as a solution to help buffer these negative consequences, however the specific hydrologic behavior of the watershed land cover is unknown. We have installed a distributed sensor network of 17 Sensorscope wireless meteorological stations. These stations are dispersed across cultivated rice and millet fields, natural savanna, fallow fields, and around agroforestry fields. Sensorscope routes data through the network of stations to be delivered by a GPRS connection to a main server. This multi hop network allows data to be gathered over a large area and quickly adapts to changes in station performance. Data are available in real time via a website that can be accessed by a mobile phone. The stations are powered autonomously by small photovoltaic panels. This deployment is the first time that these meteorological stations have been used on the African continent. Initial calibration with measures from 2 eddy covariance stations allows us to calculate the energy balance at each of the Sensorscope stations. Thus, we can observe variation in evaporation over the various land cover in the watershed. This research will both contribute to scientific understanding of West African vegetation and inform local reforestation and agricultural management. Concurrent to this scientific research, the community is improving natural resource management efforts including reforestation, a botanical garden and environmental education. Our hope is that the results of our evaporation modeling will inform local farmers and thus help improve their adaption to changing weather patterns and land cover.

  7. Debate: Wired versus Wireless.

    ERIC Educational Resources Information Center

    Meeks, Glenn; Nair, Prakash

    2000-01-01

    Debates the issue of investing in wiring schools for desktop computer networks versus using laptops and wireless networks. Included are cost considerations and the value of technology for learning. Suggestions include using wireless networks for existing schools, hardwiring computers for new construction, and not using computers for elementary…

  8. Warming Up to Wireless

    ERIC Educational Resources Information Center

    Milner, Jacob

    2005-01-01

    In districts big and small across the U.S., students, teachers, and administrators alike have come to appreciate the benefits of wireless technology. Because the technology delivers Internet signals on airborne radio frequencies, wireless networking allows users of all portable devices to move freely on a school's campus and stay connected to the…

  9. Variation of radio field strength and radio horizon distance over three stations in Nigeria

    NASA Astrophysics Data System (ADS)

    Adediji, A. T.; Ismail, Mahamod; Mandeep, J. S.

    2014-03-01

    In this work, we present seasonal results of radio field strength and radio horizon distance derived from the computation of surface refractivity through in-situ measurement of temperature, relative humidity and pressure across three stations (Akure, Minna and Enugu) in Nigeria. The measurements of the tropospheric parameters were made using a Davis Wireless Weather Station (Integrated Sensor Suite, ISS) installed on the ground surface at each of the stations. The study utilized data for two years of measurement (January 2008-December 2009). Results show that the values of surface refractivity were low during the dry season months and high during the wet season months. The lowest values of 323, 313 and 281 N-units were observed in February for Akure, Enugu and Minna respectively, while maximum values of 372, 375 and 365 N-units were observed in September, October and August for the respective locations. Also, the average value of field strength variability was found to be 6.67, 5.62 and 7.48 for Akure, Enugu and Minna respectively.

  10. Convective Weather Avoidance with Uncertain Weather Forecasts

    NASA Technical Reports Server (NTRS)

    Karahan, Sinan; Windhorst, Robert D.

    2009-01-01

    Convective weather events have a disruptive impact on air traffic both in terminal area and in en-route airspaces. In order to make sure that the national air transportation system is safe and efficient, it is essential to respond to convective weather events effectively. Traffic flow control initiatives in response to convective weather include ground delay, airborne delay, miles-in-trail restrictions as well as tactical and strategic rerouting. The rerouting initiatives can potentially increase traffic density and complexity in regions neighboring the convective weather activity. There is a need to perform rerouting in an intelligent and efficient way such that the disruptive effects of rerouting are minimized. An important area of research is to study the interaction of in-flight rerouting with traffic congestion or complexity and developing methods that quantitatively measure this interaction. Furthermore, it is necessary to find rerouting solutions that account for uncertainties in weather forecasts. These are important steps toward managing complexity during rerouting operations, and the paper is motivated by these research questions. An automated system is developed for rerouting air traffic in order to avoid convective weather regions during the 20- minute - 2-hour time horizon. Such a system is envisioned to work in concert with separation assurance (0 - 20-minute time horizon), and longer term air traffic management (2-hours and beyond) to provide a more comprehensive solution to complexity and safety management. In this study, weather is dynamic and uncertain; it is represented as regions of airspace that pilots are likely to avoid. Algorithms are implemented in an air traffic simulation environment to support the research study. The algorithms used are deterministic but periodically revise reroutes to account for weather forecast updates. In contrast to previous studies, in this study convective weather is represented as regions of airspace that pilots are likely to avoid. The automated system periodically updates forecasts and reassesses rerouting decisions in order to account for changing weather predictions. The main objectives are to reroute flights to avoid convective weather regions and determine the resulting complexity due to rerouting. The eventual goal is to control and reduce complexity while rerouting flights during the 20 minute - 2 hour planning period. A three-hour simulation is conducted using 4800 flights in the national airspace. The study compares several metrics against a baseline scenario using the same traffic and weather but with rerouting disabled. The results show that rerouting can have a negative impact on congestion in some sectors, as expected. The rerouting system provides accurate measurements of the resulting complexity in the congested sectors. Furthermore, although rerouting is performed only in the 20-minute - 2-hour range, it results in a 30% reduction in encounters with nowcast weather polygons (100% being the ideal for perfectly predictable and accurate weather). In the simulations, rerouting was performed for the 20-minute - 2-hour flight time horizon, and for the en-route segment of air traffic. The implementation uses CWAM, a set of polygons that represent probabilities of pilot deviation around weather. The algorithms were implemented in a software-based air traffic simulation system. Initial results of the system's performance and effectiveness were encouraging. Simulation results showed that when flights were rerouted in the 20-minute - 2-hour flight time horizon of air traffic, there were fewer weather encounters in the first 20 minutes than for flights that were not rerouted. Some preliminary results were also obtained that showed that rerouting will also increase complexity. More simulations will be conducted in order to report conclusive results on the effects of rerouting on complexity. Thus, the use of the 20-minute - 2-hour flight time horizon weather avoidance teniques performed in the simulation is expected to provide benefits for short-term weather avoidance.

  11. Weatherization pays big dividends

    SciTech Connect

    Gorzelnik, E.F.

    1983-11-01

    Weather Windows, do-it-yourself indoor vinyl storm windows, are a major project of the Duke Power Co. Weatherization Program. Various weatherization programs in existence across the United States are discussed, emphasizing their public relations aspects as well as the service they provide to customers regarding savings on electric bills. 1 figure.

  12. American Weather Stories.

    ERIC Educational Resources Information Center

    Hughes, Patrick

    Weather has shaped United States' culture, national character and folklore; at times it has changed the course of history. The seven accounts compiled in this publication highlight some of the nation's weather experiences from the hurricanes that threatened Christopher Columbus to the peculiar run of bad weather that has plagued American…

  13. Weather Fundamentals: Meteorology. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) looks at how meteorologists gather and interpret current weather data collected from sources…

  14. Hot Weather Tips

    MedlinePlus

    ... FCA - A A + A You are here Home HOT Weather Tips Printer-friendly version We all suffer in hot weather. However, for elderly and disabled people and ... stress and following these tips for dealing with hot weather. Wear cool clothing: See that the person ...

  15. Aviation weather services

    NASA Technical Reports Server (NTRS)

    Sprinkle, C. H.

    1983-01-01

    The primary responsibilities of the National Weather Service (NWS) are to: provide warnings of severe weather and flooding for the protection of life and property; provide public forecasts for land and adjacent ocean areas for planning and operation; and provide weather support for: production of food and fiber; management of water resources; production, distribution and use of energy; and efficient and safe air operations.

  16. First look at RBSP Space Weather data

    NASA Astrophysics Data System (ADS)

    Weiss, M.; Mauk, B. H.; Fox, N. J.; Sotirelis, T.; Barnes, R. J.; Potter, M.

    2011-12-01

    NASA will launch two identical probes into the radiation belts to provide unprecedented insight into the physical processes and dynamics of near-Earth space. The RBSP mission in addition to the scientific data return, provides a 1kbps real-time space weather broadcast data in support of real time space weather modeling, forecast and prediction efforts. Networks of ground stations are being identified to downlink the space weather data. The RBSP instrument suites have selected space weather data to be broadcast from their collected space data on board the spacecraft, a subset from measurements based on information normally available to the instrument. The data subset includes particle fluxes at a variety of energies, and magnetic and electric field data. This selected space weather data is broadcast at all times through the primary spacecraft science downlink antennas when an observatory is not in a primary mission-related ground contact. The collected data will resolve important scientific issues and help researchers develop and improve various models for the radiation belts that can be used by forecasters to predict space weather phenomena and alert astronauts and spacecraft operators to potential hazards. The near real-time data from RBSP will be available to monitor and analyze current environmental conditions, forecast natural environmental changes and support anomaly resolution. When RBSP launches in August 2012, the RBSP instruments will be generating and broadcasting real-time space weather data. These data are used for space weather forecasting. The space weather data will be available on the RBSP Science Data Portal at http://rbspsdp.jhuapl.edu/data.php and will provide access to the space weather data received from the RBSP real-time space weather broadcast. The near real-time data will be calibrated and displayed on the web as soon as possible. The CCMC will ingest the RBSP space weather data into real-time models. The raw space weather data will be permanently archived at APL. This presentation will provide a first look at RBSP space weather data products.

  17. Modular Wireless Data-Acquisition and Control System

    NASA Technical Reports Server (NTRS)

    Perotti, Jose; Lucena, Angel; Medelius, Pedro; Mata, Carlos; Eckhoff, Anthony; Blalock, Norman

    2004-01-01

    A modular wireless data-acquisition and control system, now in operation at Kennedy Space Center, offers high performance at relatively low cost. The system includes a central station and a finite number of remote stations that communicate with each other through low-power radio frequency (RF) links. Designed to satisfy stringent requirements for reliability, integrity of data, and low power consumption, this system could be reproduced and adapted to use in a broad range of settings.

  18. Broadcast media and the dissemination of weather information

    NASA Technical Reports Server (NTRS)

    Byrnes, J.

    1973-01-01

    Although television is the public's most preferred source of weather information, it fails to provide weather reports to those groups who seek the information early in the day and during the day. The result is that many people most often use radio as a source of information, yet preferring the medium of television. The public actively seeks weather information from both radio and TV stations, usually seeking information on current conditions and short range forecasts. forecasts. Nearly all broadcast stations surveyed were eager to air severe weather bulletins quickly and often. Interest in Nowcasting was high among radio and TV broadcasters, with a significant portion indicating a willingness to pay something for the service. However, interest among TV stations in increasing the number of daily reports was small.

  19. Creating an Atmosphere for STEM Literacy in the Rural South through Student-Collected Weather Data

    ERIC Educational Resources Information Center

    Clark, Lynn; Majumdar, Saswati; Bhattacharjee, Joydeep; Hanks, Anne Case

    2015-01-01

    This paper is an examination of a teacher professional development program in northeast Louisiana, that provided 30 teachers and their students with the technology, skills, and content knowledge to collect data and explore weather trends. Data were collected from both continuous monitoring weather stations and simple school-based weather stations…

  20. Utilization of Live Localized Weather Information for Sustainable Agriculture

    NASA Astrophysics Data System (ADS)

    Anderson, J.; Usher, J.

    2010-09-01

    Authors: Jim Anderson VP, Global Network and Business Development WeatherBug® Professional Jeremy Usher Managing Director, Europe WeatherBug® Professional Localized, real-time weather information is vital for day-to-day agronomic management of all crops. The challenge for agriculture is twofold in that local and timely weather data is not often available for producers and farmers, and it is not integrated into decision-support tools they require. Many of the traditional sources of weather information are not sufficient for agricultural applications because of the long distances between weather stations, meaning the data is not always applicable for on-farm decision making processes. The second constraint with traditional weather information is the timeliness of the data. Most delivery systems are designed on a one-hour time step, whereas many decisions in agriculture are based on minute-by-minute weather conditions. This is especially true for decisions surrounding chemical and fertilizer application and frost events. This presentation will outline how the creation of an agricultural mesonet (weather network) can enable producers and farmers with live, local weather information from weather stations installed in farm/field locations. The live weather information collected from each weather station is integrated into a web-enabled decision support tool, supporting numerous on-farm agronomic activities such as pest management, or dealing with heavy rainfall and frost events. Agronomic models can be used to assess the potential of disease pressure, enhance the farmer's abilities to time pesticide applications, or assess conditions contributing to yield and quality fluctuations. Farmers and industry stakeholders may also view quality-assured historical weather variables at any location. This serves as a record-management tool for viewing previously uncharted agronomic weather events in graph or table form. This set of weather tools is unique and provides a significant enhancement to the agronomic decision-support process. Direct benefits to growers can take the form of increased yield and grade potential, as well as savings in money and time. Pest management strategies become more efficient due to timely and localized disease and pest modelling, and increased efficacy of pest and weed control. Examples from the Canadian Wheat Board (CWB) WeatherFarm weather network will be utilized to illustrate the processes, decision tools and benefits to producers and farmers.

  1. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  2. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  3. Planetary surface weathering

    NASA Technical Reports Server (NTRS)

    Gooding, J. L.

    1986-01-01

    The weathering of planetary surfaces is treated. Both physical and chemical weathering (reactions between minerals or mineraloids and planetary volatiles through oxidation, hydration, carbonation, or solution processes) are discussed. Venus, earth, and Mars all possess permanent atmospheres such that weathering should be expected to significantly affect their respective surfaces. In contrast, Mercury and the moon lack permanent atmospheres but conceivably could experience surface weathering in response to transient atmospheres generated by volcanic or impact cratering events. Weathering processes can be postulated for other rocky objects including Io, Titan, asteroids, and comets.

  4. Wide area wireless network (WAWN) for supporting precision agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A high speed wireless network was established using a 100 meter tall microwave tower as the base station located on Prairie Point Road, 16 km from Macon, MS, in Noxubee County. Three sectorial antennas were used to provide complete 360 degree coverage. The system used state-of-the-art unlicensed dig...

  5. Weatherization and Intergovernmental Program - Weatherization Assistance Program

    SciTech Connect

    2010-06-01

    The U.S. Department of Energy’s (DOE) Weatherization Assistance Program reduces energy costs for low-income households by increasing the energy efficiency of their homes, while ensuring their health and safety.

  6. Beyond the Weather Chart: Weathering New Experiences.

    ERIC Educational Resources Information Center

    Huffman, Amy Bruno

    1996-01-01

    Describes an early childhood educator's approach to teaching children about rain, rainbows, clouds, precipitation, the sun, air, and wind. Recommends ways to organize study topics and describes experiments that can help children better understand the different elements of weather. (MOK)

  7. Deployment Control of Wireless Multi-Hop-Relay Mobile Robots Based on Voronoi Partition

    NASA Astrophysics Data System (ADS)

    Imaizumi, Takaaki; Murakami, Hiroyuki; Uchimura, Yutaka

    This paper describes a new method for the deployment of wireless relay nodes. When using rescue robots in a building or underground city, the wireless radio signal is attenuated significantly, and therefore, multi-hop extension involving wireless communication relays is required. The goal of this research is to deploy wireless relay nodes to maintain connectivity between the base station and the leader robot that explores around the front line. To move the relay robot autonomously, a distributed algorithm is required. The proposed method is suitable when it is applied for wireless relay purposes. In the method, a virtual force drives a node to the centroid of Voronoi neighbors, and it maintains the connectivity of wireless communication. The proposed method is evaluated by conducting numerical simulations and experiments. In the simulation, one or two leader robots are assumed. In the experiment, a mobile robot equipped with omni-wheels is used.

  8. Incorporating the Campus Radio Station into Your Emergency Communications Plan

    ERIC Educational Resources Information Center

    Johnson, Thomas C.

    2008-01-01

    Radio stations have been a mainstay of American life since the 1920s. Broadcasting primarily over AM and FM frequencies, American radio stations have been used to provide entertainment, news, weather, and advertising to the public. Beginning in 1963 and continuing until 1997, local radio stations were part of the Emergency Broadcast System (EBS)

  9. Incorporating the Campus Radio Station into Your Emergency Communications Plan

    ERIC Educational Resources Information Center

    Johnson, Thomas C.

    2008-01-01

    Radio stations have been a mainstay of American life since the 1920s. Broadcasting primarily over AM and FM frequencies, American radio stations have been used to provide entertainment, news, weather, and advertising to the public. Beginning in 1963 and continuing until 1997, local radio stations were part of the Emergency Broadcast System (EBS)…

  10. Wireless Emergency Alerts

    MedlinePlus

    ... What types of alerts will I receive? Extreme weather, and other threatening emergencies in your area AMBER ... What types of WEA messages will the National Weather Service (NWS) send? Tsunami Warnings Tornado and Flash ...

  11. Space weather activities in Australia

    NASA Astrophysics Data System (ADS)

    Cole, D.

    Space Weather Plan Australia has a draft space weather plan to drive and focus appropriate research into services that meet future industry and social needs. The Plan has three main platforms, space weather monitoring and service delivery, support for priority research, and outreach to the community. The details of monitoring, service, research and outreach activities are summarised. A ground-based network of 14 monitoring stations from Antarctica to Papua New Guinea is operated by IPS, a government agency. These sites monitor ionospheric and geomagnetic characteristics, while two of them also monitor the sun at radio and optical wavelengths. Services provided through the Australian Space Forecast Centre (ASFC) include real-time information on the solar, space, ionospheric and geomagnetic environments. Data are gathered automatically from monitoring sites and integrated with data exchanged internationally to create snapshots of current space weather conditions and forecasts of conditions up to several days ahead. IPS also hosts the WDC for Solar-Terrestrial Science and specialises in ground-based solar, ionospheric, and geomagnetic data sets, although recent in-situ magnetospheric measurements are also included. Space weather activities A research consortium operates the Tasman International Geospace Environment Radar (TIGER), an HF southward pointing auroral radar operating from Hobart (Tasmania). A second cooperative radar (Unwin radar) is being constructed in the South Island of New Zealand. This will intersect with TIGER over the auroral zone and enhance the ability of the radar to image the surge of currents that herald space environment changes entering the Polar Regions. Launched in November 2002, the micro satellite FEDSAT, operated by the Cooperative Research Centre for Satellite Systems, has led to successful space science programs and data streams. FEDSAT is making measurements of the magnetic field over Australia and higher latitudes. It also carries a GPS receiver measuring total electron content data for magnetospheric and ionospheric studies. Understanding cosmic ray phenomena requires observations from a range of locations. The Mawson observatory, comprising low and high energy surface and high energy underground instruments, is the largest and most sophisticated observatory of its type in the Southern Hemisphere, and the only one at polar latitudes. The Australian Antarctic Division operates similar detectors at other sites. Australia has proved to be a successful site for ground-based studies and satellite downlink facilities for international collaborative projects, such as ILWS, which are monitoring Sun-Earth activity and exploring techniques for space weather forecasting.

  12. MARGINAL EXPENSE OIL WELL WIRELESS SURVEILLANCE MEOWS

    SciTech Connect

    Mason M. Medizade; John R. Ridgely; Donald G. Nelson

    2004-11-01

    A marginal expense oil well wireless surveillance system to monitor system performance and production from rod-pumped wells in real time from wells operated by Vaquero Energy in the Edison Field, Main Area of Kern County in California has been successfully designed and field tested. The surveillance system includes a proprietary flow sensor, a programmable transmitting unit, a base receiver and receiving antenna, and a base station computer equipped with software to interpret the data. First, the system design is presented. Second, field data obtained from three wells is shown. Results of the study show that an effective, cost competitive, real-time wireless surveillance system can be introduced to oil fields across the United States and the world.

  13. Space Weathering of Rocks

    NASA Technical Reports Server (NTRS)

    Noble, Sarah

    2011-01-01

    Space weathering discussions have generally centered around soils but exposed rocks will also incur the effects of weathering. On the Moon, rocks make up only a very small percentage of the exposed surface and areas where rocks are exposed, like central peaks, are often among the least space weathered regions we find in remote sensing data. However, our studies of weathered Ap 17 rocks 76015 and 76237 show that significant amounts of weathering products can build up on rock surfaces. Because rocks have much longer surface lifetimes than an individual soil grain, and thus record a longer history of exposure, we can study these products to gain a deeper perspective on the weathering process and better assess the relative impo!1ance of various weathering components on the Moon. In contrast to the lunar case, on small asteroids, like Itokowa, rocks make up a large fraction of the exposed surface. Results from the Hayabusa spacecraft at Itokowa suggest that while the low gravity does not allow for the development of a mature regolith, weathering patinas can and do develop on rock surfaces, in fact, the rocky surfaces were seen to be darker and appear spectrally more weathered than regions with finer materials. To explore how weathering of asteroidal rocks may differ from lunar, a set of ordinary chondrite meteorites (H, L, and LL) which have been subjected to artificial space weathering by nanopulse laser were examined by TEM. NpFe(sup 0) bearing glasses were ubiquitous in both the naturally-weathered lunar and the artificially-weathered meteorite samples.

  14. Wireless Sensor Networks: Monitoring and Control

    SciTech Connect

    Hastbacka, Mildred; Ponoum, Ratcharit; Bouza, Antonio

    2013-05-31

    The article discusses wireless sensor technologies for building energy monitoring and control. This article, also, addresses wireless sensor networks as well as benefits and challenges of using wireless sensors. The energy savings and market potential of wireless sensors are reviewed.

  15. A resampling procedure for generating conditioned daily weather sequences

    USGS Publications Warehouse

    Clark, M.P.; Gangopadhyay, S.; Brandon, D.; Werner, K.; Hay, L.; Rajagopalan, B.; Yates, D.

    2004-01-01

    [1] A method is introduced to generate conditioned daily precipitation and temperature time series at multiple stations. The method resamples data from the historical record "nens" times for the period of interest (nens = number of ensemble members) and reorders the ensemble members to reconstruct the observed spatial (intersite) and temporal correlation statistics. The weather generator model is applied to 2307 stations in the contiguous United States and is shown to reproduce the observed spatial correlation between neighboring stations, the observed correlation between variables (e.g., between precipitation and temperature), and the observed temporal correlation between subsequent days in the generated weather sequence. The weather generator model is extended to produce sequences of weather that are conditioned on climate indices (in this case the Nin??o 3.4 index). Example illustrations of conditioned weather sequences are provided for a station in Arizona (Petrified Forest, 34.8??N, 109.9??W), where El Nin??o and La Nin??a conditions have a strong effect on winter precipitation. The conditioned weather sequences generated using the methods described in this paper are appropriate for use as input to hydrologic models to produce multiseason forecasts of streamflow.

  16. Tales of future weather

    NASA Astrophysics Data System (ADS)

    Hazeleger, W.; van den Hurk, B. J. J. M.; Min, E.; van Oldenborgh, G. J.; Petersen, A. C.; Stainforth, D. A.; Vasileiadou, E.; Smith, L. A.

    2015-02-01

    Society is vulnerable to extreme weather events and, by extension, to human impacts on future events. As climate changes weather patterns will change. The search is on for more effective methodologies to aid decision-makers both in mitigation to avoid climate change and in adaptation to changes. The traditional approach uses ensembles of climate model simulations, statistical bias correction, downscaling to the spatial and temporal scales relevant to decision-makers, and then translation into quantities of interest. The veracity of this approach cannot be tested, and it faces in-principle challenges. Alternatively, numerical weather prediction models in a hypothetical climate setting can provide tailored narratives for high-resolution simulations of high-impact weather in a future climate. This 'tales of future weather' approach will aid in the interpretation of lower-resolution simulations. Arguably, it potentially provides complementary, more realistic and more physically consistent pictures of what future weather might look like.

  17. Weather and climate

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Recommendations for using space observations of weather and climate to aid in solving earth based problems are given. Special attention was given to: (1) extending useful forecasting capability of space systems, (2) reducing social, economic, and human losses caused by weather, (3) development of space system capability to manage and control air pollutant concentrations, and (4) establish mechanisms for the national examination of deliberate and inadvertent means for modifying weather and climate.

  18. MRDIS Standalone Central Alarm Station

    SciTech Connect

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communications or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.

  19. Materials International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Astronaut Patrick G. Forrester works with the the Materials International Space Station Experiment (MISSE) during extravehicular activity (EVA). MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  20. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  1. Cockpit weather information needs

    NASA Technical Reports Server (NTRS)

    Scanlon, Charles H.

    1992-01-01

    The primary objective is to develop an advanced pilot weather interface for the flight deck and to measure its utilization and effectiveness in pilot reroute decision processes, weather situation awareness, and weather monitoring. Identical graphical weather displays for the dispatcher, air traffic control (ATC), and pilot crew should also enhance the dialogue capabilities for reroute decisions. By utilizing a broadcast data link for surface observations, forecasts, radar summaries, lightning strikes, and weather alerts, onboard weather computing facilities construct graphical displays, historical weather displays, color textual displays, and other tools to assist the pilot crew. Since the weather data is continually being received and stored by the airborne system, the pilot crew has instantaneous access to the latest information. This information is color coded to distinguish degrees of category for surface observations, ceiling and visibilities, and ground radar summaries. Automatic weather monitoring and pilot crew alerting is accomplished by the airborne computing facilities. When a new weather information is received, the displays are instantaneously changed to reflect the new information. Also, when a new surface or special observation for the intended destination is received, the pilot crew is informed so that information can be studied at the pilot's discretion. The pilot crew is also immediately alerted when a severe weather notice, AIRMET or SIGMET, is received. The cockpit weather display shares a multicolor eight inch cathode ray tube and overlaid touch panel with a pilot crew data link interface. Touch sensitive buttons and areas are used for pilot selection of graphical and data link displays. Time critical ATC messages are presented in a small window that overlays other displays so that immediate pilot alerting and action can be taken. Predeparture and reroute clearances are displayed on the graphical weather system so pilot review of weather along the route can be accomplished prior to pilot acceptance of the clearance. An ongoing multiphase test series is planned for testing and modifying the graphical weather system. Preliminary data shows that the nine test subjects considered the graphical presentation to be much better than their current weather information source for situation awareness, flight safety, and reroute decision making.

  2. Weather assessment and forecasting

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Data management program activities centered around the analyses of selected far-term Office of Applications (OA) objectives, with the intent of determining if significant data-related problems would be encountered and if so what alternative solutions would be possible. Three far-term (1985 and beyond) OA objectives selected for analyses as having potential significant data problems were large-scale weather forecasting, local weather and severe storms forecasting, and global marine weather forecasting. An overview of general weather forecasting activities and their implications upon the ground based data system is provided. Selected topics were specifically oriented to the use of satellites.

  3. Mobility- Aware Cache Management in Wireless Environment

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Saini, J. S.

    2010-11-01

    In infrastructure wireless environments, a base station provides communication links between mobile client and remote servers. Placing a proxy cache at the base station is an effective way of managing the wireless Internet bandwidth efficiently. However, in the situation of non-uniform heavy traffic, requests of all the mobile clients in the service area of the base station may cause overload in the cache. If the proxy cache has to release some cache space for the new mobile client in the environment, overload occurs. In this paper, we propose a novel cache management strategy to decrease the penalty of overloaded traffic on the proxy and to reduce the number of remote accesses by increasing the cache hit ratio. We predict the number of overload ahead of time based on its history and adapt the cache for the heavy traffic to be able to provide continuous and fair service to the current mobile clients and incoming ones. We have tested the algorithms over a real implementation of the cache management system in presence of fault tolerance and security. In our cache replacement algorithm, mobility of the clients, predicted overload number, size of the cached packets and their access frequencies are considered altogether. Performance results show that our cache management strategy outperforms the existing policies with less number of overloads and higher cache hit ratio.

  4. Wireless Networks: New Meaning to Ubiquitous Computing.

    ERIC Educational Resources Information Center

    Drew, Wilfred, Jr.

    2003-01-01

    Discusses the use of wireless technology in academic libraries. Topics include wireless networks; standards (IEEE 802.11); wired versus wireless; why libraries implement wireless technology; wireless local area networks (WLANs); WLAN security; examples of wireless use at Indiana State University and Morrisville College (New York); and useful…

  5. Deployable Wireless Camera Penetrators

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Jones, Jack; Sherrit, Stewart; Wu, Jiunn Jeng

    2008-01-01

    A lightweight, low-power camera dart has been designed and tested for context imaging of sampling sites and ground surveys from an aerobot or an orbiting spacecraft in a microgravity environment. The camera penetrators also can be used to image any line-of-sight surface, such as cliff walls, that is difficult to access. Tethered cameras to inspect the surfaces of planetary bodies use both power and signal transmission lines to operate. A tether adds the possibility of inadvertently anchoring the aerobot, and requires some form of station-keeping capability of the aerobot if extended examination time is required. The new camera penetrators are deployed without a tether, weigh less than 30 grams, and are disposable. They are designed to drop from any altitude with the boost in transmitting power currently demonstrated at approximately 100-m line-of-sight. The penetrators also can be deployed to monitor lander or rover operations from a distance, and can be used for surface surveys or for context information gathering from a touch-and-go sampling site. Thanks to wireless operation, the complexity of the sampling or survey mechanisms may be reduced. The penetrators may be battery powered for short-duration missions, or have solar panels for longer or intermittent duration missions. The imaging device is embedded in the penetrator, which is dropped or projected at the surface of a study site at 90 to the surface. Mirrors can be used in the design to image the ground or the horizon. Some of the camera features were tested using commercial "nanny" or "spy" camera components with the charge-coupled device (CCD) looking at a direction parallel to the ground. Figure 1 shows components of one camera that weighs less than 8 g and occupies a volume of 11 cm3. This camera could transmit a standard television signal, including sound, up to 100 m. Figure 2 shows the CAD models of a version of the penetrator. A low-volume array of such penetrator cameras could be deployed from an aerobot or a spacecraft onto a comet or asteroid. A system of 20 of these penetrators could be designed and built in a 1- to 2-kg mass envelope. Possible future modifications of the camera penetrators, such as the addition of a chemical spray device, would allow the study of simple chemical reactions of reagents sprayed at the landing site and looking at the color changes. Zoom lenses also could be added for future use.

  6. Wavelet entropy based damage identification using wireless smart sensors

    NASA Astrophysics Data System (ADS)

    Yun, Gun-Jin; Lee, Soon-Gie; Carletta, Joan; Nagayama, Tomonori

    2009-03-01

    In this paper, a wavelet entropy based damage identification method is experimentally validated using wireless smart sensor units (Imote2) with TinyOS-based firmware. Recently, the wireless smart sensor network has drawn significant attention for applications in Structural Health Monitoring (SHM). Wavelet entropy is considered to be a damagesensitive signature that can be obtained both at different spatial locations and time stations to indicate changes in dynamic responses of structures. Compared to metrics based on the Fourier Transform, metrics based on wavelets require much simpler mathematics, with no complex numbers. Thus wavelet-based SHM methods would be easier to embed on motes. Wavelets can have other (mathematical) advantages when the structures are complex and the dynamic signals are non-stationary. Particularly, use of the relative wavelet entropy (RWE) has been extensively explored for use in damage detection using wireless smart sensors. First, sensor validation tests have been conducted using wireless and wired sensors. To verify an off-line time synchronization technique and the feasibility of using acceleration data from wireless sensors, modal identifications have been conducted using the ERA technique. Finally, the wavelet entropy based damage detection method has been demonstrated using Imote2 wireless smart sensors.

  7. Weather and emotional state

    NASA Astrophysics Data System (ADS)

    Spasova, Z.

    2010-09-01

    Introduction Given the proven effects of weather on the human organism, an attempt to examine its effects on a psychic and emotional level has been made. Emotions affect the bio-tonus, working ability and concentration, hence their significance in various domains of economic life, such as health care, education, transportation, tourism, etc. Data and methods The research has been made in Sofia City within a period of 8 months, using 5 psychological methods (Eysenck Personality Questionnaire (EPQ), State-Trait Anxiety Inventory (STAI), Test for Self-assessment of the emotional state (developed by Wessman and Ricks), Test for evaluation of moods and Test "Self-confidence - Activity - Mood" (developed by the specialists from the Military Academy in Saint Petersburg). The Fiodorov-Chubukov's complex-climatic method was used to characterize meteorological conditions because of the purpose to include in the analysis a maximal number of meteorological elements. 16 weather types are defined in dependence of the meteorological elements values according to this method. Abrupt weather changes from one day to another, defined by the same method, were considered as well. Results and discussions The results obtained by t-test show that the different categories of weather lead to changes in the emotional status, which indicates a character either positive or negative for the organism. The abrupt weather changes, according to expectations, have negative effect on human emotions but only when a transition to the cloudy weather or weather type, classified as "unfavourable" has been realized. The relationship between weather and human emotions is rather complicated since it depends on individual characteristics of people. One of these individual psychological characteristics, marked by the dimension "neuroticism", has a strong effect on emotional reactions in different weather conditions. Emotionally stable individuals are more "protected" to the weather influence on their emotions, while those who are emotionally unstable have a stronger dependence to the impacts of the weather.

  8. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    NASA Technical Reports Server (NTRS)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  9. [Environmental characterization: weather and climate].

    PubMed

    Prucha, J

    1987-11-01

    In order to characterize the weather and the climate in the area of industrial Rhine-Main area (Wiesbaden and Frankfurt) and in the two control areas (Freiburg with the bordering higher region of the Black Forest and the Starnberg area), relevant measuring data was provided by the German Meteorological Service, Centre of the Medicometeorological Research Establishment, Freiburg. The monthly as well as yearly climatic values of the years 1982-1985 were employed for the following stations: Frankfurt Airport; Wiesbaden South; Freiburg Meteorological Office; Munich Airport Riem which are representative for our areas under examination. For the characterization of the climate in the study areas the following parameters were used: temperature degrees C; relative humidity of the air in %; amount of rainfall in mm; duration of sunshine; wind distribution. The climatic values were interpreted for the years 1982-1985 of the epidemiological group-diagnostic examination of children. PMID:3128928

  10. Value of global weather sensors

    SciTech Connect

    Canavan, G.H.

    1998-12-23

    Long-range weather predictions have great scientific and economic potential, but require precise global observations. Small balloon transponders could serve as lagrangian trace particles to measure the vector wind, which is the primary input to long-range numerical forecasts. The wind field is difficult to measure; it is at present poorly sampled globally. Distance measuring equipment (DME) triangulation of signals from roughly a million transponders could sample it with sufficient accuracy to support {approximately} two week forecasts. Such forecasts would have great scientific and economic potential which is estimated below. DME uses small, low-power transmitters on each transponder to broadcast short, low-power messages that are detected by several small receivers and forwarded to the ground station for processing of position, velocity, and state information. Thus, the transponder is little more than a balloon with a small radio, which should only weigh a few grams and cost a few dollars.

  11. Tracking Weather Satellites.

    ERIC Educational Resources Information Center

    Martin, Helen E.

    1996-01-01

    Describes the use of weather satellites in providing an exciting, cohesive framework for students learning Earth and space science and in providing a hands-on approach to technology in the classroom. Discusses the history of weather satellites and classroom satellite tracking. (JRH)

  12. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in

  13. Mild and Wild Weather.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Presents background information and six activities that focus on clouds, precipitation, and stormy weather. Each activity includes an objective, recommended age level(s), subject area(s), and instructional strategies. Also provided are two ready-to-copy pages (a coloring page on lightning and a list of weather riddles to solve). (JN)

  14. Home Weatherization Visit

    ScienceCinema

    Chu, Steven

    2013-05-29

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  15. Weather Fundamentals: Clouds. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) discusses how clouds form, the different types of clouds, and the important role they play in…

  16. Weather Fundamentals: Wind. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) describes the roles of the sun, temperature, and air pressure in creating the incredible power…

  17. World weather program

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A brief description of the Global Weather Experiment is presented. The world weather watch program plan is described and includes a global observing system, a global data processing system, a global telecommunication system, and a voluntary cooperation program. A summary of Federal Agency plans and programs to meet the challenges of international meteorology for the two year period, FY 1980-1981, is presented.

  18. Home Weatherization Visit

    SciTech Connect

    Chu, Steven

    2009-01-01

    Secretary Steven Chu visits a home that is in the process of being weatherized in Columbus, OH, along with Ohio Governor Ted Strickland and Columbus Mayor Michael Coleman. They discuss the benefits of weatherization and how funding from the recovery act is having a direct impact in communities across America.

  19. Weathering Database Technology

    ERIC Educational Resources Information Center

    Snyder, Robert

    2005-01-01

    Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which…

  20. On Observing the Weather

    ERIC Educational Resources Information Center

    Crane, Peter

    2004-01-01

    Rain, sun, snow, sleet, wind... the weather affects everyone in some way every day, and observing weather is a terrific activity to attune children to the natural world. It is also a great way for children to practice skills in gathering and recording information and to learn how to use simple tools in a standardized fashion. What better way to…

  1. Exercising in Cold Weather

    MedlinePlus

    ... www.nia.nih.gov/Go4Life Exercising in Cold Weather Exercise has benefits all year, even during winter. ... activities when it’s cold outside: l Check the weather forecast. If it’s very windy or cold, exercise ...

  2. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern…

  3. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in

  4. Fabulous Weather Day

    ERIC Educational Resources Information Center

    Marshall, Candice; Mogil, H. Michael

    2007-01-01

    Each year, first graders at Kensington Parkwood Elementary School in Kensington, Maryland, look forward to Fabulous Weather Day. Students learn how meteorologists collect data about the weather, how they study wind, temperature, precipitation, basic types/characteristics of clouds, and how they forecast. The project helps the students grow in…

  5. Teacher's Weather Sourcebook.

    ERIC Educational Resources Information Center

    Konvicka, Tom

    This book is a teaching resource for the study of weather-related phenomena. A "weather unit" is often incorporated into school study because of its importance to our daily lives and because of its potential to cut across disciplinary content. This book consists of two parts. Part I covers the major topics of atmospheric science such as the modern

  6. Weathering Database Technology

    ERIC Educational Resources Information Center

    Snyder, Robert

    2005-01-01

    Collecting weather data is a traditional part of a meteorology unit at the middle level. However, making connections between the data and weather conditions can be a challenge. One way to make these connections clearer is to enter the data into a database. This allows students to quickly compare different fields of data and recognize which

  7. A Wireless World: Charles County Public Schools Makes Wireless Universal

    ERIC Educational Resources Information Center

    Hoffman, Richard

    2007-01-01

    Wireless connectivity in schools is all the rage, and many school systems have at least gotten their feet wet with a wireless lab or a few portable laptop carts. But Bijaya Devkota, the chief information officer of Charles County Public Schools, has done what many school systems only dream of--implemented universal wireless access throughout his…

  8. Linking Weather and Climate

    NASA Astrophysics Data System (ADS)

    Dole, R.

    2009-04-01

    In order to make progress on many societally important problems, an improved understanding is required of the connections between weather and climate. This is entirely in keeping with the growing demand from the public and decision-makers for a seamless suite of weather and climate forecasts that span times from very short range forecasts to decadal-to-centennial climate change projections. This presentation overviews progress and challenges in attacking problems of weather-climate linkages from both the weather side out and climate side in. It highlights areas of common research interest, as well as key priorities that have emerged from recent reports, especially (but not exclusively) related to the IPCC Fourth Assessment and the United States Climate Change Science Program. The presentation concludes with suggestions on near-term directions for advancing the understanding and capabilities to predict the connections between weather and climate.

  9. Space Station - Toward Station operability

    NASA Astrophysics Data System (ADS)

    Bennett, Gregory R.; Paddock, Stephen G.

    1988-11-01

    Systematic operations engineering and the development of an automated operations management system (OMS) are presented as key elements of NASA's Space Station design development effort. The OMS software, which will take care of routine Space Station operations, encompasses on-board and ground-based components. Flight profiles, resource-utilization plans, crew training plans, flight-support operations, flight rules, and crew timelines all inform the OMS data base.

  10. Systems Study of an Automated Fire Weather Data System

    NASA Technical Reports Server (NTRS)

    Nishioka, K.

    1974-01-01

    A sensor system applicable to an automated weather station was developed. The sensor provides automated fire weather data which correlates with manual readings. The equipment and methods are applied as an aid to the surveillance and protection of wildlands from fire damage. The continuous readings provided by the sensor system make it possible to determine the periods of time that the wilderness areas should be closed to the public to minimize the possibilities of fire.

  11. Wireless intelligent monitoring and analysis systems

    NASA Astrophysics Data System (ADS)

    Berry, Nina; Djordjevich, Donna; Ko, Teresa; Coburn, Ben; Elliott, Stephen; Tsudama, Brett; Whitcomb, Melissa

    2004-04-01

    The wireless intelligent monitoring and analysis systems is a proof-of-concept directed at discovering solution(s) for providing decentralized intelligent data analysis and control for distributed containers equipped with wireless sensing units. The objective was to embed smart behavior directly within each wireless sensor container, through the incorporation of agent technology into each sensor suite. This approach provides intelligent directed fusion of data based on a social model of teaming behavior. This system demonstrates intelligent sensor behavior that converts raw sensor data into group knowledge to better understand the integrity of the complete container environment. The emergent team behavior is achieved with lightweight software agents that analyze sensor data based on their current behavior mode. When the system starts-up or is reconfigured the agents self-organize into virtual random teams based on the leader/member/lonely paradigm. The team leader collects sensor data from their members and investigates all abnormal situations to determine the legitimacy of high sensor readings. The team leaders flag critical situation and report this knowledge back to the user via a collection of base stations. This research provides insight into the integration issues and concerns associated with integrating multi-disciplinary fields of software agents, artificial life and autonomous sensor behavior into a complete system.

  12. The Space Weather Reanalysis

    NASA Astrophysics Data System (ADS)

    Kihn, E. A.; Ridley, A. J.; Zhizhin, M.

    2002-12-01

    The objective of this project is to generate a complete 11 year space weather representation using physically consistent data-driven space weather models. The project will create a consistent, integrated historical record of the near Earth space environment by coupling observational data from space environmental monitoring systems archived at NGDC with data-driven, physically based numerical models. The resulting product will be an enhanced look at the space environment on consistent grids, time resolution, coordinate systems and containing key fields allowing an interested user to quickly and easily incorporate the impact of the near-Earth space climate in environmentally sensitive models. Currently there are no easily accessible long term climate archives available for the space-weather environment. Just as with terrestrial weather it is crucial to understand both daily weather forecasts as well as long term climate changes, so this project will demonstrate the ability to generate a meaningful and physically derived space weather climatology. The results of this project strongly support the DOD's Environmental Scenario Generator (ESG) project. The ESG project provides tools for intellegent data mining, classification and event detection which could be applied to a historical space-weather database. The two projects together provide a suite of tools for the user interested in modeling the effect of the near-earth space environment. We will present results and methodologies developed during the first two years of effort in the project.

  13. Coal weathering studies

    SciTech Connect

    Alvarez, R.; Barriocanal, C.; Casal, M.D.; Diez, M.A.; Gonzalez, A.I.; Pis, J.J.; Canga, C.S.

    1996-12-31

    Weathering studies were carried out on coal/blend piles stored in the open yard at the INCAR facilities. Firstly, a typical and complex coal blend used by the Spanish Steel Company, ENSIDESA, prepared and ground at industrial scale, was stored. Several methods have been applied for detecting weathering in coals, Gieseler maximum fluidity being the most sensitive indicator of the loss of thermoplastic properties. Carbonization tests were carried out in a semi-industrial and a movable-wall ovens available at the INCAR Coking Test Plant. In addition to the measurements of internal gas pressure and cooling pressure, laboratory tests to measure expansion/contraction behavior of coals were performed. There is a clear decrease in internal gas pressure with weathering, measured in the semi-industrial oven. A decrease in wall pressure after two months of weathering followed by a period of stabilization lasting practically ten months were observed. As regards coke quality, no significant changes were produced over a storing period of ten months, but after this date impairment was observed. The behavior of selected individual coals stored without grinding, which are components of the blend, was rather different. Some coals showed a maximum wall pressure through the weathering period. Coke quality improved with some coals and was impaired with others due to weathering. It should be pointed out that slight weathering improved coke quality not only in high-volatile and fluid coals but also in medium-volatile coals.

  14. Environmental Education Tips: Weather Activities.

    ERIC Educational Resources Information Center

    Brainard, Audrey H.

    1989-01-01

    Provides weather activities including questions, on weather, heating the earth's surface, air, tools of the meteorologist, clouds, humidity, wind, and evaporation. Shows an example of a weather chart activity. (RT)

  15. Hypothermia: A Cold Weather Hazard

    MedlinePlus

    ... Weather Hazard Heath and Aging Hypothermia: A Cold Weather Hazard What Are The Signs Of Hypothermia? Taking ... cold air. But, not everyone knows that cold weather can also lower the temperature inside your body. ...

  16. GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters

    NASA Technical Reports Server (NTRS)

    Moore, Angelyn W.; Gutman, Seth I.; Holub, Kirk; Bock, Yehuda; Danielson, David; Laber, Jayme; Small, Ivory

    2013-01-01

    Global Positioning System (GPS) meteorology provides enhanced density, low-latency (30-min resolution), integrated precipitable water (IPW) estimates to NOAA NWS (National Oceanic and Atmospheric Adminis tration Nat ional Weather Service) Weather Forecast Offices (WFOs) to provide improved model and satellite data verification capability and more accurate forecasts of extreme weather such as flooding. An early activity of this project was to increase the number of stations contributing to the NOAA Earth System Research Laboratory (ESRL) GPS meteorology observing network in Southern California by about 27 stations. Following this, the Los Angeles/Oxnard and San Diego WFOs began using the enhanced GPS-based IPW measurements provided by ESRL in the 2012 and 2013 monsoon seasons. Forecasters found GPS IPW to be an effective tool in evaluating model performance, and in monitoring monsoon development between weather model runs for improved flood forecasting. GPS stations are multi-purpose, and routine processing for position solutions also yields estimates of tropospheric zenith delays, which can be converted into mm-accuracy PWV (precipitable water vapor) using in situ pressure and temperature measurements, the basis for GPS meteorology. NOAA ESRL has implemented this concept with a nationwide distribution of more than 300 "GPSMet" stations providing IPW estimates at sub-hourly resolution currently used in operational weather models in the U.S.

  17. Analysis of mobile fronthaul bandwidth and wireless transmission performance in split-PHY processing architecture.

    PubMed

    Miyamoto, Kenji; Kuwano, Shigeru; Terada, Jun; Otaka, Akihiro

    2016-01-25

    We analyze the mobile fronthaul (MFH) bandwidth and the wireless transmission performance in the split-PHY processing (SPP) architecture, which redefines the functional split of centralized/cloud RAN (C-RAN) while preserving high wireless coordinated multi-point (CoMP) transmission/reception performance. The SPP architecture splits the base stations (BS) functions between wireless channel coding/decoding and wireless modulation/demodulation, and employs its own CoMP joint transmission and reception schemes. Simulation results show that the SPP architecture reduces the MFH bandwidth by up to 97% from conventional C-RAN while matching the wireless bit error rate (BER) performance of conventional C-RAN in uplink joint reception with only 2-dB signal to noise ratio (SNR) penalty. PMID:26832508

  18. EAP-Kerberos: A Low Latency EAP Authentication Method for Faster Handoffs in Wireless Access Networks

    NASA Astrophysics Data System (ADS)

    Zrelli, Saber; Okabe, Nobuo; Shinoda, Yoichi

    The wireless medium is a key technology for enabling ubiquitous and continuous network connectivity. It is becoming more and more important in our daily life especially with the increasing adoption of networking technologies in many fields such as medical care and transportation systems. Although most wireless technologies nowadays provide satisfying bandwidth and higher speeds, several of these technologies still lack improvements with regard to handoff performance. In this paper, we focus on wireless network technologies that rely on the Extensible Authentication Protocol for mutual authentication between the station and the access network. Such technologies include local area wireless networks (IEEE 802.11) as well as broadband wireless networks (IEEE 802.16). We present a new EAP authentication method based on a three party authentication scheme, namely Kerberos, that considerably shortens handoff delays. Compared to other methods, the proposed method has the advantage of not requiring any changes on the access points, making it readily deployable at reasonable costs.

  19. Space weathering on Mercury

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Kurahashi, E.

    2004-01-01

    Space weathering is a process where formation of nanophase iron particles causes darkening of overall reflectance, spectral reddening, and weakening of absorption bands on atmosphereless bodies such as the moon and asteroids. Using pulse laser irradiation, formation of nanophase iron particles by micrometeorite impact heating is simulated. Although Mercurian surface is poor in iron and rich in anorthite, microscopic process of nanophase iron particle formation can take place on Mercury. On the other hand, growth of nanophase iron particles through Ostwald ripening or repetitive dust impacts would moderate the weathering degree. Future MESSENGER and BepiColombo mission will unveil space weathering on Mercury through multispectral imaging observations.

  20. Terabit Wireless Communication Challenges

    NASA Technical Reports Server (NTRS)

    Hwu, Shian U.

    2012-01-01

    This presentation briefly discusses a research effort on Terabit Wireless communication systems for possible space applications. Recently, terahertz (THz) technology (300-3000 GHz frequency) has attracted a great deal of interest from academia and industry. This is due to a number of interesting features of THz waves, including the nearly unlimited bandwidths available, and the non-ionizing radiation nature which does not damage human tissues and DNA with minimum health threat. Also, as millimeter-wave communication systems mature, the focus of research is, naturally, moving to the THz range. Many scientists regard THz as the last great frontier of the electromagnetic spectrum, but finding new applications outside the traditional niches of radio astronomy, Earth and planetary remote sensing, and molecular spectroscopy particularly in biomedical imaging and wireless communications has been relatively slow. Radiologists find this area of study so attractive because t-rays are non-ionizing, which suggests no harm is done to tissue or DNA. They also offer the possibility of performing spectroscopic measurements over a very wide frequency range, and can even capture signatures from liquids and solids. According to Shannon theory, the broad bandwidth of the THz frequency bands can be used for terabit-per-second (Tb/s) wireless communication systems. This enables several new applications, such as cell phones with 360 degrees autostereoscopic displays, optic-fiber replacement, and wireless Tb/s file transferring. Although THz technology could satisfy the demand for an extremely high data rate, a number of technical challenges need to be overcome before its development. This presentation provides an overview the state-of-the- art in THz wireless communication and the technical challenges for an emerging application in Terabit wireless systems. The main issue for THz wave propagation is the high atmospheric attenuation, which is dominated by water vapor absorption in the THz frequency band. The technical challenges in design such a system and the techniques to overcome the challenges will be discussed in this presentation.

  1. Power losses in electrical networks depending on weather conditions

    SciTech Connect

    Zhelezko, Yu. S.; Kostyushko, V. A.; Krylov, S. V.; Nikiforov, E. P.; Savchenko, O. V.; Timashova, L. V.; Solomonik, E. A.

    2005-01-15

    Specific power losses to corona and to leakage currents over overhead insulators are presented for 110 - 750-kV transmission lines with different phase design and pole types for different weather conditions. Consumption of electric energy for ice melting on conductors of various cross sections is evaluated. Meteorological data of 1372 weather stations in Russia are processed for a period of 10 years. The territory of the country is divided into 7 regions with approximately homogeneous weather conditions. Specific power losses to corona and leakage currents over overhead insulators are presented for every region.

  2. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip

    PubMed Central

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values. PMID:26421312

  3. Calibration of Smartphone-Based Weather Measurements Using Pairwise Gossip.

    PubMed

    Zamora, Jane Louie Fresco; Kashihara, Shigeru; Yamaguchi, Suguru

    2015-01-01

    Accurate and reliable daily global weather reports are necessary for weather forecasting and climate analysis. However, the availability of these reports continues to decline due to the lack of economic support and policies in maintaining ground weather measurement systems from where these reports are obtained. Thus, to mitigate data scarcity, it is required to utilize weather information from existing sensors and built-in smartphone sensors. However, as smartphone usage often varies according to human activity, it is difficult to obtain accurate measurement data. In this paper, we present a heuristic-based pairwise gossip algorithm that will calibrate smartphone-based pressure sensors with respect to fixed weather stations as our referential ground truth. Based on actual measurements, we have verified that smartphone-based readings are unstable when observed during movement. Using our calibration algorithm on actual smartphone-based pressure readings, the updated values were significantly closer to the ground truth values. PMID:26421312

  4. A Wireless Sensor Network Field Study: Network Development, Installation, and Measurement Results

    NASA Astrophysics Data System (ADS)

    Davis, T. W.; Kuo, C.; van Hemmen, H.; Aouni, A.; Ferriss, E.; Liang, Y.; Liang, X.

    2010-12-01

    The sustainable condition of our freshwater resources partially depends on our understanding of the natural system in which it is cycled. Exploring the status and trends of soil moisture and transpiration can help improve estimates (including flux and storage components) of water budgets on a regional-scale. As a part of this effort, a multi-node wireless network measuring sap flow, soil water content and soil water potential has been deployed in a forested and hill-sloped region in western Pennsylvania. The results of this study are presented in three components. The first is comprised of the issues faced with the development of the node mesh and its evolution to a stable network through the dense vegetation and variable topography. This component includes a comparison of mote battery life, especially over network bottlenecks, and signal transmission statistics, including parenting analysis and data packet loss. The second component examines the design and installation of the sensor nodes. Due to the frequent occurrences of precipitation, water intrusion was a major concern. This is exemplified in the water-proofing techniques used in the box design which enclosed sensors and other vulnerable electronics. The final component reviews the data collected from the network and the different techniques used for processing the measurements. A power saving scheme is tested for removing low mote battery power attenuation in the transmitted data. The results for the soil moisture and sap flow measurements are compared with data collected by a local weather station.

  5. Observation Station

    ERIC Educational Resources Information Center

    Rutherford, Heather

    2011-01-01

    This article describes how a teacher integrates science observations into the writing center. At the observation station, students explore new items with a science theme and use their notes and questions for class writings every day. Students are exposed to a variety of different topics and motivated to write in different styles all while…

  6. What will be the weather like tomorrow?

    NASA Astrophysics Data System (ADS)

    Christelle, Guilloux

    2014-05-01

    Since June 2010, our school is part of the network '"météo à l'école'": it hosts an autonomous weather station, approved by Météo France , which measures continuously the temperature and precipitation. The data is transmitted by a GSM module to a computer server. After its validation by Météo France, it is send online every day on a public accessible website : http://www.edumeteo.org/ The MPS Education ( Scientific Methods and Practices) in junior high school classes (one hour and half per week throughout the school year ) makes full use of data from the networks '"météo à l'école'" data and Météo France. Three scientific disciplines :; Mathematics, Life and Earth Sciences, Physical Sciences and Chemistry are part of a schedule defined after consultation and educational coherence to enable students to: - Discovering and understanding the operation of the sensors station, weather satellites ... - Operating satellite images, studying of the atmosphere and weather phenomena (formation of a storm, for example) - Operating collected data (networks 'météo à l'école' and Météo France) to identify climatic differences between regions, seasons, and their effects on living beings (study of the greenhouse effect and climate warming among others). The ultimate goal is to discover used tools and data to produce a weather forecast. We work for these purposes with the Cité de l'Espace in Toulouse (weather Pole) and the head forecaster Meteo France Merignac.

  7. Wireless Sensor Networks Approach

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M.

    2003-01-01

    This viewgraph presentation provides information on hardware and software configurations for a network architecture for sensors. The hardware configuration uses a central station and remote stations. The software configuration uses the 'lost station' software algorithm. The presentation profiles a couple current examples of this network architecture in use.

  8. Weathering in a Cup.

    ERIC Educational Resources Information Center

    Stadum, Carol J.

    1991-01-01

    Two easy student activities that demonstrate physical weathering by expansion are described. The first demonstrates ice wedging and the second root wedging. A list of the needed materials, procedure, and observations are included. (KR)

  9. Americans and Their Weather

    NASA Astrophysics Data System (ADS)

    Meyer, William B.

    2000-07-01

    This revealing book synthesizes research from many fields to offer the first complete history of the roles played by weather and climate in American life from colonial times to the present. Author William B. Meyer characterizes weather events as neutral phenomena that are inherently neither hazards nor resources, but can become either depending on the activities with which they interact. Meyer documents the ways in which different kinds of weather throughout history have represented hazards and resources not only for such exposed outdoor pursuits as agriculture, warfare, transportation, construction, and recreation, but for other realms of life ranging from manufacturing to migration to human health. He points out that while the weather and climate by themselves have never determined the course of human events, their significance as been continuously altered for better and for worse by the evolution of American life.

  10. Waste glass weathering

    SciTech Connect

    Bates, J.K.; Buck, E.C.

    1993-12-31

    The weathering of glass is reviewed by examining processes that affect the reaction of commercial, historical, natural, and nuclear waste glass under conditions of contact with humid air and slowly dripping water, which may lead to immersion in nearly static solution. Radionuclide release data from weathered glass under conditions that may exist in an unsaturated environment are presented and compared to release under standard leaching conditions. While the comparison between the release under weathering and leaching conditions is not exact, due to variability of reaction in humid air, evidence is presented of radionuclide release under a variety of conditions. These results suggest that both the amount and form of radionuclide release can be affected by the weathering of glass.

  11. Weathering of Martian Evaporites

    NASA Technical Reports Server (NTRS)

    Wentworth, S. J.; Velbel, M. A.; Thomas-Keprta, K. L.; Longazo, T. G.; McKay, D. S.

    2001-01-01

    Evaporites in martian meteorites contain weathering or alteration features that may provide clues about the martian near-surface environment over time. Additional information is contained in the original extended abstract.

  12. Weather Information Processing

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Science Communications International (SCI), formerly General Science Corporation, has developed several commercial products based upon experience acquired as a NASA Contractor. Among them are METPRO, a meteorological data acquisition and processing system, which has been widely used, RISKPRO, an environmental assessment system, and MAPPRO, a geographic information system. METPRO software is used to collect weather data from satellites, ground-based observation systems and radio weather broadcasts to generate weather maps, enabling potential disaster areas to receive advance warning. GSC's initial work for NASA Goddard Space Flight Center resulted in METPAK, a weather satellite data analysis system. METPAK led to the commercial METPRO system. The company also provides data to other government agencies, U.S. embassies and foreign countries.

  13. Cold Weather Pet Safety

    MedlinePlus

    ... accordingly. You will probably need to shorten your dog’s walks in very cold weather to protect you ... slipping and falling. Long-haired or thick-coated dogs tend to be more cold-tolerant, but are ...

  14. Severe Weather Game.

    ERIC Educational Resources Information Center

    Owens, Katharine D.; Sanders, Richard L.

    1998-01-01

    Presents an unconventional assessment in the form of a card game for use in evaluating student understanding of severe weather-related concepts. Discusses the theory behind using educational games for instruction and assessment. (DDR)

  15. RFIC's challenges for third-generation wireless systems

    NASA Astrophysics Data System (ADS)

    Boric-Lubecke, Olga; Lin, Jenshan; Gould, Penny; Kermalli, Munawar

    2001-11-01

    Third generation (3G) cellular wireless systems are envisioned to offer low cost, high-capacity mobile communications with data rates of up to 2 Mbit/s, with global roaming and advanced data services. Besides adding mobility to the internet, 3G systems will provide location-based services, as well as personalized information and entertainment. Low cost, high dynamic-range radios, both for base stations (BS) and for mobile stations (MS) are required to enable worldwide deployment of such networks. A receiver's reference sensitivity, intermodulation characteristics, and blocking characteristics, set by a wireless standard, define performance requirements of individual components of a receiver front end. Since base station handles multiple signals from various distances simultaneously, its radio specifications are significantly more demanding than those for mobile devices. While high level of integration has already been achieved for second generation hand-sets using low-cost silicon technologies, the cost and size reduction of base stations still remains a challenge and necessity. While silicon RFIC technology is steadily improving, it is still difficult to achieve noise figure (NF), linearity, and phase noise requirements with presently available devices. This paper will discuss base station specification for 2G (GSM) and 3G (UMTS) systems, as well as the feasibility of implementing base station radios in low-cost silicon processes.

  16. NASA's Wireless Augmented Reality Prototype (WARP)

    NASA Astrophysics Data System (ADS)

    Agan, Martin; Voisinet, Leeann; Devereaux, Ann

    1998-01-01

    The objective of Wireless Augmented Reality Prototype (WARP) effort is to develop and integrate advanced technologies for real-time personal display of information relevant to the health and safety of space station/shuttle personnel. The WARP effort will develop and demonstrate technologies that will ultimately be incorporated into operational Space Station systems and that have potential earth applications such as aircraft pilot alertness monitoring and in various medical and consumer environments where augmented reality is required. To this end a two phase effort will be undertaken to rapidly develop a prototype (Phase I) and an advanced prototype (Phase II) to demonstrate the following key technology features that could be applied to astronaut internal vehicle activity (IVA) and potentially external vehicle activity (EVA) as well: 1) mobile visualization, and 2) distributed information system access. Specifically, Phase I will integrate a low power, miniature wireless communication link and a commercial biosensor with a head mounted display. The Phase I design will emphasize the development of a relatively small, lightweight, and unobtrusive body worn prototype system. Phase II will put increased effort on miniaturization, power consumption reduction, increased throughput, higher resolution, and ``wire removal'' of the subsystems developed in Phase I.

  17. WEB - A Wireless Experiment Box for the Dextre Pointing Package ELC Payload

    NASA Technical Reports Server (NTRS)

    Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason William

    2012-01-01

    The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.

  18. Web: A Wireless Experiment Box for the Dextre Pointing Package ELC Payload

    NASA Technical Reports Server (NTRS)

    Bleier, Leor Z.; Marrero-Fontanez, Victor J.; Sparacino, Pietro A.; Moreau, Michael C.; Mitchell, Jason W.

    2012-01-01

    The Wireless Experiment Box (WEB) was proposed to work with the International Space Station (ISS) External Wireless Communication (EWC) system to support high-definition video from the Dextre Pointing Package (DPP). DPP/WEB was a NASA GSFC proposed ExPRESS Logistics Carrier (ELC) payload designed to flight test an integrated suite of Autonomous Rendezvous and Docking (AR&D) technologies to enable a wide spectrum of future missions across NASA and other US Government agencies. The ISS EWC uses COTS Wireless Access Points (WAPs) to provide high-rate bi-directional communications to ISS. In this paper, we discuss WEB s packaging, operation, antenna development, and performance testing.

  19. Recovery of lost data for wireless sensor network used in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Bao, Yuequan; Li, Hui; Sun, Xiaodan; Ou, Jinping

    2012-04-01

    In a wireless sensor network, data loss often occurs during the data transmission between wireless sensor nodes and the base station, which decreases the communication reliability in wireless sensor network applications. Errors caused by data loss inevitably affect the data analysis of the structure and subsequent decision making. This paper proposed an approach to recover lost data in a wireless sensor network based on the compressive sampling (CS) technique. The main idea in this approach is to project the transmitted data from x onto y, where y is the linear projection of x on a random matrix. The data vector y is permitted to lose part of the original data x in wireless transmissions between the sensor nodes and the base station. After the base station receives the imperfect data, the original data vector x can be reconstructed based on the data y using the CS method. The acceleration data collected from the vibration test of Shandong Harbin Sifangtai Bridge by wireless sensors is used to analyze the data loss recovery ability of the proposed method.

  20. Cockpit weather information system

    NASA Technical Reports Server (NTRS)

    Tu, Jeffrey Chen-Yu (Inventor)

    2000-01-01

    Weather information, periodically collected from throughout a global region, is periodically assimilated and compiled at a central source and sent via a high speed data link to a satellite communication service, such as COMSAT. That communication service converts the compiled weather information to GSDB format, and transmits the GSDB encoded information to an orbiting broadcast satellite, INMARSAT, transmitting the information at a data rate of no less than 10.5 kilobits per second. The INMARSAT satellite receives that data over its P-channel and rebroadcasts the GDSB encoded weather information, in the microwave L-band, throughout the global region at a rate of no less than 10.5 KB/S. The transmission is received aboard an aircraft by means of an onboard SATCOM receiver and the output is furnished to a weather information processor. A touch sensitive liquid crystal panel display allows the pilot to select the weather function by touching a predefined icon overlain on the display's surface and in response a color graphic display of the weather is displayed for the pilot.

  1. The Development of a Gridded Weather Typing Classification Scheme

    NASA Astrophysics Data System (ADS)

    Lee, Cameron C.

    Since their development in the 1990s, gridded reanalysis data sets have proven quite useful for a broad range of synoptic climatological analyses, especially those utilizing a map pattern classification approach. However, their use in broad-scale, surface weather typing classifications and applications have not yet been explored. This research details the development of such a gridded weather typing classification (GWTC) scheme using North American Regional Reanalysis data for 1979-2010 for the continental United States. Utilizing eight-times daily observations of temperature, dew point, pressure, cloud cover, u-wind and v-wind components, the GWTC categorizes the daily surface weather of 2,070 locations into one of 11 discrete weather types, nine core types and two transitional types, that remain consistent throughout the domain. Due to the use of an automated deseasonalized z-score initial typing procedure, the character of each type is both geographically and seasonally relative, allowing each core weather type to occur at every location, at any time of the year. Diagnostic statistics reveal a high degree of spatial cohesion among the weather types classified at neighboring locations, along with an effective partitioning of the climate variability of individual locations (via a Variability Skill Score metric) into these 11 weather types. Daily maps of the spatial distribution of GWTC weather types across the United States correspond well to traditional surface weather maps, and comparisons of the GWTC with the Spatial Synoptic Classification are also favorable. While the potential future utility of the classification is expected to be primarily for the resultant calendars of daily weather types at specific locations, the automation of the methodology allows the classification to be easily repeatable, and therefore, easily transportable to other locations, atmospheric levels, and data sets (including output from gridded general circulation models). Further, the enhanced spatial resolution of the GWTC may also allow for new applications of surface weather typing classifications in mountainous and rural areas not well represented by airport weather stations.

  2. Agricultural Decision Making Using North Dakota Agricultural Weather Network

    NASA Astrophysics Data System (ADS)

    Akyuz, F.; Mullins, B.; Morlock, D.; Carcoana, R.

    2010-09-01

    The North Dakota Agricultural Weather Network (NDAWN) consists of 72 automated weather stations spread across agricultural locations of North Dakota, the Red River Valley, and border regions of surrounding states. The NDAWN Center is a part of the Department of Soil Science, North Dakota State University. The NDAWN stations measure wind speed and direction, air temperature, rainfall, solar radiation, pressure (31 stations), atmospheric moisture and soil temperatures under bare and turf at 10 cm (4 inch) depth. The center provides daily summaries consisting of maximums and minimums as well as time of occurrence, and various totals or averages for all variables in English or metric units. Measured and calculated variables along with complete descriptions are available. The NDAWN Center web site: http://ndawn.ndsu.nodak.edu/ allows direct access to NDAWN data in various special and temporal scales. The voice modem accommodates those who do not have internet access. The NDAWN Center has assisted many North Dakotans in making weather critical decisions concerning their crops, livestock, and livelihood. The stations provide weather data, which was instrumental in developing various agricultural models including but not limited to the late blight model, degree day and growth stage models for barley, corn, canola, potato, sugarbeet, sunflower, wheat and other small grains, irrigation scheduling, crop water use, sugarbeet root maggot, and insect development models. Late blight model, for example, predicts when leaf disease can occur in potato plants. Late blight doesn't occur in North Dakota every year and is prevalent during cool and moist periods of weather. In 1993-94, this model predicted that late blight would occur and growers were able to use fungicide applications to prevent the disease. Another direct benefit of NDAWN data is that it provides universities and the National Weather Service with an additional database for research and forecasting applications. Agriculture remains the number one industry in North Dakota and its success will always be dependent on the weather.

  3. Building the Wireless Campus

    ERIC Educational Resources Information Center

    Gerraughty, James F.; Shanafelt, Michael E.

    2005-01-01

    This prototype is a continuation of a series of wireless prototypes which began in August 2001 and was reported on again in August 2002. This is the final year of this prototype. This continuation allowed Saint Francis University's Center of Excellence for Remote and Medically Under-Served Areas (CERMUSA) to refine the existing WLAN for the Saint…

  4. Wireless Sensors Network (Sensornet)

    NASA Technical Reports Server (NTRS)

    Perotti, J.

    2003-01-01

    The Wireless Sensor Network System presented in this paper provides a flexible reconfigurable architecture that could be used in a broad range of applications. It also provides a sensor network with increased reliability; decreased maintainability costs, and assured data availability by autonomously and automatically reconfiguring to overcome communication interferences.

  5. Insecurity of Wireless Networks

    SciTech Connect

    Sheldon, Frederick T; Weber, John Mark; Yoo, Seong-Moo; Pan, W. David

    2012-01-01

    Wireless is a powerful core technology enabling our global digital infrastructure. Wi-Fi networks are susceptible to attacks on Wired Equivalency Privacy, Wi-Fi Protected Access (WPA), and WPA2. These attack signatures can be profiled into a system that defends against such attacks on the basis of their inherent characteristics. Wi-Fi is the standard protocol for wireless networks used extensively in US critical infrastructures. Since the Wired Equivalency Privacy (WEP) security protocol was broken, the Wi-Fi Protected Access (WPA) protocol has been considered the secure alternative compatible with hardware developed for WEP. However, in November 2008, researchers developed an attack on WPA, allowing forgery of Address Resolution Protocol (ARP) packets. Subsequent enhancements have enabled ARP poisoning, cryptosystem denial of service, and man-in-the-middle attacks. Open source systems and methods (OSSM) have long been used to secure networks against such attacks. This article reviews OSSMs and the results of experimental attacks on WPA. These experiments re-created current attacks in a laboratory setting, recording both wired and wireless traffic. The article discusses methods of intrusion detection and prevention in the context of cyber physical protection of critical Internet infrastructure. The basis for this research is a specialized (and undoubtedly incomplete) taxonomy of Wi-Fi attacks and their adaptations to existing countermeasures and protocol revisions. Ultimately, this article aims to provide a clearer picture of how and why wireless protection protocols and encryption must achieve a more scientific basis for detecting and preventing such attacks.

  6. Biodegradability of commercial and weathered diesel oils

    PubMed Central

    Mariano, Adriano Pinto; Bonotto, Daniel Marcos; de Franceschi de Angelis, Dejanira; Pirôllo, Maria Paula Santos; Contiero, Jonas

    2008-01-01

    This work aimed to evaluate the capability of different microorganisms to degrade commercial diesel oil in comparison to a weathered diesel oil collected from the groundwater at a petrol station. Two microbiological methods were used for the biodegradability assessment: the technique based on the redox indicator 2,6 -dichlorophenol indophenol (DCPIP) and soil respirometric experiments using biometer flasks. In the former we tested the bacterial cultures Staphylococcus hominis, Kocuria palustris, Pseudomonas aeruginosa LBI, Ochrobactrum anthropi and Bacillus cereus, a commercial inoculum, consortia obtained from soil and groundwater contaminated with hydrocarbons and a consortium from an uncontaminated area. In the respirometric experiments it was evaluated the capability of the native microorganisms present in the soil from a petrol station to biodegrade the diesel oils. The redox indicator experiments showed that only the consortia, even that from an uncontaminated area, were able to biodegrade the weathered diesel. In 48 days, the removal of the total petroleum hydrocarbons (TPH) in the respirometric experiments was approximately 2.5 times greater when the commercial diesel oil was used. This difference was caused by the consumption of labile hydrocarbons, present in greater quantities in the commercial diesel oil, as demonstrated by gas chromatographic analyses. Thus, results indicate that biodegradability studies that do not consider the weathering effect of the pollutants may over estimate biodegradation rates and when the bioaugmentation is necessary, the best strategy would be that one based on injection of consortia, because even cultures with recognised capability of biodegrading hydrocarbons may fail when applied isolated. PMID:24031193

  7. Impact of derived global weather data on simulated crop yields

    PubMed Central

    van Wart, Justin; Grassini, Patricio; Cassman, Kenneth G

    2013-01-01

    Crop simulation models can be used to estimate impact of current and future climates on crop yields and food security, but require long-term historical daily weather data to obtain robust simulations. In many regions where crops are grown, daily weather data are not available. Alternatively, gridded weather databases (GWD) with complete terrestrial coverage are available, typically derived from: (i) global circulation computer models; (ii) interpolated weather station data; or (iii) remotely sensed surface data from satellites. The present study's objective is to evaluate capacity of GWDs to simulate crop yield potential (Yp) or water-limited yield potential (Yw), which can serve as benchmarks to assess impact of climate change scenarios on crop productivity and land use change. Three GWDs (CRU, NCEP/DOE, and NASA POWER data) were evaluated for their ability to simulate Yp and Yw of rice in China, USA maize, and wheat in Germany. Simulations of Yp and Yw based on recorded daily data from well-maintained weather stations were taken as the control weather data (CWD). Agreement between simulations of Yp or Yw based on CWD and those based on GWD was poor with the latter having strong bias and large root mean square errors (RMSEs) that were 26–72% of absolute mean yield across locations and years. In contrast, simulated Yp or Yw using observed daily weather data from stations in the NOAA database combined with solar radiation from the NASA-POWER database were in much better agreement with Yp and Yw simulated with CWD (i.e. little bias and an RMSE of 12–19% of the absolute mean). We conclude that results from studies that rely on GWD to simulate agricultural productivity in current and future climates are highly uncertain. An alternative approach would impose a climate scenario on location-specific observed daily weather databases combined with an appropriate upscaling method. PMID:23801639

  8. DOPPLER WEATHER SYSTEM

    Energy Science and Technology Software Center (ESTSC)

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever fivemore » minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.« less

  9. DOPPLER WEATHER SYSTEM

    SciTech Connect

    Berlin, Gary J.

    2002-08-05

    The SRS Doppler Weather System consists of a Doppler Server, A Master Server (also known as the Weather Server), several Doppler Slave Servers, and client-side software program called the Doppler Radar Client. This system is used to display near rel-time images taken from the SRS Weather Center's Doppler Radar computer. The Doppler Server is software that resides on the SRS Doppler Computer. It gathers raw data, 24-bit color weather images via screen scraping ever five minutes as requested by the Master Server. The Doppler Server then reduces the 24-bit color images to 8-bit color using a fixed color table for analysis and compression. This preserves the fidelity of the image color and arranges the colors in specific order for display. At the time of color reduction, the white color used for the city names on the background images are remapped to a different index (color) of white that the white on the weather scale. The Weather Server places a time stamp on the image, then compresses the image and passes it to all Doppler Slave servers. Each of the Doppler Slave servers mainitain a circular buffer of the eight most current images representing the last 40 minutes of weather data. As a new image is added, the oldest drops off. The Doppler Radar Client is an optional install program for any site-wide workstation. When a Client session is started, the Client requests Doppler Slave server assignment from the Master Server. Upon its initial request to the Slave Server, the Client obtains all eight current images and maintains its own circular buffer, updating its images every five minutes as the Doppler Slave is updated. Three background reference images are stored as part of the Client. The Client brings up the appropriate background image, decompresses the doppler data, and displays the doppler data on the background image.

  10. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  11. [Weather, climate and health].

    PubMed

    Banić, M; Plesko, N; Plesko, S

    1999-01-01

    The notion of complex influence of atmospheric conditions on modem human population, especially the relationship between weather, climate and human healths, has actuated the World Meteorological Organisation to commemorate the coming into force, on March 23, 1950, of the Convention of WMO and this year to celebrate this day by focusing on theme of current interest--"Weather, climate and health". In the light of this, the authors of this paper reveal the results of recent studies dealing with influence of sudden and short-term changes in weather and climate on human health, and future expected climate changes due to "greenhouse" effect, increase in global temperature and tropospheric ozone depletion, as well. Special attention is given to climate shifts due to ENSO (El Niño/Southern Oscillation) phenomenon because of its great impact on human society and epidemics of certain infectious diseases. The results of biometeorological studies dealing with complex influence of daily weather changes on incidence of certain diseases in Croatia have also been presented. In addition, the authors have stated their own view and opinion in regard to future biometeorlogical studies in Croatia in order to achieve better understanding of influence of climate and weather changes on human health, and help prevention of mortality and morbidity related to chronic noninfectious diseases. PMID:19658377

  12. New weather index

    NASA Astrophysics Data System (ADS)

    Scientists at the National Oceanic and Atmospheric Administration (NOAA) and the University of Delaware have refined the wind-chill factor, a common measurement of weather discomfort, into a new misery register called the weather stress index. In addition to the mix of temperature and wind speed data used to calculate wind chill, the recipe for the index adds two new ingredients—humidity and a dash of benchmark statistics—to estimate human reaction to weather conditions. NOAA says that the weather stress index estimates human reaction to weather conditions and that the reaction depends on variations from the ‘normal’ conditions in the locality involved.Discomfort criteria for New Orleans, La., and Bismarck, N.D., for example, differ drastically. According to NOAA, when it's the middle of winter and it's -10°C with a relative humidity of 80% and 24 km/h winds, persons in New Orleans would be highly stressed while those in Bismarck wouldn't bat an eye.

  13. Weather from the Stratosphere?

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.; Thompson, David W. J.; Shuckburgh, Emily F.; Norton, Warwick A.; Gillett, Nathan P.

    2006-01-01

    Is the stratosphere, the atmospheric layer between about 10 and 50 km, important for predicting changes in weather and climate? The traditional view is that the stratosphere is a passive recipient of energy and waves from weather systems in the underlying troposphere, but recent evidence suggests otherwise. At a workshop in Whistler, British Columbia (1), scientists met to discuss how the stratosphere responds to forcing from below, initiating feedback processes that in turn alter weather patterns in the troposphere. The lowest layer of the atmosphere, the troposphere, is highly dynamic and rich in water vapor, clouds, and weather. The stratosphere above it is less dense and less turbulent (see the figure). Variability in the stratosphere is dominated by hemispheric-scale changes in airflow on time scales of a week to several months. Occasionally, however, stratospheric air flow changes dramatically within just a day or two, with large-scale jumps in temperature of 20 K or more. The troposphere influences the stratosphere mainly through atmospheric waves that propagate upward. Recent evidence shows that the stratosphere organizes this chaotic wave forcing from below to create long-lived changes in the stratospheric circulation. These stratospheric changes can feed back to affect weather and climate in the troposphere.

  14. Real-Time Wireless Data Acquisition System

    NASA Technical Reports Server (NTRS)

    Valencia, Emilio J.; Perotti, Jose; Lucena, Angel; Mata, Carlos

    2007-01-01

    Current and future aerospace requirements demand the creation of a new breed of sensing devices, with emphasis on reduced weight, power consumption, and physical size. This new generation of sensors must possess a high degree of intelligence to provide critical data efficiently and in real-time. Intelligence will include self-calibration, self-health assessment, and pre-processing of raw data at the sensor level. Most of these features are already incorporated in the Wireless Sensors Network (SensorNet(TradeMark)), developed by the Instrumentation Group at Kennedy Space Center (KSC). A system based on the SensorNet(TradeMark) architecture consists of data collection point(s) called Central Stations (CS) and intelligent sensors called Remote Stations (RS) where one or more CSs can be accommodated depending on the specific application. The CS's major function is to establish communications with the Remote Stations and to poll each RS for data and health information. The CS also collects, stores and distributes these data to the appropriate systems requiring the information. The system has the ability to perform point-to-point, multi-point and relay mode communications with an autonomous self-diagnosis of each communications link. Upon detection of a communication failure, the system automatically reconfigures to establish new communication paths. These communication paths are automatically and autonomously selected as the best paths by the system based on the existing operating environment. The data acquisition system currently under development at KSC consists of the SensorNet(TradeMark) wireless sensors as the remote stations and the central station called the Radio Frequency Health Node (RFHN). The RFF1N is the central station which remotely communicates with the SensorNet(TradeMark) sensors to control them and to receive data. The system's salient feature is the ability to provide deterministic sensor data with accurate time stamps for both time critical and non-time critical applications. Current wireless standards such as Zigbee(TradeMark) and Bluetooth(Registered TradeMark) do not have these capabilities and can not meet the needs that are provided by the SensorNet technology. Additionally, the system has the ability to automatically reconfigure the wireless communication link to a secondary frequency if interference is encountered and can autonomously search for a sensor that was perceived to be lost using the relay capabilities of the sensors and the secondary frequency. The RFHN and the SensorNet designs are based on modular architectures that allow for future increases in capability and the ability to expand or upgrade with relative ease. The RFHN and SensorNet sensors .can also perform data processing which forms a distributed processing architecture allowing the system to pass along information rather than just sending "raw data points" to the next higher level system. With a relatively small size, weight and power consumption, this system has the potential for both spacecraft and aircraft applications as well as ground applications that require time critical data.

  15. A Sensible Approach to Wireless Networking.

    ERIC Educational Resources Information Center

    Ahmed, S. Faruq

    2002-01-01

    Discusses radio frequency (R.F.) wireless technology, including industry standards, range (coverage) and throughput (data rate), wireless compared to wired networks, and considerations before embarking on a large-scale wireless project. (EV)

  16. Full-duplex fiber-wireless link with 40 Gbit/s 16-QAM signals for alternative wired and wireless accesses based on homodyne/heterodyne coherent detection

    NASA Astrophysics Data System (ADS)

    Zhang, Ruijiao; Ma, Jianxin; Wang, Zhao; Zhang, Junjie; Li, Yanjie; Zheng, Guoli; Liu, Wen; Yu, Jianguo; Zhang, Qi; Wang, Qin; Liu, Renhao

    2014-06-01

    A novel full-duplex fiber-wireless link with 40 Gbit/s 16-ary quadrature amplitude modulation (QAM) signals is proposed to provide alternative wired and wireless accesses for the user terminals. In the central station (CS), the downstream signal for wired and wireless accesses is beared onto the CW laser source via an optical I/Q modulator to realize the QAM modulation. At the hybrid optical network unit (HONU), a tunable laser is used to provide coherent optical local oscillator for homo-/heterodyne beating to coherently down-convert the baseband optical signal to the baseband electrical one for wired access or to the mm-wave one for wireless access according to the requirement of the user terminals. Simultaneously, the lightwave from the tunable laser is also used as the uplink optical carrier for either wired or wireless access, and is modulated colorlessly by the baseband or mm-wave signal of the uplink alternatively. After filtering, only one tone carrying the uplink signal is transmitted back to the CS even for the wireless access. The theoretical analysis and simulation results show that our proposed full-duplex link for the alternative wired and wireless accesses maintains good performance even when the transmission link with standard single mode fiber (SSMF) is extended to 30 km.

  17. Planetary Space Weather

    NASA Astrophysics Data System (ADS)

    Grande, M.

    2012-04-01

    Invited Talk - Space weather at other planets While discussion of space weather effects has so far largely been confined to the near-Earth environment, there are significant present and future applications to the locations beyond, and to other planets. Most obviously, perhaps, are the radiation hazards experienced by astronauts on the way to, and on the surface of, the Moon and Mars. Indeed, the environment experienced by planetary spacecraft in transit and at their destinations is of course critical to their design and successful operation. The case of forthcoming missions to Jupiter and Europa is an exreme example. Moreover, such craft can provide information which in turn increases our understanding of geospace. Indeed, space weather may be a significant factor in the habitability of other solar system and extrasolar planets, and the ability of life to travel between them.

  18. Spaceborne weather radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kozu, Toshiaki

    1990-01-01

    The present work on the development status of spaceborne weather radar systems and services discusses radar instrument complementarities, the current forms of equations for the characterization of such aspects of weather radar performance as surface and mirror-image returns, polarimetry, and Doppler considerations, and such essential factors in spaceborne weather radar design as frequency selection, scanning modes, and the application of SAR to rain detection. Attention is then given to radar signal absorption by the various atmospheric gases, rain drop size distribution and wind velocity determinations, and the characteristics of clouds, as well as the range of available estimation methods for backscattering, single- and dual-wavelength attenuation, and polarimetric and climatological characteristics.

  19. Space weathering on Mercury

    NASA Astrophysics Data System (ADS)

    Sasaki, S.; Kurahashi, E.

    Space weathering is a proposed mechanism that darken and redden the reflectance spectra of airless bodies such as the moon and asteroids. It is caused by formation of nanophase iron particles due to high-velocity impacts of interplanetary dust [1]. Because of close distance to the sun, space weathering on Mercury is stronger and more prevailing than on the moon or asteroids. According to mid-infrared ground-based observation suggested spectral features indicative of plagioclase feldspar. Some region would have spectral feature similar to lunar breccia of anorthite and pyroxene fragments. Our laboratory study revealed that formation of nanophase iron particles with spectral change should occur even under low Fe content of olivine and pyroxene [2,3] and TEM observation of lunar soil exhibited anorthite grain with a rim containing nanophase iron particles [4]. Therefore, space weathering similar to the moon and asteroids would be also prevailing on Mercury. The presence of bright rays associated with some young craters on Mercury suggests that the space weathering process should not be extremely rapid. There is a possibility that higher impact flux and velocity of meteoroids would stir the surface regolith more effectively than on the moon or on asteroids. This surface stirring would have delayed weathering processes. Multi-spectral observations of the surface by Messenger and BepiColombo will be important to clarify the Mercurian space weathering. References: [1] Hapke B. (2001) J. Geophys. Res. 106, 10039-10073. [ ] Yamada2 M. et al. (1999) Earth Planets Space 51, 1255-1265. [3] Sasaki S. et al. (2001) Nature, 410, 555-557. [4] Keller, L. P. &McKay, D. S. (1997) Geochim. Cosmochim. Acta 61, 2331-2341.

  20. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  1. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  2. Wireless Seismometer for Venus

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Scardelletti, Maximilian C.; Taylor, Brandt; Beard, Steve; Clougherty, Brian; Meredith, Roger D.; Beheim, Glenn M.; Kiefer, Walter S.; Hunter, Gary W.

    2014-01-01

    Measuring the seismic activity of Venus is critical to understanding its composition and interior dynamics. Because Venus has an average surface temperature of 462 C and the challenge of providing cooling to multiple seismometers, a high temperature, wireless sensor using a wide bandgap semiconductor is an attractive option. This paper presents progress towards a seismometer sensor with wireless capabilities for Venus applications. A variation in inductance of a coil caused by a 1 cm movement of a ferrite probe held in the coil and attached to a balanced leaf-spring seismometer causes a variation of 80 MHz in the transmitted signal from the oscillator sensor system at 420 C, which correlates to a 10 kHz mm sensitivity when the ferrite probe is located at the optimum location in the coil.

  3. Linking Space Weather Science and Decision Making (Invited)

    NASA Astrophysics Data System (ADS)

    Fisher, G. M.

    2009-12-01

    Linking scientific knowledge to decision making is a challenge for both the science and policy communities. In particular, in the field of space weather, there are unique challenges such as decision makers may not know that space has weather that poses risks to our technologically-dependent economy. Additionally, in an era of limited funds for scientific research, hazards posed by other natural disasters such as flooding and earthquakes are by contrast well known to policy makers, further making the importance of space weather research and monitoring a tough sell. Today, with industries and individuals more dependent on the Global Positioning System, wireless technology, and satellites than ever before, any disruption or inaccuracy can result in severe economic impacts. Therefore, it is highly important to understand how space weather science can most benefit society. The key to connecting research to decision making is to ensure that the information is salient, credible, and legitimate. To achieve this, scientists need to understand the decision makers' perspectives, including their language and culture, and recognize that their needs may evolve. This presentation will take a closer look at the steps required to make space weather research, models, and forecasts useful to decision makers and ultimately, benefit society.

  4. Towards a European Solar Radio Weather Prediction Centre

    NASA Astrophysics Data System (ADS)

    Messerotti, Mauro; Alberti, Valentina; Marassi, Alessandro; Comari, Maurizio; Coretti, Igor; Zlobec, Paolo; Pucillo, Mauro

    Solar radio weather (SRWx) is a key aspect of space weather for communication and navigation, as intense solar radio emissions are a potential threat to wireless communications and GPS operations. The mitigation of SRWx effects requires reliable nowcasting and forecasting of solar radio emission intensity and polarisation at different frequencies. This can be achieved via real-time multi-frequency diachronic monitoring to allow near-real-time radio data processing and near-real-time ingestion for post-event analysis and quality control. In this work we describe the architecture of a Solar Radio Weather Prediction Centre (SRWxPC) presently under development at the INAF-Astronomical Observatory of Trieste that has been designed to be compliant with the above requirements as a technological evolution of the Trieste Solar Radio System (TSRS). In particular, we stress the peculiarities that can make it the seed and testbed for a geographically distributed European centre specialised in monitoring and predicting interferences originated by solar radio emission. The design and development of SRWxPC has been benefiting from the participation in ESA/SWENET (Space Weather European Network) as solar radio data indices provider, in the COST Action ES0803 "Developing Space Weather Products and Services in Europe", and in the Italian Space Agency Project "Exploration of the Solar System".

  5. Wireless ferroelectric resonating sensor.

    PubMed

    Viikari, Ville; Seppa, Heikki; Mattila, Tomi; Alastalo, Ari

    2010-04-01

    This paper presents a passive wireless resonating sensor that is based on a ferroelectric varactor. The sensor replies with its data at an intermodulation frequency when a reader device illuminates it at 2 closely located frequencies. The paper derives a theoretical equation for the response of such a sensor, verifies the theory by simulations, and demonstrates a temperature sensor based on a ferroelectric varactor. PMID:20378440

  6. Uncertainty in User-contributed Weather Data

    NASA Astrophysics Data System (ADS)

    Bell, S.; Cornford, D.; Bastin, L.; Molyneux, M.

    2012-04-01

    Websites such as Weather Underground and the Met Office's recently launched Weather Observations Website encourage members of the public to not only record meteorological observations for personal use but to upload them to a free online community to be shared and compared with data from hundreds of other weather stations in the UK alone. With such a concentration of freely available surface observations the question is whether it would be beneficial to incorporate this data into existing data assimilation schemes for constructing the initial conditions in Numerical Weather Prediction models. This question ultimately relates to how closely the amateur data represents reality, and how to quantify this uncertainty such that it may be accounted for when using the data. We will highlight factors that can lead to increased uncertainty. For instance as amateur data often comes with limited metadata it is difficult to assess whether an amateur station conforms to the strict guidelines and quality procedures that professional sites do. These guidelines relate to factors such as siting, exposure and calibration and in many cases it is practically impossible for amateur sites to conform to the guidelines due to a tendency for amateur sites to be located in enclosed urbanised areas. We will present exploratory research comparing amateur data from Weather Observations Website and Weather Underground against the Met Office's meteorological monitoring system which will be taken to represent the 'truth'. We are particularly aiming to identify bias in the amateur data and residual variances which will help to quantify our degree of uncertainty. The research will focus on 3 case periods, each with different synoptic conditions (clear skies, overcast, a frontal progression) and on observations of surface air temperature, precipitation, humidity. Future plans of the project will also be introduced such as further investigations into which factors lead to increased uncertainty, highlighting the importance of quantifying and accounting for their effects. Factors may include the degree of urbanisation around the site as well as those that may vary temporally such as the prevailing synoptic conditions. Will we also describe plans to take a Bayesian approach to assessing uncertainty and how this can be incorporated into data assimilation schemes.

  7. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and

  8. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.…

  9. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's…

  10. Weather Specialist (AFSC 25120).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This correspondence course is designed for self-study to help military personnel to attain the rating of weather specialist. The course is organized in three volumes. The first volume, containing seven chapters, covers background knowledge, meteorology, and climatology. In the second volume, which also contains seven chapters, surface…

  11. Rainy Weather Science.

    ERIC Educational Resources Information Center

    Reynolds, Karen

    1996-01-01

    Presents ideas on the use of rainy weather for activities in the earth, life, and physical sciences. Topics include formation and collision of raindrops, amount and distribution of rain, shedding of water by plants, mapping puddles and potholes, rainbow formation, stalking storms online, lightning, and comparing particles in the air before and…

  12. Microbial Weathering of Olivine

    NASA Technical Reports Server (NTRS)

    McKay, D. S.; Longazo, T. G.; Wentworth, S. J.; Southam, G.

    2002-01-01

    Controlled microbial weathering of olivine experiments displays a unique style of nanoetching caused by biofilm attachment to mineral surfaces. We are investigating whether the morphology of biotic nanoetching can be used as a biosignature. Additional information is contained in the original extended abstract.

  13. The Weather Watchers.

    ERIC Educational Resources Information Center

    NatureScope, 1985

    1985-01-01

    Background information and six activities on predicting weather are provided. Each activity includes an objective, list of materials needed, recommended age level(s), subject area(s), and instructional strategies. Also included are several ready-to-copy worksheets. (JN)

  14. Dress for the Weather

    ERIC Educational Resources Information Center

    Glen, Nicole J.; Smetana, Lara K.

    2010-01-01

    "If someone were traveling to our area for the first time during this time of year, what would you tell them to bring to wear? Why?" This question was used to engage students in a guided-inquiry unit about how climate differs from weather. In this lesson, students explored local and national data sets to give "travelers" advice when preparing for…

  15. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  16. Weathering the Double Whammy.

    ERIC Educational Resources Information Center

    Wellman, Jane V.

    2002-01-01

    Discusses how governing boards can help their institutions weather the "double-whammy" of doing more with less: identify the institution's short-term and long-term challenges; refocus the institution's mission, planning, and programming; assess and integrate the institution's tuition, aid, and outreach strategies; redouble the institution's

  17. Worldwide Marine Weather Broadcasts.

    ERIC Educational Resources Information Center

    Department of the Navy, Washington, DC.

    This publication is a source of marine weather broadcast information in all areas of the world where such service is provided. This publication was designed for the use of U.S. naval and merchant ships. Sections 1 through 4 contain details of radio telegraph, radio telephone, radio facsimile, and radio teleprinter transmissions, respectively. The…

  18. Weathering crusts on peridotite

    NASA Astrophysics Data System (ADS)

    Bucher, Kurt; Stober, Ingrid; Müller-Sigmund, Hiltrud

    2015-05-01

    Chemical weathering of dark-green massive peridotite, including partly serpentinized peridotite, produces a distinct and remarkable brown weathering rind when exposed to the atmosphere long enough. The structure and mineral composition of crusts on rocks from the Ronda peridotite, Spain, have been studied in some detail. The generic overall weathering reaction serpentinized peridotite + rainwater = weathering rind + runoff water describes the crust-forming process. This hydration reaction depends on water supply from the outcrop surface to the reaction front separating green peridotite from the brown crust. The reaction pauses after drying and resumes at the front after wetting. The overall net reaction transforms olivine to serpentine in a volume-conserving replacement reaction. The crust formation can be viewed as secondary serpentinization of peridotite that has been strongly altered by primary hydrothermal serpentinization. The reaction stoichiometry of the crust-related serpentinization is preserved and reflected by the composition of runoff waters in the peridotite massif. The brown color of the rind is caused by amorphous Fe(III) hydroxide, a side product from the oxidation of Fe(II) released by the dissolution of fayalite component in olivine.

  19. Weather, Climate, and You.

    ERIC Educational Resources Information Center

    Blai, Boris, Jr.

    Information from the American Institute of Medical Climatologists on human responses to weather and climatic conditions, including clouds, winds, humidity, barometric pressure, heat, cold, and other variables that may exert a pervasive impact on health, behavior, disposition, and the level of efficiency with which individuals function is reviewed.

  20. An Influence of Space Weather Conditions On Weather and Climate In Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Pugacheva, G.; Almeida, A.; Gusev, A.; Martin, I.; Pankov, V.; Schuch, N.

    Data on precipitation in Brazil for three meteorological stations (Pelotas: 3145'S, 5221'W; Campinas: 2253'S, 4704'W; Fortaleza: 345'S, 3831'W) covering lat- itudinal range of Brazil from 1849 up to 2000 were considered. Periodic analysis of the annual rainfall level shows a pronounced 22-year periodicity for several littoral re- gions. The amplitude of the variation reaches~90%. In the equatorial station Fortaleza the correlation coefficients between the solar magnetic cycle and the rainfall pattern are -77%+-4% during 1849 to 1940 and +80.0+-4% during 1952- 2000, showing the phase change, and in the south-middle latitude station Pelotas the correlation coeffi- cients are +60%+-13% in 1893-1920 and -84%+-4% from 1929 up to 2000 reaching even more than 90% during the time intervals 1928- 1939; 1948- 1959 and 1970- 1981. The phase change is found to have occurred mostly during the 16th and 18th solar cycles, first recorded at higher latitudes, and later discerned in the equatorial re- gion. The phase of the space weather versus terrestrial weather correlation is different for the various latitudinal regions. The rainfall time series also demonstrate a 52% correlation with an apparent 24- year periodicity that is possibly connected with the atmosphere-ocean coupling; and this feature is without any phase change in the time series. Specific analysis of short-term rainfall variations shows a significant increase in rainfall level several days after solar magnetic sector boundary (MSB) crossing de- tected by Earth orbiting spacecraft. This additional finding is an argument in favor of existence of physical link between rainfall variations and the solar magnetic field cy- cle. The results appear to have bearing both as a scientific instrument for the solution of the sun-weather connection problem, and may possibly have significance for long term practical weather forecasting in the South American region and elsewhere.

  1. Space Weather Forecasting at NASA GSFC Space Weather Research Center

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Kuznetsova, M. M.; Pulkkinen, A.; Maddox, M. M.; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.; Evans, R. M.; Berrios, D.; Mullinix, R.

    2012-12-01

    The NASA GSFC Space Weather Research Center (http://swrc.gsfc.nasa.gov) is committed to providing research forecasts and notifications to address NASA's space weather needs - in addition to its critical role in space weather education. We provide a host of services including spacecraft anomaly resolution, historical impact analysis, real-time monitoring and forecasting, tailored space weather alerts and products, weekly summaries and reports, and most recently - video casts. In this presentation, we will focus on how near real-time data (both in space and on ground), in combination with modeling capabilities and an innovative dissemination system called the Integrated Space Weather Analysis System (iSWA http://iswa.gsfc.nasa.gov), enable space weather forecasting and quality space weather products provided by our Center. A few critical near real-time data streams for space weather forecasting will be identified and discussed.

  2. Activities of NICT space weather project

    NASA Astrophysics Data System (ADS)

    Murata, Ken T.; Nagatsuma, Tsutomu; Watari, Shinichi; Shinagawa, Hiroyuki; Ishii, Mamoru

    NICT (National Institute of Information and Communications Technology) has been in charge of space weather forecast service in Japan for more than 20 years. The main target region of the space weather is the geo-space in the vicinity of the Earth where human activities are dominant. In the geo-space, serious damages of satellites, international space stations and astronauts take place caused by energetic particles or electromagnetic disturbances: the origin of the causes is dynamically changing of solar activities. Positioning systems via GPS satellites are also im-portant recently. Since the most significant effect of positioning error comes from disturbances of the ionosphere, it is crucial to estimate time-dependent modulation of the electron density profiles in the ionosphere. NICT is one of the 13 members of the ISES (International Space Environment Service), which is an international assembly of space weather forecast centers under the UNESCO. With help of geo-space environment data exchanging among the member nations, NICT operates daily space weather forecast service every day to provide informa-tion on forecasts of solar flare, geomagnetic disturbances, solar proton event, and radio-wave propagation conditions in the ionosphere. The space weather forecast at NICT is conducted based on the three methodologies: observations, simulations and informatics (OSI model). For real-time or quasi real-time reporting of space weather, we conduct our original observations: Hiraiso solar observatory to monitor the solar activity (solar flare, coronal mass ejection, and so on), domestic ionosonde network, magnetometer HF radar observations in far-east Siberia, and south-east Asia low-latitude ionosonde network (SEALION). Real-time observation data to monitor solar and solar-wind activities are obtained through antennae at NICT from ACE and STEREO satellites. We have a middle-class super-computer (NEC SX-8R) to maintain real-time computer simulations for solar and solar-wind, magnetosphere and ionosphere. The three simulations are directly or indirectly connected each other based on real-time observa-tion data to reproduce a virtual geo-space region on the super-computer. Informatics is a new methodology to make precise forecast of space weather. Based on new information and communication technologies (ICT), it provides more information in both quality and quantity. At NICT, we have been developing a cloud-computing system named "space weather cloud" based on a high-speed network system (JGN2+). Huge-scale distributed storage (1PB), clus-ter computers, visualization systems and other resources are expected to derive new findings and services of space weather forecasting. The final goal of NICT space weather service is to predict near-future space weather conditions and disturbances which will be causes of satellite malfunctions, tele-communication problems, and error of GPS navigations. In the present talk, we introduce our recent activities on the space weather services and discuss how we are going to develop the services from the view points of space science and practical uses.

  3. MRDIS Standalone Central Alarm Station

    Energy Science and Technology Software Center (ESTSC)

    2012-09-12

    The MRDIS Standalone Central Alarm Station(MRDIS-CAS} is a software system for receiving, storing, and reviewing radiation data collected by the Mobile Radiation Detection and Identification System (MRDIS}, a mobile radiation scanning system developed for use in foreign ports for the DOE Megaports Initiative. It is designed to run on one of the on board computers in the MRDIS cab. It will collect, store, and display data from the MRDIS without the need for wireless communicationsmore » or centralized server technology. It is intended to be a lightweight replacement for a distributed Megaports communication system in ports where the necessary communications infrastructure does not exist for a full Megaports communications system.« less

  4. Materials International Space Station Experiment

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Backdropped by a sunrise, the newly installed Materials International Space Station Experiment (MISSE) is visible on this image. MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment. The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock during extravehicular activity (EVA) of the STS-105 mission. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  5. From early wireless to Everest.

    PubMed

    Allen, A

    1998-01-01

    Medical information has been transmitted using wireless technologies for almost 80 years. A "wired wireless" electronic stethoscope was developed by the U.S. Army Signal Corps in the early 1920's, for potential use in ship-to-shore transmission of cardiac sounds. [Winters SR. Diagnosis by wireless. Scientific American June 11, 1921, p. 465] Today, wireless is used in a wide range of medical applications and at sites from transoceanic air flights to offshore oil platforms to Mt. Everest. 'Wireless LANs' are often used in medical environments. Typically, nurses and physicians in a hospital or clinic use hand-held "wireless thin client" pen computers that exchange patient information and images with the hospital server. Numerous companies, such as Fujitsu (article below) and Cruise Technologies (www.cruisetech.com) manufacture handheld pen-entry computers. One company, LXE, integrates radio-frequency (RF) enhanced hand-held computers specifically designed for production use within a wireless LAN (www.lxe.com). Other companies (Proxim, Symbol, and others) supply the wireless RF LAN infrastructure for the enterprise. Unfortunately, there have been problems with widespread deployment of wireless LANs. Perhaps the biggest impediment has been the lack of standards. Although an international standard (IEEE 802.11) was adopted in 1997, most wireless LAN products still are not compatible with the equipment of competing companies. A problem with the current standard for LAN adapters is that throughput is limited to 3 Mbps--compared to at least 10 Mbps, and often 100 Mbps, in a hard-wired Ethernet LAN. An II Mbps standard is due out in the next year or so, but it will be at least 2 years before standards-compliant products are available. This story profiles some of the ways that wireless is being used to overcome gaps in terrestrial and within-enterprise communication. PMID:10181174

  6. Weatherization Works: An interim report of the National Weatherization Evaluation

    SciTech Connect

    Brown, M.A.; Berry, L.G.; Kinney, L.F.

    1993-11-01

    The National Weatherization Evaluation is the first comprehensive evaluation of the Weatherization Assistance Program since 1984. The evaluation was designed to accomplish the following goals: Estimate energy savings and cost effectiveness; Assess nonenergy impacts; Describe the weatherization network; Characterize the eligible population and resources; and Identify factors influencing outcomes and opportunities for the future. As a national program, weatherization incorporates considerable diversity due to regional differences. Therefore, evaluation results are presented both in aggregate and for three climate regions: cold, moderate and hot.

  7. Efficacy of wax matrix bait stations for Mediterranean Fruit Flies (Diptera: Tephritidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tests were conducted that evaluated efficacy of wax matrix bait stations for Ceratitis capitata (Wiedemann) adults in Guatemala. Bait stations were exposed to outdoor conditions to determine effect of weathering on longevity as indicated by bait station age. Results of laboratory tests found that ba...

  8. Hydrologic-data stations and lake levels, Kenai-Nikiski area, Alaska, 1983

    USGS Publications Warehouse

    Bailey, Bonnie J.

    1983-01-01

    The locations of 2 National Weather Service stations, 29 observation wells, 4 stream gages, and 12 lake-stage stations are depicted on a 1:63, 360-scale map. The periods of record and station descriptions are listed. Hydrographs depict water-level fluctuations of 12 lakes during the period 1970-1983. (USGS)

  9. Weather pattern climatology of the Great Plains and the related wind regime

    SciTech Connect

    Barchet, W.R.

    1982-11-01

    The meteorology of the Great Plains can be described as a constant progression of air masses, fronts and cyclonic storm systems. Each of these meteorological conditions can be characterized by identifiable isobaric and related weather parameter patterns. Nine such patterns have been defined to type the weather patterns in the Great Plains. Time series of weather pattern types were produced for 62 stations on the Great Plains. Statistical analyses of these time series produced annual and seasonal frequencies of occurrence of the weather pattern types. Maps of the annual and seasonal frequency of occurrence of weather pattern type are presented for the Great Plains. Persistence and alternation frequencies match what is expected for traveling temperate latitude cyclones, anticyclones and fronts. The wind regime for stations at which the anemometer height and location was constant (and known) for a minimum of three consecutive years was stratified by weather pattern type. Statistical analyses were made to show the response of the wind to the large-scale distribution of air pressure associated with a weather pattern type. The response of the wind to the weather pattern is a site-specific result of the interaction of the large-scale meteorology with local terrain, surface roughness and atmospheric stability. Mean wind speed discriminates between pairs of weather pattern types with better than 75% confidence for more than two-thirds of the possible pairs of weather pattern types.

  10. Food Safety for Warmer Weather

    MedlinePlus

    ... our exit disclaimer . Subscribe Fight Off Food Poisoning Food Safety for Warmer Weather In warm-weather months, who ... they produce,” says Dr. Alison O’Brien, a food safety expert at the Uniformed Services University of the ...

  11. Bringing Weather into Your Classroom.

    ERIC Educational Resources Information Center

    Mogil, H. Michael

    1979-01-01

    Discusses meteorological resources available to classroom teachers. Describes in detail the National Oceanic and Atmospheric Administration (NOAA) Weather Radio and the A.M. Weather Show on Public Broadcasting Service (PBS). Includes addresses where teachers can get more information. (MA)

  12. Launching a Wireless Laptop Program

    ERIC Educational Resources Information Center

    Grignano, Domenic

    2007-01-01

    In this article, the author, as a technology director for East Rock Magnet School in New Haven, Connecticut, a federal government test site for laptop learning, shares his secrets to a successful implementation of a wireless laptop program: (1) Build a wireless foundation; (2) Do not choose the cheapest model just because of budget; (3) A sturdy…

  13. Wireless networking for international safeguards.

    SciTech Connect

    Smartt, Heidi Anne; Caskey, Susan Adele

    2003-06-01

    Wireless networking using the IEEE 802.11standards is a viable alternative for data communications in safeguards applications. This paper discusses the range of 802.11-based networking applications, along with their advantages and disadvantages. For maximum performance, safety, and security, Wireless networking should be implemented only after a comprehensive site survey has determined detailed requirements, hazards, and threats.

  14. Asian Dust Weather Categorization with Satellite and Surface Observations

    NASA Technical Reports Server (NTRS)

    Lin, Tang-Huang; Hsu, N. Christina; Tsay, Si-Chee; Huang, Shih-Jen

    2011-01-01

    This study categorizes various dust weather types by means of satellite remote sensing over central Asia. Airborne dust particles can be identified by satellite remote sensing because of the different optical properties exhibited by coarse and fine particles (i.e. varying particle sizes). If a correlation can be established between the retrieved aerosol optical properties and surface visibility, the intensity of dust weather can be more effectively and consistently discerned using satellite rather than surface observations. In this article, datasets consisting of collocated products from Moderate Resolution Imaging Spectroradiometer Aqua and surface measurements are analysed. The results indicate an exponential relationship between the surface visibility and the satellite-retrieved aerosol optical depth, which is subsequently used to categorize the dust weather. The satellite-derived spatial frequency distributions in the dust weather types are consistent with China s weather station reports during 2003, indicating that dust weather classification using satellite data is highly feasible. Although the period during the springtime from 2004 to 2007 may be not sufficient for statistical significance, our results reveal an increasing tendency in both intensity and frequency of dust weather over central Asia during this time period.

  15. Survey and Analysis of Weather Data for Building Energy Simulations

    SciTech Connect

    Bhandari, Mahabir S; Shrestha, Som S; New, Joshua Ryan

    2012-01-01

    In recent years, calibrated energy modeling of residential and commercial buildings has gained importance in a retrofit-dominated market. Accurate weather data plays an important role in this calibration process and projected energy savings. It would be ideal to measure weather data at the building location to capture relevant microclimate variation but this is generally considered cost-prohibitive. There are data sources publicly available with high temporal sampling rates but at relatively poor geospatial sampling locations. To overcome this limitation, there are a growing number of service providers that claim to provide real time and historical weather data for 20-35 km2 grid across the globe. Unfortunately, there is limited documentation from 3rd-party sources attesting to the accuracy of this data. This paper compares provided weather characteristics with data collected from a weather station inaccessible to the service providers. Monthly average dry bulb temperature; relative humidity; direct, diffuse and horizontal solar radiation; and wind speed are statistically compared. Moreover, we ascertain the relative contributions of each weather variable and its impact on building loads. Annual simulations are calculated for three different building types, including a closely monitored and automated energy efficient research building. The comparison shows that the difference for an individual variable can be as high as 90%. In addition, annual building energy consumption can vary by 7% while monthly building loads can vary by 40% as a function of the provided location s weather data.

  16. The Design of Solar Synoptic Chart for Space Weather Forecast

    NASA Astrophysics Data System (ADS)

    Song, Qiao; Wang, JinSong; Feng, Xueshang; Zhang, XiaoXin

    2015-08-01

    The influence of space weather has already been an important part of our modern society. A chart with key concepts and objects in space weather is needed for space weather forecast. In this work, we search space weather liter- atures during the past forty years and investigate a variety of solar data sets, which including our own data observed by the vector magnetic field telescope and the Hα telescope at Wenquan and Shidao stations of National Center for Space Weather. Based on the literatures and data, we design the solar synoptic chart (SSC) that covers main objects of solar activities and contains images from different heights and temperatures of solar atmosphere. The SSC includes the information of active regions, coronal holes, filaments/prominences, flares and coronal mass ejections, and reveals magnetic structures from cooler photosphere to hotter corona. We use the SSC method to analyze the condition of the Sun and give two typical examples of the SSC. The result shows that the SSC is timely, comprehensive, concise and easy to understand, and it meets the needs of space weather forecast and can help improving the public education of space weather.

  17. 75 FR 8400 - In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-24

    ... COMMISSION In the Matter of Certain Wireless Communications System Server Software, Wireless Handheld Devices... server software, wireless handheld devices and battery packs by reason of infringement of certain claims... importation of certain wireless communications system server software, wireless handheld devices or...

  18. Reaction of sorghum hybrids to anthracnose, grain mold and grain weathering in Burleson County, Texas, 2007

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thirty commercial hybrids were evaluated for resistance against anthracnose, caused by Colletotrichum sublineolum and grain mold or grain weathering caused by a number of fungal species at the Texas A&M University Agricultural Experiment Station in College Station (Burleson County). Six hybrids wer...

  19. Views of wireless network systems.

    SciTech Connect

    Young, William Frederick; Duggan, David Patrick

    2003-10-01

    Wireless networking is becoming a common element of industrial, corporate, and home networks. Commercial wireless network systems have become reliable, while the cost of these solutions has become more affordable than equivalent wired network solutions. The security risks of wireless systems are higher than wired and have not been studied in depth. This report starts to bring together information on wireless architectures and their connection to wired networks. We detail information contained on the many different views of a wireless network system. The method of using multiple views of a system to assist in the determination of vulnerabilities comes from the Information Design Assurance Red Team (IDART{trademark}) Methodology of system analysis developed at Sandia National Laboratories.

  20. Wireless electrochemiluminescence with disposable minidevice.

    PubMed

    Qi, Wenjing; Lai, Jianping; Gao, Wenyue; Li, Suping; Hanif, Saima; Xu, Guobao

    2014-09-16

    Wireless electrochemiluminescence system based on the wireless energy transmission technique has been demonstrated for the first time. It has a disposable transmitter and a coiled energy receptor. The coiled energy receptor is smartly used as the electrode. The wireless electrochemiluminescence system has been used to detect hydrogen peroxide with good sensitivity, featuring advantages of easy manipulation, low cost, and small size. The handy and cheap wireless electrochemiluminescence device can use laptops as a power supply. It is promising for the development of portable or disposable electrochemiluminescence devices for various applications (e.g., such as point of care testing, field analysis, scientific research, and chemical education). These advantages enable one to integrate many wireless electrochemiluminescence minidevices with screen printing coiled electrode arrays in microwell plates and charge-coupled devices (CCD) cameras to develop electrochemiluminescence high-throughput screening systems with broad applications in clinical analysis, drug screening, and biomolecular interaction studies. PMID:25184605

  1. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around…

  2. Weather Folklore: Fact or Fiction?

    ERIC Educational Resources Information Center

    Jones, Gail; Carter, Glenda

    1995-01-01

    Integrating children's weather-related family folklore with scientific investigation can be an effective way to involve elementary and middle level students in lessons spanning the disciplines of science, geography, history, anthropology, and language arts. Describes weather folklore studies and examples of weather investigations performed with…

  3. Weather Specialist/Aerographer's Mate.

    ERIC Educational Resources Information Center

    Chanute AFB Technical Training Center, IL.

    This course trains Air Force personnel to perform duties prescribed for weather specialists and aerographer's mates. Training includes meteorology, surface and ship observation, weather radar, operation of standard weather instruments and communications equipment, and decoding and plotting of surface and upper air codes upon standard maps and…

  4. Severe Weather Planning for Schools

    ERIC Educational Resources Information Center

    Watson, Barbara McNaught; Strong, Christopher; Bunting, Bill

    2008-01-01

    Flash floods, severe thunderstorms, and tornadoes occur with rapid onset and often no warning. Decisions must be made quickly and actions taken immediately. This paper provides tips for schools on: (1) Preparing for Severe Weather Emergencies; (2) Activating a Severe Weather Plan; (3) Severe Weather Plan Checklist; and (4) Periodic Drills and…

  5. Weather Fundamentals: Climate & Seasons. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes), describes weather patterns and cycles around the globe. The various types of climates around

  6. Winter weather scorecard

    NASA Astrophysics Data System (ADS)

    Last fall's 3-month winter weather prediction by National Weather Service (NWS) forecasters was not terrific, but it was not too far off the mark, either. A comparison of the predicted temperatures and precipitation (Eos, December 25, 1984, p. 1241) to the observed conditions (see Figures 1 and 2) during the months of December, January, and February shows that the forecasters were generally correct where they were most confident in their predictions.According to Donald Gilman, chief of the Predictions Branch at NWS's National Climate Analysis Center, the overall temperature forecast was probably better than that for precipitation. “The temperature forecast was pretty good in the West,” said Gilman. “East of the Mississippi, however, was a mixed picture.”

  7. Scorecard on weather predictions

    NASA Astrophysics Data System (ADS)

    Richman, Barbara T.

    No matter that several northern and eastern states were pelted by snow and sleet early in March, as far as longterm weather forecasters are concerned, winter ended on February 28. Now is the time to review their winter seasonal forecasts to determine how accurate were those predictions issued at the start of winter.The National Weather Service (NWS) predicted on November 27, 1981, that the winter season would bring colder-than-normal temperatures to the eastern half of the United States, while temperatures were expected to be higher than normal in the westernmost section (see Figure 1). The NWS made no prediction for the middle of the country, labeling the area ‘indeterminate,’ or having the same chance of experiencing above-normal temperatures as below-normal temperatures, explained Donald L. Gilman, chief of the NWS long-range forecasting group.

  8. Whether weather affects music

    NASA Astrophysics Data System (ADS)

    Aplin, Karen L.; Williams, Paul D.

    2012-09-01

    The creative output of composers, writers, and artists is often influenced by their surroundings. To give a literary example, it has been claimed recently that some of the characters in Oliver Twist and A Christmas Carol were based on real-life people who lived near Charles Dickens in London [Richardson, 2012]. Of course, an important part of what we see and hear is not only the people with whom we interact but also our geophysical surroundings. Of all the geophysical phenomena to influence us, the weather is arguably the most significant because we are exposed to it directly and daily. The weather was a great source of inspiration for artists Claude Monet, John Constable, and William Turner, who are known for their scientifically accurate paintings of the skies [e.g., Baker and Thornes, 2006].

  9. Wireless Technology in K-12 Education

    ERIC Educational Resources Information Center

    Walery, Darrell

    2004-01-01

    Many schools begin implementing wireless technology slowly by creating wireless "hotspots" on the fly. This is accomplished by putting a wireless access point on a cart along with a set of wireless laptop computers. A teacher can then wheel the cart anywhere in the school that has a network drop, plug the access point in and have an instant…

  10. Salt Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    2006-12-01

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974). However, irrespectively of the climatic environment a liquid brine is a necessity for salt induced fragmentation of rocks.M. C. Malin (1974) JGR Vol 79,26 p 3888-3894

  11. Insolation Forecasting Using Weather Forecast with Weather Change Patterns

    NASA Astrophysics Data System (ADS)

    Shimada, Takae; Kurokawa, Kosuke

    This paper reports an insolation forecasting method for photovoltaic power predictions. The method of proposal forecasts the global irradiance every one hour by using weather forecast every three hours. The weather forecast is classified into 14 kinds of weather change categories by weather change patterns, and the insolation forecasting accuracy is improved. The forecasting accuracy was examined based on the measurement data and the weather forecast announced in Tokyo. In the result, using weather change patterns decrease mean absolute error ratio of hourly forecasting from 32.6 to 30.2% and the error ratio of daily forecasting from 24.7 to 23.5%. The result also shows the possibility that the error ratio of hourly forecasting is decreased to 24.5% and the error ratio of daily forecasting is decreased to 17.8% in Tokyo when the weather forecast accuracy is improved.

  12. AMS-02 as a Space Weather Observatory

    NASA Astrophysics Data System (ADS)

    Whitman, K.; Bindi, V.; Chati, M.; Consolandi, C.; Corti, C.

    2013-12-01

    The Alpha Magnetic Spectrometer (AMS-02) is a state-of-the-art space detector that measures particles in the energy range of hundreds of MeV to a few TeV. AMS-02 has been installed onboard of the International Space Station (ISS) since May 2011 where it will operate for the duration of the station. To date, there is an abundance of space-based solar data collected in the low energy regimes, whereas there are very few direct measurements of higher energy particles available. AMS-02 is capable of measuring arrival time and composition of the highest energy SEPs in space. It is crucial to build a better knowledge base regarding the most energetic and potentially harmful events. We are currently developing a program to employ AMS-02 as a real-time space weather observatory. SEPs with higher energies are usually accelerated during a short period of time and they are the first particles to reach the Earth. AMS-02, measuring these highest energy SEPs, can alert the onset of an SEP event. During the past two years of operation, we have identified two main quantities in AMS-02 that are particularly sensitive to the arrival of SEPs: the detector livetime and the transition radiation detector (TRD) event size. By monitoring the detector livetime and the TRD event size, AMS-02 can pinpoint in real-time the arrival of SEPs inside the Earth's magnetosphere operating as a space weather detector.

  13. Space Weather monitoring with Neutron Monitor measurements

    NASA Astrophysics Data System (ADS)

    Steigies, C. T.

    2012-12-01

    Space Weather affects many areas of the modern society, advance knowledge about space weather events is important to protect personnel and infrastructure. Cosmic Rays (CR) measurements by ground-based Neutron Monitors are influenced by Coronal Mass Ejections (CME), the intensity of the ever present Cosmic Rays is reduced in a Forbush decrease (Fd). In the case of very energetic CMEs, the measured intensity can be significantly increased in a Ground Level Enhancement (GLE). By detecting the anisotropy of the CR environment, a CME can be detected hours before it arrives at Earth. During a GLE the high-energy particles from the Sun can be detected before the more abundant lower energy particles arrive at Earth, thus allowing to take protective measures. Since the beginning of the Neutron Monitor Database (NMDB) project, which has been started in 2008 with funding from the European Commission, real-time data from Neutron Monitors around the world has been made available through one web-portal. We have more than doubled the number of stations providing data since the start of the project to now over 30 stations. The effectiveness of the ALERT applications which are based on NMDB data has been shown by the recent GLE71. We will present different applications through which the measurements and different data products are accessible.

  14. Pipelines and Space Weather

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2010-05-01

    Long conductors of all types on Earth's surface are subject to disturbance and disruption by telluric currents (currents that flow within the Earth or on its surface) induced by space weather events. Attention is most often paid to the effects that these currents can produce in electric grids. After all, if an electric power system is disrupted, many other modern infrastructures that depend on the secure and continuous supply of electrical power will also be affected. A recent technical paper in Space Weather by R. A. Marshall and colleagues draws needed attention to the effects of telluric currents on long pipelines. This is a space weather topic that often does not receive the attention it warrants in terms of its critical relevance to modern-day life. Pipelines have long used cathodic protection systems to mitigate the corrosion of the pipes that can arise from potential differences between the ground and the pipes. These potential differences occur because telluric currents flow more readily in the pipes than in the ground. While pipeline engineers have long worked hard on this problem, it was the design and installation in the mid-1970s of the Alaska pipeline directly under the auroral zone that drew enhanced attention to this topic.

  15. Deployable wireless Fresnel lens

    NASA Technical Reports Server (NTRS)

    Kennedy, Timothy F. (Inventor); Fink, Patrick W. (Inventor); Chu, Andrew W. (Inventor); Lin, Gregory Y. (Inventor)

    2013-01-01

    Apparatus and methods for enhancing the gain of a wireless signal are provided. In at least one specific embodiment, the apparatus can include a screen comprised of one or more electrically conductive regions for reflecting electromagnetic radiation and one or more non-conductive regions for permitting electromagnetic radiation therethrough. The one or more electrically conductive regions can be disposed adjacent to at least one of the one or more non-conductive regions. The apparatus can also include a support member disposed about at least a portion of the screen. The screen can be capable of collapsing by twisting the support member in opposite screw senses to form interleaved concentric sections.

  16. Wireless passive radiation sensor

    DOEpatents

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  17. Information transmission using UEP turbo codes in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhou, Zude; Xu, Chao

    2005-11-01

    Wireless sensing is prevalent quickly in these years, and it has many advantages, such as fewer catastrophic failures, conservation of natural resources, improved emergency response, etc. Wireless sensors can be deployed in extremely hostile environment. Since the wireless sensors are energy constrained, many researches have been in progress to solve these problems. In this paper, we proposed a joint source-channel coding scheme to solve energy efficiency of wireless sensors. Firstly, we decomposition information in wavelet domain, then compress it by using multi-scale embedded zerotree wavelet algorithm, and generate a bit stream that can be decompressed in a scalable bit rate. Then, we transmit the bit stream after encoding them with unequal error protection turbo codes to achieve error robust transmission. We transmit multiple bit streams according to some energy strategy, and redundancies to base stations are reduced by only transmitting coarse scale information. Due to the scalability of multi-scale EZW, we can adopt diversified bit rate strategy to save energy of battery powered sensors.

  18. A Combined Radio and Underwater Wireless Optical Communication System based on Buoys

    NASA Astrophysics Data System (ADS)

    Song, Yuhang; Tong, Zheng; Cong, Bo; Yu, Xiangyu; Kong, Meiwei; Lin, Aobo

    2016-02-01

    We propose a system of combining radio and underwater wireless optical communication based on buoys for real-time image and video transmission between underwater vehicles and the base station on the shore. We analysis how the BER performance is affected by the link distance and the deflection angle of the light source using Monte Carlo simulation.

  19. Salt weathering on Mars

    NASA Astrophysics Data System (ADS)

    Jagoutz, E.

    Large well rounded boulders and angular rock fragments characterizes the Martian landscape as seen on the recent excellent quality photos. Analyzing the different rock-shapes indicates a time sequence of emplacement, fragmentation and transport of different rocks on Mars, which might give interesting insight into transport and weathering processes. Larger commonly well rounded boulders were emplaced onto gravel plains. After emplacement, these rocks were fragmented and disassembled. Nests of angular rock fragments are marking the locations of preexisting larger rocks. Frequently it is possible to reconstruct larger rounded rocks from smaller angular fragments. In other cases transport after fragmentation obscured the relationship of the fragments. However, a strewn field of fragments is still reminiscent of the preexisting rock. Mechanical salt weathering could be a plausible explanation for the insitu fragmentation of larger rounded blocks into angular fragments. Impact or secondary air fall induced fragmentation produces very different patterns, as observed around impact crates on Earth. Salt weathering of rocks is a common process in terrestrial environments. Salt crystallization in capillaries causes fragmentation of rocks, irrespective of the process of salt transportation and concentration. On Earth significant salt weathering can be observed in different climatic environments: in the transition zone of alluvial aprons and salt playas in desserts and in dry valleys of Antarctica. In terrestrial semi-arid areas the salt is transported by salt solution, which is progressively concentrated by evaporation. In Antarctic dry valleys freeze-thaw cycles causes salt transportation and crystallization resulting in rock fragmentation. This salt induced process can lead to complete destruction of rocks and converts rocks to fine sand. The efficient breakdown of rocks is dominating the landscape in some dry valleys of the Earth but possibly also on Mars. (Malin, 1974). However, irrespectively of the climatic environment a liquid brine is a necessity for salt induced fragmentation of rocks. If salt weathering is responsible for the fragmented rocks on the Martian surface it implies a temporary present of liquid H_2O. However, due to the present dry atmosphere on Mars brines can only be present in restricted places without being in equilibrium with the atmosphere (Clark and van Hart 1980). M. C. Malin (1974) JGR Vol 79,26 p 3888-3894 B. C. Clark and D. C. vanHart (1980) ICARUS 45, 370-378

  20. Wireless remote monitoring of toxic gases in shipbuilding.

    PubMed

    Pérez-Garrido, Carlos; González-Castaño, Francisco J; Chaves-Díeguez, David; Rodríguez-Hernández, Pedro S

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  1. Wireless Remote Monitoring of Toxic Gases in Shipbuilding

    PubMed Central

    Pérez-Garrido, Carlos; González-Castaño, Francisco J.; Chaves-Diéguez, David; Rodríguez-Hernández, Pedro S.

    2014-01-01

    Large-scale wireless sensor networks have not achieved market impact, so far. Nevertheless, this technology may be applied successfully to small-scale niche markets. Shipyards are hazardous working environments with many potential risks to worker safety. Toxic gases generated in soldering processes in enclosed spaces (e.g., cargo holds) are one such risk. The dynamic environment of a ship under construction makes it very difficult to plan gas detection fixed infrastructures connected to external monitoring stations via wired links. While portable devices with gas level indicators exist, they require workers to monitor measurements, often in situations where they are focused on other tasks for relatively long periods. In this work, we present a wireless multihop remote gas monitoring system for shipyard environments that has been tested in a real ship under construction. Using this system, we validate IEEE 802.15.4/Zigbee wireless networks as a suitable technology to connect gas detectors to control stations outside the ships. These networks have the added benefit that they reconfigure themselves dynamically in case of network failure or redeployment, for example when a relay is moved to a new location. Performance measurements include round trip time (which determines the alert response time for safety teams) and link quality indicator and packet error rate (which determine communication robustness). PMID:24534919

  2. Study of wireless communication between MEMS sensing nodes

    NASA Astrophysics Data System (ADS)

    Rivera, José; Saafi, Mohamed; Heidary, Kaveh

    2006-05-01

    Wireless sensors networks are currently being used in different engineering fields such as civil, mechanical and aerospace engineering for damage detection. Each network contains approximately hundreds to thousands of MEMS sensors that communicate to its base station. These sensors are placed in different environments and locations that create changes in their output due to obstacles or interference between them and their base station. A research study was conducted on wireless MEMS sensor nodes to evaluate the noise level and the effect of environmental interferences as well as their maximum distance communication. In this paper, the effect of interference environments and obstacles such as magnetic field created by electricity and cell phone communications, concrete and metal enclosures, and outside/inside environments were evaluated. In addition, a neural network computer simulation was developed to learn and teach the users what it takes to classify signals such as time, amount of samples and overtraining in order to obtain the correct output instead of an unknown. By gathering all this information it helps to save money and time in any application wireless MEMS sensors are used and idealized models and pictures of communication paths have been created for easier evaluation of the MEMS sensor networks.

  3. Space Weathering of Lunar Rocks

    NASA Technical Reports Server (NTRS)

    Noble, S. K.; Keller, L. P.; Christoffersen, R.; Rahman, Z.

    2012-01-01

    All materials exposed at the lunar surface undergo space weathering processes. On the Moon, boulders make up only a small percentage of the exposed surface, and areas where such rocks are exposed, like central peaks, are often among the least space weathered regions identified from remote sensing data. Yet space weathered surfaces (patina) are relatively common on returned rock samples, some of which directly sample the surface of larger boulders. Because, as witness plates to lunar space weathering, rocks and boulders experience longer exposure times compared to lunar soil grains, they allow us to develop a deeper perspective on the relative importance of various weathering processes as a function of time.

  4. Space Station planning

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    An overview of NASA Space Station planning activities is given. Among the specific topics addressed are: the role of private contractors in the construction and operation of Space Station; international cooperation in planning Space Station configurations; and optimum management strategies for Space Station planning activities. The division of work packages for the preliminary design definition phase of the Space Station program is described.

  5. Weather dissemination and public usage

    NASA Technical Reports Server (NTRS)

    Stacey, M. S.

    1973-01-01

    The existing public usage of weather information was examined. A survey was conducted to substantiate the general public's needs for dissemination of current (0-12 hours) weather information, needs which, in a previous study, were found to be extensive and urgent. The goal of the study was to discover how the general public obtains weather information, what information they seek and why they seek it, to what use this information is put, and to further ascertain the public's attitudes and beliefs regarding weather reporting and the diffusion of weather information. Major findings from the study include: 1. The public has a real need for weather information in the 0-6 hour bracket. 2. The visual medium is preferred but due to the lack of frequent (0-6 hours) forecasts, the audio media only, i.e., telephone recordings and radio weathercasts, were more frequently used. 3. Weather information usage is sporadic.

  6. Biomonitoring with Wireless Communications

    SciTech Connect

    Budinger, Thomas F.

    2003-03-01

    This review is divided into three sections: technologies for monitoring physiological parameters; biosensors for chemical assays and wireless communications technologies including image transmissions. Applications range from monitoring high risk patients for heart, respiratory activity and falls to sensing levels of physical activity in military, rescue, and sports personnel. The range of measurements include, heart rate, pulse wave form, respiratory rate, blood oxygen, tissue pCO2, exhaled carbon dioxide and physical activity. Other feasible measurements will employ miniature chemical laboratories on silicon or plastic chips. The measurements can be extended to clinical chemical assays ranging from common blood assays to protein or specialized protein measurements (e.g., troponin, creatine, and cytokines such as TNF and IL6). Though the feasibility of using wireless technology to communicate vital signs has been demonstrated 32 years ago (1) it has been only recently that practical and portable devices and communications net works have become generally available for inexpensive deployment of comfortable and affordable devices and systems.

  7. Household wireless electroencephalogram hat

    NASA Astrophysics Data System (ADS)

    Szu, Harold; Hsu, Charles; Moon, Gyu; Yamakawa, Takeshi; Tran, Binh

    2012-06-01

    We applied Compressive Sensing to design an affordable, convenient Brain Machine Interface (BMI) measuring the high spatial density, and real-time process of Electroencephalogram (EEG) brainwaves by a Smartphone. It is useful for therapeutic and mental health monitoring, learning disability biofeedback, handicap interfaces, and war gaming. Its spec is adequate for a biomedical laboratory, without the cables hanging over the head and tethered to a fixed computer terminal. Our improved the intrinsic signal to noise ratio (SNR) by using the non-uniform placement of the measuring electrodes to create the proximity of measurement to the source effect. We computing a spatiotemporal average the larger magnitude of EEG data centers in 0.3 second taking on tethered laboratory data, using fuzzy logic, and computing the inside brainwave sources, by Independent Component Analysis (ICA). Consequently, we can overlay them together by non-uniform electrode distribution enhancing the signal noise ratio and therefore the degree of sparseness by threshold. We overcame the conflicting requirements between a high spatial electrode density and precise temporal resolution (beyond Event Related Potential (ERP) P300 brainwave at 0.3 sec), and Smartphone wireless bottleneck of spatiotemporal throughput rate. Our main contribution in this paper is the quality and the speed of iterative compressed image recovery algorithm based on a Block Sparse Code (Baranuick et al, IEEE/IT 2008). As a result, we achieved real-time wireless dynamic measurement of EEG brainwaves, matching well with traditionally tethered high density EEG.

  8. Optical Communications Performance with Realistic Weather and Automated Repeat Query

    NASA Astrophysics Data System (ADS)

    Clare, L.; Miles, G.; Breidenthal, J.

    2016-05-01

    Deep-space optical communications are subject to outages arising from deterministic clear line-of-sight dynamics as well as unpredictable weather effects at the ground station. These effects can be mitigated using buffering and automatic retransmission techniques. We provide an analysis that incorporates a realistic weather model based on a two-state Markov chain. Performance for a hypothetical Mars 2022 optical mission is derived incorporating dynamics over an entire 728-day synodic cycle, during which link passes and link data rate vary. Buffer sizing is addressed and operational implications are identified. Also, buffer occupancy results are extended for deep-space missions spanning a range of link data rates.

  9. Linking the Weather Generator with Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, Martin; Farda, Ales; Skalak, Petr; Huth, Radan

    2013-04-01

    One of the downscaling approaches, which transform the raw outputs from the climate models (GCMs or RCMs) into data with more realistic structure, is based on linking the stochastic weather generator with the climate model output. The present contribution, in which the parametric daily surface weather generator (WG) M&Rfi is linked to the RCM output, follows two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate Regional Climate Model at 25 km resolution. The WG parameters are derived from the RCM-simulated surface weather series and compared to those derived from weather series observed in 125 Czech meteorological stations. The set of WG parameters will include statistics of the surface temperature and precipitation series (including probability of wet day occurrence). (2) Presenting a methodology for linking the WG with RCM output. This methodology, which is based on merging information from observations and RCM, may be interpreted as a downscaling procedure, whose product is a gridded WG capable of producing realistic synthetic multivariate weather series for weather-ungauged locations. In this procedure, WG is calibrated with RCM-simulated multi-variate weather series in the first step, and the grid specific WG parameters are then de-biased by spatially interpolated correction factors based on comparison of WG parameters calibrated with gridded RCM weather series and spatially scarcer observations. The quality of the weather series produced by the resultant gridded WG will be assessed in terms of selected climatic characteristics (focusing on characteristics related to variability and extremes of surface temperature and precipitation). Acknowledgements: The present experiment is made within the frame of projects ALARO-Climate (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports of CR) and VALUE (COST ES 1102 action).

  10. Performance evaluation of power control algorithms in wireless cellular networks

    NASA Astrophysics Data System (ADS)

    Temaneh-Nyah, C.; Iita, V.

    2014-10-01

    Power control in a mobile communication network intents to control the transmission power levels in such a way that the required quality of service (QoS) for the users is guaranteed with lowest possible transmission powers. Most of the studies of power control algorithms in the literature are based on some kind of simplified assumptions which leads to compromise in the validity of the results when applied in a real environment. In this paper, a CDMA network was simulated. The real environment was accounted for by defining the analysis area and the network base stations and mobile stations are defined by their geographical coordinates, the mobility of the mobile stations is accounted for. The simulation also allowed for a number of network parameters including the network traffic, and the wireless channel models to be modified. Finally, we present the simulation results of a convergence speed based comparative analysis of three uplink power control algorithms.

  11. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  12. Radio Relays Improve Wireless Products

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Signal Hill, California-based XCOM Wireless Inc. developed radio frequency micromachine (RF MEMS) relays with a Phase II Small Business Innovation Research (SBIR) contract through NASA?s Jet Propulsion Laboratory. In order to improve satellite communication systems, XCOM produced wireless RF MEMS relays and tunable capacitors that use metal-to-metal contact and have the potential to outperform most semiconductor technologies while using less power. These relays are used in high-frequency test equipment and instrumentation, where increased speed can mean significant cost savings. Applications now also include mainstream wireless applications and greatly improved tactical radios.

  13. Russia's national space weather service in 2009

    NASA Astrophysics Data System (ADS)

    Burov, Viatcheslav; Avdyushin, Sergei; Denisova, Valentina

    RWC Russia (Institute of Applied Geophysics, Moscow) -forecasting center unites activity of the National Heliogeophysics Service of Russia and the Regional Warning Center of ISES. Nowadays the centre operates and fulfils numerous functions such as space weather monitoring, collecting, working and handing out the data to both Russian and foreign customers, compiling and spreading various kinds of the space weather condition forecasts. The first regular space weather forecast is known to have been issued on June 10, 1974. Since then this kind of activity has been processed and issued permanently 7 days a week. During year 2009 there were more than 17000 various short terms (semi -day, 1,2,3 and five days) forecasts of the geomagnetic fields and ionosphere conditions, magnetic fields, flare activity, radiation hazard in polar zones and the satellites traces. In the end of 2008 the Institute of Applied Geophysics was provided with necessary subsidizing to support the Space Weather Center. The fundamental repairs of the Institute's building have begun and are being done at present. They are to be completed this year. The allocated funds are sufficient to start the technical renovation of the Service, including: provision of the staff with up-to-date computing machinery; up-grading the observation stations equipment; preparing the apparatus and instruments for monitoring the near-earth space by two of our satellites "Meteor" and "Electro" ("Electro" -geostationary satellite). The "Meteor" satellite (subpolar orbit on altitude of 900 km) equipped with complex including: measurements of electron fluxes with energy more than 0.15 MeV, and proton fluxes with energy more than 5 MeV (40 channels) was launched on September 2009. These data (as well as ionosphere and geomagnetic data) are available on Web page www.geospace.ru since 2 quarter of the2010.

  14. Intelligent Virtual Station (IVS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Intelligent Virtual Station (IVS) is enabling the integration of design, training, and operations capabilities into an intelligent virtual station for the International Space Station (ISS). A viewgraph of the IVS Remote Server is presented.

  15. Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture

    DOEpatents

    McCown, Steven H.; Derr, Kurt W.; Rohde, Kenneth W.

    2012-05-08

    Wireless device monitoring methods, wireless device monitoring systems, and articles of manufacture are described. According to one embodiment, a wireless device monitoring method includes accessing device configuration information of a wireless device present at a secure area, wherein the device configuration information comprises information regarding a configuration of the wireless device, accessing stored information corresponding to the wireless device, wherein the stored information comprises information regarding the configuration of the wireless device, comparing the device configuration information with the stored information, and indicating the wireless device as one of authorized and unauthorized for presence at the secure area using the comparing.

  16. Pipelining in structural health monitoring wireless sensor network

    NASA Astrophysics Data System (ADS)

    Li, Xu; Dorvash, Siavash; Cheng, Liang; Pakzad, Shamim

    2010-04-01

    Application of wireless sensor network (WSN) for structural health monitoring (SHM), is becoming widespread due to its implementation ease and economic advantage over traditional sensor networks. Beside advantages that have made wireless network preferable, there are some concerns regarding their performance in some applications. In long-span Bridge monitoring the need to transfer data over long distance causes some challenges in design of WSN platforms. Due to the geometry of bridge structures, using multi-hop data transfer between remote nodes and base station is essential. This paper focuses on the performances of pipelining algorithms. We summarize several prevent pipelining approaches, discuss their performances, and propose a new pipelining algorithm, which gives consideration to both boosting of channel usage and the simplicity in deployment.

  17. Weather Balloon Ascent Rate

    NASA Astrophysics Data System (ADS)

    Denny, Mark

    2016-05-01

    The physics of a weather balloon is analyzed. The surprising aspect of the motion of these balloons is that they ascend to great altitudes (typically 35 km) at a more or less constant rate. Such behavior is not surprising near the ground—say for a helium-filled party balloon rising from street level to the top of the Empire State building—but it is unexpected for a balloon that rises to altitudes where the air is rarefied. We show from elementary physical laws why the ascent rate is approximately constant.

  18. Weather Forecasting Aid

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Weather forecasters are usually very precise in reporting such conditions as temperature, wind velocity and humidity. They also provide exact information on barometric pressure at a given moment, and whether the barometer is "rising" or "falling"- but not how rapidly or how slowly it is rising or falling. Until now, there has not been available an instrument which measures precisely the current rate of change of barometric pressure. A meteorological instrument called a barograph traces the historical ups and downs of barometric pressure and plots a rising or falling curve, but, updated every three hours, it is only momentarily accurate at each updating.

  19. Polarimetric Doppler Weather Radar

    NASA Astrophysics Data System (ADS)

    Bringi, V. N.; Chandrasekar, V.

    2001-10-01

    This work provides a detailed introduction to the principles of Doppler and polarimetric radar, focusing in particular on their use in the analysis of weather systems. The authors first discuss underlying topics such as electromagnetic scattering, polarization, and wave propagation. They then detail the engineering aspects of pulsed Doppler polarimetric radar, before examining key applications in meteorology and remote sensing. The book is aimed at graduate students of electrical engineering and atmospheric science as well as practitioners involved in the applications of polarimetric radar.

  20. Brazilian Space Weather Program

    NASA Astrophysics Data System (ADS)

    Padilha, Antonio; Takahashi, Hisao; de Paula, Eurico; Sawant, Hanumant; de Campos Velho, Haroldo; Vitorello, Icaro; Costa, Joaquim; Souza, Jonas; Cecatto, José; Mendes, Odim; Gonzalez Alarcon, Walter Demétrio

    A space weather program is being initiated at the Brazilian National Institute for Space Research (INPE) to study events from their initiation on the sun to their impacts on the earth, including their effects on space-based and ground-based technological systems. The program is built on existing capabilities at INPE, which include scientists with a long tradition and excellence in the observation, analysis and modeling of solar and solar-terrestrial phenomena and an array of geophysical instruments that spans all over the Brazilian territory from the north to south of the magnetic dip equator. Available sensors include solar radio frequency receivers and telescopes, optical instruments and solar imagers, GNSS receivers, ionosondes, radars, allsky imagers, magnetometers and cosmic ray detectors. In the equatorial region, ionosphere and thermosphere constitute a coupled system with electrodynamical and plasma physical processes being responsible for a variety of peculiar phenomena. The most important of them are the equatorial electrojet current system and its instabilities, the equatorial ionization anomaly, and the plasma instabilities/irregularities of the night-time ionosphere (associated with the plasma bubble events). In addition, space weather events modify the equatorial ionosphere in a complex and up to now unpredictable manner. Consequently, a main focus of the program will be on monitoring the low, middle and upper atmosphere phenomena and developing a predictive model of the equatorial ionosphere through data assimilation, that could help to mitigate against the deleterious effects on radio communications and navigation systems. The technological, economic and social importance of such activities was recognized by the Brazilian government and a proposal for funding was approved for the period 2008-2011. New ground instruments will be installed during this period allowing us to extend our current capability to provide space weather observations, accurate forecasts of space weather conditions, and timely hazard alert warnings. The program is expected to be fully operational for the peak activity of the next solar maximum, but for its future growth and development it is essential to have a wide network of international collaborations.

  1. Terminal Doppler weather radar

    NASA Astrophysics Data System (ADS)

    Michelson, M.; Shrader, W. W.; Wieler, J. G.

    1990-02-01

    The terminal Doppler weather radar (TDWR) system, now under development, will provide automatic detection of microbursts and low-level wind shear. This paper discusses the TDWR performance parameters and describes its structural elements, including the antenna subsystem, the transmitter, the receiver/exciter, the digital signal processor, and the radar product generator/remote monitoring subsystem. Attention is also given to the processes of the base data formation, point target removal, signal-to-noise thresholding, and velocity de-aliasing and to the TDWR algorithms and displays. A schematic diagram of the TDWR system is presented.

  2. Temporal and spatial variations of high-impact weather events in China during 1959-2014

    NASA Astrophysics Data System (ADS)

    Shi, Jun; Wen, Kangmin; Cui, Linli

    2016-04-01

    The variation and trend in the frequency and duration of four types of high-impact weather (HIW) events were examined using daily surface climate data and linear regression method, and results show that for both the frequency and the duration, the trends of hot weather events were not significant in most parts of China, though for the China as a whole, they had increased with rates of 0.4 days and 0.1 spells of hot weather per decade respectively. The frequency of cold weather events had decreased significantly in most parts of China, particularly in northern, northeastern, and western China, where it increased at rates of 2-8 days per decade in most stations, but the duration of cold weather events were not significant in most parts of China. The frequency of gale weather events had decreased in almost all of China, with a rate of 3.7 days per decade for the China as a whole, and the duration of gale weather events had decreased mainly in northeastern and northern China, western Xinjiang, southwestern Sichuan, and some coastal areas of Liaoning, Shandong, Zhejiang, and Fujian. The frequency of rainstorm weather events was not significant in most parts of China, and the duration of rainstorm weather events was not significant in the whole of China. With global climate change, there would be an increase in the hot and rainstorm weather events, so mitigation/adaptation strategies for such weather events are essential for local government and social public.

  3. Severe Weather Forecast Decision Aid

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Wheeler, Mark M.; Short, David A.

    2005-01-01

    This report presents a 15-year climatological study of severe weather events and related severe weather atmospheric parameters. Data sources included local forecast rules, archived sounding data, Cloud-to-Ground Lightning Surveillance System (CGLSS) data, surface and upper air maps, and two severe weather event databases covering east-central Florida. The local forecast rules were used to set threat assessment thresholds for stability parameters that were derived from the sounding data. The severe weather events databases were used to identify days with reported severe weather and the CGLSS data was used to differentiate between lightning and non-lightning days. These data sets provided the foundation for analyzing the stability parameters and synoptic patterns that were used to develop an objective tool to aid in forecasting severe weather events. The period of record for the analysis was May - September, 1989 - 2003. The results indicate that there are certain synoptic patterns more prevalent on days with severe weather and some of the stability parameters are better predictors of severe weather days based on locally tuned threat values. The results also revealed the stability parameters that did not display any skill related to severe weather days. An interactive web-based Severe Weather Decision Aid was developed to assist the duty forecaster by providing a level of objective guidance based on the analysis of the stability parameters, CGLSS data, and synoptic-scale dynamics. The tool will be tested and evaluated during the 2005 warm season.

  4. Generation of Multivariate Surface Weather Series with Use of the Stochastic Weather Generator Linked to Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Dubrovsky, M.; Farda, A.; Huth, R.

    2012-12-01

    The regional-scale simulations of weather-sensitive processes (e.g. hydrology, agriculture and forestry) for the present and/or future climate often require high resolution meteorological inputs in terms of the time series of selected surface weather characteristics (typically temperature, precipitation, solar radiation, humidity, wind) for a set of stations or on a regular grid. As even the latest Global and Regional Climate Models (GCMs and RCMs) do not provide realistic representation of statistical structure of the surface weather, the model outputs must be postprocessed (downscaled) to achieve the desired statistical structure of the weather data before being used as an input to the follow-up simulation models. One of the downscaling approaches, which is employed also here, is based on a weather generator (WG), which is calibrated using the observed weather series and then modified (in case of simulations for the future climate) according to the GCM- or RCM-based climate change scenarios. The present contribution uses the parametric daily weather generator M&Rfi to follow two aims: (1) Validation of the new simulations of the present climate (1961-1990) made by the ALADIN-Climate/CZ (v.2) Regional Climate Model at 25 km resolution. The WG parameters will be derived from the RCM-simulated surface weather series and compared to those derived from observational data in the Czech meteorological stations. The set of WG parameters will include selected statistics of the surface temperature and precipitation (characteristics of the mean, variability, interdiurnal variability and extremes). (2) Testing a potential of RCM output for calibration of the WG for the ungauged locations. The methodology being examined will consist in using the WG, whose parameters are interpolated from the surrounding stations and then corrected based on a RCM-simulated spatial variability. The quality of the weather series produced by the WG calibrated in this way will be assessed in terms of selected climatic characteristics focusing on extreme precipitation and temperature characteristics (including characteristics of dry/wet/hot/cold spells). Acknowledgements: The present experiment is made within the frame of projects ALARO (project P209/11/2405 sponsored by the Czech Science Foundation), WG4VALUE (project LD12029 sponsored by the Ministry of Education, Youth and Sports) and VALUE (COST ES 1102 action).

  5. NASA Space Weather Center Services: Potential for Space Weather Research

    NASA Technical Reports Server (NTRS)

    Zheng, Yihua; Kuznetsova, Masha; Pulkkinen, Antti; Taktakishvili, A.; Mays, M. L.; Chulaki, A.; Lee, H.; Hesse, M.

    2012-01-01

    The NASA Space Weather Center's primary objective is to provide the latest space weather information and forecasting for NASA's robotic missions and its partners and to bring space weather knowledge to the public. At the same time, the tools and services it possesses can be invaluable for research purposes. Here we show how our archive and real-time modeling of space weather events can aid research in a variety of ways, with different classification criteria. We will list and discuss major CME events, major geomagnetic storms, and major SEP events that occurred during the years 2010 - 2012. Highlights of major tools/resources will be provided.

  6. Solar weather monitoring

    NASA Astrophysics Data System (ADS)

    Hochedez, J.-F.; Zhukov, A.; Robbrecht, E.; van der Linden, R.; Berghmans, D.; Vanlommel, P.; Theissen, A.; Clette, F.

    2005-11-01

    Space Weather nowcasting and forecasting require solar observations because geoeffective disturbances can arise from three types of solar phenomena: coronal mass ejections (CMEs), flares and coronal holes. For each, we discuss their definition and review their precursors in terms of remote sensing and in-situ observations. The objectives of Space Weather require some specific instrumental features, which we list using the experience gained from the daily operations of the Solar Influences Data analysis Centre (SIDC) at the Royal Observatory of Belgium. Nowcasting requires real-time monitoring to assess quickly and reliably the severity of any potentially geoeffective solar event. Both research and forecasting could incorporate more observations in order to feed case studies and data assimilation respectively. Numerical models will result in better predictions of geomagnetic storms and solar energetic particle (SEP) events. We review the data types available to monitor solar activity and interplanetary conditions. They come from space missions and ground observatories and range from sequences of dopplergrams, magnetograms, white-light, chromospheric, coronal, coronagraphic and radio images, to irradiance and in-situ time-series. Their role is summarized together with indications about current and future solar monitoring instruments.

  7. Weathering of rock 'Ginger'

    NASA Technical Reports Server (NTRS)

    1997-01-01

    One of the more unusual rocks at the site is Ginger, located southeast of the lander. Parts of it have the reddest color of any material in view, whereas its rounded lobes are gray and relatively unweathered. These color differences are brought out in the inset, enhanced at the upper right. In the false color image at the lower right, the shape of the visible-wavelength spectrum (related to the abundance of weathered ferric iron minerals) is indicated by the hue of the rocks. Blue indicates relatively unweathered rocks. Typical soils and drift, which are heavily weathered, are shown in green and flesh tones. The very red color in the creases in the rock surface correspond to a crust of ferric minerals. The origin of the rock is uncertain; the ferric crust may have grown underneath the rock, or it may cement pebbles together into a conglomerate. Ginger will be a target of future super-resolution studies to better constrain its origin.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator. JPL is an operating division of the California Institute of Technology (Caltech).

  8. Weatherization Apprenticeship Program

    SciTech Connect

    Watson, Eric J

    2012-12-18

    Weatherization improvement services will be provided to Native people by Native people. The proposed project will recruit, train and hire two full-time weatherization technicians who will improve the energy efficiency of homes of Alaska Natives/American Indians residing in the Indian areas, within the Cook Inlet Region of Alaska. The Region includes Anchorage as well as 8 small tribal villages: The Native Villages of Eklutna, Knik, Chickaloon, Seldovia, Ninilchik, Kenaitze, Salamatof, and Tyonek. This project will be a partnership between three entities, with Cook Inlet Tribal Council (CITC) as the lead agency: CITCA's Employment and Training Services Department, Cook Inlet Housing Authority and Alaska Works Partnership. Additionally, six of the eight tribal villages within the Cook Inlet Region of Alaska have agreed to work with the project in order to improve the energy efficiency of their tribally owned buildings and homes. The remaining three villages will be invited to participate in the establishment of an intertribal consortium through this project. Tribal homes and buildings within Anchorage fall under Cook Inlet Region, Inc. (CIRI) tribal authority.

  9. Vodcasting Space Weather

    NASA Astrophysics Data System (ADS)

    Collins Petersen, Carolyn; Erickson, P. J.; Needles, M.

    2009-01-01

    The topic of space weather is the subject of a series of vodcasts (video podcasts) produced by MIT Haystack Observatory (Westford, MA) and Loch Ness Productions (Groton, MA). This paper discusses the production and distribution of the series via Webcast, Youtube, and other avenues. It also presents preliminary evaluation of the effectiveness and outreach of the project through feedback from both formal and information education venues. The vodcast series is linked to the NASA Living With a Star Targeted Research and Technology project award "Multi-Instrument Investigation of Inner-Magnetospheric/Ionosphere Disturbances.” It is being carried out by Principal Investigator Dr. John Foster, under the auspices of NASA Grant # NNX06AB86G. The research involves using ionospheric total electron content (TEC) observations to study the location, extent, and duration of perturbations within stormtime ionospheric electric fields at mid- to low latitudes. It combines ground-based global positioning system (GPS) TEC data, incoherent scatter radar measurements of the mid-latitude ionospheric state, and DMSP satellite observations to characterize conditions which lead to severe low-latitude ionospheric perturbations. Each vodcast episode covers a certain aspect of space weather and the research program.

  10. Atmosphere, Weather, and Climate

    NASA Astrophysics Data System (ADS)

    Houghton, J. T.

    The fourth edition of this book, first published in 1968, is to be welcomed. It is widely used in geography courses in schools and universities and has had considerable success in introducing, with the minimum of mathematics, synoptic and dynamic meterology and climatology into such courses. Its chapters cover atmospheric composition and energy, atmospheric moisture, atmospheric motion, air masses, fronts and depressions, weather and climate in temperate latitudes, tropical weather and climate, small scale climates and climatic variability, trends and fluctuations.The main changes in the fourth edition have been in the last two chapters, which have been substantially rewritten. The chapter on small-scale climates goes into considerable detail concerning the energy balance over different surfaces and also discusses the influence of pollution and urban conditions on the local climate. The first chapter on climate variability and change first presents evidence for climate change in the past and then briefly mentions, with virtually no discussion, a few possible causes of climate change. The possible influence of the ocean, for instance, is given only four sentences!

  11. Wireless Damage Location Sensing System

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant Douglas (Inventor)

    2012-01-01

    A wireless damage location sensing system uses a geometric-patterned wireless sensor that resonates in the presence of a time-varying magnetic field to generate a harmonic response that will experience a change when the sensor experiences a change in its geometric pattern. The sensing system also includes a magnetic field response recorder for wirelessly transmitting the time-varying magnetic field and for wirelessly detecting the harmonic response. The sensing system compares the actual harmonic response to a plurality of predetermined harmonic responses. Each predetermined harmonic response is associated with a severing of the sensor at a corresponding known location thereof so that a match between the actual harmonic response and one of the predetermined harmonic responses defines the known location of the severing that is associated therewith.

  12. Wireless Roadside Inspection Proof of Concept Test Final Report

    SciTech Connect

    Capps, Gary J; Franzese, Oscar; Knee, Helmut E; Plate, Randall S; Lascurain, Mary Beth

    2009-03-01

    The U.S. Department of Transportation (DOT) FMCSA commissioned the Wireless Roadside Inspection (WRI) Program to validate technologies and methodologies that can improve safety through inspections using wireless technologies that convey real-time identification of commercial vehicles, drivers, and carriers, as well as information about the condition of the vehicles and their drivers. It is hypothesized that these inspections will: -- Increase safety -- Decrease the number of unsafe commercial vehicles on the road; -- Increase efficiency -- Speed up the inspection process, enabling more inspections to occur, at least on par with the number of weight inspections; -- Improve effectiveness -- Reduce the probability of drivers bypassing CMV inspection stations and increase the likelihood that fleets will attempt to meet the safety regulations; and -- Benefit industry -- Reduce fleet costs, provide good return-on-investment, minimize wait times, and level the playing field. The WRI Program is defined in three phases which are: Phase 1: Proof of Concept Test (POC) Testing of commercially available off-the-shelf (COTS) or near-COTS technology to validate the wireless inspection concept. Phase 2: Pilot Test Safety technology maturation and back office system integration Phase 3: Field Operational Test Multi-vehicle testing over a multi-state instrumented corridor This report focuses on Phase 1 efforts that were initiated in March, 2006. Technical efforts dealt with the ability of a Universal Wireless Inspection System (UWIS) to collect driver, vehicle, and carrier information; format a Safety Data Message Set from this information; and wirelessly transmit a Safety Data Message Set to a roadside receiver unit or mobile enforcement vehicle.

  13. Wireless Josephson Junction Arrays

    NASA Astrophysics Data System (ADS)

    Adams, Laura

    2015-03-01

    We report low temperature, microwave transmission measurements on a wireless two- dimensional network of Josephson junction arrays composed of superconductor-insulator -superconductor tunnel junctions. Unlike their biased counterparts, by removing all electrical contacts to the arrays and superfluous microwave components and interconnects in the transmission line, we observe new collective behavior in the transmission spectra. In particular we will show emergent behavior that systematically responds to changes in microwave power at fixed temperature. Likewise we will show the dynamic and collective response of the arrays while tuning the temperature at fixed microwave power. We discuss these spectra in terms of the Berezinskii-Kosterlitz-Thouless phase transition and Shapiro steps. We gratefully acknowledge the support Prof. Steven Anlage at the University of Maryland and Prof. Allen Goldman at the University of Minnesota. Physics and School of Engineering and Applied Sciences.

  14. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  15. Wireless power transfer system

    DOEpatents

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  16. Wireless Infrared Data Link

    NASA Technical Reports Server (NTRS)

    Roth, Timothy E.

    1995-01-01

    Infrared transmitter and receiver designed for wireless transmission of information on measured physical quantity (for example, temperature) from transducer device to remote-acquisition system. In transmitter, output of transducer amplified and shifted with respect to bias or reference level, then fed to voltage-to-frequency converter to control frequency of repetition of current pulses applied to infrared-light-emitting diode. In receiver, frequency of repetition of pulses converted back into voltage indicative of temperature or other measured quantity. Potential applications include logging data while drilling for oil, transmitting measurements from rotors in machines without using slip rings, remote monitoring of temperatures and pressures in hazardous locations, and remote continuous monitoring of temperatures and blood pressures in medical patients, who thus remain mobile.

  17. Wireless Josephson amplifier

    NASA Astrophysics Data System (ADS)

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-01

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9-11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  18. WIRELESS MINE WIDE TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect

    Zvi H. Meiksin

    2002-04-01

    Two industrial prototype units for through-the-earth wireless communication were constructed and tested. Preparation for a temporary installation in NIOSH's Lake Lynn mine for the through-the-earth and the in-mine system were completed. Progress was made in the programming of the in-mine system to provide data communication. Work has begun to implement a wireless interface between equipment controllers and our in-mine system.

  19. Weather forecasting expert system study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Weather forecasting is critical to both the Space Transportation System (STS) ground operations and the launch/landing activities at NASA Kennedy Space Center (KSC). The current launch frequency places significant demands on the USAF weather forecasters at the Cape Canaveral Forecasting Facility (CCFF), who currently provide the weather forecasting for all STS operations. As launch frequency increases, KSC's weather forecasting problems will be great magnified. The single most important problem is the shortage of highly skilled forecasting personnel. The development of forecasting expertise is difficult and requires several years of experience. Frequent personnel changes within the forecasting staff jeopardize the accumulation and retention of experience-based weather forecasting expertise. The primary purpose of this project was to assess the feasibility of using Artificial Intelligence (AI) techniques to ameliorate this shortage of experts by capturing aria incorporating the forecasting knowledge of current expert forecasters into a Weather Forecasting Expert System (WFES) which would then be made available to less experienced duty forecasters.

  20. Weather Forecasting Systems and Methods

    NASA Technical Reports Server (NTRS)

    Mecikalski, John (Inventor); MacKenzie, Wayne M., Jr. (Inventor); Walker, John Robert (Inventor)

    2014-01-01

    A weather forecasting system has weather forecasting logic that receives raw image data from a satellite. The raw image data has values indicative of light and radiance data from the Earth as measured by the satellite, and the weather forecasting logic processes such data to identify cumulus clouds within the satellite images. For each identified cumulus cloud, the weather forecasting logic applies interest field tests to determine a score indicating the likelihood of the cumulus cloud forming precipitation and/or lightning in the future within a certain time period. Based on such scores, the weather forecasting logic predicts in which geographic regions the identified cumulus clouds will produce precipitation and/or lighting within during the time period. Such predictions may then be used to provide a weather map thereby providing users with a graphical illustration of the areas predicted to be affected by precipitation within the time period.

  1. The Origin of "Space Weather"

    NASA Astrophysics Data System (ADS)

    Cade, William B.; Chan-Park, Christina

    2015-02-01

    Although "space weather" is a fairly recent term, there is a rich history of similar terms being used beginning in the middle to late 1800s. "Solar meteorology," "magnetic weather," and "cosmic meteorology" all appeared during that time frame. The actual first appearance of space weather can be attributed to the publication Science News Letter in 1957 (with the first modern usage in 1959) and was possibly coined by the editor at the time, Watson Davis.

  2. Wireless Instrumentation Use on Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Sherman, Aaron

    2010-01-01

    This slide presentation reviews the results of a study on the use of wireless instrumentation and sensors on future launch vehicles. The use of wireless technologies would if feasible would allow for fewer wires, and allow for more flexibility. However, it was generally concluded that wireless solutions are not currently ready to replace wired technologies for launch vehicles. The recommendations of the study were to continue to use wired sensors as the primary choice for vehicle instrumentation, and to continue to assess needs and use wireless instrumentation where appropriate. The future work includes support efforts for wireless technologies, and continue to monitor the development of wireless solutions.

  3. VoIP Session Capacity Expansion with Packet Transmission Suppression Control in Wireless LAN

    NASA Astrophysics Data System (ADS)

    Morioka, Yasufumi; Higashino, Takeshi; Tsukamoto, Katsutoshi; Komaki, Shozo

    This paper proposes a VoIP (Voice over Internet Protocol) session capacity expansion method that uses periodic packet transmission suppression control for wireless LANs. The proposed method expands the VoIP session capacity of an AP without critically degrading the QoS (Quality of Service) of all stations. Simulation results show the proposed method with 0.5% packet suppression control on each station expands a VoIP session capacity by up to 5% compared to a legacy method while satisfying required QoS for all stations.

  4. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2003-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  5. Space Weathering: An Ultraviolet Indicator

    NASA Technical Reports Server (NTRS)

    Hendrix, A. R.; Vilas, F.

    2004-01-01

    We present evidence suggesting that the spectral slope of airless bodies in the UV-visible wavelength range can be used as an indicator of exposure to space weathering. While space weathering generally produces a reddening of spectra in the visible-NIR spectral regions, it tends to result in a bluing of the UV-visible portion of the spectrum, and may in some cases produce a spectral reversal. The bluing effect may be detectable with smaller amounts of weathering than are necessary to detect the longer-wavelength weathering effects.

  6. Bishop Paiute Weatherization Training Program

    SciTech Connect

    Carlos Hernandez

    2010-01-28

    The DOE Weatherization Training Grant assisted Native American trainees in developing weatherization competencies, creating employment opportunities for Bishop Paiute tribal members in a growing field. The trainees completed all the necessary training and certification requirements and delivered high-quality weatherization services on the Bishop Paiute Reservation. Six tribal members received all three certifications for weatherization; four of the trainees are currently employed. The public benefit includes (1) development of marketable skills by low-income Native individuals, (2) employment for low-income Native individuals in a growing industry, and (3) economic development opportunities that were previously not available to these individuals or the Tribe.

  7. AWE: Aviation Weather Data Visualization

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Lodha, Suresh K.

    2001-01-01

    The two official sources for aviation weather reports both require the pilot to mentally visualize the provided information. In contrast, our system, Aviation Weather Environment (AWE) presents aviation specific weather available to pilots in an easy to visualize form. We start with a computer-generated textual briefing for a specific area. We map this briefing onto a grid specific to the pilot's route that includes only information relevant to his flight route that includes only information relevant to his flight as defined by route, altitude, true airspeed, and proposed departure time. By modifying various parameters, the pilot can use AWE as a planning tool as well as a weather briefing tool.

  8. Recent Applications of Space Weather Research to NASA Space Missions

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Howard, James W., Jr.; Miller, J. Scott; Minow, Joseph I.; NeergardParker, L.; Suggs, Robert M.

    2013-01-01

    Marshall Space Flight Center s Space Environments Team is committed to applying the latest research in space weather to NASA programs. We analyze data from an extensive set of space weather satellites in order to define the space environments for some of NASA s highest profile programs. Our goal is to ensure that spacecraft are designed to be successful in all environments encountered during their missions. We also collaborate with universities, industry, and other federal agencies to provide analysis of anomalies and operational impacts to current missions. This presentation is a summary of some of our most recent applications of space weather data, including the definition of the space environments for the initial phases of the Space Launch System (SLS), acquisition of International Space Station (ISS) frame potential variations during geomagnetic storms, and Nascap-2K charging analyses.

  9. The Radiation Belt Storm Probes (RBSP) and Space Weather

    NASA Astrophysics Data System (ADS)

    Kessel, R. L.; Fox, N. J.; Weiss, M.

    2013-11-01

    Following the launch and commissioning of NASA's Radiation Belt Storm Probes (RBSP) in 2012, space weather data will be generated and broadcast from the spacecraft in near real-time. The RBSP mission targets one part of the space weather chain: the very high energy electrons and ions magnetically trapped within Earth's radiation belts. The understanding gained by RBSP will enable us to better predict the response of the radiation belts to solar storms in the future, and thereby protect space assets in the near-Earth environment. This chapter details the presently planned RBSP capabilities for generating and broadcasting near real-time space weather data, discusses the data products, the ground stations collecting the data, and the users/models that will incorporate the data into test-beds for radiation belt nowcasting and forecasting.

  10. Deregulation and Station Trafficking.

    ERIC Educational Resources Information Center

    Bates, Benjamin J.

    To test whether the revocation of the Federal Communications Commission's "Anti-Trafficking" rule (requiring television station owners to keep a station for three years before transferring its license to another party) impacted station owner behavior, a study compared the behavior of television station "traffickers" (owners seeking quick turnovers…

  11. Intelligent Weather Agent

    NASA Technical Reports Server (NTRS)

    Spirkovska, Liljana (Inventor)

    2006-01-01

    Method and system for automatically displaying, visually and/or audibly and/or by an audible alarm signal, relevant weather data for an identified aircraft pilot, when each of a selected subset of measured or estimated aviation situation parameters, corresponding to a given aviation situation, has a value lying in a selected range. Each range for a particular pilot may be a default range, may be entered by the pilot and/or may be automatically determined from experience and may be subsequently edited by the pilot to change a range and to add or delete parameters describing a situation for which a display should be provided. The pilot can also verbally activate an audible display or visual display of selected information by verbal entry of a first command or a second command, respectively, that specifies the information required.

  12. Supporting Weather Data

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Since its founding in 1992, Global Science & Technology, Inc. (GST), of Greenbelt, Maryland, has been developing technologies and providing services in support of NASA scientific research. GST specialties include scientific analysis, science data and information systems, data visualization, communications, networking and Web technologies, computer science, and software system engineering. As a longtime contractor to Goddard Space Flight Center s Earth Science Directorate, GST scientific, engineering, and information technology staff have extensive qualifications with the synthesis of satellite, in situ, and Earth science data for weather- and climate-related projects. GST s experience in this arena is end-to-end, from building satellite ground receiving systems and science data systems, to product generation and research and analysis.

  13. Space Station Spartan study

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Schulman, J. R.; Neupert, W. M.

    1985-01-01

    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

  14. Terminal weather information management

    NASA Technical Reports Server (NTRS)

    Lee, Alfred T.

    1990-01-01

    Since the mid-1960's, microburst/windshear events have caused at least 30 aircraft accidents and incidents and have killed more than 600 people in the United States alone. This study evaluated alternative means of alerting an airline crew to the presence of microburst/windshear events in the terminal area. Of particular interest was the relative effectiveness of conventional and data link ground-to-air transmissions of ground-based radar and low-level windshear sensing information on microburst/windshear avoidance. The Advanced Concepts Flight Simulator located at Ames Research Center was employed in a line oriented simulation of a scheduled round-trip airline flight from Salt Lake City to Denver Stapleton Airport. Actual weather en route and in the terminal area was simulated using recorded data. The microburst/windshear incident of July 11, 1988 was re-created for the Denver area operations. Six experienced airline crews currently flying scheduled routes were employed as test subjects for each of three groups: (1) A baseline group which received alerts via conventional air traffic control (ATC) tower transmissions; (2) An experimental group which received alerts/events displayed visually and aurally in the cockpit six miles (approx. 2 min.) from the microburst event; and (3) An additional experimental group received displayed alerts/events 23 linear miles (approx. 7 min.) from the microburst event. Analyses of crew communications and decision times showed a marked improvement in both situation awareness and decision-making with visually displayed ground-based radar information. Substantial reductions in the variability of decision times among crews in the visual display groups were also found. These findings suggest that crew performance will be enhanced and individual differences among crews due to differences in training and prior experience are significantly reduced by providing real-time, graphic display of terminal weather hazards.

  15. A case study of weather forecast methodology defined by students

    NASA Astrophysics Data System (ADS)

    Massetti, L.; Macario, M.; Bini, F.; Ugolini, F.; Marandola, D.; Lanini, M.; Raschi, A.

    2009-09-01

    One of the main priority for our future society is to increase the interest of young people in science and technology. The cooperation between researchers, who produce scientific knowledge, and teachers, who disseminate it among students, is an effective method to reach this goal. In fact Science dissemination at school, overseen by researchers, can be of mutual benefit because scientists can improve their communication skills and convey their enthusiasm for scientific research. The Institute of Biometeorology has been working on science dissemination for many years in many different topics like meteorology, carbon dioxide fluxes and greenhouse effect and phenology, relying mainly on practical experiences made by the students under the supervision of researchers. This presentation reports of some experimental activities on Meteorology done in Liceo Scientifico of Prato Italy. The aim of the activity was to define a methodology of weather forecasting based on clouds observation. At first the researchers present and discuss with the students the meaning and graphic representation of some meteorological parameters and the methodology to identify clouds type and characteristic. An automatic weather station was set up on the roof of the school and students practiced how to download data from the weather station. At the same time they carried on daily observation of presence and types of clouds in the sky. Then they analyzed meteorological data and particularly atmospheric pressure and air humidity and defined their own methodology to do forecast. Finally they validated their results by comparing them with the meteorological maps of the regional weather service.

  16. Infrasonic Monitoring of Eruptions at Tungurahua Volcano, Ecuador using a Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Werner-Allen, G.; Johnson, J.; Ruiz, M.; Lees, J. M.; Welsh, M.

    2004-12-01

    Wireless sensor networks, consisting of small, low-power devices integrating a modest amount of CPU, memory, and wireless communication, could play an important role in volcanic monitoring applications. Wireless sensor nodes have lower power requirements, are easier to deploy, can can support a larger number of sensors distributed over a wider area than wired arrays currently used in many campaign studies. Using long-distance wireless links, data could be monitored in real time, avoiding the need for manual data collection from remote stations. We developed and deployed a wireless infrasonic sensor array at Volcán Tungurahua, Ecuador, in July 2004. This network consisted of three wireless sensor nodes that digitized infrasonic signals, transmitting data to a remote base station. The sensors are based on the Mica2 mote platform, which integrates a 7.3 MHz Atmel Atmega128L embedded controller with 4 KB of RAM and 128 KB of ROM. The Mica2 uses a low-power, single-chip radio, the Chipcon CC1000, capable of transmitting data at 22.5 kbps with an outdoor range of approximately 100 m. The node measures 5.7 cm x 3.2 cm x 2.2 cm and is operated on 2 AA batteries, with a lifetime of about 157 hours without duty-cycling the radio or CPU. These nodes run a specialized operating system called TinyOS that is specifically designed for wireless embedded devices. Each sensor node sampled infrasonic signals continuously at 102 Hz, transmitting data over a short-range radio link to a local aggregator node. The aggregator relayed the data over a 9 km wireless link to a laptop station at the volcano observatory, using a pair of spread-spectrum FreeWave modems and 9 dBi Yagi antennas. Nodes were time-synchronized using a separate GPS receiver that transmitted periodic timestamp messages, allowing our data to be later correlated with signals acquired at a nearby wired seismoacoustic sensor array. During the deployment, we collected over 54 hours of continuous data which included at least 9 verified explosions. In addition to continuous sampling, we have developed a distributed event detector that automatically triggers data transmission when a well-correlated signal is received by multiple nodes. This approach greatly reduces radio bandwidth and energy consumption, and we plan to deploy this new system as part of a larger wireless sensor array in the near future.

  17. Low Power Wireless Smoke Alarm System in Home Fires

    PubMed Central

    Luis, Juan Aponte; Galán, Juan Antonio Gómez; Espigado, Javier Alcina

    2015-01-01

    A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects. PMID:26307994

  18. Low Power Wireless Smoke Alarm System in Home Fires.

    PubMed

    Aponte Luis, Juan; Gómez Galán, Juan Antonio; Alcina Espigado, Javier

    2015-01-01

    A novel sensing device for fire detection in domestic environments is presented. The fire detector uses a combination of several sensors that not only detect smoke, but discriminate between different types of smoke. This feature avoids false alarms and warns of different situations. Power consumption is optimized both in terms of hardware and software, providing a high degree of autonomy of almost five years. Data gathered from the device are transmitted through a wireless communication to a base station. The low cost and compact design provides wide application prospects. PMID:26307994

  19. Wireless pilot monitoring system for extreme race conditions.

    PubMed

    Pino, Esteban J; Arias, Diego E; Aqueveque, Pablo; Melin, Pedro; Curtis, Dorothy W

    2012-01-01

    This paper presents the design and implementation of an assistive device to monitor car drivers under extreme conditions. In particular, this system is designed in preparation for the 2012 Atacama Solar Challenge to be held in the Chilean desert. Actual preliminary results show the feasibility of such a project including physiological and ambient sensors, real-time processing algorithms, wireless data transmission and a remote monitoring station. Implementation details and field results are shown along with a discussion of the main problems found in real-life telemetry monitoring. PMID:23367054

  20. Using Forecasting to Teach Weather Science

    NASA Astrophysics Data System (ADS)

    Tsubota, Y.; Takahashi, T.

    2009-09-01

    Weather affects our lives and hence, is a popular topic in daily conversations and in the media. Therefore, it is not only important to teach weather, but is also a good idea to use 'weather' as a topic in science teaching. Science education has two main objectives: to acquire scientific concepts and methods. Weather forecasting is an adequate theme to teach scientific methods because it is dependent on observation. However, it is not easy to forecast weather using only temporal observation. We need to know the tendency of 'weather change' via consecutive and/or continuous weather observation. Students will acquire scientific-observation skills through weather observation. Data-processing skills would be enhanced through a weather-forecasting contest. A contest should be announced within 5 days of school events, such as a school excursion and field day. Students submit their own weather forecast by gathering weather information through the internet, news paper and so on. A weather-forecasting contest compels the student to observe the weather more often. We currently have some different weather forecasts. For example, American weather-related companies such as ACCU weather and Weather Channel provide weather forecast for the many locations all over the world. Comparing these weather forecasting with actual weather, participants such as students could evaluate the differences between forecasted and actual temperatures. Participants will judge the best weather forecast based on the magnitude of the difference. Also, participants evaluate the 'hitting ratio' of each weather forecast. Students can learn elementary statistics by comparing various weather forecasts. We have developed our weather web-site that provides our own weather forecasting and observation. Students acquire science skills using our weather web-site. We will report our lessen plans and explain our weather web-site.

  1. Wireless Power Transmission Technology Development and Demonstrations

    NASA Astrophysics Data System (ADS)

    Steinsiek, F.; Weber, K.-H.; Foth, W.-P.; Foth, H. J.; Schäfer, C.

    2004-12-01

    The Wireless Power Transmission (WPT) technology has been treated to a wide extent in the recent years. A broad variety of applications has been investigated, from earth to orbit, orbit to earth, in-orbit and planetary ones, as for moon and Mars missions. In this course the question to use laser or microwave technology has widely been discussed. Beaming energy to spacecrafts could provide an important space mission-economic potential. It promises significant reduction in the cost of access to space, for scientific and commercial missions, and increases the mission capabilities for in-space systems. For the future enhancement of ISS capabilities and operational efficiency, the use of WPT technology became part of the technology research planning for the ISS. The WPT may have the potential of providing operational benefits, increase of spacecraft systems efficiency for elements like co-orbiting platforms, transfer vehicles or other ISS related in-orbit spacecrafts, and planetary exploration vehicles. The laser technology provides specific technical, operational and economic benefits compared to microwave applications and provides the actual basis for the envisioned wireless power transmission concepts. An outlook in terms of future wireless power perspectives, both for terrestrial as for space-to-space scenarios is given; these applications are part of a technology demonstration roadmap for wireless power transmission key- and supporting technologies, which is characterized by dedicated technology demonstration milestones on ground and in space. The actual technology development philosophy as conceived at EADS-Space Transportation is described and includes main system demonstration missions, as a laboratory test bed employing a small rover system, a scaled airship model demonstration as planned in 2004 and an experiment onboard the International Space Station ISS. These demonstrations represent milestones in terms of technical capability verification on the way to solar power platforms in space, as an actual Solar Power Platform Design Concept in the 400 kW range for GEO including the receiver side on ground. Special attention is given to the fact, that technological spin-offs out of the Solar Power Platforms development are an essential aspect of the activities. The application of the suitable type of laser systems for future solar power concepts in space will be discussed, based on recent investigations in the frame of the EADS technology development work. The experimental application of a laser system for power transmission to a moveable and steerable target, a small rover, is addressed also and the demonstration philosophy and experimental set-up are detailed. The ground test objectives, the definition, design and performance of a "Wireless Power Transmission" system and the demonstration of the basic principles of power transmission and target acquisition, pointing and tracking are covered. The lessons learned and consequences for a continuation of this type of demonstration are outlined.

  2. Application of a meteorological wireless sensor network to a small alpine watershed

    NASA Astrophysics Data System (ADS)

    Mutzner, R.; Barrenetxea, G.; Weijs, S. V.; Simoni, S.; Vetterli, M.; Parlange, M. B.

    2012-04-01

    Since 2008, an alpine watershed in the Swiss Alps is heavily monitored with a network of wireless meteorological stations. The study area is located along the southernmost ridge that borders Italy, covering a total surface of 20.4 km2 with altitude ranges from 1775 m at the outlet to 3206 m above sea level. The area is characterized by steep and complex terrain. The wireless network relies on Sensorscope technology and consists of a self-organized multi-hop system of master and slave stations. The data is transmitted to a local server through the GPRS network and then displayed on a Google Maps-based Web interface, allowing easier maintenance of the sensors. The stations are appropriate to deployment in complex terrain like mountains since they are autonomous, relatively robust, light and easy to deploy. Each station measures precipitation, solar radiation, air temperature and humidity, skin temperature, wind speed and direction, soil temperature and humidity, soil matrix potential and snow height during winter. During the summer 2011 campaign, 26 stations were deployed over the watershed, covering a large part of the total area. The stations were installed on the most representative sites with respect to slope, aspect and elevation. Two stations were used at gauging sites with water level monitoring. The applications of the station network are manifold. Among others, the collected data is used as forcing parameters in distributed hydrological models and also for assessing the impact of the spatial and temporal heterogeneity of meteorological variables such as near-surface air temperature and precipitation over a complex terrain. We present some results from the previous summer campaigns, sharing experiences and challenges on the use of a wireless network in a complex environment.

  3. Telemedical experiences at an Antarctic station.

    PubMed

    Hyer, R N

    1999-01-01

    Wintering-over in Antarctica represents a physician's most remote and inaccessible scenario, apart from a space station. Because of the harsh and unpredictable winter weather, Antarctic stations are typically inaccessible for over six months of the year. Telephone and fax communication, and recently other forms of telemedicine, have provided vital links to specialists. The author was the sole physician for more than 250 people wintering-over during the 1995 austral winter at McMurdo Station. There were several instances of serious or life-threatening illness where the author relied on teleconsultation. These cases included new-onset coronary artery disease, posterior hip dislocation, complicated Colles' fracture and acute appendicitis. There were also numerous consultations for non-emergency clinical presentations normally managed by specialists. Telemedicine was a crucial link to specialists from the remote and inaccessible environment of Antarctica. PMID:10534856

  4. Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture

    DOEpatents

    Steele, Kerry D [Kennewick, WA; Anderson, Gordon A [Benton City, WA; Gilbert, Ronald W [Morgan Hill, CA

    2011-02-01

    Communications device identification methods, communications methods, wireless communications readers, wireless communications systems, and articles of manufacture are described. In one aspect, a communications device identification method includes providing identification information regarding a group of wireless identification devices within a wireless communications range of a reader, using the provided identification information, selecting one of a plurality of different search procedures for identifying unidentified ones of the wireless identification devices within the wireless communications range, and identifying at least some of the unidentified ones of the wireless identification devices using the selected one of the search procedures.

  5. Weather to Make a Decision

    ERIC Educational Resources Information Center

    Hoyle, Julie E.; Mjelde, James W.; Litzenberg, Kerry K.

    2006-01-01

    DECIDE is a teacher-friendly, integrated approach designed to stimulate learning by allowing students to make decisions about situations they face in their lives while using scientific weather principles. This learning unit integrates weather science, decision theory, mathematics, statistics, geography, and reading in a context of decision…

  6. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite

  7. The pioneers of weather forecasting

    NASA Astrophysics Data System (ADS)

    Ballard, Susan

    2016-01-01

    In The Weather Experiment author Peter Moore takes us on a compelling journey through the early history of weather forecasting, bringing to life the personalities, lives and achievements of the men who put in place the building blocks required for forecasts to be possible.

  8. Weather Fundamentals: Hurricanes & Tornadoes. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) features information on the deadliest and most destructive storms on Earth. Through satellite…

  9. Weather Fundamentals: Rain & Snow. [Videotape].

    ERIC Educational Resources Information Center

    1998

    The videos in this educational series, for grades 4-7, help students understand the science behind weather phenomena through dramatic live-action footage, vivid animated graphics, detailed weather maps, and hands-on experiments. This episode (23 minutes) gives concise explanations of the various types of precipitation and describes how the water…

  10. Aviation Weather Information Requirements Study

    NASA Technical Reports Server (NTRS)

    Keel, Byron M.; Stancil, Charles E.; Eckert, Clifford A.; Brown, Susan M.; Gimmestad, Gary G.; Richards, Mark A.; Schaffner, Philip R. (Technical Monitor)

    2000-01-01

    The Aviation Safety Program (AvSP) has as its goal an improvement in aviation safety by a factor of 5 over the next 10 years and a factor of 10 over the next 20 years. Since weather has a big impact on aviation safety and is associated with 30% of all aviation accidents, Weather Accident Prevention (WxAP) is a major element under this program. The Aviation Weather Information (AWIN) Distribution and Presentation project is one of three projects under this element. This report contains the findings of a study conducted by the Georgia Tech Research Institute (GTRI) under the Enhanced Weather Products effort, which is a task under AWIN. The study examines current aviation weather products and there application. The study goes on to identify deficiencies in the current system and to define requirements for aviation weather products that would lead to an increase in safety. The study also provides an overview the current set of sensors applied to the collection of aviation weather information. New, modified, or fused sensor systems are identified which could be applied in improving the current set of weather products and in addressing the deficiencies defined in the report. In addition, the study addresses and recommends possible sensors for inclusion in an electronic pilot reporting (EPIREP) system.

  11. Space weather: science and effects

    NASA Astrophysics Data System (ADS)

    Crosby, Norma B.

    2009-03-01

    From the point-of-view of somebody standing outside on a cold winter night looking up at a clear cloudless sky, the space environment seems to be of a peaceful and stable nature. Instead, the opposite is found to be true. In fact the space environment is very dynamic on all spatial and temporal scales, and in some circumstances may have unexpected and hazardous effects on technology and humans both in space and on Earth. In fact the space environment seems to have a weather all of its own - its own “space weather”. Our Sun is definitely the driver of our local space weather. Space weather is an interdisciplinary subject covering a vast number of technological, scientific, economic and environmental issues. It is an application-oriented discipline which addresses the needs of “space weather product” users. It can be truly said that space weather affects everybody, either directly or indirectly. The aim of this paper is to give an overview of what space weather encompasses, emphasizing how solar-terrestrial physics is applied to space weather. Examples of “space weather product” users will be given highlighting those products that we as a civilization are most dependent on.

  12. Regional-seasonal weather forecasting

    SciTech Connect

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  13. Weathering instability and landscape evolution

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2005-04-01

    The argument in this paper is that the fundamental control on landscape evolution in erosional landscapes is weathering. The possibility of and evidence for instability in weathering at four scales is examined. The four scales are concerned with weathering processes, allocation of weathered products, the interrelations of weathering and denudation, and the topographic and isostatic responses to weathering-limited denudation (the regolith, hillslope, landscape unit, and landscape scales, respectively). The stability conditions for each model, and the circumstances under which the models themselves are relevant, are used to identify scale-related domains of stability and instability. At the regolith scale, the interactions among weathering rates, resistance, and moisture are unstable, but there are circumstancesover long timescales and where weathering is well advancedunder which the instability is irrelevant. At the hillslope scale, the system is stable when denudation is transport rather than weathering limited and where no renewal of exposure via regolith stripping occurs. At the level of landscape units, the stability model is based entirely on the mutual reinforcements of weathering and erosion. While this should generally lead to instability, the model would be stable where other, external controls of both weathering and erosion rates are stronger than the weathering-erosion feedbacks. At the broadest landscape scale, the inclusion of isostatic responses destabilizes erosion-topography-uplift relationships. Thus, if the spatial or temporal scale is such that isostatic responses are not relevant, the system may be stable. Essentially, instability is prevalent at local spatial scales at all but the longest timescales. Stability at intermediate spatial scales is contingent on whether weathering-erosion feedbacks are strong or weak, with stability being more likely at shorter and less likely at longer timescales. At the broadest spatial scales, instability is likely; although stability may be present at intermediate temporal scales if weathering-erosion feedbacks are weak. The distinction is important because stability is associated with convergent evolution whereby the effects of initial variations or disturbances are reduced over time as the landscape converges toward a stable equilibrium state. Instability, by contrast, indicates divergent evolution, increasing differentiation over time, and the persistence and growth of disturbance effects and initial variations.

  14. Upgrade Summer Severe Weather Tool

    NASA Technical Reports Server (NTRS)

    Watson, Leela

    2011-01-01

    The goal of this task was to upgrade to the existing severe weather database by adding observations from the 2010 warm season, update the verification dataset with results from the 2010 warm season, use statistical logistic regression analysis on the database and develop a new forecast tool. The AMU analyzed 7 stability parameters that showed the possibility of providing guidance in forecasting severe weather, calculated verification statistics for the Total Threat Score (TTS), and calculated warm season verification statistics for the 2010 season. The AMU also performed statistical logistic regression analysis on the 22-year severe weather database. The results indicated that the logistic regression equation did not show an increase in skill over the previously developed TTS. The equation showed less accuracy than TTS at predicting severe weather, little ability to distinguish between severe and non-severe weather days, and worse standard categorical accuracy measures and skill scores over TTS.

  15. Smooth Sailing for Weather Forecasting

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Through a cooperative venture with NASA's Stennis Space Center, WorldWinds, Inc., developed a unique weather and wave vector map using space-based radar satellite information and traditional weather observations. Called WorldWinds, the product provides accurate, near real-time, high-resolution weather forecasts. It was developed for commercial and scientific users. In addition to weather forecasting, the product's applications include maritime and terrestrial transportation, aviation operations, precision farming, offshore oil and gas operations, and coastal hazard response support. Target commercial markets include the operational maritime and aviation communities, oil and gas providers, and recreational yachting interests. Science applications include global long-term prediction and climate change, land-cover and land-use change, and natural hazard issues. Commercial airlines have expressed interest in the product, as it can provide forecasts over remote areas. WorldWinds, Inc., is currently providing its product to commercial weather outlets.

  16. Public Awareness of Space Weather

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Louis J.

    2009-08-01

    As society increasingly relies on space-based infrastructure for communication and national security, there is a growing need to improve public awareness of the risks space weather poses. The National Space Weather Program (NSWP) should consider this need as it develops new strategic plans. The 2006 “Report of the Assessment Committee for the National Space Weather Program” (http://www.ofcm.gov/r24/fcm-r24.htm) continues to guide this important national program, which aims to improve space weather forecasting services and reduce technological vulnerabilities. NSWP, under the auspices of the Office of the Federal Coordinator for Meteorology (OFCM), is coordinated by the NSWP Council, which consists of eight federal agencies. This council, through its Committee for Space Weather, is in the process of formulating new Strategic and Implementation plans for the NSWP using recommendations from the Assessment Committee.

  17. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  18. Historical Weather Conditions and Maize Yields

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2010-12-01

    Projections of maize crops response to climate based on empirical models generally show a negative response to warmer temperatures. These models typically use monthly averages of temperature or assume that the response to a high frequency warming event is independent of when it occurs in the growing season. Biophysical modeling and experimental studies indicate that crop yields are dependent on high frequency warming events and that the timing of the event can also play a significant role in crop development. This research looks to the historical record of maize yields in the United States paired with daily station data to categorize high, low, and normal yield years with the particular high frequency patterns in maximum and minimum temperature as well as precipitation that led to such yields. A multiple linear regression model is used with these patterns to predict yields. These results expand on prior empirical modeling by incorporating high frequency temporal sensitivity into the regression model. The United States is the training region for the model because of high quality weather station and crop data. The weather data are taken from the United States Historical Climatology Network (USHCN) and provide daily records of maximum temperature, minimum temperature and precipitation at 1218 sites across the lower 48 states, with some records extending into the mid-19th century. The United States Department of Agriculture/National Agricultural Statistics Service (USDA/NASS) provides data on maize yields at the county level back to 1910, and provides state level planting and harvest time data back to 1981, at it's peak maize was produced in 2821 counties offering a wide range of different climates. The study is limited by restricting itself to the United States and maize, but could provide the basis for similar studies on a wider range of crops, geographic regions and future projections of climate change.

  19. Proposal of Wireless Traffic Control Schemes for Wireless LANs

    NASA Astrophysics Data System (ADS)

    Hiraguri, Takefumi; Ichikawa, Takeo; Iizuka, Masataka; Kubota, Shuji

    This paper proposes two traffic control schemes to support the communication quality of multimedia streaming services such as VoIP and audio/video over IEEE 802.11 wireless LAN systems. The main features of the proposed scheme are bandwidth control for each flow of the multimedia streaming service and load balancing between access points (APs) of the wireless LAN by using information of data link, network and transport layers. The proposed schemes are implemented on a Linux machine which is called the wireless traffic controller (WTC). The WTC connects a high capacity backbone network and an access network to which the APs are attached. We evaluated the performance of the proposed WTC and confirmed that the communication quality of the multimedia streaming would be greatly improved by using this technique.

  20. Nowcasting extreme weather events over Greece

    NASA Astrophysics Data System (ADS)

    Katsafados, Petros; Nomikou, Vera; Mavromatidis, Elias; Papadopoulos, Anastasios; Lagouvardos, Konstantinos; Kotroni, Vassiliki

    2014-05-01

    Accurate and consistent very short-term prediction (nowcasting) of high-impact weather events can lead to significant improvement in warnings and advisories providing a direct impact on the risk management. To this end, an advanced mesoscale meteorological data assimilation tool, the Local Analysis and Prediction System (LAPS), has been implemented in order to serve as an early warning system. LAPS incorporates surface and upper air observations (METAR, SYNOP, satellite, soundings, radar, aircraft etc) into large-scale gridded data (as background fields) and produces high spatial and temporal resolution analysis fields and early forecasts. This study presents the performance of the LAPS system in describing two unusual events of hazardous weather conditions over Greece. The first case study is characterized by the passage of a cyclonic system accompanied with cold fronts over Southern Greece. Heavy downpour, lightning and flooding were the main characteristics of the storm that affected Athens metropolitan area on February 22nd 2013. In the second case study the passage of a cold front over SE Aegean Sea led in a destructive and deadly flash flooding that affected the Northern areas of Rhodes Island on November 22nd 2013. This second flash flood event was triggered by the extreme precipitation (almost 100 mm in 4 hours) and killed 4 people making it the deadliest ever for the area. For both case studies, the conventional numerical weather prediction models operating at various research institutes and universities provided a rather insufficient spatiotemporal estimation of the extreme precipitation. For these cases, the LAPS-based nowcasting procedure has been applied with and without the ingestion of high resolution remote sensed precipitation estimates. The LAPS outputs have been evaluated against independent observations obtained from a dense network of surface meteorological stations. Results indicate that LAPS outputs were better than those obtained from the conventional operational forecasts. Also, the use of the satellite information improved the LAPS-based hourly Quantitative Precipitation Estimates in terms of amount, timing and localization.

  1. A Hole in the Weather Warning System.

    NASA Astrophysics Data System (ADS)

    Wood, Vincent T.; Weisman, Robert A.

    2003-02-01

    lack of text information. These problems had forced deaf and hard of hearing people to rely on looking at the sky or having hearing people alert them as their primary methods of receiving emergency information. These problems are documented through the use of a survey of 277 deaf and hard of hearing people in Minnesota and Oklahoma as well as specific examples.During the last two years, some progress has been made to "close this hole" in the weather warning system. The Federal Communications Commission has approved new rules, requiring that all audio emergency information provided by television stations, satellite, and cable operators must also be provided visually. In addition, the use of new technology such as pager systems, weather radios adapted for use by those with special needs, the Internet, and satellite warning systems have allowed deaf and hard of hearing people to have more access to emergency information.In this article, these improvements are documented but continuing problems and possible solutions are also listed.

  2. Photonics for wireless communications

    NASA Astrophysics Data System (ADS)

    Paul, Dilip K.

    1995-09-01

    The problem of optimum signal transmission/reception is addressed under a wireless acoustics data communications framework. The ocean waveguide can be modeled as an inhomogeneous dispersive medium with a frequency- dependent Green's function. An FDM-type reception scheme with non- overlapping acoustic subchannels is proposed. This methodology exploits the optimal propagation frequencies along specific ducts and paths in the ocean waveguide. The parallel data transmission system used frequency division multiplexed (FDM) channels to avoid equalization techniques which introduce higher-order computational complexity to the receiver. Multicarrier modulation (MCM) ameliorates the effects of multipaths, and allows operation at multiples of the single-carrier transmission rate. The long symbol time used in multicarrier modulation increases the system margins against noise, intersymbol interference (ISI) and fast fades. Network topology issues are considered to determine optimum network architectures for underwater acoustic LAN's. A central network topology supported by a blind adaptive equalization (BAE) transmission technique is proposed as superior to a distributed topology in terms of power, bandwidth efficiency, setup simplicity, and elimination of overhead bits for short data packet exchange. Included is an investigation on the factors controlling the system's power efficiency.

  3. Patterns and trends of high-impact weathers in China during 1959-2014

    NASA Astrophysics Data System (ADS)

    Shi, J.; Wen, K.; Cui, L.

    2015-10-01

    The spatial and temporal characteristics in the frequencies of four types of high-impact weathers (HIWs), i.e. snowfall, thunderstorm, foggy and hailstorm weathers were analyzed in China by using daily weather phenomenon data from 604 stations. Results indicate that snowfall, thunderstorm, foggy and hailstorm days showed significant decreasing trends with rates of 2.5, 2.6, 0.8 and 0.5 days per decade respectively, and snowfall, thunderstorm, foggy and hailstorm weather processes decreased significantly at rates of 0.3, 0.4, 0.1 and 0.1 times per decade during 1959-2014. Spatially, snowfall weathers were more in northeastern and western China, and thunderstorm weathers were more in southern and southwestern China. Foggy weathers were more in some high mountain stations, eastern China and central China, and hailstorm weathers were concentrated on Qinghai-Tibet Plateau. Over the past 56 years, snowfall days, thunderstorm days and thunderstorm weather processes decreased in most parts of China, with decreasing rates of 1.0-6.0 days, 1.5-8.0 days and 0.2-1.0 times per decade respectively. Hailstorm days decreased in northeastern China and most parts of northern and western China at a rate of 0.2-4.5 days per decade. The spatial trends of foggy days, foggy weather processes and snowfall weather processes were not significant in most parts of China. With climate change and rapidly economic development, more policies and strategies of reducing social vulnerabilities and/or exposures to HIWs are essential for the government and social publics.

  4. Wireless Andrew: Everywhere You Want To Be.

    ERIC Educational Resources Information Center

    Futhey, Tracy

    2000-01-01

    Describes the wireless local area network at Carnegie Mellon University. Highlights include classroom applications, particularly in the Business School; the use of laptop computers configured with wireless technology; handheld computers, including use for testing; and assuring appropriate uses of wireless technology. (LRW)

  5. 77 FR 64446 - Wireless Microphones Proceeding

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... Rulemaking, 75 FR 3622, 75 FR 3682, 25 FCC Rcd 643 (2010) (Wireless Microphones Order and Wireless... Docket No. 02-380, Second Memorandum Opinion and Order, 75 FR 75814, 25 FCC Rcd 18661 (2010) (TV White... Memorandum Opinion and Order, 77 FR 29236, 27 FCC Rcd 3692 (2012). Background In the Wireless...

  6. A Wireless Communications Systems Laboratory Course

    ERIC Educational Resources Information Center

    Guzelgoz, Sabih; Arslan, Huseyin

    2010-01-01

    A novel wireless communications systems laboratory course is introduced. The course teaches students how to design, test, and simulate wireless systems using modern instrumentation and computer-aided design (CAD) software. One of the objectives of the course is to help students understand the theoretical concepts behind wireless communication…

  7. Verification of National Weather Service spot forecasts using surface observations

    NASA Astrophysics Data System (ADS)

    Lammers, Matthew Robert

    Software has been developed to evaluate National Weather Service spot forecasts issued to support prescribed burns and early-stage wildfires. Fire management officials request spot forecasts from National Weather Service Weather Forecast Offices to provide detailed guidance as to atmospheric conditions in the vicinity of planned prescribed burns as well as wildfires that do not have incident meteorologists on site. This open source software with online display capabilities is used to examine an extensive set of spot forecasts of maximum temperature, minimum relative humidity, and maximum wind speed from April 2009 through November 2013 nationwide. The forecast values are compared to the closest available surface observations at stations installed primarily for fire weather and aviation applications. The accuracy of the spot forecasts is compared to those available from the National Digital Forecast Database (NDFD). Spot forecasts for selected prescribed burns and wildfires are used to illustrate issues associated with the verification procedures. Cumulative statistics for National Weather Service County Warning Areas and for the nation are presented. Basic error and accuracy metrics for all available spot forecasts and the entire nation indicate that the skill of the spot forecasts is higher than that available from the NDFD, with the greatest improvement for maximum temperature and the least improvement for maximum wind speed.

  8. Observations and Impact Assessments of Extreme Space Weather Events

    NASA Astrophysics Data System (ADS)

    Baker, D. N.

    2007-05-01

    "Space weather" refers to conditions on the Sun, in the solar wind, and in Earth`s magnetosphere, ionosphere, and thermosphere. Activity on the Sun such as solar flares and coronal mass ejections can lead to high levels of radiation in space and can cause major magnetic storms at the Earth. Space radiation can come as energetic particles or as electromagnetic emissions. Adverse conditions in the near-Earth space environment can cause disruption of satellite operations, communications, navigation, and electric power distribution grids. This can lead to a variety of socioeconomic losses. Astronauts and airline passengers exposed to high levels of radiation are also at risk. Society`s vulnerability to space weather effects is an issue of increasing concern. We are dependent on technological systems that are becoming more susceptible to space weather disturbances. We also have a permanent human presence in space with the International Space Station and the President and NASA have expressed a desire to expand our human space activities with missions to the moon and Mars. This will make space weather of even greater concern in the future. In this talk I will describe many space weather effects and will describe some of the societal and economic impacts that extreme events have had.

  9. Development of a Wireless Displacement Measurement System Using Acceleration Responses

    PubMed Central

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  10. Development of a wireless displacement measurement system using acceleration responses.

    PubMed

    Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F

    2013-01-01

    Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123

  11. Estimation of the seismic disaster-stricken area based on wireless communication data

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Xie, Xiaofeng; Ning, Baokun; Sun, Gang

    2013-05-01

    In this study, the wireless communication data obtained after the earthquake are introduced to rapidly assess the earthquake disaster. Firstly, the wireless communication data including the real-time signaling data and the base station data are used to analyze the activities and the relationship of the mobile phones and the base stations. Based on the analysis results, five signaling parameters are selected and the Apriori algorithm is used to judge the damaged status of the stations. All the base stations within the affected area of the earthquake are divided into several categories according to the damage levels. Each category will produce a range of earthquake damage in the spatial domain within the affected area. Finally, when the earthquake disaster-stricken areas are located, the extent of the damage will be estimated. The Wenchuan earthquake, happened on May 12, 2008 in Sichuan Province of China reflects that the method discussed in the paper is feasible. The Wenchuan EQ also shows that the wireless communication data is very useful when we assess the damage soon after the disaster occurred, especially when there is no other way to get the field disaster information.

  12. A novel wireless local positioning system for airport (indoor) security

    NASA Astrophysics Data System (ADS)

    Zekavat, Seyed A.; Tong, Hui; Tan, Jindong

    2004-09-01

    A novel wireless local positioning system (WLPS) for airport (or indoor) security is introduced. This system is used by airport (indoor) security guards to locate all of, or a group of airport employees or passengers within the airport area. WLPS consists of two main parts: (1) a base station that is carried by security personnel; hence, introducing dynamic base station (DBS), and (2) a transponder (TRX) that is mounted on all people (including security personnel) present at the airport; thus, introducing them as active targets. In this paper, we (a) draw a futuristic view of the airport security systems, and the flow of information at the airports, (b) investigate the techniques of extending WLPS coverage area beyond the line-of-sight (LoS), and (c) study the performance of this system via standard transceivers, and direct sequence code division multiple access (DS-CDMA) systems with and without antenna arrays and conventional beamforming (BF).

  13. Adaptive Modulation and Coding for LTE Wireless Communication

    NASA Astrophysics Data System (ADS)

    Hadi, S. S.; Tiong, T. C.

    2015-04-01

    Long Term Evolution (LTE) is the new upgrade path for carrier with both GSM/UMTS networks and CDMA2000 networks. The LTE is targeting to become the first global mobile phone standard regardless of the different LTE frequencies and bands use in other countries barrier. Adaptive Modulation and Coding (AMC) is used to increase the network capacity or downlink data rates. Various modulation types are discussed such as Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM). Spatial multiplexing techniques for 4×4 MIMO antenna configuration is studied. With channel station information feedback from the mobile receiver to the base station transmitter, adaptive modulation and coding can be applied to adapt to the mobile wireless channels condition to increase spectral efficiencies without increasing bit error rate in noisy channels. In High-Speed Downlink Packet Access (HSDPA) in Universal Mobile Telecommunications System (UMTS), AMC can be used to choose modulation types and forward error correction (FEC) coding rate.

  14. Cold-Weather Sports and Your Family

    MedlinePlus

    ... the weather turns frosty. Beating the Cold-Weather Blahs Once a chill is in the air, our ... more sedentary can lead to the "cold-weather blahs." Kids might feel more tired, lethargic, or even ...

  15. Wireless device monitoring systems and monitoring devices, and associated methods

    DOEpatents

    McCown, Steven H; Derr, Kurt W; Rohde, Kenneth W

    2014-05-27

    Wireless device monitoring systems and monitoring devices include a communications module for receiving wireless communications of a wireless device. Processing circuitry is coupled with the communications module and configured to process the wireless communications to determine whether the wireless device is authorized or unauthorized to be present at the monitored area based on identification information of the wireless device. Methods of monitoring for the presence and identity of wireless devices are also provided.

  16. Traffic handling capability of a broadband indoor wireless network using CDMA multiple access

    NASA Astrophysics Data System (ADS)

    Zhang, Chang G.; Hafez, H. M.; Falconer, David D.

    1994-05-01

    CDMA (code division multiple access) may be an attractive technique for wireless access to broadband services because of its multiple access simplicity and other appealing features. In order to investigate traffic handling capabilities of a future network providing a variety of integrated services, this paper presents a study of a broadband indoor wireless network supporting high-speed traffic using CDMA multiple access. The results are obtained through the simulation of an indoor environment and the traffic capabilities of the wireless access to broadband 155.5 MHz ATM-SONET networks using the mm-wave band. A distributed system architecture is employed and the system performance is measured in terms of call blocking probability and dropping probability. The impacts of the base station density, traffic load, average holding time, and variable traffic sources on the system performance are examined. The improvement of system performance by implementing various techniques such as handoff, admission control, power control and sectorization are also investigated.

  17. LP instrument for "Obstanovka" experiment: use of wireless communication in complex space-borne experiments

    NASA Astrophysics Data System (ADS)

    Kirov, Boian; Batchvarov, Ditchko; Krasteva, Rumiana; Boneva, Ani; Nedkov, Rumen; Klimov, Stanislav; Stainov, Gencho

    The advance of the new wireless communications provides additional opportunities for spaceborne experiments. It is now possible to have one basic instrument collecting information from several sensors without burdensome harnessing among them. Besides, the wireless connection among various elements inside the instrument allows the hardware upgrading to be realized without changing globally the whole instrument. In complex experiments consisting of several instruments, the possibility is provided for continuous communication among the instruments, and for optimal choice of the appropriate mode of operation by the central processor. In the present paper, the LP instrument (electrostatic Langmuir probe) is described - an element of "Obstanovka" experiment designed to operate aboard the International Space Station, emphasizing on the use of wireless communication between the sensors and the main instrument.

  18. The Physics of III-V Heterojunction Devices in Wireless Communications

    NASA Astrophysics Data System (ADS)

    Johnson, Karl

    2003-03-01

    III-V heterojunction devices have become pervasive in wireless communication appliances. In particular, the low voltage, high efficiency power amplifier transmitters in cellular phones are dominated by heterojunction bipolar transistors (HBT), psuedomorphic high electron mobility transistors (pHEMT) and heterojunction field effect transistors (HFET). Further, these III-V heterojunction devices are also appearing in infrastructure applications such as cellular base stations, wireless local area network (WLAN) and cable television (CATV) line amplifiers. The design of these devices requires unique band gap engineering in order to meet the cost, performance and ruggedness in the linear and saturated power modes required by today's cellular modulation protocols. This presentation will address the physics behind the design, development and operation of these technologies leading to their optimization for the wireless market place.

  19. Stormy weather in galaxy clusters

    PubMed

    Burns

    1998-04-17

    Recent x-ray, optical, and radio observations coupled with particle and gas dynamics numerical simulations reveal an unexpectedly complex environment within clusters of galaxies, driven by ongoing accretion of matter from large-scale supercluster filaments. Mergers between clusters and continuous infall of dark matter and baryons from the cluster periphery produce long-lived "stormy weather" within the gaseous cluster atmosphere-shocks, turbulence, and winds of more than 1000 kilometers per second. This weather may be responsible for shaping a rich variety of extended radio sources, which in turn act as "barometers" and "anemometers" of cluster weather. PMID:9545210

  20. GEM: Statistical weather forecasting procedure

    NASA Technical Reports Server (NTRS)

    Miller, R. G.

    1983-01-01

    The objective of the Generalized Exponential Markov (GEM) Program was to develop a weather forecast guidance system that would: predict between 0 to 6 hours all elements in the airways observations; respond instantly to the latest observed conditions of the surface weather; process these observations at local sites on minicomputing equipment; exceed the accuracy of current persistence predictions at the shortest prediction of one hour and beyond; exceed the accuracy of current forecast model output statistics inside eight hours; and be capable of making predictions at one location for all locations where weather information is available.